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1. INTRODUCTION

We use an old theorem proven over ninety years ago to obtain bimodal and multimodal
extensions of the normal distribution and the skew-normal distribution. One can almost
certainly say that the normal distribution constitutes the queen of the comprehensive family
of the continuous probability distributions. Since the end of the 19th century, numerous re-
searchers, such as the distinguished F.Y. Edgeworth, and also Chas. H. Kummel, Arthur L.
Bowley, Morgan W. Crofton, among many others derived modifications of the normal law to
discuss situations where the empirical data presented some asymmetry that the normal dis-
tribution could not explain. A review of the normal distribution and some of its modifications
can be found in Patel and Campbell (1984).

Bimodal distributions arise in nature in many different scenarios. Perhaps, one of the
most relevant phenomena that can be explained with distributions is the disease patterns.
For example, the incidence of some types of cancers by age displays a major mode for young
adults and minor mode for older adults (see Anderson et al., 2006). In addition, the occurrence
of bimodality has also implications in geoscience (see Hirota et al., 2011). Finding appropri-
ate probabilistic models that can explain bivariate datasets is an issue of vital importance.
In this work, we propose an extension of the normal and skew-normal densities that may
be unimodal or bimodal. This new family of distributions that arises from an old Theorem
provided by Slobin (1927) comprises flexible parametric families of continuous distributions
that are useful in statistical practice.

In the last years, different techniques to extend the normal family have been deemed in
the statistical literature: the skew-normal distribution in Azzalini (1985) (see also Azzalini,
1986), the Balakrishnan skew-normal density in Sharafi and Behboodian (2008) (more details
in Teimouri and Nadarajah, 2016), the generalization proposed by Arnold and Beaver (2002),
the Sinh-arcsinh family introduced by Jones and Pewsey (2009), the generalized normal one
in Garćıa et al. (2010), Gómez-Déniz et al. (2021) and Gómez-Déniz et al. (2021), and the
recently proposed models provided by Venegas et al. (2018) and Sulewski (2022), among
others. Some other works related to the normal and skew normal densities are Arellano-Valle
et al. (2004), Arellano-Valle et al. (2005) and Gómez et al. (2007). For a comprehensive
review of the skew normal families the reader is referred to Azzalini (2013).

The density function introduced here resembles some important properties satisfied by
the normal distribution. The first family is symmetric with positive real support. The second
family is asymmetric and defined on the positive real numbers. In general, both families show
bimodality. An overview of this work that will undoubtedly help the reader to understand
better the elements that are not so essential is illustrated in the flowchart displayed in Figure 4.

The rest of this paper is structured as follows. In Section 2 we derive the methodology
based on the use of a result provided in Slobin (1927) to derive the new family of distribution.
Here, expressions for the mean, variance, and other features for the general model are also
provided. Next, we also examine the special case of considering the classical normal distribu-
tion as the parent distribution. Then, to break the symmetry of the latter case, we introduce
the skew-normal distribution as the baseline model. In Section 3, the parameter estimation
problem is discussed. Some illustrative examples related to environmental issues, in particu-
lar in geoscience, are analyzed in Section 4. Finally, closing comments and modifications of
the models proposed are shown in the last Section.
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2. THE PROPOSED MODEL

This section gives the main results of this paper, from which we derive the two families of
probability density functions that will be described later. The first family is introduced in the
second theorem of this section. Although any distribution with support on the real line can
be used as a candidate of this new distribution, the normal case is the one we are examining
in this section. It can be simply shown after a change of variable that this model is connected
to the generalized inverse Gaussian distribution. This probabilistic family is symmetric and
has two modal values that are equidistant with respect to the axis of symmetry. The second
family presents the advantage of having an asymmetric density function. We begin with the
following Theorem found in Slobin (1927) that is required for the main result of this work.

Theorem 2.1 (Slobin, 1927). Let the function ω(x) = x− 1/x, x 6= 0. Then, if the

function m(x) is a function integrable on R = (−∞,∞) and if the function m(ω(x)) is also

integrable in R = (−∞,∞), we have that∫ ∞

−∞
m(ω(x))dx =

∫ ∞

−∞
m(x) dx.(2.1)

Following the same arguments that the ones provided in the proof of the above Theorem
given in Slobin (1927), it is simple to observe that (2.1) is also valid for ωα(x) = x− α/x,
being α ≥ 0. The following result provides an alternative and more simple proof than the
one given in Slobin (1927) for this case. Previously we need the following Lemma, which is
provided in Behboodian (1978).

Lemma 2.1 (Behboodian, 1978). Let X be a symmetric random variable, and let y =
h(x) be an odd real-valued function. Then, the random variable Y = h(X) is also symmetric.

As a result of this Lemma, if X is a symmetric random variable then the random
variable Y = ωα(X) is also symmetric. In the next result we derive an expression for the
density function of Y = ωα(X).

Theorem 2.2. Let f(x) be a probability density function (pdf hereafter) symmetric

about 0 and consider the function f(ωα(x)), with ωα(x) = x− α/x, being α ≥ 0. Then, if

df(ωα(x))/(dα) is also a symmetric function we have that
∫∞
−∞ f(ωα(x))dx = 1.

Proof: Since f(x) is symmetrical and ωα(x) is an odd function, using Lemma 2.1 we
have that f(ωα(x)) is also symmetrical. Now, consider the function ν(α) =

∫∞
−∞ f(ωα(x)) dx

for which we have that

ν ′(α) =
d
dα

ν(α) = −
∫ ∞

−∞

1
x

d
dα

f(ωα(x)) dx = 0,

because df(ωα(x))/(dα) is symmetrical (by assumption). Therefore, ν(α) is constant and
since ν(0) = 1 we have the result.
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Based on the use of Theorem 2.2 we can build a family of pdf’s by taking

(2.2) gα(x) =

{
f(ωα(x)), x 6= 0,

f(0), x = 0,

where α ≥ 0. Note that this is a two piece-wise pdf.

The following proposition displays some essential properties related to this distribution.

Proposition 2.1. The pdf given in (2.2) satisfies the following properties:

(i) gα(x) is symmetric about zero. That is, gα(x) = gα(−x) for all x ∈ R. In fact,

the random variable Z = −X follows the same distribution that X.

(ii) g0(x) = f(x).

(iii) gα(0) = f(0) for all α ≥ 0.

(iv) E(X2κ+1) = 0, κ ∈ {0, 1, ...}. That is, all odd raw moments are zero.

(v) The random variables Y = ωα(X) and Z = gα(X) are uncorrelated and therefore

cov(Y, Z) = 0, provided that all the first and second moments of Y and Z exist.

Proof: Properties (i)–(iv) are direct. To show (v), observe that ωα(x) is an odd func-
tion, gα(x) is an even real-valued (measurable) function and the random variable T = Y Z

satisfies that T (−x) = ωα(−x)gα(−x) = −ωα(x)gα(x) = −T (x), therefore is an odd function.
Thus, cov(Y, Z) = E(Y Z)−E(Y )E(Z) = 0, because E(Y ) = 0 (due to Lemma 2.1, Y is sym-
metrical) and E(Y Z) = 0 (T = Y Z is an odd function). For more details see Behboodian
(1978).

2.1. THE NORMAL CASE

Natural choices for f(x) to be plugged into (2.2) are the Cauchy distribution, the
Student’s t distribution, and the normal distribution that will be the one considered in the
rest of this work, i.e. f(x) = φ(x), being φ(x) the pdf of the standard normal distribution.
Then, it is simple to see that

(2.3) gα(x) =

{
φ(ωα(x)), x 6= 0,

φ(0), x = 0,

is a genuine pdf for α ≥ 0. Note that the special case α = 0 represents the standard normal
distribution. Simple algebra provides that the distribution is symmetric about zero and has
mean and variance given by 0 and 1 + α, respectively. The distribution is always bimodal,
with two modes in x = −

√
α and x =

√
α. To see this, observe that

g′α(x) = −gα(x)
(
x− α

x

)(
1 +

α

x2

)
= 0

for x = ±
√

α. Now, it is simple to see that g′′α(±
√

α) < 0. The antimode is obviously x = 0.
Henceforward, we will write X ∼ BN(α) when the random variable X follows the pdf given
in (2.3), denoting that is a bimodal generalization of the normal distribution.
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The entropy does not depend on α and is equivalent to the one of the standard normal
distribution. Observe that limx→0+ gα(x) = limx→0− gα(x) = φ(0) and thus the pdf defined
in (2.3) is a continuous function.

Figure1 displays the graphs of the pdf given in (2.3) for selected values of parameter α≥ 0.
The α parameter, the only parameter of the distribution, clearly indicates two fundamental
things: first, if it takes the value zero, we are in the case of the standard normal distribution;
second, a value other than zero provides a distribution with two modes that are equidistant
with respect to the axis of symmetry. The distance between the modes increases with the
value of α.6 E.Gómez–Déniz, E. Calderı́n-Ojeda and J.M.Sarabia

α = 0

-4 -2 0 2 4

0.0

0.1

0.2

0.3

0.4

x

g α
(x
)

α = 0.5

-4 -2 0 2 4

0.0

0.1

0.2

0.3

0.4

x

g α
(x
)

α = 2

-4 -2 0 2 4

0.0

0.1

0.2

0.3

0.4

x

g α
(x
)

α = 5

-4 -2 0 2 4

0.0

0.1

0.2

0.3

0.4

x

g α
(x
)

Figure 1: Plots of the pdf gα(x) for selected values of the parameter α

Proof: Since dx = 1/(2
√
v)dv we have that

gα(v) =
1

2
√

2vπ
exp

[
−1

2

(√
v − α√

v

)2
]

=
v−1/2 exp(α)

2
√

2π
exp

[
−1

2

(
v +

α2

v

)]
.(2.5)

Now, having into account that K1/2(α) = exp(−α)
√
π/(2α), the result follows

by comparing (2.5) with (2.4).

Proposition 2.3. Let X ∼ BN(α) with the pdf given in (2.3). Then, it is
verified that E(Xκ) = 0 if κ (positive or negative) is odd while the even moments
(positive or negative) are given by

E(X2κ) =

√
2α1+2κ

π
exp(α)Kκ+ 1

2
(α), κ ∈ {0, 1, . . . }.(2.6)

Proof: Since the distribution given in (2.3) is symmetrical, then all odd-order
moments are equal to zero. To see that (2.6) is true, then it is simple to see that the
distribution is symmetrical since we have that

E(Xκ) = 2

∫ ∞
0

φ(ωα(x) dx

Figure 1: Plots of the pdf gα(x) for selected values of the parameter α.

2.2. Connection with others distributions

The following result connects the proposed distribution with the generalized inverse
Gaussian distribution. Recall that a continuous variable Z > 0 follows a generalized inverse
Gaussian distribution (see Jørgensen, 1982 and Johnson et al., 1995, Chapter 15) with pa-
rameters a > 0, b > 0 and r ∈ R if its pdf is given by

f(z) =
(a/b)r/2

2Kr(
√

ab)
zr−1 exp

[
−1

2

(
az +

b

z

)]
, z > 0,(2.4)

where Kν(s) gives the modified Bessel function of the second kind. Furthermore, if Z follows
a generalized inverse Gaussian distribution, then 1/Z follows a reciprocal generalized inverse
Gaussian distribution. Additionally, simple computation provides that the random variable
1/X2 follows a reciprocal generalized inverse Gaussian distribution.
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Proposition 2.2. Let X ∼ BN(α) with the pdf given in (2.3). Then, the random

variable V = X2 follows a generalized inverse Gaussian distribution with parameters a = 1,

b = α2 and r = 1/2.

Proof: Since dx = 1/(2
√

v)dv we have that

gα(v) =
1

2
√

2vπ
exp

[
−1

2

(√
v − α√

v

)2
]

=
v−1/2 exp(α)

2
√

2π
exp
[
−1

2

(
v +

α2

v

)]
.(2.5)

Now, having into account that K1/2(α) = exp(−α)
√

π/(2α), the result follows by com-
paring (2.5) with (2.4).

Proposition 2.3. Let X ∼ BN(α) with the pdf given in (2.3). Then, it is verified that

E(Xκ) = 0 if κ (positive or negative) is odd while the even moments (positive or negative)

are given by

E(X2κ) =

√
2α1+2κ

π
exp(α)Kκ+ 1

2
(α), κ ∈ {0, 1, ...}.(2.6)

Proof: Since the distribution given in (2.3) is symmetrical, then all odd-order moments
are equal to zero. To see that (2.6) is true, then it is simple to see that the distribution is
symmetrical since we have that

E(Xκ) = 2
∫ ∞

0
φ(ωα(x) dx

and by making the change of variable u = x2 we get

E(Xκ) =
2 exp(α)√

2π

∫ ∞

0
u(κ−1)/2 exp

[
−1

2

(
u +

α2

u

)]
du(2.7)

from which the result follows immediately by arranging parameters in (2.7) and identifying
it with the pdf of the generalized inverse Gaussian distribution given in (2.4).

In particular, if κ = 1 we get the second row moment of the distribution, which coincides
with the variance, given by var(X) = 1 + α. Furthermore, if κ = −1 by using (2.6) we have
that

E
(

1
X2

)
=

1
α

, α 6= 0,(2.8)

and

E
[(

X − α

X

)2κ
]

= (2κ− 1)!!,(2.9)

where n!! = n(n− 2)(n− 4) ··· 2 · 1 represents the double factorial.
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Note that property given in (2.9) is shared with the standard normal distribution.
Using the series representation of the exponential function, we derive the moment generating
function of the distribution, which is given by

MX(t) = E[exp(tX)] =
∞∑

j=0

t2j

(2j)!

√
2α1+2j

π
exp(α)Kj+ 1

2
(α).

Proposition 2.4. The cumulative distribution function (cdf henceforward), Gα(x) =
Pr(X ≤ x), for a continuous random variable following the pdf given in (2.3) is

Gα(x) =
1
2
[Φ(ωα(x)) + Φ(τα(x)) exp(2α)], x < 0,(2.10)

Gα(x) = 1− 1
2
[
Φ̄(ωα(x)) + Φ̄(τα(x)) exp(2α)

]
, x > 0,(2.11)

and Gα(0) = 1/2, where τα(x) = x + α/x and Φ̄(z) = 1−Φ(z) is the survival function of the

standard normal distribution.

Proof: The proof is obtained in the following way. Let Gα(−x) = Pr(X ≤ −x). Thus,

Gα(−x) =
∫ −x

−∞
φ(ωα(t) dt =

∫ ∞

x
φ(ωα(t) dt,

which can be written, after the change of variable Y = X2, as

Gα(−x) =
∫ ∞

x

exp(α)√
2yπ

exp
[
−1

2

(
y +

α2

y

)]
dy.

Now, by using the cdf of the generalized inverse Gaussian distribution provided in
Malinovskii (2017) we get, after simple algebra (2.10). Expression (2.11) is obtained in a
similar way.

A random variate X from the random variable with pdf given by (2.3) is derived as
follows:

• Generate a random number u from the standard uniform distribution, U(0, 1).

• Generate random variate v from the generalized inverse Gaussian distribution with
parameters a = 1, b = α2 and r = 1/2.

• If u < 0.5 then x = −
√

v ; otherwise x =
√

v.

2.3. Extensions

The major disadvantage of the family of distributions given in (2.3) lies in its symmetry
and also in the fact that the two modes are equidistant with respect to the axis of symmetry.
Since f(ωα(x) is a symmetric pdf, by using the representation provided by Azzalini (1985),
we can consider the more flexible family of pdf’s given by

(2.12) gα,λ(x) =

{
2Φ(λ x)φ(ωα(x)), x 6= 0,

φ(0), x = 0,

where α ≥ 0 and λ ∈ R.
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In practice Φ(λx) can be replaced by Φ(λ m(x)) for any odd function m(·) in order to
ensure that (2.13) represents a proper density function. In particular, we can take m(x) =
ωβ(x), β ∈ R, to build the family of pdf’s given by

(2.13) gα,β,λ(x) =

{
2Φ(λ ωβ(x))φ(ωα(x)), x 6= 0,

φ(0), x = 0,

where α ≥ 0, β ∈ R and λ ∈ R. See for instance Azzalini (2013). Observe that when α = β = 0
the pdf given in (2.13) reduces to the skew normal density provided in Azzalini (1985). See also
Azzalini (1986) and Azzalini and Bowman (1990), among others. Azzalini (1985), Azzalini
(1986), Chiogna (1998), Henze (1986) and Gupta et al. (2004), among other papers, provide
many properties of the skew normal density. The standard normal distribution is obtained
for α = λ = 0. A probabilistic representation of this family of distribution can be obtained in
a similar fashion as the one provided in Azzalini (1986) and Henze (1986) (see also Azzalini,
2013).

To see that (2.13) represents a genuine pdf, we proceed in a similar way as we did in
Theorem 2.2. In this case, we have to add that Φ(·) is a bounded function with a derivative
being a symmetric density function about zero. The family (2.13) contains the normal, the
skew normal density and others for λ 6= 0. Furthermore, density (2.3) also appears by mixture
(see the discussion of M. Cuadras about the work of Arnold and Beaver, 2002). To see this,
note that if λ follows a symmetric distribution π(λ), with −∞ < λ < ∞, then∫ ∞

−∞
2Φ(λ ωβ(x))φ(ωα(x))π(λ) dλ = φ(ωα(x)).

Hereafter, we will write X ∼ GSN(α, β, λ) to denote that the pdf of the random variable
X follows the pdf given in (2.13).

Generation of random variates from (2.13) is now easy via the following representation
of the distribution. Let X ∼ BN(α) and Z = X SX where, conditionally on X = x 6= 0, we
have

SX =

{
+1 with probability Φ(λ ωβ(x)),

−1 with probability 1− Φ(λ ωβ(x)).

Therefore, a random variate z from the random variable with density function given by
(2.13) is derived as follows:

• Generate a random number u from the standard uniform distribution, U(0, 1).

• Generate random variate x from the distribution with pdf (2.3).

• Compute Φ(λ ωβ(x)).

• If u < Φ(λ ωβ(x)) then z = x ; otherwise z = −x.

Then, the random variable Z has the density function given in (2.13). Figure 2 displays
some plots of the pdf (2.13) for special values of the parameters.

It is straightforward to verify that properties (2.8) and (2.9) are satisfied also for the
distribution (2.13). Some additional results of (2.13) are given below.
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Figure 2: Plots of the pdf (2.13) for selected values of the parameters α, β and
λ

Proof: To see (i), observe that given Z = −X we have that |dz| = |dx|. Now
the result follows having into account that λωβ(−z) = λ(−z+β/z) = −λ(z−β/z) =
−λωβ(z) and φ(ωα(−x)) = φ(ωα(x)). Finally, (ii) follows from (i).

Proposition 2.6. As λ → ∞ and β → 0 the pdf given in (2.13) tends to
gα(x) = 2φ(ωα(x)), i.e. a generalized half-normal density.

Proof: It is derived as a result of writing (2.13) as

gα,β,λ(x) = 2

(∫ λωβ(x)

−∞
φ(t) dt

)
φ(ωα(x)),

and taking λ→∞.

For λ→∞ and α→ 0+ the classical half-normal density is obtained.

Figure 2: Plots of the pdf (2.13) for selected values of the parameters α, β and λ.

Proposition 2.5. The following results are verified:

(i) If X ∼ gα,β,λ(x) then the random variable Z = −X ∼ gα,β,−λ(z). That is,

gα,β,λ(−x) = gα,β,−λ(x) for all x.

(ii) For all x ∈ R, the cdf Gα,β,λ(x) = Pr(X ≤ x), verifies:

Gα,β,λ(x) = Gα,β,−λ(−x).

Proof: To see (i), observe that given Z = −X we have that |dz| = |dx|. Now the
result follows having into account that λ ωβ(−z) = λ(−z + β/z) = −λ(z − β/z) = −λ ωβ(z)
and φ(ωα(−x)) = φ(ωα(x)). Finally, (ii) follows from (i).

Proposition 2.6. As λ →∞ and β → 0 the pdf given in (2.13) tends to gα(x) =
2φ(ωα(x)), i.e. a generalized half-normal density.

Proof: It is derived as a result of writing (2.13) as

gα,β,λ(x) = 2

(∫ λωβ(x)

−∞
φ(t) dt

)
φ(ωα(x)),

and taking λ →∞.
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For λ →∞ and α → 0+ the classical half-normal density is obtained.

If X ∼ GSN(α, β, λ) then its distribution function

Gα,β,λ(x) = 2
∫ x

−∞

∫ λωβ(s)

−∞
φ(t)φ(ωα(s)) dt ds(2.14)

can be represented as the cdf of a bivariate normal distribution. To see this take δ =
λ/
√

1 + λ2 and consider the change of variable

t =
η + δ ωβ(s)√

1− δ2
.

Then, some algebra provides that (2.14) can be rewritten as

Gα,β,λ(x) =
2√

1− δ2

∫ x

−∞

(∫ 0

−∞
φ

(
η + δ ωβ(s)√

1− δ2

)
dη

)
φ(ωα(s)) ds.

Unfortunately, we have not been able to find either the generating moment function
or the ordinary moments of the distribution given in (2.13). Finally, by taking logarithm in
(2.13), it is simple to verify that this pdf can have two modes which are the solutions of the
equation

λ

(
1 +

β

x2

)
φ(λωβ(x))−

(
1 +

α

x2

)
Φ(λωβ(x)) ωα(x) = 0.

As most of the multimodal datasets considered in practice are defined on the positive
real values, it is convenient to reparametrized the distribution given by (2.3) via a linear
transformation, i.e. Y = µ + σX, where X ∼ gα(x), where α ≥ 0, µ ∈ R and σ > 0 given in
(2.3) to obtain a more general family of densities. Its pdf is given by

(2.15) gα,µ,σ(x) =

 φ

(
ωα

(
x− µ

σ

))
, x 6= µ,

φµ,σ(µ), x = µ.

For the sake of simplicity, we will consider the value µ = 0 when estimating the param-
eters of the distribution, in that case the distribution coincides with (2.3). A value x = 0 is
better identifiable in an empirical data source than another value that is unlikely to be an
integer. For the case that µ = 0, the parameter can be estimated by using a similar procedure
as the one used in the composite models (see Caldeŕın-Ojeda, 2015).

2.4. Extensions

A variant of the approach used to derived (2.13) can be simply implemented as follows:

gα1,α2,β1,β2,λ(x) = 2Φ(λ ωβ1,β2(x))φ(ωα1,α2(x))(2.16)
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for x 6= 0, x 6=
√

βi, x 6= √
αi, while gα1,α2,β1,β2,λ(0) = φ(0), gα1,α2,β1,β2,λ(

√
αi) = φ(

√
αi),

gα1,α2,β1,β2,λ(
√

βi) = φ(
√

βi), where βi ∈ R, αi ≥ 0 (i = 1, 2) and

ωα1,α2(x) = x− α2 −
α1

x− α2
x

,

ωβ1,β2(x) = x− β2 −
β1

x− β2

x

.

This modified family of distributions would allow us to obtain densities with more than
two modal values. The extension of this distribution to generate multimodality is immediate.
For the particular case (2.16), two graphs of the pdf have been plotted in Figure 3.
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Figure 3: Plot of the probability density function (2.16) for selected values of
the parameters αi, βi (i = 1, 2) and λ

This new multimodal family of probability distributions can be utilized to explain
the size of the claims in cyber risk. In this regard, some multimodal and asymmetric dis-
tribution can be effortlessly applied to capture the multimodality and extremely skewed
feature of the severity of the cyber breaches.

2.5. Summary of the proposed methodology

Before continuing with the usual elements of distribution theory, such as statis-
tical inference and applications, it is essential to summarize the methodology we have
carried out in this work in a diagram. Figure 4 shows a flowchart outlining the methods
developed in this article. This diagram can help the reader observe the work’s general
perspective and allow, if desired, to ignore those elements that could be of lesser interest.

Figure 3: Plot of the probability density function (2.16) for selected values
of the parameters αi, βi (i = 1, 2) and λ.

This new multimodal family of probability distributions can be utilized to explain the
size of the claims in cyber risk. In this regard, some multimodal and asymmetric distribution
can be effortlessly applied to capture the multimodality and extremely skewed feature of the
severity of the cyber breaches.

2.5. Summary of the proposed methodology

Before continuing with the usual elements of distribution theory, such as statistical
inference and applications, it is essential to summarize the methodology we have carried out
in this work in a diagram. Figure 4 shows a flowchart outlining the methods developed in
this article. This diagram can help the reader observe the work’s general perspective and
allow, if desired, to ignore those elements that could be of lesser interest.
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Basic model

gα(x) =

{
f(ωα(x)), x 6= 0,
f(0), x = 0.

Normal case: f = φ (standard normal pdf)
Unimodal, bimodal and symmetrical

ωα(x) =
x − α/x, α ≥ 0

Relation with the
inverse Gaussian

distribution

General models
unimodal, bimodal and skew

gα,λ(x) =

{
2Φ(λx)φ(ωα(x)), x 6= 0,

φ(0), x = 0,

gα,β,λ(x) =

{
2Φ(λωβ(x))φ(ωα(x)), x 6= 0,

φ(0), x = 0.

ωα(x) = x− α/x, α ≥ 0,

ωβ(x) = x− β/x, β ≥ 0.

Φ: standard normal cdf

Extended multimodal
model

gα1,α2,β1,β2,λ(x) = 2Φ(λωβ1,β2(x))φ(ωα1,α2(x))
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√
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βi ∈ R, αi ≥ 0 (i = 1, 2),
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x

,
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x
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Figure 4: Flowchart showing the methodology proposed in this paper

3. Statistical inference

Let us consider a random sample of n observations xxx = (x1, . . . , xn), in which
there are n0 observations that are zeros and n1 non-zero observations; n0 + n1 = n.
Now by using the pdf (2.3), the log-likelihood function is proportional to `(α;xxx) ∝
−1/2

∑
i∈{1,...,n1}(ωα(xi))

2. By equating the first derivative with respect to α to zero,

we get the maximum likelihood estimator of the parameterα is given by α̂ = n1

{∑
i∈{1....,n1} x

−2
i

}−1
,

xi 6= 0. Now, by computing the second derivative of the log-likelihood function and its
expectation, the corresponding standard error, that can be obtained from the Fisher’s in-
formation entry, is (n/α̂)−1/2. To obtain this result, it is necessary the expectation of
1/X2 with respect to the random variable with pdf (2.3) which is given by 1/α.

Let us now examine the pdf (2.15) with µ = 0. In this case, the log-likelihood
function is proportional to

`(α, σ;xxx) ∝ −n log σ − 1

2

∑
i∈{1,...,n1}

(ωα(xi/σ))2 ,(3.1)

Figure 4: Flowchart showing the methodology proposed in this paper.

3. STATISTICAL INFERENCE

Let us consider a random sample of n observations xxx = (x1, ..., xn), in which there are
n0 observations that are zeros and n1 non-zero observations; n0 + n1 = n. Now by using the
pdf (2.3), the log-likelihood function is proportional to `(α;xxx) ∝ −1/2

∑
i∈{1,...,n1}(ωα(xi))2.

By equating the first derivative with respect to α to zero, we get the maximum likelihood esti-

mator of the parameter α is given by α̂ = n1

{∑
i∈{1....,n1} x−2

i

}−1
, xi 6= 0. Now, by computing

the second derivative of the log-likelihood function and its expectation, the corresponding
standard error, that can be obtained from the Fisher’s information entry, is (n/α̂)−1/2. To
obtain this result, it is necessary the expectation of 1/X2 with respect to the random variable
with pdf (2.3) which is given by 1/α.
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Let us now examine the pdf (2.15) with µ = 0. In this case, the log-likelihood function
is proportional to

`(α, σ;xxx) ∝ −n log σ − 1
2

∑
i∈{1,...,n1}

(ωα(xi/σ))2,(3.1)

where n1 is the number of non-zero observations in the sample. From (3.1) we derive the
normal equations given by

n1

σ
− ασ

∑
i∈{1,...,n1}

(
1
xi

)2

= 0,(3.2)

n

σ
− σ

∑
i∈{1,...,n1}

[( xi

σ2

)2
−
(

α

xi

)2
]

= 0.(3.3)

After simple algebra, equations (3.2)–(3.3) provides the maximum likelihood estimators
of the parameters which are given by

α̂ =
nn1(∑

i∈{1,...,n1} x−2
i

)(∑
i∈{1,...,n1} x2

i

)
− n2

1

,

σ̂ =

 1
n

 ∑
i∈{1,...,n1}

x2
i − n2

1

 ∑
i∈{1,...,n1}

x−2
i

−1
1/2

.

The second partial derivatives are provided by

∂`(α, σ;xxx)
∂α2

= −σ2
∑

i∈{1,...,n1}

(
1
xi

)2

,

∂`(α, σ;xxx)
∂α∂σ

= −2ασ
∑

i∈{1,...,n1}

(
1
xi

)2

,

∂`(α, σ;xxx)
∂σ2

=
n

σ2
−

∑
i∈{1,...,n1}

[
3x2

i

σ4
+
(

α

xi

)2
]
.

Now, taking into account that E(X2) = σ2(1 + α) and E(1/X2
i ) = 1/(α σ2), it is a

simple exercise to note that the Fisher’s information matrix is

I(α̂, σ̂) =

[
n1/α̂ 2n1/σ̂

2n1/σ̂ (2n(2α̂ + 1)− n1)/σ̂2

]
.

Finally, when the pdf (2.13) is considered, the log-likelihood function is proportional to

`(θθθ;xxx) ∝ −n log σ +
∑

i∈{1,...,n1}

log Φ(λ ωβ(xi/σ))− 1
2

∑
i∈{1,...,n1}

(ωα(xi/σ))2,(3.4)

where θθθ = (α, β, λ, σ) is the vector of parameters to be estimated.
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In practice, although both normal equations and Fisher’s information matrix can be
obtained after tedious algebra, the estimates and the entries of this matrix can be achieved
by directly maximizing the log-likelihood function given in (3.4). Moreover, this procedure
can be extended, as it is seen in the numerical illustrations, for the case where a location
parameter µ is included. Recall that the Fisher’s information matrix of the skew-normal
distribution proposed by Azzalini (1985) is singular for the skew parameter and, consequently,
the maximum likelihood estimate of this parameter can be infinite with a positive probability.
With respect to the singularity of the Fisher information matrix of the generalized skew
normal (GSN) distribution with pdf (2.13), we could use the Theorem 3 in Rotnitzky et al.

(2000) to derive a reparametrization of (2.13) and provide a solution to the singularity problem
for (α, β, λ) as in Venegas et al. (2018). In order to show the asymptotic behaviour of the
maximum likelihood estimator, we carry out the following simulation experiment where the
algorithm illustrated in the previous section is used, a complete simulation analysis for the
GSN distribution with density function (2.13) is carried out by generating N := 1000 samples
of sizes n := 50, 100, 200 for different values of the parameters α, β and λ. The value of these
parameters have been chosen for the sake of simplicity in estimation. For each parameter,
the analysis computes the following measures:

• Average bias (AB) of the simulated estimates:

AB(Λ∗) =
1
N

∑
j∈{1,...,N}

(Λ∗j − Λ);

• Mean square error (MSE) of the simulated estimates:

MSE(Λ∗) =
1
N

∑
j∈{1,...,N}

(Λ∗j − Λ)2;

where Λ∗j represents the maximum likelihood estimate of each parameter in the j-th sample
and Λ is the true value of the parameter. Table 1 shows the average bias and mean square
errors of the parameter estimates for different values of α, β and λ for different values of n.
In the first row of this table, the case of the skew parameter λ = 0 is considered, i.e. symmetric
case. As expected, the mean square error decreases when n increases. Also, the average bias
is positive and decreases with n. It is also noted that the MSE increases with the value of
the parameter α. However, the mean square errors for the parameters β and λ seem to be
influenced by the value considered for the parameter α. In general, the MSE’s decrease with
the sample size satisfying that lim

n→∞
MSE(Λ∗) = 0, and therefore, the estimates are consistent

in mean square error. It implies that the estimate gets closer and closer to the parameter’s
true value as data accumulates. Also, for large values of n, the maximum likelihood estimators
are normally distributed with the mean equals to the true value of the parameter and variance
equal to the reciprocal of the information function evaluated at the mean.
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Table 1: Average bias (AB) and mean square error (MSE) of the maximum
likelihood estimates for different values of the parameters of the
GSN distribution for different samples sizes n with simulation size
N := 1000.

n α = 0.25 β = 0.5 λ = 0 α = 1 β = 1 λ = 0

50
AB 0.0015 — — 0.0160 — —

MSE 0.0003 — — 0.0224 — —

100
AB 0.0013 — — 0.0138 — —

MSE 0.0002 — — 0.0108 — —

200
AB 0.0000 — — 0.0021 — —

MSE 0.0001 — — 0.0049 — —

n α = 0.25 β = 0.5 λ = 0.5 α = 1 β = 1 λ = 1

50
AB 0.0008 0.0922 0.0552 0.0230 0.0057 0.0606

MSE 0.0003 0.1302 0.1640 0.0211 0.0445 0.0756

100
AB 0.0001 0.1028 0.0472 0.0169 0.0072 0.0386

MSE 0.0002 0.0795 0.1068 0.0105 0.0209 0.0419

200
AB 0.0001 0.0848 0.0336 0.0032 0.0075 0.0212

MSE 0.0001 0.0606 0.0767 0.0054 0.0105 0.0209

n α = 0.5 β = 0.25 λ = 0.25 α = 0.75 β = 1.5 λ = 1.2

50
AB 0.0040 −0.0224 −0.0024 0.0135 0.0322 0.0544

MSE 0.0025 0.0470 0.0725 0.0092 0.0524 0.0890

100
AB 0.0030 −0.0181 0.0122 0.0054 0.0158 0.0320

MSE 0.0012 0.0437 0.0407 0.0046 0.0284 0.0581

200
AB 0.0022 −0.0176 0.0234 −0.0003 0.0078 0.0276

MSE 0.0007 0.0363 0.0219 0.0021 0.0143 0.0391

4. NUMERICAL ILLUSTRATIONS

In this section, some numerical applications of the GSN distribution given in (2.13) are
carried out. The results are compared with those ones of the skew-normal distribution with
parameters µ ∈ R, σ > 0 and λ ∈ R, i.e. SN(µ, σ, λ).

The example considered uses the well-known old faithful geyser (Yellowstone Park,
Wyoming, USA) data set. This data set consists of 299 measurements of the numerical
eruption time in minutes and the waiting time to the next eruption (also in minutes).
This popular dataset has been examined extensively in the literature. See, for example,
Silverman (1986), Azzalini and Bowman (1990) and Dekking et al. (2005), among others. It is
already known that these two datasets show bimodality. There are different versions of these
datasets in the statistical literature. The one examined here is taken from the R package MASS
available in the website

https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/faithful.html

Descriptive statistics of these two datasets are shown in Table 2.

https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/faithful.html
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Table 2: Descriptive statistics of the two variables
considered in the Old Faithful dataset.

Time eruption Time waiting

Mean 3.461 72.314
Variance 1.313 192.296
min 0.833 43.000
max 5.450 108.000

The estimated values of the parameters for the two models are shown in Table 3 together
with the standard errors (in brackets). This Table also includes the value of the maximum
log-likelihood function (`max), the Akaike’s information criterion (AIC) (see Akaike, 1974)
and the consistent Akaike’s information criteria (CAIC), proposed by Bozdogan (1987). The
last measure of model selection was chosen to overcome the tendency of the AIC to overesti-
mate the complexity of the underlying model since it lacks certain properties of asymptotic
consistency as it does not directly depend on the sample size. Then, to calculate the CAIC,
a correction factor based on the sample size is used to compensate for the overestimating
nature of AIC. The CAIC is defined as twice `max plus k (1 + log(n)), where k is the number
of free parameters and n refers to the sample size. Note that a model with a lower AIC
and CAIC values is preferred to one with a higher value. It is observable that the GSN
distribution has a better performance than the skew normal (SN).

Table 3: Parameters estimates, standard errors (in brackets), maximum
of the log-likelihood function (`max), AIC and CAIC values for
the two variables considered in the old faithful geyser dataset.

Time eruption Time waiting

SN GSN SN GSN

bλ
10.310 0.676 −7.975 0.247
(3.851) (0.116) (1.512) (0.078)

bα
— 0.468 — 0.551
— (0.058) — (0.062)

bβ
— 0.227 — −0.216
— (0.096) — (0.334)

bµ
48.454 65.185 4.897 3.135
(0.944) (0.258) (0.049) (0.009)

bσ
27.597 13.088 1.837 0.956
(1.393) (0.557) (0.084) (0.038)

`max −1231.57 −1116.427 −425.737 −399.229
AIC 2469.13 2242.85 857.474 808.458

CAIC 2483.24 2266.36 871.575 831.960

Graphs of the empirical smooth kernel density and theoretical distribution model (GSN)
are shown in Figure 5. This former density function was derived by using the in-built function
SmoothKernelDistribution in Mathematicar v.12.0. We used a smoothing Gaussian kernel
and automatically computed bandwidth parameter. As it can be seen, the GSN is able to cap-
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ture the bimodal nature of the empirical data although there is an underestimation produced
by the adjustment of the proposed distributions. Maximization techniques were completed
using Mathematicar v.12.0 and corroborated with WinRATS v.7.0 (the codes are available
upon request) and the computer used was a Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz with
16,0 GB RAM and a processor based on x64 getting acceptable time of processing. Details
about these two software can be found in Ruskeepaa (2009) and Brooks (2009), among others.
The routines employed were standard, including among others the FindMaximum to compute
the maximum likelihood estimates and the Experimental‘CreateNumericalFunction to obtain
the Hessian matrix.

18 E.Gómez–Déniz, E. Calderı́n-Ojeda and J.M.Sarabia

Graphs of the empirical smooth kernel density and theoretical distribution model
(GSN) are shown in Figure 5. This former density function was derived by using the in-
built function SmoothKernelDistribution in Mathematicar v.12.0. We
used an smoothing Gaussian kernel and automatically computed bandwidth parameter.
As it can be seen, the GSN is able to capture the bimodal nature of the empirical data
although there is an underestimation produced by the adjustment of the proposed distri-
butions. Maximization techniques were completed using Mathematicar v.12.0
and corroborated with WinRATS v.7.0 (the codes are available upon request) and the
computer used was a Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz with 16,0 GB RAM
and a processor based on x64 getting acceptable time of processing. Details about these
two software can be found in [30] and [12], among others. The routines employed were
standard, including among others the FindMaximum to compute the maximum likeli-
hood estimates and the Experimental‘CreateNumericalFunction to obtain
the Hessian matrix.
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Figure 5: Smooth kernel density estimate of the empirical data (thick line) and
the GSN (thin line) for the old faithful data set

5. Conclusions, limitations and future research

In this work, we have studied two families of distributions with support on the
real line, the first symmetric and the second not necessarily symmetric. Both families
can present more than one mode and include the normal distribution as a special case. In
addition, the second one includes, as a particular case, the skew normal distribution. The
model has been applied to environmental data, and it can also be used in other scenarios
where bimodality is present.

One of the limitations of the distribution proposed in this work is based on the
fact that the value that the first distribution takes at zero (at µ for the second model) is
fixed, what make these models inflexible. This is an issue that that undoubtedly deserves
to be deeply studied to guarantee a more versatile and flexible proposal than the ones
presented in this work.

It should also be noted that the extension shown in the Subsection 2.4 requires a

Figure 5: Smooth kernel density estimate of the empirical data (thick line)
and the GSN (thin line) for the old faithful data set.

5. CONCLUSIONS, LIMITATIONS AND FUTURE RESEARCH

In this work, we have studied two families of distributions with support on the real
line, the first symmetric and the second not necessarily symmetric. Both families can present
more than one mode and include the normal distribution as a special case. In addition, the
second one includes, as a particular case, the skew normal distribution. The model has been
applied to environmental data, and it can also be used in other scenarios where bimodality
is present.

One of the limitations of the distribution proposed in this work is based on the fact
that the value that the first distribution takes at zero (at µ for the second model) is fixed,
what make these models inflexible. This is an issue that that undoubtedly deserves to be
deeply studied to guarantee a more versatile and flexible proposal than the ones presented in
this work.

It should also be noted that the extension shown in the Subsection 2.4 requires a
separate analysis outside this work’s scope. This indeed constitutes a promising probabilistic
family that allows to model multimodal data.
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