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Introduction: Diabetes mellitus (DM) is a chronic condition defined by increased
blood glucose that affects more than 500 million adults. Type 1 diabetes (T1D)
needs to be treated with insulin. Keeping glucose within the desired range is
challenging. Despite the advances in the mHealth field, the appearance of the
do-it-yourself (DIY) tools, and the progress in glucose level prediction based on
deep learning (DL), these tools fail to engage the users in the long-term. This
limits the benefits that they could have on the daily T1D self-management,
specifically by providing an accurate prediction of their short-term glucose level.
Methods: This work proposed a DL-based DIY framework for interstitial glucose
prediction using continuous glucose monitoring (CGM) data to generate one
personalized DL model per user, without using data from other people. The DIY
module reads the CGM raw data (as it would be uploaded by the potential
users of this tool), and automatically prepares them to train and validate a DL
model to perform glucose predictions up to one hour ahead. For training and
validation, 1 year of CGM data collected from 29 subjects with T1D were used.
Results and Discussion: Results showed prediction performance comparable to
the state-of-the-art, using only CGM data. To the best of our knowledge, this
work is the first one in providing a DL-based DIY approach for fully
personalized glucose prediction. Moreover, this framework is open source and
has been deployed in Docker, enabling its standalone use, its integration on a
smartphone application, or the experimentation with novel DL architectures.
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1 Introduction

Diabetes Mellitus (DM) is a chronic metabolic condition
characterized by increased blood glucose level concentrations,

which was suffered by around 537 million adults in 2021,
representing nearly 10% of the world population (1). Moreover,

the number of people with diabetes will potentially grow to 643
million by 2030, with an estimation of over 6.7 million deaths

from diabetes-related issues (1, 2). Chronic hyperglycemia may
lead to DM-associated complications, including damage to the

heart, eyes, kidneys, blood vessels and nerves, seriously affecting
the quality of life of those who suffer it (3). The two main

types of DM are type 2 diabetes, caused by an increased
resistance to insulin, where the body is not able to secrete
enough insulin to overcome such resistance, and Type 1

Diabetes (T1D), which results from autoimmune, pancreatic
beta-cell destructions that ends in a complete lack of insulin

production (3, 4).
Particularly, T1D is the main type of diabetes in childhood,

although it can occur at any point in life. It accounts for 8.75
million people globally, 1.52 million of them being less than

20 years old by year 2021 (1). T1D treatment is a challenge, since
imperfect, exogenous insulin administration aims to mimic

(inexistent) endogenous insulin production, to keep glucose
concentrations within a safe range, avoiding hyper- and

hypoglycemia (high and low blood glucose levels, respectively). An
individual with T1D experiences around two episodes of

symptomatic hypoglycemia per week, which is directly associated
with an increase in morbidity and mortality (5, 6). Due to the

threat that these recurrent hypoglycemic events entail, T1D
requires a lifetime of thorough self-management. To maintain the

blood glucose levels in an appropriate range, people with T1D
require daily administration of insulin, otherwise their lives would

be seriously endangered. This control, together with regular
consultations with an endocrinologist, are crucial to achieve good

metabolic control, being able to live a healthy life and potentially
mitigating the hardest long-term complications of T1D (3, 7).

T1D self-management mainly includes glucose monitoring and
subcutaneous insulin administration. Current glucose monitoring

tools can be classified in two groups: capillary blood glucose
measurements, which requires a puncture in a finger to extract a

blood drop with a glucometer, and Continuous interstitial
Glucose Monitoring (CGM), a technique that has become

standard of care in many countries, and whose cost decrease and
accuracy improvements will likely contribute to its expansion in

the short-term (8). CGM devices use a sensor attached to the
subject’s skin that monitors interstitial glucose concentrations
(typically every 5 or 15 min, depending on the model of the

sensor) (9). Supplementary Figure S1a depicts a segment of a
CGM signal. There is an international consensus to establish the

guidance for assessment glycemic control taking the CGM as
reference, although glucometers are still more accurate than

CGM sensors. The target glucose range is 70–180 mg/dl, and the
time spent within these values is called Time In Range (TIR).

TIR is recommended to be greater than 70% daily. The Time
Above Range (TAR), i.e., with glucose concentrations over 180

mg/dl is advisable to be less than 25%, whereas the Time Below
Range (TBR), should not be more than 4% of the day,

corresponding to less than one hour (10). Therefore, the T1D
individual’s goal is to have the highest TIR possible, decreasing

the TAR and TBR as much as possible. The visualization
standard of these ranges in T1D dedicated mobile applications is

illustrated in Supplementary Figure S1b.
Current functionalities for the available commercialized CGM

devices are the glucose data transfer to a display device (e.g., a
smartphone), sometimes triggering alarms about the probable

arise of hyper- or hypoglycemia episodes (9). CGM has proven
to reduce the number of hypoglycemic events in people with

T1D (11). Besides, continuous glucose sensors have also
enabled the communication of the glucose readings to the
insulin pumps, giving rise to the so-called hybrid closed loop

systems, where basal and correction insulin infusions are
automated, but the mealtime insulin is not, since there are no

commercially available systems that provide meal information
automatically (9).

Lately, mobile Health (mHealth) applications have been
increasingly employed to enhance chronic conditions

management, which is crucial to improve the individual’s health
outcomes (12). However, they have failed to address the

challenge of individual’s long-term non-adherence to the tools
themselves, due mainly to data privacy concerns, lack of

perceived usefulness, non-optimal usability and the potential
costs associated to their use (13). Seeking engagement in

mHealth applications, and to overcome the bureaucratic delays
associated with regulatory processes, the Do-It-Yourself (DIY)

approach has gained popularity recently (2). This approach
facilitates the self-management of an individual’s condition by

easy access to their health data. In the diabetes field, the turning
point arrived in 2014 with the Nightscout Project, the first

reported DIY mHealth application for people with diabetes (14).
In 2022, Morrison et al. published a review of DIY systems used

in people with T1D, evidencing that people are willing to use
this kind of systems rather than the commercial ones (15).

Additionally, in this approach the individuals are the digital tool
providers, instead of medical companies, thus enabling an easy-

to-use and subject-driven approach (16), which is strongly
related with the tool engagement and usability (17). Furthermore,

DIY systems have demonstrated to be effective in the glycemic
control in people with diabetes (18). Although in the diabetes

context DIY refers to people with this condition developing the
tool by themselves, in this work this term refers to their indirect

participation through the co-creation process of this module, the
fact that this open source module allows individuals to generate
their own personalized models using their data, together with the

fact that researchers and/or software developers could implement
further improvements on it, and implement it as an

smartphone application.
Summarizing, despite the outlined advances in glucose

monitoring, most people with T1D do not reach optimal
glycemic control (19). Although there are diverse reasons that

explain this, the most relevant factors that could be mitigated by
the implementation of a personalized AI-based tool are:
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a. The high intra-subject variability in CGM measurements in
people with T1D, the errors in glucose measurements and the

delay in the control actions (20).
b. The suboptimal usability of the current available digital tools

for T1D management, that ends on the disregard of many
individuals for them (17).

c. The lack of personalization in the available digital tools
that could provide accurate and customized feedback,

considering individual metabolism, environment, or digital
alphabetization (2).

An accurate and reliable prediction of the glucose concentration in

the next minutes or hours would certainly support individuals,
anticipating possible hyper- and hypoglycemic events. This

knowledge is already included in the hybrid close-loop systems
to improve the insulin delivery (21). There are numerous studies

that have assessed this task using mainly three approaches.
Physiological models use equations to describe human

metabolism; data-driven models, where this work is enclosed, are
based on time series analysis and Machine/Deep learning

(ML/DL) techniques; and hybrid models are a combination of
the above (22, 23). The data-driven models are the ones that

have presented the best prediction performance so far (22). Most
of the studies, including those with the most accurate

predictions, are based on Convolutional Neural Networks
(CNNs) (24, 25) and Long Short-Term Memory (LSTM)

architectures (26). However, although the advances in this field
are promising, most of the published literature lacks a subject-

oriented approach in the Artificial Intelligence (AI)
implementation and evaluation, limiting the impact that these

algorithms can have on people’s lives.
Currently, there is a scenario where the arrival of DIY tools

embraced by people with T1D, the promising advances of AI in
glucose forecasting, and the progress in the mHealth field do not
fully converge, thus limiting the implementation of such systems

in the healthcare programs (27). Additionally, data privacy has
become one of the main concerns of the users when using

personal and clinical data in mobile applications (28), which is
related to the reservations of using them daily (29). Thus, the

proposed AI-based DIY framework (Figure 1) intends to merge
these advances and overcome these limitations, contributing in

terms of AI model personalization and data privacy to enhance
T1D self-management including the following features:

a. Robust validation approach of fully personalized AI-based
models (using only the user’s own data) to make 30- and

60-min interstitial glucose forecasting, based on the state-of-
the-art architectures using 1 year of CGM data.

b. Integration of the DL workflow in a DIY module for software
developers that includes personalization in the way T1D data

is shown to the user.
c. AI-related information, targeting user empowerment in the use

of AI, informing them about the relationship between their data
and the AI models generated (e.g., why a DL model cannot be
reliably trained with the provided data) (30).

d. Secure design that enables the local generation and execution of
the DL model in the user’s own device, avoiding sharing

personal data with third parties.
e. Open-source modular design that allows researchers and

developers the integration of data from new sensors,
preprocessing stages, or additional DL architectures in a

straightforward way.

To the best of our knowledge, this work proposes the first
personalized AI-based DIY module for both software developers
and people with T1D to aid the latter with their daily self-

management by providing up to one-hour interstitial glucose level
forecasting. The design of this module allows its easy integration

on a smartphone, even if it only has been tested on a computer.
For the sake of usability improvement and user engagement, this

tool has been designed considering the daily habits of people with
T1D regarding their glycemic control, and the challenges they

usually face through a co-creation process. Besides, this has been
achieved following a robust methodology to train and technically

validate the DL models, using 1 year of CGM data, and a global
and subject-wise evaluation. This module automatically analyses

the individual’s data, trains, and validates a fully personalized DL
model once the user has uploaded her/his CGM data. As a result,

the user obtains a detailed visualization of their data in a
standardized but customizable manner, as well as a forecast of

her/his interstitial glucose level. If a hypo- or hyperglycemic
episode is predicted, a warning message will be triggered.

2 Materials and methods

2.1 T1D dataset

CGM data were collected at the Complejo Hospitalario Insular-

Materno Infantil de Las Palmas de Gran Canaria from 41 people

with T1D that use a sensor from the FreeStyle Libre (Abbott)
family. Additional data, such as physical activity, insulin

administration, or carbohydrates, were not available for any of the
subjects involved in this study. The raw data were extracted from

the LibreViewTM (Abbott) website by an endocrinologist in raw
Comma-Separated Values (CSV) format. Participants were invited

to participate and were given oral and written information. All
participants signed a written informed consent form. Individual’s

data were stored on a secure server only accessible through a
virtual private network by people working on the WARIFA project

(31) after being given individual access credentials.
Supplementary Table S2 summarizes each subject’s more

relevant information regarding AI processing associated with an
anonymous ID. To train DL models, a sufficient number of

samples for each subject is needed. Among the 41 subjects there
were cases in which this requirement was not fulfilled, due to

sensor malfunction or due to multiple sensor replacements in a
short period of time. Moreover, different sampling periods in the

sensors could imply variations in the considered architectures.
Thus, only the subjects that met the following inclusion criteria

were considered in this study:
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1. To have at least 1 year of CGM readings with the same sensor.
Sensor malfunction (e.g., reading interruptions) was considered

and further treated to conform the instances to train and
validate the DL models.

2. To have a glucose sensor with a sampling period of 15 min,
aiming a fair prediction performance comparison between

different subjects.

Finally, 29 subjects met the inclusion criteria, for whom it was used
the oldest year (when more available) of these subjects to train and

validate the personalized AI-models. The oldest year was selected

so subsequent CGM readings were left for potential further
testing of the DL models. Besides, when available, additional data

were collected for a final model test.

2.2 CGM data preparation and
preprocessing

The data curation phase was performed by filtering out the
subjects that did not meet the inclusion criteria previously

described. The framework was executed one time per included

FIGURE 1

Proposed AI-based DIY framework for interstitial glucose level prediction up to 30 and 60 min in people with T1D. Framework steps are illustrated in
order. The zone delimited by dashed lines is only executed once: in the user’s first use. Out of this zone, the steps that the user will perform every time
he/she uses the DIY module are illustrated. For the analysis presented in this work, this framework has been executed once per included subject
(n= 29). After the first use, the module is designed to, every time the user “triggers” it, automatically read the last day of the available CGM data
and provide an immediate 30- or 60-min prediction. Currently, if there are CGM readings interruptions, a prediction is not provided. (a) In the first
use, the users upload the raw CGM data to generate the DL model as data were downloaded by the corresponding application. In subsequent
uses, user allows the Reading of the last day of data to perform a prediction. (b) Automatic data analysis and preparation is performed to check if
the provided data allows a reliable AI model generation or not. If so, data is prepared to train and validate the model. (c) Min-max normalization
and 4-fold trimester-wise data partition. (d) AI model generation after fold shuffling, train, validation, model evaluation, and best model selection.
(e) Illustration of subsequent module uses, including interstitial glucose prediction and data visualization.
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subject (i.e., 29 times) using the first recorded year of each subject.
At this point, there was a unique sequence of CGM readings for

each subject with their associated timestamps to which a pre-
processing step was applied. At that point, data were still not

suitable for the training of the DL models.
Then, an automatic and parametric subject-per-subject

sequence-to-sequence (from now, seq-to-seq) (i.e., an input
sequence and an output sequence) dataset generation was

developed (Figure 1B). The considered parameters were the
window length, denoted as N (96 in this work), the step from one

sequence to the next one (set to one in this case), and prediction

steps, which is the result of the division between the Prediction

Horizon (PH), i.e., how far ahead the model predicts, and the
sensor sampling period. For this case, this parameter was set to
four and two (60- and 30-min PH/15 min sampling period,

respectively). Notice that, with this approach, there is a trade-off
between the window input length and number of training

instances; a larger input length will likely provide more
information to the DL model, but fewer training instances will be

generated, potentially limiting the prediction performance.
Firstly, the time intervals between two consecutive readings

were computed considering the sensor timestamps associated
with all readings. Although the nominal sampling period of all

the sensors included in this work is 15 min, the actual interval
between consecutive samples may vary from this reference value

(Supplementary Figure S10). Therefore, to be compliant with the
assumption of data provided in periodic time slots, two samples

are actually consecutive when the time between them is lower
than twice the sampling period (i.e., 30 min). As depicted in

Supplementary Figure S6, it is assumed that, if the sensor
reading is delayed or advanced in 2 × sampling period minus 1 s

(i.e., 29:59 min), that reading corresponds to the next timeslot.
Every time that two consecutive samples in the CGM sequence

surpassed 29:59 min, a new data block was created. Therefore, the
number of blocks depends on the number and location of

interruptions in the data (Figure 1B). Furthermore, the minimum
number of consecutive samples to form a usable block (i.e., to

form an instance suitable to train the DL models) is equal to the
length of the input sequence plus the length of the output

sequence. Otherwise, those samples are discarded and will not be
used to generate and train the AI models. Notice that the ideal

case would be to have only one data block without interruptions.
After the data block generation, each data block is swept into

steps of one to generate the model inputs (X ) and the associated
outputs (Y ). Thus, block length determines the number of

instances a particular block provides. After the sequences were
generated from all data blocks, they are concatenated as instances
to perform the min-max normalization as described in Equation 1.

inorm ¼
i� Smin

Smax � Smin
, (1)

where i represents a given sample inorm is the normalized sample,
and Smax and Smin the global maximum and minimum values of

a subject’s data.

Additionally, there were a few cases where the CSV file did not
follow LibreView’s standard way of presenting the data. In such

cases, glucose concentration values were considered corrupted,
and thus treated as interruptions.

2.3 ISO adapted loss function

ISO 15197:2015 (32) establishes two specific criteria for glucose

concentration monitoring systems, both based on the discrepancy
between measured values and their reference counterparts.

Although this standard was developed for glucose sensor
measurement errors, its criteria can be extrapolated to evaluate

errors between the actual glucose concentration and a value
predicted by a model, tailoring the prediction problem assessment

to the glucose monitoring context. AI-based models, such as those
proposed in this work, are often trained with the aim of

minimizing standard loss functions based on squared or absolute
errors. Although theoretically both approaches lead to the same

optimal solution, in practice a better result is expected if the loss
functions are adapted to the required validation performance.

A customized loss function has therefore been designed to enforce
compliance with the criteria specified in the ISO standard.

Firstly, the two validation criteria, i.e., the one referring to the
acceptable error zone in terms of accuracy and the one attending to

regions A and B in the Consensus Error Grid [CEG—also called
Parkes Error Grid (PEG)] (24, 26), have been analyzed by

comparing the maximum admissible error values for each case.
As shown in Supplementary Figure S7, the former criterion is

the most restrictive except in the narrow range of reference
values from 164 to 174 mg/dl, where the maximum admissible

error is established by the boundary of region A in the CEG.
Hence, it could be assumed that error values of 15 mg/dl or 15%

of the reference value, depending on whether the actual
concentration is less than 100 mg/dl or not, respectively, define

the upper bound of the admissible error.
The strategy for designing an error function explicitly

considering this upper bound is to force a barrier in the form of
a steep slope of the function in the neighborhood of the

threshold value. This can be achieved by introducing an additive
term to the quadratic error that can be considered negligible
(ideally zero) in the admissible region but large (ideally infinite)

elsewhere. Nevertheless, the desirable properties of the error
function must be preserved to facilitate the optimization process

of AI model training, specifically its increasing monotonicity
with the magnitude of the error and its smoothness. It is

inspired by the design of low-pass filters, where the constraints
are similar, with a low attenuation in the admissible region and a

cut-off value beyond which the attenuation is high. Therefore,
the additive term g shown in the following Equation 2 is proposed:

g(e) ¼ Ke2n (2)

where the variable e refers to the normalised error in the prediction
of a sample, i.e., the error itself if less than 100 mg/dl or the error
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multiplied by 100
r
, being r the reference value associated with that

sample, and K is the proper constant to conform the transition

in a way that the term remains below a prescribed tolerance in
the admissible region and surpasses an established threshold for

large error values.
The overall expression for the error function (LISO),

including the quadratic error and the additive term g is detailed
in Equation 3.

LISO(e) ¼ e
2 þ g(e) ¼ e

2 þ K e
2n (3)

Figure 2 highlights the different behavior of LISO with respect to the
squared error around the 15 mg/dl limit prescribed in ISO

15197:2015. Its steeper slope enhances the reduction of the error
for non-compliant samples compared to those already within the

acceptable range.
This function should be considered as a modified version of the

quadratic error of a sample and therefore allows composing loss
functions for collections of samples by addition or averaging as

well as the use of its square root to work in the same units in
which the error is defined (mg/dl in the case of interstitial

glucose concentration prediction). In this work, n has been set to
40, and K set to 0.1/1480.

2.4 Proposed AI-based framework

Figure 1 shows the proposed framework to develop a

personalized AI-based DIY module for interstitial glucose
forecasting for people with T1D. It has been developed in

Python 3.10.13 (33), using TensorFlow 2.10.0 (34) for the
development of the DL models. This work was developed using

an AMD Ryzen 5 3600 6-core processor and an NVIDIA
GeForce RTX 4070 Ti GPU to speed up the training process of

the large number of models that were generated. The choice of
this approach was based on the following ideas:

a. the robustness of the DL models in the training and validation
phase, considering different groups of three months within a

year to train and validate the models.
b. the adaptation of the forecasting problem to the CGM case

[e.g., adapting the loss function used to train the DL models
based on the ISO 15197:2015 (32)].

c. the development of a fully personalized AI-based DIY module
to predict interstitial glucose, preserving individuals’ privacy

and considering the daily habits of self-management of T1D.
d. the enhancement of the usability of this AI-based module (17)

to either easily integrate it in a broader application
environment and workflow or use it as a standalone tool.

Normally, each glucose sensor can be read with a dedicated reader
or an application in the user’s mobile phone, provided by the

manufacturer. If interested, users can also have access to their
raw data, which they can download. In a DIY approach, it is

assumed that the users will download and deal with their data.
Hence, this framework automatically reads the raw CSV data

provided by the endocrinologist (in the final application would
be the user itself who would upload his/her data) and prepares

them to be further processed without the need for more
interaction by the user.

FIGURE 2

Basis of the development of the LISO loss function design. (a) Conventional squared error vs ISO 15197:2015 customized squared error in linear scale.
(b) Conventional squared error vs ISO 15197: 2015 customized squared error in logarithmic scale. Error losses are plotted as functions of the Blood
Glucose (BG) difference, i.e., the deviation of the test (predicted) glucose concentration from the reference (ground truth) value, expressed in mg/dl or
percentage of the reference value according to the ISO standard. Similar behavior of both error functions is observed in the admissible range,
delimited by red dashed lines.
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2.5 Deep learning architectures

For the interstitial glucose forecasting, a seq-to-seq approach
(35) was proposed due to its proven effectiveness in time series

forecasting (36). In the seq-to-seq approach, the input of the
model is one sequence (or more) of a certain length, and the

model outputs a sequence of a certain length (usually shorter
than the input for time series forecasting) that represents the

subsequent time instants in the nearest future.
As a first approximation, the input sequence length was set as

to 96 samples [i.e., 24 h at a sampling period of 15 min, which
corresponds to an average period that includes basal glucose
regulation mechanisms (37)]. This was established considering

that all CGM sensors included in this study had a sampling
period of 15 min, based on clinical knowledge, subject’s

autocorrelation studies, and considering the trade-off between the
input length and the number of generated training instances. As

a second input, the first difference of the CGM input window
was computed to feed the DL models with additional

information about CGM variations. Besides, two different PHs,
have been assessed: 30- and 60-min PHs. Having a sampling

period of 15 min implies an output sequence of two and four
samples, respectively.

The proposed DL models were based on CNNs (38), and
LSTMs (39), due to their promising results reported in time

series forecasting, and specifically, in glucose levels forecasting
(24–26, 40). Three different DL models, together with a baseline

model, have been evaluated in this work:

1. Naïve: For the sake of comparison, a naïve forecasting (24)
approach was included in the study. It consists of making the

prediction by outputting the last values of the input
sequence. This elementary prediction is considered the

baseline to compare the performance of the proposed DL-
based models.

2. LSTM: A single LSTM cell with N memory units, N being the
input sequence length (set to 96 samples), followed by a fully

connected layer, whose output dimension is equal to the
number of predicted points.

3. Stacked-LSTM: A Stacked-LSTM (i.e., a model that comprises
several LSTM cells) (36) composed by five layers in an

encoder scheme of N, N/2, N/2,N/4 and N/4 memory units,
from the outer to the inner layer respectively. The intention

underlying this architecture is to learn the longer-term
features in the layers closer to the input, and the more local

temporal dependencies at the layers closer to the output.
A drop-out (41) of 0.05 was added to contemplate the

randomness of the studied phenomena and to avoid
overfitting on the training set (42). The LSTM cells are

followed by a fully connected layer whose output size is equal
to the number of predicted points.

4. Dil-UNet: Inspired by the promising results of the U-Net one-
dimensional heart sound segmentation (43), and in the

successful use of CNN with dilated convolutions (25), a
regression model based on a dilated U-Net has been

proposed. It consists of a four-stage encoding-decoding

network, with the hyperparameters outlined in
Supplementary Table S1. The number of filters of the first

layer was set to 4 times the number of input features. They
were doubled in each encoding stage of the network and

halved in its decoding part. Besides, after the last encoding
convolutional layer, there are two intermediate layers that

double its number of filters. There are skip connections
between each encoding-decoding peer to enable direct

transfer of information. The dilation rate of the convolution
was added to augment the receptive field of the operations

and was set to one. As with the Stacked-LSTM, several drop-
out layers were added, increasing the rate to 0.1 due to the

greater number of weights of this model. The last
convolutional layer was connected to a fully connected layer
whose output dimension is equal to the number of

predicted points.

Supplementary Table S1 shows the model and training

hyperparameters chosen for each architecture, which have been
heuristically chosen after several trial-and-error experiments with

subjects that were considered to represent the best, worst, and
average subjects in terms of prediction performance. It also
shows the number of parameters of each model. Notice that, due

to the variation of the dense layer size that outputs the
prediction sequence in the different PHs, there is a slight

variation in this number for each PH. Due to the time
constraints associated with the large number of independent

models (one for each subject) generated in this study,
hyperparameter optimization was not feasible. Notice that the

training hyperparameters were the same for all architectures,
seeking a fair prediction performance comparison. The batch size

was set to one to compensate for the low number of samples of
some of the included subjects.

Adam optimizer was used to train the models, using the
standard Mean Squared Error (MSE) as the loss function, as well

as using the novel LISO loss previously described. Due to the
extensive computational time associated with the large number of

generated models in this experiment, early stopping was
implemented after two epochs without reducing the loss

function. The delta, (i.e., the minimum change required in the
loss function value to consider a model improvement) was set to

0.0001 for both loss functions aiming at a fair comparative. This
delta was considered the optimum after heuristic

experimentation. In the same way, it was noticed that the models
performed better when not only the CGM was considered as

input, but also the CGM’s first difference. Experiments also
showed that introducing the second difference worsened the

prediction performance. Hence, the DL models had two input
features: the CGM and its first difference.

Finally, considering that hypoglycemic events are a severe
health threat, the output sequences that contained samples in the

hypoglycemic range were weighted the most to train the DL
models, followed by the output sequences containing samples in

the hyperglycemic range. Sequences that were within the target
CGM range were not weighted beyond considering its occurrence

including its probability in the equation. Besides, the occurrence

Rodriguez-Almeida et al. 10.3389/fdgth.2025.1534830

Frontiers in Digital Health 07 frontiersin.org

https://doi.org/10.3389/fdgth.2025.1534830
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


of hypoglycemic samples is lower than the hyper- and normal
CGM ranges. This together with the fact that such occurrence

varies among subjects, the abovementioned weighted factor
was multiplied by the probability of a given sample to be in

range, or in the hyper- and hypo- ranges. This introduces the
models’ personalization from the training process. Depending

on the number of samples in the different ranges, the
weighting varies. Generally, the samples to train the models

were weighted as described in Equations 4–6 for output
sequences that contained hypo-, hyperglycemic samples, and

samples that were in the target range, respectively. The weights
multiplying the inverse of the probability of occurrence were

obtained heuristically.

Whypo ¼ 2 x 1=p(hypo) (4)

Whyper ¼ 1:1 x 1=p(hyper) (5)

Win range ¼ 1=p(in range) (6)

Where W represents the weights for a given subject’s
hypoglycemic (Whypo), hyperglycaemic (Whyper) and in-range

(Win range) sample, and p refers to the probabilities of a given
sample to belong to the hypoglycemic range p(hypo),

hyperglycaemic range p(hyper), and an in-range sample
p(in range). Notice that, for each subject, the probability is

computed as the number of samples in each range divided by
the total number of samples.

2.6 Trimester-wise 4-fold cross-validation

From the set of sequences collected, the data partition was

conducted as depicted in Figure 1C. To analyze if the
performance of the different AI models depends on the period of

the year used to train them, which can be related to sensor
misfunction, holidays period, etc., the models were cross-

validated using a 4-fold approach, where each fold contained
data from a consecutive 3-month period. Hence, a 9-month

period and a 3-month period were used for training and
validation, respectively, for each fold. For every subject, the oldest

timestamp marked the beginning of the first fold. The second,
third, and fourth folds were generated adding 3, 6, and 9 months

to the first timestamp, respectively. Notice that there were some
instances that contained data from different days, and

subsequently, from different months. For the sake of consistency,
borderline instances that contained data from different folds were

discarded for cross-validation. Furthermore, due to the
heterogeneity in the sensor reading interruptions, there were

folds with more instances than others. This could have an impact
on the final regression performance of the models between folds

from the same subject. Finally, every fold was shuffled before
feeding the DL models.

Notice that every architecture was trained and validated
with the standard MSE and the LISO loss functions, and this

was performed for the 4 folds. Moreover, the same

methodology was applied for two PHs: 30 and 60 min.
Hence, and taking into account that the naïve approach

does not need to be trained, for each subject, 48 AI models
(3 architectures × 2 loss functions × 4 folds × 2 PHs) were

generated. Considering the 29 subjects, 1,392 personalized
AI-based interstitial glucose forecasting models were

generated and evaluated in this work. This large number of
models strongly limited the number of experiments that

could be performed following this approach.

2.7 Prediction evaluation metrics

Commonly, prediction models for interstitial glucose level
forecasting are evaluated using classical regression evaluation

metrics, such as Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE) or Mean Absolute Percentage Error

(MAPE), described in Equations 7–9, respectively, where ŷi is the
forecasted value, yi the corresponding ground truth, and N the

number of considered values. In this work, they have been also
used. However, only a few studies in the literature report the

results achieved using the CEG and, to the best of our
knowledge, none of them uses the complete ISO 15197:2015 (32)

criteria for such evaluation since it is a highly restricted
evaluation metric.

ISO 15197 is an international standard on in vitro diagnostic
test that addresses self-testing blood glucose monitoring systems

for managing diabetes mellitus within the realm of in vitro

diagnostic test systems. These systems are designed for self-

measurement by individuals without specialized medical training
for the purpose of managing their condition. This standard,

which has been adapted from the sensor accuracy measurement
to the error between the prediction and the actual value in this

work, as mentioned before in the text, establishes that the blood
glucose monitoring systems (in this work, extrapolated to

prediction error), must meet these two criteria:

• 95% of the measured (predicted) glucose values must be within
±15 mg/dl for blood glucose concentrations below 100 mg/dl.

For values equal or greater than 100 mg/dl, the margin of
error is percentage and is set at ±15%. This is illustrated in

Supplementary Figure S8a.
• 99% of the measured (predicted) glucose values should fall

within zones A and B of the CEG for T1D. As shown in
Supplementary Figure S8b, the CEG is divided into 5 zones

according to the estimated risk to the people with T1D if an
outcome fails, starting with zone A, where there is no effect

on clinical action, to zone E, where clinical action is altered
with dangerous consequences.

Unlike the classic regression metrics, these have clinical meaning
and penalize more the errors in clinically critical intervals (i.e.,

errors that imply misprediction of hypo- or hyperglycemia
events), so they have been taken as a reference instead of the

RMSE, as has been usually done (24–26, 44, 45). Hence, in this
work, two additional metrics that considered these two criteria
were studied: the percentage of the total predicted points within
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the Parkes acceptable zone (ParkesAB), and within the ISO
acceptable zone (ISOZone).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

X

N

i¼1

(ŷi � yi)
2

v

u

u

t (7)

MAE ¼
1
N

X

N

i¼1

jŷi � yij (8)

MAPE ¼
1
N

X

N

i¼1

jŷi � yij

yi
�100 % (9)

2.8 Do-it-yourself module design and
containerization

After performing the personalized AI-models development and
validation, a Python application was developed to encapsulate the

DIY framework in a usable module. Additionally, the Docker
tool (46, 47) was used to containerize the app, enabling its use in

different Operating Systems (OSs), including those used in
smartphones. In this work, this module was validated in

Windows 10 and Ubuntu LTS 24.04, to prove that this module
was OS-agnostic. Only the LSTM for 30-min PH was

implemented in this stage, since it was the model with the
shortest training times, and this was sufficient to test the DIY

module functionality.
The design of the application aimed to increase the users’

empowerment (30) regarding their data and the AI models

generation using them. Considering the inclusion criteria, the
preprocessing and the obtained results regarding prediction

performance of this work, there are cases where the
implementation of this AI-based framework is not feasible, e.g.,

to provide less than a year of data to generate the model, the fact
that such year of data does not provide enough samples to

properly train the DL architectures, etc. All this information will
be prompted to the users when needed. The users will also have

the option to skip this information in case they are not
interested. Four main scenarios were considered for the design of

this tool. A key point is that all these scenarios are triggered by
the user by calling the application. In the current stage, this

means uploading their CGM sensor data to the DIY module.
The possible scenarios that the tool contemplate are:

1. User’s first use providing enough data. The DL models are

generated and training following a 4-fold cross-validation
approach. The best model is selected and locally stored to be

the one that will provide the personalized CGM predictions.
2. User’s first use without providing enough data. No DL model

will be generated. The application will encourage the user to
upload her/his again, indicating why user’s data was not

suitable for the CGM prediction (if desired).
3. User’s second (or beyond) use providing enough and

uninterrupted data (i.e., one day with the proposed approach,

as it is the input length of the DL models). The model
generated in 1) is called and the CGM prediction is provided.

4. User’s second (or beyond) use and not providing enough data.
No prediction will be provided, and, if the user wants so, an

explanation about why the prediction did not take place will
be provided.

The design of the module interface, including the graphics, was

developed through a co-creation process. Potential users
participated in focus groups, where they expressed their needs

and preferences related to the module. One of the objectives of
these sessions was to find the best way to represent the glucose

data of the potential users. To achieve this, they were asked
about their preferences and were shown examples of graphs.

Participants chose the ones they found most useful for decision-
making regarding their insulin dosage. A total of six focus

groups were conducted with participants with T1D (n = 31).

3 Results

3.1 Validation of the proposed ISO-adapted
loss functions for DL model training

Figure 3 shows the comparison of the prediction performance

when training the LSTM, Stacked-LSTM and Dil-UNet models
with LISO (green) and the standard MSE (grey). Notice that the

naïve model does not require any training and hence any loss
function. The upper part of Figure 3 illustrates the metrics for

30-min PH, and the lower part for 60-min PH. This evaluation
was performed in terms of RMSE, (Figures 3a,f), MAE,

(Figures 3b,g), MAPE, (Figures 3c,h), ParkesAB, (Figures 3d,i),
and ISOZone, (Figures 3e,j). They comprise the results obtained

for the included 29 subjects. Notice that for RMSE, MAE, and
MAPE, the lower their value, the better the prediction

performance, zero being the ideal value. Conversely, ParkesAB
and ISOZone are percentage metrics, where the ideal case would

be to have 100% of the points within the acceptable zones.
Nonetheless, a ParkesAB value of 99% and an ISOZone value of

95% are compliant with the ISO 15197:2015 standard (32).
These results show that the proposed LISO training provided a

similar prediction performance than the standard MSE for all
models and for both PHs. Both LISO and MSE showed higher

variability for the 60-min PH (Figures 3f–j), than for the
30-min PH (Figures 3a–e). The 30-min prediction implies less

uncertainty than the 60-min prediction and, therefore, both
error magnitude and variability increase in the latter case. MSE

and LISO training presented equivalent performance, although
the median metrics in MSE metrics showed slightly better

performance than LISO. In the case of the 60-min prediction,
LISO training improves the Dil-UNet performance in terms of

all metrics (Figures 3f–j). Besides, this improvement is the
largest among all the models comparing both loss functions.

Considering that the 60-min PH is a more complex task than
the 30-min analogue, and that the Dil-UNet has around 15 and

8 times more parameters than LSTM and Stacked-LSTM
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respectively (see Supplementary Table S1), this suggests that the
larger the PH and the more complex the model, the more evident

is the LISO influence in glucose forecasting. Besides, it can also be
observed that the performance limitations inherent to the

proposed DL architectures are not overcome by the use of any
loss function. As an example, the use of LISO to train the Dil-

UNet, improves the prediction performance compared to the MSE
training, but it does not outperform the Stacked-LSTM or the LSTM.

3.2 Comparison between different models
for personalized interstitial glucose
forecasting

Tables 1, 2 show the mean and Standard Deviation (SD) of the
obtained results for 30-min and 60-min PHs, respectively,

considering the four validation folds in all subjects (n = 29) for
the four evaluated models. Results are grouped by the loss

function used to train the DL models.
The three proposed DL models outperformed the naïve

approach (set as baseline for the minimum requirements
regarding prediction performance) for all metrics and both PHs.

These results show that, among the proposed DL models, there is

no architecture that works optimally for both PHs. Moreover,
LSTM-based models outperform the Dil-UNet for both loss

functions and PHs. This might be related to the fact that a
recurrent neural network as the LSTM and Stacked-LSTM are

based on an architecture that implements memory cells that
preserve their state over time, theoretically more suitable for time

series prediction purposes than other architectures that are in
principle more complex but are not specifically designed to catch

the temporal dependencies (48). Besides, regardless of the
employed loss function to train the models, LSTM showed

slightly better prediction metrics for 30-min PH, whereas
Stacked-LSTM, which has more parameters (see Supplementary

Table S1), did it for 60-min PH.
LSTM and Stacked-LSTM presented slightly better results

when trained with the standard MSE than when trained with
LISO. Focusing on the difference of all metrics, it is noticeable

that LISO influences more the Stacked-LSTM than the LSTM.
This could be related to the fact that the Stacked-LSTM possesses

twice the number of parameters than LSTM (see Supplementary
Table S1) and hence is more “flexible” than the LSTM.

Finally, focusing on the diabetes-specific metrics, it is worth
noticing that the ParkesAB criterion (i.e., to be greater than 99%)

was fulfilled by all models regardless of the loss function used for

FIGURE 3

Comparison of metric performance for the proposed loss functions: MSE and LISO. Boxplots of the evaluation metrics in all subjects’ (n= 29) four
validation folds in the three proposed DL models training them with the standard MSE (grey) and the LISO function (green) for 30- (top) and
60-min (bottom) predictions. In the boxplots, centre line represents the median, box comprises second and third quartiles, whiskers extend up to
1.5 times the interquartile range, and circles denotes outliers. The naïve model was not included because it does not require any training. The
lower the RMSE, MAE and MAPE, the better the prediction performance. The higher the ISOZone and ParkesAB, the better the prediction
performance. The dash lines represent the ISOZone and ParkesAB minimum requirements according to the ISO 15197:2015 standard. (a) RMSE,
30-min PH. (b) MAE, 30-min PH. (c) MAPE, 30-min PH. (d) ParkesAB, 30-min PH. (e) ISOZone, 30-min PH. (f) RMSE, 60-min PH. (g) MAE, 60-min
PH. (h) MAPE, 60-min PH. (i) ParkesAB, 60-min PH. (j) ISOZone, 60-min PH.
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the 30-min PH. However, this requirement was not fulfilled for
the 60-min PH. All models left from 2.3% to 3% below the

minimum threshold. The ISOZone metric, which is the
most restrictive requirement based on the ISO 15197:2015

standard (32), was not fulfilled in any case (i.e., to be greater
than 95%), for any of the PHs, being around 16% and 39% below

the threshold for 30-min and 60-min PHs, respectively.
This might be related to the architectural limitations of the

proposed DL models.

3.3 Assessing inter- and intra-subject
variability through a subject-wise evaluation

The results presented in the previous section provided
insights about the overall differences between the DL models

evaluated for interstitial glucose forecasting but did not

consider the inter- and intra-subject variability (49, 50). Due to
the fact that this work presents a DL-based DIY module that

follows a subject-oriented approach, an individual evaluation of
the DL models that would derive in personalized AI feedback is

essential. Figures 4, 5 shows the subject-wise diabetes-specific
prediction metrics, namely ParkesAB and ISOZone metrics after

training the models only with LISO loss functions for 30-min
and 60-min PHs, respectively. Supplementary Figure S2,

Supplementary Figure S3 show the ParkesAB and ISOZone

metrics after training with the MSE for 30- and 60-min PH,

respectively, which are equivalent to those obtained after the
LISO training. Subjects’ IDs were sorted by the number of

available CGM samples to train and validate the DL models
following the proposed 4-fold trimester-wise cross-validation

approach. These two metrics have been analysed in detail
because they contemplate the prediction errors that are

clinically relevant and are specific for the interstitial glucose

TABLE 1 Evaluation metrics in the validation folds for the proposed models for MSE and LISO loss functions and the 30-min PH. Results are shown as
mean ± SD of the included subjects (n = 29). Results in bold font indicate the model with the best performance for a specific metric.

Loss function =MSE

Metric RMSE (mg/dl) MAE (mg/dl) MAPE (%) ParkesAB (%) ISOZone (%)

Model

Naïve
a 26.74 ± 3.86 19.50 ± 3.00 12.63 ± 2.02 99.41 ± 0.48 71.91 ± 5.67

LSTM 21.86 ± 2.87 15.83 ± 2.21 10.28 ± 1.57 99.77 ± 0.18 79.34 ± 4.97

Stacked-LSTM 21.98 ± 2.86 15.95 ± 2.18 10.34 ± 1.64 99.80 ± 0.15 78.91 ± 5.81

Dil-UNet 24.46 ± 3.14 18.28 ± 2.42 11.08 ± 1.38 99.84 ± 0.15 76.25 ± 5.03

Loss function = LISO

Metric RMSE (mg/dl) MAE (mg/dl) MAPE (%) ParkesAB (%) ISOZone (%)

Model
Naïve

a 26.74 ± 3.86 19.50 ± 3.00 12.63 ± 2.02 99.41 ± 0.48 71.91 ± 5.67

LSTM 22.05 ± 2.94 16.00 ± 2.22 10.35 ± 1.53 99.76 ± 0.20 79.20 ± 4.77

Stacked-LSTM 22.39 ± 3.91 16.34 ± 3.04 10.49 ± 1.61 99.80 ± 0.13 78.11 ± 6.13

DIL-UNet 24.84 ± 3.30 18.60 ± 2.58 11.23 ± 1.49 99.83 ± 0.15 75.57 ± 5.40

aNaïve model does not require any training, but its metrics are placed to compare this baseline model to the rest of the proposed models.

TABLE 2 Evaluation metrics in the validation folds for the proposed models for MSE and LISO loss functions and the 60-min PH. Results are shown as
mean ± SD of the included subjects (n = 29). Results in bold font indicate the model with the best performance for a specific metric.

Loss function =MSE

Metric RMSE (mg/dl) MAE (mg/dl) MAPE (%) ParkesAB (%) ISOZone (%)

Model
Naïve

a 44.64 ± 6.78 33.18 ± 5.31 21.75 ± 3.66 96.17 ± 2.03 50.61 ± 6.01

LSTM 38.50 ± 5.13 28.58 ± 3.96 18.39 ± 2.88 97.68 ± 1.36 55.29 ± 6.35

Stacked-LSTM 38.38 ± 4.84 28.33 ± 3.59 18.15 ± 2.69 97.79 ± 1.23 56.09 ± 6.11

Dil-UNet 40.25 ± 5.71 30.63 ± 4.31 19.70 ± 3.47 97.13 ± 2.00 51.06 ± 6.82

Loss Function = LISO

Metric RMSE (mg/dl) MAE (mg/dl) MAPE (%) ParkesAB (%) ISOZone

Model
Naïve

a 44.64 ± 6.78 33.18 ± 5.31 21.75 ± 3.66 96.17 ± 2.03 50.61 ± 6.01

LSTM 38.52 ± 5.18 28.60 ± 3.92 18.44 ± 2.90 97.67 ± 1.31 55.19 ± 6.56

Stacked-LSTM 38.44 ± 4.51 28.44 ± 3.29 18.33 ± 2.52 97.77 ± 1.07 55.65 ± 5.93

DIL-UNet 40.00 ± 5.66 30.31 ± 4.30 19.27 ± 3.57 97.43 ± 1.98 51.83 ± 6.97

aNaïve model does not require any training, but its metrics are placed to compare this baseline model to the rest of the proposed models.
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prediction task. Additionally, RMSE was also analysed for 30- and
60-min PH after training with both loss functions

(Supplementary Figure S4, Supplementary Figure S5,
respectively), since it is the metric that is usually taken as the

reference to compare between different models in the literature.
From Tables 1, 2, no significant differences are observed

between the means in any of the evaluated metrics. In all cases,
such differences are clearly lower than the average SD. This
implies that there are not statistically significant differences in

favor of any of the metrics.
It is worth noting that, although a sufficient number of samples

is required to properly train a DL model, it can be observed that
more CGM samples do not imply more accurate predictions in

the proposed DL models. This effect is related to: (1) the glucose
patterns heterogeneity among subjects (i.e., inter-subject

variability) (49), specially in people with T1D (50); (2) the day-
to-day CGM variability (i.e., intra-subject variability) (51); and

(3) the various factors that influence the subject’s glucose
dynamics (such as insulin administration, subject metabolism,

carbohydrate intake, physical activity) that are not contemplated
in the proposed DL models training because only CGM data

were employed in this study.
In concordance with the results exposed in the global validation

(Table 1), in the vast majority of the cases the LSTM-based models

presented better prediction performance in terms of RMSE
(Supplementary Figure S4, Supplementary Figure S5) than the

naïve model for both PHs, even though for some subjects the
naïve model showed lower variability (e.g., subjects #045, #048,

and #068, Supplementary Figure S4a). In the case of Dil-UNet,
most of the cases presented lower median than the naïve model

but its strong dependency on the fold (i.e., high intra-subject
variability) makes it a less robust model than the naïve approach
for a few subjects (e.g., subject #48, Supplementary Figure S4b).

Dil-UNet showed the largest variability within the four validation
folds for both PHs (Supplementary Figure S4, Supplementary

Figure S5) in almost all subjects trained with both loss functions,
with a few exceptions (e.g., subject #004 and #014, Supplementary

Figure S4a). This means that, in general and for both PHs, the
Dil-UNet prediction performance is more dependent on the folds

(i.e., more sensible to the intra-subject variability) than the
LSTM-based models. Thus, the interstitial glucose prediction

reliability depends more on the time of the year used for the
model training, making it a less robust model in terms of RMSE

than the LSTM-based models. This could be related to the fact
that Dil-UNet has a significantly larger number of parameters

than the other two models (see Supplementary Table S1), so
more samples might be needed to achieve better

prediction performance.

FIGURE 4

Boxplots representing subject-wise (n= 29) ISO-based prediction metrics (parkesAB and ISOZone) computed with the four validation folds
(PH = 30 min) for the naïve model, LTSM, stacked-LSTM, and Dil-uNet after being trained with LISO. The subjects are sorted in descending order of
available instances to train the models. In the boxplots, the centre line, the box limits and the whiskers represent the median, the upper and lower
quartile and the 1.5× interquartile range, respectively. (a) ParkesAB. (b) ISOZone.
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The improvement presented by the proposed models compared
to the naïve model becomes more evident studying the ParkesAB

metric for both PHs. The training of the DL models using both

loss functions outperformed the naïve approach, although in a
few cases some models presented slightly higher variability (e.g.,

subject #007, Figure 4a). In the case of 30-min PH (Figure 4a;
Supplementary Figure S2a), the only exceptions were subjects

#068 and #058, which are the ones that had the fewest available
samples for training. In the case of 60-min PH, the three DL

models of the seven subjects with fewer samples (#063, #055,
#061, #057 #003, #068, and #058) presented equivalent ParkesAB

(Figure 5a; Supplementary Figure S3a). This happened with the
training of both functions, but it was more evident with LISO

training. Apart from these exceptions related to the lack of
enough samples, LSTM-based models always showed higher

ParkesAB, and also Dil-UNet (except for subjects #065 and #046).
Prediction performance in terms of ParkesAB and ISOZone

evidences the RMSE limitations to properly characterize the
interstitial glucose forecasting model performance. Firstly,

model variability among folds related to the lack of training
samples showed by the diabetes-specific metrics was not

reflected by RMSE. Besides, ParkesAB and ISOZone give more
importance to samples that are clinically relevant (i.e.,

prediction errors of hypoglycemic and hyperglycemic events), it

therefore provides more information on whether the prediction
model is suitable for this specific task. As an example,
comparing RMSE and ParkesAB metrics for the 30-min PH

training with MSE loss function (Supplementary Figure S4a,
Supplementary Figure S2a, respectively) of subjects #067 and

#025, it is observed that #067 presented lower RMSE (i.e., better
prediction) in all models than subject #025. Nonetheless,

subject #025 presented a higher ParkesAB (i.e., better prediction
in the diabetes context). Hence, even though subject #067

predictions showed a lower RMSE, the predictions of subject
#025 will be more clinically reliable and relevant. Thus, lower

RMSE does not always imply better interstitial glucose
predictions for people with T1D. This was consistent when

comparing also the RMSE with ISOZone (Figures 4b,5b;
Supplementary Figure S2b, Supplementary Figure S3b).

Besides, even though more training samples do not ensure
better prediction performance, obtained results have set a

threshold regarding available training CGM samples to achieve a
fairly reliable glucose prediction. Such threshold is different for

each PH. Setting the limit where the naïve approach (i.e., the
predicted sequence consists of the last samples of the input)

achieves equivalent ParkesAB and ISOZone in terms of median
and SD than all three proposed DL models, the threshold for

30-min PH is ∼1,500 CGM training samples, whereas for 60-min

FIGURE 5

Boxplots representing subject-wise (n= 29) ISO-based prediction metrics (parkesAB and ISOZone) computed with the four validation folds
(PH = 60 min) for the naïve model, LTSM, stacked-LSTM, and Dil-uNet after being trained with LISO. The subjects are sorted in descending order of
available instances to train the models. In the boxplots, the centre line, the box limits and the whiskers represent the median, the upper and lower
quartile and the 1.5× interquartile range, respectively. (a) ParkesAB. (b) ISOZone.
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PH it is ∼5,000. Such a difference might be related to the
complexity of the task. A more complex prediction requires, in

principle, more training samples to properly learn the
phenomenon. This phenomenon occurred for both loss functions

and both PHs (Figures 4c,d, 5c,d). Notice that both diabetes-
specific metrics show consistency in setting these thresholds.

Hence, the proposed DIY module will discard potential users
that provide CGM data that would end in a training and

validation dataset with less training samples than the
correspondent threshold, since it has been demonstrated that this

number is not enough to generate a reliable interstitial prediction
model using the proposed DL models.

ParkesAB metric is based on the least restrictive requirement of
ISO 15197:2015 (32), that establishes that at least 99% of the
prediction errors must fall within certain limits considering the

clinically critical glucose concentrations. A DL model whose
predictions meet this requirement can be considered clinically

safe under this criterion. Studying this metric for the 30-min PH
(Figures 4c,d training with LISO, and Supplementary Figure S2a,

Supplementary Figure S3a training with MSE) the three proposed
DL models met this requirement within the four validation folds

of the 29 subjects. Also, the naïve approach, except for subjects
#065 and #001, met this ISO requirement, which explains why

the most restrictive criteria included in the ISO standard has
been also evaluated in this work (i.e., ISOZone). Conversely, for

the 60-min PH, only 7 out of the 29 subjects met this criterion
training with MSE (Supplementary Figure S3a), and 9 out of 29

subjects training with LISO (Figure 5A). Hence, even though
Table 1 shows unfavorable results of the proposed novel loss

function, more subjects are included in the ParkesAB acceptable
zone for 60-min PH. This evidences the need for performing a

subject-oriented evaluation of the DL models when proposing
approaches such as a DIY using diabetes-specific metrics (52).

However, the results obtained reveal the need for further
improvement in the proposed architectures.

ISOZone metric, is the most restrictive condition of ISO
15197:2015 (32), setting the minimum of the prediction errors

in 95% within the acceptable zone. Thus, fulfilling this
requirement would lead to more clinically safe actuations than

only fulfilling ParkesAB requirement. Unfortunately, the
ISOZone metric did not surpass 95% in any personalized DL

model, confirming the fact further improvements in the
architectures should be assessed (Figures 4b,5b; Supplementary

Figure S2b, Supplementary Figure S3b).
Finally, assessing the inter-subject variability, it is observed that

none of the three proposed DL models work optimally for all
subjects, although LSTM-based models presented the best average
prediction performance (Table 1). For example, for the 60-min PH,

Dil-UNet prediction in subject #055 shows the best ParkesAB

trained with LISO, slightly better than LSTM-based models.

However, the same model presented by far the worst ParkesAB in
subject #65 compared to LSTM-based models, and slightly worse

than the naïve approach (Figure 5a). The same occurs with the
ISOZone (Figure 5b). Regarding RMSE, the Stacked-LSTM model

trained with MSE presented relatively low variability within folds
for both PHs and loss functions, although there are some

exceptions (Supplementary Figure S4, Supplementary Figure S5).
However, mean and SD variations in all metrics are comparable

within all models. Considering that besides the inter-subject
variability, the CGM samples of the subjects can present different

day-to-day and intra-subject variability (51), this suggests that the
variability and prediction capabilities are strongly dependent on the

subject. There is not a DL model that clearly outperforms the rest,
but all of them present better prediction performance in the same

subjects, although there are some variations related to how a certain
architecture has learnt about a given trend of the subject’s CGM data.

3.4 Comparison with other state-of-the-art
studies

There are many studies in the scientific literature that have
assessed the glucose forecasting problem. However, for a fair

comparison with this work, the following criteria were used for
the selection of other studies:

a. Explicit indications that the glucose prediction was performed
in people with T1D.

b. Reported results of 30-min and/or 60-min PHs.
c. Reporting results from a validation and/or test set of real

glucose data.
d. The number of subjects included in the evaluation, i.e., n, was

greater than 5.

Table 3 shows the comparison between the included studies. It is
worth noticing that all the subjects included in the dataset

collected and used in our work had sensors with a sampling
period of 15 min. This limits the temporal information provided

to the DL models compared to the other considered studies that
included CGM data sampled every 5 min. This could be partially

mitigated by increasing number of input time steps of the DL
models. Moreover, our work and the work presented by De Paoli

et al. (40) were the only ones that fed the models with solely
CGM data. This also justifies that the personalized models

presented here had the largest input window length within the
compared models.

Focusing on De Paoli’s work, it is also the only one reporting
the development of a personalized model for each subject.

Hence, a fair comparison can be assessed. However, they did not
report prediction performance at 60-min PH, and neither did

diabetes-specific metrics. Our proposed framework outperformed
the results obtained by De Paoli’s work, which is based on Jump

Neural Networks (40), in terms of RMSE at 30-min PH. Thus,
among the only two studies that reported personalized models

using only CGM data, our work provided the best
prediction performance.

Although the prediction performance of the DIY-based models
is mainly limited by the use of only CGM data, our models achieve

comparable performance in terms of RMSE to the rest of
considered works for 30-min PH. For 60-min PH, these

differences are more significant. The model that presents the best
RMSE for both PHs is the N-BEATS (44). For 30-min PH, our
LSTM showed similar performance (21.86 ± 2.86 vs. 18.22). This
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TABLE 3 Comparison of the proposed DIY framework with other state-of-the-art approaches. Results for 30- and 60-min PHs are shown as mean ± SD (when both reported). Best results are highlighted in bold for
each metric. Only test or validation results are included. (n, number of subjects to evaluate the models; SP, sampling period of the sensors considered in the work; N, input window length; Pers. Models: if
personalized models were developed in the work; N/A, result not available in the original work).

Model (#subjects) SP
(min)

inputs N (time) Train/validation/test
periods

Pers.
models

30-min PH 60-min PH

RMSE
(mg/dl)

ParkesAB

(%)
ISOZone

(%)
RMSE (mg/

dl)
ParkesAB

(%)
ISOZone

(%)
Proposed LSTM and
stacked-LSTMa (n = 29)

• 15 - CGM
- CGM 1st

derivative

96 (24 h) 9 months/3 months/(4-fold
cross-validation)

Yes 21.86 ± 2.86 99.77 ± 0.19 79.34 ± 4.95 38.44 ± 4.55 97.77 ± 1.06 56.09 ± 6.13

Multi-input dilated CNN
(24) (n = 97)

5 - CGM
- Meal intake
- Basal insulin

rate
- Bolus insulin

Multi-step of 36
(3 h)

143.42 ± 90.39 days/-/
25.37 ± 4.96 days

No 23.22 ± 6.39 N/A N/A N/Ab N/A N/A

Multi-input dilated CNN
(25) (n = 10.6)

5 - CGM
- Insulin
- Meal intake
- Time stamps

Sliding window of
16 (1.25 h)

Dataset 1: 90 days/-/90 days
Dataset 2: 40 days/-/10 days

No 19.19 ± 2.74
19.28 ± 2.76

N/A N/A 31.78 ± 4.94
31.83 ± 3.49

N/A N/A

Jump neural network (40)
(n = 10)

– - CGM N/A
(10 min)

1 day/-/1 day or more Yes 24.9 N/A N/A N/A N/A N/A

LSTM (26) (n = 150) 5 - CGM
- Insulin bolus

36 (3 h) 105 subjects/ -/45 subjects No 19.8 ± 3.2 99.60 N/A 33.2 ± 5.4 97.60 N/A

Modified N-BEATS (44)
(n = 6)

5 - CGM
- Finger stick

glucose
- Insulin bolus
- Carbohydrate
- Sine of time
- Cosine of time

12–42 (1 h—∼3 h) ∼10,000 samples per subject/-/
∼2,500 samples per subject

No 18.22 99 N/A 31.66 N/A N/A

aLSTM was the model selected for 30-min PH, and Stacked-LSTM for 60-min PH.
bEvaluation was performed with a smaller subset of 24 subjects that provided more favourable prediction metrics.
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difference is more noticeable for 60-min PHs, where N-BEATS
outperforms the Stacked-LSTM (38.44 ± 4.55 against 31.66).

Nonetheless, this work only evaluated this model with 6 subjects,
whereas we used 29. Moreover, they used several variables as

input, including CGM, finger stick glucose, insulin, and
carbohydrates intake, among others. It is also worth noticing that

our work is the only one reporting ISOZone metric, which is the
most restrictive criteria of the ISO 15197:2015 standard. Hence,

this can serve as a benchmark for comparison in future
developments of processing algorithms.

Finally, the ParkesAB metric, which is a metric that indicates if
the clinical decision based on the predicted CGM labels is clinically

safe for the subject, was reported only in two of the studies found
in the literature. For the 60-min PH, only one work reported this
result without reaching the minimum requirement (≥99%), but our

work was closer to the minimum than the LSTM-based model
proposed by Mosquera-Lopez et al. (26) (97.77% and 97.60%,

respectively). For the 30-min PH, the two studies that reported this
metric fulfilled the ParkesAB requirement. It is worth noticing that

the personalized DIY DL models developed in this work presented
the best ParkesAB metric for both evaluated PHs, evidencing again

the limitations of the RMSE as the standard for glucose prediction
models comparison. Thus, this approach can be considered the

clinically safest among the ones included in this comparative, being
the only one that followed a subject-oriented approach for the DL

training and validation using only 1-year CGM data from one
subject to train the model. Unfortunately, the evaluation of the

proposed framework using the OhioT1DM dataset (the most
common dataset for glucose forecasting benchmarking) (53) was

not feasible. Our work uses trimester-wise partitions based on 1
year of CGM data, and the OhioT1DM dataset provides only 2

weeks of diabetes-related readings, making impossible to do a
fair comparison.

3.5 Evaluation of the DL models using a test
set

As a final validation of the DIY DL-based framework for

personalized interstitial glucose prediction, additional data from
the 29 subjects included in this work were collected to further

evaluate the consistency of the above presented results. For every
subject, a DL-model was generated using the whole year that was

previously partitioned following a 4-folds using LISO: Then, the
new collected test set was used to evaluate the models. Sensor

replacement or data unavailability due to reading interruptions
produced a decrease in the number of subjects available for this

evaluation. The number of days included in the test set was
varied, including 30, 90, 180, and 365 days. This was assessed to

analyze if the prediction performance differed depending on the
length of the test set. As shown in Figure 6, from the initial 29

subjects, three test sets of subjects were obtained: (1) 20 subjects
for testing 30 and 90 days; (2) 19 subjects for testing 180 days;

and (3) 7 subjects for testing 365 days. RMSE, ParkesAB, and
ISOZone metrics were analyzed. The boxplots comprise data

from n subjects, being n dependent on the number of days of the

test set. Moreover, Supplementary Tables S3, Supplementary
Table S4 show the mean and SD corresponding to these results

for 30- and 60-min PH, respectively.
Figure 6; Supplementary Tables S3, Supplementary Table S4

show that, for both PHs, the prediction performances barely
change when increasing the number of days included in the test

set. The greatest change in terms of the median and variability is
observed when the test set includes 365 days. This is more

evident for 60-min PH (Figure 6B). However, this is likely
related to the significant decrease in the number of subjects

included. It can be concluded that, following the DIY-approach
after training with 1 year of CGM data, testing with one month

of data is representative of the overall personalized
model performance.

Comparing results of Table 1, that shows the prediction metrics

after training the models with 9 months, to Supplementary Tables
S3, Supplementary Table S4, that shows RMSE, ParkesAB and

ISOZone metrics after training with the whole year, it is observed
a general improvement in RMSE and diabetes-specific metrics.

However, the 4-folds cross-validation included 29 subjects, and
in the test only 20 subjects were included (for 30 and 90 testing

days) due to data unavailability. Thus, this performance
improvement might be related both due to training with more

data (∼25% more, assuming equal distribution of the CGM
readings within the year), and due to include less subjects in the

evaluation. Furthermore, it is worth noting that for a 60-min PH,
the difference between the Dil-U-Net and the LSTM-based

models are less, suggesting that the former benefits more from
being trained with more data than the LSTM-based. Concluding,

the use of an additional test set validates the prediction
performance previously shown and, hence, the competitive

performance of the DIY model proposed in this work respect the
state-of-the-art.

3.6 DIY module implementation and
validation in different operating systems

The design of this open-source module has considered its

portability for its standalone use, its easy integration in broader
applications regardless of the OS running the software, and its

modular design so that researchers and developers can test novel
architectures following the proposed DIY approach. To prove

that this module is OS-agnostic (i.e., it can run over different
OSs), the Python application has been deployed to run in a

Docker (46) container, proving its functionality in two different
OSs: Windows 10 and Ubuntu LTS 24.04. Although the current

version of this module relies on Docker and terminal prompting
from a PC and this is not ideal for the use of most of the people

with T1D, the dockerization of the app facilitates its fast and
straightforward integration in a smartphone application,

enhancing its potential daily use. The DIY module usage
documentation is available in a GitHub public repository (see

“Data availability” section).
For simplicity, only the LSTM architecture was implemented,

since it presented the shortest training times with competitive
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FIGURE 6

RMSE, parkesAB, and ISOZone metrics for different test sets after training the personalized models using 1 year of CGM data. The test sets included the
first 30, 90, 180, 365 days for each subject (when available). The number of subjects with available data for each experiment is indicated with n

evaluated with different number of days. For each particular test set the number of subjects with enough available data is indicated with n. The
dash line represents the minimum percentage of points in ParkesAB and ISOZone to fulfil the ISO standard. In the boxplots, centre line represents
the median, box comprises second and third quartiles, whiskers extend up to 1.5 times the interquartile range, and circles denote outliers. (a)
30-min PH. (b) 60-min PH.
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performance. Figure 7 shows the workflow of the DIY module from

the user’s perspective, in a smartphone, even this module is ready
to run on a PC, including the first and subsequent uses, considering

the cases when the user provides enough data or not, illustrating
the information that is prompted to the user. This design was

developed through a co-creation process after carrying out
several focus groups that included potential users of this module,

and it pursuits user engagement, useful interaction, and
information supply regarding their personalized AI models.

4 Discussion

To the best of our knowledge, this work has presented, for the
first time, a DIY module for personalized AI-based interstitial

glucose forecasting for people with T1D using only the CGM user
data without involving data from other subjects to train the DL

models. Additional data, such as physical activity or carbohydrates
intake, was not available in the collected data, but the

parametrized design of the module will allow its straightforward
inclusion as model inputs. The DL models evaluated in the

proposed framework presented similar prediction performance
results in terms of RMSE, and the best results in a diabetes-

specific metric, ParkesAB, when compared to the state-of-the-art,
outperforming other LSTM- and CNN-based approaches (24, 26)

or modern algorithms designed for time series forecasting, such as

N-BEATS (44). Our results were achieved using only CGM data,

whereas most of the comparable studies included also insulin and
meal intake as input features in their models (24–26, 44).

Additionally, 1 year of CGM data was used for the training and
validation of the models, being able to capture more seasons-

related phenomena compared to other public available standard
datasets for benchmarking glucose prediction models, e.g., the

Ohio T1DM Dataset (53) which contains only eight weeks. The
differences in the duration of the acquired dataset made unfeasible

a fair comparison of this framework using this dataset. Unlike
most of the previously mentioned studies, the development of the

DL models in our study was fully personalized (only data from a
single subject was employed to train the algorithms). Moreover, to

the best of our knowledge, this is the first work that evaluates
acceptable ISOZone metric, the most restrictive criteria of ISO

15197:2015 (32), although the proposed DL-models did not fulfil
this requirement.

This study also evidenced the need for selecting a diabetes-
oriented error metric as a gold standard to compare different

glucose prediction models. Results obtained in this work
demonstrated that a lower RMSE does not always imply a better

prediction in the context of T1D. For example, if a model
perfectly predicts all glucose samples that are in range (which

are, by far, more than the hypo- and hyper-glycemic samples), it
will likely present a lower RMSE than a model that has smaller

errors in the critical samples (i.e., hypo- and hyper-glycemic

FIGURE 7

DIY module workflow from the user’s perspective. Notice that the first use of the model implies the model generation and evaluation (if enough data is
provided). The user’s second use only implies the model call and the computation of the 30-min prediction. This workflow considered the scenarios
when the user provides or does not have enough data to generate the DL models. Besides, the DIY module prompts the user with messages regarding
the provided CGM data, information about the generation (or lack of it) of the AI model, and with alerts if a hypoglycemic of hyperglycemic event
is predicted.
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samples), and larger error in the non-critical ones. The latter model
will be more clinically useful and safe for this task but would be

considered a “worse” model if only RMSE is evaluated. Hence,
the use of metrics such as ISOZone, ParkesAB, or different

indexes derived from the diabetic-specific case (26) are pivotal to
have an appropriate evaluation of these models (52).

A trimester-wise 4-folds cross-validation was assessed targeting
a robust evaluation of the DL models. For each subject (n = 29), the

models were trained four times, varying the groups of three
trimesters used to train the models and the remaining trimester

to test them. This approach aimed to demonstrate if, for the
proposed architectures, the prediction performance depended on

the time of the year used to train and test the DL models. This
dependence varied between different subjects, evidencing the
burden of the inter-subject variability. Hence, the obtained

results suggested that training the models with weeks or even
months of data could not be enough, since there are phenomena

that might not been considered in the training of the models
(habit changes, holidays, periods of increased or decreased

activity, etc. that varies over the year). By taking 1 year of data,
the negative impact of such intra-subject variability (51) can be

potentially diminished. The results obtained using the test set
after collecting additional data and training the DL models with

1 year of CGM data support this hypothesis, since the prediction
performance slightly improved. Besides, results showed that, with

this approach, testing with 1 month of data is representative of
the overall performance of the personalized DL models.

A novel loss function, LISO, has been developed to train the DL
algorithms. To the best of our knowledge, this is the first work that

presents a loss function considering the ISO 15197:2015 standard
(32), tailoring the training of the DL models for the interstitial

glucose forecasting task. Obtained results are comparable to the
standard MSE-based loss function, improving the results in the

ParkesAB metric for 60-min PH respect to the MSE. Further
tuning of LISO could improve the prediction metric by leading to a

more aggressive penalization to the clinically critical errors in
glucose prediction. Thus, higher ParkesAB and ISOZone values

could be achieved, potentially outperforming the MSE loss
function in the most clinically critical situations of glucose

forecasting task. Furthermore, the design of LISO could have a
higher influence on the most vulnerable subjects, i.e., the ones

with more hypo- and hyper-glycemic episodes, since it penalizes
more the errors for these critical ranges. In this work, no direct

relations between prediction performance and the occurrence such
episodes were observed (see Supplementary Figure S9; Figures 4, 5).

The inter-subject variability and the dependence of the
prediction performance with the available CGM training samples
have also been assessed in this work. This is also innovative

regarding DL glucose prediction models evaluation. With the
proposed LSTM-based and Dil-UNet architectures, no single

model has shown optimal prediction performance for all subjects
and no statistically significant differences were found between the

three architectures. However, in general, the three models
showed their best and worst prediction performance with the

same subjects regardless of the available training samples.
Nonetheless, the comparison of the naïve approach with the

proposed architectures allowed to establish a preliminary
threshold for both PHs below which was not feasible to generate

a reliable personalized DL model. This suggests that inter-subject
variability was the main limiting factor to achieve more accurate

prediction average results. More complex models specifically
designed for time series forecasting, such as N-BEATS (54), or

TSMixer (55) could deal with the impact of this phenomena, but
it will not remove it.

In this work, it was decided not to include interpolation to deal
with the missing data produced by CGM reading interruptions in

the training, validation or test sets to assess the model analysis only
on real data. Hence, unlike other DL-based approaches to predict

glucose concentrations that implemented various types of
interpolation when there was a reading interruption within
30 min or 1 h (24–26, 40), the dataset size was significantly

decreased in some subjects that contained a considerable number
of CGM reading interruptions. The impact of the interpolation

can be studied in further work, since the personalized DL-
models, especially in those subjects with a number of samples

near the threshold, could benefit from a larger number of
training and validation samples. Furthermore, in non-

personalized models (i.e., that are trained with data from more
than one subject), lack of data from one subject can be

compensated by others that contribute with more instances.
Here, in this work, sensor misfunction or disconnection will lead

to the impossibility of a reliable DL model generation.
The DIY module that encapsulates the personalized DL-models

was designed considering the daily habits of people with T1D,
enhancing personalization and including a subject-oriented models

training and evaluation. This was performed supported by a co-
creation process through the arrangement of focus groups where

potential users of this module offered feedback regarding their
needs and preferences of this module. The idea underlying this

design was the users’ engagement through their empowerment
regarding the relationship between AI and their data (30), for

example by providing them with information about why their
models could (or could not) be generated. Furthermore, it is

the user who decides when to be prompted with a glucose
prediction or with additional information, thus avoiding the

overwhelmingness associated with excessive and non-required
information. Its modular design and containerization also facilitate

its integration in other applications. However, its integration in
smartphone OSs (namely, Android or iOS) is part of future work,

to potentially reaching broader populations. In fact, this module is
expected to be fully or partly integrated in the WARIFA

application (31), as a result of a European project that has
designed an application to prevent and manage diverse chronic
conditions. As demonstrated in this work, this module is ready to

be used standalone in Windows and Ubuntu, as it is already
functional and publicly available (see Code Availability). Hence,

this DIY module has the potential to have an immediate and
positive impact on people who suffer from T1D, although there is

more research work to do regarding DL model generation to reach
better prediction performance for longer PHs. Additionally, being

open source and exhaustively documented, AI researchers and
developers could test novel DL architectures that could offer more
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accurate glucose predictions, use this DIY framework with data from
different sensors from the ones employed in this work, integrate this

module in an existent application, or enhance the module design
from the usability perspective.

Although the DIY paradigm has been validated for T1D, its
implementation can extend to other types of diabetes that are

using CGM, such as type 2 diabetes (56). Besides, this
methodology and the tool itself could be adapted and used for

people with different chronic conditions that require continuous
monitoring of body signals, and where a computer-aided system

can be helpful for clinicians and individuals, such as
cardiovascular diseases monitored with wearables devices (57).

Several future opportunities open up after the realization of this
work. Firstly, the inclusion of diabetes-related input variables for
the DL models, such as insulin, physical activity and

carbohydrates intake, that would likely improve prediction
performance (44). In this line, the framework might be adapted

to generate DL models with less CGM data [e.g., 2 weeks, like
the OhioT1DM dataset (53)]. Reducing the monitoring time

would likely facilitate the presence of additional diabetes-related
variables (e.g., carbohydrate intake, or insulin administration).

Additionally, this would allow for easier comparison with other
state-of-the-art methods. Related to this, the development of DL

architectures that could provide reliable 60-min (and beyond)
forecasting should be explored, aiming to increase the positive

impact that this tool might have on people’s glycemic control.
Besides, experiments on parameter tuning of LISO loss function

could be carried out. Obtained results suggest that architectures
with more parameters can follow the LISO penalizations better,

but they should be exhaustively studied. Regarding input data,
apart from the inclusion of the abovementioned information,

prediction performance could significantly benefit from the
inclusion of other heterogeneous data, such as glycemic

biomarkers, data from electronic health records, etc. Even though
these are not real time acquired data, the data fusion paradigm

could be explored to evaluate their impact on this task (58).
Finally, messages prompted by the DIY module are currently

static and equal for all users. However, the potential of the
generative AI to personalize not only the CGM prediction, but

also the feedback messages provided by this tool, suggest that its
implementation on this module will likely increase user’s

engagement, enhancing our subject-oriented approach (59).
Moreover, if this module is used extensively and constantly

over time, model maintenance strategy is a field to be
explored, since DL models can lose performance with time

(60). Strategies such as transfer learning (47), to re-train the
models with new subject’s data, or federated learning (61), to
employ data from different subjects in the personalized models

and to intend a distributed computation of such models,
should be studied.

Finally, a pilot study should be carried out to evaluate the real
impact of the AI-based DIY module on the daily life of people

with T1D. A clinical study also could help to know if this
module, as a computer-aid device for the users, will help people

to increase their TIR, i.e., to have their glucose concentrations
in a healthy range.
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