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Abstract: Background/Objectives: Groin and hip injuries are common in sport, and muscle
weakness has been identified as an intrinsic risk factor. So, analyzing the strength of the hip
musculature becomes important. To date, there are no hip adductor isometric strength tests
on force platforms. This study aims to analyze the intra-test reliability of a hip adductor
strength test using force platforms. Methods: The study sample comprised 13 male pro-
fessional soccer players with an average age of 22.3 ± 3 years, body mass of 75.8 ± 5.4 kg,
and height of 1.8 ± 0.1 m. Assessments were conducted on a uniaxial force platform. The
variables analyzed are peak force (PF), rate of force development (RFD), and impulse.
Intra-test reliability was evaluated using the coefficient of variation (CV), intraclass corre-
lation coefficient (ICC), and Bland–Altman plots. Results: Acceptable levels of reliability
were identified solely for the variable of peak force, with CV values of D = 5.7% for the
dominant profile and ND = 5.4% for the non-dominant profile. Furthermore, moderate
and good relative reliability were observed in peak force for the dominant (ICC = 0.706)
and non-dominant (ICC = 0.819) profiles, respectively. However, the remaining time-
related variables, RFD and impulse, did not achieve acceptable levels of absolute reliability
(CV > 10%) and displayed poor to moderate relative reliability. Conclusions: In summary,
PF during the hip adductor isometric strength test demonstrated acceptable absolute and
commendable relative reliability. Conversely, the time-related variables, specifically RFD
and impulse, yielded unsatisfactory absolute and relative reliability levels.
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1. Introduction
Groin and hip injuries are common in various team sports like soccer, rugby, and

Australian soccer, and are prevalent, particularly among male and younger athletes aged
15–24 [1]. Studies on European soccer teams show that about 14% of all injuries occur in
the groin and hip areas, and 63% are linked explicitly to the adductor muscles [2] and
these injuries tend to increase when many games are played close together [3]. Studies
conducted within the context of the UEFA Champions League indicate an incidence rate
of 1.1 injuries per 1000 game hours for this particular type of injury [4]. One major result
of such injuries is that players cannot participate in training or matches for an average
of 1 to 6.9 weeks [1,5,6] and when surgery is required, this absence period can extend to
14 weeks [6]. This drains the clubs’ financial resources [7] and negatively affects the team’s
overall performance [8]. Given the importance of these injuries, it is crucial to regularly
check athletes’ health and take preventive steps when needed [9,10].

The muscle weakness of the adductor muscle is a critical factor in predicting the
risk of groin and hip injuries [11]. Such measurements are often performed by the hip
adductor squeeze test, which is both accurate and reliable [12]. The test involves placing a
measurement device between the player’s knees and asking them to squeeze it by bringing
their legs together [13] and is widely used to diagnose groin pain [12]. Research has shown
that a decrease in adductor muscle strength can indicate that groin pain is about to occur
in soccer players [14]. Moreover, players who are already injured tend to have weaker
adductor muscles during the preseason than those who are not [9]. This information has led
to new ways to monitor players during the season to spot early signs of muscle weakness
and start strength training [15], so availability and development of easily implementable
tests to determine muscle strength could aid coaches and physical trainers in preventive
interventions [16,17].

Various technologies like sphygmomanometers and manual and isokinetic dynamome-
ters have been used to measure adductor strength [9,10,14], where the variable of peak
force in an isometric contraction of adductor muscles showed more reliability than other
variables, like mean force and rate of force development [18]. However, these methods
have limitations, including being dependent on the person administering the test. Recently,
force platforms have become more common for various physical tests, and portable ver-
sions have been validated [19,20] and various studies have been used to evaluate dynamic
tests, such as jumps, and isometric tests, such as squat and posterior chain tests [21–24].
However, to date, we have not reported their use for measuring adductor strength in the
scientific literature, but other research suggests they could be helpful for this purpose. This
study aims to check how reliable these platforms are for measuring hip adductor isometric
strength in professional soccer players. We hypothesize that the peak force could have
good to excellent levels of reliability, since this variable, measured with other technologies,
has given these results [13,25] as well as in other physical tests [26].

2. Materials and Methods
2.1. Experimental Protocol

This study adopts a quantitative methodology with a descriptive and cross-sectional
design. Assessments were conducted during the morning session on the inaugural day of a
preseason microcycle at the club’s training center. Initially, participants provided informed
consent through an online form accessed via their mobile phones. The form elaborated
on this study’s objectives, procedural steps, potential risks, and data anonymity, adhering
to the ethical guidelines outlined in the Declaration of Helsinki [27]. Anthropometric
measurements were carried out first, followed by physical evaluations. Two evaluators with
prior experience with force platform evaluations conducted adductor strength assessments.
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A certified ISAK Level II professional conducted the anthropometric assessments.
Participants’ heights were measured utilizing a portable stadiometer (Seca 213, Seca, Chino,
CA, USA). A force platform (PS-2141, Roseville, CA, USA) was employed for body mass
evaluations. Participants were directed to assume a standardized posture with their hands
positioned on their hips and their gaze oriented forward. This stance was maintained for
two seconds. Data captured within this temporal window were subsequently averaged to
ascertain body weight in Newtons, then divided by the acceleration due to gravity to yield
the body mass in kilograms.

2.2. Participants

A convenience sample was used. 20 male professional players were recruited, in-
cluding two goalkeepers, four central defenders, four side defenders, four midfielders,
and six forwards. Their demographic characteristics were as follows: age 22.3 ± 3 years,
body mass 75.8 ± 5.4 kg, and height 1.79 ± 0.57 m. Inclusion criteria entailed at least six
months of regular training and completing at least two valid attempts per leg. Exclusion
criteria encompassed physical discomfort or lower limb injuries before or during evaluation.
Ethical clearance was obtained from the local ethics committee (CEC No. 2022-7).

2.3. Hip Adductor Test

We were using a uniaxial force platform (Pasco, model Pasport PS-2141, Roseville,
CA, USA). Participants adopted a lateral support position on the platform’s surface, with
their hands on the contralateral shoulders. The hip and knee of the lower extremity being
assessed were maintained at a 0◦ angle, while the opposite lower extremity was positioned
with the hip and knee at 90◦ flexion (Figure 1). The position was chosen for various reasons.
The first is that higher force values were found in hip 0◦ compared with other hip angles,
and electromyography values of hip adductor muscles (adductor longus, adductor magnus,
gracilis, and pectineus) had differences between injured and non-injured subjects [28] and
lastly, from a practical point of view, it is easy for the evaluators to position the subjects
and inspect the proposed angles.
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Before the test, participants engaged in a general warm-up protocol encompassing
10 min of low-intensity continuous running, joint mobility exercises, and static and dynamic
stretching focusing on the lower extremities, with particular emphasis on the adductor
muscles. A specific warm-up regimen was followed, which included two sets of three
coordinative sequences, two sets of 10 squats, and two sets of six lateral lunges for each
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leg, executed without additional loading. The testing environment was the team’s weight
room, and participants wore athletic footwear during the evaluation.

Before the official attempts, participants were instructed to execute two preliminary
trials per leg at intensities corresponding to perceived exertion levels of 6 and 9 on a
1–10 scale (with 10 signifying maximum effort). This procedure was designed to confirm the
appropriateness of the test positioning and to ensure participant comfort. Each participant
then executed three trials of three-second duration per leg, interspersed with 30 s rest
intervals. Participants could select the sequence in which they tested their dominant
and non-dominant profiles. Upon the evaluators’ signal to “push as fast and hard as
possible” [29], the data collection was initiated through a countdown: “3, 2, 1, go”. At the
utterance of “go”, participants exerted their force while being verbally encouraged by the
evaluators with the command “push”. The two attempts yielding the highest peak forces
were selected for reliability analysis.

2.4. Signal Processing

All signal data were captured at a sampling rate of 1000 Hz and subsequently pro-
cessed using MATLAB 2021a software (Mathworks, Natick, MA, USA) through custom
algorithms developed by the authors. The onset of force application was determined
using the five standard deviations method. The acquired signals were low-pass filtered
with a 10 Hz cutoff frequency. The variables included peak force (N) and rate of force
development (RFD) over varying time intervals: 0–50 ms, 0–100 ms, and 0–200 ms (ex-
pressed in N/s). These specific time windows were selected to mimic the force application
durations commonly observed in the dynamic actions executed by soccer players, such as
running, braking, and jumping [22,30,31]. In addition, peak RFD was calculated using a
moving window of 20 ms with 1 ms of overlapping based on findings related to the highest
reliability in other isometric tests [32]. The signal shapes and variables are in Figure 2.

Biomechanics 2025, 6, x FOR PEER REVIEW 4 of 10 
 

 

Before the test, participants engaged in a general warm-up protocol encompassing 
10 min of low-intensity continuous running, joint mobility exercises, and static and dy-
namic stretching focusing on the lower extremities, with particular emphasis on the ad-
ductor muscles. A specific warm-up regimen was followed, which included two sets of 
three coordinative sequences, two sets of 10 squats, and two sets of six lateral lunges for 
each leg, executed without additional loading. The testing environment was the team’s 
weight room, and participants wore athletic footwear during the evaluation. 

Before the official attempts, participants were instructed to execute two preliminary 
trials per leg at intensities corresponding to perceived exertion levels of 6 and 9 on a 1–
10 scale (with 10 signifying maximum effort). This procedure was designed to confirm 
the appropriateness of the test positioning and to ensure participant comfort. Each par-
ticipant then executed three trials of three-second duration per leg, interspersed with 30 
s rest intervals. Participants could select the sequence in which they tested their domi-
nant and non-dominant profiles. Upon the evaluators’ signal to “push as fast and hard 
as possible” [29], the data collection was initiated through a countdown: “3, 2, 1, go”. At 
the utterance of “go”, participants exerted their force while being verbally encouraged 
by the evaluators with the command “push”. The two attempts yielding the highest 
peak forces were selected for reliability analysis. 

2.4. Signal Processing 

All signal data were captured at a sampling rate of 1000 Hz and subsequently pro-
cessed using MATLAB 2021a software (Mathworks, Natick, MA, USA) through custom 
algorithms developed by the authors. The onset of force application was determined us-
ing the five standard deviations method. The acquired signals were low-pass filtered 
with a 10 Hz cutoff frequency. The variables included peak force (N) and rate of force 
development (RFD) over varying time intervals: 0–50 ms, 0–100 ms, and 0–200 ms (ex-
pressed in N/s). These specific time windows were selected to mimic the force applica-
tion durations commonly observed in the dynamic actions executed by soccer players, 
such as running, braking, and jumping [22,30,31]. In addition, peak RFD was calculated 
using a moving window of 20 ms with 1 ms of overlapping based on findings related to 
the highest reliability in other isometric tests [32]. The signal shapes and variables are in 
Figure 2. 

 

 

 

Figure 2. Signal shape of force and rate of force development (RFD). 

Figure 2. Signal shape of force and rate of force development (RFD).

2.5. Statistical Analysis

The data described how mean and standard deviation. The Coefficient of variation
(CV) and Error standard of measurement (SEM) were employed as measures of absolute
reliability. Each athlete’s CV was calculated and then averaged across the sample and
values less than 10% were deemed acceptable and SEM was calculated how: SD

√
(1-ICC);
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where SD is sample standard deviation and ICC is intraclass correlation coefficient, and
her unit is the same as that of the variable analyzed, which is useful since the smaller the
SEM the more reliable the measurements [33]. The ICC was employed to assess relative
reliability using a mixed-effects model with two factors and a form for evaluating absolute
agreement in single measurements [34]. The ICC values were categorized according to
thresholds: values below 0.49 were considered poor; from 0.5 to 0.74 were classified as
moderate; between 0.75 and 0.89 were considered good; and values above 0.9 were deemed
excellent [35]. The 95% Confidence Intervals (CI) were presented. Statistical analyses
were executed using SPSS version 25, and significance was set at an alpha level of 0.05.
Additionally, Bland–Altman plots and statistics were made.

3. Results
Table 1 shows the reliability of the test. Acceptable absolute reliability was observed

solely in peak force (CV: D = 5.7% and ND = 5.4%), with moderate and good relative reliabil-
ity in the peak force in the dominant and non-dominant profiles, respectively (ICC = 0.706
and 0.819). The other variables (time-related) had non-acceptable absolute reliability
(CV > 12%) and poor to moderate relative reliability (ICC= 0.18 to 0.66). The Bland–Altman
results for peak force can be seen in Figure 3 and Table 2.

Table 1. Description and reliability of the adductor strength test.

Variable Limbs Profile M ±SD SEM CV ICC IL 95% UL 95%

Peak force (N) D 179 22.2 12.0 5.77 0.706 0.402 0.871
ND 180 7.3 3.11 5.45 0.819 0.602 0.924

RFD 50 ms (N/s) D 666 642 470 50.5 0.464 0.068 0.742
ND 396 111 82.0 45.9 0.453 0.021 0.742

RFD 100 ms (N/s) D 709 293 182 25.4 0.612 0.258 0.824
ND 604 133 95.1 30.8 0.488 0.062 0.762

RFD 200 ms (N/s) D 1123 210 148 13.0 0.501 0.102 0.765
ND 1032 158 110 17.7 0.518 0.105 0.778

Peak RFD (N/s) D 1781 1200 955 32.2 0.367 * −0.089 0.692
ND 1330 260 152 24.4 0.660 0.316 0.85

Impulse 0–50 ms (N *s) D 2.83 0.88 0.78 14.8 0.219 * −0.205 0.586
ND 2.62 0.27 0.24 12.6 0.253 * −0.224 0.624

Impulse 0–100 ms (N *s) D 7.55 2.34 1.74 17.1 0.449 0.052 0.733
ND 6.80 0.90 0.81 15.0 0.183 * −0.297 0.578

Impulse 0–200 ms (N *s) D 21.2 4.33 2.96 12.0 0.533 0.148 0.782
ND 19.9 2.84 2.39 13.2 0.291 * −0.183 0.648

* p > 0.05; M mean; ±SD—standard deviation; SEM—standard error of the measurement; ICC—intra-class
correlation coefficient; IL—lower limit; UL—upper limit; D—dominant; ND—non-dominant; RFD—rate of
force development.
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Table 2. Results of Bland–Altman statistics.

Peak Force Bias Standard Deviation of Bias 95% Limits of Agreement

Dominant (N) −4.35 18.40 −40.4 31.7
No dominant (N) −5.50 16.08 −37.0 26.0

4. Discussion
The objective of the current study was to evaluate the intra-test reliability of a hip

adductor strength test utilizing a force platform. Our main finding revealed that only peak
force demonstrated acceptable absolute reliability and moderate-to-good relative reliability
among the variables tested. This finding suggests that the proposed test potentially applies
to professional soccer players and athletes engaged in other sports where adductor injuries
are common.

Given the significance of this issue, numerous studies have been dedicated to de-
vising tests aimed at mitigating the risk of lower limb adductor injuries among soccer
players [9,10,13,16]. One recent proposal by de Queiroz, Frota et al. (2023) is the Brazilian
Adductor Performance Test, which measures the risk of hip adductor injury through repeti-
tive contractions of the hip adductors and showed high sensitivity (100%) and moderate
specificity (57.2%) when a cutoff point of 33 repetitions was applied [16]. Consistent with
our findings, other studies assessing hip adductor strength have reported good-to-excellent
relative reliability, with ICCs ranging from 0.76 to 0.92, and acceptable absolute reliability
(CV = 4%) [13,25,36,37]. These findings remained consistent across different evaluation
instruments (e.g., dynamometer or sphygmomanometer), body positions (i.e., angles of hip
and knee), and points of force application (i.e., knee or ankle) [13,25,36,37].

In relation to RFD, conversely to our results, Mesquita, Gonçalves et al. (2018) mea-
sured test–retest reliability, finding good to excellent reliability [38]. It should be noted that
previous studies provided a familiarization session. This aspect could guide improving
intra-test reliability, as described in methodological considerations when assessing RFD [39].
If future studies replicate our protocol, familiarizing the participants would be a beneficial
addition. Another study carried out the test–retest evaluation (intra-day) of hip adductor
strength, using the maximum value of each occasion for the analysis [40] and found good to
excellent reliability in peak force and RFD. These differences may be due to the test–retest
design and the statistical treatment, where changes in the intraclass correlation analyses
(concordance vs. absolute agreement) produce different ICCs. In our case, we used an
absolute agreement type, which produces lower values than when using the concordance
type [34]. On the other hand, minor variations in joint angles between attempts could
create large variations in RFD [39,40]. Thus, minimizing joint movement between attempts
should be ensured to control this confounder.

The present studies present some limitations, first the athletes do not have familiariza-
tion session, second the sample size is small, and population is limited to one team sport,
more athletes are required to various sport for generalize the results, and lastly the position
was visually established for raters, which can increase the angular variability of the joints.

Future inquiries into the test–retest reliability of the newly developed hip adductor
strength test should be multi-dimensional. Firstly, evaluating the reliability between days
and the impact of familiarization on temporal variables such as RFD and impulse is essential.
This would elucidate whether multiple sessions are required to obtain stable and reliable
measurements for these metrics. Secondly, investigating the correlation between this novel
test and other established adductor strength tests documented in scientific literature could
yield valuable comparative data. Moreover, further research could assess the interrelation
between the hip adductor strength test and other physical performance tests, such as jump
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height, sprinting speed, or agility in directional changes. Such analyses could inform
tailored training regimens to enhance specific athletic abilities that are pivotal to success
in sports.

Establishing cut-off points for acceptable levels of asymmetry between dominant and
non-dominant lower limbs is another relevant aspect to investigate. Previous research
indicates that such asymmetry can predict injury risk, especially in soccer [41] and these
can be performed through retrospective and prospective designs. Therefore, future research
on asymmetries in cut-off points, values by age, sex, or other variables could help advance
injury risk prevention. Also, for practical settings, is important have a benchmark (i.e., start
of pre-season or start of competitive season) adding this test for analyze future change,
either in case of injury or decreases in strength, to help guide the processes of rehabilitation
and strengthening, also CV and SD of bias (Bland–Altman statistics) can be used as a
threshold for minimum substantial change/smallest worthwhile change. Therefore, this
test can be used for the purposes mentioned above, having the potential to be reliable to
have internal methodological validity in future research as well as in sports environments.

5. Conclusions
To summarize, it can be concluded that the peak force metric in the new hip adduc-

tor isometric strength test demonstrates acceptable absolute reliability and good relative
reliability. However, time-related variables, RFD and impulse, were found to possess
unacceptable absolute and poor relative reliability, possibly due to the need for familiariza-
tion sessions.
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