
Baltic J. Modern Computing, Vol. 13 (2025), No. 2, pp. 315–330
https://doi.org/10.22364/bjmc.2025.13.2.01

A Neural Network-Based Causal Model for
Electricity Demand Estimation in Remote Areas:

A Case Study in El Espino, Bolivia
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Abstract. Designing microgrids in remote areas is challenging due to the lack of reliable and
high-quality electricity demand data. These limitations arise from technological, economic, and
logistical constraints, making it difficult to estimate demand—especially when daily demand
curves cannot be fully constructed due to missing or incomplete data. Traditional methods, which
rely on consistent and comprehensive datasets, often prove ineffective in such conditions.
To address this issue, this paper introduces a novel causal modelling approach, implemented using
a neural network, to uncover the underlying relationships between key influencing factors—such
as temperature, humidity, time of day, and seasonal variations—and electricity demand. Rather
than requiring complete hourly demand curves as inputs, the proposed approach leverages avail-
able data to infer demand patterns more effectively.
We propose a neural network architecture that aims to capture causal dependencies in electric-
ity demand by encoding input features into a high-dimensional latent space. Using an encoder-
decoder structure, the encoder maps inputs to a latent space designed to preserve potential causal
relationships, while the decoder generates the demand estimation. This approach hypothesizes
that this configuration may help to get causal dependencies. To evaluate this, we compared our
model against a simpler neural network architecture characterised by a triangular layer structure.
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Using real-world data from El Espino, Bolivia, our model achieved a Mean Squared Error (MSE)
of 0.0511 with the Adam optimiser, representing a 61.8% improvement over the simpler neural
network architecture.
A sensitivity analysis further confirmed the relevance of selected input variables, showing that ex-
cluding temporal-based features, such as the month of the year and weekend indicator, increased
estimation error, with an 11.7% increase in MSE. These findings highlight the model’s effective-
ness in handling data limitations and its potential as a scalable solution for electricity demand
estimation in remote areas.

Keywords: Microgrids, Remote areas, Electricity demand, Causal Model, Estimation, Neural
Networks

1 Introduction

Microgrids are a key strategy for achieving electrification in remote areas (Nayanathara
and Srilatha, 2018), as they integrate distributed energy resources to provide localised
electricity generation, avoiding the challenges of transmission and distribution in in-
accessible locations. Successfully designing such systems requires an accurate under-
standing of demand. Overestimating demand can inflate costs unnecessarily, while un-
derestimating it may lead to undersized systems, which are unable to consistently meet
energy needs (Sanfilippo and et al., 2023).

The term demand encompasses a range of needs, including electricity (Castillo
et al., 2022), heat (Białek et al., 2022), and cooling (Abugabbara et al., 2022). In this
study, the focus is specifically on electricity demand in remote areas, where reliable ac-
cess to electricity not only improves local economic opportunities but also contributes
to enhanced energy efficiency and integration of renewable energy (Stadler et al., 2016).

However, estimating electricity demand in remote areas is inherently challenging.
In villages awaiting electrification, baseline demand data is often non-existent. Even in
electrified areas, data can be sparse, unreliable, or of poor quality (Wassie and Ahlgren,
2023). Such data limitations hinder the ability to estimate demand accurately, making
it difficult to design microgrids efficiently.

Addressing these constraints requires the development of robust, data-driven mod-
els tailored to conditions where high-quality, granular demand information is short. The
case of El Espino, Bolivia, which offers an unusually large dataset compared to similar
contexts, provides a good opportunity to apply artificial intelligence techniques for cus-
tomised electricity demand estimation. The proposed approach aims to produce a model
capable of delivering reliable estimations in remote areas facing persistent information
gaps by leveraging this data-rich environment and integrating meta data (temperature
and day time) to create a general representative model.

Given the challenges associated with electricity demand estimation in remote areas,
various approaches have been explored to minimise the error and improve robustness.
Existing methods generally fall into three categories: traditional statistical methods,
computational intelligence methods, and hybrid approaches that combine both. This
section provides an overview of these methodologies and their effectiveness in address-
ing the limitations of demand estimation in data-scarce environments.
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2 Related Work

In recent years, the energy sector has encountered significant challenges in accurately
estimating electricity demand. Various methodologies have been developed to address
these challenges, which can generally be categorised into three main approaches: Tradi-
tional Statistical Methods, Computational Intelligence Methods, and Hybrid Methods.
Each of these approaches offers distinct advantages and limitations, depending on the
complexity of the problem, the availability of data, and the need for minimisation of
error in forecasting.

Traditional statistical methods are grounded in mathematical principles and rely
on historical data patterns, probability distributions, and regression techniques to pre-
dict electricity demand. Among these, time series analysis (Velasquez et al., 2022;
Dilaver and Hunt, 2011) represents a fundamental approach, leveraging past consump-
tion patterns to identify trends and seasonal variations that inform future demand pro-
jections. This method has been widely applied due to its interpretability and strong
theoretical foundation. Additionally, econometric models (Dieudonné et al., 2022; Nasr
et al., 2000; Gómez and Rodrı́guez, 2019; Zamanipour et al., 2023) extend the tradi-
tional statistical approach by incorporating relationships between electricity demand
and macroeconomic indicators such as gross domestic product, economic growth, ur-
banization, and financial development. These models provide valuable insights into
long-term dependencies and external factors affecting energy consumption patterns.

Further expanding on statistical modelling, probability-based approaches are em-
ployed to handle uncertainties in electricity demand estimation. Stochastic methods
(Lombardi et al., 2019), for instance, integrate randomness into forecasting models, al-
lowing for flexible predictions that account for variations in external influences such as
weather fluctuations and human behaviour. Similarly, structural models (Michalik et al.,
1997) adopt an engineering-based perspective, focusing on the physical and technical
characteristics of the electricity system to determine demand based on infrastructure
constraints and efficiency measures.

As the complexity of electricity demand forecasting has increased, computational
intelligence methods have gained prominence. These methods, often associated with
artificial intelligence and machine learning, are designed to handle non-linear rela-
tionships and large-scale datasets, surpassing the predictive capabilities of traditional
statistical techniques. Neural networks, for example, have been widely used to model
electricity demand by learning intricate consumption patterns through adaptive training
mechanisms (Kandananond, 2011; Foldvik Eikeland et al., 2021). Similarly, Random
Forest (Shin and Woo, 2022) has been applied to electricity consumption forecasting,
offering enhanced accuracy and robustness in handling diverse input variables.

Beyond traditional statistical and computational intelligence approaches, hybrid
methods (Shiraki et al., 2016) have emerged as a powerful alternative by integrating
multiple forecasting techniques to improve accuracy and adaptability. By combining
statistical models with AI-driven approaches, hybrid techniques mitigate the limita-
tions of individual methods and leverage their strengths. For instance, scenario-based
methods (Xia et al., 2022) often incorporate both econometric and machine learning
components to assess how external variables such as climate change, economic fluctu-
ations, and policy decisions influence electricity demand. Similarly, Geographic Infor-
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mation Systems methods (Torabi Moghadam et al., 2018) benefit from the integration
of traditional spatial analysis with computational intelligence techniques to improve
region-specific demand estimation, considering factors such as population density, land
use, and climatic conditions.

Furthermore, agent-based models highlight another key area where hybridization of
techniques proves beneficial. These models simulate the behaviour of individual con-
sumers or groups, allowing for a more dynamic representation of energy demand in-
fluenced by social and behavioural patterns (Tian and Chang, 2020). When combined
with stochastic and machine learning techniques, agent-based models become highly
effective in capturing demand variability and providing more refined insights into con-
sumption trends.

Overall, the landscape of electricity demand forecasting has evolved through the
interplay of traditional statistical methods, computational intelligence approaches, and
hybrid methodologies. While traditional statistical models offer well-established theo-
retical foundations and interpretability, computational intelligence techniques provide
superior predictive power in handling complex, high-dimensional data. Hybrid meth-
ods, by integrating these diverse approaches, present a promising direction for enhanc-
ing accuracy and adaptability in demand estimation. The selection of an appropriate
method depends on factors such as data availability, forecasting horizon, and the spe-
cific characteristics of the electricity market under analysis.

While these approaches have contributed significantly to demand estimation, they
often rely on pattern recognition rather than explicitly modelling the causal factors
driving electricity consumption. Traditional statistical methods assume stable demand
patterns, while computational intelligence methods, such as neural networks, excel at
pattern recognition. Hybrid approaches attempt to bridge this gap, yet they remain con-
strained by data limitations. To overcome these challenges, we propose a model that
explicitly encodes causal relationships, enabling a more interpretable and robust frame-
work for electricity demand estimation in remote areas.

3 Proposed Solution

Modelling electricity demand poses significant challenges due to its complex and non-
linear nature, as well as the intricate interdependencies that arise, particularly because
user behaviour plays a central role (Lazzari et al., 2022). Traditional demand estimation
methods rely on predefined demand curves, which assume stable and well-defined con-
sumption patterns. However, these approaches fail to capture the evolving and dynamic
nature of electricity demand, particularly in environments with incomplete or unreli-
able data. Moreover, they are based on correlations rather than identifying the causal
mechanisms that drive demand variations.

Electricity demand is not merely the sum of independent factors but rather the result
of dynamic interactions between environmental conditions, socio-economic factors, and
technological adoption. These elements influence each other, creating causal dependen-
cies that cannot be fully understood through conventional demand curve-based models
alone. As a result, there is a need for an approach that moves beyond static demand
profiles to one that models the underlying factors driving electricity consumption.
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To address this, the proposed model is designed to describe the causal relationships
between these factors, rather than relying on predefined demand curves or purely corre-
lational patterns. The final proposal integrates variables—such as temperature, humid-
ity, time of day, month, and whether it is a weekday or weekend—which were selected
based on expert domain knowledge, ensuring that they are known to influence electric-
ity demand. By incorporating expert, driven insights, the model is designed to capture
the actual causal factors driving consumption, rather than relying solely on statistical
correlations.

By structuring the model around cause-effect relationships, it aims to represent the
way external conditions and user behaviour interact to shape electricity consumption.
This approach allows for a more interpretable and robust demand estimation frame-
work, capable of adapting to scenarios with incomplete or noisy data while maintaining
a meaningful representation of the underlying processes driving electricity demand. The
core innovation of this work lies in designing a neural network architecture specifically
to capture these causal relationships, rather than merely identifying patterns, a funda-
mental shift from how neural networks are typically used.

Traditional neural networks excel at recognizing statistical dependencies in data
but do not inherently distinguish between correlation and causation. A neural network
is a computational model inspired by the structure and function of neurological sys-
tems, designed to represent complex, non-linear functions (Neervannan, 2018). It con-
sists of interconnected layers of neurons, with each layer’s arrangement determining its
specific purpose or function. Optimised using methods such as backpropagation, neu-
ral networks effectively map input variables to output estimations, making them ideal
for modelling systems like electricity demand, where relationships are non-linear and
evolve over time.

Unlike traditional models, neural networks automatically identifying patterns and
relations within multi variable datasets and utilize these insights of usually unseen cou-
plings (Scarborough and Somers, 2006). Their ability to capture deep and complex
dynamics allows them to represent emergent behaviours, surpassing the limitations of
linear or polynomial models (Somers and Casal, 2009).

However, causality remains a challenge in neural networks, as they are traditionally
designed to identify patterns rather than capture causal relationships. Our hypothesis is
that by encoding inputs into a higher-dimensional space, it becomes possible to reveal
underlying causal relationships that may not be apparent in the original input space. By
doing so, the network moves beyond conventional pattern recognition, instead aiming
to represent how different factors interact and influence electricity consumption in a
structured manner.

In the context of electricity demand estimation, this means that the model could
begin to identify meaningful dependencies that drive consumption, rather than merely
recognizing statistical correlations. We posit that by leveraging the expressive power
of high-dimensional representations, the model can uncover the true interactions that
govern demand variations.
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4 Data Collection, Preparation, and Analysis

During the data collection and analysis phase, available data were gathered, explored,
and examined. Previous studies have aimed to establish common data platforms (Fioriti
et al., 2023) that streamline this process. Such platforms would significantly reduce the
effort required to obtain authentic electricity demand data, currently a task involving
extensive literature reviews, contacting authors, interviewing stakeholders, and identi-
fying specialised websites.

Although real measured data were identified for locations in Bolivia, Namibia, Mex-
ico and Tanzania, many datasets contained missing measurements. After removing in-
complete curves, the final dataset included a total of 869 days of measured electricity
demand. Among these, El Espino in Bolivia provided the largest number of complete
days, 578, which surpassed any other region under consideration. Consequently, El Es-
pino was chosen for this study due to its comparatively abundant and reliable data.

The El Espino dataset, sourced from a GitHub repository (Balderrama Subieta,
2022), spans from 1 January 2016 to 31 July 2017, covering 578 days of recorded mea-
surements. It encompasses data from 128 households, a hospital, a school, and street
lighting systems and the wattage consumed at each timestamp. First, the data were pre-
processed to address inconsistencies, remove outliers, and format it into a structured,
consolidated, and normalised dataset.

Visual examinations were conducted to illustrate inherent variability in energy de-
mand patterns. Figures 1 and 2 show the distribution of power usage by hour and by
month, respectively, with outliers indicated by dots. Outliers were identified using the
three-standard-deviation rule, where any data point x that deviates more than three times
the standard deviation (σ) from the mean (µ) is considered an outlier. Mathematically,
this is expressed as in Equation 1.

x < µ− 3σ or x > µ+ 3σ. (1)

By applying this approach, we mitigate the risk of extreme values disproportionately
affecting the learning process. This helps preventing the exploding gradient problem,
ensuring stable and efficient model training.

This method assumes a normal distribution of energy demand data and effectively
detects extreme variations while maintaining robustness in identifying significant de-
viations. Figure 1 reveals a minimum at 8 a.m. and a peak at 8 p.m., while Figure 2
indicates that October experiences the highest demand.

Figure 3 illustrates the energy demand on weekends, highlighting significant pat-
terns influenced by the hour of the day, the month of the year, and the effects seen
during weekend. The heatmap reveals a distinct hourly pattern, with higher demand
during specific hours, such as evenings. Additionally, a seasonal effect is evident, with
increased energy usage during colder months, likely due to heating needs, and dur-
ing warmer months, possibly due to cooling systems. The effects seen during weekend
is also noticeable, as the patterns differ from those typically observed on weekdays,
reflecting variations in social and economic activities. These insights are crucial for
modelling energy demand and considering time-of-use factors in energy estimation.
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Fig. 1. Hourly Distribution of Electricity Demand Represented as a Boxplot with Outliers

Fig. 2. Monthly Distribution of Electricity Demand Represented as a Boxplot with Outliers
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Fig. 3. Heatmap of the mean energy demand on weekends, showing the variation across different
hours of the day and months of the year.

Figure 4 presents the double standard deviation of Figure 3, which is significant
lower than the single standard deviation plotted in Figures 1 and 2. The conclusion of
this comparison is that the training of the neural network needs to be trained by in-
cluding as meta data the hours, the days and if it is a weekend day or not. A decrease
in the standard deviation of the metadata-sensitive demand profiles means less uncer-
tainty due to unknown, influencing variables and minimising the error of the generated
demand profiles. In principle, applying a two-input-based heat map might be an inter-
esting approach to evaluate whether metadata affects the error and to assess the relative
impact of the two inputs on each other.

The original measurements were recorded every 5 minutes. Since the objective is to
achieve hourly estimations suitable for pre-design analysis, all 5-minute measurements
within each hour were averaged. Additionally, two other components were integrated
alongside hourly energy demand: a variable was included to denote weekends (1) ver-
sus weekdays (0) to account for potential differences in demand patterns arising from
social or economic activities, and the month was included to capture potential seasonal
variations in energy usage.

The inclusion of temperature and humidity variables was essential to complement
the energy demand records due to the nature of the used appliances, such as refrigera-
tors and other temperature-sensitive devices. These appliances exhibit energy demand
patterns that are heavily influenced by ambient temperature and humidity. For instance,
higher temperatures increase the cooling demand of refrigerators, while humidity lev-
els can affect their efficiency and operation cycles. Incorporating these meteorological
variables allows the model to account for external factors that significantly impact en-
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Fig. 4. Heatmap of double standard deviation energy demand on weekends, showing the variation
across different hours of the day and months of the year.

ergy demand (Raza and Khosravi, 2015), thereby minimising the error and enhancing
the reliability of the estimations. Temperature and humidity data were retrieved from
(Weather Forecast API, 2023). These data were aligned by timestamps to ensure pre-
cise temporal synchronisation of all variables, producing a unified dataset for the El
Espino case.

The resulting dataset provides the foundation for the modelling process described
in the following section.

5 Architecture Definition

This work employs a neural network model designed to estimate hourly electricity de-
mand using a set of metadata inputs: temperature (in degrees Celsius), humidity (in
percent), hour of the day, month of the year, and a binary indicator for type of day
(weekday or weekend). These variables were selected based on their broad availability
in open-source datasets and their known influence on electricity demand patterns. The
output node corresponds to the estimated hourly power in kW, meaning that for a given
input (e.g., a specific hour and month along with the corresponding temperature and
humidity), the model produces a single kilowatt value.

A key feature of the proposed approach is the use of a neural network architec-
ture that transforms the input variables into a higher-dimensional space before making
demand estimations. By expanding the input space, the model can capture complex de-
pendencies and uncover latent causal structures that may not be evident in the original
feature set. This higher-dimensional representation allows the network to move beyond
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simple correlations, enabling it to better model the intricate relationships that govern
electricity demand.

The flexibility of neural network models in handling incomplete or irregular data has
been highlighted in several studies (Owda et al., 2014; Hooshmand and Sharma, 2019).
Unlike other methods that require complete daily data to generate estimations, this ap-
proach leverages any available measurement, allowing the construction of a dataset
from incomplete or irregular records. It is possible to construct an entire demand curve
for a selected time period by iterating this process across various hours.

The proposed architecture is represented in Figure 5. It incorporates a min-max
normalization at the input stage, as shown in Equation 2, ensuring that all features are
scaled to the [0, 1] range. The minimum (min(x)) and maximum (max(x)) values for
each feature are computed from the training dataset, ensuring consistency during infer-
ence. This normalization step is critical, as it prevents disproportionate influence from
features with naturally larger magnitudes and generally improves model convergence
and stability.

xscaled =
x−min(xtrain)

max(xtrain)−min(xtrain)
. (2)

The network consists of seven layers, structured to progressively increase the di-
mensionality of the feature space before refining the output. It begins with an input
layer of 7 nodes, followed by hidden layers with 50, 250, and 750 nodes, capturing in-
creasingly complex representations. The network then transitions through 300 and 150-
node layers before reaching the single-node output layer. This progressive expansion in
dimensionality enables the model to disentangle intricate dependencies, facilitating the
capture of underlying causal relationships in the data.

Rectified Linear Unit (ReLU) activation functions are applied to each layer (unless
otherwise specified) due to their effectiveness in modelling complex, non-linear rela-
tionships (Xu, 2015). Additionally, a batch normalization layer (indicated in orange)
is incorporated after one of the hidden layers to stabilize and accelerate training. Fi-
nally, the red layer at the end represents a min-max descaling step, transforming the
output from the normalised scale back to kilowatts, ensuring that estimations remain
interpretable in domain-relevant units.

This hierarchical expansion and contraction of the feature space serves as a funda-
mental component of the model’s ability to capture causal dependencies, as the higher-
dimensional layers allow for richer representations before refining the output to a single
predicted demand value.

The chosen architecture, normalisation strategies, and hyperparameters were guided
by established best practices in neural network modelling and iterative empirical test-
ing. Nonetheless, additional sensitivity analyses, alternative architectures (e.g., recur-
rent or attention-based networks), and more systematic hyperparameter optimisation
could further enhance the model’s estimation performance and transferability to differ-
ent contexts.
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Fig. 5. Proposed neural network architecture, including input normalisation, hidden layers with
ReLU activation, batch normalisation, and a final output descaling layer.

6 Model training

The dataset of 13,872 hourly measurements was randomly split into training (8,878
hours), validation (2,220 hours), and testing (2,774 hours) sets before training. This
approximate 64%, 16%, 20% division is a standard practice aimed at ensuring robust
model evaluation and preventing overfitting (Goodfellow et al., 2016). The training set
was exclusively used to update model parameters, while the validation set was em-
ployed to monitor performance during training and prevent overfitting using early stop-
ping techniques. The testing set was reserved for final evaluation, simulating real-world
performance.

All weight parameters of the neural network were randomly initialised, a standard
procedure in deep learning workflows. ReLU activation was uniformly applied to all
nodes, as it avoids the vanishing gradient problem common in traditional sigmoid or
tanh activations. MSE and MAE were used as the primary performance metric, given
its widespread acceptance and straightforward interpretation (Hyndman and Koehler,
2006). Specifically, MAE quantifies the average magnitude of errors without consider-
ing their direction. In contrast, MSE assigns greater weight to larger errors due to its
squared term, offering additional insight into the frequency and impact of significant
discrepancies.

Four different optimisers were tested: Adaptive Moment Estimation (Adam), Adap-
tive Gradient (Adagrad), Adaptive Delta (Adadelta), and Stochastic Gradient Descent
(SGD) (Tian et al., 2023), which are well-established and have demonstrated their ap-
plicability across a wide range of problems in neural network training. Each optimiser
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was applied with an initial learning rate of 0.01. Training was capped at a maximum of
20 epochs, and an early stopping mechanism was implemented to halt training once no
further improvement on the validation set was observed, thus preventing overfitting.

7 Results

The primary objective of this study was to validate whether the selected metadata and
input variables lead to an reliable approximation of electricity demand by capturing
underlying causal relationships. By integrating key external factors—temperature, hu-
midity, hour, month, and weekend indicator—the model aims to identify the causal
influences that shape electricity demand patterns. Rather than relying on predefined de-
mand curves or purely statistical correlations, this approach enhances interpretability
and robustness in demand estimation.

To evaluate the model’s performance, we analyse the impact of different optimis-
ers on the error metrics. Table 1 presents the Mean Absolute Error (MAE) and Mean
Squared Error (MSE) (Bhuyan et al., 2016) for each optimiser tested. The results indi-
cate that the Adam optimiser achieves the lowest error values, with an MAE of 0.0536
and an MSE of 0.0511, making it the most effective optimiser for minimising errors.

To further validate the effectiveness of the proposed architecture, we compare its
performance with a simpler model, the triangle-shaped architecture, as shown in Ta-
ble 2. Across all tested optimisers, our approach consistently outperforms the simpler
architecture in both MAE and MSE. Specifically, for the Adam optimiser, our architec-
ture achieves an MAE of 0.0536 and an MSE of 0.0511, whereas the triangle-shaped
architecture exhibits significantly higher errors, with an MAE of 0.1345 and an MSE
of 0.1339. This results in a 60.2% reduction in MAE and a 61.8% reduction in MSE in
our approach.

The performance gap is particularly evident across different optimisers. For Ada-
grad, our model’s MAE is 0.0691, compared to 0.1818 in the triangle-shaped architec-
ture, leading to a 62.0% improvement in MAE. Similarly, the MSE is reduced from
0.1744 in the simpler model to 0.0538 in our approach, which is a 69.2% reduction.
Even for Adadelta, which produces the highest errors, our model achieves a lower MAE
(0.1018 vs. 0.1364), resulting in a 25.3% improvement and MSE (0.1124 vs. 0.1962),
which shows a 42.6% reduction, reinforcing the limitations of the simpler structure in
capturing complex demand patterns. A similar trend is observed for the SGD optimiser.

These results confirm that our architecture enhances model precision and robust-
ness, effectively capturing complex dependencies while minimising errors across differ-
ent optimisation techniques. The substantial reduction in error compared to the triangle-
shaped architecture supports the hypothesis that increasing model complexity, particu-
larly through higher-dimensional encoding and carefully designed layers, leads to im-
proved electricity demand forecasting.

Next, we conducted a sensitivity analysis using the Adam optimiser, as it performed
the best with all the features, to determine the impact of excluding temporal features,
such as the month of the year and weekend indicator, on the model’s error. The results
in Table 3 confirm that removing these variables leads to an increase in both MAE and
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Optimiser MAE MSE

Adam 0.0536 0.0511

Adagrad 0.0691 0.0538

Adadelta 0.1018 0.1124

SGD 0.0904 0.1165

Table 1. Performance metrics of the proposed Neural Network Architecture.

Optimiser MAE MSE

Adam 0.1345 0.1339

Adagrad 0.1818 0.1744

Adadelta 0.1364 0.1962

SGD 0.1327 0.1403

Table 2. Performance metrics of the triangle-shaped architecture.

MSE, with a 10.7% increase in MAE and an 11.7% increase in MSE, further validating
their relevance in electricity demand estimation.

8 Conclusions

Electricity demand estimation is crucial for effective microgrid design, particularly in
remote areas where data availability is limited (Sanfilippo and et al., 2023). Unlike
traditional methods that rely on predefined demand curves, the proposed approach in-
troduces a causal model, implemented using a neural network, to uncover the under-
lying relationships driving electricity consumption. This study leveraged a dataset of
578 days from El Espino, Bolivia, integrating measured electricity demand with readily
available metadata—such as temperature, humidity, hour, month, and whether the day
is a weekday or weekend—to develop a novel estimation method. A key contribution
of this work is the design of a neural network architecture specifically oriented toward
capturing causality. Unlike conventional neural networks that primarily focus on pat-
tern recognition, this architecture is structured to model causal relationships between
input variables and electricity demand, ensuring that the learned representations reflect
meaningful dependencies rather than surface-level correlations.

The study shows the superior performance of the causal-oriented neural network ar-
chitecture over the triangle-shaped architecture in estimating hourly electricity demand.
Our model consistently achieves lower errors, with a MAE of 0.0536 and an MSE of
0.0511, outperforming the triangle-shaped architecture by significant margins—up to
62% for MAE and 69% for MSE across various optimisers. The Adam optimiser, which
outperforms Adagrad, Adadelta, and SGD in this context, enhances the model’s ability
to handle incomplete and noisy data. This approach not only offers a more reliable and
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Feature Set MAE MSE

Full Feature Set 0.0536 0.0511

No Temporal Features 0.0593 0.0571

Table 3. Impact of Removing Temporal Features on Model Performance.

robust estimation but also provides greater interpretability, making it a valuable tool for
complex demand pattern predictions. The results indicate that the neural network effec-
tively captures causality between external factors and electricity demand. Additionally,
the identified factors—such as temperature, humidity, time of day, month of the year,
and weekend indicator-prove to be highly relevant in shaping electricity demand pat-
terns. The sensitivity analysis, conducted using the Adam optimiser, further confirms
that excluding these temporal-based features leads to an increase in error, demonstrat-
ing their importance in demand estimation. Specifically, removing the temporal vari-
ables results in a 10.7% increase in MAE and an 11.7% increase in MSE, underscoring
their relevance. These results highlight that the selected variables not only contribute
to minimising the error but also play a crucial role in capturing the causal relation-
ships underlying electricity consumption, reinforcing the effectiveness of the proposed
approach.

However, as datasets, methodologies, and computational tools continue to evolve,
so too will the capacity to develop more scalable and widely applicable models. The
integration of causality-driven neural networks into demand estimation holds significant
potential for enhancing the reliability and efficiency of microgrid systems, particularly
in underserved regions where precise energy planning is essential for sustainability and
resilience.

While the chosen architecture—including layer sizes and the number of layers—was
informed by preliminary experiments and computational constraints, future research
could explore alternative neural network architectures to further improve the model’s
ability to capture causal relationships. Additionally, further work could investigate the
impact of alternative input variables beyond those considered in this study. Incorpo-
rating additional environmental, socio-economic, or behavioural factors could enhance
the model’s ability to disentangle causal dependencies and improve demand estimation.
Sensitivity analyses on a broader set of variables would help determine the most relevant
causal factors for different microgrid contexts, ensuring the model remains adaptable
and robust across diverse energy systems.

Although this approach was tested on a single region, its implications extend beyond
El Espino. As data collection efforts improve—through expanded measurement cam-
paigns, data-sharing platforms, or innovative sensing technologies—a similar method-
ology could be adapted for other remote areas, microgrids, renewable energy commu-
nities, and even individual buildings. Achieving broader applicability requires access
to more extensive and diverse datasets, alongside ongoing methodological refinements.
Future research should focus on validating the causal model across multiple sites and
contexts to ensure robustness and transferability.
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Dieudonné, N. T., Armel, T. K. F., Vidal, A. K. C., and René, T. (2022). Prediction of electri-
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