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 A B S T R A C T

False alarms in subpixel fire detection often arise when high-voltage structures, such as powerlines or towers 
near thermographic cameras, emit intense infrared radiation that mimics early fire signals at long distances. 
This paper proposes the study and statistical analysis of You Only Look Once version 8 (YOLOv8) to detect, 
segment, and isolate these sources of false alarms. YOLOv8 is trained on the Addressing False Alarm Situations 
(AFAS) dataset, which includes a variety of Long-Wave Infrared (LWIR) and Near-Infrared (NIR) imagery from 
both aerial and ground-level perspectives. The model achieves a mean Average Precision (mAP) of 0.784 at 
an Intersection over Union (IoU) threshold of 0.5. The contribution of this work lies in a detailed statistical 
analysis of YOLOv8 outputs, introducing, among others, the Empirical Cumulative Distribution Function (ECDF) 
as a metric to assess the relationship between mask overlap and detection confidence. To evaluate the model’s 
robustness under thermal disturbances, synthetic fires are introduced to simulate changes in the scene. The two-
sample Kolmogorov–Smirnov (KS) test compares prediction distributions with and without these anomalies, 
important to ensure that the model performs reliably over a wide range of scenarios so that the presence of 
these structures can always be determined and isolated. Finally, an energy retention metric is introduced to 
quantify the probability that the model’s predicted masks obscure at least half of an early fire’s energy. In 
critical cases where the fire appears at 2, 3, and 4 pixels from the segmented structures, these probabilities 
are approximately 7%, 4%, and 3%, respectively.
1. Introduction

Wildfires pose a global threat that demands effective early detection 
and accurate monitoring to reduce their devastating consequences. The 
continuous development of wildfire detection systems and the search 
for new strategies underscore the urgency of this challenge (Barmpoutis 
et al., 2020). Thermographic technology, widely integrated into fire 
monitoring systems, provides significant advantages. Thermographic 
cameras detect infrared thermal radiation, enabling the early identi-
fication of heat sources before visible signs, such as smoke, appear. 
By focusing on infrared energy rather than visible cues, these cameras 
improve detection accuracy and reduce false alarms (Valero et al., 
2021; Carta et al., 2023).

Detecting early fire formation at kilometer distances requires ther-
mographic systems capable of identifying subpixel-scale heat sources, 
where the burned area is still small and occupies only a few pixels of the 
camera. For instance, Fig.  1(a) shows a burned area of 3 m2 with a tem-
perature nearing 864 ◦C. At a distance of 1600 m, as shown in Fig.  1(b), 
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this burned area appears in the thermal image with a maximum pixel 
temperature of only 30.01 ◦C, even though the surrounding terrain 
averages 39.43 ◦C. Such challenges frequently arise in rugged, forested 
terrains with limited observation angles and a kilometer distance to the 
incipient fire, underscoring the importance of precise subpixel detec-
tion to enable rapid emergency response (Zacharakis and Tsihrintzis, 
2023).

A critical challenge in detecting subpixel heat sources is the high 
prevalence of false alarms caused by structures or objects whose in-
frared emissions appear similar to those of distant fires due to at-
mospheric attenuation. High-voltage distribution structures have been 
strongly linked to increased wildfire risks, particularly in steep, forested 
areas and adverse weather conditions (Bayani et al., 2023; Jahn et al., 
2022). These structures frequently exhibit overheating and thermal 
anomalies driven by weather factors such as wind, humidity, temper-
ature, and by electrical issues like high currents and insulator dete-
rioration resulting from inadequate maintenance (Bigun et al., 2020; 
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Fig. 1. Near subpixel fire scenario. (a) Prescribed burning carried out by competent authorities. (b) Representation of the burned area in a thermal image of 160 × 120 pixels.
Liu et al., 2020). Moreover, material property changes, such as cor-
rosion or oxide formation on insulators, affect emissivity and infrared 
radiation emission, misleading thermal readings (Jeong et al., 2023). 
Consequently, powerlines and towers with altered surface character-
istics become significant sources of false alarms, especially during 
high-temperature, low-wind scenarios (Bigun et al., 2020).

In this context, autonomous mobile detection systems can play a 
key role by reducing operator deployment time and enhancing ef-
ficiency (Perez-Mato et al., 2016). They require simple calibration 
processes and robust algorithms to swiftly detect potential fires under 
complex environmental conditions, including extreme heat, adverse 
weather, and sun reflections. These algorithms must isolate fire signals 
from non-fire sources to prevent the inclusion of objects whose emitted 
radiation appears similar to the energy received by the camera from a 
distant potential fire (Barmpoutis et al., 2020).

This work addresses the challenge of reducing false alarms in sub-
pixel fire detection by focusing on isolating high-voltage structures. 
The proposed methodology combines computer vision with thermo-
graphic cameras to accurately detect and segment specific structures 
that commonly trigger false alarms, mainly when fires are incipient.

The novelty of the proposed study lies specifically in identifying 
these structures as significant sources of false alarms in high-depth-of-
field scenarios. These scenarios are characterized by multiple infrared 
radiation sources coexisting at varying distances, with fires potentially 
igniting kilometers away from the observation point, defining a sub-
pixel scenario. Fig.  2 provides an example of this complex detection 
environment, where powerlines, towers or other thermal sources may 
appear prominently within the camera’s field of view. The example 
highlights early fire detection with effective isolation of false alarm 
sources. A white zoom-in effect marks the detected fire.

To clearly articulate the novelty and contributions of this work, the 
main points are summarized as follows:

• Application focus: This work addresses a problem not mentioned 
in the state of the art in early fire detection, false alarms caused 
by the presence of high-voltage structures in thermal images, 
especially in high depth-of-field scenarios.

• Dataset contribution: A new, dedicated dataset is introduced, 
specifically annotated to include structural elements commonly 
responsible for false alarms in early fire detection systems based 
on thermal imagery. The dataset features both aerial and terres-
trial views in diverse topographic environments and will be made 
publicly available.
2 
• In-depth analysis: Additional metrics are introduced to evalu-
ate the segmentation model from perspectives not explored in 
previous work. The analysis focuses on three key aspects:

– Confidence-behavior relationship: Understanding how the
model’s confidence level correlates with the overlap be-
tween predicted and ground truth masks, offering a more 
intuitive assessment of prediction reliability.

– Robustness under subpixel fire scenarios: Evaluating the
model’s ability to continue detecting and isolating false-
alarm sources during the sudden appearance of thermal 
disturbances like early fire signals.

– Preservation of fire regions: Measuring how well the model 
avoids masking true fire areas during incipient fire sce-
narios, emphasizing the potential risk of obscuring weak 
thermal signatures.

The remainder of this paper is structured as follows. Section 2 
reviews existing false alarm reduction approaches and outlines the 
research gap addressed in this work. Section 3 introduces the proposed 
dataset, emphasizing its coverage of high-voltage powerlines and tow-
ers. It also details the synthesis of near-subpixel fire anomalies for 
robustness testing and outlines the workflow adopted in this study. 
Section 4 presents the experimental outcomes, including both standard 
metrics and the newly proposed metrics for assessing the model’s 
effectiveness in isolating false-alarm structures while preserving subtle 
fire signals, as well as a comparison with other approaches to false 
alarm reduction in the state of the art. Section 5 summarizes the key 
findings and contributions of this work, particularly the release of a 
dataset focusing on high-voltage structures, the introduction of new 
evaluation metrics for subpixel fire scenarios, and a discussion of their 
implications, along with prospective directions for future research.

2. Related works

In thermography-based fire detection systems, false alarms are often 
due to solar effects, reflections, hot objects, artificial lighting, and 
unrelated combustion sources (Barmpoutis et al., 2020). A promi-
nent research direction addresses these issues through signal-based 
analysis that exploits the unique temporal and spectral patterns of 
genuine fire events. For instance, Arrue et al. (2000) proposed a real-
time infrared–visual system that combines infrared image processing 
techniques with artificial neural networks and supplementary meteo-
rological data. Their approach, designed to reduce the workload on 
human operators by filtering out false alarms, leverages information 
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Fig. 2. Representation of a complex subpixel fire scenario where the infrared energy of the powerlines (blue) exceeds the fire energy. The fire has been generated synthetically.
redundancy from dual imaging modalities and integrates a fuzzy expert 
rule base to support decision-making.

Parallel research has focused on exploiting the spectral character-
istics of biomass combustion. Briz et al. (2003) developed algorithms 
based on the differential behavior of the medium (3–5 μm) and thermal 
(8–12 μm) infrared spectral regions. Their introduction of the Fire 
Index (FI) and the complementary Mid-IR Fire Index (MFI) provided 
a robust framework for discriminating between true fires and false 
alarms, validated through experimental burns.

Multisensor fusion has emerged as a further enhancement to fire 
detection systems. Perona et al. (2011) presented an innovative system 
that fuses radiometric analysis with image, graphical, and motion 
processing of Long-Wave Infrared (LWIR) and Near-Infrared (NIR) data. 
Their method, which integrates opto-thermal sensors and adjustable 
threshold models based on local climatic and orographic factors, sub-
stantially improves the reliability of detection by reducing false alarms. 
Similarly, Georgiades et al. (2019) introduced a multisensor frame-
work that integrates ground-based optical and thermographic cameras 
with Unmanned Aerial Vehicle (UAV) and environmental sensors. This 
fusion strategy enables real-time risk assessment and effective early-
warning notifications in challenging operational environments. Build-
ing on similar fusion concepts, Liu et al. (2023) proposed combining 
visual and infrared imagery within a single network to reduce both 
false and missed fire alarms through a custom UAV-captured dataset, 
their improved model achieved a low false alarm rate and missed alarm 
rate, highlighting the benefits of multispectral fusion for early forest fire 
warning.

Addressing deployment challenges further, recent work by
Anggreainy et al. (2022) has incorporated fuzzy logic within an
Arduino-based data collection framework with different sensors. Their 
system achieved a high degree of accuracy with a fuzzy output differ-
ence, demonstrating promising potential to reduce false alarms in forest 
fire detection scenarios. In a related vein, Sawant (2024) introduced 
an integrated detection system that combines smoke sensors, thermal 
measurements, and image analysis. This multi-model approach reduces 
false alarms and improves real-time detection capabilities, though 
concerns regarding cost, maintenance, and data privacy remain.

While the state of the art in false alarm reduction using LWIR 
and NIR imaging has made significant strides, a considerable research 
gap persists. Existing approaches have not adequately addressed false 
alarms caused by high-voltage structures, objects with regular shapes, 
and high temperatures, or surfaces that reflect sunlight or emit artifi-
cial light. The identification and segmentation of these entities using 
thermographic cameras are areas that have not been fully developed. 
3 
Moreover, none of these studies have presented scenarios involving 
multiple infrared radiation sources at varying distances where fires 
can ignite kilometers away from the observation point. This absence 
highlights the need for new methodologies capable of handling these 
complex environments.

3. Material and methods

3.1. Datasets

Two datasets were developed and used in this study. The first, re-
ferred to as Addressing False Alarm Situations (AFAS), was created for 
training and evaluating the detection and segmentation of high-voltage 
structures such as powerlines and towers. The second is a synthetic 
extension of AFAS, specifically designed to evaluate the model’s robust-
ness in segmenting false alarms and potential fire masking in subpixel 
fire scenarios.

3.1.1. AFAS dataset
In this work, different datasets for the detection and segmentation 

of powerlines and towers through the analysis of LWIR and NIR im-
ages have been analyzed. Three datasets were selected: the Advanced 
Driver Assistance Systems (ADAS) dataset by FLIR (2023); the M3DF 
dataset discussed in the work carried out by Liu et al. (2022); and 
the Powerline Image Dataset (PID), developed in collaboration with 
the Turkish Electricity Transmission Company for powerline and tower 
inspection (Yetgin and Gerek, 2019). A filtering process was employed 
for the datasets, excluding images with similar scenarios to prevent 
training bias. Notably, the ADAS and M3DF datasets predominantly 
showcase urban scenarios, differing from those in this study.

To improve the model’s generalization capabilities and address the 
limitations of existing urban-focused datasets, a targeted measurement 
campaign was carried out in rural areas. Thermal imagery was collected 
across diverse landscapes, including mountainous terrain, ravines, and 
dense vegetation, under varying lighting conditions and weather pat-
terns. These environments closely resemble the deployment conditions 
of early fire detection systems, where false alarms may originate from 
high-voltage structural elements. The resulting dataset, named AFAS, 
also contains thermal images of telephone lines and wooden utility 
towers. Notably, during data collection, it was observed that the black-
coated telephone lines, due to their high emissivity (𝜖 > 0.95), exhibit 
radiometric values significantly above the background under elevated 
temperatures. A similar behavior was noted in the wooden towers, 
which also have high emissivity (𝜖 > 0.8) according to the study carried 
out by Pitarma and Crisóstomo (2019).
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Fig. 3. Different samples of the annotated AFAS dataset.
Table 1
General information about the data used to generate AFAS dataset.
 Dataset Image pairs Resolution Camera Type Bit depth 
 ADAS 852 640 × 512 FLIR Tau 2 LWIR 16-bit  
 M3FD 240 640 × 512 Not specified LWIR 8-bit  
 PID 125 576 × 325 Not specified NIR 8-bit  
 Ours 260 336 × 256 FLIR Tau 2 LWIR 16-bit  

The details about the thermographic camera used in this work and 
general information about all the datasets used to create the AFAS 
dataset are presented in Table  1.

The preprocessing involved normalizing the raw 16-bit LWIR im-
ages to an 8-bit format through a linear transformation to maintain 
a uniform dynamic range across all datasets. Subsequently, Contrast-
Limited Adaptive Histogram Equalization (CLAHE) was applied to all 
images to enhance contrast uniformly before feeding them into the 
model. Additionally, all images were resized to a standardized resolu-
tion of 640 × 640 pixels, ensuring consistency and minimizing the scale 
variance on detection accuracy.

The AFAS dataset images were manually labeled using the Roboflow 
labeling tool, producing polygonal annotations specifically for the pow-
erline and tower classes (Dwyer et al., 2024). Examples of the processed 
dataset and corresponding annotations are illustrated in Fig.  3. For 
representation purposes, both polygonal contours and bounding boxes 
were used to show the different objects in the dataset. The powerline 
class is highlighted in blue, while the tower class is marked in red, 
providing a visual distinction between the two classes.
4 
3.1.2. Synthetic AFAS dataset
To generate the synthetic dataset, simulated fire outbreaks are in-

troduced into the validation images using a two-dimensional Gaussian 
distribution, mathematically described as: 

𝐺(𝑥, 𝑦;𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝜎𝑦) = 𝑒
(𝑥−𝜇𝑥 )2

𝜎2𝑥
+

(𝑦−𝜇𝑦 )2

𝜎2𝑦 (1)

where 𝑥 and 𝑦 are the coordinates, 𝜇𝑥 and 𝜇𝑦 are the means in the 𝑥
and 𝑦 directions, 𝜎𝑥 and 𝜎𝑥 are the standard deviations in the 𝑥 and 𝑦
directions.

The new validation image (𝐼 ′(𝑥, 𝑦)) is the result of the convolution 
between the Gaussian effect and the original image (𝐼(𝑥, 𝑦)), calculated 
as follows: 
𝐼 ′(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) ∗ 𝐺(𝑥, 𝑦;𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝜎𝑦) (2)

This approach is inspired by observations made during prescribed 
burn operations, where small, distant fires appeared as smooth, clus-
tered regions of low contrast in thermal imagery as shown in Figs.  1
and 4. The use of this simulation allows for systematic generation of 
early fire conditions that are representative, reproducible, and scalable 
for robust model evaluation.

In the image generation process, this effect is applied to each vali-
dation image, producing 20 synthetic samples per original image. Two 
variants of the synthetic dataset are created, each representing different 
fire intensity levels. The first, AFAS-SubtleFire, simulates faint and 
early-stage fire signatures using Gaussian-based heat sources with lower 
intensity levels, ranging from 20%–50% of the maximum pixel value in 
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Fig. 4. Different prescribed burnings carried out in collaboration with the competent authorities. (a) Thermal image of 640 × 480 pixels. (b) Thermal image of 200 × 150 pixels.
each image. The second variant, AFAS-IntenseFire, introduces more 
prominent fire-like signals with peaks ranging from 50%–80%. The 
spatial placement strategy remains consistent in both variants, enabling 
evaluation of the model’s sensitivity and robustness across a range of 
thermal contrasts. This process has been used to generate the synthetic 
images shown in Figs.  2 and 5.

3.2. Model overview

You Only Look Once version 8 (YOLOv8) was used to detect and 
segment out powerlines and towers in this work. It is one of the 
current state-of-the-art models for computer vision tasks, designed for 
object detection and tracking, image classification, and instance seg-
mentation (Jocher et al., 2023). Composed of two primary components, 
the YOLOv8 architecture consists of the backbone and the head. The 
modified CSPDarknet53 architecture is the backbone, incorporating 
convolutional layers with cross-stage partial connections to enhance 
information flow between layers. Meanwhile, the head is responsible 
for predicting bounding boxes, objectivity scores, and class confidences 
for detected objects within an image. In essence, the backbone extracts 
features from the input image, and the head uses these features to make 
predictions about the objects in the image (Terven et al., 2023).

This model incorporates a variant of the U-Net architecture for 
segmentation tasks and a variant of the EfficientNet architecture for 
classification purposes in both detection and segmentation tasks (Ter-
ven et al., 2023). The network undergoes initial training to predict 
object location and class. Subsequently, these predictions are employed 
to generate a segmentation mask, outlining pixel-level boundaries for 
each object. This approach enables YOLOv8 to perform instance seg-
mentation.

3.3. Evaluation metrics

The model was evaluated using standard object detection and seg-
mentation metrics to establish a baseline performance. To analyze 
its behavior under different conditions, additional statistical metrics 
were applied to the predictions, which provided information on the 
confidence-behavior relationship, robustness, and spatial accuracy of 
the model.

3.3.1. Established metrics
The well-established metrics include precision, recall, Average Pre-

cision (AP), and mean Average Precision (mAP) when the Intersection 
over Union (IoU) is set to 0.5. These metrics help to establish a baseline 
performance reference for the model, ensuring reproducibility and 
facilitating comparisons with future research.
5 
• IoU: For segmentation tasks, the IoU indicates the overlap of 
the predicted mask with the ground truth mask. This overlap is 
calculated by measuring the similarity between the two masks as 
follows: 
IoU = X ∩ Y

X ∪ Y (3)

where 𝑋 ∩ 𝑌  is the area where the predicted mask and ground 
truth mask overlap, while 𝑋∪𝑌  denotes the total area covered by 
both regions, including both the overlapping and non-overlapping 
regions.

• Precision: The precision is the ratio of correctly predicted pos-
itive targets among the total targets predicted as positive. It is 
calculated as follows: 
Precision = TP

TP + FP (4)

where TP denotes true positives and FP false positives.
• Recall: The recall is the ratio of correctly predicted positive 
targets among the total actual positive targets. It is calculated as 
follows: 
Recall = TP

TP + FN (5)

where FN stands for false negatives.
• AP: The AP serves as a consolidated measure of the precision–
recall curve. The higher it is, the better the relationship be-
tween precision and recall at different confidence thresholds. It 
is calculated as follows: 

𝐴𝑃 = ∫

1

𝑟=0
𝑃 (𝑟) 𝑑𝑟 (6)

where 𝑃 (𝑟) is the precision at the recall level 𝑟.
• mAP: The mAP is obtained by calculating the average AP values 
for different classes of objects. When the IoU is set to 0.5, this 
metric is also known as mAP@50. The mAP metric is calculated 
as follows: 

𝑚𝐴𝑃 = 1
𝑛

𝑛
∑

𝑖=1
𝐴𝑃 𝑖 (7)

where 𝑛 is the total number of classes considered.

The precision, recall, AP, and mAP@50 results reported in this work 
were obtained using the Ultralytics framework, which provides built-in 
evaluation routines consistent with COCO-style metrics (Jocher et al., 
2023).

3.3.2. Additional proposed metrics
In addition to the well-established metrics, the following specialized 

metrics are introduced:
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• Empirical Cumulative Distribution Function (ECDF): The
ECDF is used to analyze the overlaps between the predicted 
and ground truth masks and the confidence values of predicted 
bounding boxes. It is defined as follows: 

𝐹 (𝑥) = 1
𝑛

𝑛
∑

𝑖=1
𝐼(𝑥𝑖 ≤ 𝑥) (8)

where 𝑥 is the resulting overlap and the detection confidence, 
𝐼(𝑥𝑖 ≤ 𝑥) is an indicator function that equals 1 if 𝑥𝑖 ≤ 𝑥 and 0 
otherwise.

• Two-sample Kolmogorov–Smirnov (KS) test: The two-sample 
KS test evaluates whether two sets of samples arise from the 
same distribution. In this work the test is used to compare model 
predictions on AFAS and synthetic AFAS images. This test is 
non-parametric and does not assume normality or equal vari-
ances, making it well-suited for evaluating model predictions 
that may exhibit non-Gaussian behavior or distributional shifts 
under perturbations. Its ability to compare the entire shape of 
two distributions provides a comprehensive view of how model 
outputs are affected by simulated early fire scenarios (Dodge, 
2008). The key ideas behind the two-sample KS test are:

– Null hypothesis (𝐻0): Both sample sets come from the 
same distribution.

– Test statistic (𝐷): Measures the maximum vertical dis-
tance between the two ECDFs. Larger values indicate greater 
dissimilarity between the distributions.

– p-value: This parameter represents the probability of ob-
serving results at least as extreme as those obtained, as-
suming that 𝐻0 is true. A small 𝑝-value indicates that such 
results are unlikely to occur by random chance under 𝐻0, 
providing evidence to reject the null hypothesis. Conversely, 
a large 𝑝-value suggests that the observed differences could 
reasonably be attributed to chance, supporting 𝐻0. In prac-
tice, the null hypothesis is rejected when the 𝑝-value falls 
below a predefined significance threshold, typically 𝛼 =
0.05 (Fisher, 1992; Dodge, 2008).

• Energy retention: To assess the extent to which the model masks 
early fires near high-voltage structures, a distance-based strategy 
is applied in which synthetic fire effects are introduced at specific 
distances from known object polygons.

– Define 𝑀 as the fraction of synthetic-fire pixels that fall 
within the predicted mask. It can be calculated as follows: 

𝑀 =
∑

𝑖,𝑗 pixels𝑖,𝑗
∑pixels

(9)

where ∑𝑖,𝑗 pixels𝑖,𝑗 represents the sum of the synthetic fire 
pixel values within the predicted mask, and ∑pixels repre-
sents the sum of the total synthetic fire pixel values.

– The metric of interest is 𝑃 (𝑀 ≥ 0.5). It is defined as the 
probability that at least half of the total fire intensity is 
captured within the masks predicted by the model. This is 
calculated as follows: 

𝑃 (𝑀 ≥ 0.5) =
len({𝑀𝑖 ∣ 𝑀𝑖 ≥ 0.5})

𝑁
(10)

where len({𝑀𝑖 ∣ 𝑀𝑖 ≥ 0.5}) is the number of predicted 
masks for which 𝑀 ≥ 0.5, and 𝑁 is the total number of 
evaluated images.

Fig.  5 presents an example from the synthetic AFAS dataset to visu-
ally demonstrate the evaluated cases in the energy retention analysis.

In Fig.  5(a), the original prediction made by the model is rep-
resented. In contrast, Fig.  5(b), (c), and (d) illustrate the different 
possibilities considered in the evaluation process.
6 
3.4. Experimental procedure

The complete workflow carried out in this work is presented, cov-
ering the training process, the inference process and the evaluation 
process using standard and newly proposed metrics.

3.4.1. Training process
For the training process, all images from the AFAS dataset have been 

used, providing diverse visual contexts essential for comprehensive 
model training. The dataset is split into a 70%–30% ratio for training 
and validation. Furthermore, the data augmentation was exclusively 
and randomly applied to the training set, incorporating vertical and 
horizontal flips, static cropping (0% to 30%), Gaussian blur (𝜎 = 0 to 
0.75), random salt and pepper noise injection (1% of pixels replaced), 
and random brightness changes (−10% to 10%). The final dataset used 
to train and evaluate the model consists of 3561 images from different 
scenarios.

The training platform is based on a system running Ubuntu 22.04, 
equipped with an RTX 2080Ti GPU, an Intel i9-9900X CPU@3.50 GHz, 
and 32 GB of RAM. The images were resized to 640 × 640 pixels 
while the annotations were normalized to these dimensions for the 
training process. As part of this research, the pre-trained M model of 
YOLOv8 was used as a starting point. The fine-tuning was carried out 
with the proposed augmented dataset over 300 epochs with default 
hyperparameter configurations provided by Ultralytics (Jocher et al., 
2023).

3.4.2. Inference process
Fig.  6(a) shows a simplified YOLOv8 architecture that makes in-

ference possible, summarizing the key components and data flow. 
The architecture begins with an input image that is processed by the 
Backbone (I and II), which features Convolution (Conv) layers, Cross 
Stage Partial Bottleneck with 2 convolutions (C2f) modules, and Spatial 
Pyramid Pooling Fusion (SPPF) modules to extract multi-scale features. 
These modules work together to capture both local details and global 
context. The extracted features, represented as multi-scale maps (P3, 
P4, P5), are then routed to the Segmentation head (I and II), which em-
ploys a Proto module to generate a set of shared mask prototypes and 
CV4 modules to produce the corresponding mask coefficients. These 
components work together to reconstruct precise instance segmentation 
masks for each detected object. Finally, the network outputs bounding 
boxes, class indices, class confidences, and segmentation masks, which 
are used for the evaluation metrics considered (Jocher et al., 2023).

Once trained, the model is used to perform inference on both the 
original AFAS validation dataset and the synthetic datasets, AFAS-
SubtleFire and AFAS-IntenseFire, producing bounding boxes, class la-
bels, confidence scores, and segmentation masks for each. The out-
put predictions from the synthetic datasets are stored separately for 
comparative analysis.

3.4.3. Evaluation process
Fig.  6(b) illustrates how YOLOv8 predictions are used to compute 

the previously discussed evaluation metrics, each relying on specific 
inputs and datasets. Classical segmentation metrics, including IoU, 
precision, recall, AP, and mAP, are calculated using the AFAS dataset, 
based on class indices, predicted segmentation masks, and ground 
truth annotations. The ECDF is also derived from the AFAS dataset, 
leveraging the relationship between detection confidence scores and 
mask overlaps, providing insights into the distribution of performance 
across varying thresholds. The two-sample KS test is applied to pre-
diction outputs from both the AFAS and the synthetic AFAS-SubtleFire 
and AFAS-IntenseFire datasets, allowing for a statistical comparison of 
the model’s behavior before and after the introduction of simulated 
fire anomalies. Finally, the energy retention metric is computed using 
only the AFAS-SubtleFire and AFAS-IntenseFire datasets, measuring the 
proportion of fire-related energy captured within the predicted masks 
to assess how early fire signals might be obscured or detected.
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Fig. 5. Samples from synthetic AFAS dataset. (a) Original prediction. (b) Case where the fire is not masked. (c) Case where the fire is partially masked. (d) Case where the fire 
is almost completely masked.

Fig. 6. Methodology block diagram. (a) YOLOv8 simplified architecture and output predictions. (b) Proposed workflow followed in this work.
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Fig. 7. Training process results over 300 epochs.
Table 2
Evaluation metrics results.
 Class Precision Recall AP mAP@50 Inference time 
 Powerline 0.808 0.71 0.762 0.784 10.2 ms  
 Tower 0.83 0.743 0.807  

4. Results and discussion

4.1. Training results

The curves derived from the training process are shown in Fig.  7. 
The graph illustrates the box loss, segmentation loss, and class loss 
for the augmented training set, along with the same representation for 
recall, precision, and mAP@50 for segmentation tasks. The final model 
used in this study reaches its maximum value of mAP@50 at epoch 186.

4.2. Comparative analysis of detection and segmentation tasks

The evaluation process consisted of applying the established metrics 
to the predictions made by YOLOv8 on the AFAS validation dataset. The 
results of this evaluation process are shown in Table  2, where inference 
time is also displayed in milliseconds (ms).

Several existing works, such as those carried out by Abdelfattah 
et al. (2023) and by Yang et al. (2022), have explored powerline 
and tower segmentation using different methodologies and datasets. 
The study conducted by Abdelfattah et al. (2023) compares differ-
ent deep learning methods for segmenting powerlines and towers in 
the visible range. Their proposed method relies on Generative Ad-
versarial Networks (GANs) for segmentation and achieves a precision 
value of 0.863. However, compared with an architecture based on 
UNET++, the latter achieves a maximum recall of 0.591. The study 
presented by Yang et al. (2022) evaluates an attention-based segmen-
tation method within an encoder–decoder framework and uses images 
from the PID dataset, which is also used in the present work. The study 
achieves a precision value of 0.852 for visible images and 0.856 for 
infrared images. Additionally, the AP values are reported as 0.910 for 
visible images and 0.929 for infrared images.
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Although this paper refers to those studies and results, it is im-
portant to highlight the differences in the experimental setups. For 
instance, Abdelfattah et al. (2023) used a dataset of over 1100 UAV-
captured images in the visible range, with a specific focus on close-
range scenarios. On the other hand, Yang et al. (2022) employed the 
PID dataset for their evaluation, featuring 200 images with particular 
features extracted from the near-infrared spectrum. To the best of the 
author’s knowledge, no open dataset in the thermal range has been 
proposed specifically for the study of high-voltage powerlines and 
towers. The presented dataset, comprising 1477 images representing 
different scenarios, including both aerial and terrestrial views, aims to 
fill this gap and will be fully available for future research.

Rather than positioning Table  2 results in direct competition with 
those of prior studies, they are presented to provide contextual back-
ground and to underscore the diversity of existing approaches for 
high-voltage structures segmentation. Moreover, these metrics help 
establish a baseline performance reference for the model, promoting re-
producibility and facilitating meaningful comparisons with subsequent 
research in similar domains.

The main contribution of this work lies in the introduction of several 
statistical evaluation metrics applied to the model predictions. While 
these metrics are demonstrated using the widely adopted YOLOv8 
architecture, they are inherently model-independent and intended to 
enable consistent, interpretable evaluation across future segmentation 
models and datasets.

4.3. In-depth analysis of model predictions

The results discussed in this section were obtained for a minimum 
confidence threshold of 0.1 and an IoU value of 0.5.

4.3.1. Confidence-behavior relationship
Building on the ECDF-based evaluation, this subsection explores 

how the model’s spatial localization performance correlates with its 
confidence scores. The analysis focuses on understanding the distribu-
tion of overlaps and detection confidence, offering insight into when 
and how the model’s predictions can be considered reliable.

The resulting ECDF curves of this work are shown in Fig.  8.
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Fig. 8. ECDF analysis. (a) Overlap curves: one for all detections and one for detections 
with confidence greater than 0.5 (denoted as c | o ≥ 0.5), showing the IoU distribution 
between predicted and ground truth masks. (b) Confidence curves: one for all detections 
and one for detections with overlap greater than 0.5 (denoted as c | o ≥ 0.5), illustrating 
the distribution of bounding box confidence scores.

Fig.  8(a) illustrates the model’s localization capability using cumu-
lative probability. The blue line represents the frequency with which 
the model achieves specific overlap levels with the ground truth mask. 
For instance, at an 𝑋-axis value of 0.5, it is revealed that 29% of the 
samples have an overlap below 0.5, serving as an implicit threshold 
for identifying false positives. Simultaneously, the orange dashed line 
focuses on the cumulative probability of overlap for confidence scores 
exceeding 0.5. A positive correlation emerges, indicating improved 
localization capability as the confidence level of the bounding box 
increases. In Fig.  8(b), the data distribution reflects the confidence 
levels provided by the model. Notably, when focusing on instances 
where the overlap exceeds 0.5, indicating true positives, it is observed 
that about 81% of these detections possess a confidence level surpassing 
0.7. This implies that the model reliably identifies true positives with 
a high degree of confidence.

From a practical standpoint, these findings inform how an oper-
ator might set the model’s confidence threshold depending on the 
cost of false positives versus missed detections. By leveraging the 
resulting ECDF plots, decision makers can visually assess the trade-
offs between confidence and detection accuracy, allowing them to set 
an optimal threshold tailored to the specific needs of the application. 
This approach simplifies the threshold selection process by providing a 
clear, data-driven tool that could align model behavior with real-world 
operational constraints.
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4.3.2. Robustness under subpixel fire scenarios
To evaluate the model’s ability to continue isolating potential false-

alarm sources during early-stage fire signals, a two-sample KS test was 
conducted between the original and synthetic AFAS datasets. The goal 
of this analysis is to understand whether the model’s outputs remain 
statistically consistent when subtle, near-subpixel thermal anomalies 
are introduced. The test was applied to model predictions across a 
range of confidence thresholds (𝑐0), from 0.10 to 0.99 in incremental 
steps. At each confidence threshold, the distributions of overlaps be-
tween predicted and ground truth masks were compared between the 
original dataset and its fire-augmented variants (AFAS-SubtleFire and 
AFAS-IntenseFire).

This analysis provides a series of KS statistics (𝐷 values) and cor-
responding p-values, offering insight into how the model’s detection 
behavior shifts under increasingly confident predictions. The results 
are plotted as curves in Fig.  9, which enhances interpretability by 
intuitively highlighting confidence ranges in which the model remains 
robust and those where it may become more sensitive to synthetic 
perturbations. This visualization provides a better understanding of 
whether the model can reliably maintain segmentation performance in 
the presence of thermal changes caused by very early fire signatures, 
avoiding their obscuration.

In Fig.  9(a) and (b), the test outcomes are shown when applied over 
different bounding box confidence values obtained from the model. Fig. 
9(c) and (d) showcase the corresponding results for cases involving the 
overlap between predicted and ground truth masks. The 𝑋-axis repre-
sents the confidence intervals at which the model has been evaluated, 
and the 𝑌 -axis displays the 𝐷 and 𝑝-value results for each case. The blue 
lines represent the outcomes of the two-sample KS test comparing the 
original predictions with those of the AFAS-SubtleFire dataset variant. 
Similarly, the orange dashed lines illustrate the results of the same test 
for the AFAS-IntenseFire dataset variant.

In cases where the confidence level 𝑐0 < 0.9, the KS statistic 
𝐷 remains relatively low across both synthetic variants, indicating 
minimal divergence in the ECDFs of the prediction scores. This suggests 
that, within this range, the model’s outputs are largely consistent before 
and after the synthetic perturbation. For confidence levels 𝑐0 > 0.9, 
an increase in the 𝐷 value is observed. This increase is likely due to 
the smaller sample sizes at these high confidence levels, which may 
amplify statistical variation and reduce test stability. These regions are 
visually indicated by a red patch in Fig.  9 to emphasize the associated 
uncertainty.

As shown in Fig.  9(b), the p-values associated with the AFAS-
IntenseFire dataset variant are particularly low between confidence 
intervals of 0.10 and 0.16, suggesting a statistically significant dif-
ference between the original and perturbed data distributions in this 
narrow range. This region is marked with an orange patch in the figure. 
Beyond a confidence value of 0.16, the p-values increase and frequently 
exceed the common significance threshold (𝛼 = 0.05), providing less 
evidence to reject the null hypothesis.

These results reveal that the model exhibits localized sensitivity 
to thermal changes in low-confidence regions but maintains overall 
stability at moderate to high confidence levels. The KS test provides 
preliminary insight into the model’s ability to isolate potential false-
alarm sources during the sudden appearance of thermal disturbances, 
such as early fire signals, ensuring that these do not interfere with or 
obscure the actual fire detection.

Further statistical analyses, including other non-parametric tests, 
assessments of variance, confidence interval stability, and robustness 
under diverse environmental conditions, are essential to validate these 
trends. Real-world testing remains a crucial next step to confirm 
whether the observed stability generalizes to actual early fire situations.
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Fig. 9. Two-sample KS test analysis. (a) KS statistic (𝐷 value) for confidence samples. (b) Corresponding p-values for confidence samples. (c) KS statistic (𝐷 value) for overlap 
samples. (d) Corresponding p-values for overlap samples.
4.3.3. Preservation of fire regions
Based on the energy retention metric 𝑃 (𝑀 ≥ 0.5), this section 

shows the extent to which the model does not mask the initial early 
fires by quantifying the fraction of synthetic thermal energy possibly 
retained within the predicted masks. The proposed metric allows for 
a probabilistic understanding of how segmentation performance may 
affect the detection of subtle fire cues in safety-critical contexts.

The evaluation curves for both synthetic dataset variants are shown 
in Fig.  10. In this analysis, synthetic fires were positioned at vary-
ing distances from the nearest segmented object, ranging from 2 to 
8 pixels. The results are color-coded according to these distances 
to illustrate how proximity influences the likelihood of fire energy 
being masked. Specifically, Fig.  10(a) shows the results for the AFAS-
SubtleFire dataset, while Fig.  10(b) corresponds to the AFAS-
IntenseFire dataset.

Across both synthetic datasets, the maximum probability that half 
of the fire energy is masked occurs at the shortest distances, with values 
approximately 7%, 4%, 3%, and 2% for distances of 2, 3, 4, and 5 
pixels, respectively. This trend indicates that as the synthetic fire is 
placed farther from the segmented object, the likelihood of it being 
obscured decreases. Additionally, a clear inverse relationship is ob-
served between the model’s prediction confidence and the probability 
of masking, suggesting that high-confidence detections are generally 
more reliable in not obscuring fire-relevant regions.

The comparison between AFAS-SubtleFire and AFAS-IntenseFire re-
veals similar probabilities for both variants, indicating that the model’s 
ability to preserve synthetic fire regions remains largely consistent 
whether the perturbations are subtle or intense. This outcome sug-
gests that, for the scenarios tested, the model does not exhibit a 
significant bias towards either weaker or stronger thermal anomalies, 
thereby maintaining comparable performance across both levels of fire 
intensity.

4.4. Qualitative comparison with other false alarm reduction approaches

A variety of strategies for reducing false alarms in wildfire and 
early fire detection systems have been explored in the literature, each 
10 
Fig. 10. Mask quality evaluation results. (a) 𝑃 (𝑀 ≥ 0.5) results for AFAS-SubtleFire 
dataset. (b) 𝑃 (𝑀 ≥ 0.5) results for AFAS-IntenseFire dataset.
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Table 3
Overview of false alarm reduction approaches studied in the literature (I).
 Study Sensors used False alarm sources  
 Arrue et al. (2000) IR, 

Visual,
Meteorological,
Geographic

Sunlight effects, reflections, 
hot objects, artificial lights, 
non-wildfire combustion, 
fog, clouds, vehicles

 

 Briz et al. (2003) MIR,
LWIR

Sunglints, industrial hotspots,
sun-heated ground

 

 Perona et al. (2011) NIR, 
LWIR, 
Visual

Hotspots, bright objects,
airborne objects mistaken for smoke

 

 Georgiades et al. (2019) LWIR,
Visual

Various potential false positives,
not named specifically

 

 Anggreainy et al. (2022) Smoke, 
Fire, 
Temperature

False alarms in general;
not specified by type

 

 Liu et al. (2023) LWIR,
Visual

Non-flame heat sources in IR,
bright visible objects at night

 

 Sawant (2024) LWIR, 
Visual, 
Smoke

Traditional system errors (smoke or 
heat),
imprecise fire boundary detection

 

 Ours LWIR High-voltage structures;
powerlines and towers

 

Table 4
Overview of false alarm reduction approaches studied in the literature (II).
 Study Approach Contribution  
 Arrue et al. (2000) Thresholding, oscillation,

analysis, fuzzy rules
Filters light, heat, and reflection artifacts,
via multi-sensor fusion and rule-based logic

 

 Briz et al. (2003) Spectral analysis (FI, MFI) Discriminates fire from glints, hotspots,
and heated terrain using infrared features

 

 Perona et al. (2011) Motion and smoke detection Suppresses false positives
from bright and moving objects

 

 Georgiades et al. (2019) Fusion, risk modeling,
UAV-based verification

Minimizes false alerts via UAV
confirmation and terrain risk mapping

 

 Anggreainy et al. (2022) Fuzzy logic with sensors Accurate detection using fuzzy rules
to reject benign heat sources

 

 Liu et al. (2023) Infrared & Visual fusion
with attention mechanism

Reduces false and missed alarms
using multispectral enhancement

 

 Sawant (2024) Detection and segmentation
Spatio-temporal analysis

Improves accuracy via visual
confirmation and dynamic cues

 

 Ours Detection and segmentation
In-depth model output analysis

Addresses uncertainty, robustness,
and fire occlusion effects

 

tackling different sources of spurious alerts and employing different 
sensor modalities. Tables  3 and 4 illustrate the broad spectrum of 
methods and highlight the diversity of both the sensors used and the 
sources of false alarms they target.

Despite this variety, Table  3 reveals that few studies directly address 
high-voltage structures as a significant cause of false alarms in the 
thermal domain. In many practical settings, such structures appear with 
high thermal contrast or reflective properties, frequently triggering spu-
rious alerts if not accurately identified and separated from genuine fire 
signals. This work focuses specifically on this overlooked but present 
issue.

Compared to traditional threshold-based, fusion-based, or rule-
based techniques, the proposed approach emphasizes detection and 
segmentation coupled with in-depth statistical analyses of the resulting 
model outputs. Rather than manually tuning thresholds or heuristics, 
the model’s predictions are evaluated using metrics such as the ECDF, 
two-sample KS tests, and the proposed energy retention criterion. These 
analyses provide a quantitative, model-independent way of assessing 
when the segmentation model may obscure early fire signals or be-
come sensitive to synthetic perturbations in the scene. By quantifying 
both the confidence scores and spatial overlap of predictions, this 
methodology offers a rigorous view of how high-voltage structures 
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can be isolated without compromising the detection of subtle thermal 
anomalies.

This method complements existing false alarm reduction techniques 
by presenting a specialized solution for thermal imagery with high-
voltage structures, accompanied by robust evaluation metrics that can 
be applied to any segmentation architecture. This targeted yet broadly 
applicable approach aims to improve reliability in safety-critical fire 
monitoring scenarios, ensuring that early-stage fire cues remain visible 
and distinguishable despite the presence of common, non-fire thermal 
objects.

5. Conclusions

This work presents the use of YOLOv8 for detecting and segmenting 
powerlines and towers, which emit significant infrared radiation under 
high temperatures or abnormal conditions. These emissions can inter-
fere with thermal imagery, masking early-stage or distant wildfires and 
increasing the risk of missed detections. The goal is to enhance wildfire 
detection systems by reducing false alarms caused by such structures, 
especially when fires can occur at the subpixel level.
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A key contribution of this work is the introduction of the AFAS 
dataset, specifically designed to represent different conditions rele-
vant to fire detection systems. Unlike previous datasets, which of-
ten focused on visible or NIR spectrum in close-range scenarios, this 
dataset includes 1477 LWIR and NIR images capturing a wide range 
of situations across orographically diverse environments. The trained 
model achieves a mAP of 0.784 at an IoU threshold of 0.5, establish-
ing a preliminary performance baseline for future improvements and 
comparative studies.

This work introduces three complementary evaluation methods: the 
ECDF, the two-sample KS test, and an energy retention-based metric. 
Together, these approaches provide a deeper understanding of model 
behavior beyond what standard performance metrics can provide.

The ECDF intuitively visualizes the relationship between mask over-
lap and bounding box detection confidence, enhancing interpretability 
and supporting a more nuanced evaluation of segmentation quality.

The two-sample KS test is employed to compare model outputs on 
original versus synthetically generated datasets. The results indicate 
that the model exhibits statistically similar behavior across most con-
fidence levels, particularly beyond a threshold of 0.16. This suggests a 
degree of robustness under simulated early fire scenarios. However, as 
these findings are based on synthetic data, further validation on real-
world events is essential to assess their practical relevance. In addition, 
complementary statistical analyses, such as other non-parametric meth-
ods, should be considered in future work to strengthen and extend the 
robustness assessment.

The energy retention metric measures the probability that at least 
half of the energy associated with an early fire lies within the pre-
dicted mask. The analysis reveals that the worst-case scenarios occur 
at detected object distances of 2, 3, and 4 pixels, with corresponding 
occurrence rates of 7%, 4%, and 3%, respectively. Furthermore, for the 
scenarios tested, the model shows no significant bias towards weaker or 
stronger thermal anomalies, thus maintaining comparable performance 
in both fire intensity ranges.

Future directions for this research include expanding the dataset 
to encompass a wider range of potential sources of false alarms, such 
as animals, human activity, reflective surfaces, and vehicle machin-
ery. This expansion will also focus on incorporating more diverse 
environments, including urban and densely forested environments, to 
improve the generalizability of the model. Additional efforts will in-
volve testing the model on real-world early fire datasets, if available, 
and refining preprocessing steps to enhance robustness across imag-
ing sources. Moreover, there is strong potential for exploring real-
time implementation and integrating the proposed methodology into 
operational wildfire detection systems.
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