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1. Introduction

In recent years, Africa has demonstrated considerable progress both 
economically and demographically, inspiring growing scholarly interest 
in domains such as trade and infrastructure (Schwab, 2018). Within this 
context, maritime transport—responsible for more than 90 % of global 
trade—plays a pivotal role in fostering commerce, driving economic 
expansion, and connecting African economies to worldwide markets 
(Fugazza and Hoffmann, 2017; Ducruet, 2020). Nonetheless, the conti
nent’s economic landscape remains complex, marked by significant 
disparities across countries, sectors, and social groups (Robinson, 2002; 
Cramer et al., 2020).

Against this backdrop, governance quality—and the issue of cor
ruption—has drawn increasing scrutiny, given its far-reaching implica
tions for port performance. Several authors have highlighted how 
corruption index levels significantly affect port quality, productivity, 
investment decisions and efficiency scores (Sequeira and Djankov, 2010; 
Suárez-Alemán et al., 2016; Serebrisky et al., 2016). Comparable studies 
in Latin America emphasize that systemic corruption inflates shipping 
costs, undermines competitiveness, and curtails container throughput 

(Seabra et al., 2016). While these findings illustrate the adverse conse
quences of corruption on maritime logistics, few investigations explicitly 
integrate corruption measures into multi-country frameworks encom
passing both shared geography and varied governance regimes.

Building on these insights, the present research contributes to the 
literature by systematically incorporating Transparency International’s 
(1995) Corruption Perceptions Index (CPI)1 into an efficiency analysis. 
Although previous work has explored the role of corruption in Africa’s 
port (Trujillo et al., 2013), limited attention has been paid to its direct 
impact on efficiency rankings within a single, heterogeneous sample of 
ports. Specifically, this study considers two main ports from the Canary 
Islands (Spain)—which, despite their proximity to Africa, benefit from 
European Union (EU) regulatory stability—and 14 main seaports across 
West Africa, where operational and bureaucratic conditions often 
diverge substantially.

Intense competition among these ports for transhipment traffic and 
maritime trade destinations underscores the need for a unified analytical 
framework. According to Rodríguez et al. (2025), while some African 
ports are steadily enhancing their infrastructure and cargo-handling 
capabilities, Canary Island ports often maintain a competitive edge 
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due to more stringent security standards and stricter regulatory over
sight. Building on this contrast, recent studies highlight the importance 
of addressing governance and political factors in port efficiency. In this 
regard, Mlambo (2021) found that higher operational efficiency strongly 
supports national trade relations, reinforcing the connection between 
governance, efficiency, and trade competitiveness. Similarly, Buor 
(2024) identified nationalism and political considerations as major 
drivers of efficiency outcomes, confirming that regulatory and political 
issues are critical to a unified analytical approach.

In practical terms, we examine how incorporating the CPI—using as 
proxy of legacy environment and for instance time-congestion prob
lems—reshapes efficiency rankings among ports that, although 
geographically proximate and linked by similar shipping routes, operate 
under distinct legal, regulatory, and bureaucratic conditions. Such a 
comparative analysis is particularly relevant for West African ports, 
which compete directly with Atlantic and Mediterranean gateways. In 
contrast to studies confined to a single region or reliant on broad 
structural indicators, our approach illuminates the specific mechanisms 
through which corruption influences port performance and produces 
flexible results, thus enabling the construction of a realistic comparative 
framework for this sample.

By employing a Bootstrap Data Envelopment Analysis (DEA) meth
odology, we mitigate bias in efficiency estimates and provide robust, 
data-driven insights into how governance capacity, infrastructure 
development, and maritime logistics intersect. Moreover, by capturing 
political and legislative heterogeneity within a single framework, this 
work refines our understanding of how differing institutional environ
ments shape operational effectiveness. To our knowledge, no previous 
research has explicitly integrated the CPI as a contextual factor in a 
consolidated dataset of multiple ports—European and Afri
can—competing along similar trade routes.

In order to frame the comparative analysis presented in this study, 
we introduce two key governance-related concepts already establish in 
the literature: regulatory asymmetry and institutional edge. The former 
refers to situations in which institutions or stakeholders operating 
within the same geographical area are subject to unequal norms, con
ditions, or rules. These disparities may stem from legal requirements, 
differential access to information or resources, or the application of 
overlapping regulations from various jurisdictions—national, suprana
tional, regional, or local (Laffont and Tirole, 1993). In the port sector, 
regulatory asymmetry arises when ports competing within the same 
maritime corridor operate under divergent legal, fiscal, or administra
tive frameworks, which may alter their competitive conditions. Addi
tionally, varying degrees of autonomy in port authority governance and 
stakeholder coordination can further reinforce these asymmetries 
(Brooks and Cullinane, 2006).

The concept of institutional edge refers to the competitive advantage 
that a port authority—or other actors within the port community—may 
enjoy due to specific institutional features. These include the gover
nance structure, the level of integration within national or supranational 
legal frameworks, and the predictability or stability of the regulatory 
environment (Notteboom et al., 2022). Together, these concepts provide 
the analytical lens through which we interpret how governance factors 
influence technical efficiency, particularly in port systems characterized 
by overlapping jurisdictions and uneven institutional quality.

The structure of this paper is as follows. Section 2 reviews the 
existing literature on port efficiency in line with the study’s objectives. 
Section 3 outlines the methodological rationale behind the Bootstrap 
DEA approach. Section 4 describes the dataset and highlights legislative 
disparities between the EU-regulated Canary Islands and West African 
ports. Section 5 presents and discusses the empirical findings, focusing 
on implications for port administrators and policymakers. Section 6 
synthesizes the main conclusions, while Section 7 addresses the study’s 
proposed avenues for future research.

2. State of the art

2.1. Bootstraps efficiency analysis

In recent decades, efficiency estimation has evolved significantly, 
driven by the development of non-parametric methodologies. Among 
these, the Bootstrap method has emerged as a fundamental tool, 
enabling robust statistical inferences without the need to assume specific 
parametric distributions. This approach has been widely adopted across 
various fields, including economics, management, and the social sci
ences, where the goal is to evaluate the relative efficiency of productive 
units or firms. Through a series of key studies, the advantages of Boot
strap in estimating standard errors, confidence intervals, and other ac
curacy measures have been demonstrated, expanding the analytical 
possibilities in complex contexts.

The evolution of this methodology has been shaped by foundational 
works. Efron and Tibshirani (1986) introduced the Bootstrap as a key 
technique for estimating standard errors and confidence intervals, while 
Manski (1988) brought new perspectives by incorporating analogue 
estimation methods in econometrics. Simar (1992) adapted these con
cepts to the analysis of panel data, proposing a semi-parametric 
approach that improved the statistical significance assessment of effi
ciency estimators. Later, Simar & Wilson (1998) advanced the field by 
introducing non-parametric tests for returns to scale, utilizing Bootstrap 
procedures to reinforce statistical inference.

In 1999, Lothgren and Tambour applied the Bootstrap to calculate 
confidence intervals for Malmquist productivity indices, revealing sig
nificant productivity changes. Simar and Wilson (1999a) refined this 
approach with an iterative Bootstrap procedure, enhancing confidence 
interval estimates in DEA models. In their 2007 study, Simar and Wilson 
integrated several preceding approaches, developing novel bias correc
tions and interpolation techniques to enhance the reliability of 
non-parametric estimators (Simar and Wilson, 2007).

In the port-maritime sector, non-parametric approaches can be found 
in a wide range of studies, demonstrating its versatility and applica
bility. In terms of a more global unit of analysis, studies such as 
Gutiérrez et al. (2014) evaluated the efficiency of major international 
container shipping lines using a Bootstrap DEA approach. Their study 
highlighted the presence of oversized operations and inefficiencies 
within strategic alliances. Following this, Chang et al. (2017) shifted 
focus to the cruise industry, using a network DEA model to reveal 
operational efficiency among major cruise lines, but also identified 
significant inefficiencies in non-operational aspects due to high debt and 
poor financial risk hedging.

Moving to cargo activities, Gil Ropero et al. (2019) analysed the 
efficiency of the main container ports in Spain and Portugal using a DEA 
Bootstrap-based approach. Their findings indicated that inefficiencies 
were present, but they were not necessarily due to a lack of infrastruc
ture, as the Bootstrapped results suggested that future investments in 
port expansion were not required. More recently, Danladi et al. (2024)
extended the methodology to container ports in lower-middle-income 
countries, identifying that poor efficiency was mainly due to pure 
technical inefficiency rather than scale inefficiencies.

Following geographical criteria, Barros and Managi (2008) analysed 
the drivers of efficiency in Japanese seaports using a DEA Bootstrapped 
two-stage approach. Their study highlighted the importance of identi
fying key efficiency drivers, offering valuable insights for policy stra
tegies aimed at improving port productivity. Similarly, Hung et al. 
(2010) investigated the operational efficiency of Asian container ports 
by integrating a comprehensive DEA framework with Bootstrap 
methods. Their research focused on determining scale efficiency targets 
and assessing the variability of efficiency estimates, providing crucial 
guidance for port managers to optimize resource allocation and improve 
operational performance. Nguyen et al. (2016) further extended this 
approach by applying Bootstrapped DEA to assess the efficiency of 43 
major Vietnamese ports, stressing that standard DEA tends to produce 
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biased results—particularly sensitive to sample size—while Boot
strapped DEA yields more consistent and unbiased efficiency scores.

Relevant studies have also expanded these approaches to other re
gions. In Europe, Carvalho et al. (2010) analysed the governance and 
performance of 33 seaports in the Iberian Peninsula, revealing signifi
cant inefficiencies due to mismanagement, political interference, and 
labour challenges, and highlighting the importance of governance 
models in improving port efficiency. In the Americas, Wanke and Barros 
(2015)investigated the role of public-private partnerships in enhancing 
scale efficiency in Brazilian ports. Their two-stage DEA analysis 
demonstrated that partnerships with private terminal operators signifi
cantly improved coordination, technology use, and connectivity, leading 
to greater efficiency. In a subsequent study, Wanke and Barros (2016)
used Bootstrapped DEA to confirm these findings, emphasizing the 
positive impact of connectivity infrastructure and private management 
on port performance, particularly in reducing costs and queuing times.

2.2. African efficiency analysis

Studies estimating the efficiency of African ports have increased 
since the early 21st century, predominantly utilizing non-parametric 
methods. Nonetheless, Zhang et al. (2024) notes in a recent literature 
review that Middle Eastern and African ports collectively accounted for 
only 6.6 % of all port-efficiency research as of 2024. This discrepancy 
underscores the relative scarcity of in-depth analyses focused on African 
contexts, even as scholars acknowledge the region’s growing economic 
and infrastructural significance.

One of the pioneering works in this area is by Al-Eraqi et al. (2008), 
which evaluates the efficiency of 22 cargo seaports across East Africa 
and the Middle East. The study employs DEA with a Window Analysis to 
assess both standard and super efficiency scores, drawing on panel data 
from 2000 to 2005. The findings indicate that the number of efficient 
decision-making units (DMUs) under the super-efficiency model exceeds 
those identified under the standard efficiency model. A follow-up study 
further applied both Standard DEA and Window Analysis to the same 
dataset, offering deeper insights into port efficiency and revealing the 
distinct advantages and disadvantages of each approach over time 
(Al-Eraqi et al., 2010).

Subsequent research has continued to apply DEA Window Analysis to 
evaluate port efficiency across Africa. Gamassa and Chen (2017) used 
this method to compare major ports in East and West Africa, finding that 
West African ports, despite their larger size and higher throughput, were 
generally less efficient than their East African counterparts. Tema in 
Ghana was identified as the most efficient, while Dar es Salaam ranked 
the least efficient over seven years. The study recommended port 
development strategies based on these efficiency rankings. Kalgora et al. 
(2019) assessed the efficiency of five major commercial ports in West 
Africa, reporting a scale efficiency score of 89.53 %. Ports like Abidjan 
and Cotonou were found to require adjustments in operational scale, and 
the study highlighted the impact of external factors such as pandemics 
and security threats on port efficiency. Most recently, Mwendapole et al. 
(2022) provided a recent example of this methodology, evaluating the 
operational efficiency of seaports in Southern and Eastern Africa over 10 
years (2010–2019). They concluded that East African ports, despite 
being smaller, were generally more efficient than their South African 
counterparts.

By contrast, Barros et al. (2010) introduced a Bootstrapped DEA 
approach to analyze the technical efficiency of 25 African seaports. 
Their findings revealed that the original efficiency scores were biased, 
making Bootstrap methods essential for providing more reliable esti
mates. The results indicated that Nigerian seaports exhibited the 
greatest efficiency, followed by those in Mozambique and Angola. Diallo 
et al. (2022) likewise employed DEA Bootstraps at the Autonomous Port 
of Dakar, identifying inefficiencies and offering insights for improved 
decision-making.

Regarding standard DEA applications, Okeudo (2013) analysed the 

impact of reforms on the ports of Onne and Rivers, finding a continuous 
improvement in efficiency since 2006, with faster cargo handling, 
increased ship traffic, and higher berth occupancy. Carine (2015)
extended the approach to 16 container ports in Sub-Saharan Africa, 
concluding that inefficiencies were primarily scale-related rather than 
technical. Van Dyck (2015) similarly assessed six major West African 
ports, reporting average efficiency scores above 76 % for most. Building 
on this context, Wanke et al. (2018) applied a two-stage fuzzy DEA 
model to six major ports in Nigeria from 2007 to 2013. Their study 
addressed the imprecision of port data by integrating fuzzy set theory 
into both efficiency measurement and the regression of contextual var
iables, such as operator type and cargo specialization Focusing on East 
Africa, Ngangaji (2019) found comparable technical efficiency for Dar es 
Salaam and Mombasa, suggesting that “coopetition” strategies could 
further enhance overall port performance. Moreover, Birafane & Abdi 
(2019) focused on Moroccan seaports through the application of two 
DEA models (Standard with Charnes-Cooper-Rhodes (CCR) and 
Banker-Charnes-Cooper (BCC); and scale of efficiency analysis), 
demonstrating that port expansions do not necessarily yield propor
tional gains in operational performance.

Other non-parametric productivity methodologies have also been 
explored. Barros and Peypoch (2012) used the Luenberger productivity 
indicator, concluding that Nigerian ports were the most efficient, fol
lowed by Angola and Mozambique. Nwanosike et al. (2016) employed 
the Malmquist Productivity Index on six Nigerian seaports, revealing 
post-reform gains in technical efficiency but a decline in technological 
progress. Adeola Osundiran et al. (2020) further examined 19 
Sub-Saharan African ports (from 2008 to 2015), identifying technical 
efficiency as the main driver of productivity and recommending a 
continuous port improvement framework.

In contrast, parametric analyses are relatively scarce. Trujillo et al. 
(2013) employed a Stochastic Production Frontier (SPF) to examine 
reforms in 37 African ports, finding moderate yet consistent efficiency 
improvements. The study identified corruption, port size, Gross Do
mestic Product (GDP), and the landlord port model as influential de
terminants. Similarly, Akinyemi (2016) focused on Nigeria’s port 
reforms using a SPF approach, reporting notable gains in cargo 
throughput and berth occupancy. More recently, Ayesu et al. (2023)
used a System-Generalized Method of Moments to assess seaport effi
ciency for 28 African countries, concluding that higher performance in 
these dimensions strongly correlates with economic growth. Subse
quently, Ayesu et al. (2024) took a gravity-based approach to 33 African 
countries, demonstrating that improved seaport efficiency significantly 
boosts trade performance.

Table 1 summarizes the principal studies on African port efficiency. 
Notably, none of these works combines African ports with those oper
ating under distinct political and legislative frameworks, such as 
European-administered ports. Moreover, Table 2 presents the studies 
most closely aligned with the current research in terms of methodology, 
regional scope, and the integration of governance-related variables.

From a methodological standpoint, Barros et al. (2010) and Diallo 
et al. (2022) apply Bootstrap DEA to evaluate technical efficiency in 
African ports. The former, uses inputs such as labour, capital, and 
operating costs, and outputs including total cargo throughput and vessel 
calls. Similarly, Diallo et al. (2022) use physical infrastructure 
inputs—such as the number of berths, quay length, and cranes—and 
outputs like container throughput and general cargo. Although these 
studies demonstrate the value of Bootstrapped DEA, they have no inte
grated external governance variables—such as corruption—into their 
models (see Table 2).

Although some efficiency studies conducted outside the African 
context have used indicators such as the CPI as a proxy for institutional 
quality (e.g., Suárez-Alemán et al., 2016; Serebrisky et al., 2016), no 
existing research has jointly analysed ports from heterogeneous insti
tutional environments in a single framework. Among the studies 
reviewed, only Trujillo et al. (2013) explicitly incorporate CPI in the 
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efficiency analysis of African ports (see Table 2 for more details).
Addressing this gap, the present article proposes an integrated 

analysis of major ports in West Africa and selected Atlantic ports in the 
Canary Islands, which operate under EU environmental and institutional 
frameworks. By incorporating the CPI into a Bootstrap DEA model, this 
study offers new insights into how differences in governance quality 
affect port efficiency, thereby contributing to the broader literature on 
maritime performance across diverse regulatory settings.

3. Methodology

One of the significant characteristics of the standard Data Envelop
ment Analysis (DEA) method is its deterministic nature, which precludes 
the derivation of statistical properties for the efficiency scores. A more 
attractive solution involves the application of Bootstrap methodology, 
which preserves the advantages of DEA while enabling the extraction of 
statistical properties from a data-driven scheme. Accordingly, this 
analysis adopts a fully non-parametric approach, wherein an iterative 
bootstrapped procedure characterizes the production set. The estima
tion of non-parametric efficiencies using Bootstrap methodology not 
only yields more consistent efficiency measurements but also facilitates 
the detection of extreme values. Under the standard DEA method, some 
ports are deemed efficient (i.e., they receive an efficiency score of one); 
however, the Bootstrapped DEA is particularly effective in addressing 
this overestimation problem (Barros et al., 2010). According to Simar 
and Wilson (2000a), the application of Bootstrap methodology results in 
more robust and consistent outcomes.

Consequently, this study employs the DEA methodology to measure 
pure technical efficiency. In a subsequent stage, the DEA-Bootstrap-BCC 
model is utilized to derive more reliable efficiency rankings without 
bias. All calculations were performed using software developed by the 

authors. The methodological details are provided in Sections 3.1 and 
3.2.

To ensure full transparency and replicability, Appendix A provides a 
comprehensive description of the computational procedure. This in
cludes the algorithmic assumptions underlying the simulations, and the 
parameter settings adopted—such as the treatment of random seed 
initialization and the specification of the number of Bootstrap replica
tions. We also explain how our custom-developed software faithfully 
implements the Bootstrap algorithm proposed by Simar and Wilson 
(2000a), ensuring full methodological consistency with the established 
literature.

3.1. Data Envelopment Analysis (DEA) methodology

The DEA methodology is a non-parametric technique and does not 
assume any functional form for the relationship between inputs and 
outputs, or any distribution of inefficiency. Furthermore, it is capable of 
handling situations with multiple inputs and outputs, expressed in 
different units. It is precisely these advantages that have favoured the 
extensive use of DEA. Applying DEA methodology, the efficient frontier 
can be defined by either an input orientation (minimal achievable input 
level for a given output) or an output orientation (maximal achievable 
output given the input level).

In this study, an output-oriented DEA model is employed to estimate 
Pure Technical Efficiency (PTE) under Variable Return Scale 
(BCC–VRS), commonly referred to as the BCC-VRS model. Suppose that 
there are n Decision Making Units (DMUs)- in this context, the port 
under analysis-each using m inputs Xij (i = 1 …, m) to produce s outputs 
Yrj (r = 1 …, s). Let Xij > 0 denote the amount of input i used by DMU j 
and Yrj >0 the amount of output r produced by DMUj.

Following Charnes et al. (1978) and Banker et al. (1984), the 

Table 1 
Summary of the literature review on efficiency studies in africa.

Year Authors Unit of analysis Methodology

2008–2010 Al-Eraqi et al. 22 cargo seaports across East Africa and the Middle East Standard DEA and DEA Window Analysis
2010 Barros et al. 25 African seaports 2004–2006 DEA bootstraps
2013 Okeudo Onne and its river ports from 2001 to 2010 Standard DEA
2013 Trujillo et al. 1998 and 2007 across 37 African ports. SPF
2015 Carine 16 container port of Sub-Saharan Africa over the year 2012 Three DEA models: CCR, BCC, and Super-Efficiency
2015 Van Dyck Six major West African ports for the period 2006–2012 Standard DEA
2016 Akinyemi Nigerian seaports from 2000 to 2011 SPF
2016 Nwanosike et al. Six major Nigerian seaports from 2000 to 2011 Malmquist Productivity Index
2017 Gamassa & Chen Eastern and Western African ports from 2008 to 2014 DEA Window
2018 Wanke et al. Six major Nigerian ports from 2007 to 2013 Two-Stage Fuzzy-DEA models
2019 Kalgora et al. West-Africa Ports over the years 2005–2016 DEA Window
2019 Ngangaji Dar es Salaam and Mombasa Port from 2008 to 2018 Standard DEA
2019 Birafane & Abdi Eight seaports in the Kingdom of Morocco from 2014 to 2017 Two DEA models (Standard with CCR and BCC, and scale of efficiency analysis)
2020 Adeola Osundiran 19 Sub-Saharan African ports from 2008 to 2015 Malmquist Production Index
2022 Diallo et al. Autonomous port of Dakar for the year 2021 DEA bootstraps
2022 Mwendapole et al. Six South and East African seaports from 2010 to 2019. DEA Window
2023 Ayesu et al. 28 African countries, using data from 2010 to 2018 Generalized Method of Moments

Sources: Own Elaboration.

Table 2 
Comparative summary of key efficiency literature.

Year Authors Unit of analysis Methodology Variables CPI

2010 Barros et al. 25 African seaports (2004–2006) DEA bootstraps Inputs: Labor, capital, operating costs. Outputs: 
Cargo throughput, vessel calls

Not included

2022 Diallo et al. Autonomous port of Dakar (2021) DEA bootstraps Inputs: Number of berths, quay length, cranes. 
Outputs: Container throughput, general cargo

Not included

2016 Suárez-Alemán 
et al.

70 developing countries 
(2000–2010)

Stochastic 
Frontier

Inputs: Berth length, area, cranes. Outputs: Annual 
throughput (TEUs), transshipment volumes.

CPI as explanatory variable of 
inefficiency

2016 Serebrisky 
et al.

63 ports of Latin America and the 
Caribbean (1999–2009)

Stochastic 
Frontier

Inputs: Berth length, area, cranes. Outputs: Annual 
throughput (TEUs), transshipment volumes

CPI as explanatory variable of 
inefficiency

2013 Trujillo et al. 37 African ports (1998 and 2007) Stochastic 
Frontier

Inputs: Berths, area, cranes. Outputs: Container 
throughput (TEUs)

CPI used as explanatory variable in a 
second-stage efficiency model

Sources: Own Elaboration.
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output-oriented VRS (BCC) model can be formulated in matrix form as 
follows: 

Max θ + ε
(
∑m

i=1
S−

i +
∑s

r=1
S+

r

)

(1) 

subject to 

∑n

j=1

(
λjxij

)
+ S−

i = xio i=1, 2,…,m; 

∑n

j=1

(
λjyrj

)
− S+

r = θyro r=1, 2,…, s; 

λj ≥ 0 j = 1, 2…,n.

∑n

j=1
λi =1 

where: 

• Yro and Xio the rth output and ith input for a DMUo under evaluation
• λj the decision variables that represent the weights DMU j would 

place on DMUo in constructing its efficient reference set
• θ the proportional distance in inputs to the envelope and therefore 

the measurement of the index of technical efficiency
• ε the smallest real positive number
• Si and Sr the potential slacks or excess factor for each input

In brief, the output-oriented BCC model thus provides a measure of 
how much each DMU (port) can proportionally increase its outputs, 
given its current input levels, before reaching the efficient frontier.

3.2. Bootstrapped DEA methodology

Simar and Wilson (1999a) proposed an algorithm to obtain Bootstrap 
estimates of confidence intervals, bias, and other statistical properties 
for the output distance function θ(x0 ,y0) evaluated for a particular, 
arbitrary point (x0, y0) ∈ Rp+q

+ , provided that the corresponding estimate 
θ̂(x0 ,y0) exists.

The concept discussed above is illustrated in Figure A.1, which de
picts the production possibility frontier under variable returns to scale, 
along with the standard DEA and Bootstrap DEA frontiers. Under the 
assumption that the smooth Bootstrap holds, it is expected that: 

[
̂θ*

(x0 ,y0) − θ̂(x0 ,y0) ] ∼ [θ̂(x0 ,y0) − θ(x0 ,y0) ].

4. Characteristic of the sample

The dataset used to estimate efficiency scores comprises 16 seaports: 
two Spanish ports—Las Palmas and Santa Cruz de Tenerife, both in the 
Canary Islands Archipelago—and 14 seaports located across the West 
African mainland (see Table 3). As previously noted, including the two 
Spanish ports introduces a distinctive dimension to the analysis. 
Although these ports are geographically situated off the African coast, 
they operate under EU regulations, thereby creating a regulatory 
contrast within the sample. This contrast sheds light on the competitive 
advantages and governance disparities across the ports, ultimately 
allowing for a more realistic comparison of efficiency scores. Moreover, 
despite belonging to different countries, these ports share overlapping 
spheres of commercial influence, further underscoring the relevance of 
their joint assessment.

The ports (see Fig. 1) were selected based on their geographical 
proximity, operational capacities (movements of Twenty-Foot Equiva
lent Units (TEUs) by port), traditional main port of the area and 

competitive relevance within the Mid-Atlantic cargo traffic network 
(Rodríguez et al., 2025). This sample represents a diverse cross-section 
of West African ports, which include hubs such as Dakar, Tema, and 
Tanger Med. These ports exhibit varying governance structures, infra
structure capabilities, and investment levels. Ports like Tanger Med and 
Tema stand out for their advances in digitalization and high connec
tivity, as demonstrated by their strong rankings in the Port Liner Ship
ping Connectivity Index (PLSCI) by the United Nations Conference on 
Trade and Development (UNCTAD). Conversely, ports like Abidjan and 
Dakar serve as critical gateways for landlocked countries, connecting 
them to global trade networks despite operational inefficiencies.

The Spanish ports are administered under the centralized framework 
of Puertos del Estado2 ensuring uniform operational standards and 
benefiting from a regulatory regime, which emphasizes security, trans
parency, and efficiency (European Commission, 2020). This governance 
model stands in marked contrast to that of many African ports, where 
operations are often overseen by private concessions or decentralized 
authorities. Such arrangements can give rise to challenges, including 
corruption and bureaucratic inefficiencies in port performance.

Although significant dichotomies exist between EU-compliant ports 
and those managed under diverse national or private regimes, numerous 
initiatives have been undertaken to support the African continent in 
various areas. For example, China’s Belt and Road Initiative has driven 
substantial investments in ports such as Tema and Lomé, leading to 
notable infrastructural enhancements. Moreover, regional trade policies 
championed by the African Union3 and Economic Community of West 
African States (ECOWAS)4 aim to reduce reliance on external hubs, like 
the Canary Islands, by strengthening intra-African trade. Nevertheless, 
prevailing indicators—including the corruption index and other socio- 
economic measures—suggest that much progress remains to be made.

Covering the period from 2011 to 2020, this analysis captures a 
decade of evolving dynamics within this competitive maritime land
scape. Data were sourced from the Transparency International, World 
Bank, IHS Markit SeaWeb, UNCTAD, and Shipping Guides publications, 
providing a robust foundation for a nuanced comparison of port 
efficiency.5

4.1. Variables of the empirical model

In this study, the analysis is confined exclusively to the container 
handling service—specifically, the loading and unloading operations 
carried out at port terminals. This focus is crucial for accurately selecting 
the appropriate output and input data, as ports function as multi-service 
entities and a clear delineation of the evaluated service ensures meth
odological rigor. A robust framework for defining variables in port ef
ficiency studies has been extensively developed in the literature, with 
seminal contributions by Cullinane et al. (2004, 2006). Building on these 
foundations, the variables selected for the present analysis adhere to 
widely accepted inputs and outputs in the field.

4.1.1. Output variable
The output variable (Y) is defined as container throughput, measured 

in TEUs. This indicator is universally recognized as the most critical 
metric in port efficiency studies, as it encapsulates the volume of cargo 

2 Official website https://www.puertos.es/.
3 See the official website for more details https://au.int/.
4 See the official website for more details https://www.ecowas.int/.
5 It is important to note that significant challenges remain in obtaining 

reliable data from African ports for accurate efficiency analysis. Consequently, 
constructing a comprehensive data panel has required direct engagement with 
port agents, the procurement of specialized data collections—including the 
purchase of data—and contributions toward developing new databases. In this 
study, these measures have been implemented to effectively address the 
inherent difficulties in data acquisition.
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processed by a terminal and serves as a key proxy for productivity and 
operational effectiveness.

Fig. 2 illustrates the evolution of container throughput (in thousands 
of TEUs) across the sample (from 2011 to 2020). The data reveal notable 
differences in both absolute volumes and growth trajectories: while 
certain ports exhibit a pronounced upward trend—surpassing five 
million TEUs by 2020—others have more modest figures, reflecting 
diverse operational scales and investment levels. Such variation un
derscores the importance of contextual factors, including infrastructure 
capacity, geographic location, and trade routes, in shaping port per
formance and container handling efficiency.

4.1.2. Infrastructure variable (fixed variables)
The primary input variable (X1) is the total length of berths desig

nated for container handling, expressed in meters. This measure reflects 
a port’s capacity to accommodate large vessels, particularly those with 
drafts exceeding 14 m, and is regarded as a crucial determinant of port 
infrastructure and operational efficiency.

4.1.3. Capital variable (quasi-fixed variables)
The secondary input variable (X2) is the total number of quay gantry 

cranes at the port, recorded as a unit count. These cranes are integral to 
container operations, directly influencing the speed and efficiency of 
loading and unloading processes. Consequently, the number of quay 
gantry cranes serves as an indicator of the capital investment in port 
equipment and the terminal’s capacity to handle containerized cargo.

4.1.4. Control variable
In the estimate, port connectivity (C) is included as a control vari

able. In this specific case, including a connectivity variable is indis
pensable. Although African ports have not yet reached the development 
levels of their European counterparts—due to security restrictions and 
other constraints—many exhibits robust connectivity in terms of trade 
routes and commerce. This reality underscores the need to incorporate a 
measure that reflects the degree to which ports are integrated into global 
maritime networks.

The rationale for incorporating connectivity into productivity and 
efficiency analyses lies in the pivotal role of ports as intermodal hubs, 
bridging maritime and land-based logistics while addressing increas
ingly complex supply chain demands (Ducruet, 2020). Despite its 
recognized importance, relatively few studies have integrated connec
tivity measures into port efficiency models.

Among the earliest contributions, Suárez-Alemán et al. (2016)
employed the Liner Shipping Connectivity Index (LSCI), developed by 

Fig. 1. Maps of selected Ports for the analysis.
Source: Own Elaboration.

Table 3 
Ports, port authorities and countries.

Port Port Authority Country

Cape Town Transnet National Port Authority South Africa
Casablanca Agence Nationale des Ports Morocco
Cotonou Port Autonome de Cotonou Benin
dÀbidjan Port Autonome of Abidjan Cote d’ Ivoire
Dakar Port Autonome de Dakar Senegal
Doula Port Autonome de Douala Cameroon
Durban Transnet National Port Authority South Africa
East London Transnet National Port Authority South Africa
Luanda Empresa Portuaria de Luanda UEE Angola
Las Palmas Port Port Authority of Las Palmas Spain
Onne Nigerian Ports Authority Nigeria
Port Elizabeth Transnet National Port Authority South Africa
Santa Cruz de Tenerife 

Port
Port Authority of Santa Cruz de 
Tenerife

Spain

Tanger Med Tanger Med Port Authority Morocco
Tema Ghana Ports and Harbours Authority Ghana
Walvis Bay Namibian Ports Authority Namibia

Source: Own Elaboration.
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UNCTAD, to evaluate how effectively ports integrate into global mari
time networks. Their findings revealed a direct influence of connectivity 
on container throughput, particularly in developing regions. Building on 
this work, Serebrisky et al. (2016) applied the LSCI at a national scale in 
a stochastic frontier analysis, corroborating its positive impact on port 
productivity. In a similar vein, Schøyen et al. (2018) used the LSCI 
within a DEA framework to assess port efficiency in the North Sea/Baltic 
region.

Moreover, Tovar & Wall (2022) introduced the Port Liner Shipping 
Connectivity Index (PLSCI) as an explanatory variable in the inefficiency 
term of a stochastic output distance function. Their results indicated a 
direct correlation between heightened connectivity and increased effi
ciency, with even marginal enhancements in the PLSCI yielding sub
stantial gains in output. Further advances include Yen et al. (2023), who 
investigated the influence of smart port designs on shipping efficiency 
using the and Nadarajan et al. (2023), who incorporated the LSCI as a 
dependent variable alongside GDP to examine seaport network 
efficiency.

Recent studies further enhance this perspective. Nguyen and Kim 
(2024) have provided empirical evidence that the COVID-19 pandemic 
significantly impacted port connectivity, operational efficiency, and 
resilience in major container ports in Southeast Asia. Their application 
of social network analysis reveals that even amidst disruptions, robust 
connectivity is essential for maintaining competitive performance. 
Similarly, Jin et al. (2024) have demonstrated that the LSCI is dynam
ically linked not only to port performance but also to broader economic 
indicators, such as energy trade and inclusive growth, thereby high
lighting the multifaceted implications of connectivity in maritime 
economics.

For this analysis, the PLSCI—expressed as an index ranging from 0 to 
100, following the UNCTAD methodology prior to 2023—is employed to 
capture a port’s connectivity and its bearing on operational efficiency. A 
higher index value indicates stronger integration into global shipping 
networks.

4.1.5. Objective variable
As mentioned, the objective variable of this study (Z) is the Cor

ruption Perceptions Index Score (CPI). Developed by Transparency In
ternational in 1995, the CPI measures public sector corruption at the 
national level by aggregating data from 13 independent sources pro
vided by 12 institutions, including the World Bank. It captures percep
tions of corruption from business executives and country experts, 
assessing its impact on public sector institutions. Countries are scored on 

a scale from 0 to 100, where 0 indicates high perceived corruption and 
100 represents a corruption-free public sector.6

The quantitative criterion used by these entities reflects that higher 
values indicate better institutional quality, while lower values corre
spond to higher perceived corruption and weaker governance. There
fore, for the purposes of this study, the CPI value obtained from the 
official database has been inverted to thus adapt its value in a way that 
makes it possible to apply it as an input to the efficiency model. In its 
transformed form, higher values indicate higher perceived corruption 
and weaker governance, while lower values correspond to better insti
tutional quality. This adjustment allows for a more straightforward 
interpretation of the CPI’s influence on port performance, particularly in 
the context of regulatory asymmetries between ports operating under 
different governance frameworks.

Unlike previous studies that have used different methodologies (such 
as stochastic frontier analysis) or incorporated the CPI as part of an in
efficiency term, our use of a Bootstrap DEA model—which estimates a 
maximization problem—requires this transformation to ensure that the 
direction of the effect aligns logically with the interpretation of effi
ciency. Specifically, in our analysis, higher levels of perceived corrup
tion (higher inverted CPI values) are associated with lower levels of port 
efficiency, as expected.

In the context of this study, the CPI is used as a proxy for the national 
institutional and bureaucratic environment, reflecting broader admin
istrative and security conditions that influence port operations. This 
approach recognizes that ports operate within national governance 
frameworks that shape operational environments, including regulatory 
efficiency, political stability, rule of law, and public sector integrity. 
These elements indirectly impact port performance by influencing dwell 
times, customs processing, security risks, and logistics reliability.

Unlike port-specific metrics, the CPI captures country-level gover
nance dynamics, providing a comprehensive view of the environment in 
which ports function. It reflects the quality of public administration and 
security standards that affect port competitiveness and integration into 
global maritime networks. This influence is significant not only for 
public ports but also for privately operated ports, as they are equally 
embedded within the broader national governance context. Regardless 

Fig. 2. TEUs (thousands) evolution by port.
Source: Own Elaboration.

6 The CPI’s calculation methodology involves selecting credible sources that 
provide valid, comparable, and reliable data based on expert opinions. To 
enhance reliability and minimize biases, the CPI averages at least three different 
sources per country.
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of ownership structure, the efficiency, security, and overall performance 
of ports are shaped by the regulatory and institutional climate of the host 
country. Therefore, the CPI is not merely a corruption measure but an 
indicator of the overall institutional climate.

Recent literature reinforces this broader interpretation of the CPI. 
Budsaratragoon and Jitmaneeroj (2020) argue that the CPI captures 
complex governance dimensions, including political stability, regulatory 
quality, and institutional trust (regulatory asymmetries). Their study 
highlights how these factors interconnect to influence the business 
climate and governance efficiency, validating the use of the CPI in 
assessing national administrative conditions affecting port operations.

When analysing the global landscape, the CPI reveals significant 
regional disparities. Sub-Saharan Africa continues to have the lowest 
average CPI score, with a regional average of 33, highlighting the 
persistent challenges of governance and rule of law in the region. De
mocracy is under pressure in many African nations, where corruption 
and weak institutional frameworks exacerbate the lack of accountability 
and hinder effective governance.

In contrast, Western Europe and the EU continue to maintain the 
highest regional averages, with the CPI score dropping to 65 in recent 
years. This decline signals a weakening of political integrity, erosion of 
checks and balances, and the growing threat of corruption in even 
traditionally strong institutions. While some countries in the region 
show improvements, the overall trend reflects concerns over trans
parency and accountability, undermining their long-held status as the 
global leaders in governance and anti-corruption efforts.

The rest of the world, including regions like Eastern Europe and 
Central Asia, faces stagnation in corruption reduction efforts. In these 
regions, systemic corruption, the rise of authoritarian governance, and 
the dysfunctional rule of law have led to limited progress in governance 
reforms. Similarly, the Middle East and North Africa show little 
improvement, with countries continuing to struggle with political cor
ruption, conflict, and a lack of transparency in governance processes. 
Asia Pacific also faces long-term stagnation, although some historically 
top-ranking countries, such as Singapore, have seen a reversal in their 
progress.

In the Americas, the weak rule of law and lack of judicial indepen
dence continue to enable widespread impunity, affecting governance 
and contributing to corruption in public institutions. While some 
countries show small improvements, overall, the region struggles to 
make meaningful progress.

Despite the global challenges, some countries, including a few in 
Africa, have significantly improved their CPI scores over the last decade, 
showing that progress is possible even in environments with entrenched 
corruption. However, the overall trend indicates that most regions face 
substantial barriers to curb corruption, with impunity, weak judicial 
systems, and poor governance continuing to plague efforts to fight 
corruption.

Table 4 summarizes all the basic information of the panel database.

5. Results

An output-oriented DEA Bootstrap methodology, as described in 
Sections 3.1, and 3.2 of, has been applied to the sample of 16 ports, 
detailed in Section 4. The efficiency index measures the distance of each 
port to the nearest most efficient DMU (port) located on the frontier. 
This approach allows for a robust and consistent estimation of efficiency 
scores by addressing the potential overestimation problem inherent in 
the standard DEA method.

As investments in port infrastructure are typically lumpy and port 
expansion projects usually take several years to complete, the amounts 
of these inputs may remain constant over extended periods, followed by 
a sudden addition of port capacity. Compared to the low variation in 
inputs, container throughput tends to change rapidly over the years 
(Wan et al., 2014). Therefore, the output-oriented model is the most 
suitable for obtaining operating efficiency in this context.

First, the Variable Returns to Scale (VRS – BCC) model is used to 
estimate pure technical efficiency (PTE). At a second stage, an output- 
oriented Bootstrapping approach was applied to evaluate the presence 
of scale inefficiency (the simulations were replicated 2000 times, 
ensuring the robustness of the efficiency estimates).

To achieve the analytical objective, two main estimations have been 
developed: 

• The first estimation, called the Base Model (BM), excludes consider
ation of the CPI. This estimation focuses solely on the traditional 
operational characteristics of each port related to cargo handling 
services. It evaluates operational efficiency without considering 
regulatory or institutional factors.

• The second estimation, named the Adjusted Model (AM), incorporates 
the CPI as an additional variable. This model considers the impact of 
the regulatory environment, including aspects related to corruption, 
on the efficiency scores of ports. By including the CPI alongside 
traditional operational variables, this approach provides a more 
comprehensive view of the factors influencing port efficiency.

5.1. Estimation analysis

Table 5 presents the values obtained for both DEA and Bootstrap DEA 
efficiencies for BM and AM models. The results indicate that to achieve 
efficiency with the same input values (i.e., maintaining the existing fa
cilities and infrastructure), ports would require increased production. 
Over the entire period studied and for both approaches (DEA and DEA 
Bootstrap), substantial reductions in efficiency were observed.

The estimation revels that during the period 2011–2020, only five 
seaports—Casablanca, Durban, East London, Tanger Med, and Onne
—achieved a PTE score of 1, indicating optimal operational performance 
under the standard BCC DEA model. However, the bootstrapped 

Table 4 
Statistical summary of data used (2011–2020).

Variable Name Description Mean Std. Dev. Min Max

Output Variable

TEUs Y Number 834,630.00 895,183.80 41,957.00 5,122,630.00

Input Variables

Length of berths X1 Metres 1982.69 1481.12 256.00 5336.00
Cranes X2 Number 11.56 11.60 0.00 37.00

Control Variable

PLSCI C Index 20.79 12.00 2.30 64.98

Objective Variable

CPI Z Index 0.027 0.01 0.02 0.07

Source: Own Elaboration.
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efficiency scores reveal that none of the ports maintain full efficiency, 
demonstrating the Bootstrapped DEA’s ability to provide a more con
servative and reliable estimation by addressing the overestimation 
present in the standard approach. These scores are consistently lower 
than the standard DEA results, especially in ports previously deemed 
fully efficient, reflecting adjustments for statistical noise and bias. 
Despite this, the bias in inefficient ports remains minor and substantially 
below 1 percent, suggesting consistent inefficiencies unaffected by 
random variations, thereby reinforcing the robustness of the findings.

Over the period 2011–2020 (See Table B.1 and B.2 in Appendix B), 
the BCC DEA results indicate a relatively stable trend in efficiency scores 
for the most efficient ports, which consistently appear on the efficiency 
frontier. These ports demonstrate operational stability and optimal 
resource utilization. In contrast, the other ports exhibit fluctuating ef
ficiency scores, reflecting operational inconsistencies and variations in 
performance over time. The Bootstrapped results, however, reveal a 
more dynamic pattern, with no port maintaining full efficiency 
throughout the decade. Ports like Durban and Tanger Med consistently 
achieved relatively high scores, although below 1, highlighting near- 
optimal performance when adjusted for statistical noise. Conversely, 
Port Elizabeth and Walvis Bay persistently displayed low efficiency 
scores, reflecting structural inefficiencies.

These differences can certainly be attributed to the fact that the 
estimation of efficiency scores by DEA analysis depends on the dis
cretization in the frontier estimation. Similarly, the results are sensitive 
to data sampling. Consequently, the port efficiency values averaged 
from the DEA analysis tend to be overestimated. In contrast, the Boot
strapped DEA methodology proves to be a fundamental tool for 
obtaining more realistic efficiency scores by addressing this peculiarity 
while retaining the advantages of traditional DEA. Moreover, Boot
strapped DEA provides more robust efficiency results, enhancing the 
reliability of the analysis.

The efficiency gap between the estimations remained significant 
throughout the period, with average differences ranging from 15 % to 
20 %. This discrepancy is particularly noticeable in years of economic 
fluctuations and trade disruptions, suggesting that the standard DEA 
model is more sensitive to external shocks, whereas the Bootstrapped 
DEA offers a more consistent evaluation.

As shown in Table 5, the two European ports included in the sample 
are positioned at the bottom of the efficiency rankings in BMs. However, 
in practice, shipping lines more commonly choose these ports over their 
African counterparts due to perceptions of greater safety and more 
predictable regulatory environments. This highlights a paradox: despite 
their medium-low efficiency scores, European ports in Africa may 
maintain an institutional edge linked to their robust regulatory 

frameworks (showed in AMs). This interpretation is supported by 
Rodríguez et al. (2025), who, through stakeholder interviews, identified 
institutional and regulatory frameworks as key perceived drivers of 
competitive positioning. Although our analysis does not directly test 
port choice behaviour, the qualitative evidence lends support to this 
contextual observation.

Fig. 3 provides a visual comparison of average efficiency scores 
across four estimation scenarios. The right-hand radar chart, based on 
the Bootstrap method, shows marked differences in efficiency scores for 
several ports when institutional quality is included in the model. For 
example, Las Palmas exhibits an increase in efficiency of approximately 
84 % between the BM and the AM, while Santa Cruz de Tenerife im
proves by around 46 %. These changes, derived from Bootstrap esti
mates, are statistically meaningful and reflect robust improvements 
rather than random variation, as the method incorporates confidence 
intervals around the estimated scores. Although not explicitly depicted 
in the figure, the Bootstrap approach inherently accounts for sampling 
variability and corrects bias, allowing for a more reliable interpretation. 
Thus, the shifts observed highlight the significant impact of institutional 
factors on port efficiency assessments, reinforcing the importance of 
including governance-related variables when evaluating performance.

It is also important to note that, efficiency rankings are typically 
calculated based on TEUs handled relative to quay length and the 
number of fixed quay cranes. However, many vessels operating in Af
rican ports are equipped with their own cranes for loading and 
unloading containers, effectively increasing the available lifting capac
ity. This factor may contribute to unexpectedly high efficiency scores for 
some ports with limited infrastructure, potentially distorting compari
sons with European ports such as Las Palmas and Santa Cruz de Tenerife.

5.2. BM and AM comparative analysis

To better understand this discrepancy, Fig. 4 shows graphically the 
Hierarchical ordering of the bootstrapped model. Including the CPI 
provides a more accurate and realistic reflection of port efficiency by 
considering the legal and regulatory environment influencing port op
erations. This approach acknowledges that the competitive edge of Eu
ropean ports is not solely due to operational efficiency but is also 
significantly influenced by their institutional and regulatory contexts.

Moreover, the results show that African ports perform similarly to 
European ports in terms of infrastructure and operational capacity, 
which reinforces the idea that the real differentiating factor lies in the 
regulatory and legal environment.

By incorporating the CPI, the analysis accounts for non-operational 
factors that shape port choice and efficiency, enhancing the relevance 

Table 5 
Efficiencies Average BCC DEA and BOOTSTRAP (2011–2020) for BM and AM models.

Port Name BM Port Name AM

Rank BCC DEA Rank BOOTSTRAP Rank BCC DEA Rank BOOTSTRAP

Tanger Med 1 1,00000 1 0,76595 Tanger Med 1 1,00000 1 0,84830
Durban 2 1,00000 2 0,75532 Durban 2 1,00000 2 0,84202
Casablanca 3 1,00000 3 0,74201 Walvis Bay 3 1,00000 3 0,84017
East London 4 1,00000 4 0,74187 Las Palmas 4 1,00000 4 0,83964
Onne 5 1,00000 5 0,74095 St Cruz Tfe. 5 1,00000 5 0,83903
Luanda 6 0,69989 6 0,60360 Onne 6 1,00000 6 0,83893
St Cruz Tfe. 7 0,61932 7 0,57665 East London 7 1,00000 7 0,83814
Tema 8 0,59861 8 0,53174 Casablanca 8 1,00000 8 0,83806
Douala 9 0,58486 9 0,48480 Port Elizabeth 9 0,91630 9 0,77283
Cape Town 10 0,52726 10 0,47443 Tema 10 0,70328 11 0,65270
Cotonou 11 0,51375 11 0,46540 Luanda 11 0,69989 10 0,65711
Las Palmas 12 0,49588 12 0,45655 Cape Town 12 0,62536 12 0,58665
d’Abidjan 13 0,48728 13 0,44609 Douala 13 0,58486 13 0,53614
Dakar 14 0,44677 14 0,42130 d’Abidjan 14 0,53468 14 0,51402
Walvis Bay 15 0,30940 15 0,28421 Cotonou 15 0,51375 15 0,49282
Port Elizabeth 16 0,22201 16 0,18514 Dakar 16 0,45299 16 0,43808

Source: Own Elaboration.
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and interpretability of the results. This not only aligns efficiency scores 
with real-world dynamics but also quantifies the impact of the regula
tory environment on port performance, bridging the gap between 
operational efficiency and market perception.

The most significant change in the ranking occurs with the two Eu
ropean ports in the sample, Las Palmas and Santa Cruz de Tenerife. 
These ports move from medium-low positions to high positions when the 
CPI is considered. In the case of the Bootstrap estimation—which pro
vides a more robust interpretation—Santa Cruz de Tenerife advances 
from 7th to 5th place, while Las Palmas makes a remarkable leap from 
13th to 4th place.

In the case of Las Palmas, this result is particularly revealing, as the 
inclusion of the CPI accounts for more than 50 % of the reason for its rise 
to the top of the ranking. This illustrates how these ports benefit from 

being part of a stronger institutional system, which—when objectively 
measured—proves to be their most decisive comparative advantage.

Turning to the African ports, the results indicate a structural 
advantage for some ports regardless of the CPI inclusion. Specifically, 
Tanger Med and Durban consistently maintain the top positions, 
underscoring their operational efficiency and strategic importance. 
However, it is also evident that most African ports suffer a relative 
decline in the adjusted model, not due to technical or logistical deficits, 
but because of their more fragile institutional and regulatory frame
works. This suggests that African ports do not lag behind in capacity or 
functionality, but in governance indicators that weigh heavily in 
comparative assessments.

It may appear paradoxical that the port of Tanger Med maintained its 
leading position in both the BM and the AM, while the port of 

Fig. 3. Graphical Efficiencies Average BCC DEA and BOOTSTRAP (2011–2020) for BM and AM models.
Source: Own Elaboration.

Fig. 4. Hierarchical ordering according to BOOTSTRAP Efficiency values/Average 2011–2020 for BM and AM model.
Source: Own Elaboration.
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Casablanca experienced a significant drop—from third to eighth pla
ce—despite both being located in Morocco. This divergence can be 
explained by their differing governance structures. Tanger Med is 
considered a national strategic project, directly managed by the Tangier 
Med Special Agency (TMSA), a fully state-owned public company 
endowed with governmental powers. In contrast, Casablanca is regu
lated by the Agence Nationale des Ports (ANP), which oversees port 
safety and environmental issues and manages an additional 33 Moroc
can ports. This distinction in governance highlights how institutional 
configuration can decisively shape performance outcomes, even within 
the same national context.

A noteworthy positive impact is observed for Walvis Bay, which 
moves from the lower end of the BM to an impressive 3rd place in the 
AM. This highlights the port’s significant improvement when regulatory 
and institutional factors are considered, suggesting a competitive 
advantage stemming from their institutional edge, as reflected in more 
stable governance frameworks. This case exemplifies how improve
ments in institutional quality can dramatically shift a port’s perceived 
efficiency and reinforce its attractiveness in international logistics 
networks.

This analysis is particularly relevant given the emerging trade dy
namics affecting European ports, including those located in Africa, as 
they face increasing pressure to reduce carbon emissions in the maritime 
sector. The Fit for 55-FuelEU Maritime initiative, implemented by the EU, 
aims to reduce emissions by 55 % by 2030 and 90 % by 2050 (EU, 2021). 
In response, new trade routes are being developed to minimize the 
carbon footprint, potentially altering logistics patterns and influencing 
port choice. While necessary for climate goals, these regulatory shifts 
introduce asymmetric burdens that may disproportionately affect 
outermost regions.

These changes are likely to impact the comparative advantages of 
European ports in Africa, as they must comply with restrictions that their 
direct competitors are not required to follow, leading to a potential 
decline in port activity. This impact is particularly significant for Eu
ropean ports located in island regions, where port activity is a crucial 
industry and almost every of goods arrive by sea (Trujillo et al., 2025). 
This reality poses a threat not only to the industry but also to the specific 
social and economic fabric of the Canary Islands.

In this context, if future environmental or bureaucratic requirements 
were to compromise the current levels of legal stability or increase 
administrative complexity, European ports located in Africa could lose 
their institutional edge. This would potentially lead to a diversion of 
maritime traffic toward more agile and less regulated West African 
ports, thereby reshaping regional competitive dynamics. While African 
ports are not currently subject to the same regulatory pressur
es—particularly regarding carbon emissions—any tightening of the 
regulatory landscape for European-administered ports could reduce 
their operational efficiency and strategic attractiveness.

This raises a broader policy dilemma: while the EU advocates for free 
competition and environmental ambition, it must also ensure that this 
does not come at the expense of regions that, due to their insularity and 
economic dependence on maritime trade, require a differentiated 
approach. The Canary Islands could serve as a paradigmatic case for 
future discussions about regulatory adaptation and territorial equity.

6. Conclusion and discussion

This study presents an updated efficiency analysis of West African 
ports using the Bootstrap DEA approach, recognized as the most robust 
methodology for addressing overestimation issues in standard DEA 
models. The research contributes to the literature by updating the effi
ciency calculations for African ports, a topic that remains underex
plored, and establishes a comparative framework with European ports 
on the African West coast. This framework provides valuable insights 
into the competitive dynamics between African and European ports, 
especially given their geographical proximity and overlapping 

hinterlands.
The findings reveal that, when using the Bootstrap approach to 

obtain a more realistic and robust estimation, none of the ports reach the 
efficiency frontier, suggesting that there is no immediate need for 
further investments to expand port infrastructure unless container traffic 
demand significantly increases. This result challenges the conventional 
notion that African ports require continuous capacity expansion and 
instead suggests a more strategic approach to resource allocation.

The comparison between the ports in the sample (including those 
from Africa and the EU) reveals a critical insight: there are no significant 
differences in terms of infrastructure and TEU movements between the 
two groups. This finding suggests that operational efficiency in African 
ports is not primarily constrained by infrastructure limitations but 
rather by non-operational factors. Notably, when the Base and Adjunct 
models were considered (both with and without the inclusion of the 
CPI), the regulatory and institutional environment emerged as a decisive 
factor influencing efficiency levels. The results demonstrate that the 
competitive advantage of European ports is significantly strengthened 
by their robust regulatory frameworks, which enhance security, trans
parency, and operational consistency. This observation is consistent 
with previous studies that emphasize regulatory stability as a key 
competitive advantage for European ports.

However, the study also reveals that African ports have the potential 
to achieve better efficiency levels, comparable to their European coun
terparts, if non-operational barriers such as policy and bureaucracy- 
related constraints are addressed. This underscores the importance of 
institutional reforms to enhance competitiveness, particularly as African 
ports face increasing competition from European ports geographically 
located in Africa.

The regulatory landscape plays a crucial role in shaping competitive 
dynamics. As emerging environmental policies, like the Emissions 
Trading System (ETS) and the Fit for 55-FuelEU Maritime initiative are 
implemented exclusively in the EU, ports in Africa will not face the same 
compliance costs or operational restrictions. This regulatory asymmetry 
could shift the competitive balance, providing Africa ports with a cost 
advantage. Conversely, European ports competing directly with African 
counterparts could face significant competitive pressures, particularly in 
regions where they share overlapping trade routes and hinterlands.

This study offers valuable information for policymakers. As Euro
pean ports are increasingly subject to stringent environmental regula
tions, it is essential to consider the competitive impact on EU ports 
geographically located in Africa (also because the Canary Islands are 
considered outermost regions of the EU). Policymakers should weigh the 
long-term consequences of regulatory asymmetries on trade flows, 
competitiveness, and the strategic positioning of European ports. In this 
regard, the study highlights the need for a coordinated regulatory 
strategy that considers the unique competitive dynamics faced by Eu
ropean ports operating in African contexts.

7. Future research

A key constraint we encountered—common to many empirical 
studies on African ports—is the difficulty of accessing reliable and 
comprehensive data across countries in the region. In particular, first- 
hand feedback from stakeholders in the African port sector has 
confirmed that some of the official sources used for data collection may 
be affected by manipulation or misreporting, raising concerns about the 
accuracy of the available information.

This constraint restricts the number of ports and variables that can be 
included in cross-country comparative studies. Nevertheless, we remain 
optimistic that continued efforts devoted to the African maritime-port 
sector, combined with improved collaboration with regional author
ities, will lead to future datasets with greater coverage and quality, 
thereby enabling more robust and detailed evaluations.

In addition, we identify a natural continuation of this research in the 
form of a longitudinal reassessment once the environmental regulations 
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discussed—particularly the FuelEU Maritime Regulation—have been 
fully implemented and enforced. While this study offers a forward- 
looking perspective based on projected regulatory impacts, it would 
be especially valuable to replicate this analysis in the coming years, 
drawing on data from periods in which the new framework is already in 
effect.

Such a follow-up study would allow for the empirical identification 
of the actual impact of environmental regulation on port efficiency, 
particularly in the case of ports located in unique institutional and 
geographic contexts, such as those in the Canary Islands. This would 
further enrich the understanding of how sustainability goals interact 
with port competitiveness in an increasingly regulated global maritime 
environment.

Furthermore, future work will explore the role of broader institu
tional and governance indicators—such as the World Bank’s Logistics 
Performance Index—in shaping port performance and integration across 
regions with high regulatory asymmetries. In line with recent qualitative 
findings (Rodríguez et al., 2025), we also intend to develop comple
mentary empirical models that assess the relationship between institu
tional quality and port choice behaviour or throughput growth. This 
would allow us to rigorously test the contextual interpretations dis
cussed in this study and to further align our methodological approach 
with policy-relevant questions regarding regional competitiveness.
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Appendix A 

In DEA, Bootstrap techniques are frequently employed to improve the reliability of efficiency scores by addressing DEA’s deterministic as
sumptions by Gil-Ropero et al. (2019). Standard DEA models, which create an efficiency frontier based on observed data, assume that any deviation 
from this frontier is due solely to inefficiency. However, this approach can be sensitive to sample variations and often fails to consider random noise 
within the data. Bootstrap methods offer a statistical approach to evaluate these efficiency scores, helping to differentiate genuine inefficiency from 
random variation.

Resampling to Adjust for Bias: Bootstrapping in DEA involves creating numerous resamples of the initial dataset, generating a distribution of 
efficiency scores that allows researchers to identify and correct any bias in the original scores, resulting in more accurate estimates. Through 
resampling, Bootstrapped DEA can also produce confidence intervals, providing a range within which the actual efficiency score is likely to be found. 
This statistical adjustment enhances the robustness of DEA results, yielding insights that are less susceptible to sampling error.

Types of Bootstrap DEA Models: 

• Bias-Corrected Efficiency Scores Using Bootstrap: This method involves recalculating efficiency scores through multiple resampling iterations, 
providing a bias-adjusted score for each DMU.

• Hypothesis Testing with Bootstrap: Researchers apply Bootstrap techniques to test hypotheses concerning returns to scale, productivity variations, 
and performance differences among DMUs. This added statistical rigor enhances the reliability of efficiency comparisons across different groups 
and supports analyses of efficiency trends over time.

In Figure A.1 notation DEA* represents the Bootstrap-adjusted efficiency frontier. Bias is defined as the difference between the original DEA 
frontier and the bias-corrected frontier at the same output level. 

Bootstrap Output − oriented (BCC) :
AD − AC

AYO
=

AC − AB
AYO 

The idea explained above, illustrated in Figure A.1, where shows a problem of variable scale returns with Production Possibility, Standard DEA and 
Bootstrap DEA frontiers. The hope is that when assuming that the smoothed Bootstrap it holds that: 
[
θ̂

*(
x0, y0

)
− θ̂
(
x0, y0

)]
∼
[
θ̂
(
x0, y0

)
− θ
(
x0, y0

)]
(A.1) 
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Fig. A.1. Graphic representation of Bootstrap Output-Oriented.

Source: Gil Ropero et al. (2019).
Bootstrap methods offer distinct advantages for efficiency assessments of container terminals in LAC, where datasets are often small and where 

inputs and outputs are highly variable due to external market shifts and regional trade patterns. In these environments, bootstrapping refines the 
accuracy of DEA results by compensating for statistical noise, which is especially prevalent in settings marked by inconsistent data. By providing bias- 
corrected efficiency scores, bootstrapping allows a more precise view of each terminal’s relative efficiency, even when faced with irregularities. This 
approach is particularly relevant for LAC container terminals, where fluctuating container volumes, seasonal demand, and varied terminal capacities 
often impact operational stability.

The application of Bootstrap techniques in DEA also enhances the robustness of efficiency evaluations by generating confidence intervals, allowing 
researchers and port authorities to analyze terminal performance with increased statistical rigor. These intervals facilitate more dependable com
parisons across terminals and clarify whether observed efficiency levels are statistically significant or may be attributed to random variations. 
Additionally, Bootstrap methods enable hypothesis testing, which allows for in-depth examination of scale efficiencies and productivity trends over 
time. This comprehensive framework is critical for LAC ports striving to fine-tune operational strategies, attract investment, and bolster their 
competitiveness in an increasingly dynamic global trade landscape.

A.1. Bootstrap in DEA/FDH Models

The Bootstrap (Efron, 1979, 1992) provides an alternative approach for inference and hypothesis testing in DEA/FDH models. In fact, for DEA 
models with multiple inputs and outputs, the Bootstrap is the only existing approximation.

The Bootstrap is based on the analogy principle (Manski, 1988). In the real world, observed data Sn are generated by: 

F=F (T,ƒ(x, y)) (A.2) 

However, in the real world, F, T, and θ(x,y) are unobservable and must be estimated from the sample data Sn.
Let F̂(Sn) be a consistent estimator of F: 

F̂(Sn)= F (T̂, ƒ̂(x, y)) (A.3) 

It is straightforward to simulate real-world occurrences by drawing a new sample S*
n from F̂ (Sn) and applying the original estimator to these new 

data. If the original estimator for a point (x0,y0) (not necessarily contained in Sn) is, for instance, θ̂BCC(x0, y0) can be obtained θ̂
*
BCC(x0, y0) by solving: 

[
θ̂

*
BCC
(
x0, y0

)]− 1
=max

{
θ
⃒
⃒θy0 <Y*λ, x0 >X*λ,1λ=1, λ∈Rn

+

}
(A.4) 

Where Y* = [y*
1,...,y*

n], X* = [x*
1, ..., x*

n] y (x*
1,y*

1), i = 1, …, n, represent the pseuds-sample observations. By repeating this process B times (with B being a 

conveniently large number, around 2000), a set of {θ̂
*
BCC,b(x0, y0)}

B

b=1 values is obtained. When the Bootstrap is consistent, it holds that: 
[
θ̂

*(
x0, y0

)
− θ̂
(
x0, y0

)]
∼
[
θ̂
(
x0, y0

)
− θ
(
x0, y0

)]
(A.5) 

Given the original estimate θ̂BCC(x0, y0) and the set of Bootstrap values {θ̂
*
BCC,b(x0, y0)}

B

b=1, the left side of expression (A.5) is known with arbitrary 
precision (determined by the choice of B). The approximation improves as the sample size n increases.

Equation (A.1) encapsulates the essence of the Bootstrap. In principle, since F (T̂, ̂ƒ (x, y)) is known, the distribution of the left side of the equation 
could be determined analytically. However, in most problems, such a derivation proves intractable. Consequently, Monte Carlo simulations are opted 

for to approximate the distribution. The B Bootstrap values generated, {θ̂
*
BCC,b(x0, y0)}

B

b=1, provide this empirical approximation of the distribution. 
Once these values are calculated, the derivation of confidence intervals for θ(x0, y0) is immediate. It should be noted that if the true distribution of 
[θ̂(x0, y0) − θ(x0, y0)] were known, it would be trivial to find values aα and bα such that: 
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Pr
[
− bα < θ̂

(
x0, y0

)
− θ
(
x0, y0

)
< aα

]
= 1 − α (A.6) 

Of course, aα and bα are unknown. Nevertheless, from the Bootstrap distribution of the pseudo-estimates ̂θ
*
b(x0,y0), for b = 1 …,B, values âα and b̂α 

can be found such that: 

Pr
[
− bα < θ̂

*(
x0, y0

)
− θ̂
(
x0, y0

)
< − aα|F̂(Sn)

]
= 1 − α (A.7) 

The calculation of âα and b̂α requires ordering the values of [θ̂b
*
(x0,y0) − θ̂(x0,y0)], for b = 1, …,B, in ascending order and removing the (α/2) ×

100 percent of elements from both ends of the list, taking − âα and − b̂α as the values at both ends of the truncated list, such that âα < b̂α.
Thus, the Bootstrap approximation of (A.6) is: 

Pr
[
− b̂α < θ̂

(
x0, y0

)
− θ
(
x0, y0

)
< − âα

]
≈1 − α (A.8) 

And the estimated confidence interval is: 

θ̂
(
x0, y0

)
+ âα ≤ θ

(
x0, y0

)
≤ θ̂
(
x0, y0

)
+ b̂α (A.9) 

This procedure can be normalized for any (x0, y0) ∈ Rp+q
+ for which a value θ̂(x0, y0) exists. Since researchers are typically interested in indices for 

all observed units, the suggested procedure can be repeated n times, for (x0,y0) = (xi,yi), i = 1, …, n, yielding a set of n confidence intervals of the type 
(A.10).

This method differs slightly from that proposed by Simar and Wilson (1998). Here, the explicit use of a bias estimator is avoided, as it unnecessarily 
adds statistical noise to the estimated confidence intervals. However, bias estimation itself is of interest. By definition: 

BIAS
[
θ̂
(
x0, y0

)]
=E
[
θ̂
(
x0, y0

)]
− θ
(
x0, y0

)
(A.10) 

The Bootstrap estimate of the bias of the original estimator θ̂(x0, y0) is the empirical version of (A.6): 

B̂IASB
[
θ̂
(
x0, y0

)]
=B− 1

∑B

b=1

[
θ̂b

*(
x0, y0

)]
− θ̂
(
x0, y0

)
(A.11) 

Similarly, it seems reasonable to construct a bias-corrected estimator of θ(x0,y0), calculated as: 

θ̂
(
x0, y0

)
= θ̂
(
x0, y0

)
− B̂IASB

[
θ̂
(
x0, y0

)]
=2θ̂

(
x0, y0

)
− B− 1

∑B

b=1

[
θ̂b

*(
x0, y0

)]
(A.12) 

However, it is known that this correction introduces additional noise (see, for example, Efron and Tibshirani, 1993). The mean squared error of 
θ̂(x0, y0) can be greater than that of θ̂(x0,y0). The variance of the sum in (A.11) can be arbitrarily reduced by increasing B. But even when B→∞, the 
corrected estimator θ̂(x0, y0) will have a variance four times greater than that of the original estimator θ̂(x0, y0) (again illustrating the fact that the 

Bootstrap estimator is based on an asymptotic procedure). The sample variance of the Bootstrap values θ̂
*
b(x0, y0) provides an estimate σ̂2 of the 

variance of θ̂(x0,y0): 

σ̂2
=B− 1

∑B

b=1

[

θ̂b
*(

x0, y0
)
− B− 1

∑B

b=1
θ̂b

*(
x0, y0

)
]2

(A.13) 

Therefore, bias correction should not be used unless: 

σ̂2
<

1
3
[
B̂IASB

[
θ̂
(
x0, y0

)]]2 (A.14) 

A.2. Applying the Bootstrap Methodology

Throughout numerous studies, it has been observed that the generation of the pseudo-sample S*
n is of crucial importance in determining whether 

the Bootstrap provides consistent estimates of confidence intervals, bias, etc. (Simar and Wilson, 1998, 1999a, 1999b, 2000a, 2000b). In the classical 
linear regression model, samples can be drawn from the estimated residuals or from the original sample to construct the pseudo-sample S*

n. In both 
cases, the Bootstrap produces consistent estimators. Both approaches are variants of what has been termed the naive Bootstrap.

However, in our context, there is a fundamental difference from the classical linear regression model: the data generating process (DGP) F is 
bounded by T, whereas in the classical linear regression model, the DGP is unbounded. A related problem is that, under our assumptions, the con
ditional density ƒ (θ (x, y) |x, η) is bounded by the interval (0,1] and is discontinuous from the right at 1. These types of problems can cause the naive 
Bootstrap to produce inconsistent estimators. This problem also arises in our context, as demonstrated in Simar and Wilson (1999a, 1999b, 2000a).
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To address the bounding issues that invalidate the naive Bootstrap in our context, pseudo-samples can be drawn from a uniform, consistent, and 
non-parametric estimate of the DGP F, represented by ƒ (x, ω, η) with the following expression: 

ƒ (x,ω, η)= ƒ (ω|x, η)ƒ(η|x) ƒ(x) (A.15) 

Where all conditional densities exist. Specifically, ƒ(x) is defined on Rp
+, ƒ(η|x), is defined on [0, π/2] q− 1 and ƒ (ω|x, η) is defined on R1

+.
In Simar and Wilson (1998), values θ* are drawn from a kernel estimate ̂ƒ (θ) of the marginal density of the original estimates ̂θ(xi, yi) for i = 1 …, n. 

Given that efficiency values are between 0 and 1, the above is equivalent to assuming that ƒ (ω|x, η) = ƒ (ω) in expression (A.15), meaning that the 
distribution of inefficiencies is homogeneous and does not depend on the position within the production possibility set T. This assumption can be 
relaxed, at the cost of increased complexity (Simar and Wilson, 2000b). The focus here is on the case of homogeneity (Smoothed Bootstrap).

Kernel density estimation has been extensively studied and is easily performed. Given real values zi, for i = 1 …,n, the kernel estimate of the density 
g(z) is given by: 

F̂G,h(t)=
1
nh
∑n

i=1
K
(

t − θ̂ i

h

)

(A.16) 

where K is a kernel function and h is a bandwidth parameter. Well-established guidelines exist to aid in choosing K and h. Specifically, the kernel 
function K must be continuous and satisfy the following conditions: 
∫∞

− ∞

K(u)du=1 (A.17) 

∫∞

− ∞

uK(u)du=0 (A.18) 

Therefore, any symmetric density function with zero mean is a valid kernel function. Any even-order polynomial bounded on some interval, whose 
coefficients are chosen such that its integral over that interval equals unity, would also be valid. However, Silverman (1986) demonstrates that, to 
obtain a good estimate of ƒ(z) (one with low mean squared error), the choice of the kernel function is much less important than the choice of the 
parameter h.

For the kernel density estimator to be consistent, the bandwidth must be chosen such that h = O(n− 1/5) in the univariate case. If the data are 
approximately normally distributed, the normal reference rule can be used, setting h = 1,06σ̂ n− 1/5, where σ̂ is the sample standard deviation of the 
data whose density is being estimated (Silverman, 1986). In cases where the data clearly do not follow a normal distribution, as happens when 
estimating the density ƒ(θ), density estimates can be plotted for various values of h, choosing the value that provides a reasonable estimate (Silverman, 
1986; Simar and Wilson, 1998). However, this approach introduces an element of subjectivity. A preferable approach involves using least-squares 
cross-validation, which implies choosing the value of h that minimizes an approximation of the mean squared error (Silverman, 1986). In 
high-dimensional cases (p + q), many of the estimated distance functions will take the value 1, generating a discrete distribution problem in the 
cross-validation procedure, which is especially true when using BCC and FDH estimators.

Wilson & Simar (1995) state that small values of h yield smooth density estimates that follow the empirical distribution function too closely to the 
upper confidence interval. Larger values of h provide excessively smooth density estimates with long tails to the left (below the smallest observed 
value of ̂θ). In practice, h takes values between 0.01 and 0.02. In our models, h = 0.014 was chosen, which provides a reasonably smooth estimate of F.

Regardless of how the parameter h is selected, it is important to realize that current kernel estimators, such as that in (A.16), of densities over a 
bounded interval are biased at the ends of that interval. For (x,y) ∈ T, necessarily 0 ≤ θ(x,y) ≤ θ̂(x,y) ≤ 1, causing a problem when estimating ƒ(θ).

It is easy to see where this problem arises: in (A.17), when K is symmetric with zero mean, the density estimate for a point on the real number line is 
determined by summing the values of K functions centered on the observed data along the real number line, on both sides of the point for which the 
density estimate is being evaluated. If, for example, the standard normal density function is chosen as K, the relative contribution of observations close 
to the density estimate at that point is greater than that of observations further away on the real number line. When (A.16) is used in our application to 
evaluate the density estimate at 1, if K is symmetric, there will be no data to the right of the boundary contributing to the uniformity of the function, 
causing the bias problem. An obvious solution would be to allow the kernel function to become increasingly asymmetric as it approaches the 
boundary, although this solution is not without several problems, as shown by Scott (1992).

A much simpler solution is to use the reflection method (Simar and Wilson, 1998). This method involves reflecting each of the n original estimates 
θ̂(xi, yi) across the boundary (at the value 1), calculating 1 − θ̂(xi, yi) for each θ̂(xi, yi), for i = 1, …,n, to obtain 2n points on the real number line. 
Distance function estimates are equally bounded to the left of 0, but generally there will be no values near zero, suggesting that the density is close to 
zero at this end of the interval. Therefore, the effect of the left boundary is ignored, and the focus is placed on the boundary at the value 1. Considering 
the reflected data as unbounded, with 2n observations, the density of these data can be estimated using estimator (A.16) without particular problems. 
Subsequently, this unbounded density estimate can be truncated to the right at unity, obtaining an estimate of the density of θ̂ over the interval (0,1].
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Once the kernel function K and the parameter h have been selected, it is not necessary to evaluate the kernel estimate of the density in (A.16) to 
draw random values. Instead, the computational shortcut proposed by Silverman (1986) can be used for cases where the kernel function K is a common 
density function. It is necessary to draw n values θ* from the estimated density of the original estimates of the distance function. Let {εi}

n
i=1 a set of n i.i. 

d. draws from the density function used to define the kernel function; let Zi be a set of values drawn independently, uniformly, and with replacement 
from the set of reflections of the distance function estimates R = {θ̂(xi,yi),2 − θ̂(xi,yi)}; and let d = n− 1∑n

i=1di.
Calculate: 

d*
i = d +

(
1 + h2/s2)1/2

(di + hεi − d) (A.19) 

Where s2 is the sample variance of the values vi = di + hεi. By making use of the convolution theorem, it can be demonstrated that vi ∼ ĝ, where ĝ is 
the kernel estimate of the density of the original distance function estimates and their reflections in R. As is usual with kernel density estimates, the 
variance of vi must be rescaled upwards as in (A.16).

Immediate manipulations reveal that: 

E(di
*
|R)=1 (A.20) 

VAR

(

di
*⃒⃒R
)
= s2

(

1+
h2

n
(
s2 + h2

)

)

(A.21) 

So that the variance of di
* is asymptotically correct. All that remains is to reflect di

* across unity by calculating, for each i = 1, …,n, the following 
values:

Values of θi
* INPUT ORIENTATION 

OUTPUT ORIENTATION – CCR
Values OF θi

* OUTPUT ORIENTATION – BCC

di
*sid*

i ≤ 1 di
*sid*

i ≥ 1
2 − di

*sid*
i > 1 2 − di

*sid*
i < 1

The final step involves “folding” the right side of the estimate ĝ, symmetric around the value 1, to the left of 1, ensuring that d*
i ≤ 1 (d*

i ≥ 1, in 
output orientation, BCC model) for all i.

By combining all this, estimates of confidence intervals, bias, etc., for the output distance function θ(x0, y0) evaluated at a specific point (x0,y0) ∈

R
p+q
+ , such that the corresponding estimate θ(x0, y0) exists, can be obtained using the following algorithm: 

a) For each observation (xi,yi) ∈ Sn, one of the distance functions defined in section 3.1 is applied to obtain the estimates θ̂(xi,yi), for i = 1 …,n.
b) If (x0,y0) ∕∈ Sn, step (1) is repeated for x0, y0 and θ̂(xi, yi) is obtained.
c) The n estimates θ̂(xi, yi) are reflected across unity, and the bandwidth parameter h is determined by least-squares cross-validation. For our case, h 

= 0.014 has been fixed.
d) The computational shortcut in (A.19) is used to draw n Bootstrap values θ*

i (xi,yi), for i = 1, …,n, from the kernel estimate of the density ƒ (θ̂).
e) A pseudo-sample S*

n is constructed whose elements (x*
i ,y*

i ) are given by:

Values of (x*
i ,y*

i )- INPUT ORIENTATION Values of (x*
i ,y*

i )- OUTPUT ORIENTATION

x*
i = θ̂xi/θ*

i x*
i = xi

y*
i = yi y*

i = θ*
i yi/θ̂(xi,yi)

f) Expression (A.8), or an analogous one if CCR estimators are being used, is utilized to calculate the Bootstrap estimate θ̂
*
(x0,y0).

g) Steps (d)-(f) are repeated B times to obtain a set of B Bootstrap estimates {θ̂b
*
(x0, y0)}

B

b=1.
h) Expression (A.7) is used to determine âα and ̂bα and, subsequently, expression (9) along with the original estimate θ̂(x0, y0) is used to construct the 

estimated confidence interval of θ. Additionally, the Bootstrap estimates can be used in expression (A.11) to obtain an estimate of the bias of 
θ̂(x0, y0) and in expression (A.12) to obtain a bias-corrected estimator if condition (A.14) is satisfied.
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Appendix B 

Table B.1 
Efficiency results by years (2011–2015)

Port Name 2011 2012 2013 2014 2015

DEA BOOTSTRAP DEA BOOTSTRAP DEA BOOTSTRAP DEA BOOTSTRAP DEA BOOTSTRAP

BM AM BM AM BM AM BM AM BM AM BM AM BM AM BM AM BM AM BM AM

Cape Town 0,57111 0,84073 0,50382 0,78664 0,61832 0,80611 0,54472 0,75827 0,57417 0,65842 0,50250 0,62779 0,55904 0,63658 0,49494 0,59827 0,56232 0,67574 0,49404 0,63864
Casablanca 1,00000 1,00000 0,75320 0,83771 1,00000 1,00000 0,75850 0,84712 1,00000 1,00000 0,75995 0,86478 1,00000 1,00000 0,73783 0,84842 1,00000 1,00000 0,75040 0,85326
d’Abidjan 0,46253 0,46253 0,42622 0,43986 0,54531 0,54531 0,50047 0,51642 0,52218 0,57230 0,49343 0,55805 0,46887 0,50134 0,44165 0,48174 0,49420 0,56207 0,46280 0,54304
Dakar 0,45786 0,45786 0,42806 0,44502 0,38989 0,38989 0,37064 0,37849 0,50450 0,50450 0,47998 0,48844 0,42811 0,42811 0,40909 0,41198 0,43282 0,43282 0,40242 0,41206
Douala 0,38322 0,38322 0,33363 0,36486 0,32141 0,32141 0,27275 0,30286 0,39534 0,39534 0,34178 0,37864 0,34798 0,34798 0,29361 0,32800 0,68546 0,68546 0,58539 0,65056
Durban 1,00000 1,00000 0,75517 0,84982 1,00000 1,00000 0,76054 0,84695 1,00000 1,00000 0,76281 0,86364 1,00000 1,00000 0,75018 0,84389 1,00000 1,00000 0,74656 0,85892
East London 1,00000 1,00000 0,75426 0,83886 1,00000 1,00000 0,75952 0,85350 1,00000 1,00000 0,76183 0,86444 1,00000 1,00000 0,74383 0,84569 1,00000 1,00000 0,74960 0,85242
Port  

Elizabeth
0,36763 1,00000 0,30715 0,84634 0,31659 1,00000 0,26665 0,85116 0,32388 1,00000 0,27264 0,86076 0,28392 1,00000 0,23470 0,84512 0,23934 1,00000 0,19982 0,86090

Tanger Med 1,00000 1,00000 0,78379 0,85455 1,00000 1,00000 0,80247 0,86612 1,00000 1,00000 0,77805 0,87355 1,00000 1,00000 0,75552 0,84685 1,00000 1,00000 0,75919 0,86665
Tema 0,57525 0,57525 0,51096 0,54365 0,66807 0,71532 0,60525 0,66946 0,64353 1,00000 0,59071 0,87405 0,58401 0,85090 0,53305 0,79005 0,54040 0,83712 0,46730 0,78495
Walvis Bay 0,34350 1,00000 0,31242 0,84197 0,50457 1,00000 0,46656 0,85270 0,43879 1,00000 0,40681 0,86725 0,32212 1,00000 0,29311 0,84147 0,35514 1,00000 0,32469 0,85874
Cotonou 0,62176 0,62176 0,57461 0,59490 0,62583 0,62583 0,58672 0,60457 0,58690 0,58690 0,55178 0,57187 0,51120 0,51120 0,46909 0,48953 0,42712 0,42712 0,39292 0,40905
Luanda 0,81155 0,81155 0,69592 0,76100 0,86691 0,86691 0,75886 0,81678 0,91418 0,91418 0,78995 0,87523 0,88000 0,88000 0,75237 0,82538 0,86610 0,86610 0,74445 0,81429
Onne 1,00000 1,00000 0,74673 0,84265 1,00000 1,00000 0,75789 0,85165 1,00000 1,00000 0,76447 0,86460 1,00000 1,00000 0,74174 0,84236 1,00000 1,00000 0,74901 0,85327
Las Palmas 0,65709 1,00000 0,57798 0,84482 0,59284 1,00000 0,51790 0,84602 0,49926 1,00000 0,45138 0,86793 0,50270 1,00000 0,45826 0,83926 0,41115 1,00000 0,36925 0,85971
St C. Tenerife 0,58000 1,00000 0,53992 0,84156 0,54787 1,00000 0,51580 0,84567 0,64535 1,00000 0,60672 0,86643 0,66628 1,00000 0,62945 0,83878 0,61269 1,00000 0,56251 0,86012

Source: Own Elaboration.
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Table B.2 
Efficiency results by years (2016–2020)

Port Name 2016 2017 2018 2019 2020

DEA BOOTSTRAP DEA BOOTSTRAP DEA BOOTSTRAP DEA BOOTSTRAP DEA BOOTSTRAP

BM AM BM AM BM AM BM AM BM AM BM AM BM AM BM AM BM AM BM AM

Cape Town 0,50837 0,67464 0,43927 0,62449 0,51545 0,56113 0,45838 0,52519 0,63841 0,63841 0,57573 0,59930 0,40252 0,41105 0,35116 0,38070 0,32284 0,35081 0,28948 0,32718
Casablanca 1,00000 1,00000 0,73934 0,84367 1,00000 1,00000 0,75029 0,84331 1,00000 1,00000 0,74460 0,80928 1,00000 1,00000 0,72435 0,82072 1,00000 1,00000 0,70163 0,81236
d’Abidjan 0,52910 0,62638 0,49561 0,60217 0,61261 0,72609 0,57724 0,70005 0,65237 0,73536 0,61100 0,70412 0,53968 0,56572 0,51375 0,54673 0,04596 0,04971 0,04333 0,04806
Dakar 0,41001 0,41001 0,37669 0,39715 0,43747 0,43747 0,40296 0,42076 0,41419 0,41419 0,38352 0,39074 0,54196 0,54196 0,52791 0,53304 0,45090 0,51310 0,43173 0,50314
Douala 0,52028 0,52028 0,44421 0,49106 0,80982 0,80982 0,70235 0,76228 0,73924 0,73924 0,63580 0,68447 0,64588 0,64588 0,53165 0,59262 1,00000 1,00000 0,70678 0,80605
Durban 1,00000 1,00000 0,73657 0,84706 1,00000 1,00000 0,75300 0,84519 1,00000 1,00000 0,76307 0,82162 1,00000 1,00000 0,74881 0,82467 1,00000 1,00000 0,77652 0,81841
East London 1,00000 1,00000 0,73305 0,84577 1,00000 1,00000 0,74158 0,83758 1,00000 1,00000 0,74899 0,81216 1,00000 1,00000 0,72870 0,81983 1,00000 1,00000 0,69738 0,81115
Port  

Elizabeth
0,14956 1,00000 0,12318 0,84393 0,15927 1,00000 0,13379 0,83860 0,16301 0,16301 0,13699 0,14869 0,12222 1,00000 0,09977 0,82580 0,09472 1,00000 0,07672 0,80696

Tanger Med 1,00000 1,00000 0,75818 0,84342 1,00000 1,00000 0,76551 0,84514 1,00000 1,00000 0,75987 0,83165 1,00000 1,00000 0,74497 0,82683 1,00000 1,00000 0,75194 0,82823
Tema 0,59624 0,59624 0,50688 0,55595 0,63762 0,63762 0,55414 0,59955 0,74259 0,76970 0,65554 0,71199 0,56499 0,56499 0,51583 0,54092 0,43336 0,48569 0,37777 0,45639
Walvis Bay 0,32973 1,00000 0,30490 0,84220 0,25062 1,00000 0,23414 0,84163 0,25545 1,00000 0,23575 0,81583 0,17663 1,00000 0,15784 0,83098 0,11745 1,00000 0,10584 0,80895
Cotonou 0,45334 0,45334 0,42328 0,43356 0,45156 0,45156 0,41292 0,43119 0,41697 0,41697 0,37292 0,39242 0,52324 0,52324 0,47588 0,50157 0,51958 0,51958 0,48418 0,49951
Luanda 0,81810 0,81810 0,70464 0,76304 0,44840 0,44840 0,38833 0,41809 0,64491 0,64491 0,56610 0,60439 0,39332 0,39332 0,33234 0,36193 0,35546 0,35546 0,30301 0,33093
Onne 1,00000 1,00000 0,73431 0,84250 1,00000 1,00000 0,75093 0,83655 1,00000 1,00000 0,74454 0,81515 1,00000 1,00000 0,72214 0,82834 1,00000 1,00000 0,69776 0,81219
Las Palmas 0,40882 1,00000 0,36464 0,83843 0,53199 1,00000 0,47652 0,83681 0,50629 1,00000 0,44983 0,82328 0,44024 1,00000 0,40762 0,82176 0,40840 1,00000 0,38754 0,81836
St C. Tenerife 0,60251 1,00000 0,54646 0,84161 0,78276 1,00000 0,71296 0,84229 0,56993 1,00000 0,52362 0,82246 0,65782 1,00000 0,63055 0,82295 0,52802 1,00000 0,49853 0,80839

Source: Own Elaboration
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Data availability

Data will be made available on request.
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