
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 74, 2025 4012413

Roadmap for the Characterization and Validation
of Hyperspectral Microscopic Systems

Laura Quintana-Quintana , Gonzalo Rosa Olmeda , Javier Santana-Nunez , Miguel Chavarrı́as ,
Samuel Ortega , Jaime Sancho , Himar Fabelo , Eduardo Juárez , Member, IEEE,
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Abstract—Hyperspectral imaging (HSI) is a powerful image
technique that allows capturing spatial and spectral information,
being able to characterize materials, tissues, and elements in
a noninvasive manner. HSI technology is well established at
the macroscopic level, but there are still technical challenges to
overcome before it can be applied to the microscopic world, such
as the lack of standardized characterization methodologies to HS
microscopic systems that allow the correct data acquisition as well
as ensure the repeatability of the experiments. In this work, we
propose a comprehensive roadmap for characterizing and vali-
dating such systems, integrating essential parameters highlighted
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in the current state of the art. Furthermore, we provide a list
of the materials needed for their characterization and testing of
the methodology on two different HS microscopic systems chosen
as representative of common configurations in the field, where
an HS camera is integrated into a bright-field microscope. Our
proposed roadmap assesses the following parameters: dynamic
range (DR), noise quantification, pixel size, spatial frequency
response (SFR), spatial scanning accuracy, spatial repeatabil-
ity, flat-field correction, tone transfer, and spectral sensitivity.
We address the challenge of unifying these parameters into a
unified and standardized roadmap. All data used to characterize
both systems have been captured by the authors. In summary,
this comprehensive analysis provides a guideline for the scientific
community to develop and characterize HS microscopic systems
to ensure reliability, efficiency, and accuracy.

Index Terms—Hyperspectral (HS) imaging (HSI), instrumen-
tation, microscopy, system characterization.

I. INTRODUCTION

SPECTRAL analysis techniques allow to gather informa-
tion noninvasively from the medium by analyzing the

response of light interacting with different materials or tissues.
This interaction can be produced in terms of transmission,
reflection, absorption, and scattering [1]. For this purpose,
multispectral or hyperspectral (HS) imaging (HSI) systems
are used to record both spatial information and spectral infor-
mation of a particular scene. Multispectral systems capture a
limited number of discrete bands, in the order of tens, while
HS systems are able to capture a much larger number of bands,
allowing for a more comprehensive spectral analysis [2].

While HSI technology is well established at the macro-
scopic level [3], [4], [5], the latest integration of HSI with
optical microscopy has opened up new opportunities for the
analysis of samples at a microscopic scale [6]. This has led to
applications such as quality assessment of food products [7],
identification of different bacteria and contaminants [8], clas-
sification of microplastics [9], [10], or extracting information
from microalgae [11]. Fields like cultural forensics or medical
imaging [12] have also benefited from microscopic HSI tools
to study cultural heritage samples [13], detection of different
types of cancers [14], [15], or the identification of different
types of blood cells [16].

Currently, the most prominent approach to extract useful
information from HS images is the use of machine learning
and deep learning techniques [17]. The potential of such
techniques relies on training numerous datasets with high
amount of HS images, ensuring minimal variation within each
class to maintain consistent feature representation and improve
classification accuracy [18], [19]. However, the absence of
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commercial HS microscopic systems and the extensive use
of custom and nonstandardized instrumentation developed by
researchers for their standalone application make consistent
data acquisition a challenge. Pillay et al. [20] analyze eight
different macroscopic commercial HSI systems, and a noto-
rious amount of variability was found among their captures.
The data showed spectral, geometric, and colorimetric inac-
curacies, along with common residual errors, and substantial
differences in noise levels. This variability is likely to be even
greater when working with ad hoc systems at the microscopic
scale. Thus, despite its potential, the characterization and
validation of HS microscopic systems present significant chal-
lenges. The lack of standardized procedures for characterizing
these systems inhibits their portability across different appli-
cations and research groups, resulting in inconsistent results
and limited reproducibility [21].

To address the challenge of characterizing HS microscopic
systems, several researchers have proposed ad hoc solutions.
Ortega et al. [22] developed a custom 3-D printed mechanical
system for a precise push-broom HS microscopic system and
characterized its robustness by measuring some of its spatial
features. Similarly, Stergar et al. [23] introduce a method for
spectral characterization by simply measuring the full-width
at half-maximum (FWHM) response of their HS microscopic
system. Meanwhile, Paterova et al. [24] mixed both spatial and
spectral characterization by measuring their system resolution
on both dimensions. However, the characterization procedures
developed cannot be applied interchangeably to ad hoc HS
microscopic systems, underlining the need for standardized
methods that can provide consistent results across differ-
ent setups [21]. These contributions demonstrate a growing
interest in characterizing HS microscopic systems, but they
also highlight the need for a comprehensive framework that
addresses the full range of parameters involved.

To the best of our knowledge, this work is the first to provide
a systematic approach to characterizing and validating HS
microscopic systems. The contribution of this article includes:
1) a complete list of parameters to be measured; 2) their
theoretical background; 3) metrics to evaluate their quality;
4) materials needed for measurement; and 5) descriptions
of HS image processing methods required to derive those
parameters. While individual methods for specific aspects of
characterization are established in the state of the art, their
integration into a unified and standardized roadmap, as the
one we propose, remains an open challenge. Our structured
methodology consolidates these characterization aspects into
a single, widely applicable approach, essential to ensure
repeatability and comparability across different systems. Our
roadmap is proposed within the context of standardization
efforts in the field of HSI, as exemplified by the ongoing
development of a “Standard for Characterization and Calibra-
tion of Ultraviolet through Shortwave Infrared (250–2500 nm)
HSI Devices” [25], which does not include guidelines for HS
microscopic systems. Additionally, the proposed roadmap is
validated through a round-robin test, i.e., an interlaboratory
test. Two systems were previously developed by integrating
an HS camera into a bright-field microscope, following the
common approach for constructing HS microscopic systems

[6], [7], [11], [13], [15], [21], [22], [23], [24]. For each system,
a different spectral acquisition principle is used as a reference:
spatial scanning and linescan wedge HS cameras. In this way,
the roadmap is validated and allows the results to be then
extrapolated to other types of HS technologies, such as spectral
scanning or snapshot-based HS cameras [12].

II. THEORETICAL BACKGROUND

This section briefly describes each one of the parameters to
be used for the HS microscopic system characterization and
validation, providing the necessary background for carrying
out the subsequent work.

A. Dynamic Range
The dynamic range (DR) characterizes the variation of the

maximum (saturation) and minimum (noise levels) across the
spectrum of interest. From the characterization perspective, an
exposure time is selected to optimize the DR of the sensor.
Furthermore, in HSI capture systems, the DR varies across
the spectrum due to differences in the quantum efficiency of
the sensor with respect to the wavelengths. The DR for a
specific monochromatic image, depicted in (1), is the ratio
between the highest intensity captured by the sensor without
saturation (Nsat) and the lowest intensity captured over the
background noise (Nnoise), i.e., values captured by the sensor
when no light interacts with the sensor [26]. In this context,
intensity refers to digital values produced by the sensor’s
analog-to-digital (A/D) converters, which are dimensionless
and expressed as digital numbers (DNs). Although these values
do not directly represent any physically meaningful magnitude,
they are proportional to the detected light intensity based on
the sensor’s response characteristics

DR (dB) = 20 log
�

Nsat

Nnoise

�
. (1)

The maximum DR that a system can capture depends on the
number of bits (n) of the analog-to-digital converter (ADC)
of each camera (2). In brief, the higher the DR, the better
the ability to quantitatively measure the dimmer intensities
within an image; this feature is also known as intrascene per-
formance. Typically, on reflectance-based acquisition systems,
a chart compliant with the ISO-21550 standard [27] is used to
determine the DR of the system. In the case of transmittance-
based systems, an empty sample holder is used

DRmax(dB) = 20 log (2n) . (2)

B. Noise Quantification
All acquisition systems are affected by noise due to the

electronics used to convert physical magnitudes into digital
values. In the case of digital cameras, whether red, green
and blue (RGB) or HS, this noise is due to the movement
of electrons in the photoreceptors of the sensors when no
photons are interacting with the sensor, which is called dark
current (DC) [28]. Quantifying the DC of a system allows
the signal-to-noise ratio (SNR) to be calculated. This metric
shows how much useful information is captured by an imaging
system, where an SNR of 0 dB means that the system cannot
discriminate signal from noise. Following the methodology
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Fig. 1. Dot target captured at different speeds. (a) Optimal speed, (b) too
fast, and (c) too slow speed.

proposed by Shaikh et al. [29], the SNR is obtained by
capturing an image of a reference target at different exposure
times and then capturing an image with the optics completely
covered at the same exposure times, to extract the DC. Then,
the mean of the HS image is divided by the standard deviation
of the DC as follows:

SNR (dB) = 20 log
�

mean (HS)
std (DC)

�
. (3)

As can be observed in both Section II-A and in this Section
II-B, only the noise generated by the DC has been considered
as the sole noise source. This is because it is the nonimaging
error that has the greatest influence on the characterization
of the systems, compared to quantum efficiency, gain, or
vignetting [30]. In addition, the current state-of-the-art pro-
poses different ways of digitally denoising images, but all of
them lack an in-depth analysis of these noise sources [31],
[32], [33].

C. Spatial Scanning Accuracy

When integrating a spatial scanning HS camera into a
microscopic system, it is crucial for the spatial scanning to be
adequate to obtain properly formed HS images. The theoretical
platform speed can be established as the ratio between the
space captured by one frame and the time required to perform
the capture, also known as the frame period. In practice, the
frame period may slightly drift from the desired value, and the
frames might not be captured synchronized with the platform’s
stops. Thus, an additional analysis is needed to enhance and
validate an accurate system.

The methodology to quantitatively evaluate the spatial scan-
ning accuracy was described by Ortega et al. [22]. In that work,
the authors detected camera misalignments and suboptimal
movement speeds by assessing the round shape (eccentricity)
of a captured circle target. A circle exhibits a flawless round
shape when captured at the optimal speed [Fig. 1(a)] but
presents an elliptical appearance when the speed is too high
[Fig. 1(b)] or too low [Fig. 1(c)]. To quantify how much the
ellipse deviates from being a perfect circle, the eccentricity
of the circle is calculated at each magnification of the HS
microscopic systems. First, 2-D principal component analysis
(PCA) is computed over a binary image, generating two
eigenvalues (φmin and φmax) that correspond to the directions
of the ellipse’s longest and shortest axes. From these values,
eccentricity can be computed using (4). A perfect circle yields
eccentricity values close to zero [22], [34]

e =

s
1 −

(φmin)2

(φmax)2 . (4)

Fig. 2. (a) One-line HS image of the micrometer ruler using System A
at 20×. (b) Profile resulting from the spectral average of the one-line HS
image. (c) Spatial resolution empirical calculation using the first derivative
where green and blue crosses indicate maxima and minima, respectively.

D. Spatial Repeatability

Spatial repeatability can be measured as a metric of a
system’s ability to produce consistent results under compa-
rable external conditions [35], i.e., the capacity to obtain
two equal HS images given the same illumination conditions.
Following the methodology developed by Peleg et al. [36],
the relative difference (RD) percentage determines the spatial
repeatability of an HS system in a particular wavelength.
It can be calculated following (5), where ”xi” and ”yi” are the
homologous pixel values of the two images to be compared,
”i” is the pixel number, and ”P” is the total number of pixels
in each image [37]. For the RD calculation, images of the
micrometer ruler or grid are obtained in a short time span,
minimizing the environmental influence over them

RDλ (%) =

PP
i=1 |xi − yi|�

1
P

PP
i=1 xi +

1
P

PP
i=1 yi

�
/2
· 100%. (5)

E. Spatial Resolution

Spatial resolution refers to the ability of an imaging
modality to differentiate two adjacent structures as being
distinct from one another, a crucial characteristic of imaging
systems [38]. The bigger the magnification power, the higher
the spatial resolution thus enhancing the ability to distinguish
smaller objects. The spatial resolution of the HS microscopic
systems can be evaluated theoretically and empirically. The
theoretical computation of the spatial resolution (S R), as shown
in (6), considers variables such as pixel size of the sensor (PS )
and magnification (M):

S R =
PS

M
. (6)

The empirical determination of the pixel size, following the
methodology designed by Ortega et al. [22], is performed over
a one-line image of a certified micrometer ruler [Fig. 2(a)].
The profile at each wavelength [Fig. 2(b)] is derived to find
the local maxima and minima [Fig. 2(c)]. The average spatial
distance between lines of the target (0.01 mm in the case of
Fig. 2) is divided by the mean distance between local maxima
and minima (in pixels), thus empirically determining the size
of a single pixel.
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Fig. 3. (a) Monochromatic image of an HS image of the harmonic modulated
Siemens star target and (b) its center showing the aliasing region, where
MTF10 is reached [38].

F. Spatial Frequency Response

Spatial resolution is calculated to determine the smallest
size of an object that can be detected by the acquisition
system at different magnification powers since aliasing may
affect resolution. The spatial frequency response (SFR) of
a digital imaging system describes its ability to maintain
high contrast along certain spatial frequencies. SFR varies
with wavelength, influencing spatial resolution across the
spectrum, due to diffraction limits (light diffraction is more
pronounced at longer wavelengths), sensor sensitivity (sensors
may exhibit lower sensitivity at the extremes of the spectrum),
and chromatic aberration (optical lenses can cause different
wavelengths to focus on slightly different planes). In HSI, an
instrument with a high SFR across all wavelengths captured
preserves fine spatial details, enhancing spectral accuracy for
distinguishing similar materials. This reduces artifacts and
supports detailed multiscale analysis [39].

Loebich et al. [38] described a methodology to measure the
SFR of a digital camera capturing a Siemens star [Fig. 3(a)].
These are made of sinusoidal oscillations in a polar coordinate
system (given by several cycles) so that the spatial frequency
decreases for concentric circles of larger radius (5) [38], [39],
[40], [41], [42], [43], [44].

The range of spatial frequencies being captured over a
monochromatic image is given by the size of the Siemens
star, where the Nyquist frequency is the maximum frequency,
the sensor is able to capture [42]. For every other spatial
frequency, the modulation transfer function (MTF) is mea-
sured as a general term of the SFR (6). Imax and Imin refer
to, respectively, the maximum and minimum digital values
obtained at that specific radius profile [42]. The resolution
limit is determined using the r10 criterion [47], which defines
the resolution limit as the frequency at which MTF achieves a
contrast value of 10%, referred to as MTF10 [38] [Fig. 3(b)].
Emphasis was placed on studying the SFR over wavelengths
since diffraction-limited spatial resolution is inversely propor-
tional to wavelength, a relationship first explained by Abbe
[46]

f
�
lp/mm

�
=

No of cylces
2πr

(7)

MTF =
Imax − Imin

Imax + Imin
. (8)

G. Flat-Field Correction

Flat-field correction is the process employed to cor-
rect the variations in the measured radiance values in an

HS image caused by the sensor, environmental conditions,
and other factors [47]. This step is crucial before continuing
with the analysis of the HS data. It involves converting raw
DNs, obtained directly from the sensor, into actual radiation
intensity [48] or true reflectance values [49], [50], [51]. The
process of computing a calibrated HS frame (CI) from a raw
HS frame (R) is well established in [22] (9). It is needed a
DC capture, explained in Section II-B, and a white reference
(WR), the obtention of which depends on the illumination
mode. In the transmittance mode, an area of the slide with no
sample is usually employed, while in the reflectance mode,
a diffuse reflectance standard is used [52]. These standards
are frequently constructed with a matte Lambertian reflecting
surface, which means that the reflected light has nearly equal
intensity in all directions. The total reflection integrated in all
directions should be close to 100% [53]

CI (%) =
R − DC

WR − DC
· 100%. (9)

H. Tone Transfer

The calibration process makes an HS image independent
of the environment light. However, the so-called tone transfer,
the relationship between the optical input and digital signal
output, is usually nonlinear [54]. The tone transfer metric
examines the significance of the tone transfer between the
captured scene and the resulting HS image, allowing to
characterize the equilibrium needed among the various spectral
bands [55]. Understanding tone transfer is crucial for ensuring
accurate data interpretation and improving the reliability of
HSI applications across diverse fields, as it directly affects
how well the sensor converts light into usable spectral data.

This metric is calculated by capturing the optoelectronic
conversion function (OECF) target, which provides a reference
on how a sensor converts the illumination it receives into
DNs, following ISO-14524 [56]. The mean reflectance of
each gray patch at the monochromatic image is calculated
and compared to the reference provided by Edmund Optics
(Barrington, NJ, USA).

I. Spectral Sensitivity

It is essential to ensure the reliability of HS data by
accurately characterizing the spectral response of an HSI
system [57]. Spectral sensitivity is the ability of the sensor
to detect light as a function of its signal frequency. Typically,
the sensitivity of HS camera channels fluctuates through the
different wavelengths due to the spectral responsivities of the
HS sensor and the nonuniform output from diffractive or
filtering elements. Characterizing these irregularities makes
it possible to estimate their impact on the captured spectral
range [57].

Spectral sensitivity has been analyzed in the state of the art
by assessing captured spectra against a ground truth spectrum
obtained with a spectrometer [58] or evaluating a captured
wavelength calibration standard against a known spectrum
[59], [60]. Usually, the latter is preferred for its simplicity.
The National Institute of Standards and Technology (NIST)
traceable wavelength calibration standards can be employed
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Fig. 4. Diagram of HS microscopic systems (left) and HS microscopic
systems employed in this work: System A (top right) and System B (bottom
right). (a) HS camera, (b) binoculars, (c) objective lenses, (d) specimen stage,
(e) joystick for spatial scanning, and (f) halogen light source.

since they combine rare earth oxides producing very specific
absorption peaks, suitable for calibration purposes.

Once the wavelength calibration standard has been captured,
the spectral correlation measure (SCM), designed by van der
Meero and Bakker [61], quantitatively assesses the spectral
quality of the HS image with respect to the reference provided
by the manufacturer [62]. SCM is calculated following (10),
where n is the number of spectral bands being compared, r is
the reference spectral signature given by the manufacturer, and
t is the test spectra captured with each HS microscopic system
and magnification. The resulting correlation value represents,
to some degree, variations in brightness and shape within the
spectra

SCM

=
n
Pn

i=1 tiri −
Pn

i=1 ti
Pn

i=1 rir�
n
Pn

i=1 t2
i −

�Pn
i=1 ti

�2
� �

n
Pn

i=1 r2
i −

�Pn
i=1 ri

�2
� .
(10)

III. MATERIALS AND METHODS

A. HS Microscopic Systems

To test the proposed roadmap methodology, two HS micro-
scopic systems were set up by coupling HS cameras to two
different commercial microscopes via a standard C-Mount.
The optical path of the systems starts at the bright-field
halogen lamp [Fig. 4(f)] for reflected (top) or transmitted
(bottom) illumination. In the transmittance mode, the light
travels through the specimen on the stage [Fig. 4(d)] through
the selected objective lens [Fig. 4(c)]. In this mode, low
magnification enlarges the field of view, increasing the amount
of incoming light captured.

In the reflectance mode, the light source is positioned
and concentrated above the sample by the objective lens,

TABLE I
HS MICROSCOPIC SYSTEMS EMPLOYED IN THIS WORK

where it reflects from the sample surface back to the lens.
Finally, transmittance/reflectance light is captured by their
respective HS camera [Fig. 4(a)]. In this work, System A
employs a push-broom HS camera, while System B uses a
linescan wedge sensor [63], [64]. Thus, both HS microscopic
systems need spatial scanning to generate an HS cube. Custom
software was developed to synchronize the movement of the
scanning platform with respect to the HS camera frame rate
(see Section II-E). Binoculars [Fig. 4(b)] and joystick
[Fig. 4(e)] help the operator to visually investigate the sample
and move around it to position the field of view in the region
of interest to be captured. Table I details the characteristics
of the optical and electronic parts of each HS camera and
commercial microscope.

B. Characterization Targets

Here, we display the characterization targets that are needed
to measure the parameters under investigation (Fig. 5). For
reproducibility, Table II details the manufacturer and specifi-
cations of each target employed in the experiments.

C. Proposed Methodology

The methodology, proposed as a roadmap to design and
characterize an HS microscopic system, involves assessing the
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Fig. 5. Characterization targets. (a) Universal calibration slide, (b) Siemens
star target, (c) transmittance United States Air Force (USAF) (left) and
transmittance wavelength calibration standard (right), (d) reflectance wave-
length calibration standard, (e) rez checker matte, and (f) reflectance quality
resolution chart.

TABLE II
CHARACTERIZATION TARGETS EMPLOYED IN THIS WORK

previously described parameters in a specific order (Fig. 6).
First, the exposure time should be configured to maximize
the DR and the SNR. Then, spatial resolution and SFR must
be acknowledged to ensure that the HS image has the spatial
resolution needed for a specific application. If the HS camera
needs spatial scanning (e.g., push-broom or line scan), its

Fig. 6. Proposed roadmap for the characterization and validation of HS
microscopic systems.

accuracy must be validated through eccentricity and spa-
tial repeatability parameters. Furthermore, flat-field correction
must be performed over the raw HS images; however, the tone
transfer between real sample and calibrated images may not
be linear. Finally, a spectral sensitivity test would describe the
spectral accuracy of the HS microscopic system.

In Section IV, a brief description of each parameter to be
used for the HS microscopic system design and characteriza-
tion will be performed, providing the necessary background
for carrying out the subsequent work.

IV. EXPERIMENTAL RESULTS

The results obtained through the previously outlined
methodology are presented here. Although both systems oper-
ate at various magnifications, in order to improve clarity, only
the 10× magnification results are shown in this section for
comparison purposes. Data for all other magnifications are
provided in the Supplementary Material and are available for
comparison with other systems from the state of the art.

A. Characterization of an HS Microscopic System

1) Dynamic Range: The methodology proposed by
Shaikh et al. [29] was followed to obtain the DR in both
systems. In transmittance, an empty zone of the calibration
target [Fig. 2(a)] is captured, increasing the exposure time
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Fig. 7. DR mean and standard deviation for Systems A and B
in (a) transmittance and (b) reflectance. The theoretical maximum of DR is
72 and 48 dB for Systems A and B, respectively.

to sweep from the minimum to the maximum exposure time
allowed by the camera. The same procedure is followed
in reflectance, but in this case, the whitest section of the
ISO-21550 standard [Fig. 2(e)] is captured. The brightest pixel
and darkest pixel are obtained for each capture to calculate
the DR (Table SI of the Supplementary Material). In the
transmittance mode, the exposure time values in System A
range from 0 to 38 ms in steps of 2 ms and in System B
range from 0 to 50 ms, being this range wider and following
a nonlinear increment (i.e., 1.1, 1.2, 1.4, 1.6, . . . , 30, 40, and
50 ms). In the reflectance mode, the same values as in
transmittance mode were employed for System A, and for
System B, a range is between 0 and 500 ms following a non-
linear increment (i.e., 1, 5, 10, 20, . . . , 400, 450, and 500 ms).
These differences in the range of exposure times and the
intervals are due to the characteristics of both cameras
(see Fig. S1 in Supplementary Material). From the captured
values, the DR values are calculated, following (1), for both
HS systems and for each magnification (Fig. 7).

Theoretically, the DR of System A can be calculated from
the number of bits of the ADC, see Table I, using (2), resulting
in 72 dB. From Fig. 7(a), it can be observed that the sensor
does not saturate at 10× magnification (it does not at any
magnification either, see Fig. S2), due to the low intensity of
the emitted light and the relatively short maximum exposure
time (40 ms). Thus, its maximum efficiency point would be
the highest possible exposure time. Similarly, the maximum
DR of System B was calculated to be 48 dB and was tested
to quickly saturate at 10× magnification [Fig. 7(b)]. However,
since in transmittance, the darkest pixel intensity gradually
increases, although the brightest pixel keeps saturating, the DR
of System B decreases after reaching its maximum efficiency
point, with a loss of 20 dB over the entire remaining range of
exposure times.

Exposure times were selected at the point of maximum
efficiency: 40 ms for transmittance in System A and 9 ms
in System B, with 40 ms for reflectance in both systems.
However, as previously noted, System A does not exhibit
a distinct maximum efficiency point, so the highest feasible
exposure time was chosen for this system. It should be
noted that when capturing samples in the transmittance mode,
light is sent through the sample, undergoes a few scattering
events, and then reaches the objective at the other end of
the sample. Thus, the higher the magnification, the thinner

Fig. 8. DC mean and standard deviation values of (a) System A and
(b) System B. The maximum DNs are 4095 and 255 for Systems A and B,
respectively. SNR for Systems A and B in (c) transmittance and (d) reflectance.

the objective opening, and so less light reaches the sensor
[Fig. S2(a) and (c)]. However, in the case of samples captured
in the reflectance mode, light is sent from above and only
rays with a reflectance angle of 180◦ are collected by the
sensor. In this scenario, lower magnifications, with higher field
of view, cause more dispersion and not as much light comes
back to the sensor [Fig. S2(b) and (d)]. Therefore, for a given
exposure time, smaller magnifications provide higher DR in
transmittance than in reflectance.

2) Noise Quantification: To quantify the noise of the HS
microscopic systems, the DC was captured over the afore-
mentioned exposure times detailed in Section IV-A1 for each
system. The DC signal is captured by completely blocking
light from entering the HS camera, avoiding the interaction
of the light with the sensor. The HS cameras of Systems A
and B work with different numbers of bits (Table I), and
thus, the maximum DNs are 4095 and 255, respectively.
Considering these values, the results show low and constant
DC values for both systems [Fig. 8(a) and (b)]. Comparing the
DC standard deviation of System A with respect to System B,
the HS sensor of System A has a higher standard deviation,
showing a variation of ∼30 DNs. This may be due to the
systematic offset of 20 DNs that the manufacturer of System A
HS sensor applies to avoid the expected noise [66].

Afterward, the SNR is calculated following (3), over a
capture of the lighter step of the OECF target [Fig. 2(e)].
In concordance with the previously obtained values, the SNR
of System A [Fig. 8(c)] follows a logarithmically increasing
behavior from 5 to 35 dB. In terms of System B [Fig. 8(d)],
it quickly reaches peak values of 110 and 86 dB for trans-
mittance and reflectance modes, respectively. The behavior is
similar among all the magnifications studied (Fig. S3).

3) Spatial Scanning Accuracy: Following the methodology
outlined in Section II-E, the alignment of the HS system
must be tested to ensure the proper configuration of the
scanning parameters. Eccentricity was calculated for each
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Fig. 9. Spatial repeatability mean and standard deviation for Systems A
and B in (a) transmittance and (b) reflectance.

HS microscopic system over all spectral bands, computing
the mean and standard deviation values using each avail-
able magnification. The obtained values are close to zero
(0.037 ± 0.041 for System A and 0.027 ± 0.019 for
System B), having System A 27% better eccentricity than
System B at 10× magnification. Since both systems produce
a mean eccentricity, over all magnifications, of 0.04 and 0.05
for Systems A and B, respectively, it can be established that
the platform scanning speed is adequately characterized for
the optimal exposure times of each magnification and system
configuration (determined in Section IV-A1).

4) Spatial Repeatability: As indicated in Section II-D, the
spatial repeatability of the systems has been obtained as the
RD of two images of the micrometer ruler. Spatial repeatability
results show that transmittance and reflectance have similar
mean and standard deviation RD values (Fig. 9). These results
are consistent with the SNR values obtained in Section IV-A2
and with the results obtained by Fabelo et al. [37].

When evaluating repeatability across wavelengths, the cen-
tral spectral bands consistently exhibit better RD performance
than those at the extremes due to the quantum efficiency of the
sensors. This trend is more evident in System A, which uses a
grating to disperse white light, resulting in reduced sensitivity
at the spectral limits, which affects the overall performance
and reliability of the data in those regions. In contrast,
System B, with its filter-based sensor, demonstrates greater
consistency across the entire wavelength range. This pattern
is persistent when measuring spatial repeatability with other
magnification lenses (Fig. S4).

B. Flat-Field Correction

Following the methodology described in Section II-G, an
HS image of a transmittance wavelength calibration standard
[Fig. 5(c)], composed of 100 lines, was captured in both
systems and calibrated using (9). The calibration process is
repeated for each raw frame, and finally, to obtain an HS
image, a spatial stitch is performed for each frame according to
the requirements of the HS technology employed. In addition,
only in System B, due to the manufacturer’s requirements, it
is necessary to apply a spectral correction matrix to sort the
bands and obtain the spectral information correctly.

Fig. 10 shows how raw values are different for each sys-
tem. The radiance range depends on the number of bits of
the ADC of the sensor (see Table I for the actual values).

Fig. 10. Mean and standard deviation of the spectral signatures extracted
from the raw image (R), WR, and DC of (a) System A and (b) System B.
The maximum DNs are 4095 and 255 for Systems A and B, respectively.
(c) Calibrated data of both systems. Following the recommendation from a
previous study [37], noisy bands have been removed in System A.

However, after calibration, spectral signatures are normalized
between 0 and 1, and different HS microscopic system con-
figurations obtain similar spectral signatures.

To assess the accuracy of the flat-field correction,
Systems A and B calibrated spectra were compared between
them. First, they were interpolated to get the same spectral
bands and then correlated using (10), obtaining a value close
to one (SCM = 0.87 ± 0.02). It is worth noticing that
System A, using a push-broom camera, requires a straightfor-
ward process to conform an HS cube by stitching spatial lines
sequentially. On the other hand, System B utilizes linescan
wedge technology, involving both spatial scanning and spectral
scanning. Thus, achieving the final HS image with System B
requires careful manipulation of the lines to account for both
spatial information and spectral information. The comparison
of both systems spectra with respect to the reference will be
shown in Section IV-C4.

C. Validation of an HS Microscopic System

1) Spatial Resolution: To assess the spatial resolution of
the HS systems, a micrometer ruler [Fig. 2(a)] was imaged
100 times. At 10× magnification, the empirical spatial resolu-
tion (0.739 ± 0.001 µm for System A and 0.558 ± 0.002 µm
for System B) closely matches the theoretical values (0.74 µm
for System A and 0.55 µm for System B). These results
yield a mean RD of 0.13% for System A and 1.45% for
System B. When comparing both setups, System B, with
a pixel size 24.29% smaller than System A, demonstrates
superior spatial resolution, consistent with the sensor pixel
sizes of each system (Table I).

2) Spatial Frequency Response: To determine the Nyquist
resolution, HS images of the Siemens star target were con-
verted to monochromatic images (by averaging all bands)
and divided into eight segments following the methodology
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Fig. 11. MTF mean and standard deviation at 10× magnification across
different spatial frequencies for (a) System A and (b) System B.

employed in [38]. Then, MTF10 was computed in each
segment, following (6), to evaluate the SFR at different
regions of the image. At 10× magnification, the high-
resolution slide target contains greater Nyquist frequencies
(15,485.35 lp/mm for System A and 20,834.83 lp/mm for
System B) than those empirically achieved by the microscopes
under study (371.02 ± 13.03 lp/mm for System A and
632.29 ± 38.05 lp/mm for System B). It can be determined
that System B has a 70% higher limiting frequency than
System A, being better at detecting two adjacent objects. These
results are consistent with the spatial resolutions of Systems
A and B at this magnification.

Furthermore, the SFR was evaluated for each system at
different wavelengths (Fig. 11). In this case, each single-band
image was also divided into eight segments to check the SFR
at different regions of the images. The mean MTF values at
each configuration follow the same trend, starting at maximum
contrast where all white and dark lines are distinguishable
(Imax = 1, Imin = 0, and MTF = 1), to the point of no contrast,
where black and white lines are mixed into gray (Imax = 0.5,
Imin = 0.5, and MTF = 0). Consistent results showed that
the lower the wavelength, the higher the MTF10 (Fig. S5),
following Abbe’s approximation [46] of the diffraction limit.

However, no linear relationship was found between the
limiting resolutions at different wavelengths in any of the
systems. For example, a decrease from 800 to 528 nm, which
represents a reduction of 34% in wavelength, produced an
increase of the limiting spatial frequency of 9% at System A
and 44% at System B. The discussion of the crucial balance
between resolution and wavelength was also described by
the Rayleigh criterion equation (R = 0.61λ/NA) [67], [68].
For a given numerical aperture (NA), lower wavelengths (λ)
provide a higher resolution, which is characterized by a lower
value of the minimum resolvable distance (R), providing
the instrument’s capability to discern closely spaced objects.
However, some limitations, such as the noise produced by the
systems and the uncertainty of the SFR methodology [53],
provide nonlinear results, showing the necessity of further
investigations in this field.

3) Tone Transfer: Although flat-field correction helps to
standardize the HS image with respect to the illumination and
sensor employed, several gray tones absorb differently onto the
sensor (see Section II-H). The mean and standard deviation
reflectance was calculated for each gray step of the OECF
target [Fig. 2(e)]. Results show, far from a linear relationship,

Fig. 12. Mean and standard deviation of the OECF at 10× magnification of
Systems A and B. Reference (Ref) is displayed for comparison.

Fig. 13. Mean and standard deviation of Systems A and B signatures from the
NIST wavelength calibration standard for (a) transmittance and (b) reflectance.

an exponential decay of the reflectance with respect to the
optical density of the sample (Fig. 12). Root-mean-square error
(RMSE) was calculated between Systems A and B with respect
to the reference, providing close to zero values (0.201 ± 0.063
for System A and 0.275 ± 0.015 for System B). However,
while System B deviates more from the reference, reaching a
closely zero reflectance value for a status T density of 1.38,
System A has greater differences between the obtained mean
reflectances (Fig. S6).

4) Spectra Sensitivity: The last parameter being tested
is the spectra sensitivity of the HS microscopic sys-
tems. Following Section II-I, 100 lines of the transmit-
tance and reflectance NIST wavelength calibration standards
[Fig. 2(c) and (d), respectively] were captured at transmittance
and reflectance (Fig. 13). To measure the spectra sensitivity of
the HS microscopic systems, the obtained spectral signatures
were compared, using the SCM metric, to the NIST reference
provided by the manufacturer (transmittance: 0.876 ± 0.008
for System A and 0.911 ± 0.024 for System B; reflectance:
0.590 ± 0.074 for System A and 0.771 ± 0.096 for
System B).

As presented in Section IV-A1, transmittance captures tend
to represent the reference more accurately than reflectance
captures and, thus, their smaller standard deviation. At 10×,
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System B provides better SCM results than System A, 4% and
21% for transmittance and reflectance, respectively. At other
magnifications, System B also presents higher SCM values,
ranging from 0.5 to 0.9 (Fig. S7).

V. DISCUSSION

Understanding the performance parameters of a microscopic
HS system is essential for ensuring accurate data capture and
analysis. To support future developers and users/operators of
HS microscopic systems, we offer practical suggestions for
implementing the methodology proposed in this article, which
should be followed in the given order.

1) Examine the DR of the microscopic HS system to set
its optimal exposure time. Transmittance measurements
generally offer more DR than reflectance ones.

2) Assess DC and SNR to know when the captures are
reliable. Some sensors have a constant DC settled by
the manufacturer (e.g., for System A is 20).

3) Evaluate spatial resolution, especially when differentiat-
ing small-sized spatial features, such as identifying cells
on a histology slide, where achieving high spatial resolu-
tion is essential. Use a micrometer ruler, however, there
may be a misidentification of spatial frequencies due to
aliasing. Thus, assessing SFR is essential, particularly
Nyquist resolution, is important. Lower wavelengths
yield better SFR, following the essential connection
between resolution and wavelength, as outlined by the
Rayleigh criterion. To understand the limitations of an
HSI system in terms of spatial frequency, measurements
should be conducted at longer wavelengths.

4) Determine the appropriate platform velocity for HS
cameras requiring spatial scanning, once the optimal
exposure time and spatial resolution have already been
determined. To check proper alignment, circles should
be captured, and their eccentricity checked for each
magnification. This step is not necessary for those HS
microscopic systems that do not require spatial scanning
(i.e., spectral scanning and snapshots HS systems).

5) Identify spatial repeatability using consecutively cap-
tured HS cubes to evaluate the robustness of the
microscopic HS system. Most probably it experiences
a decline at extreme bands, where the SNR is usually
lower due to the quantum efficiency of the sensor.

6) Perform flat-field correction once HS cubes can be
properly captured. This step serves to standardize HS
captures by mitigating the impact of variations in the
surrounding light environment. Afterward, the image
should be assembled following its HSI technologies
(i.e., push-broom or linescan wedge).

7) Analyze tone transfer, as flat-field correction standard-
izes HS captures but does not address reflectance
variation. Typically, the analysis reveals an exponential
decay of the reflectance with respect to optical density.

8) Quantify spectral sensitivity, which becomes essential
when analyzing spectral properties of the materials
under investigation and aiming to identify specific
absorption peaks. While HS microscopic systems typ-
ically offer strong spatial sensitivities, fluctuations in

TABLE III
SUMMARY OF BEST-PERFORMING HS MICROSCOPIC

SYSTEM FOR EACH PARAMETER STUDIED

SNR have the potential to cause specific spectral signa-
tures to deviate more significantly from the established
reference standard. Systematically identify and quantify
these fluctuations to correct and enhance spectral anal-
ysis reliability.

Moreover, Table III provides a summary of the values
obtained at 10× for each HS microscopic system, determining
which one better satisfies each characterization and validation
parameter (Table SI completes these data by showing results at
all possible magnifications for each system). This information
may serve as a valuable reference for future developers and
users/operators of HS microscopic systems, enabling them
to compare their results with those presented in this article.
It must be noted that spatial scanning, accuracy, spatial res-
olution, and SFR were not evaluated in the reflectance mode
due to the unavailability of specific targets. Similarly, tone
transfer in the transmittance mode could not be tested.

System B employs a linescan sensor composed of spec-
tral filters arranged side by side, requiring scanning of the
entire sensor over the sample to capture material data. This
design excels in spatial parameters, capturing the 2-D scene
simultaneously and enhancing spatial resolution and frequency
response. Additionally, System B offers a superior DR, making
it particularly suitable for applications demanding high spatial
precision and DR, such as detailed analysis of microscopic
structures. However, the complexity of system assembly can
be seen as a drawback.

Conversely, System A uses a push-broom HS camera that
diffracts a ray of light from a spatial line to capture all its spec-
tral bands simultaneously, offering a plug-and-play solution.
This characteristic simplifies the system setup and operation,
making it more accessible for various applications. System A
is superior for high spectral resolution tasks, capturing
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826 bands compared to the 150 bands of System B. This
makes it ideal for applications that require detailed spectral
information, such as identifying specific chemical composi-
tions or detecting subtle spectral features.

VI. CONCLUSION

The lack of a standard methodology to characterize and
validate HS microscopic systems limits their transferability
between different applications and research teams, leading to
variability in results and reduced reproducibility. This lack
of standardization also makes the formal validation of HS
microscopic systems challenging. However, a methodology
based on well-established procedures for characterizing the
different optical and spectral properties of imaging systems
could solve this issue. The main contribution of this article is to
provide a structured roadmap to characterize and validate HS
microscopic systems to improve repeatability and enable com-
parison across various systems. To the best of our knowledge,
this is the first time in which a unified methodology has been
proposed for this purpose, potentially serving as a foundation
for incorporating HS microscopic systems into the “Standard
for Characterization and Calibration of Ultraviolet through
Shortwave Infrared (250–2500 nm) HSI Devices.” Further-
more, the proposed roadmap has been validated through a
round-robin test using two different HS microscopic systems
to test its generalizability. Future research in the field would
employ the proposed roadmap as a technical verification for
the development of HS microscopic systems. Reporting the
quality metrics of these systems would enhance the publicly
available characterization information, which can improve
reproducibility and standardize the technical validation of the
public microscopic HS image datasets.
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Madrid, Spain, in 2020 and 2021, respectively,
where he is currently pursuing the Ph.D. degree with
the Electronic and Microelectronic Design Group
(GDEM), Software Technologies and Multimedia
Systems for Sustainability (CITSEM) Research Cen-
ter.

His research interests are related to microscopic
hyperspectral imaging applied to histopathology applications and digitalization
4.0 of aquaculture facilities.

http://dx.doi.org/10.1007/s11263-022-01660-2
http://dx.doi.org/10.3390/rs10030482
http://dx.doi.org/10.3390/rs10030482
http://dx.doi.org/10.1016/j.isprsjprs.2013.06.001
http://dx.doi.org/10.1016/j.isprsjprs.2013.06.001
http://dx.doi.org/10.1080/01431160412331291288
http://dx.doi.org/10.1080/01431160412331291288
http://dx.doi.org/10.1109/ACCESS.2019.2904788
http://dx.doi.org/10.2352/issn.2470-1173.2019.10.iqsp-320
http://dx.doi.org/10.1117/1.oe.57.9.093101
http://dx.doi.org/10.1117/1.oe.54.7.074104
http://dx.doi.org/10.1117/1.oe.54.7.074104
http://dx.doi.org/10.2352/issn.2470-1173.2016.13.iqsp-011
http://dx.doi.org/10.1007/bf02956173
http://dx.doi.org/10.1255/jnirs.1003
http://dx.doi.org/10.3390/rs9070642
http://dx.doi.org/10.1016/j.chemolab.2004.01.023
http://dx.doi.org/10.1016/j.compag.2019.02.006
https://aviantechnologies.com/product/encapsulated-gray-scale-standards/
https://aviantechnologies.com/product/encapsulated-gray-scale-standards/
https://aviantechnologies.com/product/reflectance-wavelength-%26%23xe008; calibration-standards/
https://aviantechnologies.com/product/reflectance-wavelength-%26%23xe008; calibration-standards/
http://dx.doi.org/10.1088/1681-7575/ab3fd1
http://dx.doi.org/10.3390/rs13214453
http://dx.doi.org/10.1038/s41598-021-99220-0
http://dx.doi.org/10.1515/9781942401353-012
http://dx.doi.org/10.1016/j.jag.2005.06.001
http://dx.doi.org/10.1016/j.jag.2005.06.001
http://dx.doi.org/10.1117/1.jbo.19.1.010901
http://dx.doi.org/10.1117/1.jbo.19.1.010901
http://dx.doi.org/10.1366/0003702053641414
http://dx.doi.org/10.1073/pnas.0508047103
http://dx.doi.org/10.1364/josaa.11.001193
http://dx.doi.org/10.1364/josaa.11.001193


QUINTANA-QUINTANA et al.: ROADMAP FOR THE CHARACTERIZATION AND VALIDATION OF HS MICROSCOPIC SYSTEMS 4012413

Javier Santana-Nunez received the bachelor’s
degree in industrial electronics and automation engi-
neering from the University of Las Palmas de Gran
Canaria (ULPGC), Las Palmas de Gran Canaria,
Spain, in 2023, where he is currently pursuing the
M.Sc. degree in intelligent systems and numerical
applications applied to engineering. He developed
his bachelor thesis at the Research Institute for
Applied Microelectronics (IUMA), ULPGC, focus-
ing on designing and evaluating hyperspectral image
registration techniques.

He is currently working at IUMA as a Researcher and starting his
Ph.D. thesis. His research interests are related to microscopic hyperspectral
imaging applied to biological sample analysis, especially for histopathology
applications.

Miguel Chavarrı́as received the Ph.D. degree from
the Universidad Politécnica de Madrid (UPM),
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