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Abstract: We combine two well-known statements of results in the statistical and mathe-
matical literature, one related to symmetric continuous distributions and the other to the
integration of functions, to obtain some new results regarding symmetric distributions and
involving the value at risk and the tail value at risk, well-known tools used in actuarial and
financial statistics, among others. Generalizations of the skew normal distribution in its
univariate and multivariate versions obtained from one of the results are also shown, and a
new method is proposed for generating families of skewed continuous distributions.

Keywords: skew normal distribution; symmetric; value at risk; tail value at risk

1. Introduction
Symmetric distributions ( f (x) = f (−x), F(x) = 1 − F(−x), x ∈ R, where f and

F represent the probability density function and cumulative distribution function of the
random variable X, respectively) play a prominent role in theoretical and applied statistics.
The most obvious example is the normal distribution with zero mean, the starting point
for numerous applications, especially in many scientific fields. Apart from the normal
distribution, other distributions that can be symmetric about zero and are referred to
in multiple studies include the Cauchy distribution and the logistic distribution, among
others. Undoubtedly, the normal distribution with zero mean is the primary reference
when symmetric continuous distributions are being discussed—distinguished researchers
such as F. Y. Edgeworth and Chas. H. Kummel, Arthur L. Bowley, and Morgan W. Crofton,
among many others, have slightly modified the normal distribution to obtain proposed
distributions that are similar but, at the same time, capable of explaining empirical data
that present asymmetry that cannot be explained using the normal distribution. Good
references include [1,2].

In this work, we use the method of [3] to obtain some results that extended the
conclusion of Theorem 1 in [3]. Specifically, we reintroducea well-known result of [3] as
the starting point to obtain new results (at least to our knowledge) that are simple and
easy, but that could well have applications in the fields of theoretical and applied statistics.
Generalizations of this earlier result are also proposed, connecting it to the inverse of the
distribution function of a symmetric distribution and to risk measures commonly used in
actuarial statistics and financial economics. The aim is to find adequate provisions and
capital requirements to prevent the insolvency of an insurance company or a business.
These risk results could be beneficial for determining the amount of risk an investment
could incur.

Symmetry 2025, 17, 670 https://doi.org/10.3390/sym17050670

https://doi.org/10.3390/sym17050670
https://doi.org/10.3390/sym17050670
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-5072-7908
https://orcid.org/0000-0002-9619-4721
https://doi.org/10.3390/sym17050670
https://www.mdpi.com/article/10.3390/sym17050670?type=check_update&version=1


Symmetry 2025, 17, 670 2 of 13

The rest of the paper is organized as follows. Section 2 provides the main results of
this work. Some results are connected to the inverse distribution function of a symmetric
distribution, and others are connected to risk measures usually used in actuarial and
financial research, such as the value at risk (VaR) and the tail value at risk (TVaR). Based on
these results, a generalization of the skew-normal distribution (and related distributions)
is developed in Section 3. The paper ends with the summary and conclusions in the
last section.

2. Main Results
We recall the following Theorem, which appears in [3] and is required for the develop-

ment of this work; the same result also appears in [4]. This result, although well known
and simple, has a greater scope than it was intended for.

Theorem 1 ([3]). Let GX(x) be the cumulative distribution function (CDF) of a random variable
X that is symmetric about zero. Then,∫ a

−a
GX(z) dz = a, ∀a ∈ R+. (1)

Expression (2) in [5] also establishes this assertion. To obtain the strong relation that
is provided in Theorem 1, we will use the following Lemma, which is well known in the
statistical literature.

Lemma 1 ([6]). Let X be a symmetric random variable, and let y = h(x) be an odd real-valued
function. Then, the random variable Y = h(X) is also symmetric.

Now, using this Lemma, a more general result than provided in Theorem 1 can
be established.

Theorem 2. Let GX(x) be the CDF of a random variable X that is symmetric about zero, h(x) be
an odd real-valued function, and λ ∈ R. Then,∫ a

−a
GX(λh(z)) dz = a, ∀a ∈ R+. (2)

Note that when λ = 1, the expression given in (2) reduces to (1). In fact, the relation
given in (2) is also valid when we replace h(z) with any of the following:

1. h(z)η(µz), where η(z) is an even function and µ ∈ R;
2. η(µz)/h(z), where η(z) is an even function, h(z) ̸= 0, z ∈ (−a, a), and µ ∈ R;
3. h(z)/η(µz), where η(z) is an even function η(z) ̸= 0, z ∈ (−a, a), and µ ∈ R;
4. (d/dz)η(µz), where η(z) is an even function and µ ∈ R.

It is simple to see that for ḠX(x) = 1 − GX(x), it holds that∫ a

−a
ḠX(λh(z)) dz = a, ∀a ∈ R+. (3)

Then, from (2) and (3), we can infer that∫ a

−a
[2GX(λh(z))− 1] dz = 0.

The following result will be used later.
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Proposition 1. Let ζ(x) be a real-valued function with an inverse. Then, it holds that

∫ b

a
[ζ−1(x)]k dx = b[ζ−1(b)]k − a[ζ−1(a)]k − k

∫ ζ−1(b)

ζ−1(a)
yk−1ζ(y) dy. (4)

Proof. The result is obtained straightforwardly after integrating by parts.

When we replace k with one in (4), we obtain the result provided in [7], which relates
the integration of a function ς = ζ(x) to the integration of the inverse of this function in the
following form:

∫ b

a
ζ−1(x) dx = bζ−1(b)− aζ−1(a)−

∫ ζ−1(b)

ζ−1(a)
ζ(y) dy. (5)

It is well known that for a symmetric distribution about zero, it holds true that
GX(a) = 1 − GX(−a). A counterpart for the inverse of the distribution GX exists and will
be established later. For that, we need the following result first.

Theorem 3. Let GX(·) be the CDF of an arbitrary distribution that is symmetric about zero. Then,
it holds that ∫ p

0
G−1

X (z) dz =
∫ 1−p

0
G−1

X (z) dz, ∀p ∈ [0, 1], (6)

where G−1(t) = inf{x : G(x) ≥ t}, t ∈ (0, 1].

Proof. Using (1) together with (5), it is simple to see that

a =
∫ a

−a
GX(z) dz = aGX(a) + aGX(−a)−

∫ GX(a)

GX(−a)
G−1

X (z) dz = a −
∫ GX(a)

GX(−a)
G−1

X (z) dz,

where we have used the fact that GX(−a) = 1 − GX(a) because GX is the CDF of a
symmetric random variable.

Now, we can write

∫ GX(a)

GX(−a)
G−1

X (z) dz =
∫ GX(a)

0
G−1

X (z) dz +
∫ 0

GX(−a)
G−1

X (z) dz

=
∫ GX(a)

0
G−1

X (z) dz −
∫ GX(−a)

0
G−1

X (z) dz,

then take p = GX(a) ∈ (0, 1), and we directly obtain the result.

Corollary 1. Let GX(·) be the CDF of an arbitrary distribution that is symmetric about zero. Then,
it holds that

G−1
X (p) + G−1

X (1 − p) = 0, p ∈ (0, 1). (7)

Proof. The result follows from (6) by taking the derivative on both sides of the equality
concerning p and applying the Fundamental Theorem of Calculus. (This theorem can be
stated as follows: Let f be a continuous real-valued function defined on a closed interval
[a, b]. Additionally, let F be a function defined for all x ∈ [a, b] by F(x) =

∫ x
a f (t) dt. Then

F is uniformly continuous on [a, b] and differentiable on (a, b) and F′(x) = f (x) for all
x ∈ (a, b)).

The result given now is more general than the one provided in (6).
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Corollary 2. It holds that

∫ p/λ

0
G−1

X (λz) dz =
∫ (1−p)/λ

0
G−1

X (λz) dz, ∀p ∈ [0, 1], λ ∈ R− {0}.

Proof. It is directly obtained from (6) by making the variable substitution Z = λY.

Furthermore, a generalization of the result given in Theorem 3, although only valid
for the odd powers of the inverse of the CDF, is given next.

Theorem 4. Let GX(·) be the CDF of an arbitrary distribution that is symmetric about zero. Then,
it holds that∫ p

0
[G−1

X (z)]k dz =
∫ 1−p

0
[G−1

X (z)]k dz, ∀p ∈ [0, 1], k = 1, 3, 5, . . . (8)

where G−1(t) = inf{x : G(x) ≥ t} for t ∈ (0, 1].

Proof. Using (7), we have

G−1
X (z) = −G−1

X (1 − z), 0 < z < 1.

Thus, [G−1
X (z)]k = (−1)k[G−1

X (1 − z)]k, and therefore,

∫ p

0
[G−1

X (z)]k dz = (−1)k
∫ p

0
[G−1

X (1 − z)]k dz = (−1)k+1
∫ 1−p

0
[G−1

X (t)]k dt.

Therefore, k should be an odd integer value to ensure that the integral at the left is
non-negative.

Again, from (8), by deriving on both sides of the equality concerning p and applying
the Fundamental Theorem of Calculus, we arrive at

[G−1
X (p)]k + [G−1

X (1 − p)]k = 0, ∀p ∈ [0, 1], k = 1, 3, 5, . . .

From (8), and again by making the variable substitution Z = λY, we obtain

∫ p/λ

0
[G−1

X (λz)]k dz =
∫ (1−p)/λ

0
[G−1

X (λz)]k dz, ∀p ∈ [0, 1], λ ∈ R− {0}, k = 1, 3, . . . .

A well-known result concerning the odd moments of a symmetric random variable is
now obtained using the result provided in (8). That is, let X be a random variable that is
symmetric about zero and has a CDF of GX(x); then, it holds that

EX(Xk) = 0, k = 1, 3, 5, . . . ,

which is obtained directly from EX(Xk) =
∫ 1

0 [G
−1
X (x)]k dx and by taking p = 1 (or p = 0)

in (8).
The following result generalizes the one provided in Theorem 1.

Theorem 5. Let GX(x) be the cumulative distribution function (CDF) of a random variable X that
is symmetric about zero. Then,∫ a

−a
[GX(z)]k dz = a[pk + (1 − p)k]− k

∫ p

1−p
zk−1G−1

X (z) dz, ∀a ∈ R+, (9)

where p = GX(a) and k > 0.
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Proof. By using (4), we can show that

∫ a

−a
[GX(z)]k dz = a

{
[GX(a)]k + [GX(−a)]k

}
− k

∫ GX(a)

GX(−a)
yk−1G−1

X (y) dy

= a
{
[GX(a)]k + [GX(−a)]k

}
− k

[∫ GX(a)

0
yk−1G−1

X (y) dy

−
∫ GX(−a)

0
yk−1G−1

X (y) dy
]

.

Now, we take p = GX(a), p ∈ (0, 1), and we obtain the result after simple algebra.

Note that if k = 1, then, by taking into account (6), the expression given in (9) reduces
to expression (1).

Proposition 2. Let GX(x) be the CDF of a random variable X that is symmetric about zero. Then,
it holds that

∫ a

−a

dz
1 − GX(z)

=
a

GX(a)GX(−a)
−

∫ GX(a)

GX(−a)

G−1
X (z)

(1 − z)2 dz, a ∈ R+.

Proof. Assume that k ∈ N = {0, 1, . . . }. Then, the result follows after simple algebra by
taking the sum on both sides of expression (9).

Risk Measures in the Tail of the Distribution

In insurance and financial risk management, risk measures are used to determine pro-
visions and adequate capital requirements to avoid insolvency and to calculate insurance
premiums. Since risks are usually considered non-negative and continuous random vari-
ables, measuring risk involves establishing a correspondence between the space of random
variables and R+. Generally, a positive real number (i.e., the premium) is the price that
policyholders periodically pay to the insurance company to cover their risk. In this work,
we will pay special attention to risk measures that make it possible to measure the upper
extremes of the distribution functions associated with risk, since the greater the risk, the
higher the risk measure should be. Among the different risk measures, coherent measures
have traditionally been used in actuarial science because they have interesting properties.
In this regard, see [8–11], among others. In actuarial statistics and financial economics,
there are various ways to describe risk, and each measurement method may encompass
specific characteristics. A traditional way of describing risk is through a coherent measure,
which is a function that considers translational invariance, monotonicity, homogeneity, and
subadditivity. Most experienced investors and actuaries have used a coherent measure
daily. Measures that have these mathematical properties can be beneficial in determining
the level of risk that an investment could assume.

Definition 1. Let X denote a random variable representing loss. The value at risk of X at the
100p% level, denoted by VaRp(X), is the 100p percentile (or quantile) of the distribution of X, i.e.,
VaRp(X) = inf{x ∈ R : GX(x) ≥ p}.

For a continuous distribution with CDF GX(·), we can simply write the value at risk
as the quantity VaRp(X) satisfying

Pr
[
X > VaRp(X)

]
= 1 − GX(VaRp(X)) = 1 − p, p ∈ (0, 1).
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Thus, we know that VaRp(X) = G−1
X (p), p ∈ (0, 1), i.e., the value at risk is a quantile

risk measure. From (7), we can show that when GX(·) is the CDF of an arbitrary distribution
that is symmetric about zero, it holds that VaRp(X) = −VaR1−p(X).

The VaR as a risk measure corresponds to the percentile premium principle usually
considered in actuarial statistics (see [12]).

Definition 2. Suppose that X is the random variable that models losses. The tail value at risk of X
at the 100p% security level, denoted TVaRp(X), is the expected loss given that the loss exceeds the
100p percentile (or quantile) of the distribution of X.

This measure is also called the average value at risk, since it can be viewed as the
mean of the VaR of X from p. From Definition 2, it is simple to see that the tail value at risk
can be written as

TVaRp(X) = E
[
X|X > VaRp(X)

]
=

1
1 − p

∫ 1

p
VaRz(X) dz, (10)

where p is the confidence level.
Some simple expressions connecting the tail value at risk for two complementary

confidence level values are now given.

Corollary 3. Let X be a random variable with a symmetric distribution function GX(x). Then,

(1 − p)TVaRp(X) = pTVaR1−p(X), p ∈ (0, 1). (11)

Proof. From (10), we can show that

TVaRp(X) =
1

1 − p

∫ 1

p
VaRz(X) dz

=
1

1 − p

[∫ 1−p

0
G−1

X (z) dz −
∫ p

0
G−1

X (z) dz +
∫ 1

1−p
G−1

X (z) dz
]

=
1

1 − p

∫ 1

1−p
G−1

X (z) dz =
p

1 − p
TVaR1−p(X),

where we have used (6) to obtain the last equality. Now, the result can be obtained
directly.

Equation (11) connects the attitude of the decision-maker toward the TVaR risk mea-
sure in terms of the value of the confidence level p. That is, if the decision-maker is unsure
whether to use p or 1 − p, then the relation between them is established in this equation.

From (11), it is simple to see that

(1 − p)VaRX(p) +E[SX(p)] = pVaRX(1 − p) +E[SX(1 − p)],

where

E[SX(p)] = E[(X − VaRX(p))+]

is the expected shortfall of X at a confidence level p, where (x)+ = max{x, 0}. See [13]
for details.

If X and Y are random variables with symmetric distribution functions, not necessarily
the same, it is simple to see from (11) that

TVaRp(X)TVaR1−p(Y) = TVaR1−p(X)TVaRp(Y). (12)
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Now, if the decision must be made by a decision-maker who is not sure whether to
use p or 1 − p but also is not sure which of two different distribution functions to use
(symmetric), Equation (12) connects the different TVaRs involved.

Note that the expression given in (11) can be generalized to obtain

k

∑
i=1

(1 − pi)TVaRpi (X) =
k

∑
i=1

piTVaR1−pi (X), pi ∈ (0, 1),
k

∑
i=1

pi = 1,

which can be verified straightforwardly by induction.

3. Beyond Azzalini’s Scheme
In this section, we will see that expression (1) can be used to obtain a family of skew

distributions, which includes the skew normal distribution. There are many mechanisms in
the statistical literature for obtaining an expanded version of a symmetric distribution that
can be asymmetrical from a symmetric distribution. Two of the several existing mechanisms
are those proposed by [14,15]. However, in this work, we will focus on the proposal by [16],
which has achieved considerable popularity and has generated numerous works on the
subject. These works include [16–25], among others. Let g and G be the probability density
function (PDF) and the cumulative distribution function (CDF) of a symmetric distribution.
A random variable Y is said to have an asymmetric distribution if its PDF is given by

fY(y) = 2g(y)G(λy), y ∈ R, λ ∈ R. (13)

In particular, when G(x) = Φ(x) and g(x) = ϕ(x), the expression given in (13) is the
skew normal distribution proposed and studied in [16].

3.1. First Proposal

In this subsection, we present a series of results that were proposed in [20] and that
we reproduce for the most part with the aim of making this work self-sufficient. We begin
with the following result, which is built from (1) and generalizes (13).

Theorem 6 ([20]). Let X and Y be two random variables with symmetric CDFs GX(x) and GY(y)
and PDFs gX(x) and gY(y), respectively. Then,

fY(y; λ, a) =
gY(y)

a

∫ a

−a
GX(z + λy) dz (14)

represents a genuine PDF for a ∈ R− {0} and λ ∈ R.

Note that

sY(y; λ, a) =
gY(y)

a

∫ a

−a
ḠX(z + λy) dz

also represents a genuine PDF for a ∈ R− {0} and λ ∈ R, and it holds that fY(y; λ, a) =
sY(y;−λ, a).

Note that the expression (14) can be viewed as an infinite mixture construction. Let
GX(ξ + λy), λ ∈ R, ξ ∈ R, and y ∈ R be the cumulative distribution functions (CDFs)
of a symmetric distribution with support in R. Now, assume that ξ is a random variable
following a uniform distribution on the interval [−a, a]; then,

HX(y; λ, a) =
1
2a

∫ a

−a
G(ξ + λy) dξ
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is also a genuine CDF symmetric around zero. That is, HX(y) = 1 − HX(−y). Now,
(14) is derived by taking into account the fact that 2gY(y)HX(y) is a genuine PDF. An-
other elegant way to see that (14) defines a genuine PDF is to consider the argument
given in Lemma 1 in [19]. That is, let S(λ, a) =

∫ ∞
−∞ fY(y; λ, a) dy. Now, we can see that

S(0, a) =
∫ ∞
−∞ gY(y) dy = 1. and since

∂

∂λ
S(λ, a) =

∫ ∞

−∞

ygY(y)
a

[GX(a + λy)− GX(−a + λy)]dy = 0,

we can see that S(λ, a) = 1.
Figure 1 shows the PDF (14) for different values of the parameters λ and a, assuming

gY(y) = ϕ(y) and GX(x) = Φ(x), where Φ(·) and Φ(·) represent the PDF and CDF of the
standard normal distributions, respectively.

-4 -2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 1. Graphs of the density (14) for various parameter values, assuming gY(y) = ϕ(y) and
GX(x) = Φ(x).

A more flexible family of distributions than the one provided in (14) is given by

fY(y; λ, a) =
gY(y)

a

∫ a

−a
GX(z + λh(y)) dz, (15)

where h(x) is an odd real-valued function. Examples of this PDF for h(x) = x3 are now
shown in Figure 2. As we can see, the PDF is now more versatile and can be bimodal for
appropriate parameter values. There exist many examples showing empirical bimodal
data. For example, it is well known that when measuring the weight of adult animals, an
empirical distribution with two peaks (modes) is observed. The bimodality is due to the
average weights of males and females. This data type should be analyzed with probability
distributions that allow the two modes to be detected. Another example of bimodal data
is the well-known Old Faithful geyser data set. This data set consists of measurements
of the numerical eruption time in minutes and the waiting time for the next eruption
(also in minutes). This popular dataset has been studied widely in the statistical literature.
See [26], among others. Specifically, the λ parameter acts by modifying the skewness of
the distribution. On the other hand, keeping the λ value fixed, large values of a lead
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the distribution to take on a normal-like appearance, while small values of a, essentially
between zero and one, result in a distribution with two modal values.

-4 -2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

Figure 2. Graphs of the density (15) for various parameter values, assuming gY(y) = ϕ(y); GX(x) =
Φ(x); and h(x) = x3, an odd function.

Observe that (14) can be written as

fY(y; λ, a) =
gY(y)

a

∫ λy+a

λy−a
GX(u) du, (16)

which is obtained after making the variable substitution u = z + λy in (14). Note that the
family of asymmetric distributions proposed by [16] appears, as a special case, from (16)
onward by applying the first mean value theorem to the integral that appears in (15) in
the interval [λy − a, λy + a]. To achieve this, we take c = λy in the well-known formula∫ r

s f (x) dx = f (c)(r − s), c ∈ [s, r], to obtain fY(y; λ) = 2gY(y)GX(λy).
We present another family of skew distributions in connection with the latter. This

new family is derived from (15) by integrating on both sides of the equality, taking the
derivative concerning a, and applying the Fundamental Theorem of Calculus.

Theorem 7 ([20]). If gY(y) is a density function that is symmetric about zero and GX is a CDF
that is also symmetric about zero, then

fY(y; λ, a) = gY(y)[GX(λy + a) + GX(λy − a)] (17)

is a valid PDF for a ∈ R and λ ∈ R.

Obviously, fY(y; λ, 0) = 2gY(y)GX(y), fY(y; λ, ∞) = gY(y), while fY(y; 0, a) = gY(y).
Figure 3 shows the probability density function (17) for different values of the parameters λ

and a. Again, the parameter λ controls the skewness of the distribution, while the parameter
a controls the kurtosis. Thus, small values of the parameter a produce a distribution with
lower kurtosis than larger values. In the latter case, the distribution generates data that are
dispersed and far from the center and, therefore, at the tail of the distribution.
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0.5
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Figure 3. Graphs of the density (17) for various parameter values, assuming gY(y) = ϕ(y) and
GX(y) = Φ(y).

Note that the two proposed families, (14) and (17), are different, and the only element
they have in common is the density gY(y). On the other hand, the most significant difference
between the two families is that the parameter a is not allowed to take the value zero in the
first case, which is permitted in the second.

Since GX(a) = 1 − GX(−a), we can obtain from (17) that, when λ = 0, fY(y) = gY(y),
while for a = 0, we obtain the family of skewed distributions proposed in [16]. Again, it
can be verified that fY(y; λ, a) = fY(y; λ,−a) for the family given in (17).

We will now show a result that is more general than the one provided in [16,27,28] for
a symmetric random variable.

Proposition 3 ([20]). If U is a random variable that is symmetric about zero with a CDF of G(u)
and a PDF of g(u), and if λ and α are two real numbers, then

E[G(λU + a)] = 1 −E[G(λU − a)]. (18)

When U follows a standard normal distribution, (18) reduces to

E[Φ(λU + a)] = 1 −E[Φ(λU − a)] = Φ
(

a√
1 + λ2

)
,

a result that is well known in the statistical literature (see [16,27,28]).
Multivariate extensions of the univariate distributions given in Theorem 6 arise easily,

as seen in the next result.

Theorem 8 ([20]). Let X and Y be two random variables where X ∼ N(0, 1) and Y ∼ N(m)(0, Σ).
Then,

f (y; λ, a) =
fY(y)

α

∫ a

−a
FX(z + λTy) dz

represents a genuine PDF for a ∈ R− {0} and λ ∈ Rm.
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Note that the two proposed families, (14) and (17), are It is important to note that the
only requirement for the distributions of Y and X is that they be symmetric about zero.
This requirement applies to the previous theorem as well as the following one.

Theorem 9 ([20]). Let X and Y be two random variables where X ∼ N(0, 1) and Y ∼ N(m)(0, Σ).
Then,

f (y; λ, a) = fY(y)
[

FX(λ
Ty + a) + FX(λ

Ty − a)
]

(19)

is a valid PDF for a ∈ R and λ ∈ Rm.

Note that if we set α = 0 in (19), we obtain

f (y; λ) = 2 fY(y)FX(λ
Ty),

which was one of the first multivariate skew normal models to appear in the literature.
See [17,18], for instance.

Applications and properties of these distributions (the univariate and multivariate
expressions) are provided in [20].

3.2. Second Proposal to Be Studied

Recent works ([21,22]) propose generalizations of symmetric continuous distributions,
paying special attention to the case of the normal distribution. In particular, and building
on the idea in the following result, which, in turn, is based on an idea taken from [21,29], a
very flexible family of antinormal distributions can be obtained.

Theorem 10 ([21]). Let f (x) be a PDF symmetric about zero, and consider the function f (ω(x; β)),
with ω(x; β) = x − β/x, where ω(x; β) ≥ 0. Then, if d f (ω(x; β))/(dβ) is also a symmetric
function, we can infer that

∫ ∞
−∞ f (ω(x; β)) dx = 1.

Based on the use of Theorem 10, we can build a family of PDFs by taking

g(x; β) =

{
f (ω(x; β)), x ̸= 0,

f (0), x = 0,
(20)

where β ≥ 0, which is a two-part piecewise PDF.
We now pay attention to a simple family of distributions obtained by substituting (20)

into (17) after taking f (ω(x; β)) = Φ(ω(x; β)) and GX(·) = ΦX(·). Its PDF is

f (x; λ, a, β) = ϕ(ω(x; β))[Φ(λx + a) + Φ(λx − a)], x ∈ R− {0} (21)

and g(0; β) = ϕ(0).
The case a = 0 provides a family of distributions that are symmetric about zero. The

case a = β = 0 gives the skew normal distribution studied in [2,16].
Figure 4 shows the probability density function (21) for different values of the param-

eters λ, α, and β. In this case, the β parameter acts similarly to a scale parameter. The α

parameter, together with the λ parameter, controls the unimodality or bimodality of the
distribution, although there does not appear to be a pattern that can generally describe the
shape of the distribution.
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Figure 4. Graphs of the density (21) for various parameter values.

Of course, for the purpose of application, it is convenient to consider the introduction
of location-scale generalization of the proposed distributions, defined as the distribution of
Z = µ + σX, where µ ∈ R and σ > 0.

A later study will present the derivation of properties and parametric estimators for
this family. Further studies of the application of this family of distributions will also be
performed. Thus, this family will be confronted with actual data to provide a justification
for this work.

4. Summary and Conclusions
This paper has shown how, by starting from a simple result provided by [3] more

than two decades ago and generalizing it, a whole range of results related to a symmetrical
distribution function and its inverse can be obtained. The usefulness of these contributions
is in financial and actuarial statistics, mainly in the area of risk measures in the tail of the
distribution, such as the VaR and the TVaR, among others. In addition, this result has
served as a launchpad to obtain a generalization of the Azzalini scheme (see [16]) that is
useful for constructing skew distributions starting from a distribution that is symmetrical
and therefore not skewed.

One aspect that undoubtedly merits detailed study, particularly for the last family of
proposed distributions, is the estimation of its parameters, which will be carried out in
subsequent work currently under development. Additional studies will also be conducted
on this family, its application to real data, and its comparison with traditional models used
in the applied statistics literature.

Other aspects to be considered include changing the support of the distributions
to obtain generalizations of the log-normal distributions, which can be helpful in fitting
empirical positive data with long tails.
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