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Abstract: In the collective risk model and also in a compound excess-of-loss reinsurance frameworks,
it is usual to assume that the risk parameters associated with the random variables, the number
of claims, and the claim size are independent for mathematical convenience. Here, we assumed
Poisson and Pareto distributions for these two random variables. This paper focuses on the prior and
posterior (Bayesian) net premiums of the total claims amount, assuming some degree of dependence
between the two risk profiles associated with these two random variables. Here, the degree of
dependence was modeled using the Sarmanov-Lee family of distributions, a special type of copula,
which allows us to study the impact of this assumption on the following year’s total cost of claims
when prior margins are assumed to have gamma and shifted Erlang distributions. The numerical
applications show that a low degree of correlation between these variables leads to collective and net
Bayes premiums that can be sensitive when the hypothesis of independence is broken. The dependence
hypothesis has a more significant effect in the model when no layer is considered. We illustrate the
methodology proposed with some real numerical examples.

Keywords: Bayes; dependence; excess-of-loss; layer; risk parameters; Sarmanov-Lee family of
distributions
Mathematics Subject Classification: 62C10, 91B05, 91G05

1. Introduction

In the preface of the book of [1], it is stated that reinsurance is a fascinating field, where several
of the challenges of classical insurance are amplified, particularly when it comes to dealing with
extreme situations like large claims and rare events. However, leaving this enthusiastic phrase aside,
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the reinsurance field is also exciting because of its practicality and ability to solve many financial
problems for insurance companies. As is well known by the actuarial community, a reinsurance
contract establishes an agreement or contract between the insurer and the reinsurer, whereby the
former (also called the ceding company) indemnifies the latter a part of the risk subscribed by the
insurer, with a third party (usually the customer) paying, in turn, a reinsurance premium. As such,
it is a contract similar to the one that an insurance company signs with a client to cover damages
of any kind. The difference, however, is that the reinsurer covers only a part of the compensation,
called priority. This type of reinsurance is called excess-of-loss reinsurance. For a detailed study
of reinsurance, in all its forms, readers are referred to the works of [1–5] and the references therein.
Recent works on reinsurance include contributions such as [6–9]. In these recent works, the reinsurance
technique is also used in non-life insurance, but its scope is broadened, including, for example, non-life
multiline insurers under the Solvency II umbrella, risk transfers in the context of the 2007-08 global
crisis, reinsurance using two layers and multiple reinsurers, and reinsurance in a game-theoretic setting,
considering one insurer and two reinsurers.

As part of the collective risk model, in excess-of-loss reinsurance, it is usual to assume that the
risk parameters associated with the random variables, the number of claims, and the claim size are
independent. This is the main idea in [10], inspired by the ideas developed in [11]. For example,
we can describe this situation by taking the Poisson frequency and the Pareto severity as appropriate
distributional assumptions. The use of the Bayesian methodology facilitates the computation of
predictive and posterior moments of the accumulated claims and the interpretation of the parameters
involved. [12] also studied the Bayesian estimators in Paretian excess-of-loss reinsurance. Although
these derivations have traditionally been built on the assumption of independence (see [13]), there
has been great interest in modeling dependent risks due to the increasing complexity of the current
insurance and reinsurance products.

In this paper, we will pay attention to the calculation of the prior and posterior moments of the
size of the total claims, assuming some degree of dependence derived from the prior distributions of
the risk parameters (profiles) involved in the Bayesian framework. This degree of dependence will be
modeled using the Sarmanov-Lee family of distributions; specific details of this type of copula can
be seen in [14, 15]. This model allows us to study the impact of dependence on the next year’s total
claims costs, showing that a low degree of correlation produces highly sensitive results. Furthermore,
the case where the moments are calculated separately without assuming dependence is also considered.
In recent years, some actuarial works have considered the Sarmanov family of bivariate distributions:
see, for example, [16–18]. Also, [19] considered, from a Bayesian point of view, the calculation
of credibility premiums for the compound loss under a bivariate prior for the risk parameters of the
frequency and severity distributions.

The impact of assuming the dependence feature is a matter of concern. At first sight, it would
seem that the effect of including dependence has a low impact in the first and second moments; in
fact, the reinsurer should be prudent, since ignoring the hypothesis of dependence might lead to budget
imbalance, especially when there is a change of scale in the monetary units used. This work assumes
the dependence hypothesis between the risk profiles instead of the claims number and the size of the
corresponding claims. The former approach not only retains the main features of the latter case but
also reduces the mathematical burden of the independence assumption between the number and the
severity.
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The rest of the paper has the following structure: The basic collective risk model considered in
this paper is introduced in Section 2. Here, the bivariate prior distribution assumed for the risk
profile (dependent on two parameters) is also presented and studied. In the original paper of [10], a
classical gamma distribution was assumed, but this seems inadequate considering this risk parameter’s
support. To make the paper self-contained, we recall the main results of [10] in Section 3. Here, we
also give closed-form expressions for the risk, collective, and Bayes net premiums in the excess-of-loss
reinsurance model. An extension of the basic collective risk model and the reinsurance model, which
includes some degree of dependence, is introduced in Section 4.2. Here, we also provide properties of
this extended model together with the expressions of the collective and Bayesian net premiums, which
are written in closed-form expressions. The cases with and without a layer are both studied. Numerical
applications are provided in Section 5, and final comments are given in the last section.

2. The specific basic collective risk model

Let N(t) be the random variable denoting the number of claims reported to the insurer during
[0, t] and let Y1,Y2, . . . ,YN(t) be the corresponding individual claim amounts up to time t. Assume
the following: (i) {N(t), t ≥ 0} is a time homogeneous Poisson process with intensity λ > 0, i.e.,
pn(t) = exp(−λt)(λt)n/n! and (ii) {Yi}i=1,2,... are stochastically independent and independent of N(t) with
common survival function F̄(y|c, ψ) = (c/y)ψ, y ≥ c, i.e., the classical Pareto distribution with scale
parameter c > 0 and shape parameter ψ > 0. Its mean is given by E(Y) = cψ/(ψ − 1), ψ > 1.
The compound process described above has a cumulative distribution function (see, for example, [20])
given by

G(x) =
∞∑

n=0

pn(t)Fn∗(x), (2.1)

where Fn∗(·) represents the nth-fold convolution of F(·|c, ψ). In practice, it is difficult to derive a closed-
form expression for the distribution function given in (2.1). Therefore, numerical approximations
have been proposed based on the normal and gamma distribution and fast Fourier transform. Other
approximations that have been considered are based on Edgeworth expansions and the Gram-Charlier
series. Furthermore, an exact recursive expression for (2.1) can be found by using Panjer’s recursion
formula (see [21] and [22, Chapter 4], among others). A closed-form expression for the Pareto
type III (Lomax) distribution has been derived for the convolution above in [23], and the asymptotic
distribution of an infinite sum of i.i.d. classical Pareto type I random variables is provided in [24].

Nevertheless, in the expression (2.1), it is not necessary to calculate premiums based on the
moments of the distribution. We will consider that the parameter c is known, that the risk profiles
λ and ψ are unknown, and that they take values from the random variables Λ and Ψ, respectively. As
it is well-known, a premium calculation principle ( [25, 26]; among others) assigns to each vector of
risk profiles Θ = (λ, ψ) a premium within the set P ∈ R+, the action space. Using the net premium
principle, it is easy to see that, in this case, it gives the unknown risk premium

P(Θ) = E[N(t)]E[Y] =
cλtψ
ψ − 1

, ψ > 1.

We have followed the idea of [10] in order to define the net premium. That is, the net premium is
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defined as the sum of losses instead of the sum of discounted losses, which leads to the exclusion of
the time value of the monetary losses.

In the absence of experience, the actuary computes the collective (prior) premium, Eπ[P(Θ)], where
π is the prior distribution assigned to the risk profile Θ. On the other hand, if experience is available,
the actuary takes a sample

ℵ =
{
Nc(T ) = n, Yc,t = yti, i = 1, 2, . . . , n

}
, (2.2)

and uses this information to estimate the unknown risk premium P(Θ) through the Bayes premium P∗,
obtained by computing the posterior expectation Eπ∗[P(Θ)]. Here, π∗ is the posterior distribution of the
risk parameter, Θ, given the sample information provided in (2.2). For that purpose, we need also the
likelihood function, which is given by

ℓ(λ, ψ|ℵ = n, yt1, . . . , ytn) =
(T λ)n

n!
exp(−T λ)

n∏
i=1

ψ

c

(yti

c

)−(ψ+1)
,

∝ λn exp(−T λ)ψn exp(−zψ), (2.3)

where z =
∑n

i=1 log(yt/c).
We will assume that the distribution of Λ is gamma with shape parameter ν > 0 and rate parameter

τ > 0 and that the distribution of Ψ is Erlang with shape parameter γ ∈ N+ = {1, 2, . . . } and rate
parameter ξ > 0. That is, it is assumed that Λ ∼ G(ν, τ) and Ψ ∼ E(γ, ξ, k), a k > 0 translated Erlang
variate, with probability density functions (pdfs) given by,*

π1(λ|ν, τ) =
τν

Γ(ν)
λν−1 exp(−τλ), λ > 0, (2.4)

π2(ψ|γ, ξ, k) =
ξγ

Γ(γ)
(ψ − k)γ−1 exp

[
−ξ(ψ − k)

]
, ψ > k, (2.5)

where Γ(·) is the Euler gamma function and Γ(γ) = (γ − 1)!. The choice of the prior distributions,
in addition to mathematical convenience (calculations are provided), is done in this way following
Hesselager’s work [10]. The fundamental objective of this work is to study the variation of the
premiums assuming a certain degree of dependence between the risk profiles. Mean and variance
of these two distributions are ν/τ, ν/τ2, k + γ/ξ, and γ/ξ2, respectively.

Finally, the joint pdf of Θ = (Λ,Ψ) is assumed to be the product of these densities. Thus,

π(λ, ψ|ν, τ, γ, ξ, k) = π1(λ|ν, τ)π2(ψ|γ, ξ, k), (2.6)

i.e., both random variables are assumed to be independent. The next result provides the posterior
distribution of (2.6) given the sample information provided in (2.3). As we will see, the posterior
distribution is conjugate for λ and almost conjugate (quasi-conjugate) for the ψ risk profile.

Proposition 1. Let {X(t)}t≥0 be the compound Poisson process defined above. Suppose that (Λ,Ψ)
follows the prior distribution with pdf given in (2.6). Then, the posterior distribution of (Λ,Ψ) given

* [10] assumes a gamma prior for the parameter ψ that seems inappropriate since from Proposition 3, we have that ψ > k. A translated
gamma or Erlang distribution should be more accurate in the case considered here.
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the sample information ℵ =
{
Nc(T ) = n, Yc,t = yti, i = 1, 2, . . . , n

}
, assumed to be independent and

identically distributed, is given by,

π∗(λ, ψ|ν∗, τ∗, γ∗, ξ∗, k) = π1(λ|ν∗, τ∗)π∗2(ψ|γ∗, ξ∗, k),

where

π∗2(ψ|γ∗, ξ∗, k) = κ−1ψn(ψ − k)γ−1 exp(−ξ∗ψ), ψ > k,

and the updated parameters are given by

ν∗ = ν + n, (2.7)
τ∗ = τ + T, (2.8)
γ∗ = γ + n, (2.9)
ξ∗ = ξ + z, (2.10)

being κ ≡ κ(γ, ξ∗, k) the normalization constant given by

κ ≡ κ(γ, ξ∗, k) = exp(−ξ∗k)
n∑

j=0

(
n
j

)
kn− jΓ(γ + j)

(ξ∗)γ+ j . (2.11)

Proof. The posterior pdf π∗1(λ|ν∗, τ∗) is straightforwardly obtained from (2.3), (2.4), and Bayes’
theorem. Now, π∗2(ψ|γ∗, ξ∗, k) is proportional to

π∗2(ψ|γ∗, ξ∗, k) ∝ ψn exp(−zψ)π2(ψ|γ, ξ, k),

where the constant of proportionality is given by

κ(γ, ξ∗, k) =
∫ ∞

k
ψn(ψ − k)γ−1 exp(−ξ∗ψ) dψ

= exp(−ξ∗k)
n∑

j=0

(
n
j

)
kn− j

∫ ∞

0
ψ j+γ−1 exp(−ξ∗ψ) dψ

= exp(−ξ∗k)
n∑

j=0

(
n
j

)
kn− jΓ(γ + j)

(ξ∗)γ+ j .

Hence the result. □

As we can see in the next result, bivariate, prior, and posterior distributions can now be used to get
the collective (prior) and posterior (Bayes) premiums of the aggregated model described above based
on the first moment (the net premium).

Proposition 2. The collective (prior) and Bayes (posterior) net premiums, i.e., k = 1, for the compound
aggregate model described above are given by,

P(ν, τ, γ, ξ) =
cν
τ

ξ + γ − 1
γ − 1

, γ > 1, (2.12)

P∗(ν∗, τ∗, γ∗, ξ∗) =
cν∗

τ∗
κ∗(γ, ξ∗, 1)
κ(γ, ξ∗, 1)

, γ ≥ 2, (2.13)

respectively.
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Proof. Expression (2.12) is obtained as follows,

P(ν, τ, γ, ξ) =
∫ ∞

1

∫ ∞

0
P(λ, ψ)π1(λ|ν, τ)π2(ψ|γ, ξ, 1) dλ dψ

=
cν
τ

ξγ

Γ(γ)

∫ ∞

1
ψ(ψ − 1)γ−2 exp[−ξ(ψ − 1)] dψ

=
cν
τ

ξγ

Γ(γ)
Γ(γ − 1)
ξγ−1

(
1 +

γ − 1
ξ

)
,

from which we get the result. Observe that we have used the fact that the mean of the random variable
Ψ following the pdf π2(ψ|γ, ξ) is 1 + (γ − 1)/ξ.

To get (2.13), we need to compute

κ∗ =

∫ ∞

1

ψ

ψ − 1
π∗2(ψ|γ∗, ξ∗, 1) dψ = κ−1

∫ ∞

1
ψn+1(ψ − 1)γ−2 exp(−ξ∗ψ) dψ

= κ−1
γ−2∑
j=0

(
γ − 1

j

)
(−1) j

∫ ∞

1
ψγ
∗− j−1 exp(−ξ∗ψ) dψ.

Now, taking into account (2.7) and (2.8), the result is obtained directly. □

3. The reinsurance model under independence

[10] proposed the aggregate model described in the previous section to calculate reinsurance
premiums in the collective risk model. For that, let Nu(t) =

∑N(t)
i=1 I(Yi > u) be the number of claims

exceeding the level u during [0, t]. The latter expression is again a Poisson process with intensity
λu = λPr(Yi > u) = λ(σ/u)ψ, for u ≥ σ.

Consider an excess-of-loss cover for the layer b − a in excess of a. For a claim Ya, exceeding the
priority or deductible a, the reinsurer will cover the amount Zi = min {Y, b} − a. Our interest now lies
on the random variable, the reinsurer’s total claim amount during period [0, t], X(t) =

∑Na(t)
i=1 Zi. It is

clear that {X(t)}t≥0 is a compound Poisson process with intensity λa and distribution function given by

H(z|ψ) =
{

F(a + z|a, ψ), 0 ≤ z < b − a,
1, z ≥ b − a.

Now, at time T , the practitioner wishes to predict the reinsurer’s total claims cost for the next year,
i.e. X = X(T + 1) − X(T ). Therefore, we must first compute the so-called risk premium of order
k, k = 1, 2, . . . , i.e., premiums based on non-central moments. Observe that the first moment is the
so-called net risk premium (see, for instance, [25]). Then, we need

E

[
Λ

(
σ

a

)Ψ
µk(ψ)

]
, (3.1)

where Θ = (Λ,Ψ) is the vector of risk parameters and µk(ψ) = E(Zk
i |ψ).

Then, it is necessary to compute µk(ψ) = E(Zk
i |ψ). A closed-form expression for this kth moment is

provided in [10] giving

µk(ψ) = kak
k−1∑
j=0

(
k − 1

j

)
(−1) j 1 − (a/b)ψ−k+ j

ψ − k + j
. (3.2)
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The latter result can be written as a closed-form expression regarding the incomplete Beta function,
as shown in the following proposition.

Proposition 3. It is verified that the non-central moments µk(ψ) = E(Zk
i |ψ) can be written as

µk(ψ) =
(a
b

)ψ
(b − a)k + ψ ak I1−a/b(k + 1, ψ − k), (3.3)

with ψ > k, where Iz(r, s) is the incomplete Beta function, given by

Iz(r, s) =
∫ z

0
tr−1(1 − t)s−1 dt, 0 ≤ z ≤ 1.

Proof. We have that

µk(ψ) = E(Zk|ψ) =
(a
b

)ψ
(b − a)k +

∫ b

a
(y − a)kψaψy−(1+ψ) dy

=

(a
b

)ψ
(b − a)k + ψaψ

∫ b

a

(
1 −

a
y

)k

yk−(1+ψ) dy.

Let now the change of variable be z = 1 − a/y, and we get that the last integral can be rewritten as

ψak
∫ 1−a/b

0
z(k+1)−1(1 − z)ψ−k−1 dz = ψakI1−a/b(k + 1, ψ − k),

from which we have the result. □

The main idea of Hesselager’s model (see [10]) is to consider that the parameters λ and ψ (often
termed as risk profiles) are unknown and will be regarded as outcomes of random parameters Λ and Ψ,
respectively, and to treat the problem in a Bayesian framework. For that reason, the prior distributions
of Λ and Ψ are required, and the premium provided in (3.4) is called risk premium, net risk premium
when k = 1.

Proposition 4. The risk, collective (prior), and Bayes (posterior) net premiums, i.e., k = 1, are
given by,

P(λ, ψ) =
λ

ψ − 1

[
a − b

(a
b

)ψ] (c
a

)ψ
, ψ > 1, (3.4)

P(ν, τ, γ, ξ) =
ν

τ

cξγ

γ − 1

 1[
ξ + log(a/c)

]γ−1 −
1[

ξ + log(b/c)
]γ−1

 , γ > 1, (3.5)

P∗(ν∗, τ∗, γ∗, ξ∗) =
ν∗

τ∗
a κ(γ∗, ξ∗ + log(a/c), 1) − b κ(γ∗, ξ∗ + log(b/c), 1)

κ(γ∗, ξ∗, 1)
, (3.6)

respectively and where a


<

=

>

 c.
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Proof. By taking t = 1, we have that P(λ, ψ) = E(N(t))E(Y) = λµ1(ψ). Now, µ1(ψ) is obtained directly
from (3.2) or (3.3) by taking k = 1, from which we easily get (3.4). To get (3.5), we have to compute
P(ν, τ, γ, ξ) = Ep[P(Λ,Ψ)], where the expectation is taken with respect to p(λ, ψ|ν, τ, γ, ξ, 1). Now, due
to the hypothesis of independence between the risk profiles, we have that

P(ν, τ, γ, ξ) = Eπ1(Λ)Eπ2

{
1
Ψ − 1

[
a − b

(a
b

)Ψ]}
,

where Eπ1(Λ) = ν/τ. On the other hand, we have that

Eπ2

{
1
Ψ − 1

[
a − b

(a
b

)Ψ]}
=

cξγ

Γ(γ)

∫ ∞

1
(ψ − 1)γ−1−1 exp

[
−

(
ξ + log

(a
c

))
(ψ − 1)

]
dψ

−
cξγ

Γ(γ)

∫ ∞

1
(ψ − 1)γ−1−1 exp

[
−

(
ξ + log

(c
b

))
(ψ − 1)

]
dψ

=
cξγ

Γ(γ)

 Γ(γ − 1)[
ξ + log

(
a
c

)]γ−1 −
Γ(γ − 1)[

ξ + log
(

b
c

)]γ−1

 ,
from which we get (3.5) after some simple algebra. Expression (3.6), which is the posterior expectation
P∗(ν∗, τ∗, γ∗, ξ∗, k) = Eπ∗[P(Λ,Ψ)], is obtained from (3.4) using the updated parameters provided
in (2.7)–(2.10) and arranging the constant of normalization. □

As a special case of the model studied before, we now consider that b → ∞. This is the basic
excess-of-loss reinsurance model considered in [27, p. 11] and [1, p. 49]. In this case, an unlimited
excess-of-loss treaty exists with retention a > 0, and the mean excess amount gives the expected
amount to be paid by the reinsurer. Thus, z > 0 and the risk premium can be obtained from (3.4) as

lim
b→∞

P(λ, ψ) =
λa
ψ − 1

(c
a

)ψ
.

Furthermore, from (3.5) and (3.6) and assuming that b → ∞, the collective and Bayes premiums
are given by,

P(ν, τ, γ, ξ) =
ν

τ

cξγ

(γ − 1)
[
ξ + log(a/c)

]γ−1 , (3.7)

P∗(ν∗, τ∗, γ∗, ξ∗) =
ν∗

τ∗
a κ(γ∗, ξ∗ + log(a/c), 1)

κ(γ∗, ξ∗, 1)
. (3.8)

An anonymous reviewer has pointed out this important detail: suppose the deductible a
is sufficiently large. The excess loss should be roughly distributed as the generalized Pareto
distribution (Pickands-Balkema-de Haan theorem), which might be of more interest because the
underlying distribution of individual severity can be assumed arbitrarily. See, for instance [28].

4. Breaking the independence hypotheses

We focus here on the collective and Bayes net premiums for the aggregate amount of claims under a
compound model, assuming some degree of dependence between the random variablesΛ andΨ. In our
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case, it is challenging to implement this assumption in the first stage of the model, involving Poisson
and Pareto random variables. As pointed out by [29], an attractive way to model the dependence
between risks is via the dependence between the risk profiles. Thus, we translate the non-dependence
to the second stage (the prior distributions of the risk profiles).

In the statistical literature, there exists a lot of research papers dealing with the construction
of bivariate distributions (see, for example, [30–32]). Most of them are based on the idea of
building a bivariate distribution with given marginal distributions, and the Sarmanov-Lee family of
distributions [14,15] follows this idea. Specifically, assume f1(x1) and f2(x2) are univariate probability
density functions for the continuous case or probability mass functions for the discrete one, with
supports defined on subsets of R (which can be the total real line). Let ϕi(t), i = 1, 2, be bounded
nonconstant functions such that

∫ ∞
−∞
ϕi(t) fi(t) dt = 0 (they are usually named mixing functions). Then,

provided that ω is a real number that satisfies the condition 1+ω ϕ1(x1)ϕ2(x2) ≥ 0 for all x1 and x2, the
function given by

h(x1, x2) = f1(x1) f2(x2)
[
1 + ω ϕ1(x1)ϕ2(x2)

]
(4.1)

which is a genuine bivariate joint density (or a probability mass function in the discrete case) with
specified marginals f1(x1) and f2(x2). It is well-known that the family given in (4.1) is a special case
of the construction provided in [33] and includes some of the well-known Farlie-Gumbel-Morgenstern
distributions as special cases. For details, see [34–36]. Observe that the dependence is captured through
the mixing functions and the ω parameter.

Let us assume that a certain degree of dependence between the random variables Λ and Ψ exist,
and specify a marginal prior gamma distribution for the first random variable and a translated Erlang
distribution for the latter one, which, in both cases, are the conjugate a priori distribution of the
Poisson and classical Pareto distributions. See the work of [37], where conjugate analysis for the
Pareto distribution is studied.

We first need the following Lemma to obtain the prior distribution after assuming some degree of
dependence.

Lemma 1. Let us consider the following functions

φ1(λ|ν, τ) = exp(−λ) − δ1(ν, τ), λ > 0, ν > 0, τ > 0,
φ2(ψ|γ, ξ, k) = exp(−ψ) − δ2(γ, ξ, k), ψ > k, γ > 0, ξ > 0,

δ1(ν, τ) = (1 + τ−1)−ν,
δ2(γ, ξ, k) =

(
1 + ξ−1

)−γ
exp(−k).

Then, it is verified that

H(ν, τ, γ, ξ, k, ω) = 1 + ωφ1(λ|ν, τ)φ2(ψ|γ, ξ, k) ≥ 0, (4.2)

if ω1 ≤ ω ≤ ω2, where

ω1 = (−max{r1, r2})−1 < 0, (4.3)
ω2 = (max{r3, r4})−1 > 0, (4.4)
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being

r1 = δ1(ν, τ) δ2(γ, ξ, k),
r2 = (1 − δ1(ν, τ)) (exp(−k) − δ2(γ, ξ, k)),
r3 = (1 − δ1(ν, τ)) δ2(γ, ξ, k),
r4 = δ1(ν, τ) (exp(−k) − δ2(γ, ξ, k)).

Proof. To see this, observe that because d(φ1(λ|ν, τ))/dλ < 0, we have that φ1(λ|ν, τ) is a decreasing
function on λ; also, since the support of λ is in the interval (0,∞), we have that the range of variation
of φ1(λ|ν, τ) is (−δ1(ν, τ), 1 − δ1(ν, τ)). Using the same argument, we get that the range of variation
of φ2(ψ|γ, ξ, k) is given by (−δ2(γ, ξ, k), exp(−k) − δ2(γ, ξ, k)). Now we have that the expression
H(ν, τ, γ, ξ, ω) ≥ 0 if

ω ≥
−1

φ1(λ|ν, τ)φ2(ψ|γ, ξ, k)
, for φ1(λ|ν, τ)φ2(ψ|γ, ξ, k) > 0,

ω ≤
−1

φ1(λ|ν, τ)φ2(ψ|γ, ξ, k)
, for φ1(λ|ν, τ)φ2(ψ|γ, ξ, k) < 0,

from which, taking into account that 0 < δ1(ν, τ) < 1 and 0 < δ2(γ, ξ, k) < 1, it is a simple exercise to
see that the range of ω is given by (ω1, ω2) provided above. □

The following result provides the prior distribution under the Sarmanov-Lee family of distributions.

Proposition 5. The expression given by

π(λ, ψ|ν, τ, γ, ξ, k, ω) = π1(λ|ν, τ) π2(ψ|γ, ξ, k)H(ν, τ, γ, ξ, k, ω), λ > 0, ψ > k, (4.5)

where H(ν, τ, γ, ξ, k, ω) is given in (4.2), defines a genuine prior bivariate distribution of (Λ,Ψ) with
marginal distributions given by π1(λ|ν, τ) and π2(ψ|γ, ξ, k), which always satisfies that ω1 ≤ ω ≤ ω2

and ω1 and ω2 are given by (4.3) and (4.4), respectively.

Proof. When ω1 < ω < ω2, we have that π(λ, ψ|ν, τ, γ, ξ, ω) > 0. Now, taking into account that∫ ∞

0
exp(−λ)π1(λ|ν, τ) dλ = δ1(ν, τ),∫ ∞

k
exp(−ψ)π2(ψ|γ, ξ, k) dψ = δ2(γ, ξ, k),

we get in a straightforward way that∫ ∞

0

∫ ∞

k
π(λ, ψ|ν, τ, γ, ξ, k, ω) dλ dψ =

∫ ∞

0

∫ ∞

k
π1(λ|ν, τ) π2(ψ|γ, ξ, k) dλ dψ

= 1.

Hence the result. □
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As can be seen, the prior bivariate distribution (4.5) can be written as a linear combination of the
product of gamma and Erlang distributions. Additionally, the special case ω = 0 provides the prior
bivariate distribution given by π(λ, ψ|ν, τ, γ, ξ, k) = π1(λ|ν, τ) π2(ψ|γ, ξ, k), i.e. it represents the case in
which we assume independence betweenΛc andΨ. Figure 1 shows the pdf given in (4.5) for parameters
values given by (τ, ν, γ, ξ) = (5, 10, 10, 4) and different values of ω moving in the range [−1.24, 30.19]
obtained from (4.3)-(4.4). The discrepancies between the different graphs are best appreciated in the
contour plots given in Figure 1 below.

0 1 2 3 4 5
1

2

3

4

5

6

0 1 2 3 4 5
1

2

3

4

5

6

0 1 2 3 4 5

2

4

6

8

10

Figure 1. Bivariate densities (4.5) and corresponding contour plots for parameter values
(τ, ν, γ, ξ) = (5, 10, 10, 4) and ω given by 0 (top), 30 (middle), and -1.20 (bottom).
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4.1. Properties of the bivariate distribution

Some properties of the bivariate distribution proposed in this section are now studied.

Lemma 2. The following relations are verified,

E[Λ exp(−Λ)] =
ν

τ
δ1(ν + 1, τ), (4.6)

E[Ψ exp(−Ψ)] =
(
k +

γ

ξ + 1

)
δ2(ξ, γ) exp(−k). (4.7)

Proof. See the Appendix. □

The next result shows the cross moment and correlation coefficient between the random variables
Λc and Ψ when the prior distribution (4.5) is used.

Proposition 6. For the prior bivariate distribution (4.5), the cross moment and correlation coefficient
between Λc and Ψ are given by

E(ΛΨ) =
ν

τξ(1 + ξ)

[
(1 + ξ)(γ + kξ) +

ωγ

τ
δ1(ν + 1, τ)δ2(γ, ξ, k)

]
,

ρ(Λ,Ψ) =
ω
√
νγδ1(ν + 1, τ)δ2(γ, ξ, k)

τ(1 + ξ)
. (4.8)

Proof. By using Theorems 1 and 2 in [15], we have that

E(ΛΨ) = µ1µ2 + ωη1(ν, τ)η2(γ, ξ, k),
ρ = ωη1(ν, τ)η2(γ, ξ, k)/(σ1σ2),

where

η1(ν, τ) =
∫ ∞

0
λφ1(λ|ν, τ)π1(λ|ν, τ) dλ,

η2(γ, ξ, k) =
∫ ∞

k
ψφ2(ψ|γ, ξ, k)π2(ψ|γ, ξ, k) dψ,

µ1, µ2, σ1 and σ2, the means and standard deviations of the gamma pdf (2.4) and Erlang pdf (2.5),
respectively. These are given by µ1 = ν/τ, σ1 =

√
ν/τ, µ2 = k + γ/ξ, and σ2 = γ/ξ

2.
Now, by using the expressions (4.6) and (4.7) provided in Lemma 2 and some straightforward

algebra, we get the result. □

Observe that the correlation coefficient in (4.8) is directly proportional to ω. The proportionality
factor, given by

√
νγδ1(ν+ 1, τ)δ2(γ, ξ, k)/(τ(1+ ξ)), is always positive, and the sign of the correlations

will depend on the sign of ω, which allows values in the range provided by (4.3)-(4.4). A study of
the linear correlation coefficient as a function of the values of the hyperparameters is carried out in the
next proposition.
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Proposition 7. Assume that ω > 0. Then, the following is verified:

(1) ρ(Λ,Ψ) is an increasing (decreasing) function on ν if τ > (<)
[
exp(1/(2ν) − 1

]−1, for all ζ > 0
and γ ∈ N.

(2) ρ(Λ,Ψ) is an increasing (decreasing) function on τ if ν > (<)τ, for all ζ > 0 and γ ∈ N.
(3) ρ(Λ,Ψ) is an increasing (decreasing) function on γ if ζ > (<)

[
exp(1/(2γ) − 1

]−1, for all τ > 0
and ν > 0.

(4) ρ(Λ,Ψ) is an increasing (decreasing) function on ζ if γ > (<)ζ, for all τ > 0 and ν > 0.

Proof. See the Appendix. □

Figure 2 plots the correlation given as a function of ω. The correlation coefficients seem limited to
values between -0.15 and 0.15, coherent with the correlation in most empirical cases found in actuarial
statistics.
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-0.10

-0.05

0.00

0.05

0.10

Figure 2. Correlation as a function of ω. The thick line corresponds to (ν, τ, γ, ζ) =
(2, 1, 2, 2); the thin line corresponds to (ν, τ, γ, ζ) = (2, 2, 2, 3); the dashed line corresponds to
(ν, τ, γ, ζ) = (2, 2, 2, 0.5); and the dotted line corresponds to (ν, τ, γ, ζ) = (12, 5, 10, 25).

The posterior distribution can be computed easily, and the next result shows that this posterior
distribution can be written as a linear combination of the posterior distribution studied in Section 2.

Proposition 8. The posterior distribution of (Λc,Ψ) given the sample information ℵ is a linear
combination of products of posterior univariate gamma and Erlang densities, given by

π∗(λ, ψ|ℵ) = κp
{[

1 + ωδ1(ν, τ)δ2(γ, ξ, k)
]
(τ∗)−n−νκπ∗1(λ|ν∗, τ∗)π∗2(ψ|γ∗, ξ∗, k)

+ω(τ∗ + 1)−n−νκ∗π∗1(λ|ν∗, τ∗ + 1)π∗2(ψ|γ∗, ξ∗ + 1, k)
−ωδ1(ν, τ)(τ∗)−n−νκ∗π∗1(λ|ν∗, τ∗)π∗2(ψ|γ∗, ξ∗ + 1, k)
−ωδ2(γ, ξ, k)(τ∗ + 1)−n−νκπ∗1(λ|ν∗, τ∗ + 1)π∗2(ψ|γ∗, ξ∗, k)

}
, (4.9)

where κ∗ ≡ κ(γ∗, ξ∗ + 1, k) is given in (2.11) and the normalization constant, κp ≡ κp(γ∗, ξ∗, k), satisfies

κ−1
p = 1 + ωδ1(ν, τ)δ2(γ, ξ)κ(τ∗)−ν−n + ωκ∗(τ∗ + 1)−ν−n

−ωκ∗δ1(ν, τ)(τ∗)−ν−n − ωκ(τ∗ + 1)−ν−nδ2(γ, ξ, k).
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Proof. The result follows after some intensive algebra by using (2.3), (4.5), Bayes’ Theorem and
arranging parameters. □

4.2. Premiums under the dependence model

Expressions given in (4.5) and (4.9) can be used now to get the collective and Bayes net premiums
under the non-independent model. These are shown in the following result.

Proposition 9. Under the bivariate model with dependence, the prior (collective) and Bayesian
(posterior) premiums are given by,

Eπ[P(Λ,Ψ)] =
[
1 + ωδ1(µ, τ)δ2(ξ, γ)

]
P(ν, τ, γ, ξ)

+ωδ1(µ, τ)δ2(ξ, γ)
[
P(ν, τ + 1, γ, ξ + 1)

−P(ν, τ, γ, ξ + 1) − P(ν, τ + 1, γ, ξ)
]
, (4.10)

Eπ∗[P(Λ,Ψ)|ℵ] = κp
{[

1 + ωδ1(ν, τ)δ2(γ, ξ, k)
]
(τ∗)−n−νκP∗(ν∗, τ∗, γ∗, ξ∗, 1), k)

+ω(τ∗ + 1)−n−νκ∗P∗(ν∗, τ∗ + 1, γ∗, ξ∗ + 1, 1)
−ωδ1(ν, τ)(τ∗)−n−νκ∗P∗(ν∗, τ∗, γ∗, ξ∗ + 1, 1)
−ωδ2(γ, ξ, k)(τ∗ + 1)−n−νκP∗(ν∗, τ∗ + 1, γ∗, ξ∗, 1)

}
, (4.11)

where P(ν, τ, γ, ξ) is the collective premium under the different models studied previously, the basic
specific model (expression given in (2.12)), the reinsurance model with a layer (expression given
in (3.5)), and the reinsurance model without a layer (expression given in (3.7)). Alternatively,
P∗(ν∗, τ∗, γ∗, ξ∗, 1) is the net Bayes premium under the models studied, expressions (2.13), (3.6),
and (3.8).

Proof. See the Appendix. □

In the following corollary, we give an alternative expression for (4.10).

Corollary 1. The collective premium given in (4.10) can be rewritten as

Eπ[P(Λ,Ψ)] = P(ν, τ, γ, ξ) +
ωδ1(µ, τ)δ2(ξ, γ)

τ + 1
[
P(ν, τ, γ, ξ) − P(ν, τ, γ, ξ + 1)

]
.

Proof. See the Appendix. □

We get the corresponding collective and Bayes premium under the independent model by taking
ω = 0 in (4.10) and (4.11).

Note that the Bayesian premium has been calculated sequentially rather than in a batch, which
means that the count of the number of losses may not be a homogeneous Poisson over time.

5. Numerical applications

In this section, two numerical examples will be considered. We first used the same dataset for
comparison in [10,11]. The second dataset corresponds to catastrophe data regarding the total damage
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caused by a storm during 1956–1977, which is displayed in Table 1. The amounts and the year of
occurrence are exhibited in this table. We have only considered losses below 6 billion dollars. A
comprehensive version of this dataset is shown in [38, p. 128]. For this reason, in our analysis, we
only consider 10 entries.

Table 1. Hurricane data in millions of US dollars ( [38, p. 128]).

Number Loss Year
1 2,000 1977
2 1,380 1971
3 2,000 1971
4 2,000 1964
5 2,580 1968
6 4,730 1971
7 3,700 1956
8 4,250 1961
9 4,500 1966

10 5,000 1958

The elicited hyperparameter values of the prior distributions are shown in Table 2, together with
the bounds of the ω parameter and other statistics needed to obtain the collective and Bayesian
net premiums. The maximum likelihood estimation method requires knowledge of the distribution
obtained from (2.1), which is not simple; hence, the hyperparameters were estimated by the method of
moments, where for the parameters (ν, τ), the sample mean and index of dispersion (ratio of variance
to the mean assumed to be approximately 1.25) were used to calculate the estimates. Furthermore, for
the parameters (ξ, γ), we used the sample mean with the coefficient of variation and the approximation
of the value of γ to the next integer. The sample sizes, the values of the layers, and the corresponding
time periods for each data set are also given.

Table 2. Parameter estimates and some other statistics.

Example 1 Example 2
ν 2.56 0.3636
τ 0.8 0.8
ξ 0.972 1.197
γ 2 2.65 ≈ 3
z 6.48165 8.54057
c 1.5 1.25
ω1 -4.10 -12.70
ω2 12.79 4.35

layer 5 2
T 5 21
n 16 10
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The collective and Bayesian net premiums computed using (4.10) and (4.11) are shown in Table 3
for the two examples considered and the basic collective model. Observe that the case ω = 0 reduces
to the model where independence between the risk profiles is assumed. The correlation coefficient
obtained for each value of ω obtained via (4.8) is also shown in this table. It can be observed
that incorporating dependence has a low impact on both premiums, as judged by the changes in ω

when this dependence parameter increases or decreases (i.e., more separated from the hypotheses of
independence).

Table 3. Collective and Bayes net premiums for the basic collective model.

Example 1 Example 2
ω Correlation Collective Bayes ω ρ Collective Bayes
-4 -0.028 9.5854 8.5706 -12 -0.140 0.9920 1.8074
-3 -0.021 9.5555 8.5631 -11 -0.128 0.9850 1.7991
-2 -0.014 9.5256 8.5555 -10 -0.117 0.9780 1.7906
-1 -0.007 9.4957 8.5480 -9 -0.105 0.9710 1.7819
0 0.000 9.4658 8.5404 -8 -0.093 0.9640 1.7729
1 0.007 9.4359 8.5329 -7 -0.081 0.9570 1.7637
2 0.014 9.4060 8.5253 -6 -0.070 0.9500 1.7542
3 0.021 9.3761 8.5177 -5 -0.058 0.9431 1.7445
4 0.028 9.3462 8.5102 -4 -0.046 0.9361 1.7345
5 0.035 9.3163 8.5026 -3 -0.035 0.9291 1.7242
6 0.042 9.2864 8.4950 -2 -0.023 0.9221 1.7136
7 0.050 9.2565 8.4874 -1 -0.011 0.9151 1.7027
8 0.057 9.2266 8.4798 0 0.000 0.9081 1.6914
9 0.064 9.1967 8.4722 1 0.011 0.9011 1.6799

10 0.071 9.1668 8.4647 2 0.023 0.8941 1.6679
11 0.078 9.1369 8.4571 3 0.035 0.8871 1.6556
12 0.085 9.1070 8.4495 4 0.046 0.8801 1.6428

The collective and Bayesian net premiums, including a layer of 1.5 million in excess of the priority
a for Example 1 and a layer of 2 million in excess of the priority a for Example 2, are shown in Tables 4
and 5, respectively. Again, the case ω = 0 reduces to the model where independence between the risk
profiles is assumed, and the correlation coefficient is also included. It can be noticed that increasing the
value of the deductible a decreases the value of both premiums. In cases where the deductible is 1.5
million, the Bayes premium is higher than the collective premiums in both examples.

In addition, the collective and Bayesian net premiums without including a layer in excess of the
priority a for both examples are shown in Tables 6 and 7, respectively. Again, the case ω = 0 reduces
to the model where independence between the risk profiles is assumed, and the correlation coefficient is
also shown in these tables. It can be noticed that increasing the value of the deductible a decreases the
value of both premiums. In cases where the deductible is 1.5 million, the Bayes premium is higher than
the collective premiums in both examples. In Example 1, it can be observed that increasing the value
of the deductible a decreases the value of both premiums. However, this is not verified in the second
example, where the Bayes premiums increase for the deductible value a = 1.5 million and decrease
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again for a = 2.2. Also, the collective premiums increase for the deductible of a = 2.2 million.

Table 4. Collective and Bayes net premiums for Example 1 with a layer of 1.5 millions in
excess of the priority a million for different values of the parameter ω.

a = 0.8 a = 1.5 a = 2.2
ω Correlation Collective Bayes Collective Bayes Collective Bayes
-4 -0.028 11.1805 8.0838 2.8365 2.9943 1.5891 1.6574
-3 -0.021 11.1990 8.0846 2.8288 2.9911 1.5823 1.6545
-2 -0.014 11.2175 8.0855 2.8211 2.9879 1.5755 1.6517
-1 -0.007 11.2361 8.0863 2.8135 2.9847 1.5687 1.6489
0 0.000 11.2546 8.0871 2.8058 2.9816 1.5619 1.6460
1 0.007 11.2731 8.0880 2.7981 2.9784 1.5551 1.6432
2 0.014 11.2917 8.0888 2.7905 2.9752 1.5483 1.6403
3 0.021 11.3102 8.0896 2.7828 2.9720 1.5415 1.6374
4 0.028 11.3287 8.0905 2.7751 2.9688 1.5347 1.6346
5 0.036 11.3472 8.0913 2.7675 2.9656 1.5279 1.6317
6 0.042 11.3658 8.0922 2.7598 2.9625 1.5211 1.6289
7 0.050 11.3843 8.0930 2.7521 2.9593 1.5143 1.6260
8 0.057 11.4028 8.0938 2.7445 2.9561 1.5075 1.6232
9 0.064 11.4214 8.0947 2.7368 2.9529 1.5007 1.6203

10 0.071 11.4399 8.0955 2.7291 2.9497 1.4939 1.6174
11 0.078 11.4584 8.0964 2.7214 2.9465 1.4871 1.6146
12 0.085 11.4769 8.0972 2.7138 2.9433 1.4803 1.6117

Table 5. Collective and Bayes net premiums for Example 2 with a layer of 2 millions in
excess of the priority a million for different values of the parameter ω.

a = 0.8 a = 1.5 a = 2.2
ω Correlation Collective Bayes Collective Bayes Collective Bayes

-12 -0.140 0.7151 0.7078 0.1829 0.3554 0.0914 0.2264
-11 -0.128 0.7174 0.7059 0.1808 0.3542 0.0899 0.2255
-10 -0.117 0.7197 0.7040 0.1787 0.3529 0.0883 0.2246

-9 -0.105 0.7220 0.7020 0.1767 0.3516 0.0868 0.2236
-8 -0.093 0.7243 0.7000 0.1746 0.3503 0.0852 0.222
-7 -0.081 0.7266 0.6979 0.1725 0.3489 0.0837 0.2217
-6 -0.070 0.7290 0.6957 0.1704 0.3475 0.0822 0.2207
-5 -0.058 0.7313 0.6935 0.1683 0.3461 0.0806 0.2196
-4 -0.046 0.7336 0.6913 0.1662 0.3446 0.0791 0.2185
-3 -0.035 0.7359 0.6889 0.1641 0.3431 0.0775 0.2174
-2 -0.023 0.7382 0.6865 0.1620 0.3415 0.0760 0.2163
-1 -0.011 0.7405 0.6840 0.1599 0.3398 0.0744 0.2151
0 0.000 0.7420 0.6815 0.1578 0.3382 0.0729 0.2139
1 0.011 0.7452 0.6789 0.1557 0.3364 0.0714 0.2126
2 0.023 0.7475 0.6762 0.1536 0.3347 0.0698 0.2113
3 0.035 0.7498 0.6734 0.1516 0.3328 0.0683 0.2100
4 0.046 0.7521 0.6705 0.1495 0.3309 0.0667 0.2086
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Table 6. Collective and Bayes net premiums for Example 1 without a layer in excess of the
priority a million for different values of the parameter ω.

a = 0.8 a = 1.5 a = 2.2
ω Correlation Collective Bayes Collective Bayes Collective Bayes
-4 -0.028 13.2230 8.9452 4.7854 3.7701 3.4611 2.3652
-3 -0.021 13.2187 8.9416 4.7555 3.7627 3.4326 2.3584
-2 -0.014 13.2144 8.9379 4.7256 3.7553 3.4041 2.3515
-1 -0.007 13.2101 8.9343 4.6957 3.7478 3.3756 2.3446
0 0.000 13.2058 8.9306 4.6658 3.7404 3.3470 2.3377
1 0.007 13.2015 8.9270 4.6359 3.7330 3.3185 2.3308
2 0.014 13.1972 8.9233 4.6060 3.7256 3.2900 2.3239
3 0.021 13.1929 8.9197 4.5761 3.7181 3.2615 2.3170
4 0.028 13.1886 8.9160 4.5462 3.7107 3.2330 2.3101
5 0.036 13.1843 8.9123 4.5163 3.7032 3.2044 2.3032
6 0.042 13.1800 8.9087 4.4864 3.6958 3.1759 2.2963
7 0.050 13.1758 8.9050 4.4565 3.6883 3.1474 2.2894
8 0.057 13.1715 8.9013 4.4266 3.6809 3.1189 2.2825
9 0.064 13.1672 8.8977 4.3967 3.6734 3.0903 2.2756

10 0.071 13.1629 8.8940 4.3668 3.6660 3.0618 2.2687
11 0.078 13.1586 8.8903 4.3369 3.6585 3.0333 2.2617
12 0.085 13.1543 8.8866 4.3070 3.6510 3.0048 2.2548

Table 7. Collective and Bayes net premiums for Example 2 without a layer in excess of the
priority a million for different values of the parameter ω.

a = 0.8 a = 1.5 a = 2.2
ω Correlation Collective Bayes Collective Bayes Collective Bayes

-12 -0.140 0.8994 0.3378 0.2273 1.5146 1.0860 0.9017
-11 -0.128 0.8965 0.3310 0.2214 1.5072 1.0796 0.8959
-10 -0.117 0.8935 0.3242 0.2156 1.4996 1.0729 0.8898

-9 -0.105 0.8906 0.3174 0.2097 1.4918 1.0661 0.8836
-8 -0.093 0.8877 0.3106 0.2038 1.4838 1.0592 0.8773
-7 -0.081 0.8848 0.3038 0.1980 1.4755 1.0520 0.8707
-6 -0.070 0.8819 0.2970 0.1921 1.4671 1.0446 0.8640
-5 -0.058 0.8789 0.2902 0.1862 1.4584 1.0370 0.8571
-4 -0.046 0.8760 0.2834 0.1804 1.4494 1.0292 0.8500
-3 -0.035 0.8731 0.2766 0.1745 1.4402 1.0212 0.8427
-2 -0.023 0.8702 0.2698 0.1687 1.4307 1.0129 0.8352
-1 -0.011 0.8673 0.2630 0.1628 1.4210 1.0044 0.8275
0 0.000 0.8643 0.2562 0.1569 1.4109 0.9957 0.8195
1 0.011 0.8614 0.2494 0.1511 1.4006 0.9866 0.8113
2 0.023 0.8585 0.2426 0.1452 1.3899 0.9773 0.8028
3 0.035 0.8556 0.2358 0.1394 1.3789 0.9677 0.7940
4 0.046 0.8527 0.2290 0.1335 1.3675 0.9578 0.7850

Even though, for all the tables above, the predicted correlation coefficients seem to be minor, this
is not a trivial issue since it could have a significant impact when changes of scales in the monetary
units are considered; therefore, the analysis we have carried out in this work shows that although
the correlation is usually low, the impact of assuming independence might have potential financial
consequences. It is important to note that the dependence hypothesis is established between the risk
profiles and not directly between the number of claims and the corresponding severity. However, given
the mathematical difficulty that the latter scenario would entail, this can be replaced by transferring
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this hypothesis to the risk profiles, which retain characteristics of the former case. Even though when
calculating bonus-malus premiums in the automobile insurance portfolio, independence between the
number of claims and the amount of the claim is usually assumed, some recent works such as [39]
have discussed the calculation of bonus-malus premiums for the compound loss by incorporating a
certain degree of dependence between the frequency and severity. However, in practice, the correlation
between both variables is usually low. For example, by considering the automobile insurance portfolio
used in [40] and taken from [41] that corresponds to the years 2004-05 and contains data of 67,856
insureds, of whom 4,624 filed a claim, i.e., a positive claims amount, the correlation between the
number of claims and the amount for the whole portfolio is 0.4818. Nevertheless, when it is restricted to
the 4,624 policyholders that have declared at least one claim, the correlation drops to 0.0762, consistent
with the values shown in Table 3.

6. Final comments and future works

We have presented an excess-of-loss reinsurance model derived from the compound Poisson
distribution. The classical Pareto distribution was assumed for the severity of claims, and dependence
between the number of claims and claims size was placed on the risk profiles. In this work, initially,
we considered independence between the risk profiles whose parameters follow gamma and shifted
Erlang distributions. Next, the hypothesis of independence was broken by assuming some degree
of dependence between the random variables associated with these risk profiles via a prior bivariate
distribution based on the Sarmanov-Lee probabilistic family. This model was used to study the effect
of incorporating some degree of dependence of these variables on the collective and Bayesian net
premiums. The results obtained lead us to conclude that even at moderate levels of correlation between
the risk profiles, these aforementioned reinsurance premiums are more sensitive than those computed,
assuming the independence of the risk profiles.

The methodology proposed in this paper is suitable for application in the collective model, in
which the two relevant variables used in calculating premiums are used simultaneously: the number of
claims and the amount associated with them. The difficulty of working simultaneously with these two
variables is well-known, especially when obtaining the total claim amount distribution. Two scenarios
that should be considered are, on the one hand, the study of the sensitivity of the obtained premiums
to slight modifications in the choice of the prior distribution. To that end, we are discussing carrying
out a Bayesian robustness analysis (local or global). On the other hand, choosing the Sarmanov-Lee
family to construct the prior distribution that allows for a certain degree of dependence between the two
parameters can be very rigid (it has the advantage of being almost conjugate) and could be replaced by
a bivariate distribution based on another type of copula.
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Appendix

Proof of Lemma 2

First, we have that

E[Λ exp(−Λ)] =
τν

Γ(ν)

∫ ∞

0
λ exp(−λ)λν−1 exp(−τλ) dλ

=
τν

Γ(ν)
Γ(ν + 1)

(τ + 1)ν+1 =
ν

τ
(1 + τ−1)−ν−1 =

ν

τ
δ1(ν + 1, τ).

On the other hand, we have,

E[Ψ exp(−Ψ)] =
ξγ

Γ(γ)

∫ ∞

k
ψ exp(−ψ)(ψ − k)γ−1 exp[−ξ(ψ − k)] dψ

=
ξγ

Γ(γ)
exp(−k)

∫ ∞

k
ψ(ψ − k)γ−1 exp[−(ξ + 1)(ψ − k)] dψ

=

(
ξ

ξ + 1

)γ (
k +

γ

ξ + 1

)
exp(−k)
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=

(
k +

γ

ξ + 1

)
δ2(ξ, γ) exp(−k).

Proof of Proposition 7

By taking logarithm in (4.8), we get that

log ρ(Λ,Ψ) = logω +
1
2

log(νγ) − (ν + 1) log
(
τ + 1
τ

)
+ γ log

(
ξ

1 + ξ

)
− log τ − log(1 + ξ) − 1,

from which we get, after some simple algebra, that

∂ρ(Λ,Ψ)
∂τ

=
ρ(Λ,Ψ)

τ

ν − τ

1 + τ
,

∂ρ(Λ,Ψ)
∂ν

= ρ(Λ,Ψ)
[

1
2ν
− log

(
1 +

1
τ

)]
,

∂ρ(Λ,Ψ)
∂γ

= ρ(Λ,Ψ)
[

1
2γ
+ log

(
ξ

1 + ξ

)]
,

∂ρ(Λ,Ψ)
∂ξ

= ρ(Λ,Ψ)
γ − ξ

ξ(1 − ξ)
.

Now, the result of Proposition 7 is almost direct.

Proof of Proposition 9

Expression (4.10) is obtained after using (4.5) and the following computations∫ ∞

1

∫ ∞

0
e−λ−ψP(λ, ψ)π1(λ|ν, τ)π2(ψ|γ, ξ) dλ dψ

=
τνξγ

Γ(ν)Γ(γ)e

∫ ∞

1

∫ ∞

0
P(λ, ψ)λν−1e−(τ+1)λ(ψ − 1)γ−1e−(ξ+1)(ψ−1) dλ dψ

=
1
e

(
τ

τ + 1

)ν ( ξ

ξ + 1

)γ
P(ν, τ + 1, γ, ξ + 1)

= δ1(ν, τ)δ2(γ, ξ)P(ν, τ + 1, γ, ξ + 1).∫ ∞

1

∫ ∞

0
e−λP(λ, ψ)π1(λ|ν, τ)π2(ψ|γ, ξ) dλ dψ

=
τν

Γ(ν)
ξγ

Γ(γ)

∫ ∞

1

∫ ∞

0
¶(λ, ψ)λν−1e−(τ+1)λ(ψ − 1)γ−1e−ξ(ψ−1) dλ dψ

=
τν

Γ(ν)
Γ(ν)

(τ + 1)ν
¶(ν, τ + 1, γ, ξ)

= δ1(ν, τ)P(ν, τ + 1, γ, ξ).
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1

∫ ∞

0
e−ψP(λ, ψ)π1(λ|ν, τ)π2(ψ|γ, ξ) dλ dψ

=
τν

eΓ(ν)
ξγ

Γ(γ)

∫ ∞

1

∫ ∞

0
P(λ, ψ)λν−1e−τλ(ψ − 1)γ−1e−(ξ+1)(ψ−1) dλ dψ

=
ξγ

eΓ(γ)
Γ(ν)

(ξ + 1)γ
P(ν, τ, γ, ξ + 1)

= δ1(ν, τ)P(ν, τ + 1, γ, ξ).

The Bayes premium is obtained by replacing in (4.9) the posterior distributions π∗1π
∗
2 by the

corresponding Bayes premium obtained from the proposed model used.

Proof of Corollary 1

By using expression (3.7), we have

P(ν, τ + 1, γ, ξ) =
τ

τ + 1
P(ν, τ, γ, ξ) and

P(ν, τ + 1, γ, ξ + 1) =
τ

τ + 1
P(ν, τ, γ, ξ + 1).

Now, by expanding (4.10), we have

Eπ[P(Λ,Ψ)] = P(ν, τ, γ, ξ) + ωδ1(µ, τ)δ2(ξ, γ)
[
P(ν, τ, γ, ξ) + P(ν, τ + 1, γ, ξ + 1)

−P(ν, τ, γ, ξ + 1) − P(ν, τ + 1, γ, ξ)
]
,

which is equivalent to

Eπ[P(Λ,Ψ)] = P(ν, τ, γ, ξ) + ωδ1(µ, τ)δ2(ξ, γ)
[
P(ν, τ, γ, ξ) +

τ

τ + 1
P(ν, τ, γ, ξ + 1)

−P(ν, τ, γ, ξ + 1) −
τ

τ + 1
P(ν, τ, γ, ξ)

]

and then the result easily follows.
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