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 A B S T R A C T

In this paper, we present two computational methods for performing simulations of pollution propagation 
described by advection-diffusion equations. The first method employs graph grammars to describe the 
generation process of the computational mesh used in simulations with the meshless solver of the three-
dimensional finite element method. The graph transformation rules express the three-dimensional Rivara 
longest-edge refinement algorithm. This solver is used for an exemplary application: performing three-
dimensional simulations of pollution generation by the recently closed coal-burning power plant and the new 
diesel power plant, the capital of Spitzbergen. The second computational code is based on the Physics Informed 
Neural Networks method. It is used to calculate the dissipation of the pollution along the valley in which the 
city of Longyearbyen is located. We discuss the instantiation and execution of the PINN method using Google 
Colab implementation. There are four novelties of our paper. First, we show a lower computational cost of 
the proposed graph grammar model in comparison with the mesh transformations over the computational 
mesh. Second, we discuss the benefits and limitations of the PINN implementation of the non-stationary 
advection-diffusion model with respect to finite element method solvers. Third, we introduce the PINN code 
for non-stationary thermal inversion simulations. Fourth, using our computer simulations, we estimate the 
influence of the pollution from power plants on the Spitzbergen inhabitants.
1. Introduction

The subject of our article is the presentation of two computa-
tional methods related to simulations of pollution propagation using 
advection-diffusion equations. The first approach’s novelty lies in using 
the original model of graph grammars, a set of rules describing transfor-
mations of the graph describing the computational grid. Based on the 
generated computational grid, the simulation of pollution propagation 
is carried out using the finite element method, a matrix-free solver, 
and the assembly of the matrices for the iterative solver from local 
element matrices. For the second approach, we introduce the original 
implementation of the Physics Informed Neural Networks method in 
Google Colab, coupled with the results of the finite element method 
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solver, enabling the training of a neural network predicting pollution 
propagation in the long-term range based on the phenomenon of ther-
mal inversion. In our simulations, we apply the concepts to a real-world 
scenario: pollution propagation in the city of Longyearbyen, the capital 
of Spitzbergen, where air pollution was generated by a coal-burning 
power plant recently replaced by the diesel engine power plant. This 
practical application underscores the relevance and importance of our 
research.

For the simulations of the pollution propagation from the power 
plants, we employ a finite element solver for the advection-diffusion 
equation [1] stabilized with the Streamlined-Upwind-Petrov–Galerkin 
(SUPG) method [2].
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Fig. 1. The town of Longyearbyen at Spitzbergen, the location of the recently closed coal-burning power plant, was replaced by the diesel power plant. The computational domain 
for finite element method solver involves the entire domain. The computational domain for PINN simulations of thermal inversion involves the black rhombus.
The computational mesh for the simulations comes from a new 
graph grammar-based mesh generator, implemented in Julia, for a 
sequence of mesh refinements built with tetrahedral finite elements. 
Our graph grammar model expresses the three-dimensional version of 
the longest-edge refinement algorithm. The longest-edge refinement 
algorithm has been initially proposed for two-dimensional grids by 
Cecilia Rivara [3,4]. The graph grammar-based mesh refinements for 
two-dimensional grids have been employed and discussed in [1], and 
in [5–8] with the hanging nodes version. The Rivara’s longest edge 
refinement algorithm refines a mesh by iteratively bisecting the longest 
edges of tetrahedral elements. The algorithm ensures that the resulting 
mesh remains conforming, meaning all the elements share complete 
edges with their neighbors, and there are no hanging nodes (defined 
as the nodes located on broken edges, having one large unbroken 
neighbor, and two small neighbors). The presence of the hanging 
nodes is unwanted due to the complexity of processing. The longest 
edge refinement algorithm prevents the presence of the hanging nodes. 
The longest edge bisection strategy employed by the algorithm helps 
prevent the formation of excessively distorted or elongated elements, 
which could degrade numerical accuracy in simulations.

The topography of the Longyearbyen area has been built using the 
Global Multi-Resolution Topography (GMRT) synthesis,1 i.e., a multi-
resolution compilation of edited multibeam sonar data collected by 
scientists and institutions worldwide [9].

Finally, to enhance the modeling of the thermal inversion phe-
nomena, we implemented and applied the Physics Informed Neural 
Networks (PINN) approach [10]. The PINN simulations of the thermal 
inversion presented in this paper concern the two-dimensional domain, 
defined along the valley where the town of Longyearbyen is located (see 
Fig.  1).

The extraordinary success of Deep Learning (DL) algorithms in 
various scientific fields [11–13] over the last decade has recently 
led to the exploration of the possible applications of (deep) neural 
networks (NN) for solving partial differential equations (PDEs). The 

1 https://www.gmrt.org/.
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exponential growth of interest in these techniques started with the 
PINN [14]. PINNs have been successfully applied to solve a wide 
range of problems, from fluid mechanics [15,16], in particular Navier–
Stokes equations [17–19], wave propagation [20,21], phase-field mod-
eling [22], biomechanics [23,24], quantum mechanics [25], electrical 
engineering [26], problems with point singularities [27], uncertainty 
qualification [28], dynamic systems [29,30], or inverse problems [31–
33], among others. In this paper, we use the PINN approach to model 
the thermal inversion phenomena in the town of Longyearbyen at 
Spitzbergen.

Our method focuses on the modeling of the pollution propagat-
ing from the power plant. We assume uniform pollution propagation. 
In the future work we may apply the Takagi–Sugeno fuzzy system 
method [34–38] and neural networks and multi-robotic systems [39–
42] to model the control of the power plant. 

The rest of the paper is structured as follows: Section 2 summa-
rizes the novelties of the paper. In Section 3, we define the three-
dimensional graph-grammar model expressing Rivara’s longest edge 
refinement algorithm. Section 4 describes the traditional way of im-
plementing Rivara’s longest edge algorithm by performing mesh trans-
formations. The goal of this section is to illustrate the benefits of the 
graph-grammar approach. Section 5 discusses the computational model 
developed to simulate pollution propagation from the power plant 
chimney. In particular, in Section 5.1, we describe the mesh generation 
process using the graph-grammar code; Section 5.2 describes the strong 
form, whereas Section 5.3 introduces the corresponding weak form of 
the advection-diffusion equation. Section 5.4 presents the stabilized 
SUPG formulation, and finally, Section 5.5 summarizes numerical ex-
periments and obtained results. In Section 6, we introduce the PINN 
concept for simulations of the thermal inversion phenomenon, where 
we cover, in particular, the loss function employed and the sketch 
of the applied training algorithm. This is followed by a presentation 
of the software implementation of the PINN in Section 7 and its 
numerical results in Sections 7.6 and 7.7. Section 8 introduces the 
IGA-ADS solver, using the higher-order and continuity finite element 
method and linear computational cost solver. The goal of this section 
is to compare the quality and cost of the IGA-ADS solution with the 
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PINNs’ results. Section 9 discusses the influence of pollution propaga-
tion on the Longyearbyen inhabitants. Finally, we conclude the paper 
in Section 10.

2. Novelty of the research

Physics Informed Neural Networks are of particular interest to the 
soft computing community. The research concerns the design of PINNs 
for solving difficult physics problems, as well as optimizing the neural 
network architecture, increasing the accuracy of the obtained solution 
and applying the PINN method to solve multi-criteria optimization 
problems. In [43] the variable transformation method is combined with 
PINNs to improve the approximability and accuracy of the solutions 
obtained by neural networks. The problem of the optimal architec-
ture of the neural networks for PINNs has been also investigated by 
using soft computing methods such as evolutionary algorithms [44]. 
The problem of multi-objective optimization of different loss functions 
in PINNs has been addressed in [45] by introducing the adaptive 
weighting method. The training of PINNs for the stationary two and 
three-dimensional convection–diffusion-reaction problems is addressed 
in [46]. In our work, we employ the time-dependent two-dimensional 
advection-diffusion equations. In this sense, the complexity of our work 
is similar to [46], where we have ‘‘replaced’’ the third dimension with 
the time axis. This shows the elegance of the PINN methodology, where 
the time variable can be treated in the same way as the space variable 
by the introduction of the space–time domain. The soft computing 
community employs the Physics Informed Neural Networks to solve 
different challenging problems, such as the highly non-linear prob-
lems of gas-lifted oil wells in [47], or multi-body collision problems 
for full-scale train collisions [48]. The PINNs are often mixed with 
knowledge-based computing, as presented in [49]. The problem of pol-
lution propagation prediction can be addressed with neural networks 
trained on existing data, as presented in [50]. In our paper, we address 
this problem by employing the Physics Informed Neural Networks for 
the pollution propagation at Spitsbergen, with the initial condition 
determined from the results of the finite element method simulations 
with graph-grammar-based mesh generation.

2.1. List of open problems

1. There is no simulation investigation of the pollution generated by 
the coal-based power plant and the diesel engine power plants in 
Longyearbyen at Spitzbergen with Physics Informed Neural Net-
works and Finite Element Method. No one has ever surveyed the 
Longyearbyen inhabitants concerning their living conditions due 
to the pollution generated by power plants during the Arctic 
night. The Spitzbergen area is a subject of measurements con-
cerning the climate change investigation [51]. The horizontal 
temperature profiles and their estimated changes following the 
climate change was analyzed in [52]. We are not aware of 
a previous work using computer simulation to investigate the 
pollution propagation from power plants in the Longyearbyen 
area of Spitzbergen.

2. There is no graph grammar-based formulation of the three-
dimensional longest edge refinement algorithm, where the cost of 
identification of single mesh element is (1). The computational 
mesh can be represented by a large graph. The mesh refine-
ments can be expressed as graph transformations, called graph-
grammar productions. Each graph-grammar production consists 
of the left-hand side and the right-hand side graphs. Application 
of graph grammar production to a graph consist in finding in this 
graph a subgraph isomorphic with the left-hand-side graph and 
replacing it with the right-hand-side graph. The graph-grammar 
productions can be applied simultaneously in different places of 
the large graph representing the mesh. The main computational 
cost of processing graph grammar production is related to the 
3 
identification of the sub-graph of the large graph representing 
the whole mesh. This identified sub-graph must be isomorphic 
with the left-hand-side graph of the production. In general, the 
problem of finding a sub-graph of the large graph isomorphic to 
the desired graph is NP-complete [53]. The longest-edge refine-
ment algorithm has been proposed for triangular 2D meshes by 
Cecilia Rivara [3,4] using traditional definitions of mesh and el-
ements. This algorithm employs the longest-edge bisection path 
(LEPP). The latest modification of the LEPP algorithm incorpo-
rating boundary surface constraints and node-size considerations 
is described in [54]. The paper [1] presents the reformulation 
of the LEPP algorithms by a graph-grammar model. The graph-
grammar expression of the longest-edge refinement algorithm 
allows for the simultaneous processing of several longest-edge 
bisection paths, contrary to the traditional LEPP algorithms 
(see [1]). The graph-grammar versions of the LEPP algorithm 
have also been introduced in [55]. These models [1,55] use 
the graph representation of the mesh, where pointers identify 
elements by their interior nodes, the element interiors are con-
nected with vertices, vertices are connected with edges, edges 
form element faces, and faces form elements. The identification 
of a single tetrahedral mesh element in such a configuration of 
the mesh requires browsing edges connected to vertices. Such 
a model is highly inefficient and makes the implementation 
computationally expensive. This is because the tetrahedron’s 
vertices may have an arbitrary number of connected edges in 
the computational mesh. The identification cost of a single mesh 
element in [1,55] is (𝐸), where 𝐸 is the maximum number 
of edges adjacent to vertices in the graph representation of the 
mesh. Summing up, there is a need to design a graph-grammar 
model where the cost of identification of the sub-graph of the 
computational mesh isomorphic with mesh element is (1).

3. There is no comparison of the two-dimensional non-stationary
advection-diffusion simulations of thermal inversion with Physics 
Informed Neural Networks (PINNs) and higher-order Finite Element 
Method (FEM) solver (isogeometric analysis solver). In our previous 
work [56], we compared stationary advection-diffusion simula-
tions (the Eriksson-Johnson model problem [57]) with PINNs 
and Variational PINNs and higher-order FEM solvers. The com-
parison between PINNs and FEM for the 2D Poisson problem, 
1D time-dependent Allan-Cahn, and 1D semilinear Schrödinger 
equations is also presented in [58]. However, the non-stationary 
PINN simulations of the 2D time-dependent advection-diffusion 
applied for the thermal inversion simulations have not been 
compared to FEM solvers yet.

2.2. List of main scientific contributions

1. We perform the simulation investigations of the pollution generated 
by the coal-based power plant and the diesel engine power plants 
in the city of Longyearbyen at Spitzbergen using Physics Informed 
Neural Networks and Finite Element Method with graph-grammar-
based mesh generation. We compare the impact of both power 
plants on the living quality of Longyearbyen inhabitants. For 
the wind direction and intensity, as well as vertical profiles of 
the temperature, we refer to the High-Resolution Operational 
Forecasts dataset obtained from the National Science Founda-
tion [59] and the Global Wind Atlas [60]. Based on the data, we 
estimate the average wind speed at the Longyearbyen location 
as 4 m/s (see Fig.  2) directed from the coast towards the valley 
where the city is located (see Fig.  3). The wind velocity reaches 
maximum values in February and minimum values in June (see 
Fig.  5). The mean velocity profile at the height of 10 m is 
presented in Fig.  4. The average monthly wind velocity profiles 
at different times of the day are presented in Fig.  5. The mean 
wind speed index is a base index representing the average wind 
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Fig. 2. A mean wind velocity profile for the region of Longyearbyen.

Fig. 3. A mean wind velocity direction for the region of Longyearbyen.

speed values at 10 m height. For the pollution propagation 
simulation we select the average wind velocity of 4 m/s, and 
the average wind is directed inside the valley (see Fig.  3).

2. We have proposed an efficient, longest-edge refinement
graph-grammar-based algorithm for three-dimensional meshes for 
the first time. It allows the identification of a sub-graph repre-
senting tetrahedral element of the large graph representing the 
computational mesh in (1) computational cost. This is because 
our graph grammar identifies element nodes using connections 
from element interiors directly to element edges. Each edge is 
connected to only one pair of vertices. Our graph-grammar rules 
successfully describe the longest-edge mesh refinements over 
such the mesh representation and show how to transform the 
graph to maintain the mesh’s graph representation, allowing for 
low cost (1) identification of tetrahedrons.

3. We present the first comparison between time-dependent two-
dimensional advection-diffusion thermal inversion simulations per-
formed with Physics Informed Neural Networks (PINNs) and higher-
order and continuity finite element method solvers (isogeometric 
analysis (IGA)).

Summing up, there are the following novelty points in our paper.
The first theoretical point is that the graph-grammar model that we 

proposed is simple to implement and it has a low computational cost. 
Alternative traditional implementation using the computational mesh 
requires twelve mesh transformations, and the execution of these trans-
formations requires expensive identifications of the left-hand sides, 
namely the full tetrahedron. We will show that the computational cost 
of the identification of the full tetrahedron can be estimated as 𝐸1+𝐸2+
𝐸3 +𝐸4, where 𝐸𝑖 stands for the number of mesh edges adjacent to 𝑖th 
vertices of the tetrahedron, and for complex computational meshes this 
number can be large. On the other hand, the cost of identification of 
the left-hand side sub-graph in our graph grammar model is (1). This 
is because the whole topology is connected through faces and edges, 
not through the vertices, and there is no need to identify the common 
edges.
4 
Fig. 4. A mean wind velocity profile for the region of Longyearbyen at the height of 
10 m.

The second theoretical point of our paper is to compare the Physics 
Informed Neural Network (PINNs) implementation of the advection-
diffusion model simulation of the pollution process with the higher-
order and continuity finite element method implementation (isoge-
ometric analysis (IGA)) using linear computational cost alternating 
direction solver [61,62] (ADS). The IGA-ADS simulations require large 
number of time steps when using the explicit time integration scheme to 
fulfill the CFD condition [63], or special stabilization method due to the 
advection dominating diffusion, leading to the numerical instability, 
even if using unconditionally stable time integration scheme. In PINNs, 
there are no time steps, the problem is solved in the space–time domain, 
the temporal axis is discrete, and there are no stabilization issues 
inherited from the finite element method. In this sense, our paper 
generalizes the results of [56] into a non-stationary advection-diffusion 
case. We will also compare the execution times and the profiles of the 
solutions.

The third novelty of the paper is the introduction of the Physics 
Informed Neural Network code for non-stationary thermal inversion 
simulations implemented in Google Collab. We present novel simula-
tional investigation of the influence of the pollution generated by two 
power plants at Spitzbergen, the recently closed coal-burning power 
plant [64] and the novel power plant employing diesel engines. From 
our computer simulations, we estimate the amount of pollution and dis-
cuss its influence on the health of the Longyearbyen at Spitzbergen. We 
also augment our paper with data obtained from interviews performed 
with Longyearbyen inhabitants.

3. Graph grammar for the longest edge refinements of three-
dimensional tetrahedral elements

Mesh refinement lies in subdividing an element of a mesh to obtain 
a finer mesh. During mesh refinement, the original nodes are not 
removed, and the topology of the original mesh is preserved. This 
is different from re-meshing the domain with smaller-sized elements. 
Longest-edge refinement (see Fig.  6) can be expressed mathematically 
as the bisection of a simplex: 
(

𝑞 = {𝑝1, 𝑝2,… , 𝑝𝑛, 𝑝𝑛+1}
)

∈ 𝑛+1. (1)

If the distance between 𝑝𝑘 and 𝑝𝑚 is the maximum distance of the 
simplex, then a new point is created such that 𝑝 = (𝑝𝑘 + 𝑝𝑚)∕2 and 
the two new simplices are created such as:
𝑞1 = {𝑝1, 𝑝2,… , 𝑝𝑘−1, 𝑝, 𝑝𝑘+1,… , 𝑝𝑚,… , 𝑝𝑛+1} (2)

𝑞2 = {𝑝1, 𝑝2,… , 𝑝𝑘,… , 𝑝𝑚−1, 𝑝, 𝑝𝑚+1,… , 𝑝𝑛+1} (3)
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Fig. 5. An average wind speed index for particular times of a day, for particular months.
Fig. 6. The tetrahedral elements with four vertices 𝑝1 , 𝑝2 , 𝑝3 , 𝑝4. Its longest edge is located between vertices 𝑝2 and 𝑝4. The longest edge refinement breaks the longest edge and 
introduces new vertex 𝑝5.
Fig. 7. Graph representation of a 3D tetrahedron  denoted by 𝑇1. Its edges are denoted by 𝐸1 , 𝐸2 , 𝐸3 , 𝐸4 , 𝐸5. Its faces are denoted by 𝐹1 , 𝐹2 , 𝐹3 , 𝐹4.
Mathematically, the longest edge can be determined in any dimen-
sion. Geometrically, the longest edge refinement generates a new point 
in the middle of the longest edge, generating two new elements. The 
three-dimensional tetrahedral element is represented as a graph, with 
vertices representing interiors, edges (see Fig.  7) and faces (see Fig.  8) 
of the tetrahedron. We need five graph grammar productions PO, P1, 
P2, P3, and P4 to express the tetrahedral mesh refinement. The graph 
grammar production PO marks tetrahedrons selected by the user for 
refinement. The other productions P1, P2, P3, and P4 are employed 
to remove hanging nodes and broken faces on the rest of the graph 
representation of the computational mesh. Each of the productions 
bisects the tetrahedron into two new tetrahedral elements. The graph 
representation of the tetrahedral element has the following attributes:

• Attributes of vertex 𝑇  representing the whole tetrahedron: 
– 𝑅: The triangle is marked to be refined

• Attributes of vertex 𝐸 representing a single edge:

– 𝐿𝐸: The edge is one of the longest-edges
– 𝐵𝑅: The edge is broken
– 𝐴𝐸: The edge is located on the boundary (1 if is a boundary, 
2 if is interior)

– 𝑥, 𝑦, 𝑧: Coordinates of the edge (middle point)
– 𝐼𝑃 : Pointer to the initial point
5 
– 𝐹𝑃 : Pointer to the final point

• Attributes of vertex 𝐹  representing a single face:

– 𝐵𝑅𝐹 : The face is broken

In the following subsections, we focus on the computational tools 
developed for the numerical simulations of pollution propagation in 
Longyearbyen. In particular, we introduce a novel graph-grammar 
model for generating the computational mesh employed for the sim-
ulations.

3.1. Graph-grammar production P1

The first graph-grammar production denotes the case when the 
tetrahedral has no broken edges. The production’s left-hand side is de-
noted in Fig.  9. The right-hand side for the graph-grammar production 
P1 as well as for all the other productions P2, P3, and P4 are presented 
in Fig.  10.

We have the following predicates of applicability of the graph-
grammar production P1 (i.e., conditions that must be fulfilled if the 
graph-grammar production can be executed):
(NOT BR1 AND LE1) AND (R1 OR ANY(BRj)) AND NOT (BRF1 OR 
BRF2) AND NOT ANY(BRj AND LEj) AND NOT ANY(NOT BRj AND 
LEj AND LESS(E1, Ej)),
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Fig. 8. Mapping the tetrahedral faces 𝐹1 , 𝐹2 , 𝐹3 , 𝐹4 into the vertices of a graph.
Fig. 9. Left-hand side of the graph-grammar production P1 representing unbroken 
single tetrahedron.

The first component (NOT BR1 AND LE1) checks if the first edge is 
not broken and if it is the longest edge. The second component (R1 
OR ANY(BRj) checks if the tetrahedron has been marked to be refined 
or already has some broken edges (is non-conforming) and, therefore, 
must be broken. The third component NOT (BRF1 OR BRF2) checks 
if face1 or face2 are broken, and edge1 is not broken. In this case, the 
tetrahedron cannot be bisected by edge1. The fourth component NOT 
(BRj OR LEj) checks if any other edge is broken, and it is also the 
6 
longest edge. In this case, the longest edge is prioritized to be broken 
(edge1 will not be broken; we would rather break edge j). Finally, the 
fifth component NOT ANY(NOT BRj AND LEj AND LESS(E1, Ej)) 
checks if any other non-broken edge is also the longest edge.

3.2. Graph-grammar production P2

The second graph-grammar production denotes the case when there 
is one broken edge of the tetrahedral, but there are no broken faces. 
The left-hand side of the production is shown in Fig.  11, whereas the 
right-hand side for the graph-grammar production P2 is presented in 
Fig.  10.

The following predicates of applicability of the graph-grammar 
production P2 exist:
(LE1) AND NOT (BRF1 OR BRF2) AND NOT ANY(BRj AND LEj AND 
LESS(E1, Ej))

The first component (LE1)) checks if edge1 is the longest edge, 
so it should be broken. The second component NOT (BRF1 OR BRF2) 
checks if face1 or face2 are broken. In this case, the production P3 
is the right production to apply. The third component NOT ANY(BRj 
AND LEj AND LESS(E1, Ej)) checks if any other broken edge is also 
denoted as the longest edge. In this case, we will break edge1 only if 
it is the longest one.

3.3. Graph-grammar production P3

The third graph-grammar production denotes the case when there 
is one broken edge of the tetrahedral and one adjacent broken face. 
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Fig. 10. The right-hand side of the graph-grammar production P1, P2, P3, and P4 (same for all productions). It contains the edges of the original single tetrahedral 
𝐸1 , 𝐸2 , 𝐸3 , 𝐸4 , 𝐸5 , 𝐸6 and the newly created edges 𝐸7 , 𝐸8 , 𝐸9 , 𝐸10. It also contains the faces of the original unbroken tetrahedral 𝐹1 , 𝐹2 , 𝐹3 , 𝐹4 and the newly created faces 
𝐹5 , 𝐹6 , 𝐹7 , 𝐹8 , 𝐹9. The two newly created tetrahedrons are denoted by 𝑇2 , 𝑇3.
Fig. 11. Left-hand side of the graph-grammar production P2 (left panel) and P3 (right panel). They are applied to break tetrahedrons with broken edge (production P2) or broken 
face (production P3). They transform the graph into the tetrahedral broken into to tetrahedrons, presented in Fig.  10.
The production’s left-hand side is shown in Fig.  11 and the right-
hand side in Fig.  10. The following predicates of applicability of the 
graph-grammar production P3 exist:
(LE1) AND (BRF1 AND NOT BRF2) AND NOT ANY(BRj AND LEj 
AND LESS(E1, Ej))
7 
The first component of the predicate of applicability (LE1) checks 
if edge1 is the longest edge, so it should be broken. The second 
component (BRF1 AND NOT BRF2) checks if face1 is not broken 
and face2 is broken. In this case, the right production to apply is the 
production P2. The third component NOT ANY(BRj AND LEj AND 
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Fig. 12. Left-hand side of the graph-grammar production P4. It is applied to break 
the tetrahedral with two broken faces. They transform the graph into the tetrahedral 
broken into to tetrahedrons, presented in Fig.  10.

LESS(E1, Ej)) checks if any other broken edge is also denoted as the 
longest edge. In this case, we will break edge1 only if it is the longest 
edge.

3.4. Graph-grammar production P4

The fourth graph-grammar production denotes the case when there 
is one broken edge of the tetrahedron and two adjacent broken faces. 
The left-hand side of the graph-grammar production is shown in Fig. 
12 and the right-hand side in Fig.  10.

There are the following predicates of applicability of the graph-
grammar production P4:
(LE1) AND NOT ANY(BRj AND LEj AND LESS(E1, Ej))

The first component of the predicate of applicability (LE1) checks 
if edge1 is the longest edge, and, therefore, it should be broken. The 
second component NOT ANY(BRj AND LEj AND LESS(E1, Ej)) 
checks if any other broken edge is also denoted as the longest edge. 
In this case, we must use the comparison operator to ensure that edge1 
is the longest.

3.5. Control diagram for graph grammar

The diagram of controlling the execution of the graph grammar 
production is presented in Fig.  14. It starts with the execution of a se-
quence of production P0 that the user controls and it marks tetrahedral 
for refinements. Next, the productions P1, P2, P3, P4 are executed to 
remove the hanging nodes.

4. Transformations over computational mesh

In this section, we show how to express the three-dimensional 
longest-edge refinement algorithm by mesh transformation over the 
traditional representation of the computational mesh. This kind of 
8 
graph transformation is employed in traditional mesh generators us-
ing the Rivara algorithm. We will use this example to compare the 
computational cost of our graph grammar model with the traditional 
approach. In this approach, we have the computational mesh with 
tetrahedrons. Each tetrahedral is identified by its interior (denoted by 
𝐼), and there are links from the interior to the vertices, and the vertices 
are connected by edges (denoted by 𝐸), see Table  1.

4.1. Mesh transformation rules

In order to implement Rivara’s longest edge refinement algorithm, 
we introduce mesh transformation (MT1), presented in Table  1. It 
breaks a tetrahedral element along the longest edge. It breaks the edge 
into two new edges, breaks the face into two new faces. It introduces 
a new internal face, and it breaks an interior into two new interiors. 
The mesh transformations are isomorphic; that is why we assume we 
can apply the same transformation for tetrahedral oriented in different 
ways. All the other mesh transformations break tetrahedral elements 
along the longest edge to remove the hanging edges (to eliminate 
the situation when a tetrahedral element has a broken face). All the 
tetrahedrons are broken along the longest edge to ensure the proper 
proportions of the created computational mesh. We have 12 mesh 
transformations, listed in Tables  1–3. The transformations (MT2) and 
(MT3) consider the longest edge of a tetrahedral element with one 
face already broken and break the tetrahedral along the longest edge. 
The transformations (MT4), (MT5), (MT6), (MT7) and (MT8) consider 
the longest edge of a tetrahedral with two faces already broken, and 
break the tetrahedral along the longest edge. The transformations 
(MT9), (MT10), (MT11), and (MT12) consider the longest edge of a 
tetrahedral with three faces already broken, and break the tetrahedral 
along the longest edge.

4.2. Comparison of the longest-edge refinements with graph-grammar pro-
ductions and mesh transformations

The execution of Rivara’s longest-edge refinement algorithm re-
quires identification of the tetrahedral to be broken as requested by the 
user or by the algorithm removing the hanging nodes. Each tetrahedral 
is identified by its interior, which is connected to the four vertices. 
There are also pointers from the vertices to the edges of the tetrahedral. 
Identification of these edges, connecting the vertices of the tetrahedral, 
is expensive since there can be an arbitrarily large number of edges 
connected to a vertex. The computational cost of identification of the 
common edges can be estimated as (𝐸1+𝐸2+𝐸3+𝐸4) where 𝐸1 stands 
for the number of edges connected to the first vertex, 𝐸2 denotes the 
number of edges connected to the second vertex, one of them that we 
look for, connecting the second vertex with the first vertex. Similarly, 
the number of edges assigned to the third and fourth vertex is 𝐸3 and 
𝐸4.

This computational cost of the identification of the tetrahedral 
element can be reduced down to (1) by employing the graph repre-
sentation of the mesh, where there the tetrahedral interior is connected 
directly to the faces, the faces are connected to the edges. We simply 
do not travel through the vertices. The vertices are represented as 
the edges in this graph. Thus, the process of identification of the 
tetrahedral is straightforward since we travel from interior to faces in 
(1), from faces to edges in (1), and then we have only one graph 
edge (representing mesh vertex) between each pair of edges. We do 
not need to identify the common edges. The cost of identification of 
the tetrahedral is thus (1).

5. Simulation of the pollution propagation from the power plants 
in Longyearbyen using the finite element method

This section describes our finite element method simulations of the 
advection-diffusion model of pollution propagation from the power 
plant chimney.
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Fig. 13. A sequence of mesh refinements performed by the longest-edge refinement algorithm to generate the topography of Spitzbergen.
Fig. 14. Diagram controlling the execution of graph-grammar productions P1–P4. First, all required production P0 are executed. It is followed by the simultaneous executions of 
productions P1, P2, P3, P4 as many times as possible. When it is no longer possible, we do not have hanging nodes anymore, we go back to the execution of production P0. If 
this is no longer required, we stop the refinements process.
5.1. Mesh generation for Spitzbergen topography

We employ the graph grammar described in Section 3 for the gener-
ation of the computational mesh with triangular elements covering the 
topography of the Longyearbyen area, based on the GMRT data [9]. 
An exemplary sequence of generated meshes is presented in Fig.  13. 
In this Figure, we plot the cross-section of the tetrahedral mesh with 
the approximation of the terrain’s topography. We list the number of 
generated nodes in Table  4. The total generation time was equal to 82 s. 
The automatically refined mesh from the graph-grammar algorithm 
has been manually modified to add a chimney representing the power 
plant. For an overview of this mesh, see Figs.  15, 16 and 17. 
9 
5.2. Strong form of the advection-diffusion-reaction equations

We use the advection-diffusion equation to model the transport of 
pollutants: 
𝜕𝑢
𝜕𝑡

+ 𝛽 ⋅ ∇𝑢 − ∇ ⋅ (𝜖∇𝑢) = 𝑓, (4)

where 𝑢(𝑥, 𝑦, 𝑧, 𝑡) is the pollutant concentration field; 𝛽(𝑥, 𝑦, 𝑧, 𝑡) =
(𝛽𝑥(𝑥, 𝑦, 𝑧, 𝑡), 𝛽𝑦(𝑥, 𝑦, 𝑧, 𝑡), 𝛽𝑧(𝑥, 𝑦, 𝑧, 𝑡)) the wind velocity vector field, and 
𝜖 the diffusion coefficient. We discretize (4) in time by introducing 
time steps 0 = 𝑡 < 𝑡 < 𝑡 < ⋅ < 𝑡 = 𝑇  and the Crank-Nicholson finite 
0 1 2 𝑁
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Fig. 15. A computational mesh covering the terrain with the chimney.

Fig. 16. A cross-section of the 3D computational mesh at the chimney’s location.

Fig. 17. A cross-section of the 3D computational mesh at the chimney’s location.
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Table 1
Transformations over traditional computational mesh.

 

difference scheme in time: 
𝑢𝑡+1 − 𝑢𝑡

𝛥𝑡
+ 𝛽 ⋅ ∇ 𝑢

𝑡+1 + 𝑢𝑡
2

− ∇ ⋅
(

𝜖∇ 𝑢
𝑡+1 + 𝑢𝑡

2

)

+ 𝑐 𝑢
𝑡+1 + 𝑢𝑡

2
= 𝑓 𝑡 (5)

5.3. Weak form of the advection-diffusion-reaction equations

To apply the finite element method, we introduce the weak formu-
lation of (4) to find 𝑢 ∈ 𝑉 = 𝐻1(𝛺) such that: 
𝑢𝑡+1 − 𝑢𝑡

𝛥𝑡
+
𝑏(𝑢𝑡, 𝑣) + 𝑏(𝑢𝑡+1, 𝑣)

2
= 𝑙(𝑣) ∀𝑣 ∈ 𝑉 (6)

where: 
𝑏(𝑢, 𝑣) = (𝛽 ⋅ ∇𝑢, 𝑣) − 𝜖∇𝑢,∇𝑣 + (𝜖𝑛 ⋅ ∇𝑢, 𝑣) + (𝑐𝑢, 𝑣) (7)
𝛺 ( )𝛺 𝛤 𝛺

11 
Table 2
Transformations over traditional computational mesh.

 

𝑙(𝑣) = (𝑓, 𝑣)𝛺 (8)

where we utilize inner product notation: (𝑢, 𝑣)𝛺 = ∫𝛺 𝑢𝑣d𝑥d𝑦d𝑧, and 
(𝑢, 𝑣)𝛤 = ∫𝛤 𝑢𝑣d𝑠 denotes the 𝐿2 scalar product on 𝛺, 𝛤 = 𝜕𝛺, and 
𝑛 = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) is the vector normal to 𝛤 .

5.4. Streamline-Upwind Petrov–Galerkin method

For advection-diffusion equations, the standard Bubnov–Galerkin 
finite element method is known to be numerically unstable for coarse 
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Table 3
Transformations over traditional computational mesh.

 

meshes. To make it numerically stable, we apply the Streamline-
Upwind Petrov–Galerkin (SUPG) method [2]. Starting with the Bubnov–
Galerkin discretization, we seek for 𝑢ℎ ∈ 𝑉ℎ ⊂ 𝑉  such that: 
(

𝑢𝑡+1ℎ − 𝑢𝑡ℎ
𝛥𝑡

, 𝑣ℎ

)

+
𝑏(𝑢𝑡ℎ, 𝑣ℎ) + 𝑏(𝑢

𝑡+1
ℎ , 𝑣ℎ)

2
= 𝑙(𝑣ℎ)∀𝑣ℎ ∈ 𝑉ℎ ⊂ 𝑉 , (9)

where 𝑉ℎ is span by polynomial functions introduced by the tetrahedral 
finite elements. The SUPG method modifies then the weak form to 
stabilize the formulation: 

𝑏(𝑢𝑡+1ℎ , 𝑣ℎ) +
∑

𝐾
(𝑅(𝑢𝑡+1ℎ ), 𝜏𝛽 ⋅ ∇𝑣ℎ)𝐾 = 𝑙(𝑣ℎ) +

∑

𝐾
(𝑓, 𝜏𝛽 ⋅ ∇𝑣ℎ)𝐾 ∀𝑣 ∈ 𝑉 ,

(10)
12 
Table 4
The number of mesh nodes on a generated sequence of triangular element meshes ap-
proximating the topography of the Svalbard area, using the 3D longest-edge refinement 
graph grammar.
 Iteration #1 Number of nodes Iteration #2 Number of nodes 
 1 4 11 8723  
 2 9 12 16352  
 3 17 13 29135  
 4 37 14 49619  
 5 89 15 83745  
 6 200 16 144882  
 7 445 17 258620  
 8 984 18 440682  
 9 2093 19 749160  
 10 4355 20 1572864  

where 𝑅(𝑢𝑡+1ℎ ) = 𝛽 ⋅ ∇𝑢𝑡+1ℎ + 𝜖𝛥𝑢𝑡+1ℎ , and 𝜏−1 = 𝛽 ⋅
(

1
ℎ𝑥𝐾
, 1
ℎ𝑦𝐾
, 1
ℎ𝑧𝐾

)

+ 3𝑝2𝜖 1
ℎ𝑥𝐾

2+ℎ𝑦𝐾
2+ℎ𝑧𝐾

2 , and ℎ𝑥𝐾 , ℎ
𝑦
𝐾 , ℎ𝑧𝐾 denote three dimensions of an 

element 𝐾. Thus, we have: 

𝑏𝑆𝑈𝑃𝐺(𝑢𝑡+1ℎ , 𝑣ℎ) = 𝑙𝑆𝑈𝑃𝐺(𝑣ℎ) ∀𝑣ℎ ∈ 𝑉ℎ, (11)

𝑏𝑆𝑈𝑃𝐺(𝑢𝑡+1ℎ , 𝑣ℎ) =𝛽𝑥

(

𝜕𝑢𝑡+1ℎ
𝜕𝑥

, 𝑣ℎ

)

𝛺

+ 𝛽𝑦

(

𝜕𝑢𝑡+1ℎ
𝜕𝑦

, 𝑣ℎ

)

𝛺

+ 𝛽𝑧

(

𝜕𝑢𝑡+1ℎ
𝜕𝑧

, 𝑣ℎ

)

𝛺

+

𝜖

(

𝜕𝑢𝑡+1ℎ
𝜕𝑥

,
𝜕𝑣ℎ
𝜕𝑥

)

𝛺

+ 𝜖

(

𝜕𝑢𝑡+1ℎ
𝜕𝑦

,
𝜕𝑣ℎ
𝜕𝑦

)

𝛺

+ 𝜖

(

𝜕𝑢𝑡+1ℎ
𝜕𝑧

,
𝜕𝑣ℎ
𝜕𝑧

)

𝛺

+

(𝑐𝑢ℎ, 𝑣ℎ)𝛺 −

(

𝜖
𝜕𝑢𝑡+1ℎ
𝜕𝑥

𝑛𝑥, 𝑣ℎ

)

𝛤

−

(

𝜖
𝜕𝑢𝑡+1ℎ
𝜕𝑦

𝑛𝑦, 𝑣ℎ

)

𝛤

−

(

𝜖
𝜕𝑢𝑡+1ℎ
𝜕𝑧

𝑛𝑧, 𝑣ℎ

)

𝛤

+

(

𝛽𝑥
𝜕𝑢𝑡+1ℎ
𝜕𝑥

+ 𝛽𝑦
𝜕𝑢𝑡+1ℎ
𝜕𝑦

+ 𝛽𝑧
𝜕𝑢𝑡+1ℎ
𝜕𝑧

+ 𝜖𝛥𝑢𝑡+1ℎ ,

(

1
ℎ𝑥

+ 3𝜖
𝑝2

ℎ𝑥𝐾
2 + ℎ𝑦𝐾

2

)−1

𝛽𝑥
𝜕𝑣ℎ
𝜕𝑥

+ 𝛽𝑦
𝜕𝑣ℎ
𝜕𝑦

+ 𝛽𝑧
𝜕𝑣ℎ
𝜕𝑧

⎞

⎟

⎟

⎠𝛺

𝑙𝑆𝑈𝑃𝐺(𝑣ℎ) = (𝑓, 𝑣ℎ)𝛺 +
⎛

⎜

⎜

⎝

𝑓,

(

1
ℎ𝑥

+ 3𝜖
𝑝2

ℎ𝑥𝐾
2 + ℎ𝑦𝐾

2

)−1

×
(

𝛽𝑥
𝜕𝑣ℎ
𝜕𝑥

+ 𝛽𝑦
𝜕𝑣ℎ
𝜕𝑦

+ 𝛽𝑧
𝜕𝑣ℎ
𝜕𝑧

)

⎞

⎟

⎟

⎠𝛺

.

We incorporate the implicit Crank-Nicholson method into the finite 
element setup: 

(

𝑢𝑡+1 − 𝑢𝑡
𝛥𝑡

,𝑤ℎ

)

𝛺
+ 𝑏𝑆𝑈𝑃𝐺

(

𝑢𝑡ℎ + 𝑢
𝑡+1
ℎ

2
, 𝑣ℎ

)

= 𝑙𝑆𝑈𝑃𝐺(𝑣ℎ) ∀𝑣ℎ ∈ 𝑉ℎ,

(12)

(

𝑢𝑡+1, 𝑤ℎ
)

𝛺 + 𝛥𝑡
2
𝑏𝑆𝑈𝑃𝐺

(

𝑢𝑡+1ℎ , 𝑣ℎ
)

=
(

𝑢𝑡, 𝑤ℎ
)

𝛺 + 𝛥𝑡
2
𝑏𝑆𝑈𝑃𝐺

(

𝑢𝑡ℎ, 𝑣ℎ
)

+𝑙𝑆𝑈𝑃𝐺(𝑣ℎ)
∀𝑣ℎ ∈ 𝑉ℎ.
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Fig. 18. The front view of the smoke propagated from the chimney into the valley after two hours of power plant operation.
The element matrices and right-hand-side vectors are discretized to 
obtain the local systems over each element, with matrices and right-
hand-sides:

⎡

⎢

⎢

⎣

(𝜓1, 𝜓1) ⋯ (𝜓1, 𝜓15)
⋮ ⋮ ⋮

(𝜓15, 𝜓1) ⋯ (𝜓15, 𝜓15)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑢𝑡1
⋮
𝑢𝑡15

⎤

⎥

⎥

⎦

+

𝛥𝑡
2

∗
⎡

⎢

⎢

⎣

𝑏𝐾𝑆𝑈𝑃𝐺(𝜓1, 𝜓1) ⋯ 𝑏𝐾𝑆𝑈𝑃𝐺(𝜓1, 𝜓15)
⋮ ⋮ ⋮

𝑏𝐾𝑆𝑈𝑃𝐺(𝜓15, 𝜓1) ⋯ 𝑏𝐾𝑆𝑈𝑃𝐺(𝜓15, 𝜓15)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑢𝑡1
⋮
𝑢𝑡15

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑙𝐾𝑆𝑈𝑃𝐺(𝜓1)
⋮

𝑙𝐾𝑆𝑈𝑃𝐺(𝜓15)

⎤

⎥

⎥

⎦

(13)

The resulting local systems are submitted to the matrix-free GMRES 
iterative solver.

5.5. Numerical results

We simulated the pollution propagation with the source located on 
the top of the chimney, assuming the average wind direction and ve-
locity for the winter season. As illustrated in Figs.  18–20, the pollution 
propagates into the valley where Longyearbyen is located. Nine hours 
after the chimney starts producing the pollution, the whole valley is 
filled with pollution.

6. Simulation of thermal inversion using Physics Informed Neural 
Networks

Having the pollution propagated into the Longyearbyen valley, 
we can now investigate the thermal inversion phenomena during 
the summer and winter periods to check if the accumulated pollu-
tion dissipates or stays in the valley. This section discusses mod-
eling the thermal inversion effect with the Physics Informed Neu-
ral Networks [14,15]. The PINN codes used for thermal inversion 
simulations are available at https://colab.research.google.com/drive/
13 
15WDZZV36v2qmzvU_vq0Ter0RvKxwrYs9 and https://colab.research.
google.com/drive/1Ta29ihEOX6rWhDozK_7u89Ev0A3dX8sz

As the initial state for the simulation, we consider the pollution 
propagated into the valley by the chimney as directed by the wind. This 
pollution concentration is based on the finite element method solver. 
The vertical temperature profile effect is obtained by introducing the 
advection field as the temperature gradient.

Thermal inversion, also known as temperature inversion, is a me-
teorological phenomenon where the typical (decreasing with height) 
temperature gradient of the atmosphere is reversed (increasing with 
height). Typically, the temperature decreases with altitude, meaning 
the air is cooler higher up. However, during a thermal inversion, a layer 
of cooler air becomes trapped near the ground by warmer air above 
it. The trapped cold air also traps pollutants near the ground, leading 
to poor air quality. Thermal inversions are more common in valleys, 
where the topography limits air circulation. Inversions are also more 
likely to occur during the winter, especially during clear nights when 
the ground cools rapidly.

Thermal inversions are a common and significant phenomenon dur-
ing the Arctic night due to the extreme and prolonged cold conditions 
that characterize this region. The Arctic night refers to the period 
during the winter months when the Sun does not rise above the horizon 
for an extended period, resulting in continuous darkness. During the 
thermal inversion phenomenon, the temperature increases with altitude 
instead of decreasing. Inversions are typical in winter when the low 
layers of the atmosphere are cooled by a cold surface covered with 
snow and ice while the higher layers remain warmer.

Thermal inversions during the Arctic night are a natural conse-
quence of the region’s extreme and prolonged cold conditions. They 
result in very stable and cold air near the surface, with warmer air 
above, and can persist for long periods.

We model the thermal inversion by introducing the vertical tem-
perature profiles specific to winter and summer seasons in the region 
of the Town of Longyearbyen at Spitzbergen.

https://colab.research.google.com/drive/15WDZZV36v2qmzvU_vq0Ter0RvKxwrYs9
https://colab.research.google.com/drive/15WDZZV36v2qmzvU_vq0Ter0RvKxwrYs9
https://colab.research.google.com/drive/15WDZZV36v2qmzvU_vq0Ter0RvKxwrYs9
https://colab.research.google.com/drive/1Ta29ihEOX6rWhDozK_7u89Ev0A3dX8sz
https://colab.research.google.com/drive/1Ta29ihEOX6rWhDozK_7u89Ev0A3dX8sz
https://colab.research.google.com/drive/1Ta29ihEOX6rWhDozK_7u89Ev0A3dX8sz


M. Sikora et al. Applied Soft Computing 182 (2025) 113394 
Fig. 19. The top view of the smoke propagated from the chimney into the valley after 9 h of power plant operation.
Fig. 20. The concentration of the pollution near the ground after 9 h of working of the power plant.
We also assume that the horizontal diffusion coefficient 𝐾𝑥 = 0.1 is 
stronger than the vertical diffusion coefficient 𝐾𝑦 = 0.01. We focus on 
advection-diffusion equations in the strong form. We seek the pollution 
concentration field [0, 1]2 × [0, 1] ∋ (𝑥, 𝑦, 𝑡) → 𝑢(𝑥, 𝑦, 𝑡) ∈ 
𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑡
+ (𝑏(𝑥, 𝑦, 𝑡) ⋅ ∇) 𝑢(𝑥, 𝑦, 𝑡) − ∇ ⋅ (𝐾∇𝑢(𝑥, 𝑦, 𝑡)) = 0, (14)

(𝑥, 𝑦, 𝑡) ∈ 𝛺 × (0, 𝑇 ]
𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑛
= 0, (𝑥, 𝑦, 𝑡) ∈ 𝜕𝛺 × (0, 𝑇 ] (15)

𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦), (𝑥, 𝑦, 𝑡) ∈ 𝛺 × 0 (16)

This PDE translates into
𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑡
+
𝜕𝑇 (𝑦)
𝜕𝑦

𝜕𝑢(𝑥, 𝑦, 𝑡)
𝜕𝑦

− 0.1
𝜕𝑢(𝑥, 𝑦, 𝑡)
𝜕𝑥2

− 0.01
𝜕𝑢(𝑥, 𝑦, 𝑡)
𝜕𝑦2

= 0, (17)

(𝑥, 𝑦, 𝑡) ∈ 𝛺 × (0, 𝑇 ]
𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑛
= 0, (𝑥, 𝑦, 𝑡) ∈ 𝜕𝛺 × (0, 𝑇 ] (18)

𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦). (𝑥, 𝑦, 𝑡) ∈ 𝛺 × 0 (19)

Neural networks are composed of interconnected layers of nodes, or 
neurons, designed to process and learn from data. The architecture of 
14 
a typical neural network is shown in Fig.  21. The input to the neural 
network are the spatial point coordinates (𝑥, 𝑦) and the time moment 
𝑡. The output from the neural network is the concentration velocity 
field 𝑢(𝑥, 𝑦, 𝑡) that is later automatically differentiated in space and time 
and employed in the loss functions modeling the initial conditions, the 
boundary conditions, and the residual loss. In PINN, the neural network 
represents the solution,
𝑢(𝑥, 𝑦, 𝑡) = 𝑃𝐼𝑁𝑁(𝑥, 𝑦, 𝑡) = 𝐴𝑛𝜎

(

𝐴𝑛−1𝜎(...𝜎(𝐴1[𝑥, 𝑦, 𝑡] + 𝐵1)... + 𝐵𝑛−1
)

+ 𝐵𝑛 (20)

where 𝐴𝑖 are matrices representing neural network layers, 𝐵𝑖 represent 
bias vectors, and 𝜎 is the sigmoid activation function. We define the 
loss function as the residual of the PDE:

𝐿𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑥, 𝑦, 𝑡) =
(

𝜕𝑃𝐼𝑁𝑁(𝑥, 𝑦, 𝑡)
𝜕𝑡

+
𝜕𝑇 (𝑦)
𝜕𝑦

𝜕𝑃𝐼𝑁𝑁(𝑥, 𝑦, 𝑡)
𝜕𝑦

−

0.1
𝜕𝑃𝐼𝑁𝑁(𝑥, 𝑦, 𝑡)

𝜕𝑥2
− 0.01

𝜕𝑃𝐼𝑁𝑁(𝑥, 𝑦, 𝑡)
𝜕𝑦2

)2
(21)

𝐿𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑥, 𝑦, 𝑡) =
(

𝜕𝑢 + 𝜕𝑇 𝜕𝑢 −𝐾𝑥
𝜕𝑢 −𝐾𝑦

𝜕𝑢 − 𝑓
)2

(22)

𝜕𝑡 𝜕𝑦 𝜕𝑦 𝜕𝑥2 𝜕𝑦2
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Fig. 21. The structure of the Physics Informed Neural Network for modeling of time-dependent advection-diffusion equations.

Fig. 22. Svalbard summer. The temperature decreases in vertical direction close to the ground. The convergence of residual, initial, boundary, and total loss functions.
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Fig. 23. Svalbard winter. The temperature increases in vertical direction close to the ground. The convergence of residual, initial, boundary, and total loss functions.
L

W

E

We also define the loss for training the initial condition as the 
residual of the initial condition: 
𝐿𝐼𝑛𝑖𝑡𝑖𝑎𝑙(𝑥, 𝑦, 0) =

(

𝑃𝐼𝑁𝑁(𝑥, 𝑦, 0) − 𝑢0(𝑥, 𝑦)
)2 (23)

as well as the loss of the residual of the boundary condition: 

𝐿𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝑥, 𝑦, 𝑡) = 𝑓
(

𝜕𝑃𝐼𝑁𝑁(𝑥, 𝑦, 𝑡)
𝜕𝑛

− 0
)2

(24)

We employ the Adam optimizer (Adaptive Moment Estimation) [65] 
for training. The general idea of the Adam algorithm is to average 
the gradients from several past iterations, converging towards global 
minima and avoiding local minima.

7. The structure of the code

7.1. Colab implementation

The simulation code may be downloaded from https://github.com/
pmaczuga/pinn-notebooks and executed in Google Colab in fully auto-
matic mode.

7.2. Parameters

There are the following model parameters that the user can define:

• LENGTH, TOTAL_TIME. The code works in the space–time do-
main, where the training is performed by selecting point along 
𝑥, 𝑦 and 𝑡 axes. The LENGTH parameter defines the dimen-
sion of the domain along 𝑥 and 𝑦 axes. The domain dimen-
sion is [0,LENGTH]x[0,LENGTH]x[0,TOTAL_TIME]. The 
TOTAL_TIME parameter defines the length of the space–time 
domain along the 𝑡 axis. It is the total time of the transient 
phenomena we want to simulate.
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• N_POINTS. This parameter defines the number of points used 
for training. By default, the points are selected randomly along 
𝑥, 𝑦, and 𝑡 axes. It is easily possible to extend the code to support 
different numbers of points or different distributions of points 
along different axes of the coordinate system.

• N_POINTS_PLOT. This parameter defines the number of points 
used to probe the solution and plot the output plots after the 
training.

• WEIGHT_RESIDUAL, WEIGHT_INITIAL, WEIGHT_
BOUNDARY. These parameters define the weights for the train-
ing of residual, initial condition, and boundary condition loss 
functions.

• LAYERS, NEURONS_PER_LAYER. These parameters define the 
neural network by providing the number of layers and number of 
neurons per neural network layer.

• EPOCHS, and LEARNING_RATE provide a number of epochs and 
the training rate for the training procedure.

During the training, we used the following global parameter values:

ENGTH = 1.
TOTAL_TIME = 1.
N_POINTS = 15
N_POINTS_PLOT = 150
WEIGHT_RESIDUAL = 20.0
WEIGHT_INITIAL = 1.0
EIGHT_BOUNDARY = 10.0

LAYERS = 2
NEURONS_PER_LAYER = 600
POCHS = 30_000
LEARNING_RATE = 0.002

https://github.com/pmaczuga/pinn-notebooks
https://github.com/pmaczuga/pinn-notebooks
https://github.com/pmaczuga/pinn-notebooks
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7.3. PINN class

The PINN class defines the functionality for a simple neural network 
accepting three features as input: the values of (𝑥, 𝑦, 𝑡) and returning a 
single output, namely the value of the solution 𝑢(𝑥, 𝑦, 𝑡). We provide the 
following features:

• The f routine compute the values of the approximate solution at 
point (𝑥, 𝑦, 𝑡).

• The routines dfdt, dfdx, dfdy compute the derivatives of the 
approximate solution at point (𝑥, 𝑦, 𝑡) with respect to either 𝑥, 𝑦, 
or 𝑡 using the PyTorch autograd method.

We add the definitions of the Kx and Ky variables into the Loss 
class.

7.4. Processing initial and boundary conditions

Since the training is performed in the space–time domain
[0,LENGTH]x[0,LENGTH]x [0,TOTAL_TIME], we provide in

• get_interior_points the functionality to identify the points 
from the training of the residual loss, in

• get_initial_points the functionality to identify points for 
the training of the initial loss, and in

• get_boundary_points the functionality for training the
boundary loss.

7.5. Loss functions

We provide interfaces for defining the loss functions inside the 
Loss class. Namely, we define the residual_loss,
initial_loss and boundary_loss. Since the initial and bound-
ary loss is universal, and residual loss is problem specific, we provide 
fixed implementations for the initial and boundary losses, assuming 
that the initial state is prescribed in the initial_condition rou-
tine and that the boundary conditions are zero Neumann. The code can 
be easily extended to support different boundary conditions.
class Loss :
. . .

def r e s i d u a l _ l o s s ( s e l f , pinn : PINN ) :
x , y , t = g e t _ i n t e r i o r _ p o i n t s \

( s e l f . x_domain , s e l f . y_domain , \
s e l f . t_domain , s e l f . n _points , pinn . device ( ) )

l o s s = dfdt ( pinn , x , y , t ) . to ( device )
− s e l f . dTy (y , t )∗ dfdy ( pinn , x , y , t ) . to ( device )
− s e l f . Kx∗dfdx ( pinn , x , y , t , order =2). to ( device )
− s e l f . Ky∗dfdy ( pinn , x , y , t , order =2). to ( device )
− s e l f . source (y , t ) . to ( device )
return l o s s .pow( 2 ) .mean

def i n i t i a l _ l o s s ( s e l f , pinn : PINN ) :
x , y , t = g e t _ i n i t i a l _ p o i n t s \

( s e l f . x_domain , s e l f . y_domain , \
s e l f . t_domain , s e l f . n _points , pinn . device ( ) )

p i nn _ i n i t = s e l f . i n i t i a l _ c o n d i t i o n (x , y )
l o s s = f ( pinn , x , y , t ) − p i nn _ i n i t
return l o s s .pow( 2 ) .mean ( )

def boundary_ loss ( s e l f , pinn : PINN ) :
down , up , l e f t , r i gh t = get _boundary_point s \

( s e l f . x_domain , s e l f . y_domain , s e l f . t_domain , \
s e l f . n _points , pinn . device ( ) )

x_down , y_down , t_down = down
x_up , y_up , t _up = up
x _ l e f t , y _ l e f t , t _ l e f t = l e f t
x _ r i gh t , y _ r i gh t , t _ r i g h t = r i gh t

L_down = dfdy ( pinn , x_down , y_down , t_down )
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L_up = dfdy ( pinn , x_up , y_up , t _up )
L _ l e f t = dfdx ( pinn , x _ l e f t , y _ l e f t , t _ l e f t )
L _ r i gh t = dfdx ( pinn , x _ r i gh t , y _ r i gh t , t _ r i g h t )

return L_down .pow( 2 ) .mean ( ) + \
L_up .pow( 2 ) .mean ( ) + \
L _ l e f t .pow( 2 ) .mean ( ) + \
L _ r i gh t .pow( 2 ) .mean ( )

The initial condition is defined in the initial_condition rou-
tine, which returns a value of the initial condition at point (𝑥, 𝑦, 0).

I n i t i a l c o n d i t i o n
def i n i t i a l _ c o n d i t i o n ( x : torch . Tensor , y : torch . Tensor ) \

−> torch . Tensor :
. . .

r e s = INITIAL POLLUTION DISTRIBUTION
AS OBTAINED FROM FEM SOLVER

return re s

The minimization of the three losses, is the multi-objective opti-
mization problem. The loss functions can be weighted
𝐿 = 𝑊𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐿𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙+𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐿𝑖𝑛𝑖𝑡𝑖𝑎𝑙+𝑊𝑏𝑜𝑖𝑢𝑛𝑑𝑎𝑟𝑦𝐿𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 with the weights 
(𝑊𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ,𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ,𝑊𝑏𝑜𝑖𝑢𝑛𝑑𝑎𝑟𝑦) selected automatically using the SoftAdapt 
algorithm [66].

The number of neurons and the number of layers in the PINNs 
can be estimated using the results of Jinchao Xu, showing the analo-
gies between neural networks and linear and higher-order finite el-
ement methods [67,68]. The weights of the loss functions for the 
multi-objective optimization can be determined automatically using 
SoftAdapt algorithm [66].

7.6. Summer simulation

In this section, we present numerical results of the pollution dissi-
pation computed for the vertical temperature profile during the sum-
mer day. In summer, temperature inversions are less common on the 
Spitzbergen than in winter. The temperature in the troposphere (lower 
layer of the atmosphere) usually decreases with altitude. The conver-
gence of the loss functions is summarized in Fig.  22. The snapshots from 
the simulations are presented in Fig.  24. The pollution concentration 
units are dimensionless, and the goal of the simulation is to present 
the quantitative behavior of the pollution propagation with the tem-
perature profile during the summer period. The pollution generated by 
the power plant dissipates due to the vertical temperature gradients.

7.7. Winter simulation

Now, we present numerical results of the pollution dissipation 
computed for the temperature profiles during the winter night. The 
convergence of the loss functions is summarized in Fig.  23. The snap-
shots from the simulations are presented in Fig.  25. The dimensionless 
pollution concentration units illustrate the quantitative behavior of the 
pollution propagation with the temperature profile from the Arctic 
night. Just like in urban environments, thermal inversions in the Arctic 
can trap pollutants. The absence of sunlight during the Arctic night 
leads to intense cooling of the Earth’s surface. As the ground loses 
heat, the air directly above it also cools rapidly. The lack of solar 
heating during the Arctic night results in stable atmospheric conditions 
with minimal vertical air mixing. This stability allows the cold air to 
remain trapped near the surface. The simulation results show that the 
initial concentration of the pollution is trapped near the ground and 
it only dissipates through the borders of the domain. Constant source 
of the pollution, as from the power plants, will keep the pollution 
concentration high in the Longyearbyen valley.
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Fig. 24. Thermal inversion simulation for the Svalbard summer, where the temperature increases in the vertical direction. Due to the temperature gradient, the pollution moves 
up and dissipates.
Fig. 25. Pollution concentration during the Svalbard winter where the temperature decreases in the vertical direction. The cold weather traps the pollution near the ground.
7.8. Notes on computational cost

The two-dimensional time-dependent PINN simulator execution on 
A100 Backend Google Compute Engine with Python 3 and GPU graphic 
card equipped with 83.48 GB of memory and 235.68 GB disc space 
takes around 15 min of computing time. This execution time is com-
parable with the execution of 200 times steps of the non-stationary 
three-dimensional graph-grammar-based finite element method solver 
on a laptop with 11th Gen Intel(R) Core(TM) i5-11500H @ 2.90 GHz, 
2.92 GHz, and 32 GB of RAM, providing an estimate of 9 h of real-
time pollution generation from a chimney. The finite element method 
simulation requires the development of the stabilized time-integration 
scheme, which, in our case, is the Crank–Nicolson method. The PINNs 
do not require the development of a stabilized time-integration scheme; 
the time-dependent problem is trained in the space–time domain.
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8. Simulation of the thermal inversion with IGA-ADS code

We will compare our PINN solver to the higher-order and continuity 
isogeometric analysis (IGA) alternating direction (ADS) solver [61,62] 
The choice of IGA-FEM follows from the fact that it delivers higher-
order and continuity solutions, similar to the smooth neural network 
solution. Additionally, it delivers linear computational costs.

8.1. Derivation of the IGA-ADS solver

In the IGA-ADS approach, we first discretize in time, denoting 
𝑢𝑡(𝑥, 𝑦) = 𝑢(𝑥, 𝑦, 𝑡) and employ an explicit time integration scheme with 
time step size 𝑑𝑡, namely 

𝑢𝑡+1(𝑥, 𝑦) = 𝑢𝑡(𝑥, 𝑦) +
𝜕𝑇 (𝑦) 𝜕𝑢𝑡(𝑥, 𝑦) − 0.1

𝜕𝑢𝑡(𝑥, 𝑦) − 0.01
𝜕𝑢𝑡(𝑥, 𝑦) , (25)
𝜕𝑦 𝜕𝑦 𝜕𝑥2 𝜕𝑦2
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The weak formulation is obtained by testing with e.g. B-spline basis 
functions 
(

𝑢𝑡+1(𝑥, 𝑦), 𝑣(𝑥, 𝑦)
)

=
(

𝑢𝑡(𝑥, 𝑦), 𝑣(𝑥, 𝑦)
)

+ 𝑑𝑡
(

𝜕𝑇 (𝑦)
𝜕𝑦

𝜕𝑢(𝑥, 𝑦)
𝜕𝑦

, 𝑣(𝑥, 𝑦)
)

+0.1𝑑𝑡
(

𝜕𝑢(𝑥, 𝑦)
𝜕𝑥

, 𝑣(𝑥, 𝑦)
)

+ 0.01𝑑𝑡
(

𝜕𝑢(𝑥, 𝑦)
𝜕𝑦

, 𝑣(𝑥, 𝑦)
)

(26)

We discretize with B-spline basis functions defined over the cube-
shaped domain 𝛺 = [0, 1]3

𝑢𝑡+1 =
∑

𝑖=1,…,𝑁𝑥;𝑗=1,…,𝑁𝑦

𝑢𝑡+1𝑖𝑗 𝐵𝑥𝑖 𝐵
𝑦
𝑗 ,

𝑢𝑡 =
∑

𝑖=1,…,𝑁𝑥;𝑗=1,…,𝑁𝑦

𝑢𝑡𝑖𝑗𝐵
𝑥
𝑖 𝐵

𝑦
𝑗 , (27)

and we test with B-spline basis functions 
∑

𝑖𝑗
𝑢𝑡+1𝑖𝑗

(

𝐵𝑥𝑖 𝐵
𝑦
𝑗 , 𝐵

𝑥
𝑚𝐵

𝑦
𝑛

)

=
∑

𝑖𝑗
𝑢𝑡𝑖𝑗

(

𝐵𝑥𝑖 𝐵
𝑦
𝑗 , 𝐵

𝑥
𝑚𝐵

𝑦
𝑛

)

+

𝑑𝑡
∑

𝑖𝑗
𝑢𝑡𝑖𝑗

(

𝜕𝑇 (𝑦)
𝜕𝑦

𝐵𝑥𝑖
𝜕𝐵𝑦𝑗
𝜕𝑦

, 𝐵𝑥𝑚𝐵
𝑦
𝑛

)

+

0.1𝑑𝑡
∑

𝑖𝑗
𝑢𝑡𝑖𝑗

( 𝜕𝐵𝑥𝑖
𝜕𝑥

𝐵𝑦𝑗 ,
𝜕𝐵𝑥𝑚
𝜕𝑥

𝐵𝑦𝑛

)

+

0.01𝑑𝑡
∑

𝑖𝑗
𝑢𝑡𝑖𝑗

(

𝐵𝑥𝑖
𝜕𝐵𝑦𝑗
𝜕𝑦

, 𝐵𝑥𝑚
𝜕𝐵𝑦𝑛
𝜕𝑦

)

𝑚 = 1,… , 𝑁𝑥; 𝑛 = 1,… , 𝑁𝑦,

(28)

where (𝑢, 𝑣) = ∫𝛺 𝑢(𝑥, 𝑦)𝑣(𝑥, 𝑦)𝑑𝑥𝑑𝑦. We separate directions 
∑

𝑖𝑗
𝑢𝑡+1𝑖𝑗

(

𝐵𝑥𝑖 , 𝐵
𝑥
𝑚
)

𝑥

(

𝐵𝑦𝑗 , 𝐵
𝑦
𝑛

)

𝑦
=
∑

𝑖𝑗
𝑢𝑡𝑖𝑗

(

𝐵𝑥𝑖 , 𝐵
𝑥
𝑚
)

𝑥

(

𝐵𝑦𝑗 , 𝐵
𝑦
𝑛

)

𝑦
+

𝑑𝑡
∑

𝑖𝑗
𝑢𝑡𝑖𝑗

(

𝐵𝑥𝑖 , 𝐵
𝑥
𝑚
)

𝑥
𝜕𝑇 (𝑦)
𝜕𝑦

(

𝜕𝐵𝑦𝑗
𝜕𝑦

, 𝐵𝑦𝑛

)

𝑦

+

0.1𝑑𝑡
∑

𝑖𝑗
𝑢𝑡𝑖𝑗

( 𝜕𝐵𝑥𝑖
𝜕𝑥

,
𝜕𝐵𝑥𝑚
𝜕𝑥

)

𝑥

(

𝐵𝑦𝑗 , 𝐵
𝑦
𝑛

)

𝑦
+

0.01𝑑𝑡
∑

𝑖𝑗
𝑢𝑡𝑖𝑗

(

𝐵𝑥𝑖 , 𝐵
𝑥
𝑚
)

𝑥

(

𝜕𝐵𝑦𝑗
𝜕𝑦

,
𝜕𝐵𝑦𝑛
𝜕𝑦

)

𝑦

𝑚 = 1,… , 𝑁𝑥; 𝑛 = 1,… , 𝑁𝑦,

(29)

We introduce
𝐌𝑥 = {(𝐵𝑥𝑖 , 𝐵

𝑥
𝑚)𝑥}𝑖𝑚 = {∫ 𝐵𝑥𝑖 𝐵

𝑥
𝑙 𝑑𝑥}𝑖𝑚,

𝐌𝑦 = {(𝐵𝑦𝑗 , 𝐵
𝑦
𝑛 )𝑦}𝑗𝑛 = {∫ 𝐵𝑦𝑗𝐵

𝑦
𝑛𝑑𝑦}𝑗𝑛,

𝐀𝑥 = {(
𝜕𝐵𝑥𝑖
𝜕𝑥

, 𝐵𝑥𝑚)𝑥}𝑖𝑚 = {∫
𝜕𝐵𝑥𝑖
𝜕𝑥

𝐵𝑥𝑚𝑑𝑥}𝑖𝑚, (30)

𝐀𝑦 = {(𝐵𝑦𝑗 ,
𝜕𝐵𝑦𝑛
𝜕𝑦

)𝑦}𝑗𝑛 = {∫ 𝐵𝑦𝑗
𝜕𝐵𝑦𝑛
𝜕𝑦

𝑑𝑦}𝑗𝑛

𝐒𝑥 = {(
𝜕𝐵𝑥𝑖
𝜕𝑥

,
𝜕𝐵𝑥𝑚
𝜕𝑥

)𝑥}𝑖𝑚 = {∫
𝜕𝐵𝑥𝑖
𝜕𝑥

𝜕𝐵𝑥𝑚
𝜕𝑥

𝑑𝑥}𝑖𝑚

𝐒𝑦 = {(
𝜕𝐵𝑦𝑗
𝜕𝑦

,
𝜕𝐵𝑦𝑛
𝜕𝑦

)𝑦}𝑗𝑛 = {∫
𝜕𝐵𝑦𝑗
𝜕𝑦

𝜕𝐵𝑦𝑛
𝜕𝑦

𝑑𝑦}𝑗𝑛

In general, the Kronecker product matrix  = 𝑥 ⊗ 𝑦 over a 2D 
domain 𝛺 = 𝛺𝑥 ×𝛺𝑦 is defined as 𝑖𝑗𝑚𝑛 = 𝑥𝑖𝑚𝑦𝑗𝑛. We rewrite 

𝐌𝑥 ⊗𝐌𝑦𝐮𝑡+1 =𝐌𝑥 ⊗𝐌𝑦𝐮𝑡 − 𝑑𝑡
𝜕𝑇 (𝑦)
𝜕𝑦

𝐌𝑥 ⊗ 𝐀𝑦𝐮𝑡+

0.1𝑑𝑡𝐒𝑥 ⊗𝐌𝑦𝐮𝑡 + 0.01𝑑𝑡𝐌𝑥 ⊗ 𝐒𝑦𝐮𝑡
(31)

We solve the problem (31) in a loop, with the time step size limited 
by the CFD condition. The solver employs the Kronecker product 
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Table 5
Comparison of PINN and IGA-ADS.
 PINN IGA-ADS  
 Iterations 20,000 (training) 30,000 (time-steps)  
 Time [0,1] (time interval) 𝑑𝑡 = 1𝑒−5 (time-step)  
 Resolution 15 × 15 points (training) 40 × 40 elements (mesh)  
 Approximation 2 layers with 600 neurons quadratic 𝐶1 B-splines  
 Machine A100 google compute engine 11th Gen i5-1150H @ 2.90 HGz  
 Memory 83.48 GB RAM 32 GB RAM  
 Time 15 min 28 min  

properties of the matrices, resulting in a linear computational cost of 
generation and solution of a single time step. 

8.2. Comparison of PINNs with IGA-ADS

We have executed the IGA-ADS code for comparison with the PINN 
code. The snapshots from both simulations are presented in Fig.  26 for 
the summer simulations and in Fig.  27 for the winter simulations. We 
compare the parameters and the requirements of both simulations in 
Table  5. The execution of a single IGA-ADS simulation requires 30,000-
time steps with 𝑑𝑡 = 1𝑒−5. The computational domain is projected into 
[0, 1]2 square, and the time interval is also scaled into [0, 1]. We employ 
a two-dimensional mesh with 40 × 40 finite elements and quadratic 
B-splines of 𝐶1 continuity for discretization. The execution time takes 
around 28 min on a Laptop with 11th Gen Intel(R) Core(TM) i5-11500H 
with 2.92 GHz and 32 GB of RAM. We obtained the same quality results 
as the PINN code after 15 min of training on the A100 Backend Google 
Compute Engine with Python 3 and GPU graphic card equipped with 
83.48 GB of memory.

9. Influence of the pollution propagation in Longyearbyen inhab-
itants

In this section, we investigate the influence of pollution propagation 
on the inhabitants. We compare the results of the survey with the 
conclusions from the simulation results.

9.1. Pollution propagation

By air pollution, we refer to the presence of potentially harmful 
and excessive quantities of such substances in the air that we breathe. 
The presence of these substances, known as pollutants, is natural to 
some extent, but special attention is given to man-made pollutants 
that pose a high risk to humans and, widely speaking, to all liv-
ing organisms, climate, and the environment. Attention is particularly 
given when pollutant concentration is above certain thresholds where 
adverse effects are known to occur, though recent evidence has also 
been documented on the adverse health effects of air pollution at lower 
exposure levels [69].

The WHO guideline for annual average (PM2.5) concentration is 
not greater than 5 μg∕m3, and one of the most recognized frame-
works for measuring and expressing air quality, adopted by (many) 
other countries and organizations globally, i.e., the Air Quality Index 
(AQI) [70] used by the United States Environmental Protection Agency, 
distinguishes the following (PM2.5) concentration levels and its impact 
on health conditions [71] (see Table  1):

• 0–10 μg∕m3: air quality is considered satisfactory (or ‘‘Good’’ using 
AQI nomenclature), and air pollution poses little or no risk;

• 10.1–35.4 μg∕m3: air quality is (‘‘Moderate’’), i.e., acceptable; 
however, some pollutants may pose moderate health concerns for 
a small number of people;
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Fig. 26. Comparison of the PINN with IGA-ADS executed for the summer simulations.
Fig. 27. Comparison of the PINN with IGA-ADS executed for the winter simulations.
• 35.5–55.4 μg∕m3: air quality is considered ‘‘Unhealthy for sensitive 
groups’’, which means that members of sensitive groups (like 
children or elderly people [72]) may experience severe negative 
health effects, but the general population is less likely to be 
affected;

• 55.5–125.4 μg∕m3: air quality is considered ‘‘Unhealthy’’, and ev-
eryone in the exposed population may experience negative health 
effects;

• 125.5–225.4 μg∕m3: air quality is considered ‘‘Very unhealthy’’. 
It usually triggers health alerts since everyone in the exposed 
population may experience serious negative health issues;

• 225.5–500 μg∕m3: air quality is considered ‘‘Hazardous’’, and the 
conditions are considered an emergency situation since the entire 
exposed population is likely to be strongly negatively affected.

When it comes to Norway, the (PM2.5) concentration levels are well 
below the limits set by both the World Health Organization and the 
European Union and among the lowest in Europe. With an annual 
20 
Table 6
AQI categories.
 AQI category AQI values (PM2.5) [μg/m3] 
 (breakpoints)  
 Good 0–50 0.0–10.0  
 Moderate 51–100 10.1–35.4  
 Unhealthy for sensitive groups 101–150 35.5–55.4  
 Unhealthy 151–200 55.5–125.4  
 Very unhealthy 201–300 125.5–225.4  
 Hazardous 301– 225.5–  

average (PM2.5) concentration in the range 5 𝑡𝑜 8 μg/m3, while in the 
larger cities of Oslo and Bergen, it is slightly higher and is 7–8 μg/m3

and 6–7 μg/m3, respectively.
In this paper, we focused on the conditions in Longyearbyen, where 

the pollutants are trapped around the ground level during the Arctic 
nights. We compare the conditions that existed before the old power 
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plant was closed [64], where the pollutants were emitted by the coal-
fired power plant, with the actual conditions, where the newest diesel 
engine power plant emits the pollutants.

9.2. Survey among inhabitants

It is interesting to see how Longyearbyen residents subjectively 
perceive their health and living conditions, especially in terms of air 
pollution. We conducted a survey among randomly selected residents 
of Longyearbyen [73]. The average age of respondents was 36, and 
37% of them were male. Almost every participant claimed to have 
a good (63%) or very good (31%) health status. About one-third of 
the residents live in Svalbard less than one year and about 10% were 
Svalbard residents for more than ten years. Most of them (∼79%) live in 
the city center of Longyearbyen. Nearly half of the respondents (∼46%) 
work physically and have an active lifestyle; however, around 63% 
spend less than two hours outside per day. None of the respondents 
smoke cigarettes, however, 21% experienced respiratory issues, mostly 
during winter months and in the evening or at night. Around 15% 
reported having cough or dyspnoea, and 5% claimed that their health 
problems intensified since moving to Svalbard. So, the first (more 
qualitative than quantitative) conclusion is that around one-fifth of 
respondents reported respiratory issues, mostly during winter months 
and in the evening or at night, i.e., for the periods and seasons where 
the pollutants may not be easily transferred to other areas while being 
trapped around the ground level.

9.3. Conclusions from the computer simulations

The computer simulations of pollution propagation described in our 
article are only qualitative in nature but nevertheless allow us to draw 
the following conclusions. The graph-grammar-based simulations of the 
pollution propagation from the power plants show that due to the 
terrain and the direction and average speed of the wind, most of the 
generated pollution is dispersed in the valley space, up to a height 
of about 100 m (Figs.  18–20). The PINN simulations of the thermal 
inversion, they show that during the Arctic night the thermal inversion 
traps the pollutants near the surface. 

Coal-burning power plant in a winter season generates 200–400 mil-
ligrams of PM2.5 pollutants for every kilogram of coal burned [74–76]. 
Coal combustion at the Spitzbergen power plant reached up to 3.4 tons 
of coal for each hour of power plant operation. As our simulations 
showed, due to the terrain and the direction and average speed of the 
wind, most of the pollution generated by the power plants is dispersed 
in the valley space, up to a height of about 100 m (Figs.  18–20). The 
area over which the pollutants disperse is about 100 km2, multiplying 
by the height of 100 m yields a volume of 107 m3 over which the PM2.5 
particles burned in 4 h disperse (Figs.  19–20). Hence, in 4 h, the power 
plant burns 13,600 kg of coal, which gives an average of 13,600 ⋅300 
= 4,080,000 mg of PM2.5, which disperses in a volume of 107 m3. 
This gives an average concentration of 2.45 milligrams [mg] of PM2.5 
per cubic meter, which is equal to 2450 micrograms [μg] per cubic 
meter (which is considered Hazardous according to AQI Categories, 
see Table  6).  The estimation of the PM2.5 pollution generated by 
the diesel engine power plant in a winter season is the following. A 
1 Mega-Wat [MW] diesel engine power plant operating at full load for 
an hour (assuming the technology with 0.3 gram of PM2.5 emission 
per kilo-Wat-hour [g/kWh] [77]) generates power output of 1000 kilo-
Wat [kW], which results in a PM2.5 emission that can be estimated 
as 1000 ⋅0.3 [g/kWh], which results in 300 gram of PM2.5 per hour 
[g/h]. The diesel power plant at Longyearbyen generates 11 Mega-
Wat [MW] of power [78], which results in a total of 11 ⋅300 ⋅4 =
13,200 gram of PM2.5 per 4 h. Due to the topography and the wind 
condition, this PM2.5 spreads in the valley, contributing to an average 
of 13, 200 ⋅107 gram per m3 = 13,200,000,000 ⋅ 107 microgram [μg] per 
m3 = 1320 μg per m3 (which is also considered Hazardous according to 
AQI Categories, see Table  1). 
21 
10. Conclusions

We presented an original model describing the production of graph 
grammars, transformation sequences of graphs representing a compu-
tational grid, expressing an algorithm for adapting a three-dimensional 
computational mesh that does not generate hanging nodes. The graph 
transformation rules model the Rivara algorithms. Its the idea is to 
break elements along the longest edges and propagate the refinement 
to adjacent elements to avoid hanging nodes in three-dimensional 
computational grids. The graph transformations were used to generate 
a computational grid for simulating pollution propagation from coal-
fired and diesel engine power plants in Longyearbyen, Spitzbergen. 
We also introduce a computational code performing Physics Informed 
Neural Networks simulations of the pollution propagation. The PINNs 
are attractive alternatives for simulations carried out using the finite 
element method. They do not require a time integration scheme and 
do not generate stability problems encountered by time integration. 
On the other hand, successful training of the PINN model is a multi-
objective optimization problem, and it requires guessing several model 
parameters, such as the number of layers of the neural network, the 
number of neurons, the training rate, and the loss function weights 
for training. Some analogies between neural networks and linear and 
higher-order finite element methods can be found in works of [67,68]. 
They enable us to estimate the size of the neural networks. The weights 
of the loss functions for the multi-objective optimization can be deter-
mined automatically using the SoftAdapt algorithm [66]. Nevertheless, 
the actual state-of-the-art PINNs enable, in the authors’ opinion, the 
successful and efficient application of the two-dimensional PINN model 
in engineering applications. From the performed simulations, we can 
estimate that the coal-fired power plant for 4 h in a winter season 
generated a pollution of 2450 PM2.5 micrograms [μg] per cubic meter 
(which is considered Hazardous according to AQI Categories), and the 
diesel based power plant in a winter season generates 1320 PM2.5 
micrograms [μg] per cubic meter (which is also considered Hazardous 
according to AQI Categories).
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