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The dynamic heterogeneous economies studied are described by a collection of heterogenous indi-

viduals, their individual states and an aggregate state, such that the individuals' actions are given

by the policy obtained from an optimization program and the aggregate law of motion is given by

the aggregation of the individuals' actions. These economies have been used in computer simula-

tions, however the analytical information about the equilibria of such economies is scarce and the

classical approach of Stokey and Lucas with Prescott (1989) does not apply. This paper de�nes the

relevant concepts of equilibria and proves the existence of such equilibria using the Schauder Fixed

Point Theorem. In order to apply Schauder's theorem, a metric for the space of operators between

measures is provided, and the compactness of a speci�c operator is proved. Moreover, the existence

of a steady state for the aggregate state of the system is obtained through the Schauder-Tychono�

Theorem. The results are related to models available in the literature.
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1. INTRODUCTION

Stochastic dynamic programming, as the study of optimal solutions to stochastic problems that

evolve with time, may be applied to several areas of research. For instance, to Portfolio Analysis,

as in Hakansson (1970), to inventory control, as in Bellman (1957), or to macroeconomic mod-

els with consumers and producers, as in Stokey and Lucas with Prescott (1989). The dynamic

programming problem studied here, although applicable to the above areas, will be presented in

the macroeconomic setting. The basic competitive dynamic macroeconomic model is given by two

agents: a representative individual, whose behavior is the result of a dynamic maximization pro-

cess through time, and a representative �rm, that maximizes a given function in each time period.

The optimal control process of the representative individual has been usually described by either

the Hamiltonian theory or the recursive programming theory, which is the approach followed here.

The main feature that we want to know about such macroeconomic system is if the system has

equilibria. In this case (since the �rm's problem is static) the equilibrium is an optimal action

function 
(xt) that determines the action taken at time t by the individual when the state of the

system is xt. The existence of equilibria for these economies is well known, and Stokey and Lucas

with Prescott (1989) (SLP henceforth) provides the standard approach for the problem. Although

the above approach provides excellent results to model economic systems, several shortcomings are

apparent. The most evident is the fact that two agents is an extreme simpli�cation of the dynamic

system.

There exists a lot of recent work in macroeconomics that poses incomplete marktet economies

with a continuum of agents. The state variable in these economies includes a probability measure

that describes the individual states of all agents in the economy. Economies of this type includes

Hugget (1993), Aiyagary (1994), Krusell and Smith (1994), Hugget (1997), Casta~neda et al. (1998),

and Storesletten, Telmer and Yaron (2001), just to name a few. Although sometimes existence of

a steady state has been established under particular conditions, these economies are often looked

outside the steady state using a collection of numerical procedures to compute something that looks

like an equilibrium. The existence of such an equilibrium has not been established.

This paper presents a proof of existence of equilibria, and shows that steady states always exists.

Furthermore, the proof uses a recursive representation of the equilibria which relates it closely

to the numerical methods used by researches. The result uses the Schauder �xed point theorem

providing a �xed point of a map that provides new decision rules from old decision rules. The

diÆculty that I overcome lies essentially in the �nding of a topology under which the appropriate

family of functions is equicontinuous. The closest tool available in the literature is the proof of

existence of equilibria with a �nite number of heterogeneous agents studied in DuÆe, Geanakoplos,

Mas-Colell, and McLennan (1994).
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The rest of the paper is organized as follows. Section 2 describes the heterogeneous economy,

de�nes the equilibrium concepts, and states the assumptions. Section 3.1, and 3.2 proves the

existence of the de�ned equilibria. Section 3.3 analyzes the steady state. Section 4 provides the

link with computable heterogenous economies of the literature and comments on previous results

of existence of equilibria. Section 5 concludes. Appendix A de�nes key concepts and summarizes

some basic theorems used in this paper. Appendix B contains technical results. De�nitions and

Assumptions are numbered consecutively. The same holds for lemmas and theorems.

2. THE ECONOMY

The state of a stochastic heterogeneous economy is a collection of elements

(fkitg; fz
i
tg; f�tg)i2I;t2T

where t is an index for time (which is a sequence t 2 N) and i is an index for individuals (which lives

in the interval [0; 1]). kit is the state of individual i at time t, z
i
t is the individual stochastic shock for

agent i, and �t is the aggregate state of the system. The future individual state k
i
t+1 is the action

taken by individual i, which is the result of a stochastic maximization problem under constraints.

The maximization problem can be stated as a stochastic dynamic program whose solution is given

by solving the Bellman's functional equation (which will be called the BE problem hereafter)

(B f)(kit; z
i
t ; �t) = sup F (kit; z

i
t ; �t; k

i
t+1) + �E(f(kit+1; z

i
t+1; �t+1)jz

i
t)

subject to k
i
t+1 2 
(kit; z

i
t ; �t)

�t+1 = G(�t);

where the variable (kit; z
i
t; �t) � s

i
t lives in the space K � Z � P � S. The real function f is in

the space V and B is an operator B : V!V. We always take the discount factor � 2 (0; 1).

The dynamics of individual shocks z
i
t follows an exogenous process described by a transition

function �(z;A) which provides the probability for zt+1 2 A given that zt = z. Therefore,

E(f(kit+1; z
i
t+1; �t+1)jz

i
t) =

R
Z
f(kit+1; z

i
t+1; �t+1)�(z

i
t ; dz

0). The aggregate state �t is a probabil-

ity measure �t 2 P over the individuals' variables (kit; z
i
t) 2 K �Z. The dynamics of the aggregate

measure is given by the integral operator G : P!P, with kernel �(k; z;A1; A2;�) given by

(G�)(A1; A2) =

Z
K�Z

�(k; z;A1; A2;�) �(dk; dz): (1)
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The solution of the equation BE is a �xed point v, such that Bv = v. Given the �xed point v,

we obtain from it the (possibly multivalued) optimal policy function 
 by


(s) = fk0 2 
(s) j v(s) = F (s; k0) + �E(v(k0; z0; �0)jz); �0 = G(�)g (2)

where the function 
 lives in some space F and provides the optimal action to be taken by individual

i at time t when the state is sit. The optimal policy 
 determines the dynamics of the individual

variables, and will be called an individual equilibrium of the system. An aggregate equilibrium

have to satisfy also a restriction that links the policy 
 with the dynamics of the aggregate state

�.

The following de�ntion provides a precise description of concepts of equilibria and steady state

that will be analyzed. Assumption 2 describes the basic spaces K, Z, and X, and families of

subsets on them, as well as the function �. The lemmas and theorems below are proved under such

assumptions. See Appendix A for a de�nition of the Feller property. De�nition 3 describes the

spaces of functions de�ned on the basic spaces. De�nition 4 adds a wider space S.

De�nition 1:

(i) An individual equilibrium to the BE problem is an optimal policy 
 provided by the �xed

point v to the problem, as it is given in (2).

(ii) An aggregate equilibrium to the BE problem is an individual equilibrium 

� that generates

sequences fkitg that are consistent with the rest of the sequences fzitg, and f�
i
tg.

(iii) An aggregate steady state is a pair (
�; ��) such that 
� is an aggregate solution and �
� is a

constant value for the aggregate equilibrium.

Assumption 2:

(a) The individual state k is in K, a convex compact Borel subset of a euclidean space RN . The

Borel sigma-algebra ofK is K. The individual shock z is in Z, a compact Borel subset of a euclidean
space RM . The Borel sigma-algebra of Z is Z. Denote K �Z � X and the product sigma-algebra

K �Z � X .
(b) The function � : Z � Z![0; 1] is a transition function for the process fzitg, i.e. �(�;A) is a

probability measure, and �(z; �) is a measurable function. The transition function � has the Feller

property.

De�nition 3:

(a) The space C is C = fg : X!R j is continuousg.
(b) The space M is M = f� : X!R j is �nite regular Borel signed measureg.
(c) The space P is P = f� : X![0; 1] j is probability measureg.

De�nition 4: De�ne K � Z �P � S.

(a) The space V is V = ff : S!R j is continuousg.
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(b) The space G is G = fG : P!P j is continuousg.
(c) The space F is F = f� : S!K j is continuousg.

The topology for the space P is de�ned in Appendix B. An important point is that this topology

makes P a compact metric space and then X and S are compact metric spaces in the product

topology. The topology on F de�ned by

jjf jj
1
=

NX
i=1

jjfijj1; jjfijj1 = sups2Sjfi(s)j

where f = (f1; :::; fN ), makes (F ; jj�jj1) a Banach space. In all cases continuity is understood with

respect to the product topology. One more topology will be de�ned for the space G, when we need

it. Note that the domains X and S are compact and then continuous functions on X or S are

bounded. Note also that if f is a continuous function on X or S then it is Borel measurable, and

since f is bounded then it is (�nitely) integrable with respect to any �nite measure. Note that the

relevant sigma-algebra for [0; 1] is the Borel one.

The following assumption provides conditions on F , 
 and �. The conditions on F and 
 are

close to the ones given in SLP, as one would expect.

Assumption 5:

(a) The correspondence 
 : S!K is non-empty, compact-valued and continuous.

(b) The function F : S � K!R is bounded and continuous, and for all � 2 (0; 1), z 2 Z, and

� 2 P,

F (�x+ (1� �)x0; z; �; �y + (1� �)y0) � �F (x; z; �; y) + (1� �)F (x0; z; �; y0)

and the inequality is strict if x 6= x
0.

(c) For all z 2 Z; � 2 P, if k01 2 
(k1; z; �), k
0

2 2 
(k2; z; �), then �k
0

1 + (1� �)k02 2 
(�k1 + (1�
�)k2; z; �).

(d) The kernel � depends on the transition function � and on a given function � 2 F , in the form

�(k; z;A1; A2;�) = �(z;A2)�(�(k; z; �);A1) (3)

where �(x;A) is the indicator function with value 1 if x 2 A and 0 otherwise.

Now we have a precise description of the elements, and in the following lines we comment the

de�nitions of equilibria. The individual equilibrium 
 becomes an aggregate equilibrium, say 

�,

when it provides a law of motion for the individual variable kt that is consistent with the law of

motion of the aggregate state �. This de�nition is the natural one if we interpret the aggregate

state � as a measure on the states k, so it naturally links the dynamics for k obtained from the

5



optimization process with the dynamics assumed for �. Formally, with the kernel de�ned in (3)

the function G de�ned in (1) becomes

(G(�; �))(A1; A2) =

Z
K�Z

�(z;A2)�(�(k; z; �);A1) �(dk; dz) (4)

so it is parametrized by a function � 2 F . The individual equilibrium to problem BE provides an

optimal policy 
 as a function of the initial policy � , say �(�) = 
� . The aggregate equilibrium 

�

can be de�ned as the �xed point of the function �, i.e. �(�) = 
� = � . For this �xed point the

kernel �(z;A2)�(�(k; z; �);A1) provides a dynamics for � that is consistent with the dynamics of

the individual k.

3. EXISTENCE OF EQUILIBRIA

Once we have de�ned the problem posed by a heterogeneous economy, the question is if there

exist solutions to the problem, i.e. if there exists equilibria. We will see in Section 3.1 that the

assumptions de�ned in Section 2 guarantee the existence of individual equilibria. The question of

aggregate equilibria has an answer in Section 3.2 We also guarantee the existence of a steady state

in Section 3.3.

3.1. The Optimal Policy Function

Theorem 3 proves the existence and uniqueness of the individual equilibrium associated with the

BE problem. The scheme of the proof follows SLP (1989) i.e. a Theorem of the Maximum ensures

a smooth behavior of the operator B. Lemma 1 states that G(�; �) � G� is a well de�ned operator

G� : P!P. Lemma 2 states that G belongs to G. Note that since the kernel � depends on the

measure �, then G� is a non-linear operator.

Lemma 1: For any �xed � 2 F and any � 2 P the value G(�; �) is in P.
Proof:

By assumption �(k; z;A1; A2;�) = �(z;A2)�(�(k; z; �);A1). Since � 2 F then for any (k; z; �) 2 S

and A 2 K, the function �(�(k; z; �);A) is measurable. Since �(z; �) is a transition function then the
proof of SLP Theorem 9.13 proves that �(k; z; �; �;�) 2 P and that �(�; �;A1; A2;�) is measurable.
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Therefore, as a set function � : X![0; 1], we have � � 0, �(;) = 0, �(k; z;K;Z;�) = 1. Write

�
0 = G(�; �), then along the lines of SLP Theorem 8.2 we have �0 � 0 �0(;) = 0, �0(K;Z) = 1, and

�
0 is countably additive, and so �0 2 P. Q.E.D.

To prove the following lemma we use that (P;T �) is metrizable as explained in Appendix B. A

speci�c metric will be introduced later.

Lemma 2: For any �xed � 2 F , the function G(�; �) 2 G.
Proof:

We prove that �n
w
!� implies �0n

w
!�

0, where �0n = G(�n; �). We write the integral
R
f d�

0

n asZ
K;Z

f(k; z) �0n(dk; dz) =

Z
K;Z

f(k; z)

Z
eK;eZ �(ez; dz)�(�(ek; ez; �n); dk) �n(dek; dez):

Now we can write j
R
f d�

0

n �
R
f d�

0j as

j

Z
eK;eZ

Z
Z

Z
K

f(k; z)�(�(ek; ez; �n); dk)�(ez; dz)�n(dek; dez)
�

Z
eK;eZ

Z
Z

Z
K

f(k; z)�(�(ek; ez; �); dk)�(ez; dz)�(dek; dez)j :

We need the following result. The indicator function �(y;B) is a probability measure if B 2 K,
then for any positive integrable function f+(k) which is the pointwise limit of an increasing sequence

of simple functions 2 we have

Z
K

f
+(k)�(y; dk) =

Z
limm

NmX
i=1

�m;i�(k;Em;i)�(y; dk)

= limm

NmX
i=1

�m;i

Z
�(k;Em;i)�(y; dk) = limm

NmX
i=1

�m;i�(y;Em;i) = f
+(y);

since
R
�(k;Em;i)�(y; dk) =

R
Em;i

�(y; dk) = �(y;Em;i), and where the Monotone Convergence

Theorem allows us to commute the limit and the integral.

Now we apply the result to the decomposition f = f
+ � f

� where f+ = maxff; 0g and f
� =

maxf�f; 0g, to get j
R
f d�

0

n �
R
f d�

0j as

j

Z
eK;eZ

Z
Z

f(�(ek; ez; �n); z)�(ez; dz)�n(dek; dez)�
Z
eK;eZ

Z
Z

f(�(ek; ez; �); z)�(ez; dz)�(dek; dez)j
= j

Z
eK;eZ h(ek; ez; �n)�n(dek; dez)�

Z
eK;eZ h(ek; ez; �)�(dek; dez)j

2i.e. f+(k) = limm �m(k), where �m(k) =
P

Nm

i=1
�m;i�(k;Em;i), Em;i 2 K, and �m � �m�1 � 0.
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where h(ek; ez; �n) = R
Z f(�(

ek; ez; �n); z)�(ez; dz) is a continuous function of (ek; ez; �n) since f and �

are continuous functions on compact domains, and so they are uniformly continuous. Then

j

Z
f d�

0

n �

Z
f d�

0j = j

Z
h(ek; ez; �n)�n(dek; dez)�

Z
h(ek; ez; �)�(dek; dez)j �

j

Z
h(ek; ez; �n)�n(dek; dez)�

Z
h(ek; ez; �n)�(dek; dez)j

+j

Z
h(ek; ez; �n)�(dek; dez)�

Z
h(ek; ez; �)�(dek; dez)j �

j

Z
h(ek; ez; �n)�n(dek; dez)�

Z
h(ek; ez; �n)�(dek; dez)j

+

Z
jh(ek; ez; �n)� h(ek; ez; �)j�(dek; dez) � "1 + "2

and "1 goes to zero as �n
w
!�, by de�nition of weak convergence, and "2 goes to zero as �n

w
!�,

because h is continuous. This completes the proof. Q.E.D.

The following theorem proves the existence of an individual equilibrium for problem BE.

Theorem 3: (Existence and Uniqueness of the Optimal Action Function) The operator B, given

in the BE problem, maps V into V, and has a unique �xed point v 2 V. The optimal action

correspondence 
 2 F , de�ned by v as in (2), is a continuous function.

Proof:

Using the terminology of the Theorem of the Maximum in Appendix A, de�ne S = K � Z � P,
R = K � Z � P � K. For s 2 S, we write �(s) = (k; z; �;
(k; z; �)), and for r 2 R, we write

�(r) = F (k; z; �; k0)+�E(f(k0; z0; G(�; �))jz). By Lemma 2 G is continuous so f is continuous and

the same argument that the one in SLP Lemma 9.5, can be used for any compact metric space.

Therefore � is a continuous function on a compact domain so its maximum is attained, hence by

the Maximum Theorem B : V!V. It is clear that B is a contraction of modulus �, then by the

Banach Contraction Theorem, B has a unique �xed point v 2 V. The Theorem of the Maximum

implies that the optimal action function 
 is an u.h.c. correspondence. Denote V 0 the subspace of V
of concave functions, and V 00 the subspace of V 0 of strictly concave functions. Now if f(�; z; �) 2 V 0

then Bf 2 V 00 from Assumption 5 (b) along the lines in SLP Theorem 9.8. Then, the unique �xed

point v is in V 00 and since F is concave and 
 is convex the optimum is attained at a unique k0,

hence 
 is single valued, and therefore a continuous function. Q.E.D.

3.2 The Aggregate Equilibria
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Once we have the individual solution to problem BE we can attack the problem of an aggre-

gate equilibrium. The tool here is the Schauder Fixed Point Theorem. Two di�erent versions

of Schauder's theorem are presented in Appendix A, the Schauder Theorem and the Schauder-

Tychono� Theorem, and both will be used. The �rst can be found in Dugundji and Granas (1982)

while the second is in Dunford and Schwartz (1958).

In order to prove the existence of a �xed point for the function �, we study the continuity of �.

Let us write � : F!F as � = �2 Æ �1, such that �1 : F!G, maps � 7! G(�; �), and �2 : G!F ,
maps G(�; �) 7! 
� . The continuity of � is implied by the continuity of �1 and �2.

The topology relevant for F is the one de�ned by jj�jj
1
. The space (P;T �) can be metrized by

�(�; �), as explained in Appendix B. De�ne a metric for G by

�(G;H) = sup�2P �(G(�);H(�)):

Since P is compact with T �, � is continuous in the product topology de�ned by itself, and G;H

are in G, then sup is attained and � is well de�ned. The topology relevant for G is the one de�ned

by �.

Lemma 4: The function �1 : F!G, which maps � 7! G(�; �), is continuous.
Proof:

We want to see that �n!� in jj�jj
1
implies G(�; �n)!G(�; �) in the topology de�ned by �. Denote

�
0

n � G(�; �n) and qi(�
0

n � �
0) � j

R
fi d(�

0

n � �
0)j where ffigi2I is a countable separating subset of

the space (C; jj�jj
1
) as explained in Appendix B. Now qi(�

0

n � �
0) becomes

j

Z
K;Z

fi(k; z)�
0

n(dk; dz) �

Z
K;Z

fi(k; z)�
0(dk; dz)j =

j

Z
K;Z

Z
eK;eZ fi(k; z)�(ez; dz)

�
�(�n(ek; ez; �); dk) � �(�(ek; ez; �); dk)��(dek; dez)j =

j

Z
eK;eZ

Z
Z

�
fi(�n(ek; ez; �); z) � fi(�(ek; ez; �); z)��(ez; dz)�(dek; dez)j =

j

Z
eK;eZ

Z
Z

�
(
@

@k
fi(k

0
; z))(�n(ek; ez; �)� �(ek; ez; �))��(ez; dz)�(dek; dez)j

where the last two lines follow the steps of Lemma 2 and apply The Mean Value Theorem to obtain

the result for some k0 2 K.

Although the separating family ffig is not equicontinuous, it is enough for our purpose to re-

label the sequence of functions such that the slope f
0

i(�; z) grows at a slow enough rate. The

polynomials with rational coeÆcients is a separating subset, which can be denumerated such that
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supk;zj(@=@k)fi(k; z)j � �(i)Bi�, where �(i) grows linearly with i and B is a bound with 0 < � < 1.

See Appendix B for the proof of this statement. In this case qi(�
0

n � �
0) is

qi(�
0

n � �
0) �

Z
eK;eZ

Z
Z

f
0

i(k
0
; z)j�n(ek; ez; �)� �(ek; ez; �)j�(ez; dz)�(dek; dez)

� �(i)Bi�

Z
eK;eZ

Z
Z

j�n(ek; ez; �)� �(ek; ez; �)j�(ez; dz)�(dek; dez) � �(i)Bi�
"

where " is as small as we want since �n!� uniformly. Therefore, if we take M = B in the de�nition

of the metric � and apply the ratio test to the series
P
1

i=0 �(i)B
�i+i� (as is suggested by Lemma

B.3) we obtain

sup�2P

1X
i=0

B
�i qi(G(�; �n)�G(�; �n))

1 + qi(G(�; �n)�G(�; �n))
�

1X
i=0

B
�i �(i)Bi�

"

1 + �(i)Bi�"

� "

1X
i=0

B
�i+i�

�(i) � " B

for some constant B that does not depend on the measures �n; � nor the functions �n; � . Therefore

G(�n; �)!G(�; �) with respect to �. Q.E.D.

Lemma 5: The function �2 : G!F , which maps G(�; �) 7! 
� , is continuous.

Proof:

We should understand the problem BE as a particular case of a problem BE' given by

( eB ef)(kit; zit ; �t; G� ) = sup F (kit; z
i
t; �t; k

i
t+1) + � E

� ef(kit+1; zit+1; �t+1; G� )jz
i
t

�
subject to k

i
t+1 2 
(kit; z

i
t ; �t)

�t+1 = �(G� ; �t)

where (kit; z
i
t ; �) 2 S and G� � G(�; �) 2 G. If we denote W = ff : S�G!R j is continuousg, then

V � W. Now we have eB :W!W, and B : V!V.
Assume for the moment that the function �(G� ; �) is a continuous function of (G� ; �), then

along the lines of Theorem 3, the solution to BE' provides an optimal action function e
 which

is a continuous function of (k; z; �;G� ). If we consider �(G� ; �) = G� (�) then the problem BE'

coincides with the problem BE, and the optimal action 
� (k; z; �) of problem BE equals the optimal

action e
 of problem BE', and e
(�; �; �; G� ) 2 V. Since e
 is a continuous function of G� , the result is

proved.

Let us prove that the function � : G � P!P, which maps (G� ; �) 7! G� (�), is a continuous

function of (G� ; �). Let us �x G 2 G; � 2 P. Assume sequences fGng and f�mg such that Gn!G

and �m!� as n;m!1, in the respective metrics � and �. Then

�(Gn(�m); G(�)) � �(Gn(�m); G(�m)) + �(G(�m); G(�)):

10



The �rst term is smaller or equal than �(Gn; G), so goes to zero because Gn!G with �. The

second goes to zero by continuity of G (as we saw in Lemma 2) and because �n!� with �. So �

is continuous and this completes the proof. Q.E.D.

Now we prove that there exists a function 

� 2 F such that �(
�) = 


�. In other words, the

function � : F!F has a �xed point 
�. The following Lemma provides an auxiliary result.

Lemma 6: The family of functions �(F) is an equicontinuous family.

Proof:

Note that the family f
� j � 2 Fg provided by � : F!F , which maps � 7! 
� , is an equicontinuous

family if the function 	 : S �F!K, which maps (s; �) 7! 
� (s), is a continuous function.

We have seen in Lemma 5 that e
 is a continuous function of (k; z; �;G� ) and G� is continuous in

� , so (s; �) 7! (s;G� ) 7! e
(s;G� ) provides a continuous function. Q.E.D.

Theorem 7: The function � : F!F has a �xed point 
� such that �(
�) = 

�.

Proof:

To prove the existence of such a �xed point we apply the Schauder �xed point theorem, stated

in Appendix A. Note that (i) �(F) is an equicontinuous family, and (ii) �(F) is bounded, since
jj
� jj1 � supk2Kjkj, then by Arzela-Ascoli Theorem, �(�) is compact.

De�ne A = �(F) and C1 = co(A) = co(A). Note that C1 is the closed convex hull containing

A, and in a Banach space, as our (F ; jj�jj
1
), if A is a compact set, then the closed convex hull

containing A, co(A), is also compact. Now consider � : C1!C1 then �(C1) is a compact map,

hence the Schauder �xed point theorem may be applied, which provides the result. Q.E.D.

3.3. The Aggregate Steady State

The proof a the existence of a steady state rests on the results obtained in Section 3.1 on the

function G� : P!P.

Consider the operator T � : P!P de�ned by

(T ��)(A1; A2) =

Z
K�Z

�(z;A2)�(�
0(k; z);A1) �(dk; dz)

where � 0 is a function �
0 : K � Z!K, and � and � are as given in Assumption 2 and 5. Since

T
� : P!P, and � has the Feller property, then T

� is a continuous linear operator, and in this case

11



the existence of a �xed point ��, such that T ��� = �
�, is provided in SLP Theorem 12.10. The

�xed point measure �� is obtained by taking the sequence f 1
N

PN�1
n=0 T

�n
�0g for any initial measure

�0 on a compact set X and applying duality arguments for the linear operator T �.

The operator G de�ned in (4) is a nonlinear operator, which prevent us from using the usual

duality arguments. However, the existence of an invariant measure �� such that G� (�
�) = �

� can

still be proved by applying the Schauder-Tychono� Fixed Point Theorem stated in Appendix A.

The Schauder-Tychono� Theorem provides an extension of the Schauder Theorem from normed

spaces to locally convex linear topological spaces (LTS). This is exactly what we need, since the

T � topology makes (M;T �) a locally convex LTS.

Theorem 8: Let G� be the operator G� : P!P de�ned in (4). There exists a measure �� 2 P
such that G� (�

�) = �
�.

Proof:

The proof reduces to check the hypotheses of the Schauder-Tychono� Theorem. The T � topology
is a locally convex topology (see for instance Rudin (1973) Theorem 3.10) and the space of measures

P is a compact convex subset of M in the topology T �. Since we have proved in Section 3.1 that

the operator G is a continuous operator, then the required hypotheses hold and then the operator

G� has a �xed point ��, such that G� (�
�) = �

�. Q.E.D.

4. HETEROGENEOUS ECONOMIES

The purpose of this section is to provide a link with the computable heterogenous economies

studied elsewhere and with the results of existence of equilibria available in the literature. Three

examples are presented, and the solutions proposed by some authors are described. These examples

are also helpful to give content to the general functions de�ned above. In the examples the aggregate

state variable � is naturally identi�ed with a probability measure over some domain, and then the

relation between the dynamics of � and the dynamics of the individual states kit (and the aggregate

equilibrium) becomes apparent.

4.1. The Simplest Production Economy

12



In this example we consider a very simple non-stochastic production economy. In this economy

there are a continuum of consumers, all identical in everything, that own an amount kt of capital,

and at each time period choose either to consume or to invest a fraction of their income. The

individuals solve their problem taking as given the capital per capita of the economy, say xt, and

the policy function of the others, say �(�). Speci�cally, the income consist in the payment of wages

f(xt)� xtf
0(xt) and the income from capital ktf

0(xt), and the BE becomes

(B f)(kit; xt) = sup U(wt + (1 + rt)k
i
t � k

i
t+1) + �f(kit+1; xt+1)

subject to k
i
t+1 2 [0; wt + (1 + rt)k

i
t]

xt+1 = �(xt)

where (1 + rt) = f
0(xt) and wt = f(xt) � xtf

0(xt). In this economy (with no distortions) the

equilibrium is the one provided by the optimally planned economy with no prices by substituting

wt + rt = f(xt), and the problem �ts into the Ramsey classical problem solved by the methods of

SLP.

If a tax � on capital income is introduced in this economy, and the proceeds returned to the

consumers as a lump-sum transfer T , the problem becomes

(B f)(kit; xt) = sup U(wt + (1� �)(1 + rt)k
i
t + T � k

i
t+1) + �f(kit+1; xt+1)

subject to k
i
t+1 2 [0; wt + (1 + rt)k

i
t + T ]

xt+1 = �(xt)

where T = �xtf
0(xt). In this case the Euler equation shows that the problem is not equivalent to

the Ramsey problem and the existence of a solution (in our terminology, an aggregate solution)

is not guaranteed by the classical results. Chapter 14 in SLP is devoted to the analysis of this

economy, and we provide here an alternative solution directly from the results obtained above. In

this case

(G(�; �))(A) =

Z
X

�(�(x;�); A) �(dx)

and the measure �t becomes the Dirac measure Æx;t degenerate at point x and the function � reduces

to the aggregate savings function of the economy and G(�; �) merely updates the state xt using � .

4.2. An Endowment Heterogeneous Economy
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The economy in this case is similar to the endowment economy studied in Huggett (1993). In this

case there is a continuum of agents I = [0; 1] and time is discrete T = f0; 1; 2; :::g. In each period t,

each agent receives an exogenous endowment zit that can be consumed to increase the utility U(cit),

or invested to increase the amount of assets kit. Since the endowment is perishable, there are no

more uses for it. The aggregate state �t is a probability distribution over the space K�Z of capital

and shocks through the individuals, with associated sigma-algebras K and Z. The total amount of
assets kit of each individual produces q(�)kit. If we substitute consumption c

i
t of the individual in

terms of the future capital kit+1, the individual's problem can be stated in the following terms

(B f)(kit; z
i
t ; �t) = sup U(q(�t)k

i
t + z

i
t � k

i
t+1) + �E(f(kit+1; z

i
t+1; �t+1)jz

i
t)

subject to k
i
t+1 2 [0; q(�t)k

i
t + z

i
t]

�t+1 = G(�t)

where ki0 > 0 for all i, and for all t 2 T; i 2 I we have kit 2 [0; k] for some k > 0. The random shock

z
i
t follows a Markov process (the same for all i) with transition matrix � : Z �Z ! [0; 1], given by

�(z;A) = Prob(zit+1 2 Ajzit = z).

In this problem the dynamics of the aggregate state �t+1 = G(�t) is given by

�t+1(A1; A2) =

Z
K�Z

P (k; z;A1; A2) �t(dk; dz) (5)

where P (k; z;A1; A2) is a Markovian transition function P : (K � Z)� (K �Z)! [0; 1].

An individual equilibrium for this problem is an optimal action function 
(k; z; �), for each in-

dividual that provides the consumption ct when the state is (k; z; �). The individual equilibrium

induces sequences of capital for each individual kit, and with the function � we obtain a Markov

process for kit and z
i
t with transition function �(k; z;A1; A2) = �(z;A2)�(
(k; z; �);A1). The ag-

gregate equilibrium is obtained when the transition function �, provided by the optimal action 
,

coincides with the transition function P that de�nes G(�), and the aggregate restrictions hold. The

aggregate steady state is given by an aggregate state �� plus an individual function 

�, such that

�
� is stable for the transition function G, i.e. G(
�;��) = �

�.

The solution proposed by Huggett is a steady state equilibrium (��; 
�). In this case the problem

of �nding the aggregate equilibrium 

� is greatly simpli�ed because the constraint 
 can be written


(kit; z
i
t ; �t) = [0; q�1kit+z

i
t] for a �xed constant function q(�) = q, which is, of course, a continuous

function of �. This fact is crucial for the solution of the problem. Huggett proposes the following

algorithm to �nd the steady state: (i) solve the individual problem with a �xed value q� to obtain

the optimal action 
, (ii) obtain a �xed point �� = G(
;��) where the transition � is provided

by the equilibrium 
, (iii) check a set of aggregate restrictions R(��) = 0. If they hold then 


de�nes the aggregate solution 

�. If they do not hold go to (i) and update q�. Note that step (i)

14



is a standard solution of recursive dynamic optimization, since the problem becomes parametrized

by q, and the solution is justi�ed by the methods of SLP. Step (ii) is more complicated since to

obtain a �xed point it is needed more stringent conditions. In particular, in SLP or Hoppenhayn

and Prescott (1989) compactness of the domain of measures is needed in order to obtain a unique

state �� associated with 
. To prove such compactness, Huggett imposes conditions on q
� and the

transition � that guarantee a compact domain for kit. In other words, the conditions guarantee an

endogenously determined bound k for the accumulation of capital.

As we see, the individual solution and the steady state (the aggregate solution is implicit) can be

solved by basic methods because 
 and G are very simple functions, 
 depends only on q which is a

constant function of � andG is a linear operator on � given byG(�) =
R
�(z;A2)�(
(k; z);A1)�(dk; dz).

Finally, the storage-technology economy (q(�t) constant) of this section becomes a monetary

economy if we allow q(�t) to vary. This amounts to a constraint 
(kit; z
i
t ; �t) changing with �t,

which is the case of the next section.

4.3. A Production Heterogeneous Economy

The following production economy is basically the one presented in Huggett (1997), Aiyagary

(1996), or Krusell and Smith (1998). The individuals are described at time t by their capital assets

k
i
t and its individual shocks z

i
t that a�ect its wages wt. They choose their consumption c

i
t by solving

the problem

(B f)(kit; z
i
t ; �t) = sup U(zitwt + (1 + rt)k

i
t � k

i
t+1) + �E(f(kit+1; z

i
t+1; �t+1)jz

i
t)

subject to k
i
t+1 2 [0; zitwt + (1 + rt)k

i
t]

�t+1 = G(�t)

and k
i
t � 0. In this case the constraint set 
(kit; z

i
t ; �t) is [0; z

i
twt + (1 + rt)k

i
t], and the variables

wt and rt depend on the aggregate state �t in the form wt = f(kt)� ktf
0(kt), and rt = f

0(kt)� 1,

and where kt =
R
K�Z k �t(dk; dz). Note that in this particular case the restriction 
 depends only

on k, i.e. the mean of the distribution �t, as noted in Krusell and Smith (1998). The dynamics

of the aggregate state is as in the past example. In this case wt and rt are the competitive prices

of labor and capital, obtained by a �rst order condition of a maximizing �rm. Note also that in

this model there are no aggregate uncertainty, since the agents only have uncertainty with respect

15



to their individual shocks. However, it is straightforward to extend the model presented here by

including an aggregate shock �t 2 Y , for instance in the aggregate production function obtaining

f(kt; �t), such that now we have S = K � Z � Y �P.
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5. CONCLUSIONS

The workhorse of classical macroeconomic theory has been the representative agent economies,

where the representative agent solves a dynamic optimization problem subject to constraints. The

theory that justi�es the existence of equilibria for those economies has been developed by several

authors, and is presented in Stokey and Lucas with Prescott (1989). In recent years the models

have been extended to richer environments where economies are composed of a continuum of agents.

There are a number of simulations experiments for those economies (see the references in Section 4)

but a lack of analytic results for them. In the same way that representative economies are examples

of more general problems, the heterogeneous economies are particular cases of more general dynamic

programming problems, de�ned as heterogeneous systems. The theory developed here provides a

framework to study such heterogeneous systems.

An heterogeneous system is de�ned by a collection of individuals, individual states and aggregate

states, through time, such that the individual states change according to a dynamic optimization

process and the aggregate state updates according to the individual behavior. This paper de�nes

two di�erent concepts of equilibria for those systems, and proves the existence of them under some

conditions. The results obtained in Section 3 are applied to the heterogeneous economies provided

in Section 4. In those cases the proof of the existence of equilibria is important to guarantee that

the computer simulations performed for these type of models, approach solutions that exists.

As it use to be the case, existence of equilibria is proved through a �xed point theorem. The main

diÆculty in this case is to provide a suitable space where the �xed point can be found. This is

done by metrizing the space of measures and de�ning in it the appropriate functions that represent

the problem of a heterogenous system. Since we obtain an in�nite dimensional space Schauder

Theorem is used, and in this case it is required that the function not only is continuous, but also

compact. A related �xed point theorem, Schauder-Tychono� Theorem, guarantees the existence of

a steady state for the aggregate state of the system.
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APPENDIX A

The terminology used in this paper is standard in mathematical analysis. For instance, the closure

of a subset A � X of a topological space X is denoted A, its convex hull is co(A), etc. In order to

refresh some concepts, this appendix provides some basic de�nitions and important theorems that

are used in this paper. For any other term (contractive function, locally convex linear topological

space, equicontinuity, algebra, etc.) the reader may consult Reed and Simon (1980) or Dunford

and Schwartz (1958).

Given a mapping between topological spaces X and Y , the term function will be used for a point

valued mapping, say � : X!Y , whereas correspondence will mean a set valued mapping, denoted

� : X!}(Y ), where }(Y ) is the power set of Y .

De�nition A.1: Let � : X!}(Y ) be a correspondence.

(1) � is upper hemi-continuous (u.h.c.) at x0 2 X if for each open subset V � Y , with �(x0) � V ,

exists U � X, with x0 2 U , such that y 2 U implies �(y) � V .

(2) � is lower hemi-continuous (l.h.c.) at x0 2 X if for each open set V � Y , with V \�(x0) 6= ;,
exists U � X, with x0 2 U , such that y 2 U implies �(y) \ V 6= ;.
(3) � is continuous at x0 2 X if it is both upper and lower hemi-continuous.

De�nition A.2: The correspondence � : X!}(Y ) is upper hemi-continuous (or lower hemi-

continuous) written u.h.c. (or l.h.c.) if it is u.h.c. (or l.h.c.) at each point x 2 X.

Theorem: (Theorem of the Maximum, Berge (1963) Ch.6)

Let X and Y be topological spaces. Assume � : Y!R is a continuous function, and � : X!}(Y )

is a continuous corresponcence with compact values and with �(x) 6= ; for all x 2 X. De�ne

M(x) = max f�(y) j y 2 �(x)g


(x) = fy 2 �(x) j �(y) =M(x)g :

Then M(x) is a continuous function and 
(x) is an u.h.c. corresponcence.

Theorem: (Banach Contraction Theorem, Dugundji and Granas (1982) I.1.1)

Let (X; d) be a complete metric space and F : X!X a contractive function. Then F has a unique

�xed point x0 and F
n(x)!x0 as n!1 for each x 2 X.

De�nition A.3: A continuous function F : X!Y between Hausdor� topological spaces X and

Y is called compact if F (X) is a compact subset of Y .

Theorem: (Schauder Fixed-Point Theorem, Dugundji and Granas (1982) II.4.3 Theorem 3.2)
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Let C be a convex subset of a normed linear space E. Each compact map F : C!C has at least

one �xed point.

De�nition A.4: A topological space X is said to have the �xed point property if for every

continuous function f : X!X, there exists a x 2 X with x = f(x).

Theorem: (Schauder-Tychono� Fixed-Point Theorem, Dunford and Schwartz (1959) Ch.V)

A compact convex subset of a locally convex linear topological space has the �xed point property.

Theorem: (Arzela-Ascoli Theorem)

Let X be a compact metric space and C(X) = ff : X!R j is continuousg. A subset A � C(X)

is compact i� it is closed, bounded and equicontinuous.

De�nition A.5: (Feller property) A transition function � : Z �Z![0; 1] has the Feller property

if the associated operator T�, de�ned (T�f)(z) =
R
f(z0) �(z; dz0), maps CZ into CZ , where CZ =

ff : Z!R j is continuousg.

De�nition A.6: Let F = ffg be a family of functions f : X!Y . The family F separates points

of X if for all x; x0 2 X, x 6= x
0, exists f 2 F such that f(x) 6= f(x0).

De�nition A.7: Let CX be the algebra of real functions f : X!R. Let F = ffg be a subset of
CX . The algebra generated by F , alg(F ), is the unique smallest subalgebra of CX containing F .

Note that alg(F ) can be described as the set of all �nite linear combinations of reals and functionsPN
i=1 aifi;1 � � � fi;Mi

, for ai 2 R and fi;j 2 F .

Theorem: (Stone-Weierstrass Theorem, Reed and Simon (1980) Theorem IV.9)

Let X be a compact topological space. Let CX be the algebra of functions f : X!R. Let F be a

family of functions F � CX . If F contains 1 (the identity element) and separates the points of X,

then the algebra generated by F , alg(F ), is dense in CX .
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APPENDIX B

As we saw, the aggregate state � is a probability measure on some sigma-algebra. In order to deal

with problems involving such measures, we will endow the space of measures with the structure of

a metric space. The purpose of this appendix is to detail the process.

De�ne C, (X;X ), M, and P as in Section 2. Note that C is a real vector space. Denote R

the real line, and Q the set of rational numbers. The space C is a Banach space with the norm

jjf jj
1

= supx2X jf(x)j. We know from the Riesz Representation Theorem that C� is isometrically
isomorphic to M. The weak* topology T � de�ned on M by C has as a local base the open sets of

the form

U
f1;:::;fN
"1;:::;"N

(�) = f� j j

Z
fid� �

Z
fid�j < "i; i = 1; :::; N ; fi 2 Cg:

The space (M;T �) is not metrizable, but the space (P;T �) is it. It should be recalled that (P;T �)
is a compact space. See for instance Parthasarathy (1967) Th.6.7.

The topology of the space (P;T �) is the one that provides the usual weak convergence of proba-

bility measures. This convergence will be denoted �n
w
!�. Recall that �n

w
!� i� 8" > 0;9N";8f 2

C;8�n; n � N", j
R
f d�n �

R
fd �j < ". Di�erent metrics have been proposed for the space of

probabilities, see for instance Prohorov (1956) or Dudley (1966). In this paper we consider the

metric that is usually applied to a metrization of a dual space, as in Dunford and Schwartz (1959).

De�ne M1 = f� 2M j jj�jj � 1g. We will state the following theorem in terms of M and C.

Theorem B.1: (Dunford and Schwartz, Theorem V.5.1) If C is a Banach space, then the T �

topology of the closed unit sphere M1 of M is a metric topology if and only if C is separable.

If the hypothesis of Theorem B.1 holds, and ffng is a separating subset of C, an appropriate

metric for (M1;T
�) is given by

�(�; �) =
1X
n=1

1

Mn

qn(�; �)

1 + qn(�; �)

where M is a real number greater than 1 and qn(�; �) = j
R
fn d(�� �)j.

We provide now a countable dense subset of C. Let Q be the subalgebra of C of the polynomials

with rational coeÆcients in the unknowns k1; :::; kN ; z1; :::; zM . Since Q contains 1 and separate the

points of X, then the closure of alg(Q), alg(Q), equals C. See Reed and Simonn (1980) Ch. IV.

Now the thesis we are going to prove is that the set Q also separates C.
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It is clear that if f1; :::; fM 2 Q then the product f1 � � � fM 2 Q, so the elements in alg(Q) are of
the form

Pn
i=1 ripi for real numbers ri, and with pi 2 Q, and the elements in Q are of the formPn

i=1 qipi for rational numbers qi. Now, let us see that for any f 2 C and any " > 0, exists q 2 Q
such that jjf � qjj

1
< ". Take r 2 alg(Q) such that jjf � rjj

1
< "=2, and choose q 2 Q such that

jjr � qjj
1
< "=2, then

jjf � qjj
1
� jjf � rjj

1
+ jjr � qjj

1
< "

where jjr � qjj
1
< "=2 is due to the fact that Q is dense in R.

Now, since P �M1, we have proved the following

Lemma B.2: The space (P;T �) is metrizable, and the metric � de�ned by

�(�; �) =
1X
n=1

1

Mn

qi(�; �)

1 + qi(�; �)

where M is a real number greater than 1, qn(�; �) = j
R
fn d(� � �)j, and ffng is the family of

polynomials in k1; :::; kN ; z1; :::; zM with rational coeÆcients, induces the topology T �.

The objective of this appendix is to provide a metric for the space P. The metric is based on

a countable set of functions (polynomials in this case.) The following lemma proves that the set

can be rearranged such that a certain condition (that is used in the paper) holds. Up to this point

the theorems have been proved for the case K � RN and Z � RM . In the proof of the following

lemma we will specialize to the case N = 1 =M , although the result is obviously more general.

Lemma B.3: Let fpn(k; z)g be a countable sequence of polynomials. Then the sequence can be

rearranged such that

supzj
@

@k
pn(k; z)j � �(n)B�n

where 0 < � < 1 and the sequence �(n) grows at rate
�(n+1)
�(n)

< B
1��.

Proof: We write

pn(k; z) =
RnX
in=1

SnX
jn=1

ain;jnk
inz

jn

therefore

j
@

@k
pn(k; z)j = j

RnX
in=1

SnX
jn=1

bin;jnk
in�1z

jn j
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where bin;jn depends on ain;jn and in, and so

supzj
@

@k
pn(k; z)j � j

RnX
in=1

SnX
jn=1

bin;jn j B
in+jn�1

where B = maxfsupkjkj; supzjzjg, and then to ensure

supzj
@

@k
pn(k; z)j � �(n)B�n

it is enough to ensure in + jn � 1 � �n, and j
PRn

in=1

PSn
jn=1

bin;jnj � �(n). Q.E.D.
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