

BOOK OF ABSTRACTS

Edited by R. Fangueiro

Book of Abstracts

Edited by RAUL FANGUEIRO

Cover PRAGMATIC

Publisher SCIENCENTRIS

Representation in whole or in part by any means is not permited without consent of the editors

Authors

Multiple

Title

Proceedings of the 7th International Conference on Natural Fibers - Nature Inspired Sustainable Solutions

ISBN

978-989-36314-0-9

The editor is not responsible for any author's errors in spelling, grammar or scientific facts. The content of Abstracts is the sole responsibility of the authors.

© Copyright: Local Organizing Committee, 2025

ID 83

BIO-BASED CHITOSAN-LIGNIN COATING FOR SUPERIOR BAMBOO FIBER COMPOSITES

Carla N. Schnell, Abdelghani Laachachi, C. A. Fuentes

ID 85

NATURAL FIBER COMPOSITES OF BREWER'S SPENT GRAIN AND HDPE. AN UPCYCLING SOLUTION

Aday Romero, Airam Rivero, M. Dolores Marrero, Antonio N. Benítez

ID 86

DEVELOPMENT OF DECISION SUPPORT TOOLS FOR HEMP APPLICATIONS IN AN AGRICULTURAL AND INDUSTRIAL CONTEXTS

Marie Audouin, Claire Isierte-Capone, Brigitte Chabbert, Véronique Aguié, Virgile Daux, Laure Bouquerel, Thibaud Debuissy, Pierre Bono, Bernard Kurek, Arnaud Day

ID 93

DEVELOPMENT OF A COMMODITY ITEM FROM COMMON REED FIBRE-REINFORCED THERMOPLASTICS

Silas Gebrehiwot, Leonardo Espinosa-Leal, Harri Anukka, , Heikki Remes Paula Linderbäck, Zaida Ortega

ID 95

DEVELOPMENT AND MECHANICAL ANALYSIS OF A UNIDIRECTIONAL FLAX FIBRE REINFORCED PLA COMPOSITE

Giulia Ronconi, Marco Zanelli, Nicola Pritoni, Alexander Behrens, Regine Hirschberg, Nina Graupner, Jörg Müssig, Pietro Russo, Giulia Fredi, Andrea Dorigato, Francesco Mollica and Valentina Mazzanti

ID 102

WOOL FIBER/SOY PROTEIN SEPARATORS FOR GREENER BATTERIES

Pedro Guerrero, Joao Serra, Carlos Costa, Senentxu Lanceros, Koro de la Caba

ID 107

CONDUCTIVE AND THERMOACTIVATED FLAX YARNS DEVELOPED BY IN SITU POLYMERIZATIONS: INTERACTIONS WITH CARBOHYDRATE POLYMERS

Alaa Ismael a, Antoine le Duigou b, Mickael Castro b, Johnny Beaugrand a, Ana Villares a

ID 109

ELECTRIC FIELD-ASSISTED FABRICATION OF CELLULOSE HYDROGELS

Yutaka Kaneko, Yuto Mori, and Hidemasa Takana

ID 111

MECHANICAL BEHAVIOUR OF BIO- INSPIRED & SUSTAINABLE SANDWICH STRUCTURES

Raja Bade, Dietmar Koch & Jörg Müssig

ID 93 DEVELOPMENT OF A COMMODITY ITEM FROM COMMON REED FIBRE-REINFORCED THERMOPLASTICS

Silas Gebrehiwot^{1,2(*)},Leonardo Espinosa-Leal³, Harri Anukka², , Heikki Remes¹ Paula Linderbäck², Zaida Ortega⁴

¹ Aalto University, Department of Energy and Mechanical Engineering, Espoo, Finland

², School of engineering, culture and wellbeing, Arcada University of Applied Sciences, Helsinki, Finland

³ Graduate School and Research Arcada University of Applied Sciences, Helsinki, Finland

⁴Departamento de Ingeniería de Procesos, Universidad de Las Palmas de Gran Canaria, Campus universitario de

Tafira, 35017, Las Palmas de Gran Canaria, Spain

(*) Email: Silas.gebrehiwot@arcada.fi

ABSTRACT

The applicability of common reed as a natural fibre reinforcement for polypropylene (PP), polyethylene (PE) polymers is highlighted through the development of a new multi-purpose container. The multi-purpose container is versatile; hence it can be used over a wide range of commodity applications. The product design follows the conventional design process guidelines, while the development includes injection moulding process parameter optimisation using plastic melt flow simulation, prototyping, and a product manufacturing. The optimised part design is used to conduct the cool, fill, pack and warp analyses during the melt flow simulation. The simulated process parameters that led to a good dimensional accuracy are used as baseline settings during the actual injection moulding process.

INTRODUCTION

Product design and development is an iterative process which contains the concept, embodiment, detail design, the product specification and development stages (Ashby, 2016). Nowadays, sustainability is becoming a key drive in a new product development. The sustainability dimension encompasses the design, material selection, development, the product life, and end-of-life treatment aspects (Mengistu, 2024); hence strongly connected to all design and development stages. To ensure sustainability, the material selection is at the core of the development processes.

In this work, we present the use of common reed fibre-reinforced polymers to produce a new multipurpose container. The low-density polyethylene (LDPE) and PP matrices are reinforced with a 20 % reed fibre loading. Our previous study on the mechanical properties of the reed fibre-reinforced LDPE (Linderbäck, 2024) indicated that the Young's modulus and yield strength of the material were improved. Our motivation to use the reed fibre-reinforced polymers for the product partly stems from the enhancements of the tensile properties. The gross dimensions of the product are: length L= 125 mm, depth d= 42 mm, and width w= 72 mm, while the minimum wall thickness t = 1mm. To predict key quality dimensions associated with the actual injection moulding, the melt flow analysis was made using SolidWorks Plastic. The cool, fill, pack and warp simulations were selected during the analysis. Fig. 1 presents the settings of the melt flow analyses, and the actual injection moulding.

	-111	Pa	ck			Cool	Materials	
Parameters	Values	Parameters	Valu	ues Paramete		ers Values		
Melt temperature	200°C - 220°C	Packing pressure	300 – 450 bars 4 – 6 sec		Coolant	water	LDPE	
Screw speed	42 mm/s	Packing time			Flow rate	50 cc/s		
Mould temperature	40°C - 50°C	Pure cooling 10		12 sec Coolant		30°C - 40	°C PP	
V/P Switchover	99%	time			temperature			
and a second	Ret (Delauf (Phalls_shoulder_Part)			Melt t	emperature	200°C - 210°C	200°C - 210°	
	ne - Telanalia Hybra 80517 108 1094				PE+ 20% reed		PP+ 20% reed	
				Injectio	on croad	26 mm/c	22 mm/c	
				Dackie	a neoscura	450 hores	250 have	
		113		Packin	g pressure	450 bars	250 bars	
16 m.				Packin	g time	8 sec	5 sec	
				Coolin	g time	12 sec	15 sec	
				Switch	over (V/P)	7 ccm	7 ccm	
				Clamp	ing	375 kN	375 kN	

Fig. 1 Settings for the plastic flow simulation and actual injection moulding process parameters.

RESULTS AND CONCLUSIONS

The settings that led to the optimum results of the volumetric shrinkage, part temperature during ejection, shear rate, clamping force, sink mark, and maximum displacement are used for the actual injection moulding processes (Gebrehiwot, 2022). Fig.2 presents the simulation process, the obtained results, and the actual injection moulded product using the reed fibre-reinforced PP and PE.

Fig.2 SolidWorks plastic simulation and the actually injection moulding process.

The simulation results are good, but merely applicable to the materials in their pristine forms. Comparing the simulation and actual injection process parameters, the reed fibre-reinforced PE can be successfully injection moulded by decreasing the injection speed, and increasing the packing pressure, packing and cooling times, and clamping force. On the other hand, decreasing the injection speed and packing pressure, while increasing the cooling time and clamping force leads to a good reed fibre-reinforced PP product.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Rinotop Oy, HASCO, Uddeholm, TAMK and TUF.

REFERENCES

[1] Michael F. Ashbey. Materials selection in mechanical design, p. 105-132.

[2] zemeraw T. Mengistu, Marcos Dieste, Roberto Panizzolo, Stefano Biazzo. Sustainable product design factors: A comprehensive analysis.

[3] Paula Linderbäck, et al. Common reed as a novel biosource for composite production ECCM 21.

[4] Gebrehiwot, S. Z., & Espinosa-Leal, L. Characterising the linear viscoelastic behaviour of an injection moulding grade polypropylene polymer. Mechanics of Time-Dependent Materials, 26(4), 791-814.