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Abstract

The ocean exhibits a wide range of physical processes across different spa-
tial and temporal scales. In the North Atlantic Ocean, these processes range
from large-scale currents associated with the global thermohaline circulation,
of approximately 10000 km, to microscale turbulence at the cm level. The
temporal scales extend from hourly fluctuations to decadal variations. Due
to this complexity, observational data often lack the resolution and synop-
ticity needed to fully capture these dynamics, making numerical modelling
an essential tool for complementing observations and improving our under-
standing of oceanic physical structures.

A useful approach to analyze ocean dynamics is through the Shallow Wa-
ter Equations (SWE), an approximation of the Navier-Stokes equations that
assumes a shallow fluid layer in which the horizontal scale greatly exceeds
the vertical. These equations cannot be solved analytically and require the
use of numerical methods.

The Finite Element Method (FEM) is a well-suited tool to create powerful
models. FEM is based on the variational formulation of the system of Partial
Differential Equations, and offers flexibility in the mesh design, permitting
the use of unstructured meshes, and computational efficiency. The Hybridiz-
able Discontinuous Galerkin (HDG) method belongs to the FEM family and
provides all its advantages while also ensuring local conservation and effi-
cient solution strategies.

Implicit-explicit (IMEX) time integration schemes allow for larger time-
step sizes than fully explicit methods, while being less computationally de-
manding than fully implicit schemes. Strong Stability Preserving (5SP) schemes
further ensure that the non-linear stability properties of the system are main-
tained, a crucial requirement when dealing with hyperbolic systems such as
the SWE.

In this thesis, we analyze the suitability of a numerical model of the Shal-
low Water Equations based on the HDG spatial discretization and an IMEX
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SSP time discretization for oceanographic problems. The model is imple-
mented using the Firedrake finite element library in Python.
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Resumen

El océano presenta una amplia gama de procesos fisicos a diferentes es-
calas espaciales y temporales. En el Océano Atlantico Norte, estos proce-
sos van desde las corrientes a gran escala, asociadas a la circulaciéon termo-
halina mundial, de aproximadamente 10000 km, hasta la turbulencia a mi-
croescala, a nivel de cm. Las escalas temporales abarcan desde fluctuaciones
horarias hasta variaciones decenales. Debido a esta complejidad, los datos
observacionales carecen a menudo de la resolucién y sinopticidad necesarias
para captar plenamente esta dindmica, lo que convierte a la modelizacién
numérica en una herramienta esencial para complementar las observaciones
y mejorar nuestra comprension de las estructuras fisicas ocednicas.

Un enfoque ttil para analizar la dindmica del océano es el de las ecuaciones
de aguas someras (SWE, por sus siglas en inglés), una aproximacién de las
ecuaciones de Navier-Stokes que supone una capa de fluido poco profunda
en la que la escala horizontal supera ampliamente a la vertical. Estas ecua-
ciones no pueden resolverse analiticamente y requieren del uso de métodos
numeéricos.

El método de los elementos finitos (FEM, por sus siglas en inglés) es una
herramienta muy conveniente para crear modelos potentes. El FEM se basa
en la formulacién variacional de las ecuaciones diferenciales que definen el
problema, y ofrece flexibilidad en el disefio de la malla, permitiendo el uso de
mallas no estructuradas, y eficiencia computacional. El método Galerkin dis-
continuo hibridizable (HDG, por sus siglas en inglés) pertenece a la familia
del FEM y ofrece todas sus ventajas, al tiempo que garantiza la conservacién
local y estrategias de solucion eficientes.

Los esquemas de discretizacion temporal implicitos-explicitos (IMEX) per-
miten tamafios de paso temporal mayores que los métodos totalmente ex-
plicitos, mientras que son menos exigentes desde el punto de vista computa-
cional que los esquemas totalmente implicitos. Los esquemas Strong Stability
Preserving (SSP) garantizan, ademads, el mantenimiento de las propiedades
de estabilidad no lineal del sistema, un requisito crucial cuando se trabaja



con sistemas hiperboélicos como las SWE.

En esta tesis se analiza la idoneidad de un modelo numérico de las Ecua-
ciones de Aguas Someras basado en la discretizacion espacial HDG y una
discretizacion temporal IMEX SSP para problemas oceanograficos. El mod-
elo se implementa utilizando la libreria de elementos finitos Firedrake en
Python.
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Chapter 1

Introduction

In oceanography, modelling is a key tool to complement the observational
data, in order to understand the complex physical structures of the ocean.
The dynamics of the ocean are usually represented by the Shallow Water
Equation system. Finite Element methods are a convenient tool to create
powerful models. Particularly, Hybridizable Discontinuous Galerkin (HDG)
methods offer all the advantadges of Finite Elements while also ensuring
local conservation and efficient solution strategies. In this thesis, we aim to
implement a HDG SWE model, with the goal of improving our ability to
predict, interpret, and manage oceanic phenomena.

1.1 State of the art

In the ocean, the main structure at the global scale is the thermohaline cir-
culation, accompanied by the subtropical gyres, equatorial currents, and in-
tense western boundary currents at each basin. Moving to finer scales, at the
mesoscale the main processes are coastal upwelling systems, the filaments
associated to them, ocean fronts and mesoscale eddies. Finally, the turbu-
lence is the main process at the submesoscale (Talley et al., 2011).

In the North Atlantic Ocean the main water masses interacting between
the surface and 1000 m are the North Atlantic Central Water (NACW) and
the South Atlantic Central Water (SACW), and, at intermediate levels, we
can find the Antarctic Intermediate Water (AAIW) and the Mediterranean
Water (MW) (Tomczak, 1981).

Regarding the physical structures, the North Atlantic Ocean is dominated
by the North Atlantic Subtropical Gyre. In the East part, the water flows
southward in the Canary Current, and westward in the North Equatorial



2 Chapter 1. Introduction

Current (Herndndez-Guerra et al., 2005; Machin et al., 2006; Pelegri et al.,
2017; Pérez et al., 2001; Vélez-Belchi et al., 2017). The NACW and SACW
form a sharp front at the area off the Northwest African coast (Barton, 1987;
Burgoa et al., 2021; Tomczak, 1981). Long-lived anti-cyclonic and cyclonic
eddies have been found in the path of the Canary Current (Burgoa et al.,
2021; Hagen, 1985; Sangra et al., 2009). Some intrusions of MW moving into
the Atlantic Ocean form mediterranean water eddies (meddies) (Zenk et al.,
1991). There is also a prominent upwelling system at the African Coast (Mit-
telstaedt, 1983; Pelegri et al., 2017).

Observational data fails to capture in detail these complex processes with
many different spatial and temporal scales. In order to understand them,
modelling is a fundamental tool in oceanography.

The Navier-Stokes (NS) equations (Navier, 1823; Stokes, 1845) are a set of
equations that describe the motion of a fluid, with a great variety of struc-
tures that can occur simultaneously on different time scales and lengthscales
(Kéampf, 2009; Kundu et al., 2024). They consist on the momentum equations,
the continuity equation, advection-diffusion equations, and the equation of
state of the water (Kampf, 2009).

The Navier-Stokes equations are capable to model fast and slow waves
in fluids, among other processes. Slow waves, with a velocity of around
30ms~! correspond to the large scale patterns, advection, and the Coriolis
force. The fast waves, with the speed of sound in the air, 300ms—!, called
acoustic waves, are related to the non-linear dynamics (Betteridge, 2020).

The Shallow Water Equations (SWE) are an approximation of the Navier-
Stokes equations for an incompressible shallow layer of water (Kampf, 2009;
Kundu et al., 2024). They describe the evolution of a layer of fluid where the
horizontal scale is much larger than the vertical scale, under gravitational
and inertial forces (Betteridge et al., 2021; Valseth & Dawson, 2021). The NS
and SWE can not be solved analytically and require the use of numerical
methods (Betteridge, 2020).

Traditionally, oceanographic models are solved using the Finite Differences
(FD) (LeVeque, 2007) and Finite Volume (FV) (LeVeque, 2002) methods. Only
some prediction models are based on Finite Element Methods (FEM)
(Zienkiewicz et al., 2013), but this method is becoming increasingly more
popular. The main limitations of FD methods are their high computational
expense, due to the need for strict meshes, and non-optimal scalability for
larger models (Ortleb, 2017). FEM is discretized using integrals and offers a
flexible mesh formed by non-overlapping elements (Marras et al., 2015).

FEM methods offer high parallel efficiency, and provide flexibility, due to
the use of unstructured meshes that adjust to the geometry of the bathymetry
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and coastline, and the wide range of scales covered by the physical pro-
cesses (Kubatko et al., 2009; Marras et al., 2015). Besides the spatial dis-
cretization, FEM has also been recently used for the time discretization of
the model (Valseth & Dawson, 2021). However, FEM methods were ini-
tially not widely adopted in computational fluid dynamics (CFD) due the
forming of instabilities and the lack of inherent local conservation properties
(Pachev, 2024). Traditional Galerkin formulations often led to oscillations
in advection-dominated problems. To overcome these limitations, various
stabilization techniques were developed and incorporated into the finite ele-
ment framework. The Streamline Upwind Petrov-Galerkin (SUPG) method
(Brooks & Hughes, 1982) introduced artificial diffusion along the stream-
lines to suppress numerical oscillations and enhance stability in convection-
dominated flows. Other approaches, such as the Galerkin/Least-Squares
(GLS) method (T. J. R. Hughes et al., 1989), the Space-Time Galerkin/Least-
Squares (STGLS) method (Shakib & Hughes, 1991) and the Subgrid Scale
(SGS) method (T. J. Hughes, 1995), aimed to improve stability and accuracy
by discretizing both space and time using finite elements, and modeling the
effect of unresolved scales. The Characteristic Galerkin method (Douglas
& Russell, 1982; Lohner et al., 1984) combined the finite element method
with the method of characteristics to better capture advective transport. The
Taylor-Galerkin (TG) method (Donea, 1984) employed a Taylor series expan-
sion in time to derive a stabilized scheme, introducing numerical diffusion
through higher-order time derivatives. A review of al these methods can be
found in Codina (1998), Donea and Huerta (2004), and T. J. R. Hughes et al.
(2010). Despite their success in improving stability and accuracy, these stabi-
lized FEM methods do not guarantee local conservation of fluxes. More re-
cently, the Discontinuous Petrov-Galerkin (DPG) method (Savant et al., 2019)
was proposed, which ensures stability by systematically optimizing the test
functions to produce well-posed discrete systems (Pachev, 2024; Valseth &
Dawson, 2021).

As an alternative to the stabilization techniques, Discontinuous Galerkin
(DG) methods introduced local conservation properties inherent to the method,
as well as better handling of discontinuities, which are essential in geophys-
ical flows (Costa-Solé et al., 2019; Kang et al., 2020). However, the increased
number of degrees of freedom and the cost of numerical flux evaluations
across element interfaces make DG methods expensive for large-scale simu-
lations (Kirby et al., 2012).

DG methods (Cockburn, 2004; Hesthaven & Warburton, 2008) provide lo-
cal conservation. It was initially developed by Reed and Hill (1973) for the
neutron transport equation, and has since been used to solve different Par-
tial Differential Equations (PDE) systems. They are a robust tool in the so-
lution of differential problems (Donea & Huerta, 2004; Marras et al., 2015).
DG solves the equation system by solving the elements individually, mak-
ing the solution discontinuous at their interfaces, and imposing a flux, en-
suring conservation among them (Costa-Solé et al., 2019; Costa-Solé, 2020;
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Javadzadeh Moghtader, 2016). It provides intrinsic stability at the discon-
tinuities and sharp fronts, due to the numerical fluxes (Costa-Solé, 2020;
Javadzadeh Moghtader, 2016). DG contains the characteristics of Finite Vol-
ume and Finite Elements methods, and offers advantages such as high accu-
racy, and inherent global and local conservation along the elements, among
others. Its element-wise construction naturally lends itself to parallel compu-
tation (Bui-Thanh, 2016; Kubatko et al., 2009; Samii et al., 2019). Like FEM,
DG can also be applied to unstructured meshes (Betteridge, 2020; Betteridge
et al., 2021; Valseth & Dawson, 2021). However, DG has a higher compu-
tational cost than FEM methods, due to the increase in degrees of freedom,
particularly in time-dependent systems (Bui-Thanh, 2015; Kang et al., 2020;
Kubatko et al., 2009).

Hybridizable Discontinuous Galerkin (HDG) methods emerged later as a
natural evolution, retaining the advantageous properties of DG while im-
proving computational efficiency through static condensation (Samii et al.,
2019; Valseth & Dawson, 2021). Although HDG belongs to the FEM family,
its properties and advantages have led to the widespread use of methods
from the finite element family in fluid dynamics computation (Cockburn,
2023). For example, the HDG method was developed for the Navier-Stokes
equations by Ferndndez (2019), Nguyen et al. (2011), Ueckermann and Ler-
musiaux (2016), and Vo (2017). Cockburn (2023) presents a review of the
evolution of HDG methods. The HDG method was introduced recently by
Cockburn et al. (2009). HDG increases the number of unknowns, compared
to DG, creating new nodes in the skeleton of the mesh (Betteridge et al., 2021).
Despite increasing the number of unknowns, HDG achieves improved effi-
ciency through a decoupling strategy, solving the system in the skeleton and
then recovering the solution within the elements (Samii et al., 2019). This
approach, known as Hybridization or Static Condensation, was initially de-
veloped for linear elasticity problems (Fraeijs de Veubeke, 1965) and later ap-
plied to Galerkin methods. It reduces the computational cost associated with
the DG method while maintaining its properties, finding applications across
various fields for PDEs like the Poisson equation, convection-diffusion equa-
tion, Stokes  equation, Euler and Navier-Stokes equations,
Maxwell equation, acoustics and elastodynamics and Helmholtz equation,
among others (Bui-Thanh, 2016). HDG is a tool in development that is un-
dergoing continuous enhancements (Betteridge et al., 2021; Cockburn, 2023;
Ellmenreich et al., 2025; Felipe et al., 2024; Kang et al., 2020; Kirk et al., 2022;
Pachev, 2024).

Regarding the modelization of the SWE, FEM has previously been applied
using stabilization techniques (Danilov et al., 2004; Dawson et al., 2006; Han-
ert et al., 2003; Kolar et al., 1996; Le Roux et al., 1998, 2000; Lee & Froehlich,
1987; Piggott et al., 2007; Walters & Barragy, 1997; Walters, 2005; Walters &
Carey, 1983; Williams & Zienkiewicz, 1981). With the development of DG,
which has inherent local conservation, DG models became increasingly pop-
ular for the Navier-Stokes and SWE equations (Aizinger & Dawson, 2002;
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Ern et al., 2007; Giraldo & Warburton, 2007; Giraldo et al., 2002; Kubatko
et al., 2009; Pan et al., 2021; Restelli & Giraldo, 2009). DG methods were
first applied to the SWE by Schwanenberg and Kongeter (2000) and are still
a developing field in oceanographic applications (Dawson et al., 2024; Kang
et al., 2020; Karna et al., 2018; Ricardo et al., 2024; Wichitrnithed et al., 2024;
Wu et al., 2024).

Although the HDG method was introduced in 2009, its application to the
SWE system is still very recent. Currently, only a handful of studies have im-
plemented HDG for SWE, and there are some aspects, such as the formula-
tion of boundary conditions, that are not yet unified or well established. The
tirst HDG formulation for linear SWE was proposed by Bui-Thanh (2016),
setting the foundations for the imposition of numerical fluxes using Godunov-
type solvers. Later, Samii et al. (2019) extended the formulation to the nonlin-
ear SWE, and Kang et al. (2020) introduced an implicit-explicit (IMEX) HDG
scheme tailored for hyperbolic systems. Arabshahi (2016) studied the nonlin-
ear SWE with a space-time HDG method. Betteridge et al. (2021) proposed a
variant of this scheme. Some efforts have been made to create tools to solve
SWE models with the DG and HDG methods, such as Dawson et al. (2024),
Gibson et al. (2020), Kédrni et al. (2018), and Pachev (2024). In this thesis, we
focus specifically on the application of HDG methods to the SWE.

Time-dependent PDEs, such as the SWE, also require a temporal discretiza-
tion (Kang et al., 2020). As stated previously, the SWE system can be sepa-
rated into different components with different wave velocities (Betteridge,
2020). Fast waves, like gravity waves, limit the allowed time-step size in ex-
plicit schemes. This leads to a large number of steps, therefore, increasing the
computational cost. On the other hand, implicit methods can become expen-
sive because of the resolution of non-linear systems (Bui-Thanh, 2016; Kang
et al., 2020).

To solve this issue, we can use Implicit-Explicit (IMEX) methods. IMEX
methods were introduced by Crouzeix (1980) for evolving parabolic equa-
tions and have been widely used. IMEX methods allow for flexibility in the
time-step. Treating the slow terms explicitly and the fast terms implicitly bal-
ance the time-step size restriction from the fast waves, and the computational
cost (Betteridge et al., 2021). Therefore, the SWE can be solved with an IMEX
scheme, with the faster linear terms treated implicitly, and the non-linear
terms treated explicitly (Kang et al., 2020).

Hyperbolic equation systems, like the SWE, need a discretization scheme
that is robust and ensures stability. Strong Stability Preserving (SSP) time dis-
cretizations were developed for hyperbolic time dependent PDEs and ODEs,
and are particularly recommended for hyperbolic PDEs with shocks (Got-
tlieb et al., 2011). They are a strong tool to preserve the stability of the sys-
tem. Explicit SSP methods were first used by Gottlieb and Shu (1998), Shu
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(1988), and Shu and Osher (1988), and were called Total Variation Dimin-
ishing (TVD) discretizations (Gottlieb et al., 2011). In Shu (1988) high order
multistep SSP and first order SSP Runge Kutta methods are shown. A gen-
eral SSP theory for multi-stage methods applied to non-linear equations has
been developed by Spijker (2007).

1.2 Goals

The overall goal of this work is to build our own HDG FEM model for the
SWE that can be used to simulate oceanic structures, taking advantage of the
FEM and HDG characteristics. Some specific goals and contributions of this
thesis are:

* Identify and assess the current needs in oceanographic modelling.

* Derive the SWE and establish the applicability of the SWE approxima-
tions for the physical processes relevant to the area of interest.

* Evaluate the performance of SSP time discretization methods, includ-
ing both IMEX and non-IMEX, for the HDG SWE model.

* Formulate the weak imposition of boundary conditions in the HDG dis-
cretization of the SWE.

e Implement a one layer HDG model of the SWE to simulate coastal pro-
cesses.

* Analyze the error convergence of the one layer model for benchmark
problems to assess the accuracy of the method.

* Extend the one layer model to a multilayer formulation to accurately
simulate the complex physical processes occurring in the area of inter-
est.

The development presented in this thesis is not a continuation of previous
modeling work within the research group, but a first implementation from
scratch of a fully functional HDG model for SWE. This required a deep un-
derstanding of the model: deriving the shallow water equations from the
constitutive equations of fluids, recognizing their mathematical structure as
hyperbolic conservation laws, connecting this structure to the HDG spatial
discretization, and mastering the IMEX-SSPRK time discretization. Beyond
theory, starting from scratch also meant translating this knowledge into func-
tional code and validating it against analytical and realistic test cases. While
more time-consuming, this ground-up approach allowed for a comprehen-
sive and original contribution that lays the groundwork for future applica-
tions of HDG in ocean modeling.
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1.3 Outline

In this thesis we address the need for efficient models in oceanography
and implement a HDG SWE model with SSP temporal discretization. The
thesis is organized as follows. In Chapter 2 we analyze different sampling
methods used on an oceanographic cruise in the North-East Atlantic Ocean,
focusing on sinopticity and the spatial scale of the methods, as a measure of
their efficiency capturing the oceanographic structures. The analysis proves
the need for a more detailed ocean model. In Chapter 3 we develop the Shal-
low Water Equations, starting from the conservation equations and consid-
ering the Navier-Stokes and Shallow Water approximations. Then, we de-
fine a linear and non-linear version of the SWE. Finally, we study its prop-
erties as a conservation law. Chapter 4 contains the spatial discretization for
the SWE model, using the HDG method. To understand the HDG method,
we introduce first the FEM method. Then, it is improved using Discon-
tinuous Galerkin, and, finally, Hybridizable Discontinuous Galerkin. The
HDG SWE model is then written in bilinear forms. The numerical fluxes
for DG and HDG are calculated using the Godunov method, and choosing
the Lax-Friedrichs fluxes. Finally, the boundary conditions are explained.
Then, in Chapter 5, the temporal discretization for the model is developed,
using Implicit-Explicit (IMEX) methods and Strong Stability Preserving (SSP)
schemes. After that, a Static Condensation approach is used for the resolution
of the equation system. Chapter 6 shows the results of the model for differ-
ent numerical examples. The accuracy stability of the model is calculated for
three examples with an analytical solution, a translating vortex, linear stand-
ing wave, and a linear Kelvin wave. A lake at rest problem is used to make
sure that the SWE model is well-balanced. Then, we solve other complex ex-
amples that are of significant interest in oceanography. Finally, in Chapter 7,
we summarize the work of this thesis, the goals we have achieved and the
future work.






Chapter 2

Evaluation of ocean sampling and
modelling approaches to capture
oceanographic features off
Northwest Africa

In this chapter, we analyze the ability of the ocean models and sampling
tools to capture the physical processes at various spatial scales. We also de-
scribe the physical structures found in the North Atlantic Ocean. The dy-
namic processes of the ocean have a wide range of spatial scales, from a few
centimeters to tens of thousands of kilometers, and temporal scales, from
hours to decades. In order to understand the dynamics of the ocean we need
a tool capable of capturing all these scales simultaneously while maintaining
synopticity.

The content of this chapter has been published during the development of
this thesis in Hernandez-Garcia et al. (2024).

2.1 High resolution observations in an ocean front
system

Traditionally, ocean analysis has relied on datasets obtained from ship-
based measurements and moorings. In addition, remote-sensing technolo-
gies have gained widespread usage and continue to advance. However,
current remote-sensing technologies primarily focus on the ocean’s surface.
Over the past few decades, subsurface floats such as Argo floats, remotely
operated vehicles (ROVs), and autonomous underwater vehicles (AUVs) like
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gliders have emerged, offering a vast array of applications in oceanography
(Bachmayer et al., 2004, 2006; Herndndez-Garcia et al., 2018; Ramos et al.,
2018; Rudnick et al., 2004).

These state-of-the-art sampling systems now enable access to ocean phe-
nomena across a wide range of scales, from the size of the ocean basin (ap-
proximately 10000km) to microscales (just a few centimeters). They are
highly portable and suitable for sampling intermittent and localized phe-
nomena, such as upwelling events. Notably, gliders offer relative control
over horizontal location, allowing scientists to strategically select where to
conduct profiles. Furthermore, compared to other AUVs, gliders boast lower
energy consumption enabling longer and deeper operations. However, glid-
ers are limited in terms of the sensors they can carry, necessitating the use
of sensors that are compact, lightweight, and have low power consumption
(Bachmayer et al., 2004; Rudnick et al., 2004).

The Cape Verde Frontal Zone (CVEFZ) represents a dynamically complex
region situated in the eastern North Atlantic Subtropical Gyre (20°W to 30°W,
~ 20°N). This front is defined by the strong interleaving of two main wa-
ter masses at surface and central levels in the North Atlantic Ocean - North
Atlantic Central Water (NACW) and South Atlantic Central Water (SACW)
(Barton, 1987; Burgoa et al., 2021; Pelegri et al., 2017; Tomczak, 1981).

These water masses are defined by a range of temperature and salinity val-
ues, and can be represented with an uniform density. NACW is characterized
by an almost linear relationship between temperature and salinity within the
range of 11 to 18.65°C and 35.47 to 36.76, while SACW exhibits this rela-
tionship within the range of 9.7 to 15.25°C and 35.177 to 35.7. SACW also
presents a minimum in oxygen levels, dropping below 1.5mLL™!, whereas
NACW exhibits low nutrient levels and high oxygen concentration (Hagen,
1985; Tomczak, 1981; Zenk et al., 1991). Below these water masses, Antarctic
Intermediate Water (AAIW) becomes apparent at intermediate layers, char-
acterized by a minimum in both salinity and oxygen. Mediterranean Water
(MW), found at depths of 800-1200m and in the form of meddies, stands
out for its notably warmer and more saline properties compared to AAIW
(Bashmachnikov et al., 2015; Pérez et al., 2001; Zenk et al., 1991).

The Cape Verde Front (CVF) is traditionally defined by the intersection of
the 36.0 isohaline with the 150 m depth isobath (Barton, 1987; Zenk et al.,
1991). This front persists throughout the year, experiencing high spatial and
temporal variability and extending from 20°W to 30°W, at latitudes between
15°N and 22°N, from Cape Blanc to Cape Verde Islands (Burgoa et al., 2021;
Mittelstaedt, 1983; Tomczak & Hughes, 1980; Zenk et al., 1991). A compila-
tion of CVF positions from synoptic surveys by Zenk et al. (1991) suggested
that spatial variations of the front are at least on the order of 300 km in the
region off Cape Blanc.
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This highly meandering thermohaline front is marked by the presence of
intrusions, filaments from the upwelling system, and eddy activity (Martinez-
Marrero et al., 2008). The upwelling between 20°N and 25°N exhibits maxi-
mum intensity during spring and autumn, featuring sharp gradients in tem-
perature (<3 °C) and salinity (<0.08) at depths down to 600 m. The temper-
ature decrease with depth compensates for the salinity decrease, resulting in
both variables effectively counterbalancing their effects on density and main-
taining the front’s dynamic stability. In this highly variable region, high-
definition sampling methods prove crucial to capture all the processes ob-
served during sampling. It is also important to consider the sampling veloc-
ity concerning the timescales of oceanic structures. Slower sampling methods
might inadvertently present temporal variability as spatial structure, chal-
lenging the perception of a vertical section as a precise snapshot of oceanic
conditions (P. Hughes & Barton, 1974; Martinez-Marrero et al., 2008; Pérez-
Rodriguez et al., 2001; Rudnick et al., 2004).

2.2 Methods

2.2.1 Sampling methods

The FLUXES-II cruise took place in the CVFZ between November 2" and
November 241 2017, utilizing the BIO Sarmiento de Gamboa. The primary
objective of the FLUXES project was to investigate the hydrographic charac-
teristics of the CVF, using both traditional and innovative instruments. The
expedition involved various measurements including CTD stations, SeaSoar
observations, glider deployments, ADCP recordings, and turbulence mea-
surements, among others (Burgoa et al., 2021; Campanero et al., 2022). The
spatial distribution of the data is shown in Figure 2.1.

Mercator Model

The numerical model outputs were sourced from the Copernicus Marine
Environment Monitoring Service dataset GLOBAL_ANALYSIS_FORECAST
_PHY _001_024 (European Union-Copernicus Marine Service, 2016). This
model, which provides daily outputs, is a numerical forecasting model with
temperature, salinity, currents, sea level, mixed layer depth and ice parame-
ters (von Schuckmann et al., 2016). The dataset utilized for this study corre-
sponds to the model outputs covering the same spatial locations and dates as
the glider data. It offers a horizontal resolution of %O (0.083°) and comprises
50 vertical levels spanning from the sea surface to 5500 m depth.
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FIGURE 2.1: Map illustrating the study area for this project.
Salinity data at 150 m is depicted, emphasizing the isohaline
of 36 with the white contour. The black dashed line represents
the transect used for this analysis, corresponding to a portion of
the FLUXES-II cruise’s sampling. The red square highlights the
area sampled by the FLUXES-II survey. The map was gener-
ated using global Mercator model data of November 13" 2017.
Ship CTD

A total of 48 stations were sampled using the CTD rosette system, with 36
stations being utilized for this study, between November 10t and November
20", These measurements encompassed depths from the sea surface down
to 1500m. The stations were approximately 9.26 km apart, with a vertical
resolution of about 1 m (Burgoa et al., 2021; Campanero et al., 2022).

SeaSoar

The SeaSoar, a vehicle performing undulations on the water column, was
deployed in a continuous towed manner behind the research vessel. The
transect T5 from the cruise, conducted on November 8", was used. In this
transect the water column was sampled from the surface to approximately
400 m depth, with a horizontal resolution of approximately 2.5 km and a ver-
tical resolution of 0.5m (Allen et al., 2002; Burgoa et al., 2021; Campanero
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et al., 2022; Hales & Takahashi, 2002; Pollard, 1986).

Gliders

Two gliders, AUVs, travelling by adjusting their buoyancy to traverse the
water column, were deployed between November 4" and November 21,
These gliders sampled from the surface to 1000 m, with a horizontal spatial
resolution of approximately 1km and a vertical resolution of around 1m.
The dataset from the glider Bio-584 was chosen for this study as both gliders
provided similar observations (Bachmayer et al., 2006; Burgoa et al., 2021;
Campanero et al., 2022).

Sea Level and Surface Velocity from Satellite Data

Sea Level Anomaly (SLA) and the velocity field estimated from satellite
observations were obtained from the Copernicus Marine Environment Moni-
toring Service dataset SEALEVEL_ GLO_PHY_L4 REP_OBSERVATIONS_008
_047 (European Union-Copernicus Marine Service, 2021). The dataset inte-
grates sea level anomaly data from different altimeter missions, achieving a

horizontal resolution up to }IO.

2.2.2 Data Processing

The variables considered in this study encompass potential temperature,
practical salinity, potential density, and oxygen. Practical salinity from the
Ship CTD was calibrated by analyzing 51 water samples. Oxygen measure-
ments from the CTD stations were calibrated using in situ samples, ensuring
a precision of +0.53 umolkg ! (Burgoa et al., 2021). Glider data were pro-
cessed using the Glider Toolbox from the Balearic Islands Coastal Observing
and Forecasting System (SOCIB), incorporating thermal lag correction and
quality control (Troupin et al., 2015).

The location of the CVF within the depth range of 100 m to 650 m was cal-
culated using the methodology described by Burgoa et al. (2021), defining
the front location based on salinity values representing a 50% contribution of
NACW and SACW.
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2.2.3 Wavelet analysis

The comparison of sampling methods is conducted based on the scales
they can effectively capture, allowing for a focused analysis of various pro-
cesses. We utilized wavelet analysis to objectively quantify the scales ac-
cessed by the different sampling methods. Wavelet analysis is a technique
that decomposes a time series into a time-frequency space, aiding in the de-
termination of the primary frequencies of the signal. It provides a clear visual
representation of the signals, presenting local values for the amplitude and
phase for each harmonic of a dataset. Thus, wavelets are highly valuable
for describing non-stationary processes that cannot be adequately detected
using classical Fourier Transform techniques. Furthermore, wavelet analysis
can be applied to signals of any size, whereas Fourier Transform necessitates
a predetermined size (Baliunas et al., 1997; Combes et al., 1990; Lau & Weng,
1995; Meyers et al., 1993; Torrence & Compo, 1998; Venkata-Ramana et al.,
2013; Weng & Lau, 1994).

Wavelet analysis was pioneered by Grossmann and Morlet (1984), Morlet
(1983), and Morlet et al. (1982). It has found extensive use in climatic studies,
climatic time series analysis (Baliunas et al., 1997; Collineau & Brunet, 1993;
Gao & Li, 1993; Gollmer et al., 1995; Grinsted et al., 2004; Gu & Philander,
1995; Jevrejeva et al., 2003; Kumar & Foufoula-Georgiou, 1993; Lau & Weng,
1995; Mak, 1995; Moron et al., 1998; Torrence & Compo, 1998; Wang & Wang,
1996; Yiou et al., 2000), various ocean processes (Camayo & Campos, 2006;
Farge, 1992; Gamage & Blumen, 1993; Gamage & Hagelberg, 1993; Garel et
al., 2016; Liu, 1994; Meyers et al., 1993), medical research, seismic signals,
image processing, and more (Torrence & Compo, 1998).

In this study, we utilized the complex continuous Morlet wavelet method.
A complex wavelet enables the detection of both amplitude and phase. Con-
tinuous wavelets are particularly useful for scale analysis, although they can
be redundant on larger scales (Lau & Weng, 1995; Torrence & Compo, 1998).
The wavelet analysis was applied to all the different data sources: Mercator
model outputs, Ship CTD, SeaSoar, and gliders.

After characterizing the primary features within the domain, we proceeded
to analyze the scales captured by various sampling methods. The wavelet
analysis was conducted at specific depths within the central water region:
150, 350, and 600m (note that the SeaSoar did not sample beyond 400 m).
The salinity variable was chosen for the wavelet analyses at these depths
due to its well-defined signature of the frontal zone. The depth of 150m
holds significance, traditionally defining the CVF by the 36.0 isohaline at this
depth (Zenk et al., 1991). The data series were obtained within the same lati-
tudinal range spanning approximately 200 km, with the assumption that the
identified features should remain consistent across the CVF, regardless of the
observation methodology. The figures are presented in a NW to SE orienta-
tion.
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The horizontal resolution for each sampling method, calculated as the mean
distance between two consecutive profiles, is detailed in Table 2.1. Ampli-
tudes smaller than the Nyquist frequency, which is twice the horizontal spa-
tial resolution for each method, were excluded from the analysis.

TABLE 2.1: Spatial and temporal resolution of the different
sampling methods and the numerical model

Sampling method Horizontal spatial resolution (km) Vertical range (m) Sampling period (days)

Mercator model 11.5 1 17
Ship CTD 9.3 1 5
SeaSoar 2.5 0.5 1

Glider 0.9 1 17

2.3 Results

2.3.1 TS Diagram and Water Masses

Figures 2.2A and 2.2B depict the TS diagram obtained along the transect
using the glider. The primary water masses identified are NACW and SACW.
SACW is slightly less saline and colder than the NACW at equivalent depths.
The surface data exhibited the highest variability, attributable to insolation
during the summer and autumn, as well as the potential influence of wa-
ter exported in filaments from the African upwelling system. Some mixed
AAIW was observed at intermediate depths (deeper than 800 meters).

The majority of the data points correspond to NACW, as evidenced by the
TS frequency diagram in Figure 2.2B. The TS diagrams obtained through the
different sampling methods in this study exhibit consistent patterns.

2.3.2 Vertical Sections
Mercator Model

The model outputs were extracted based on the latitude and longitude
range provided by the glider, as well as its temporal range, starting from
the north on November 4" and ending in the south on November 21%¢. The
model provides data down to 5500 m depth, but for this analysis, we used
data down to 1000 m.

The temperature ranged from 5 to 24.8 °C and the salinity from 34.9 to 37.1
(Figures 2.3A and 2.3B). The water column appears stratified based on the
temperature. On the other hand, the salinity distribution exhibited more
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FIGURE 2.2: (A) TS diagram obtained from the glider and (B)

frequency distribution of each TS cell for the glider data. Refer-
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1981). The AAIW point is sourced from (Pérez et al., 2001). Dots

are color-coded based on their depth in meters in (A) and loga-
rithm of the frequency in (B).

variability than the temperature. In the first half of the track, there was more
saline water in the surface layer, while the temperature remained relatively
constant in this layer throughout the sampling.

Ship CTD

The ship performed 36 stations from 20.5°N to almost 23°N, with a sepa-
ration of 9.5 km. The observations started on November 11" and ended on
November 16%, reaching depths down to 1500 m, although for this analysis
we only used data down to 1000 m.

The temperature ranged from 4.5 to 24.5 °C, and the salinity from 34.9 to 36.9
(Figures 2.3C and 2.3D). The temperature and salinity distributions presented
intrusions of SACW, which is colder and less salty than NACW, at depths
ranging from 100 m to 500 m. These intrusions were found at approximately
50 km and 150-200 km. Notably, the second intrusion appeared to be tilted.

The last 75 km (>200 km), at the lowest latitude, showed more saline water

in the surface layer. The temperature in the surface layer was similar along
the whole track.

SeaSoar

For this study, we utilized the transect T5 from the SeaSoar grid. It be-
gan in the north and proceeded southward, similar to all the other sampling



2.3. Results

17

(A) Mercator Temperature
°O) (B) Mercator Salinity

Depth (m)

50 100 150 200 250 o 50 100 150 200 250
Distance (km) Distance (km)

(C) Ship CTD Temperature
(°C) (D) Ship CTD Salinity

32

38

Depth (m)

36

3.4

32

o e e e e
(E) SeaSoar temperature (°C) (F) SeaSoar salinity
TR P wz:“!l“llpli!u:m HHHM .

"';:;ml'l" himt

100 » Wit |} |

200 2 2007 1 l‘|4’

300 300 !‘i ' ww
1

. wll i

£ o €
S “ £ “
3 a0 2 8 ol
700 10 700
800 8 800 356
900 6 900 54
Track distance (km) Track distance (km)
(G) Glider temperature (°C) (H) Glider salinity

0
TR —————
100

300

—~ 400 [ J i s

£

£ s 1

8

S so0 4
700 2
800 0
900 .

0 50

100 150 200 250 300 0 5 100 150 200 250 300
Track distance (km) Track distance (km)

T

Depth(m)

FIGURE 2.3: Vertical section of (A, D, E, G) potential tempera-

ture and (B, D, F, H) salinity obtained by the Mercator model,

Ship CTD, SeaSoar and glider, along the track. The orientation

is from north (left) to south (right). The black dots indicate the

position of the Cape Verde Front between 100 to 650 m accord-
ing to Burgoa et al. (2021).
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8th 9th

methods, from November to November

to a depth of 400 m.

. The SeaSoar sampled down

The temperature ranged from 10.8 to 23.7 °C and the salinity from 35.3 to 36.7
(Figures 2.3E and 2.3F). In the surface layer, the water was warmer and saltier
along the first 75 km than within the rest of the track.

The vertical sections revealed 3 intrusions of SACW, occurring between 25-
75km, 125-175km, and >200 km. These intrusions began at a depth of 100 m
and extended to the SeaSoar’s maximum depth.

Glider

The glider initiated its southward track at 23°N and continued until 21°N.
It continuously dived from the surface down to a depth of 1000 m between
November 4" and November 215t

The temperature ranged from 6.6 to 25.1 °C and the salinity from 34.9 to 37
(Figures 2.3G and 2.3H). High temperatures were observed within the sur-
face layer (<100 m) along the entire section.

The vertical sections displayed 3 large intrusions of SACW, occurring be-
tween 75-125km, 175-225km, and >275km. The second intrusion was no-
ticeably tilted to the north. The intrusions were captured in greater detail
than on the CTD and SeaSoar observations and seemed to be located between
100 and 800 m depth.

The location of the Cape Verde Front is indicated following the method-
ology developed by Burgoa et al. (2021), highlighting the limits between
NACW and SACW.

The density distribution exhibited a relatively flat pattern along the entire
section, as expected for a density-compensated front (Figure 2.4A). The den-
sity ranged from 1024.1kgm™ to 1031.8 kg m>.

The oxygen distribution (Figure 2.4B) displayed the same intrusions as the
salinity and temperature distributions. The SACW intrusions were marked
by a lower value of oxygen concentration. In the surface layer, the oxygen
concentration remained high throughout the entire track. The oxygen con-
centration ranged from 26.8 to 227.8 umol L™ 1.

Notably, the model dataset vertical sections lacked clear features in con-
trast to the in situ sampling data, which exhibited similar oceanographic
structures. Specifically, the Ship CTD results appeared coarsest in resolution,
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FIGURE 2.4: Vertical section of (A) density and (B) dissolved
oxygen concentration obtained by the glider along its track. The
orientation is from north (left) to south (right).

while the glider data offered the most detailed insights. A consistent find-
ing across these methods was the stronger variability in the surface layer,
attributed to atmospheric interaction and upwelling filaments.

Tilted intrusion

Additionally, a significant feature observed was the lateral intrusion of
SACW into NACW. This intriguing tilted intrusion manifests at greater depths
compared to the vertical intrusions, pointing to its possible origin as a vertical
intrusion subsequently tilted by external forces. In Figure 2.5, an amalgama-
tion of data from various datasets, including the Mercator model, SLA, and
surface velocity from satellite altimetry on three distinct dates, provides a
glimpse into the temporal evolution at the CVE, precisely where the tilted in-
trusion was identified. A dynamic signature emerges, unveiling the presence
of an anticyclonic eddy previously characterized by Navarro et al. (2018), ev-
ident in both SLA and resulting surface velocities. This anticyclonic eddy
could induce a baroclinic behavior, resulting in varying velocities near the
surface versus higher depths, generating an along-depth variable drag. This,
in turn, could distort a vertical front, ultimately giving rise to a tilted intru-
sion.

This feature of the tilted intrusion of SACW into NACW and its forma-
tion mechanism might have been overlooked relying solely on data from
Ship CTD or SeaSoar. The interpretation of this phenomenon as a coherent
oceanographic structure necessitates high-rate spatial sampling. Previous
studies on the CVF have reported analogous structures. For instance, Bar-
ton (1987) identified an anticyclonic eddy with a diameter of approximately
20 km in the CVE. Besides, they also noted meandering patterns of around
200 km at the front, although a direct comparison to our results is limited by
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FIGURE 2.5: Temporal evolution of the eddy found during the
sampling, at the days (A) November 13, (B) November 17th
and (C) November 21%. The salinity data (colored map) are
taken from the Mercator model, at 222.5m depth. The SLA
data (m), represented by the black contours, and the velocity
field (ms™1), represented by the white arrows, are taken from
satellite data. The big grey curved arrow indicates the location
of the eddy. The red line indicates the path of the glider.

the length of our sampling track. Similarly, Koshlyakov and Grachev (1973)
found an anticyclonic eddy at 16°N, 33°W with a diameter ranging from 90-
200 km.

2.3.3 Wavelet analysis of in-situ signals

At 150 m, salinity fluctuated between 35.4 and 36.6 with a slightly decreas-
ing trend (Figure 2.6A). At the 350 m sampling salinity ranges from 35.2 to 36,
and a clearer decreasing trend than in 150 m was found (Figure 2.6B). At
600m the salinity varies between 35 and 35.4, narrowing the range with
depth, and a consistent decreasing trend was observed across all sampling
methods (Figure 2.6C).
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The SeaSoar and the glider show the higher-frequency variability in all the
sampled depths, while the model shows the smoother salinity series.

Itis important to note that the position of the front varied among the differ-

ent sampling methods due to the highly variable dynamics of the front and
the fact that the system was sampled at different moments.

(A) Salinity series at 150 m (B) Salinity series at 350 m
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(C) Salinity series at 600 m
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FIGURE 2.6: Salinity series from the Mercator model, Ship CTD,
SeaSoar and glider at (A) 150 m, (B) 350 m and (C) 600 m, start-
ing at the NW (left) and finishing at the SE (right).

Analysis performed at 150 m

The wavelet analysis revealed that the numerical model captured scales
within a relatively narrow band ranging from 23 to 64 km (Figure 2.7A, Table
2.2). However, these scales were not constant along the entire track, and no
significant scales are identified.

The Ship CTD captured scales within a wider range of 18.6 to 128 km (Fig-
ure 2.7B, Table 2.2). The range was slightly narrower at the beginning of the
signal, broadening towards the end of the path covered, capturing smaller
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scales. A significant scale was identified at around 32 km towards the end of
the track.

The SeaSoar captured scales within the range of 5 to 64 km (Figure 2.7C,
Table 2.2). However, scales smaller than 16 km appeared intermittently along
the track. The scale of 32-64 km was significant at the middle of the track.

The glider sampling captured scales in the widest range, spanning from
1.8 to 128 km (Figure 2.7D, Table 2.2). Scales smaller than 8 km were not con-
stant during the track. Significant scales around 2-4km and at 32km were
identified at some points in the first third of the track. Additionally, a signif-
icant scale of 64 km was obtained at the beginning and middle of the track.

(A) Mercator (B) Ship CTD
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FIGURE 2.7: Wavelet analysis from the model (A), Ship CTD
(B), SeaSoar (C) and glider (D) salinity at 150m. The wavelet
results on the area under the black line may be affected by edge
effects and are not considered as valid. The red dotted line in-
dicates the minimum accepted wavelength, 2*horizontal reso-
lution (the horizontal Nyquist frequency). The black contour
indicates the significant results. The Y and Z axis are logarith-
mic. The Z values represent the base 2 logarithm of the wavelet
power spectrum. The signals start at the NW (left) and finish at
the SE (right).
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Analysis performed at 350 m

The Mercator model captured scales ranging from 23 and 64 km at the NW
end, and around 64 km at the rest of the path (Figure 2.8A, Table 2.2), yet
no significant scales were identified. The smaller scales were absent in the
second half of the track.

The Ship CTD displayed scales between 18.6 and 128 km (Figure 2.8B, Ta-
ble 2.2). The range slightly broadened towards the end of the track for smaller
scales. However, scales smaller than 64 km were not consistently present.

The SeaSoar captured scales between 5 and 64 km (Figure 2.8C, Table 2.2).
The range remained constant throughout the signal, but scales smaller than
32km appeared intermittently. The analysis did not reveal any significant
scales.

The glider exhibited the widest range of scales, spanning from 1.8 and
128 km (Figure 2.8D, Table 2.2). Towards the final segment of the transect
(>200 km), the range narrowed down to 4-128 km. A significant scale is evi-
dent in the 96-128 km range for the second third of the track.

Analysis performed at 600 m

The results from the analysis at 600 m indicate that the Mercator model’s
sampling captured scales between 48 and 64 km, without yielding any sig-
nificant scales (Figure 2.9A, Table 2.2).

The Ship CTD captured scales ranging from 18.6 to 128 km (Figure 2.9B,
Table 2.2). However, the scales smaller than 32 km were not consistently
present throughout the signal, and the scales greater than 64 km disappeared
towards the end of the track. No significant scales were obtained.

The glider exhibited the widest band of scales, spanning between 1.8 and
128 km (Figure 2.9C, Table 2.2). The scales smaller than 16 km appeared in-
termittently. However, no significant scales were captured.

In summary, at all depths, the glider captured the smallest scales and re-
covered the widest range, while the model and the Ship CTD captured the
narrowest range. The glider, followed by both the SeaSoar and Ship CTD,
exhibited the highest number of significant scales and the highest spatial
variability. No significant scales were captured at 600 m. At all the depths,
the wavelet results of the model fell significantly below the spatial Nyquist
frequency, distinguishing it from the other sampling methods. At 600 m the
glider and Ship CTD exhibited a similar scale range to the other depths; how-
ever, the range of scales captured by the Mercator model was narrower.
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FIGURE 2.8: Wavelet analysis from the model (A), Ship CTD
(B), SeaSoar (C) and glider (D) salinity at 350m. The wavelet
results on the area under the black line may be affected by edge
effects and are not considered as valid. The red dotted line in-
dicates the minimum accepted wavelength, 2*horizontal reso-
lution (the horizontal Nyquist frequency). The black contour
indicates the significant results. The Y and Z axis are logarith-
mic. The Z values represent the base 2 logarithm of the wavelet
power spectrum. The signals start at the NW (left) and finish at
the SE (right).

The SeaSoar and glider data at 150 m exhibit significant signals exceeding
approximately 60-80 km in the central domain, likely linked to the mean-
dering of the front. A significant scale was observed in the 16-32 km range
at the end of the signal. At both 150m and 350 m, significant signals of ap-
proximately 20-25 km were obtained for the Ship CTD in the vicinity of the
upwelling, likely associated with lateral intrusions across the front.

In terms of sampling speed, the SeaSoar emerged as the fastest method,
with a 14 h sampling, providing the closer approximation to a synoptic view.
Conversely, the glider was the slowest in sampling, with a 17 days duration.
The Ship CTD achieved the greatest sampling depth among all methods,
while the SeaSoar maintained a shallower sampling depth. The glider stood
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FIGURE 2.9: Wavelet analysis from the model (A), Ship CTD (B)
and glider (C) salinity at 600 m. The wavelet results on the area
under the black line may be affected by edge effects and are
not considered as valid. The red dotted line indicates the min-
imum accepted wavelength, 2*horizontal resolution (the hori-
zontal Nyquist frequency). The black contour indicates the sig-
nificant results. The Y and Z axis are logarithmic. The Z values
represent the base 2 logarithm of the wavelet power spectrum.
The signals start at the NW (left) and finish at the SE (right).

TABLE 2.2: Range of scales (km) captured by each method at

each depth.
Depth Mercator model Ship CTD SeaSoar Glider
150 m 23 - 64 18.6-128 5-64 1.8-128
350 m 23 - 64 18.6-128 5-64 1.8-128
600 m 48 - 64 18.6 - 128 - 1.8-128

out for its independence from the ship, enabling diverse sampling paths if
required, offering a more flexible deployment and retrieval approach.

The complexity of the CVE, as evidenced in our results, necessitates fast
sampling methods with high vertical and horizontal resolutions to attain an



Chapter 2. Evaluation of ocean sampling and modelling approaches to

26 capture oceanographic features off Northwest Africa

accurate, synoptic and comprehensive portrayal. Sampling independence is
another major advantage. These considerations emphasize the importance of
strategically selecting and integrating sampling methods to effectively cap-
ture the smaller scale dynamics of oceanic fronts like the CVE.

These results highlight the limitations of observational data alone and sup-
port the need for a robust modelling tool capable of capturing the wide range
of ocean dynamics. By integrating numerical modelling with observations,
we can obtain a more comprehensive understanding of the physical pro-
cesses governing the ocean.
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Chapter 3

Shallow Water Equations

In this chapter we derive the Shallow Water Equations (SWE). The SWE
constitute an approximation of the equations governing the mechanics of a
fluid, commonly used in oceanography. It assumes a shallow layer of water,
with homogeneous density and a mean velocity acting on the entire layer.
They allow to represent the fluid dynamics while using an equation system
easier to resolve than the complete Navier-Stokes (NS) set of equations.

Starting from the conservation equations of a fluid, we impose the Navier-
Stokes approximations. Then, we assume a shallow layer of water with the
horizontal scale greater than the vertical scale. The variables for the equa-
tions are defined. We consider some boundary conditions at the surface and
at the bottom, and the forces affecting the fluid’s motion. The resulting ap-
proximations are consistent with the dominant physical processes of interest,
as outlined in Chapters 1 and 2.

Then, the Shallow Water Equations are finally derived. We write the SWE
with geopotential variables, and define two versions, linear and non-linear
SWE. Additionally, the SWE are transformed to an uncoupled conservation
law equation system. We calculate the eigenvalues and eigenvectors, defin-
ing the velocities of the waves.

3.1 Constitutive equations

The equations governing fluid mechanics are the conservation of mass,
momentum and energy. The constitutive equations depend on the density,
velocity, pressure and temperature. Additionally, for the ocean, the conser-
vation of salt, and the Equation of State for Seawater relating salinity, temper-
ature, and pressure, could be considered (Kampf, 2009; Kundu et al., 2024).
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The conservation of energy can be expressed as the conservation of density.
Since the Navier-Stokes and Shallow Water equations use an incompressible
fluid approximation, the mass and momentum conservation can provide the
general description for a Newtonian fluid (Cushman-Roisin, 2011).

The conservation of mass, also known as the continuity equation, is based
on the principle that the mass of fluid particles remains constant over time.
Similarly, the conservation of momentum is developed from Newton’s sec-
ond law, which connects the dynamics of an object to the external forces ap-
plied to it (Kampf, 2009; Kundu et al., 2024).

Considering a control volume V(t), with a surface A(t), and n as the out-
ward normal, the governing equations of a fluid are:

5 JupO ) dV =0
@3.1)
atfv U(x,t)dV = fV xt)deV—i—fA Fs(n,x,t)dA

where p (kgm™2) is the density of the fluid, that moves at a velocity U
(ms~h). pU represents the momentum per unit volume (kg m s~ 1. Fp and Fs
are the body forces and surface forces, respectively.

We will consider gravity as one of the body forces, and separate Fy, as Fy, =
g+ F

Applying Gauss’ theorem and the Reynolds transport theorem to equa-
tions (3.1), and developing the integral for an arbitrary volume, the equations
become (Kundu et al., 2024):

9 (pU) = =V - (oU® U) + Fs + pg + pF

3.2 Navier-Stokes equations

Starting from equation (3.2) and assuming an incompressible and newto-
nian fluid with constant density, we can obtain the Navier-Stokes equations.

A water mass is considered to not interact with the surrounding fluid.
First, we can consider the water in the ocean as an incompressible fluid, i.e.,
the inﬂows and outflows must be balanced, imposing density constant in

t1me at =0.
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V- (pU) =0
9(pU) = =V - (U ® U) + F, + pg + pF

As stated in chapter 2, water masses are defined by a certain temperature,
salinity and density. Thus, the density is also considered constant throughout
the fluid, and therefore, it is constant in space (2—52) = 0. The equations can
be simplified to:

V-U=0 33)
% =-V-(UeU)+ ;Fs+g+F '

The water is a newtonian fluid, so the pressure must be part of the surface
forces Fs, as follows:

F, = ‘ndA = —pl+0) ndA 3.4
/A(t)r n /A@( pl+c)-n (3.4)

with p as the hydrostatic pressure, I as the identity matrix, and ¢ the devi-
atory stress tensor containing the viscosity, deformation and rotation veloci-
ties, and the thermodynamics of the fluid.

Applying Gauss’s theorem to Fs (3.4):

Fs:/A()(_pH_a)ndA:V(—p1+0):—Vp+Va (3.5)
t

Substituting equation (3.5) into equation (3.3) we arrive to the Navier-
Stokes equations:

{v S(U)=0 a.6)

W+V-(UQU)=—-1Vp+1V.c+g+F

where the first one is the continuity equations and the second one is the
momentum conservation equation.



30 Chapter 3. Shallow Water Equations

3.3 Shallow Water Equations

We will consider now a homogeneous fluid with uniform density, with an
average depth H and horizontal scale A, in a shallow layer (Figure 3.1). For
the physical processes in the ocean, including those seen in Chapter 2, we
can assume that the horizontal scale is much greater than the vertical scale
(H <<< ).

To derive the SWE, we will apply boundary conditions at the surface and
bottom of the layer, define the relevant forces and hydrostatic pressure, and
integrate the Navier-Stokes equations (3.6) along the vertical axis (z), leading
to a depth-averaged velocity field.

z

z=1(txy)
z=0

z=—b(x,y)

FIGURE 3.1: Shallow water scheme. #(t,x,y) is the elevation
of the free surface, b(x,y) is the bathymetry, positive down-
ward, and h(t,x,y) is the total depth of the water column, as

h(t,x,y) = b(x,y) +n(t, x,y).

3.3.1 Boundary conditions

Some boundary conditions at the surface and the bottom of the fluid will
be used to obtain the SWE after integrating in z. These are the following:

1. No penetration at the bottom (z = —b(x,y)):

The fluid cannot penetrate the bottom surface. In the case of a water
mass within our area of interest, the interaction between water masses,
and the water mass and the bottom, can be neglected. When simulat-
ing the water masses in the area off Northwest Africa, we can impose
no penetration at the bottom and also no penetration between water
masses.

U- ng = 0 (3.7)

with ng as the normal outward vector from the bottom:
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SO ‘3'8)

Substituting (3.8) into (3.7) leads to:

ob ob
U— +V— + w) =0 (3.9)
< dx ay z=—b

2. Stress tensor at the bottom (z = —b(x,y)):

The stress tensor at the bottom, containing the bottom friction, is de-
fined:

{(Tb = Uxxab +U'xy ‘f‘o'xz (3.10)

b
Oby = ‘Txyax+‘7yy L+ 0y

3. Pressure at the surface (z = 7(t,x,y)):

The pressure at the surface corresponds to the atmospheric pressure,
and is considered spatially uniform across the ocean surface:

PZ:’Y — Patm (3.11)

4. No penetration at the surface (z = (¢, x,y)):

There is no outward flow at the fluid surface. In the case of a water mass
within our area of interest, the interaction between the water masses
and the surface, and between water masses can be neglected as well.

d
Un, = a—’z (3.12)

with n; as the normal, outward vector of the surface of the fluid:

= ! 5 (3.13)
ERERORY

Substituting (3.13) into (3.12) leads to:

an an an _
(at+ua +V8y w)z_ﬂ_o (3.14)
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5. Stress tensor at the surface (z = 7(t,x,y)):

The stress tensor for the surface friction, for external forcings like, for
example, wind stress, is:

_ 91 91
{st = “Uxxgy — Oxyyy + Oxz (3.15)
_ 91 9 :
Osy = —Oxygy — Oyygy + 0yz

3.3.2 Forces into consideration

We must define the forces F from equation (3.6). The forces we will develop
for the SWE are the Coriolis force, for the body forces, and the stress tensor
o, for the surface forces.

Coriolis force

We need to consider the Earth’s non-inertial frame and its rotation, which
are relevant for the physics at oceanic time and length scales, by applying
the Coriolis acceleration. The Coriolis acceleration, corresponding to the cen-
trifugal force from the Earth’s rotation is (Kampf, 2009; Kundu et al., 2024):

ou oV
a5 200V, 5 = -20U

In the Earth’s rotation, the magnitude of the Coriolis force is dependent
on latitude, with f, the Coriolis parameter, defined as f = 2()sin 6, where 6
is the latitude, and () the angular velocity of the Earth. For spatial scales of
100 km or less, the curvature of the Earth can be ignored and the value of f
can be considered constant. This is called the f-plane approximation.

It deflects the fluid’s path to the right on the Northern Hemisphere, and to
the left on the Southern Hemisphere, and it becomes 0 at the equator. The
Coriolis force can be written as follows:

F—-fxut= | I
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Stress tensor

o is the deviatoric stress tensor, and depends on the velocity gradient ten-

sor 3—;[;. The term g—;’; can be decomposed as the symmetric (S) and antisym-

metric (R) parts:

aui 1 1
with:
v E)x] 8xi v ax] axi

By definition, stress only develops on fluid elements that change shape, so,
only the symmetric part of the tensor should be considered in the fluid con-
stitutive equation. The antisymmetric part corresponds to the pure rotation
of the fluid elements.

Finally, we will define the tensor o, for an incompressible and newtonian
fluid, with p as the viscosity coefficient, as (Kundu et al., 2024) :

—H axi 8x]

This expression, expanded, is:

ou ou | 0Jv ou | ow
25¢ wTa =t
— v 4 du 9v v | Jw
c=Hu 8x+8y zay Bz+8y
v g % pdw
ox 0z ay 0z 0z

3.3.3 Hydrostatic pressure

We need to apply the hydrostatic pressure to the SWE. For a fluid at rest,
the downward gravity force and the upward pressure derivative force are
balanced. This is called the hydrostatic balance. Generally, processes with the
horizontal scale considerably greater than the vertical scale can be considered
hydrostatic (Kampf, 2009).
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We will consider a layer of fluid with depth H, with an horizontal bathymetry,
setting z = 0 at the surface, and 7 as the displacement of the surface (see Fig-
ure 3.1).

We will apply a scale analysis to the z-momentum equation (3.6):

oW [o(UW)  o(VW) oW? 19p
ﬁ——( o T T —;@*pv‘f gtk (16

We consider the typical values for the ocean: U = 10! as the horizontal
velocity scale, L = 10° the horizontal scale, and H = 103 the vertical scale.

Applying them to the continuity equation, we arrive to W = 10~ for the
vertical velocity scale.

Applying these values to equation (3.16), the terms of the temporal and
spatial derivative of W, body forces F,, and viscosity ¢ are in the orders be-
tween 107!° and 10 and can be discarded, leaving us with only the pres-
sure derivative and gravity terms, obtaining the equation for the hydrostatic
balance:

10P

Then, integrating (3.17) between the free surface, 77, and the depth, z, and
considering uniform density:

n
- a—sz—/ —gdz

z

Solving the integrals we obtain the relation:

P(i7) — P(z) = —pg(n — z) (3.18)

With this relation, the pressure at any point in the water column depends
on the height of the water column above that point. We impose the pres-
sure at the surface as the atmospheric pressure (equation (3.11)) into equation
(3.18).
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This results in the horizontal pressure gradients:

9 _ 817 dp _ dn

3.3.4 Derivation of the SWE

Once we have obtained the forces and boundary conditions, we need to ap-
ply them to obtain the SWE. The Navier-Stokes equations (3.6) are integrated
in the vertical z axis.

Continuity equation

First, we take the continuity equation (3.6) and integrate it vertically through
the water column:

V- (U)=0

We must define the depth averaged velocities:

U(x,y,t) h/ Udz, V(x,y,t) h/ Vdz (3.20)

Integrating the continuity equation gives:

U
/ V- (U)dz =
—b
T (oU oV oW
/. (a*a*a) dz =0
The integral can be separated:
T oUu oV T oW
o A P
/b8xdz+/b8yd /baz z=0

The third integral has a direct solution. For the integrals for U and V we
can apply the Leibniz rule, since # and d depend on (x, y).
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a [ B on -

+ (WZ:U — Wz:—b) =0

Now, applying the boundary conditions (3.14) and (3.9), and considering
the depth averaged velocities (3.20), we get to the continuity equation for the
SWE:

—(hU) 4+ =—(hV) =0 (3.21)

Momentum conservation equation

We will integrate the left and right sides of the equation independently.

First, the left side of the x-momentum conservation equation, from equa-
tion (3.6) is:

ou N ol? N ouv N oUW
ot ox Yy 0z

Integrating from the bottom to the surface:

/n ou N o> N ouv N oUW iz
ot ox ay 0z

Separating the terms of the integral:

2
/ aud /77 ou i / auvd /17 JUW .
p Ot b Ox b Oy _p 0z

The last term has a direct integral. The Leibniz rule is applied to the other
terms:

9 [T _ 91 20 (12 9,2 9b
at/—bUdZ (UZ”at“Lu b8t>+ /Ud (UZ vax T U=ty

+i/ uvdz — (uve, 2 yuv,_ 2
oy J-»p

a]/ b@) + UWZ:U —UW,—



3.3. Shallow Water Equations 37

Applying the boundary conditions (3.14) and (3.9):
o [ o (1., 9 [
E/_bu”i”ﬁ/_bu dz+@/_buwz
The velocities U and V can be separated into the average and the deviation

U(x,y,z,t) = Ulx,y,t) + U (x,y,2,t)

Applying the distributive property the integrals can be expanded:

9 M 3 J ) J —
at/Udz a—/bUUdzjug/_bquzera/_u Ud+$/_bll U* dz
a T—= = a U * a * a U * *
—/ LIde+—/ Ude+—/ u Vd+—/ U* - V*dz
ox J_p ox J_p ox J_ ox J_

Since the depth-averaged velocity U does not depend on z it can be taken
out of the integrals. Applying its definition (3.20):

d d
5 (M) + =~

= (nT) + ( /U*dz) ;(U~/”u*dz)+ai/"u*-u*dz
%(hUV)Jr—( /V*dz)+—( /U*dz)+—/ u*- v+ dz

The integral of the deviation of the velocity U* and U* must be zero

0, — 0

* * d * *
(0T + (") + /u U dz -+ 3 (1Y) +—/ U - v* dz

The terms % | i’b u*-uU*dzand % | jb U* - V* dz represent the vertical shear
and the turbulence effects, and can be neglected, as their size is much smaller
than the other terms. This approximation is suitable for the representation of
mesoscale and large scale structures observed in Chapter 2

2 () + 2 () + 2 (WTIV)

o 3 (3.22)
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Second, the right side of the x-momentum conservation equation, from
equation (3.6) is:

10P n % (aaxx N Iy N aaxz)

fv_;_)g ox oy 0z

Integrating it:
/d(fv ,o(gJr 8x+ay+az az
Separating the terms:

U 1 1710 U
[ fvaz+ | _LoP, +/ 18‘7""dz+/ (P gy [ 190 4,
b pox b p Ox —bp 9y —bp 0z

The density of a water mass is assumed to be constant within it. Consider-
ing f and p constant with depth, they can be taken outside the integrals:

1 1 7 9P T A0y T d0xy T d0y;
Vdz+—( — —d d d
f/b Z+p( /bax Z+/b ox Z+/b ay Z+/b 0z az

Applying the hydrostatic pressure (3.19) to the pressure horizontal gradi-
ent:

o T a‘Txx T d0xy T 00y,
f/VdZ+(pg/ad+/bax / dz /bazdz

Solving directly the second and the last integral and applying the Leibniz
theorem to the terms with o

o 10 1 on ob
f/ Vdz—g ha +l_7$/ Uxxdz_l_)(U—xxz—17$+0'xxz——b$)

+li/ v d2—1<0 8—17+(7 %>+10 +10
Pa]/ b Xy P xy\z:n ay xy\z:fbay P xz|z:17 P xz\z:—b
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With the boundary conditions (3.15) and (3.10), and substituting the depth-
averaged velocities (3.20):

817 9 [ o [
fAV —ghsl+ a/baxxdz—aber@/baxyderasx (3.23)

The second term, considering that 7 = h — b, can be transformed applying
the chain rule:

an b 1 on?

Then, equation (3.23) is:
ob 1 oh* 1 /9 [ 9 [
th—{— ha— — —gg +“—) (a /_mbde—be+ @/_b(fxydz—i—(fsx)

(3.24)

Joining both sides of the equation, (3.22) and (3.24), we arrive to the x-
momentum equation:

a — 8 —2 1 2 a ab
g(hLI)Jr—ax(hu +§gh )+@(hUV) fhv+gh—a
19 [ d
et / owedz =0+ o [ ozt o (3.25)

The y-momentum equation is integrated similarly, obtaining:

0 o Jpppu— 0 1 ob
g(hV) + a(h V) + ay(hV + 2g 2) = —fhu+gh@
1 /0 [ K

Shallow Water Equations

Joining the modified equations (3.21), (3.25) and (3.26), we arrive to the
Shallow Water Equations. The depth-averaged velocities U and V will be
rewritten as U and V for clarity.
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L (hU? + Lgh?) + L (huv)

= —fhU + gh§, + 3

/N

%ﬂwwﬂ—%+%ﬁwwﬂ+%)
(3.27)

We will now slightly modify the form of the equations to make them more
suitable for the model. First, we will start on equations (3.27), but leaving
only the bathymetry gradient term on the right hand side for now:

+ % (WP + 3gh?) + £.(hUV) = gh$
+ 4 (RUV) + 2 (hV2 + jgh?) = gh3

Yo Yo Y
—
=
()

We will substitute the velocity terms with momentum:

Yo Yo gy
—~ ~
= =
< S

Next, the absolute water depth / is replaced by the sum of the sea-level
elevation 77 and the bathymetry b when & is not multiplying (U, V).

h=(b+n)

W) 1 2 () + & (hV) =
2
G0 + & (5 + g0 +0?) + 3 (U ) = g0+ )%
hua)(hv hv)?
G0V + 3 (YR ) + 5 (G + ds 0 +1)2) = g0+ )3

Expanding the squares and reorganizing the terms, we arrive to:
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h

%(hu) + aax (((bf)> +gf1b+ S ) +3 (L) = gn
hu)(hvV

50V)+ 3 (“ay) + (&T?)*g’?b*%g”z) = g1,

The bathymetry b is considered constant in time, and can be removed from
the time derivative on the left side:

L 2(nu)+ £(hv) =0
h 2
() + 3 (ks + gnb + %8172) +3 (L) = endt
h 1%
F0V)+ 3 (i) + & (g + nt -+ d97) = on;

Finally, we will work with geopotential variables, multiplying our #, b, hu,
and hv by gravity (g).

¢p=g1, ¢p=gb, u=ghU=(p+¢p)U, v=ghV=(¢+¢p)V

5 (8)+ & (5) ar(5) =0
s 2 u)(zo

B(0) 2 (st o () o5 () st
u)(z 2 )

40 # (f54) v (e ot ) oty

The common term é can be taken out of all of the terms, leaving us with

the final equation, without the forcings:

—l- ax ¢+¢B + ¢pop + 24’ ) <¢+¢B 4)84)3
wiie) 3 (5 + 009+ 107) = 0

m+%

Recovering the Coriolis force, the final form of the SWE we are using in the
model is:
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¥ 4V.ou=0
{aa_ltl+v' (41%2 + <¢B¢+%¢2) I) = ¢pV¢p — fu’

The equations can be written in compact form as:

0
a—ctl +V-F(q) =s(q) (3.28)
? 34’30
q=|u|, s(q)= <Paa—x+fv
v P — fu
u v
_ _u? + 4 142 uv
F(q) = H+Ps PP+ 3¢ d+dp
uv V2 _|_(P (P+ l(PZ
$+¢5 ¢+¢p VB 2

This form of the PDE is known as the conservative form, and corresponds
to a conservation law. In section 3.4, we will explore conservation laws in
greater detail and discuss its mathematical properties.

3.3.5 Linearized SWE

In order to linearize the SWE, the non-linear terms of the velocity are re-
moved. This assumption is valid when the processes are represented only by
gravity waves. The tensor ¢ is also considered non-linear. The SWE (3.28)
can be linearized to:

%91V Filq) = s(a) (3.29)
u 0

FL(q) = |¢pp O
0 ¢5¢

As we have determined in Chapters 2 and 3, the Navier-Stokes and shal-
low water hypotheses can accurately represent the area of interest in this
thesis. If we were to represent the microscale, where the turbulence is a key
process, we can not neglect those terms. In order to simulate a body of water
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with high stratification, like the central waters with a thermocline, the tem-
perature, salinity and density are not considered constant in depth, and we
need to use a multilayer model, dividing the water mass into smaller layers.
For the multilayer SWE model the pressure for the intermediate and bottom
layers at their surface is not the atmospheric pressure, but depends on the
superior layer. Finally, the linear approximation is not suitable for fully cap-
turing the complex processes occurring in the area of interest, however, it can
still be applied to simpler simulations.

3.4 SWE as a conservation law

In this section, we will show that a system of conservation laws, like the
SWE, can be rewritten as an uncoupled system of advection equations. We
will also establish the connection between the characteristic speeds of these
advection equations and the eigenvalues of the Jacobian of the Flux vector of
the conservation laws. For simplicity, we use a one dimensional version of
the SWE.

SWE, in the compact form (3.28), is a conservation law.

%—‘;‘ +V-F(q)=0 (3.30)

To transform the system into an uncoupled system, first we can apply the
chain rule to the spatial derivative:

dF(q) _dF(q) 9q
ox oq Ox

Then, defining A as the Jacobian matrix of F:

F,n) (3.31)

The conservation law (3.30) can be written as (Bui-Thanh, 2015):

dq dq
5 TA =0 (3.32)
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To decouple the system, we need to diagonalize the matrix A, calculating
the eigenvalues (A) and eigenvectors (p), which satisfy |[A — AI| = 0 and
Ap = Ap:

A =PDP! (3.33)

with D as the diagonal matrix of eigenvalues and P the matrix of eigenvec-
tors.

Now, we can define a new unknown w for the uncoupled system:

w =P g (3.34)

If we derive (3.34) spatially we obtain:

ow oq

— =P 12 3.35
ax ox (335

Substituting (3.35) into the conservation law equation (3.32), it becomes:

ow ow
Pﬁ + APg 0

Then, if the terms are premultiplied by P~! we obtain:

ow ow
P lp—— yplap——
ar T+ ax

Now, applying the relation (3.33) and considering that P~1 - P = I, we
arrive to the system:

ow ow
g—kDg—O

Since D is the diagonal matrix of eigenvalues, this system can be separated
as:

8w1 +/\18w1 — 0

8;0,1 +A Jdwy -0

n79x
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This is a decoupled system, formed by transport equations. The eigen-
values (A;) of the flux Jacobian matrix correspond to the characteristic wave
speeds of the system, and thus determine the direction and magnitude of
wave propagation. A system is considered hyperbolic when all its eigenval-
ues are real.

3.4.1 Calculation of eigenvalues for the SWE

As a hyperbolic partial differential equations system, the SWE admits wave-
like solutions that propagate at finite speeds. To find these speeds, we need
to calculate the eigenvalues of the matrix A for the SWE’s linear and non-
linear versions. To derive the Jacobian matrix A, we will express it as A =
A1 -1y + Ay - ny, where:

Linear SWE

For our linear SWE (3.29), A1 and A are:

0 10 0 01
A= |[¢p 0 OF, Ab=10 00
0 0O ¢z 0 O

The eigenvalues will be, from lowest to highest:

M = —V/Pp\ /1% + 1 = —\/Pp
Ar=0
A3 = /gy /03 +nf = /P

with the maximum eigenvalue Amax = /@3-

Non-linear SWE

For the non-linear SWE (3.28), A1 and A; are:
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0 1 0 0 0 1
2 2 ___uv v u

A= |"Grgr T e 0 |, A= G @10s)  @+95)
_ uv v u v 4 QbB 4 4) 0 2v

(¢+¢p)? (p+¢5)  (¢+¢5) (¢-+¢5)? (p+o5)

The eigenvalues are:

A= |U-n| = /(¢ +¢5)
)\2: |Un|

A3 = |U-n|+ /(¢ + ¢p)

and the maximum eigenvalueis A = |U - n| + /(¢ + ¢p). Remember that
U corresponds to the primitive velocity (u = ghU).

The analysis of the eigenvalues of both the linear and non-linear versions
of the SWE confirms the hyperbolic nature of the system, since all eigenval-
ues are real.
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Chapter I

Hybridizable Discontinuous
Galerkin method

The Hybridizable Discontinuous Galerkin (HDG) is a method from the
family of Finite Elements (FE) methods, used to solve PDEs. FEM methods
provide advantages, such as permitting flexibility in the mesh. Discontin-
uous Galerkin (DG) methods make the domain discontinuous between the
elements, ensuring both global and local conservation. Then, HDG methods
reduce the computational cost.

In this chapter, we obtain the weak form of the equations, define the dis-
cretized domain, and the bases for the function spaces. Then, the DG and
HDG methods are applied to the Shallow Water Equations (SWE).

DG and HDG require the use of a numerical flux between elements. A
numerical flux is calculated using the Godunov method, by solving the Rie-
mann problem, and then the parameters are chosen using the Lax-Friedrichs
scheme. The boundary conditions for the model are described. Finally, the
equations are written in bilinear forms, and the splitting of the velocities is
developed.

4.1 Finite Elements

Finite Element Methods (FEM) are a numerical tool used for solving par-
tial differential equations (PDEs) by discretizing the domain into elements
through an unstructured mesh. It provides a continuous solution function
over the entire domain. The flexibility in the mesh makes FEM particularly
suitable for simulations requiring adaptability to complex geometries (Sayas,
2015).
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The FEM method is based on the weak form of the equation, and the
Galerkin method for discretization, specifically using Lagrange bases.

41.1 Weak form

In FEM, the equations are typically reformulated into their weak form, also
known as the variational formulation, relaxing the derivative requirements.

This reformulation is essential for several reasons. First, the weak form
allows the solution to belong to a broader class of functions that may not
possess classical derivatives, which is particularly important when dealing
with sharp gradients or discontinuities, as often found in geophysical flows.
By integrating the equations against test functions and applying integration
by parts, the order of the derivatives on the solution is reduced, enabling the
use of simpler basis functions such as piecewise polynomials. Additionally,
the weak form naturally incorporates boundary conditions into the formu-
lation and provides a framework that ensures local and global conservation
properties. It also lays the foundation for applying the Galerkin method,
which is at the core of the finite element approach.

Now, we will change the SWE from the strong form of a conservation equa-

tion, to the weak form. To do so, we will start from the SWE in the conserva-
tion law form (3.28).

94voE@=s@,  a=[pu

We apply the inner product, with a test function v, in both sides of the
equation. This equation is integrated along the domain ().

/Q%—?-vder/QV-F(q)-vdx:/Qs(q)-vdx VeV

vV = [lp, w1, a)z]

with the test functions defined in an infinite space V = {v € L?}. The
equation must be true for any test function v.

The integral of the divergence V - F(q) is expanded by applying Gauss’s
theorem, obtaining the weak form of the equation:
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L%—?-vdx—/ﬂF(Q)'V'vdx+ (F(q)'n)'VdS:/S(CI)’de Wwev

o) (@)
(4.1)
Finally, to solve the PDE problem a boundary condition must be specified.
A boundary of the type q(x)[sn = C is a Dirichlet boundary and can be
added to the formulation explicitly, imposing directly the boundary values in
those nodes. A boundary defined q’(x)|9q = C is a Neumann boundary and
must be added to the formulation implicitly, throughout the integral forms
of the weak form (Brenner & Scott, 2008).

4.1.2 Galerkin Method

The weak form must be discretized into a finite subspace of V in order to
solve the system. We define a finite subspace V}, with vy, as the basis func-
tions, such as:

vh €V},

In the Galerkin method, the continuous solution q is also defined in the
space Vj,. This minimizes the approximation error generated with the dis-
cretization and can be expressed as (Brenner & Scott, 2008):

n

dh = Zqi Vi
i=1

Now, the unknown we are solving for is not the function q, but the coeffi-
cients q;. Then, equation (4.1) becomes:

0
&-vhdx—/gF(qh)-V-Vhder/aQ(F(qh)-n)-vhdS

= /Q s(qn) - vadx  Vqn vn € V) (4.2)

41.3 Continuous Galerkin

The original FEM method, also known as Continuous Galerkin (CG) method,
defines the finite space V}, discretizing the domain () using a mesh, located
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in R, with d as the dimension. The boundaries of the domain are 9Q. A CG
mesh is shown in Figure 4.1.

FIGURE 4.1: Structure of a CG mesh. The points represent the
nodes of the mesh, where the unknowns q are imposed. The
elements K are situated in the interior of the triangles.

The domain is discretized into a mesh 7, formed by non-overlapping poly-
hedral elements K with element faces dK. The discretized domain (), an
approximation of the original domain (), is the sum of all the elements:

Nel

Qp = LJRQ
e=1

The skeleton of the mesh ¢ is the union of the edges of the elements. It
includes the interfaces between elements ¢™ and the boundary faces &>,
shown in Figure 4.2, and can be defined as:

e = | (9K\oQ), ghound — UJ (0KnaQ), g = glnt U gbound (4 3)
Ket Ket

with U as the union (all elements from both sets), \ as the difference (all
elements in one set that are not in the other), and N as the intersection (the
elements common to both sets).

FIGURE 4.2: Boundaries of a CG mesh. The continuous line
represents the boundary faces, gbound and the dashed line cor-
responds to the interior boundaries between the elements, emnt,

Once the mesh is defined, the bases of the space V},, contained in the mesh,
must be defined. In CG the bases ¢ must be polynomial, continuous in the
domain, piecewise functions. They must be linearly independent (Brenner &
Scott, 2008). The functions ; are associated to nodes x;, and must satisfy:
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Yi(x)) = 6;

with §;; as the Kronecker delta:

5o 1t i=g
TUl0 if i A

so the value of the function ¢; is 1 on the associated node x;, and 0 in the

rest of the nodes (Figure 4.3).
i i Pi

0 Xi Xiy1 1

FIGURE 4.3: Scheme of the bases for FEM. The black dots rep-

resent the nodes of the mesh. The line represents the function

of the base 1;, corresponding to node x;, with the value of 1 in
that node and 0 in the rest.

The CG method uses Lagrangian bases. Lagrangian bases satisfy these
requirements and are defined as (Brenner & Scott, 2008):

¥i(x) = ﬁ X—Xj  x—x X—Xi-1 X —Xiy1 X — Xy
i(x) = =
j=1j£i % T X YT X Xi —Xi—1 Xi— Xi+1 Xi = Xn

The CG method for the SWE is:

5
&.vhdx—/np(qh)-v.vhdx+/(_m(1:(qh)-n).vhds

= /Q s(qn) - vhdx  Vqn,Vh € Vi (4.4)

where the space Vj, y is formed by the basis ¥;.

4.2 Discontinuous Galerkin

While FEM ensures global conservation between the domain and its bound-
aries, it does not guarantee local conservation within individual elements
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(Sayas, 2015). In DG the elements K of the domain are solved individually,
allowing for discontinuities between them, ensuring both global and local
conservation, which is a significant advantage over FEM. The solution is
approximated by element-by-element polynomial functions, without global
continuity requirement, making the solution discontinuous at element inter-
faces (Javadzadeh Moghtader, 2016).

DG combines advantages of classical Finite Volume (FV) and FEM meth-
ods (Bui-Thanh, 2015). DG methods offer several advantages, such as high
accuracy, suitability for arbitrary meshes, global mass conservation, condi-
tionally stable finite element discretizations, and local h and p-adaptivity.
The element-by-element discretization makes the method compact, making
it suitable for parallelization (Kubatko et al., 2009; Valseth & Dawson, 2021).
For sufficiently smooth solutions, higher-order DG methods are highly effi-
cient, exhibiting exponential convergence rates as the polynomial degree of
the approximation increases (Betteridge et al., 2021).

In the DG discretization a numerical flux F*(q) must be introduced linking
the elements at the element boundaries oK. It will be calculated in section 4.4.
The numerical flux might add artificial diffusion, which is not straightfor-
ward to remove (Betteridge et al., 2021). Therefore, it is important to choose
an appropriate flux.

FIGURE 4.4: Structure of a DG mesh. The points represent the

nodes of the mesh, where the unknowns q are imposed. The

elements K and K™ are situated in the interior of the triangles.

The arrow represents the normal outward vector of element K.

The arrow with two points corresponds to the flux F linking
both elements.

For the DG spatial discretization we will assign K™ and K~ to both ele-
ments sharing an edge ¢, with q* and q~ as the solution in their degrees of
freedom, and F*(q) as the flux linking the elements (as indicated in Figure
4.4).

We need to define some operators between a cell K™ and its neighbour K,
with n the unit outward normal vector of each cell, such that n™ = —n~. For
a scalar s and a vector a we will define the average and jump, respectively:
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{{{s}}— st +s7); {{a)} =L@t +a)

[s] =s™nt +s n” =sn" —s n"; [a] =a'nt+a n =an"—a nt

The SWE (4.2) with the DG method becomes:

/_ de_/ (q).V.de+/aK(F*(q).n).vdS
:/Ks(q)-vdx VeV, VYKet  (45)

The flux F*(q) will be calculated in section 4.4.

4.3 Hybridizable Discontinuous Galerkin

In DG methods, the increase in degrees of freedom, compared to classic
FEM, makes them computationally expensive (Kubatko et al., 2009). The in-
troduction of the numerical flux at element boundaries leads to off-diagonal
matrix entries, complicating the use of semi-implicit time-stepping schemes
(Betteridge et al., 2021).

HDG introduces a new set of unknowns in order to reduce the cost of the
method. It reduces the number of coupled degrees of freedom substantially
and provides optimal convergence for convection-diffusion problems. The
new unknowns are introduced on the mesh skeleton through a new variable,
q defined on the cell boundaries (Betteridge et al., 2021; Bui-Thanh, 2015,
2016).

This approach allows for a two-step solution process known as static con-
densation. First, the system is solved on the skeleton. Once the skeleton
unknowns are solved, the DG unknowns can be recovered in an element-
by-element fashion, completely independent of each other. This decoupling
method is further developed in section 5.5. The decoupling leads to sig-
nificant computational savings, particularly for large-scale simulations (Bet-
teridge et al., 2021; Bui-Thanh, 2015, 2016).

The new set of unknowns § does not belong to the discretized volume

space V. We need to define a trace space W, with the associated test func-
tions V.

V= [ll}/ (01/ (*‘321|
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FIGURE 4.5: Structure of an HDG mesh. The points represent

the nodes of the mesh, where the unknowns q are imposed.

The dotted line is the skeleton of the mesh, associated to the

unknowns §. The elements K™ and K™ are situated in the inte-
rior of the triangles.

q/ﬁ € Wh/ Wh = {0 € LZ}

Now, for each element, we need to define the numerical flux at the bound-
ary. The numerical flux will be F(q, §) and will depend on the solution q in
the element, and the skeleton solution § (see Figure 4.5). It will be calculated
in section 4.4.

Since a new unknown  has been added, a new equation is needed to close
the system. The equation balancing the solution q at the elements and at the
skeleton q is added.

The equations for the SWE (4.2) with the HDG method are:

fK%-vdx—fKF(q)-V-vdx+faK(F(q)-n) -vdx
= [¢s(q)-vdx VWveV, VKer (4.6)

[{F(qq) n}} - ¥dS=0 VveEW,

The spatial discretization of the Shallow Water Equations using the HDG
method yields a system of ordinary differential equations (ODEs) in time,
which must then be discretized using a suitable time integration scheme.

4.4 Numerical fluxes

In this section we will obtain the DG and HDG numerical fluxes using the
Godunov method, by solving the Riemann problem for a generic conserva-
tion law equation. Specifically, we use the Lax-Friedrichs scheme. Then, the
numerical fluxes for the SWE are obtained, using the corresponding eigen-
values.
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4.4.1 Calculation of numerical fluxes

The numerical fluxes F* and F will be calculated using the Godunov method.
Using a proper numerical flux ensures a stable and convergent solution for
the PDE (Samii et al., 2019).

Remembering that a conservation law can be written as (3.32) :

dq Jdq _

The Riemann problem, for a conservation law, using a PDE with an initial
condition that creates a discontinuity at x = 0, is:

9q(x,t) aqxt)
—a TA=T= =0

q if x<0 (4.7)
,0 pu— pu—
1%0) = () {Cﬁ if x>0

Assigning q = q~ forn < 0,and q = q* for n > 0, we obtain a Riemann
problem, shown in Figure 4.6. We will solve the Riemann problem to obtain
the numerical fluxes.

M A3

FIGURE 4.6: Scheme of the Riemann problem. A, A, and A3 are

the eigenvalues, corresponding to the velocities of the equation

system. q is the solution imposed for n < 0, and q* the solu-
tion for n > 0. q* is the unknown to be solved.

The eigenvectors P are forming a base for this problem. The initial condi-
tions for the Riemann problem (4.7) can be decomposed using them, with «;
as the coefficients (Bui-Thanh, 2015):

{q‘ =Yt a; P 48)

+_ vy tp.
qr=YLi14 P
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Then, applying (4.8), the solution to the Riemann problem for a small time
tis:

I m
q* =) a P+ ;1@1’1 (4.9)
i=1 i=I+

with m as the number of elements of q.

The negative eigenvalues must be associated to q~ and the positive eigen-
values with q*. I is defined such as A;<0 and A;,; > 0, for the ordered
eigenvalues.

The Riemann solution (4.9) can be expressed in terms of either the left or
the right state, as follows:

I I
Q- =q +) (¢ —a;)P; Y (af —a;)Pi=q"—q~ (4.10)
i=1 i=1
m m
QO =q"+ ) (&f —a;)P; Y (af —a)Pi=q"—q"
i=I+1 i=I+1

Remembering Aq = F(q), the following relation is true:

F'-n=Aq"

Then, the flux on the boundary of an element K™ is:

F'-n" =Aq +A) (¢ —a;)P; (4.11)

The positive part of A has no contribution to the second term. The flux
(4.11) can also be expressed as:

I
F'on~ =Aq —|A]) (af —a;)P; (4.12)
i=1

with |A| = P|D|P~!. Substituting the Riemann solution (4.10) into the sum
term of this equation, the flux (4.12) becomes:
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F'-n" =Aq - |Al(q"—q")

Replacing Aq = F(q) and rearranging the signs:

F'-n” =F(q")-n" +|Al(q" —q") (4.13)

We have obtained the flux F* - n. However, q* is still unknown. To elimi-
nate it from the flux, we also develop the flux for element K*:

F'-n" =F(q")-n" +|Al(q" - q7) (4.14)

Then, subtracting the fluxes (4.13) and (4.14), and applying the relation

n~ = —n", we obtain the symmetric form of the Godunov flux, linking each
side of the edge between two elements.

F(qhq) n = {F@}} n +5lAlq —q") @15

In the case of the HDG flux, it links the element and the skeleton of the
mesh. Treating q* from the Godunov flux as the extra unknown and solving
it in the skeleton of the mesh (§), it is no longer unknown, so we can apply
directly the flux equation (4.13):

F(q,4) n=F(q) n+|Al(q—q) (4.16)

Applying the Lax-Friedrichs scheme, the fluxes only use the maximum
eigenvalue Amax. The fluxes (4.15) and (4.16) become:

F¥(q5q7) n = {(F@}) n +shna(a” —q7)  (417)

F7(q,4) -n =F(q) ' n+ Amax(q — 4) (4.18)

Finally, remembering that the HDG scheme needs a conservation condition
that ensures that the method is locally conservative, it will be imposed using
the F flux:

([F(q) ' n+ Amax(q — @)1, ¥)e =0 (4.19)
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with (a, b), = [, abdx.

4.4.2 Numerical fluxes for the SWE

For the linear SWE, using the eigenvalues obtained in Section 3.4, the Lax-
Friedrichs (Rusanov) DG linear flux F; (4.17) , and HDG linear flux FL(q)
(4.18), are:

Fia',q ) n={{Fu(@)}} n+ 5v/dsl(a))

FL(q) n=Fi(q) n+/¢p(q—a)

The Lax-Friedrichs fluxes for the non-linear SWE, (4.17) and (4.18), are:
% _ 1
F'(q",q") -n={F(@}} -n+ 7 max((q))

f’(q) n="F(q) n+Amax(q—q)

With Amax = max [[U* - n| + /(@ + ¢5), (U™ -n| + /(¢ + ¢5)].

4.5 Boundary conditions for HDG

The boundary conditions are applied in the outside faces of the mesh, de-
fined as eP°'d = 9K N 9O (equation (4.3)).

In the DG and HDG equations for the SWE, (4.5) and (4.6), the integral at
0K is defined for all the faces (¢). To impose the boundary conditions, we
need to separate it into the element interfaces ¢™ and the exterior boundary
faces €Pound | For the interfaces between the elements, the conservation con-
ditions remain the same. For the boundary faces we impose the boundary
conditions in the matrix B.

[f@a) - n}-vas = [ {{F(qq) n}}-vds+ [ B(a8,d) 905

eint
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The matrix B, containing the boundary values qc, is defined as:

B=A"q—|A|§— A qw

with

{A+ = 1(A+|A])
A =1(A—]|A)

A is the Jacobian of the matrix F, as defined in equation (3.31), in sec-
tion 3.4. Choosing the Lax-Friedrichs stabilization parameter, we can apply
(Samii et al., 2019):

Amax 0 0
|A| = Amax] = 0 Amax 0
0 0 Amax

4.5.1 Periodic boundary conditions

For the periodic boundary conditions all the element faces are treated as
interior faces. It is imposed by stating qeo|r1 = qoo|r2, where I'y and I'; are
the opposite connected edges with the boundary condition. This is applied
by stating B|r; = F*|r; and B|rp = F*|r,. Periodic boundary conditions are
already incorporated in the mesh libraries.

4.5.2 Wall boundary conditions

Wall boundary conditions are treated by imposing a reflection of the vari-
ables, using an imaginary "ghost" element next to the boundary element
(Kang et al., 2020). Considering K~ as the element next to the boundary,
and K™ as the imaginary element, it must be:

¢r =¢~
ut =u" —2(u” -n)m (4.20)
vt =0 =2(u” -n)ny

Substituting (4.20) into the conservation condition (4.19), in transforms
into:
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(u-n+/Pp(¢p—9), ¥)ok-naa =0
(V@B(uT —aT),9T) 55 a0 = 0

A

i-n=0

with T indicating the tangential part.

4.6 Bilinear forms for the SWE

The equations for the HDG SWE (4.6) can be written using bilinear forms.
We will use them in the next chapters, for simplicity.

{aM&()?,V) — (q,v) (4.21)
(q,4,%)=0

with the terms:

M(q,v) :/q-vdx Mass matrix
K
L(q,v):/KF(q)-V-vdx—/ (F(q) vdS+/ vdx

E(q,q,7 / {F(q,q) -n}}-vdS+ B(q,d,qe) - ¥dS =0

gbound

If we want to use the linear SWE, we replace the matrix F for Fy.

oM(q,v)
ot
Er(q, 4,

LL(C[,V> (4 22)
)=0 |

<

with

v):/KFL(q)~V-vdx—/aK(FAL(q)~n)~vd5+/Ks(q)-vdx
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20(9,4,9) = [, {(Fu(@q) - n}-0ds+ [ B(q,4,q) 945 =0

gbound

4.6.1 Velocity splitting

The non-linear terms and the linear terms have different velocities, as proven
with the eigenvalues in the section 3.4, in the previous chapter.

The full matrix F can be separated into the linear and non-linear parts. We
define a non-linear bilinear form, N.

<> ||

{aM W) — N(q,v) +Li(q,v) (4.23)
E.(q,4,9) =0

N(q,v) = [ (F(q) ~Fi(a)-V-vax— [ ((F(q)~Fi(a) n)-vds

K

In the general DG and HDG discretizations, the non-linear term will be
approached with a DG discretization, independently of the linear part.

The Shallow Water Equations are discretized in space using the HDG method,
with Lax-Friedrichs numerical fluxes defined accordingly. This completes the
spatial discretization, which is ultimately expressed in bilinear form. These
systems are expanded in Appendix B, and the temporal discretization is de-
veloped in Chapter 5.
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Chapter 5

Implicit-explicit Strong Stability
Preserving Runge-Kutta schemes

In this chapter, we will develop the temporal discretization for the SWE
system. In the previous chapter, we arrived at the Ordinary Differential
Equation (ODE) dependent on time (5.1), that can be discretized using nu-
merical methods.

MAY) _ N(qv) + Li(av) 61

As we have said in the previous chapters, very different time scales, from
slow flows to fast waves, coexist in geophysical fluids dynamics (Cushman-
Roisin, 2011). The term N from the SWE has a slower dynamic and is not stiff,
while the term Ly has a faster dynamic and is stiff, containing the gravity
waves. The faster term limits the acceptable time-step size and makes the
system lose its stability. To avoid this limitation, we apply an implicit-explicit
(IMEX) method. With this method, the two terms are treated differently. The
slower term is discretized with an explicit scheme and the faster with an
implicit scheme, allowing for a larger time-step (Betteridge et al., 2021; Kang
et al., 2020).

The equation modelling the physical processes in oceanography can have
discontinuities, and lose the stability. Classical IMEX methods require a small
time-step to maintain the stability. Strong Stability Preserving (SSP) methods
provide stability to PDEs with sharp gradients or discontinuities, enforcing
a stability condition to stop the system from growing without a bound.

First, we present general IMEX methods and we exemplify it with a 6
method combined with an explicit Euler. Then, Strong Stability Preserving
(SSP) methods are shown. Finally, IMEX SSP are applied to the SWE system.
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51 IMEX Runge-Kutta methods

IMEX method were introduced by Crouzeix (1980) for evolving parabolic
equations and have been widely developed and improved by Ascher et al.
(1997), Conde et al. (2017), and Higueras et al. (2014), among others.

IMEX methods were developed for ODEs that contain two terms with dif-
ferent dynamics and stiffness. A term is stiff if explicit time methods are
numerically unstable, unless the time-step used is extremely small. This hap-
pens to the fast term of the ODEs, restricting the allowed time-step size (Kang
et al., 2020). For stiff ODEs, treating the fast waves implicitly helps relax the
restriction on the time-step size, but involves solving a system of equations,
increasing the computational cost (Betteridge et al., 2021; Conde et al., 2017).

IMEX methods treat the fast term implicitly and the slow term explicitly,
balancing the time-step size restriction and the computational cost of implicit
schemes (Betteridge et al., 2021; Conde et al., 2017).

For the spatially discretized SWE system (5.1) a s-stage IMEX Runge-Kutta
(RK) method can be written, as a combination of backward and forward Eu-
ler steps (Betteridge et al., 2021; Conde et al., 2017), in the form:

{M(Qi) = M(q") + ML) aN(QY) + At Y 4L (QF) for i=1,.s
M(q"™") = M(q") + At biN(QY) + At Y5, biLi(Q)

(5.2)

The unknown Q! represent the intermediate stages of the Runge-Kutta
method, located between the time-steps n and n 4+ 1. The goal is to com-
pute the next time step, q" "1, as a weighted average of these intermediate
solutions.

The values of ajj, b;, a;; and b; depend on the chosen time discretization
scheme. These values are stored in the Butcher tableaux, within the matrices
and vectors a, 3, b, and b.

TABLE 5.1: Generic 2-stage Butcher Tableau

C1 | 411 412
C2 | A1 42

| b1 by

In equation (5.2), the coefficients 4; ; correspond to the explicit part of the
method. They are defined only for j < i, ensuring that only previously com-
puted stages are used. On the other hand, the coefficients a; ; are defined up
to j = i, corresponding to the implicit part when j = i.
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There is another way to write this method, known as the Shu-Osher form
(Gottlieb et al., 2011; Shu & Osher, 1988). Because the Shu—Osher form of
a RK method is not unique, while the Butcher form is (Conde et al., 2017),
we will use the Butcher form. However, we will use the Shu-Osher coeffi-
cients for the stability preservation analysis, in section 5.2.1. The Shu-Osher
formulation is:

M(QY) = o1M(q") + 15_q (a;,;Q + AB;;N(Q))) + 1517 (#;,Q0 + AB;Li(Q)))
for i=1,.s
M(q™) = v, M(qP) + Z?Zl (Dés+1,jQi + A,Bs+1,jN(Qj))
+ 20 (@41,/Q + Aot L1(Q))

In this thesis we have used the IMEX RK method ARS2(2,3,2) (Ascher et al.,
1997) of 2" order, with 2 stages for the implicit scheme, and 3 stages for the
explicit scheme; and the IMEX method ARS3(4,4,3) (Ascher et al., 1997), with
3" order, and 4 stages for both the explicit and implicit scheme. The Butcher
coefficients for these methods are written in Appendix A.

However, classical IMEX methods are not robust enough and often require
a small time-step in order to remain stable. To address this issue, some more
complex schemes with characteristics like stability preserving properties are
developed in the next sections.

5.1.1 6 method

We now apply a specific IMEX Euler method to the SWE. The explicit Euler
method is used for the explicit term N, and the 6 method for the implicit term
Ly. Applying this scheme to (5.1) gives:

M(q™*1,v) — M(q",v)
At

= N(q",v) + 0L (g, v) + (1 - 0)LL(q", V)
(5.3)

with 6 € [0,1]. Moving the unknown terms to the left-hand side, and the
known terms to the right-hand side, equation (5.3) becomes:

M(q"",v) — AtOLL(q™ ", v) = M(q", v) + AIN(q™, v) + At(1—6)LL(q", V)
(5.4)
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Using 6 = 0 we could obtain a fully explicit Euler scheme, and if 8 = 1
a fully implicit Euler scheme. If 8§ = 0.5, the scheme is a Crank-Nicholson
method for the term Ly (q, v).

As we have stated, we can write the IMEX discretizations using Butcher
Tableaux. The Butcher coefficients for the & method are:

(1) (% Y v ) (7)o

Substituting the coefficients of this method (5.5) into the Butcher form (5.2),
we obtain the system:

M(Q?) = M(q") + AtN(Q?) + At(1 — 6)LL(Q1) + AtOLL(Q?) (5.6)
M(q""!) = M(q") + AIN(Q') + At(1 — )L (Q') + AtLL(Q?)

From the first equation in (5.6), we can deduce Q! = q". Rewriting the sec-
ond equation, by subtracting the third equation from the second, it becomes:

M(Q%) - M(q™*1) = (M(q") + AIN(Q") + AH(1 - 6)LL(Q") + AtoLL (Q%))
_ (M(q“) + AIN(QY) + AH(1 — 8)Li (QY) + AtQLL(Q2)>
M(Q*) —M(q*™) =0 (5.7)

In equation (5.7) we obtain M(Q?) = M(q™"1), therefore, we can deduce
that Q% = q"*1. Substituting Q' and Q? in the third equation of (5.6), we
obtain the final equation for q™*1, that corresponds to the equation for the 6
method (5.4):

M(q"*1) = M(q") + AtN(Q") + At(1 — 6)L(Q™) + At6L. (Q™ )

5.2 SSP methods

The exact solution of hyperbolic conservation laws, such as equation (3.28)
can develop sharp gradients or discontinuities, which might cause difficul-
ties in numerical simulations. This makes necessary the use of high order
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discretizations with stability properties. Stability is needed to stop the sys-
tem from growing without a bound (LeVeque, 2007).

Explicit Strong Stability Preserving (5SP) methods were first used by Got-
tlieb and Shu (1998), Shu (1988), and Shu and Osher (1988), and were called
Total Variation Diminishing (TVD) discretizations. They were developed
for hyperbolic time-dependent PDEs and ODEs, and are particularly recom-
mended for hyperbolic PDEs with shocks (Gottlieb et al., 2011).

SSP methods guarantee the existence of a non-empty region of absolute
monotonicity, compared to non-SSP methods, allowing for larger time steps
while preserving stability. The region of absolute monotonicity defines the
range of time-step sizes that ensure the numerical solution does not introduce
artificial growth or oscillations. This property is especially relevant in the
context of hyperbolic problems, due to the sharp gradients or discontinuities
(Ascher et al., 1997; Conde et al., 2017).

In this section, we focus exclusively on explicit SSP Runge-Kutta (SSP RK)
methods. IMEX SSP schemes will be discussed in later sections. To under-
stand the stability preservation, we will analyze the stability properties of
explicit SSP methods, with an ODE defined as (5.8).

Jq _
3 = G(q) (5.8)

Some SSP RK methods can be written as a convex combination of forward
Euler steps, each of which individually satisfies a given non-linear stability
property. The higher order SSP RK schemes inherit these stability properties,
under the same time-step restriction, for all the intermediate stages, ensuring
that the stability property is maintained throughout the integration process
(Conde et al., 2017; Gottlieb et al., 2011).

The stability region of explicit Runge-Kutta schemes can increase by con-
sidering methods with three or more stages (Ferracina & Spijker, 2004a, 2004b;
Higueras et al., 2014). However, SSP RK schemes are limited to fourth-order
accuracy, while implicit schemes can reach up to sixth order, mainly due to
constraints imposed by non-linear stability conditions (Conde et al., 2017;
Gottlieb et al., 2011).

In this thesis we have applied the SSP RK methods Shu-Osher (Isherwood
et al., 2018), a 3" order explicit scheme, SSPIRK33 (Isherwood et al., 2018;
Ketcheson et al., 2009), a 3" order diagonally implicit scheme with 3 stages,
and SSPIRK43 (Isherwood et al., 2018; Ketcheson et al., 2009), a diagonally
implicit scheme with 3 with 4 stages. The Butcher coefficients for the schemes
are presented in Appendix A.
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5.2.1 Stability preservation

Total Variation Diminishing (TVD) schemes are the origin of the SSP dis-
cretization, as used in Shu and Osher (1988). The total variation of a solution
is defined as follows,

TV(q") = Znlqh11 — 9h|

where qj_ ; is the solution for time 7 in the element i + 1, and qj ; the
solution for time 7 in the element h.

A scheme is considered TVD if the solution in the next time-step (q™*1)

satisfies:

TV(q"™) < TV(q")

Similarly, for hyperbolic problems, the linear stability requirement usually
leads to a ratio between At and Ax. (Conde et al., 2017; Gottlieb et al., 2011).
The stability condition for equation (5.8) must satisfy:

g™ +AtG(q")[| < [[q"], 0 < At < Atgg (5.9)

with Atgg as the forward Euler stable time-step, depending on the spatial
discretization, and || - || the norm (Conde et al., 2017). This must be true for
any At smaller than Atpg. Then, a method is SSP if it satisfies:

la™ ] < llq"|]

Accordingly, the time-step of the SSP method must satisfy the following
ratio, with the Strong Stability preserving coefficient C (Conde et al., 2017;
Gottlieb et al., 2011):

At < CAtgg

c— min; ; < ,Bi,j) if &ij, 51,] are non-negative
0 otherwise
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C is calculated with the Shu-Osher coefficients « and B. To consider a
method SSP, it must fulfill C > 0, and the coefficients « and B must be non-
negative. Moreover, the coefficients from the Butcher form must satisfy a > 0
and b > 0 to have a non-zero SSP coefficient (Gottlieb et al., 2011).

The goal of SSP methods is to maximize the value of C, since it allows for
a larger time-step (Conde et al., 2017).

5.3 IMEX SSPRK discretizations

IMEX SSP methods were first used by Pareschi and Russo (2005), as a tool
to solve large ODEs originated by the spatial discretization of hyperbolic
PDEs (Gottlieb et al., 2011). In addition, Higueras et al. (2014) introduced
some SSP IMEX methods with the SSP conditions in both the implicit and
explicit terms (Conde et al., 2017).

For equation (5.1), with the two differentiated terms N and Ly , SSP RK
IMEX methods must satisfy the Euler condition (5.9) independently, for both
terms N and Ly :

lq™ +AIN(q™)[| < [[q"], 0 < Af < Atgg
lq™ +AfLL(q")|[ < [Iq"][, 0 < At < KAtgg

For the SSP condition, the value of K must be > 1. A larger value of K
implies a more permissive time-step for the implicit term L;..

The IMEX SSP methods. can be expressed using equation (5.2) with the
corresponding SSP coefficients, as we have seen in this chapter. In this the-
sis we have used some variations of the IMEX RK SSP method SSP2(3,3,2), a
2" order scheme with 3 implicit and explicit stages (Betteridge et al., 2021;
Higueras et al., 2014). The Butcher coefficients for the schemes are thor-
oughly presented in Appendix A.

5.4 Temporal discretization for the SWE system

IMEX DG methods have been proven to have more advantages for the
SWE than the fully-explicit or fully-implicit DG methods (Kang et al., 2020).

In our SWE system (4.23), the term Ly is stiff and associated with fast dy-
namics, such as gravity waves. It will be treated implicitly to avoid severe
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time-step restrictions. On the other hand, the non-stiff term N represents the
slower dynamics and can be discretized explicitly. The IMEX SSP temporal
discretization scheme applied to the SWE system results in:

M(Q',v) = M(q",v) + AtY—1a;N(Q),v) + At ;L (Q),v) for i
M(q™*,v) = M(q®, v) + A5 BN(QL v) + AtYS bLL(QY,v)
(5.10)

The complete bilinear form of the SWE (4.21) can be written for non-IMEX
SSP RK methods, similarly to equation (5.10), as:

{M(Qi,v) = M(q",v) + At Z;;% ai,jL(erV) for i=1,.s (5.11)

M(q™™,v) = M(q", v) + At Y, biL(Q1, v)

For the HDG discretization, the flux equation does not require a temporal
scheme, and is associated to the unknowns of the system in each step of the
solver.

5.5 Resolution of the system: static condensation

The stages (Q') of equation (5.10) can be resolved, along with the flux equa-
tion &, by applying a static condensation decomposition (Cockburn, 2016).

First, multiplying (5.10) by M1, we obtain the system we will resolve:

, i—1
Q' — At aj M_ILLi =q" + At M1 21 (ll,']' N] + ﬁl']' LLj) (5.12)
]:
([FL(Q, Q") n],7) =0
The system (5.12) can be written in matrix form as:
A B Ql\ (R
(€ 0) (&)= (&) 619

with the terms:
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oL
0Q’

0
0Q’

[1

d

[

D=

oL
A=1I-Ati;M ! B=—At;; M 1=k, C=
0Q

Q
©

i—1 .
R = qn +AtM ! Z (ai,jN’ + ﬁi/]']“i> , Rp=0
=1

Isolating the unknown Q' in the left-hand side, on the first line of the sys-
tem (5.13) we obtain:

Q' =A""1 (Rl —~ BQi) (5.14)

Replacing (5.14) into the second line of (5.13) we obtain an equation to
solve for Q1.

(D - CA‘1B> 0! =R, - CA IR, (5.15)

We have arrived, in equation (5.15) to a linear equation system, that can
be solved. Once we have obtained the trace unknown Q1, the element un-
known Q! can be recovered through equation (5.14). The solver methods for
equation (5.15) is indicated in Appendix B.

With the spatial and temporal discretization strategies fully developed,

and the solution algorithm based on static condensation established, the HDG
model is now completed.
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Chapter 6

Numerical results

In this chapter we reproduce some oceanographic problems. In order to do
so, the model is implemented using the Firedrake library on Python (Ham
et al., 2023), designed for solving PDEs through FEM methods. Firedrake
allows the use of weak forms in Unified Form Language (UFL) and com-
piles them into optimized C code for computation. It relies on PETSc as its
core tool for linear algebra, offering various solver options, and supports
diverse types of unstructured meshes and finite element (FE) spaces (Bet-
teridge, 2020; Betteridge et al., 2021).

The UFL (Alnzes et al., 2014), created as part of the FEniCS project (Logg
et al., 2012), is a domain-specific language for expressing weak formulations
of PDEs, making it suitable for numerical solutions. The Portable, Extensible
Toolkit for Scientific Computation (PETSc) (Balay et al., 2024) provides an
extensive collection of linear and non-linear solvers for scientific applications
(Betteridge, 2020; Betteridge et al., 2021).

The system is solved by applying a Static Condensation reduction, shown
in section 5.5. The system for the hybrid unknowns § is then solved by
applying a Generalized Minimal Residual (GMRES) (Saad & Schultz, 1986)
method, with a tolerance of 1le~!¥ with an algebraic multigrid (AMG) pre-
conditioner. The AMG system, then, is solved using the Chebyshev iterative
method (Golub & Varga, 1961) with a block Jabobi preconditioner. The spe-
cific solver parameters and algorithms are indicated in Appendix B.

In the following sections, this chapter presents a series of numerical ex-
periments designed to validate and illustrate the performance of the HDG
model applied to the Shallow Water Equations. The selected test cases pro-
gressively increase in complexity. To validate the model, in the problems that
have an analytic solution we have calculated the error convergence using the
formulas in Appendix C.
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We begin with three problems that have known analytical solutions - a
moving vortex, a linear standing wave, and a linear Kelvin wave - in which
we calculate the error of the solution, to verify the accuracy and convergence
properties of the model. These are followed by classical benchmark prob-
lems in hydrodynamics, including the lake-at-rest scenario and its dynamic
counterpart, the shallow lake, where we progressively introduce additional
physical effects such as bottom topography. We then explore wind forcing
through a wind-driven shallow lake experiment. Then, we test the model’s
response to an initial perturbation in the water surface elevation, with and
without the Coriolis force, assessing its capacity to resolve transient free sur-
face dynamics. Finally, we reproduce a more complex problem, representing
a coastal inlet.

Together, these experiments provide a comprehensive assessment of the
model’s robustness, accuracy, and versatility in capturing geophysical flows.
While the current model successfully simulates the physical processes ob-
served in the area of interest, a multilayer extension is required to fully rep-
resent all the processes involved.

6.1 Problem 1 with analytical solution: Moving vor-
tex

To assess the accuracy and stability of the model, we will reproduce a vor-
tex translation test from Kang et al. (2020) and Ricchiuto and Bollermann
(2009). This problem has an exact analytical solution for the non-linear form
of the SWE, allowing the error calculation. The problem consists on the sim-
ulation of a vortex, translating along the domain at a constant speed in a
balanced flow, while maintaining its shape without the presence of external
forcings.

6.1.1 Initial conditions

The initial conditions (Figure 6.1) are:

2
=g exp 2 2
(U, V) = (Uso, Veo) + o exp~ "=V - (y, x)

with B = 5 as the vortex strength, (1, V) = (1,0) the reference horizon-
tal velocity, (xc,yc) = (0,0) the center of the vortex, x; = x — x; — Ut and
Yt =Y — Yo — Ueot, and 72 = x? + y?. Gravity is ¢ = 2ms 2,
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FIGURE 6.1: Initial conditions of the free surface elevation ()

and the velocity (U) for the moving vortex problem. The ve-

locity intensity is represented in the background field and the

direction of the velocity is represented with the normalized vec-
tors.

The domain is Q) = [—2,2] x [—2,2] m (Figure 6.2). The bathymetry is flat,
with b = 1m. The exact solution is imposed at the boundary condition.

6.1.2 Results

The mesh for the results (Figure 6.2) is formed by quadrilateral elements of
the size Ax = Ay = 0.25m, with the polynomial order p = 3. The time step
used for the simulation is At = 1 x 10735, and the final time is t = 2s.

FIGURE 6.2: Mesh for the moving vortex problem. The blue
lines indicate the edges of the elements. The domain is ) =
[—2,2] x [~2,2] m and the element size is Ax = Ay = 0.25m.

The results for the temporal evolution of the free surface elevation # and
velocity are shown in Figures 6.3 and 6.4. The vortex successfully maintains
its shape as it propagates to the right, eventually reaching the domain bound-
ary. The velocity field behaves accordingly, preserving the characteristics of
the vortex throughout the simulation.
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FIGURE 6.3: Results for the evolution of the free surface eleva-
tion (7) for the moving vortex problem, at the times t = Os,
t=05s,t=1sand t = 2s.

6.1.3 Error convergence

For the convergence test, the orders for the polynomial basis functions are
p = 2,3,4,5, and the number of intervals N = 8,12,16,20; with the corre-
sponding time steps At = 1 x 10 3sfor p =2and p = 3, At =2 x 10~ s for
p =4,and At =5 x 107°s for p = 5. The convergence test is run for all the
time discretization schemes shown in Appendix A. The error is calculated at
t =2s.

The spatial convergence tests (Figures 6.5, 6.6, and 6.7) show that the er-
ror decreases as the number of elements increases and the element size is
reduced. However, for the Crank—Nicolson scheme, the explicit and implicit
Euler methods, and their IMEX counterparts, the convergence of the error
deviates from the expected behavior for p = 3, p = 4, and p = 5. Among
these, the Crank—Nicolson and IMEX Crank-Nicolson schemes perform bet-
ter, while the explicit and implicit Euler methods (and their IMEX versions)
show the worst convergence.

For the free surface elevation 7, the observed convergence rates, corre-
sponding to the slope of the plots, are approximately 2.7, 4.1, 4.7 and 6.4
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(A)U (t =05s) (B) U (t = 0.55)

(C)U(t=1s) (D) U (t = 25)

v
7.5e-02 04 06 08 1 1‘.2 1‘.4 116 1i8 2‘ 2.‘2 24 26 28 3 3.3e+00
FIGURE 6.4: Results for the evolution of the velocity (U) for
the moving vortex problem, at the times t = 0s, t = 0.5s,
t = 1sand t = 2s. The velocity intensity is represented in
the background field and the direction of the velocity is repre-
sented with the normalized vectors.

for polynomial orders p = 2,3,4,5, respectively (Table 6.1). These results
are consistent with the expected optimal rate of h"*! for 5 convergence, as
reported in the literature (Bui-Thanh, 2016; Samii et al., 2019). The velocity
error convergence rates (Table 6.1) are 2.4, 4.6, 3.9 and 6.9 for the same values
of p, which suggests a convergence of approximately 170>, a behavior that
is consistent with the theoretical results found in Bui-Thanh (2016). Similarly,
for the energy error, the convergence rates are 2.5, 4.5, 3.9 and 6.9 (see Table
6.1), also indicating optimal convergence.
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TABLE 6.1: Error results for the moving vortex problem us-
ing the Shu-Osher method. The errors are calculated for the
number of intervals N = 8,12, 16, 20 and the polynomial orders
p=2,34,5.
p Nel Error(y) order(y) Error(U) Order(U) Error(v/E) Order(v/E)
2 8 430103 NaN 1.17-102 NaN 8.83.1073 NaN
12 1.40-1073 2.76 4341073 245 3.22.1073 2.48
16 6.21-104 283 2.16:10°3 243 1.59-1073 2.47
20 3.37-10~* 2.74 1231073 250 9.05-10°* 2.52
3 8 4.42.10°% NaN 3.18:103 NaN 227.1073 NaN
12 9.84-10~° 371 4.75-10% 469 3.43.107% 4.67
16 3.02-10°° 411 1.27-10°% 459 920-10°° 457
20 1.21-10°° 411 4.55-10°° 458 3.33.107° 455
4 8 596-10°° NaN 1.32-10*% NaN 1.03-10°*% NaN
12 7.29-10°° 519 3.30-10° 343 239.107° 3.60
16 1.84-10°° 478 1.07-107° 391 7.70-10°° 3.94
20 6.43-1077 472 4.23.10°° 417 3.03-10°° 4.18
5 8 5.29.-10°° NaN 7.78-10° NaN 552:107° NaN
12 6.48-10~7 518 5.51-10°° 6.53 3.92.10°° 6.52
16 1.02-10~7 643 7.47-10~7 6.95 5.33-10~7 6.94
20 2.46-10°8 6.37 1.58-10~7 6.96 1.13-10~7 6.95
0.2 0.25 Ol.jg(h)o.Ss 04 045 05 0.2 0.25 Ol.sg(h)o.Ss 04 045 05
(A) n7 errors (p = 2) (B) 7 errors (p = 3)
== [ et
Implicit Euler
—e—Shu-Osher
= =106 —o—SSPIRK33
S 405 = SSPIRK43
LE LE —e—Crank-Nicolson IMEX
5 5 —e—Explicit Euler IMEX
e S 107 —e—Implicit Euler IMEX
—e—ARS2(2,3,2)
106 —e—ARS3 (4,4,3)
e 10 e LM 2
0.2 0.25 Ol.gg(h)().iis 04 045 05 0.2 0.25 Ol.sg(h)oss 04 045 05 —O—SSP223:3:2; LSPUM
(C) y errors (p = 4) (D) 5 errors (p = 5)

FIGURE 6.5: h-convergence results for the moving vortex prob-

lem for the free surface (7) error. Log-log scale plot of the L2

error (Err) and the mesh sizes (h) with the different temporal
discretizations, using the polynomial orders p = 2,3,4,5.
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FIGURE 6.6: h-convergence results for the moving vortex prob-
lem for the velocity (U). Log-log scale plot of the L2 error (Err)
and the mesh sizes (h) with the different temporal discretiza-
tions, using the polynomial orders p = 2,3,4,5.
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FIGURE 6.7: h-convergence results for the moving vortex prob-

lem for the energy (E). Log-log scale plot of the L2 error (Err)

and the mesh sizes (h) with the different temporal discretiza-
tions, using the polynomial orders p = 2,3,4,5.
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6.2 Problem 2 with analytical solution: Linear stand-
ing wave

We also study the convergence in a problem consisting on a linear standing
wave, from Bui-Thanh (2016) and Iskandarani et al. (1995). This problem has
an exact solution, so the error can be calculated. The interest of this simula-
tion resides in the oscillatory nature of the wave.

6.2.1 Initial conditions

The initial conditions (Figure 6.8) are:

cos(7rx)-cos(y)-cos(v/27t)

sin(nxé; - cos(7ty) - sin(v/27tt)
cos(mx) - sin(7ry) - sin(/27tt)

< €=
I

S-S

7.1e-01

1.0e+00 l 0.65
lgzz
- - 0.55
- 05
- 0.45
—04
- 0.35
—0.3

~ 02 — |

Y 0.25

_ 04 - 02

-~ 05

" - 015
0.7 0.1
08 [

[CA%)

(

FIGURE 6.8: Initial conditions of the free surface elevation ()

and the velocity (U) for the linear standing wave problem. The

elevation (1) is scaled by a factor of 0.2 to improve visibility. The

velocity intensity is represented in the background field and the

direction of the velocity is represented with the normalized vec-
tors.

0.05
0.0e+00

(A)n (B) U

The domain is QO = [0,1] x [0,1] m (see Figure 6.9). We choose a flat
bathymetry of b = 1m. Wall boundary conditions are applied on all the
exterior boundaries. The external forcings, such as Coriolis force, bottom
friction, and wind stress are not present.
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6.2.2 Results

The mesh is constructed of quadrilateral elements of Ax = Ay = 0.125m
(Figure 6.9), with the polynomial order p = 4. The time step is At = 1 X
10~°s and the end time is t = 10s.

FIGURE 6.9: Mesh for the linear standing wave problem. The
blue lines indicate the edges of the elements. The domain is
Q = [0,1] x [0,1] m and the element size is Ax = Ay = 0.125m.

The results for this problem (Figures 6.10 and 6.11) confirm that the model
behaves as expected. The wave reflects symmetrically within the boundaries
of the square domain, forming a standing wave pattern that persists over
time. The results are shown up to t = 1.4s, corresponding to a complete
cycle of the wave.
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(A)n (t =05s) (B) 7 (t =0.355)

(C) 5 (t=07s) (D) 77 (t = 145)

-1.0e+00 —0.8—0.7—O.b—O.5—0.4—0.3—0.2—0?1‘2:18.1 020.304050.60.708 1.0e+00
R S R ——
FIGURE 6.10: Results for the evolution of the free surface ele-
vation (77) for the linear standing wave problem, at the times
t =0s,t =035s,t =07sand t = 1.4s. The elevation () is
scaled by a factor of 0.2 to improve visibility.
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(A)U (t =05s) (B) U (t = 0.355)

(C)U (t=075s) (D) U (t = 1.45)

uv)
0.0e+00 0.1 0.15 02 025 03 035 04 045 05 055 0.6 0.657.1e-01
LI = = e —

FIGURE 6.11: Results for the evolution of the velocity (U) for

the linear standing wave problem, at the times t = 0s, t =

0.35s,t = 0.7s and t = 1.4s. The velocity intensity is repre-

sented in the background field and the direction of the velocity
is represented with the normalized vectors.

6.2.3 Error convergence

For the convergence test, the chosen polynomial orders for the basis func-
tions are p = 1,2, 3,4, and the number of intervals are N = 2,4, 8. The time
discretization method used is the Shu-Osher (see Appendix A). The time step
is At =1 x 10 %5, and the error is calculated in the time t = 10s.

The spatial convergence tests for this problem (Figure 6.12) also shows that
the error decreases as the mesh is refined, indicating optimal convergence
behavior for the 7, velocity, and energy errors.

For the free surface elevation, the observed h-convergence rates are ap-
proximately 2, 3, 4 and 5 for the polynomial orders p = 1,2, 3,4, respectively
(see Table 6.2). These results are consistent with the expected optimal rate of
hP*1 reported in the literature. The velocity error convergence rates are 1.6,
3.2, 4.1 and 5 (Table 6.2), suggesting a convergence of approximately 7719,
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TABLE 6.2: Error results for the linear standing wave problem

using the Shu-Osher discretization. The errors are calculated

for the number of intervals N = 2,4,8 and the polynomial or-
dersp =1,2,3,4.

p Nel Error(y) order(y) Error(U) Order(U) Error(vE) Order(vE)
1 2 6.14-1072 NaN 5.22-102 NaN 5.70-102 NaN
4 1511072 2.02 1.82:1072 152 1.68-1072 1.77
8 3.81-1073 1.99 5.01-1073 1.86 4.45-1073 1.91
2 2 845.1073 NaN 7.67-1073 NaN 8.07-1073 NaN
4 1.041073 3.02 1.47-10°3 238 1.27-10°3 2.66
8 1.27-107% 3.04 1.58.10°% 322 1.43.10°*% 3.15
3 2 8.18-10°*% NaN 9.15-104 NaN 8.68-10°¢ NaN
4 5.16107° 399 6.64-10°° 379 5.94.107° 3.87
8 3.36:10°° 394 3.84-10°° 411 3.61-10°° 4.04
4 2 645107 NaN 7.57-107° NaN 7.04-107° NaN
4 1.97-10°° 5.03 2.41-10°° 497 2.20-10°° 5.00
8 6.48-10°8 493 753.10°8 500 7.02-10°% 497

which aligns with the behavior observed in previous studies. Similarly, for
the energy error, the convergence rates are 1.8, 3.1, 4 and 5 (Table 6.2), also
indicating near-optimal convergence and following the trend observed with

the error for the velocity.

The p-convergence curves (Figure 6.13) appear almost linear when plotted
on a semi-logarithmic scale, which indicates that the p-convergence has an

exponential rate, as seen in Bui-Thanh (2016).

10° 10° 10°
1047 0
106 / 106 /

05 1 15 2 0.5 1 15 2 0.5 1 1.5 2
log(h) log(h) log(h)

log(Error(eta))
log(Error(u))

log(Error(E))

(A) 75 errors (B) U errors (C) E errors

FIGURE 6.12: h-convergence results for the linear standing
wave problem using the Shu-Osher discretization. Log-log
scale plot of the L2 error (Err) and the mesh sizes (h), for the
free surface (1) error (A), the velocity (U) error (B), and the en-
ergy (E) error (C), using the polynomial orders p = 1,2,3,4.
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FIGURE 6.13: p-convergence results for the linear standing
wave problem using the Shu-Osher discretization. Semi-log
scale plot of the L2 error Err and the polynomial order p, for
the free surface () error (A), the velocity (U) error (B), and the
energy (E) error (C), using the number of intervals N = 2,4, 8.

6.3 Problem 3 with analytical solution: Linear Kelvin
wave

This third problem is also used to study the error convergence of the model.
We now simulate a linear equatorial Kelvin wave translating inside the do-
main, following the conditions described in Bui-Thanh (2016) and Eskilsson

and Sherwin (2004). The wave must propagate eastward throughout the do-
main, while maintaining its shape.

6.3.1 Initial conditions

The initial conditions (Figure 6.14) are:

1+exp(f§> exp <7W>
17 =

U = exp () exp (— 213-27)
V=0

N

The domain for the problem is Q) = [—10,10] x [—5,5] m (Figure 6.15).
We take a flat bathymetry of b = 1m. The boundary conditions on the x-
direction are periodic and wall boundary conditions are imposed in the y-

direction. The Coriolis force is imposed with a B plane approximation (f =
fo+ By —ym)), with fo =0,y =0and g = 1.
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FIGURE 6.14: Initial conditions of the free surface elevation (1)

and the velocity (U) for the linear Kelvin wave problem. The

elevation (77) is scaled by a factor of 3 to improve visibility. The

velocity intensity is represented in the background field and the

direction of the velocity is represented with the normalized vec-
tors.

6.3.2 Results

The mesh for the problem is formed by quadrilateral elements of Ax =
Ay = 1.25m, and polynomial order p = 4, with a time step of At =1 x 10~ *s
(Figure 6.15). The end time is t = 10s.

FIGURE 6.15: Mesh for the linear Kelvin wave problem. The

blue lines indicate the edges of the elements. The domain is

Q = [-10,10] x [—5,5] m and the element size is Ax = Ay =
1.25m.

The results for the temporal evolution of the free surface elevation 1 and
velocity are shown in Figures 6.16 and 6.17. The wave moves eastward, from
the left of the domain. Similarly, the velocity behaves as expected, as the
wave is transported.
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(A) 7 (t =0s) (B) 7 (t = 25)
(©) 1 (t =559) (D) 7 (t = 105)
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FIGURE 6.16: Results for the evolution of the free surface eleva-

tion (77) for the linear Kelvin wave problem, at the times t = 0s,

t = 2s,t = 5sand t = 10s. The elevation (7) is scaled by a
factor of 3 to improve visibility.
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(A)U (t =0s) (B)U (t =25)

(C)U (t = 55) (D) U (t = 105)

uv)
1.1e-50 0.10.150.20.250.30.350.40.450.50.550.60.650.70.750.80.850.9  1.0e+00

T

FIGURE 6.17: Results for the evolution of the velocity (U) for

the linear Kelvin wave problem, at the times t = 0s, t = 25,

t = 5sand t = 10s. The velocity intensity is represented in the

background field and the direction of the velocity is represented
with the normalized vectors.

6.3.3 Error convergence

The polynomial orders for the convergence test are p = 1,2,3,4 and the
number of intervals are N = 2,4,8,16. The time discretization method used
is the Crank-Nicolson (see Appendix A). The time step is At = 1 x 107*s.
The error is calculated at t = 10s.

The spatial convergence tests (Figure 6.18) show that the error behaves
with optimal convergence. For the free surface elevation, velocity, and en-
ergy errors, the observed h-convergence rates are approximately 2, 2.9, 3.8
and 5 for p = 1, 2, 3 and 4 (see Table 6.3). The results for the elevation, simi-
larly to the previous problems, are consistent with the expected optimal rate
hP*1 reported in the literature. In the case of the velocity and the energy, the
optimal rate of #? 02 is also reached.

The p-convergence curves (Figure 6.19) appear almost linear on the semi-
logarithmic scale, indicating that the p-convergence has an exponential rate.
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TABLE 6.3: Error results for the linear Kelvin wave problem
using the Crank-Nicolson time discretization. The errors are
calculated for the number of intervals N = 2,4,8,16 and the
polynomial orders p =1, 2,3, 4.
p Nel Error(y) order(y) Error(U) Order(U) Error(vE) Order(vE)
1 2 1.03 NaN 1.21 NaN 1.13 NaN
4 4371071 124 4.90-107! 1.30 4.64-10°1 1.28
8 1.68-107! 1.38 2.04-107! 127 1.87-10°! 1.31
16 4.24-102 1.99 5.19-102 1.97 4.74-1072 1.98
2 2 5461071 NaN 6.32-1071 NaN 5.91-10°1 NaN
4 1.86-107! 156 2.16-107! 155 2.01-10°! 1.55
8 2.74-1072 2.76 3.67-1072 256 3.24-10°2 2.64
16 3.47-103 298 491.10°3 290 4.25.10°3 2.93
3 2 3481071 NaN 3.56-10°1 NaN 3.52.10°1 NaN
4 5181072 2.75 6.76-1072 240 6.02:10°2 2.55
8 3.56-1073 3.86 4.30-1073 397 3.95.1073 3.93
16 2.53-1074 3.82 3.16-107% 3.76 2.86-1074 3.78
4 2 1.64-107! NaN 1.98-10~1 NaN 1.82:10°1 NaN
4 1.33-1072 3.62 1.49-102 3.73 1.41-10°2 3.68
8 5.66-107% 456 7.27-1074 436 6.52:107% 4.44
16 1.69-107° 5.07 2.20-10~° 505 1.96-107° 5.05

In high-order methods like HDG, accuracy can be improved either by re-
fining the mesh (h-refinement) or by increasing the polynomial order (p-
refinement). While h-refinement is generally effective for resolving local-
ized features or discontinuities, p-refinement is often more efficient, as it can
achieve exponential convergence with fewer degrees of freedom (Bui-Thanh,
2016). This is confirmed by the results shown in Figure 6.13 and 6.19, where
the error decreases rapidly as p increases, demonstrating the advantage of
using high-order approximations in this problem.

10°

log(Error(eta))

0.5 1 15

log(h)

(A) 7 errors

FIGURE 6.18: h-convergence results for the linear Kelvin wave
problem using the Crank-Nicolson time discretization. Log-log
scale plot of the L2 error (Err) and the mesh sizes (h), for the free
surface (17) error (A), the velocity (U) error (B), and the energy
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FIGURE 6.19: p-convergence results for the linear Kelvin wave

problem using the Crank-Nicolson time discretization. Semi-

log scale plot of the L2 error Err and the polynomial order p,

for the free surface (1) error (A), the velocity (U) error (B), and

the energy (E) error (C), using the number of intervals N =
2,4,8,16.

6.4 Problem 4: Lake at rest

We now apply a lake at rest test to the model for the non-linear SWE.
A numerical scheme is said to be well-balanced if it is capable of preserv-
ing the steady state solution, such as the lake-at-rest configuration, through-
out the simulation. In this problem, we simulate a variation of the steady
lake problem proposed by Valseth and Dawson (2021) with a discontinuous

bathymetry. The numerical method must handle the sharp discontinuities in
the bathymetry.

6.4.1 Initial conditions

For this problem the initial conditions are:

n=20
(u,v) =1(0,0)

The discontinuous bathymetry (Figure 6.20) is defined as:

2—-1.8, if |x — x| <0.025, |y —y.| < 0.025

b 2—14, if |x — x| <0.075, |y —y.| < 0.075
2—-1.0, if|x—x.] <0.175, |y —y.| < 0.175
2—-0, otherwise

= 0 BN
[22]
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FIGURE 6.20: Discontinuous bathymetry (b(x,y)) for the lake
at rest problem.

where (x,y.) = (0.3,0.3) is the mountain center.

The domain is Q) = [0, 1] x [0, 1] m (Figure 6.21). We apply wall boundary
conditions. We impose bottom friction by setting the damping coefficient
Tp = 1571,

6.4.2 Results

We use a mesh with triangular elemnts of the size Ax = Ay = 0.025m and
polynomial order p = 1 (Figure 6.21), with the time step At = 0.1s. The final
timeist = 2s.

FIGURE 6.21: Mesh for the lake at rest problem. The blue lines
indicate the edges of the elements. The domain is Q = [0,1] x
[0,1] m and the element size is Ax = Ay = 0.025m.

As we can see in the results (Figure 6.22), the lake at rest state is well pre-
served by the end of the simulation at t = 2s, proving that the method is,
indeed, well-balanced. Note that although the velocity arrows appear to
point eastward, the actual velocity magnitude is zero. This occurs because
the arrows are normalized - i.e., all arrows are drawn with the same length
regardless of magnitude. As a result, even when the velocity is zero, default
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arrows pointing to the right are still displayed, while the magnitude is accu-
rately shown through the color shading.
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FIGURE 6.22: Results for the evolution of the free surface eleva-

tion (17) (A,B) and velocity (U) (C,D) for the lake at rest problem,

at the times t = 0s and t = 2s. The velocity intensity is repre-

sented in the background field and the direction of the velocity
is represented with the normalized vectors.

(C)U (t = 0s) (D) U (t = 25)
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6.5 Problem 5: Shallow lake

In this section, we simulate the evolution of surface waves in a square shal-
low lake, initially perturbed at the center by a localized discontinuity. This
disturbance generates long circular gravity waves that propagate outward
across the domain. The problem setup, taken from Kampf (2009), is solved
using the linear form of the shallow water equations, in order to analyze the
fluid behavior in a closed domain. This test allows us to observe the surface
waves caused by a perturbation, and to assess the model’s ability to capture
wave propagation and reflection in idealized geometries.

6.5.1 Initial conditions

The initial conditions (Figure 6.23) are:

0 otherwise
(U,v) =(0,0)

_ {1 if (x,y) = (250,250)

0.15

0.1

0.05
0.0e+00

FIGURE 6.23: Initial condition of the free surface elevation ()
for the shallow lake problem.

The domain is Q) = [0,500] x [0,500] m (Figure 6.24), with the depth of
¢ = 10m. The boundary conditions are wall boundaries.

6.5.2 Results

The mesh is formed by quadrilateral elements of polynomial order p =1
and size Ax = Ay = 10m (Figure 6.24). The time step is At = 0.1s. The final
time is t = 100s.
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FIGURE 6.24: Mesh for the shallow lake problem. The blue
lines indicate the edges of the elements. The domain is () =
[0,500] x [0,500] m and the element size is Ax = Ay = 10m.

The results (Figures 6.25 and 6.26) show how the initial perturbation gen-
erates gravity waves that propagate radially, outward, from the center of the
lake. As expected in a closed lake, the waves reflect off the boundaries and
interact with one another, producing complex interference patterns. The ve-
locity field exhibits the same behavior as the free surface elevation. The sim-
ulation preserves this symmetry throughout the domain and over time, high-
lighting model’s ability to accurately represent wave propagation and reflec-
tion. This behavior is observed up to t = 100s; however, only the evolution
up to t = 50s is shown here to avoid redundancy.
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(A) 7 (t = 055) (B) 5 (t = 22.55)
(C) 7 (t = 37.55) (D) 5 (t = 505)
100*eta
-1.0e+00 0O 1 2 3 4 5 6 7 8 9 1.0e+01

‘ I ‘ ‘ ‘ l e —

FIGURE 6.25: Results for the evolution of the free surface ele-

vation (77) for the shallow lake problem, at the times t = 0.5s,

t =225s,t =37.5sand t = 50s. The elevation () is scaled by
a factor of 100 to improve visibility.
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(A)U (t=05s) (B) U (t = 22.55)

(C) U (t =3755) (D) U (t =50s)

uwvy
00e+00 02 03 04 05 06 07 08 09 1 1.1 12 13 14 1.6e+00
| |

FIGURE 6.26: Results for the evolution of the velocity (U) for

the shallow lake problem, at the times t = 0.5s, t = 22.5s,t =

37.5s and t = 50s. The velocity intensity is represented in the

background field and the direction of the velocity is represented
with the normalized vectors.

6.5.3 Adding bathymetry

In this section, a non-flat bathymetry (Figure 6.27) is introduced by adding
a submerged mount off-center, at the southwest of the domain. This allows
us to study the influence of topography on the wave propagation.

10 — H - (X — Xmin) * (* = Xmax) * (¥ = Ymin) * (¥ — Ymax)
(PB = if Xmin < X < Xmax, Ymin < Y < Ymax
10 otherwise

with H = 20 - 10~° as the mount height, xmin = 5011, Xmax = 1001, Ymin =
50m, and ymax = 100m.
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100*b

FIGURE 6.27: Bathymetry (b(x,y)) for the shallow lake prob-
lem. The height is scaled by a factor of 100 to improve visibility.

(A) 7 (t =055) (B) 5 (t = 22.55)

(C) U (t = 37.55) (D) 7 (t = 505)
100*eta
-1.0e+00 0O 1 2 3 4 5 6 7 8 9 1.0e+01
! I ‘ ‘ ‘ e —

FIGURE 6.28: Results for the evolution of the free surface ele-

vation (1) for the shallow lake problem with bathymetry, at the

timest = 0.5s,t = 22.5s,t = 37.5sand t = 50s. The elevation
(1) is scaled by a factor of 100 to improve visibility.

The results (Figures 6.28 and 6.29) show a perturbation of the wave sym-
metry caused by the submerged mount. The waves are partially concentrated
and refracted around the topographic feature, as observed in the free surface
elevation 7. The velocity field also shows higher magnitudes in the area of
the mount.
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(A)U (t=05s) (B) U (t = 22.55)

(C) U (t =3755) (D) U (t =50s)

FIGURE 6.29: Results for the evolution of the velocity (U) for

the shallow lake problem with bathymetry, at the times ¢t =

0.5s,t = 225s,t = 37.5s and t = 50s. The velocity inten-

sity is represented in the background field and the direction of
the velocity is represented with the normalized vectors.
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6.6 Problem 6: Shallow lake with wind-driven flow

In this section, we simulate a shallow lake with an island located off-center,
based on the test case from Kampf (2009). The system starts at rest, and a
constant wind stress is applied at the surface, initiating a wind-driven circu-
lation. This setup allows us to observe the effects of external forcing on the
shallow water model. The asymmetric placement of the island leads to the
formation of complex flow patterns.

6.6.1 Initial conditions

The initial conditions for this problem are:

n=20
(u,v)=(0,0)

The bathymetry (Figure 6.30B) is defined by the following function, and
then smoothed:

1, if (0 < x < 300), (0 < y < 300), (4900 < x < 5000), (4900 < y < 5000)
20, if (300 < x < 4900) (300 < y < 4900)

pp =11, if \/(x —xc)2+ (y — yc)? < 500

—0.2, if \/(x —xc)2+ (y — yc)? < 400

—10 ifx =0,x =5000,y = 0,y = 5000

Where (x,y.) = (2600,3600) are the coordinates of the center of the island.

The wind stress in the y-direction increases linearly with time (Figure 6.30A),
from 7, = 0 Pa until reaching 7, = 0.2 Pa in 2 days.

{Tx =0
— mi 0.2t

The domain is Q) = [0,5000] x [0,5000] m (Figure 6.31). We impose wall
boundary conditions, and the bottom friction is 7, = 1 x 1073571,
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(A) T (B) b(x,y)

FIGURE 6.30: Maximum wind stress (t) and bathymetry

(b(x,y)) for the lake with wind-driven flow problem. The

height of the bathymetry is scaled by a factor of 100 to improve
visibility.

100*b

6.6.2 Results

We use quadrilateral elements of Ax = Ay = 100m and p = 1 (Figure
6.31). The time step is At = 3 s and the final time is t = 5d.

FIGURE 6.31: Mesh for the lake with wind-driven flow prob-

lem. The blue lines indicate the edges of the elements. The

domain is ) = [0,5000] x [0,5000] m and the element size is
Ax = Ay = 100m.

The elevation and velocity fields of the wind-driven flow (Figures 6.32 and
6.33) behave as expected. As the wind stress gradually increases, the flow
progressively adjusts, generating a cyclonic circulation around the island
and an anticyclonic gyre on the western side of the domain. After the wind
stress reaches its maximum constant value at t = 2d, the system continues
to evolve and eventually approaches a steady state. The circulation stabilizes
approximately 2 days and 2 hours into the simulation, once the wind forcing
has become steady and the internal dynamics have had time to adjust.
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(A) 7 (£ =0s) (B) 77 (t = 12h)
Q) y(t=1d) (D)7 (t=2d2h)
500%eta
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FIGURE 6.32: Results for the evolution of the free surface ele-

vation (1) for the lake with wind-driven flow problem, at the

timest =0s,t =12h,t =1d and t = 2d 2h. The elevation (1)
is scaled by a factor of 500 to improve visibility.
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(B) U (t = 12h)

(C)U(t=1d) (D) U (t = 2d 2h)

uv)
0.0e+000.01 002 003 004 005 006 007 0.08 009 0.11.7e01
—— | ! ‘ ‘ I U —

FIGURE 6.33: Results for the evolution of the velocity (U) for

the lake with wind-driven flow problem, at the times t = Os,

t =12h,t = 1d and t = 2d 2h. The velocity intensity is repre-

sented in the background field and the direction of the velocity
is represented with the normalized vectors.

6.7 Problem 7: Water height perturbation

In this problem, we simulate the propagation of smooth gravity waves in
a closed square domain, using the non-linear shallow water equations. The
problem setup, based on Dumbser and Casulli (2013) and Kang et al. (2020),
starts from an initial perturbation in the water height centered in the domain,
which triggers the outward propagation of circular gravity waves. Unlike
the previous linear case (section 6.5), here we consider the full non-linear
dynamics of the system, which allows us to capture additional effects such
as non-linear wave interactions and amplitude-dependent wave speeds. We
will solve the problem with and without the Coriolis force, to observe its
effects.
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6.7.1 Initial conditions

The initial conditions are:

with o = 0.1.

FIGURE 6.34: Initial condition of the free surface elevation ()
for the water height perturbation problem.

The domain is a square Q) = [—1,1] x [—1,1] m (Figure 6.35), with a flat
bathymetry of b = 100 m. We apply a wall boundary condition. The Coriolis
force is applied imposing f = 6.65~ 1.

6.7.2 Results

The mesh is formed by quadrilateral elements of the size Ax = Ay = 0.1 m
and the polynomial order p = 2 (Figure 6.35), and the time step is At = 10~ 4s.
The final time of the simulation is t = 0.5.

In the results for this problem (Figures 6.36 and 6.37), we can observe how
the initial perturbation, in the center, creates waves propagating outwardly.
Then, the waves reflect off the boundaries, and overlap, forming interference
patterns. This is observed in the elevation () and the velocity. In the re-
sults we can observe how the Coriolis force deflects the currents clockwise,
rotating the structures formed by the wave patterns.
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FIGURE 6.35: Mesh for the water height perturbation problem.

The blue lines indicate the edges of the elements. The domain

is QO = [—1,1] x [-1,1] m and the element size is Ax = Ay =
0.1m.
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(A)n (t=032s, f =0s"1) (B) 77 (t = 0423s, f =0s71)

(C)n(t=05s,f=0s"1 (D)5 (t =0.32s, f = 6.6571)

(E) 7 (t = 04235, f = 6.6571)) (F)n (t=05s, f =6.6571)
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FIGURE 6.36: Results for the evolution of the free surface eleva-

tion (77) for the water height perturbation problem, at the times

t =0.32s,t =0423sand t = 0.5s, with f = 0s~ ' (A, B,C) and
f=66s"1(D,E,F).
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(A)u(t=032s, f=0s"1) (B)u (t =0423s, f =0s71)

(C)u(t=05s, f=0s"1) (D) U (t=032s, f =6.6571)

(E)u (t =0423s, f = 6.6571) (Fyu(t=05s, f =6.6s71)

0.0e+00 02 03 04 0i5 016 OI(7UIVO)]8 0]9 ] 1.1 12 13 1.5e+00
FIGURE 6.37: Results for the evolution of the geopotential mo-
mentum (u) for the water height perturbation, at the times
t = 032s,t = 0423sand t = 0.5s, with f = 0s™! (A, B, C)
and f = 6.6s7! (D, E, F). The velocity intensity is represented
in the background field and the direction of the velocity is rep-
resented with the normalized vectors.



6.8. Problem 8: Coastal inlet 107

6.8 Problem 8: Coastal inlet

Lastly, we simulate a more complex and realistic coastal scenario. This
problem consists of an inflow of water propagating from the open ocean into
an interior bay, connected through an idealized inlet. The bathymetry rep-
resents a typical coastal configuration: the ocean region is deeper, while the
interior bay is shallower, and an ebb shoal is present near the inlet, repre-
senting the sediment deposits common in those areas. When the flow enters
the bay through the inlet, the strong shear and topographic interactions form
eddies and complex flow structures. This test, based on the setups from Ku-
batko et al. (2006) and Samii et al. (2019), is particularly useful for observing
interactions with coastal topography under tidal forcing.

6.8.1 Initial conditions

The initial conditions for this problem are:

n=20
(u,v)=(0,0)

The bathymetry (Figure 6.38) varies linearly, with b = 19m at the left,
open ocean boundary, and b = 5m at the right, the entrance of the inlet.
There is also an ebb shoal with a maximum height of 2m at the center. The
bathymetry is defined by:

b(xry) = blinear(x) + bebb(x/y)

with:

19, x<0
blinear(x) ={5 14 x = 2250
19 — ﬁx, otherwise

(=2 + (¥ —yo)?

2(55)

bebb (x, y) = (2 - blinear(xc)) - exp
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with (x¢,y.) = (1875,1500) m as the center of the shoal, and r = 350 m as

the radius.
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FIGURE 6.39
The results for the free surface elevation and velocity are shown in Figures

6.40 and 6.41. The simulation shows that the water inflow into the bay gen-
erates strong shear layers at the inlet, leading to the formation of eddies due
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to local instabilities. These instabilities are intensified by the interaction with
the ebb shoal, where the depth gradient induces additional vorticity gener-
ation. As the flow moves seaward, a von Kadrmdn vortex street develops by
t = 360 min, which is a classical manifestation of flow separation behind an
obstacle, occurring when inertial forces dominate over viscous forces (high
Reynolds number regime). This behavior is consistent with observations of
real coastal inlets, where tidal currents interacting with topography com-
monly produce eddy shedding and organized vortex patterns. The results
suggest that the model is capable of capturing the key physical processes
involved in coastal inlet dynamics.
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(A)n (t =05s) (B) 77 (t = 10min)

(C) 17 (t = 25min) (D) 7 (t = 100 min)

(E) 7 (t = 260 min) (F) n7 (t = 360 min)
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FIGURE 6.40: Results for the evolution of the free surface el-

evation (77) for the coastal inlet problem, at the times ¢t = 0Os,

t = 10min, f = 25min, t = 100min, ¢t = 260min and

t = 360min. The elevation (y) is scaled by a factor of 5000 to
improve visibility.
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(A) U (t = 0s) (B) U (t = 10 min)

(C) U (t = 25min) (D) U (t = 100 min)

(E) U (t = 260 min) (F) U (t = 360 min)
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FIGURE 6.41: Results for the evolution of the velocity (U) for
the coastal inlet, at the timest = 0s,f = 10 min, t = 25min, t =
100 min, ¢+ = 260min and ¢+ = 360 min. The velocity intensity
is represented in the background field and the direction of the
velocity is represented with the normalized vectors.
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Conclusions

In this thesis we have observed the need for a strong model for physical
oceanography. Oceanographic physical structures, represented by the SWE,
require a robust method, with a spatial and a temporal discretization that can
support the different scales happening simultaneously. We have studied the
state of the art of numerical modelling in oceanography and FEM methods.

We have derived the linear and non linear SWE. We have developed and
implemented a HDG FEM model from scratch, using Firedrake, to solve
the SWE. We have calculated the numerical fluxes with the Lax-Friedrichs
scheme, and imposed the boundary conditions weakly. We have assesed
various IMEX and SSP temporal discretizations for the model. The model
can be further extended and combined with additional features, such as cou-
pling with biogeochemical models or incorporating other developments, to
simulate a wider range of oceanic processes.

We have used this model to solve some theoretical numerical examples,
from benchmark simple problems to more realistic complex problems, rep-
resenting the structures found in the ocean, and observed its efficacy. The
analysis of the error convergence has shown the effectiveness of the model.
As we have shown in this thesis, IMEX SSP methods for the time discretiza-
tion provide the flexibility in the time step and the effectiveness needed for
these models.

Although being a goal of this thesis, we could not accomplish the formu-
lation of the multilayer HDG SWE model due to time constraints, however,
this thesis lays the foundation for future additions and improvements to the
model.

We are currently working on the publication of a paper about the weak
imposition of the boundary conditions, setting a common framework for the
formulation, based on the works from Bui-Thanh (2016), Kang et al. (2020),
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and Samii et al. (2019).

The HDG model, along with the different boundary conditions and IMEX
SSP time discretizations, has proved to effectively represent the SWE dynam-
ics for simple numerical examples.

7.1 Main contributions
The main contributions of this thesis are:

1. We have analyzed the data from an oceanographic research cruise and
identified the need for numerical methods, due to the limited synoptic-
ity and the insufficient spatial and temporal resolution of the sampling
techniques, in the area of interest of this thesis.

2. We have presented a coherent theoretical development of HDG meth-
ods for the SWE that unifies previous work by Bui-Thanh (2016), Kang
et al. (2020), and Samii et al. (2019).

3. We have formulated the weak imposition strategy of the boundary con-
ditions in both IMEX and non-IMEX formulations, and are currently
writing a scientific paper on this subject.

4. We have assesed the suitability of various SSP time discretization schemes,
for the IMEX and non-IMEX discretizations.

5. We have implemented a one layer HDG model for the SWE, and val-
idated it using standard benchmark problems. This model provides a
foundation for further developments in this research area.

7.2 Academic contributions and international ex-
periences

During the development of this thesis we have published a paper, corre-
sponding to the material in Chapter 2 :

* Hernandez-Garcia I., Coca J., Ramos A., Rodriguez-Santana A., Machin
F. 2024. Assessing hydrological sampling approaches in the Cape Verde
frontal zone in November 2017. Sci. Mar. 88(4): e090. https://doi.org/
10.3989 /scimar.05509.090


https://doi.org/10.3989/scimar.05509.090
https://doi.org/10.3989/scimar.05509.090
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We have made the following contributions to international conferences
within this thesis:

* Exploring hydrographical structures in the Cape Verde Frontal Zone
through in situ data and numerical modelling during Fluxes-II survey
(oral communication). Hernandez-Garcia 1., Machin F. and Coca J. VII
International Symposium on Marine Sciences, Barcelona, Spain, 01/03
July 2020.

¢ Hybridisable Discontinuous Galerkin Skill for Ocean Modelling (oral
communication). Herndndez-Garcia 1., Oliver A. and Machin F. Ex-
panding Ocean Frontiers 2022, Las Palmas de Gran Canaria, Spain,
06/08 July 2022.

* Hybridisable Discontinuous Galerkin applications for oceanographical
Shallow Water Equations (oral communication). Herndndez-Garcia 1.,
Oliver A. and Machin F. Congress on Numerical Methods in Engineer-
ing 2022, Las Palmas de Gran Canaria, Spain, 12/14 September 2022.

¢ Use of HDG oceanic models to study eddy formation in coastal up-
welling areas (oral communication). Herndndez-Garcia I., Oliver A.
and Machin F. EGU General Assembly 2023, Vienna, Austria, 23/28
April 2023.

As part of my thesis, I undertook an international research stay:

* Department of Data Science, Faculty of Science and Technology, Nor-
wegian University of Life Sciences (NMBU), As, Norway. 12 September
2023 to 15 December 2023.

7.3 Future work

The work in this thesis opens several directions for extending this line of
work and improving the HDG SWE model in the long term. Some of these
future directions are:

1. Optimizing the implementation and solving methods: With the HDG
SWE model already implemented, we can evaluate different combina-
tions of solver methods for the Static Condensation scheme and analyze
their computational efficiency. In particular, we can focus on the paral-
lel implementation, for both the linear and non-linear SWE.



116

Chapter 7. Conclusions

. Implementing more boundary conditions: Starting from the current

implementation, we can incorporate additional types of boundary con-
ditions, such as slip wall and absorbing boundary conditions, that can
be relevant for simulating various ocean processes.

Extend the one layer model to a multilayer formulation: A multilayer
SWE model enables the simulation of ocean fronts, upwelling systems,
complex stratified water columns, and other scenarios involving inter-
actions between different water masses. This is key to simulate the
physical processes in the area of interest.

Expanding the model to reproduce more complex structures: Incorpo-
rating additional features into the current HDG SWE model, it becomes
possible to simulate more complex oceanic features. For example, im-
plementing a coastal wet—dry algorithm allows for the representation
of flooding events. Moreover, coupling the physical model with bio-
logical, chemical, or sediment transport models would expand its ap-
plications and represent complex physical-biogeochemical processes.

Implementing h-p adaptivity techniques: Implementing adaptive al-
gorithms that combine mesh refinement (h-adaptivity) with polynomial
order enrichment (p-adaptivity) to optimize computational resources.
We will use highly refined elements with lower-order polynomials in
high-gradient regions (eddies, fronts, and sharp transitions) and larger
elements with higher-order polynomials elsewhere. We will identify an
appropriate error indicator to detect which regions require refinement
and analyze the optimal refinement strategies for each element: refine
the mesh, increase polynomial order, or combine both approaches. We
will also explore h-adaptivity for tracking the wet/dry interface that
would improve the shoreline modelling and inundation simulations.
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Coefficients of the Butcher Tableaux
for the temporal discretizations

This appendix contains the coefficients for the Butcher Tableaux with the
values a;;, b;, d;j and b; for the temporal discretizations in Chapter 5. Some
IMEX, SSP RK, and IMEX SSP methods are shown. The tables are chosen
from the references Betteridge et al. (2021), Higueras et al. (2014), Isherwood
et al. (2018), Kang et al. (2020), and Ketcheson et al. (2009).

The IMEX tables use a notation k(s, o, p), in that s: steps of the implicit
scheme, o: steps of the explicit scheme, k: order of the explicit scheme, p:
order of the IMEX scheme. Similarly, the explicit tables use the notation o, k.

The properties of some of the IMEX SSP method are indicated as: L : the
implicit method is L-stable, S : the stability region for the explicit part con-
tains an interval on the imaginary axis, P : the amplification factor g for the
implicit method is always positive, U : the IMEX RK method features uni-
form convergence, and M : the IMEX RK method has a nontrivial region of
absolute monotonicity (Higueras et al., 2014).

A.1 0 discretization

IMEX method from Betteridge et al. (2021), that corresponds to the 6 method.

(00 5= (% 8) v () (%)
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For the SSP RK discretization (5.11), the tables are used asa = dand b = b.

A.2 ARS2(2,3,2) discretization

IMEX method from Betteridge et al. (2021) and Kang et al. (2020).
0O 0 O 0O 0 0 3 0

a=|(v 0 0 a=(0 4 O b=b=|1-9
6 1-6 0 01— v %

1 2
—1- . s=_Z\2
i V2 3

A.3 ARS3(4,4,3) discretization

IMEX method from Betteridge et al. (2021) and Kang et al. (2020).

0 0 0 0 O 00 0 00

I 00 0 O 0 3 0 00

a=|3% &% 0 0 of a=(fo ¢ 1 00
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A.4 Shu-Osher discretization

SSP RK method from Isherwood et al. (2018).
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A.5 SSPIRKS33 discretization

WINO\ =N —

SSP RK method from Isherwood et al. (2018) and Ketcheson et al. (2009).
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A.6 SSPIRKA43 discretization

SSP RK method from Isherwood et al. (2018) and Ketcheson et al. (2009).
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A.7 SSP2(3,3,2)-LSPUM discretization

IMEX SSP method from Higueras et al. (2014).

) b

Il
lem}
Il

()

)

I
~
N jare NS N}
N-to o
o O O
\_/

I

I
~/
SIS
SiEa=l
S|
—

S o
ahvo o
Slwon—=G[R



120 Appendix A. Coefficients of the Butcher Tableaux for the temporal
discretizations

A.8 SSP2(3,3,2)-LPM-1 discretization

IMEX SSP method from Higueras et al. (2014).
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A.9 SSP2(3,3,2)-LPM-2 discretization

IMEX SSP method from Higueras et al. (2014).
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Appendix B

Implementation

This appendix contains the full expanded equations for the bilinear forms
of the linear and non-linear SWE, the implementation of these terms, and the
solver parameters used for the model resolution.

B.1 Bilinear forms for the HDG SWE

The equation system for the HDG SWE system, written in the most ex-
panded form, and separated by the bilinear forms (4.21), (4.22) and (4.23), is
developed in this section.

B.1.1 Complete bilinear forms for the non-linear SWE

M(q,v):/Kq-vdx: (j’;i’})K
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L(q,v)=/KF(q)-V-vdx+/Ks(q)-vdx—/ (B(q)-n) - vdS =
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B.1.2 Complete bilinear forms for the linear SWE

V):/KFL(q)-V-de+/Ks(q)-vdx—/aK(FL(q)-n)-vdS:
R R (T

(o) v (G=50)) - (22) .

) ) gbound
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ﬁ]

L(q,4 v / {{FL(q,4) -n}}- vd5+/ B(q,q, 9e)

(((¢B¢)+¢_(< >> ( i))

(G () ) ()

B.1.3 Complete bilinear forms for the IMEX SWE

N(q,v):/K(F(q)—FL(q))-v.vdx—/aK((F(q)—ﬁL(q))-n)-vdsz

u-Vy u-Vy
(), (T,
(o ooy ) (oome o) (£8)- (),
+(((¢ﬁ¢)+@<gﬁ:m))'(E:zﬁ))ﬂ(

B.2 Code for the bilinear forms for the full non-
linear SWE

The forms from the last section are calculated as shown in the code in this
section.

1 # Bilinear form M
M = fd.inner(q, v) * fd.dx

LISTING B.1: Python script for the bilinear form M

1 # Source term (Bathymetry and Coriolis)
bath = phi * fd.grad(phi_b)
coriolis = f_coriolis * fd.perp(u)

4 s = fd.as_vector(

5 [

6 0,

7 bath[0] + coriolis[0],

8 bath[1] + coriolis[1],
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3 # Nonlinear flux tensor F

N

14 F = fd.as_matrix(

15 [

16 (ul0], ul1l],

17 L

18 u[0] * u[0] / (phi + phi_b) + phi * phi / 2 +
phi_b * phi,

19 ul0] * ul1] / (phi + phi_b),

20 1,

21 L

2 ul[0] * u[1] / (phi + phi_b),

23 ul1] * u[1] / (phi + phi_b) + phi * phi / 2 +
phi_b * phi,

24 1,

25 ]

26 )

28 F_in_hat = fd.replace(

29 F,

30 {

31 phi: phi_hyb,

32 ul0]: u_hyb[O0],

33 ul1]: u_hyb[1],

34 },

35 )

36

7 # Stability parameter tau_hat = |u_hat * n| + sqrt(phi_hat +
phi_b) (Lax-Friedrichs type dissipation)

38 tau_hat = abs(fd.dot(u_hyb, n)) + fd.sqrt(phi_hyb + phi_b)

s30 # HDG Numerical flux: F_hat = F(u_hat) + taux*(gq-q_hat)*n
4 F_hat = F_in_hat + tau_hat * fd.outer(q - q_hyb, n)

43 # Bilinear form L

44 L = (

45 fd.inner(F, fd.grad(v)) x fd.dx

46 + fd.inner(s, v) * fd.dx

47 - fd.inner (fd.dot (F_hat, n), v)("+") % fd.dS
48 - fd.inner (fd.dot(F_hat, n), v)("-") *x fd.dS
49 - fd.inner (fd.dot (F_hat, n), v) * fd.ds

50 )

LISTING B.2: Python script for the bilinear form L

1 # Flux Jacobian matrices for characteristic boundary treatment
# A1 (flux Jacobian in x-direction)
A1l = fd.as_matrix(

w N

1 [

5 [0, 1, 0],

6

7 -u_hyb[0] * u_hyb[0] / ((phi_hyb + phi_b) * (
phi_hyb + phi_b))

8 + phi_hyb

9 + phi_b,

10 2 x u_hyb[0] / (phi_hyb + phi_b),

11 o,

12 1,

13 [
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14 -u_hyb[0] * u_hyb[1] / ((phi_hyb + phi_b) * (
phi_hyb + phi_b)),

15 u_hyb[1] / (phi_hyb + phi_b),

16 u_hyb[0] / (phi_hyb + phi_b),

17 i

18 1

19 )

0 # A2 (flux Jacobian in y-direction)

21 A2 = fd.as_matrix(

2 L

23 (o, o, 11,

24 [

2 -u_hyb[1] * u_hyb[0] / ((phi_hyb + phi_b) x (
phi_hyb + phi_b)),

2 u_hyb[1] / (phi_hyb + phi_b),

27 u_hyb[0] / (phi_hyb + phi_b),

28 1,

29 [

30 -u_hyb[1] * u_hyb[1] / ((phi_hyb + phi_b) * (
phi_hyb + phi_b))

31 + phi_hyb

0 + phi_b,

33 0,

34 2 *x u_hyb[1] / (phi_hyb + phi_b),

35 1,

36 1

37 )

39 # Boundary normal flux Jacobian
40 A = A1 * n[0] + A2 * n[1]

2 # Decomposition for Riemann solver at the boundary
13 # |A| approximated with Lax-Friedrichs approach using local wave

speed
a4 abs_A = fd.as_matrix(
45 [
46 [tau_hat, 0, 0],
47 [0, tau_hat, 0],
48 [0, O, tau_hat],
49 1,

50 )

51 # Split into incoming and outgoing characteristics (Riemann
solver approach)

52 A_plus = 0.5 *x (A + abs_A) # Outgoing characteristics

53 A_minus = 0.5 * (A - abs_A) # Incoming characteristics

55 # Boundary numerical flux using characteristic decomposition (Bh
= boundary hybrid flux)
56 Bh = A_plus * q - abs_A * q_hyb - A_minus * q_bc

58 # Bilinear form Flx

59 Flx = (

60 fd.inner (fd.dot (F_hat, n), mu) ("+") * fd.dS

61 + fd.inner (fd.dot (F_hat, n), mu)("-") * fd.dS
62 + fd.inner (Bh, mu) * fd.ds

63 )

LISTING B.3: Python script for the bilinear form =
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1 # Source term (Bathymetry and Coriolis)

2 bath = phi_ini * fd.grad(phi_b)
4 coriolis = f_coriolis * fd.perp(u_ini)
6 s = fd.as_vector(

7 [

8 0,

9 bath[0] + coriolis[0],
10 bath[1] + coriolis[1],
11 :I

12 )

13

14 # Linear flux tensor F

15 F_lineal = fd.as_matrix(

16 [

17 [u_ini[0], u_ini[1]1],

18 [phi_b * phi_ini, 0],

19 [0, phi_b % phi_inil,

20 ]

21 )

@ N

NN NN
[ SR

F_in_hat_lineal= fd.replace(
F_lineal,

5 {

6 phi_ini: phi_hyb,
27 u_ini[0]: u_hyb[O0],
28 u_ini[1]: u_hyb[1],
29 },

30 )

31

2 # Stability parameters

33 tau_star_1 = sqrt_phi_b

34 tau_hat = tau_star_1

36 # HDG Numerical fluxes between elements
37 F_hat_lineal = fd.as_vector(

38 [

41

F_in_hat_lineal [0] + tau_hat * (phi - phi_hyb) * n,
F_in_hat_lineal [1] + tau_hat * (ul[O0] - u_hyb[0]) * n

F_in_hat_lineal [2] + tau_hat * (ul[l1] - u_hyb([1]) * n

2 ]

43 )

1

45 # Bilinear form L

w6 L = (

47 fd.inner(F_lineal, fd.grad(v)) * fd.dx

48 + fd.inner (s, v) * fd.dx

49 - fd.inner (fd.dot (F_hat_lineal, n("+")), v("+")) * £d.dS
50 - fd.inner (fd.dot (F_hat_lineal, n("-")), v("-")) * fd.dS
51 - fd.inner (fd.dot (F_hat_lineal_ds, n), v) * fd.ds

52 )

LISTING B.4: Python script for the bilinear form L;,
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1 # Boundary normal flux Jacobian

2 A = fd.as_matrix(

3 L

4 [0, n[0], n[1]1],

5 [phi_b * n[O0], O, O],
6 [phi_b * n[1], O, O],
7 ]

8 )

10 # Decomposition for Riemann solver at the boundary
1 # |A| approximated with Lax-Friedrichs approach using local wave

speed
12 det_A = fd.as_matrix(
13 L
14 [tau_hat, 0, 0],
15 [0, tau_hat, 0],
16 [0, 0, tau_hat],
17 1,
18 )

20 # Split into incoming and outgoing characteristics (Riemann
solver approach)

21 A_plus = 0.5 * (A + det_A)

2 A_minus = 0.5 * (A - det_A)

24+ # Boundary numerical flux using characteristic decomposition (Bh
= boundary hybrid flux)
25 Bh_lineal = A_plus * q - det_A * q_hyb - A_minus * q_bc

27 # Bilinear form Flx

28 Flx = (

29 fd.inner (fd.dot (F_hat_lineal, n), mu) ("+") x fd.dS

30 + fd.inner (fd.dot (F_hat_lineal, n), mu)("-") % fd.dS
31 + fd.inner (Bh_lineal, mu) * fd.ds

32 )

LISTING B.5: Python script for the bilinear form Ey,

1 # Nonlinear flux

2 F = fd.as_matrix(

3 L

4 [u_ini[0], wu_ini([11]11],

5 [

6 u_ini[0] * u_ini[0] / (phi_ini + phi_b)
7 + phi_ini * phi_ini / 2

8 + phi_b * phi_ini,

9 u_ini[0] * uw_ini[1] / (phi_ini + phi_b),
10 1,

11 [

12 u_ini[0] * u_ini[1] / (phi_ini + phi_b),
13 u_ini[1] * u_ini[1] / (phi_ini + phi_b)
14 + phi_ini * phi_ini / 2

15 + phi_b * phi_ini,

16 1,
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# Linear flux
F_lineal = fd.as_matrix(

[

N o~

NONNN
@

=

[u_ini[0], u_ini[1]1],
[phi_b * phi_ini, 01,
26 [0, phi_b * phi_ini],

N
al

30 F_nl = F - F_lineal

1
2 # Stability parameters

3 tau_star_dS = fd.max_value (

34 abs (fd.inner (u_ini ("+"), n("+"))) + fd.sqrt(phi_ini("+")
+ phi_b("+")),

35 abs (fd.inner (u_ini("-"), n("-"))) + fd.sqrt(phi_ini("-")
+ phi_b("—”)) s

36 )

37 tau_star_ds = fd.max_value (

38 abs(fd.inner(u_ini, n)) + fd.sqrt(phi_ini + phi_b),

39 abs (fd.inner (u_bc, -n)) + fd.sqrt(phi_bc + phi_b),

40 )

41 tau_star_1 = sqrt_phi_b

42 tau_hat = tau_star_1

4 # DG Numerical fluxes between elements

45 F_star_dS = fd.as_vector(

46 [

47 fd.avg(F[0]) + tau_star_dS / 2 x fd.jump(phi_ini, n)

18 fd.avg(F[1]) + tau_star_dS / 2 * fd.jump(u_ini[0], n
g

49 fd.avg(F[2]) + tau_star_dS / 2 * fd.jump(u_ini[1], n
s

50 ]

51 )

53 F_star_lineal_dS = fd.replace(

54 F_star_dS,

% {

56 F[0]: F_lineal[O],

57 F[1]: F_lineall[1],

58 F[2]: F_lineal[2],

59 tau_star_dS: tau_star_1,

60 },

61 )

62

63 F_star_NL_dS = F_star_dS - F_star_lineal_dS

s # DG Numerical fluxes on the boundary

66 F_star_ds = fd.as_vector(

67 [

68 F[0] + tau_star_ds / 2 * (phi_ini - phi_bc) * n,
69 F[1] + tau_star_ds / 2 * (u_ini[0] - u_bc[0]) * n,
70 F[2] + tau_star_ds / 2 * (u_ini[1] - u_bc[1]) * n,
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F_star_lineal_ds = fd.replace(
F_star_ds,

{
F[0]: F_lineal[O],
F[1]: F_lineal[1],
F[2]: F_lineal[2],
tau_star_ds: tau_star_1,
}’

F_star_NL_ds = F_star_ds - F_star_lineal_ds

# Bilinear form N
NL_rhs = (
fd.inner (F_nl, fd.grad(v)) * fd.dx

- fd.inner(fd.dot(F_star_NL_dS, n("+")), v("+")) * fd.dS
- fd.inner(fd.dot(F_star_NL_dS, n("-")), v("-")) * fd.dS

- fd.inner (fd.dot(F_star_NL_ds, n), v) * fd.ds

LISTING B.6: Python script for the bilinear form N

B.3 Solver parameters for the equation system

The specific parameters for the system resolution are:
HDG_AMG_params = {

"mat_type": "matfree",

"ksp_type": "preonly",

llpc_typell: prthonll’

"pc_python_type": "firedrake.SCPC",
"pc_sc_eliminate_fields": "O",
"condensed_field": inner_params_HDG_AMG,

# AMG inner parameters
inner_params_HDG_AMG = {

llmat_typeH: Ilaijll’
"ksp_type": "gmres",
"ksp_rtol": 1le-10,
llpc_typell: Ilgamgll s

"pc_mg_log": None,
"mg_levels": {
"ksp_type": "chebyshev",
"ksp_max_it": 2,
"pc_type": "bjacobi",
"sub_pc_type": "sor",

LISTING B.7: Python code with the PETSc solver parameters
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Appendix C

Error calculation

To quantify the error of the model results in the test cases with analytical
solutions, the numerical results (q) are compared against the exact solution
(qexact), using the Ly, norm. The errors for 7 and U are calculated as follows:

1
]
Errorpq = (Z/K (Qexact — 9)° dK)
K

The energy E is defined as:

o (i, + 1101, )
2

and the error of v/E can be calculated as:

(Error%2 g T Error?, U)
Error;, = 5
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