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Abstract: Concrete porosity is one of the fundamental properties for the structural char-
acterization of cementitious materials. This study compares porosity data obtained with
dynamic water vapor sorption (DWVS) with the more commonly used mercury intrusion
porosimetry (MIP) method for a wide range of concrete samples made with basaltic ag-
gregates, typical of the Canary Islands, which are porous. The objective was to propose
an alternative method for routine concrete monitoring that avoids the use of a hazardous
substance such as mercury. The results reveal fundamental differences between the MIP
and water-accessible porosimetry (WAP) data, although a correlation between the methods
was revealed where MIP = 1.18 × WAP. The study was completed by an analysis of the
relationships between the porosity and the characteristics and properties of concrete (wa-
ter/cement ratio and strength), as well as the calculation of the tortuosity factor and a frost
durability factor.

Keywords: cement paste; concrete; mercury intrusion porosity; water-accessible porosity;
compressive strength; durability

1. Introduction
The hydrated cement used to make concrete is a relatively highly porous material, with a

pore size distribution ranging from nanometers to micrometers [1]. The pores have an irregular
geometry, and their number and the connectivity between them determine some material
properties, such as the compressive strength, and influence its durability [2], making them
permeable materials [3]. However, with a relatively low water/cement (w/c) ratio and a high
degree of hydration of the paste, the pores remain no longer interconnected, and the permeability
of the concrete decreases drastically compared to that obtained at early age [4–7].

Porosity is not a static value [8,9], it evolves with the degree of hydration and also depends
on the interaction of the material with the environment [10]. Thus, for example, carbonation or
the ingress of chloride can alter the porosity by a reaction with existing cement hydrates, leading
to the formation of new phases that precipitate in the pores [11–13]. Therefore, if the porosity
is to be compared or used to characterize concrete or for any subsequent calculations [14,15],
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it must be associated with the concrete age and the specific service conditions [9,16]. On the
other hand, the measurement technique employed can also alter the porosity, either during the
preconditioning of the sample [17] (e.g., the necessary drying [18,19]) or by the operation of the
technique itself, as is the case with the high pressures required for mercury intrusion [20–23], or
the swelling caused by solvent displacement drying [24].

The most common method for characterizing porosity is currently mercury intrusion
porosimetry (MIP) [25–30], as it allows the characterization of various aspects of the pore
structure, such as the pore size distribution, specific surface, and bulk density. This technique
allows the measurement of a wide range of pore sizes (typically 0.003–375 µm) [18] in the
capillary pore range, but there is controversy as to whether [31,32] or not [23,24,30,33] it
provides an accurate pore size distribution at all scales. Among the reasons cited for limiting
the applicability of the method, the most important are the following:

- The effect of high pressures that can damage pores during the intrusion process [20–23];
- The so-called ink-bottle effect [9,31], which prevents the determination of some larger

pores when they are accessible only through smaller pores [31];
- The assumed contact angle of mercury with the cement-based material [27,31,34];
- The requisite that samples be dried, which may change the pore structure during

preconditioning [21,35].

The aim of this paper is not to perform an exhaustive analysis or to study the limita-
tions of the MIP technique, because, despite these limitations, it is widely used in studies
of the porous microstructure of concrete. Indeed, the threshold pore size provides valuable
information on the permeability and diffusivity of a cement paste [36], and under certain
pressure conditions that do not cause the smallest pores to collapse or break when reaching
isolated pores, the porosity value can very well represent the real microstructure of the
concrete [20,37–40].

However, mercury is a hazardous substance for human health, and its use should be
avoided and therefore replaced by another substance for the characterization of concrete. In
order to replace MIP and find a much more economical and easy-to-use method, the water-
accessible porosity technique was selected among other existing techniques [41,42]. The
dynamic water vapor sorption (DWVS) technique operates under vacuum conditions using
water as the intrusive liquid. Although water saturation by capillary absorption can also
be used as an alternative, it was discarded in this work because it is much slower. Indeed,
complete saturation of the sample can take weeks and be impaired by swelling [43,44]. In
contrast, the technique based on saturation under vacuum is very accessible and has the
advantage of being reversible. Therefore, the samples can be used for other tests. However,
its main limitation is that only provides the total porosity, without giving information on
the size distribution and internal geometry of the pores.

Although the DWVS method has been recommended as an alternative to MIP for the
microstructural characterization of cementitious materials [45], few works have compared
the data obtained with these two techniques [46–48]. When comparing three ASTM meth-
ods of measuring the porosity using water in [46], only two concrete samples were used.
Among cold water saturation, boiling water saturation, and vacuum saturation, the authors
presented vacuum saturation as the most effective. Then, in [47], the porosity by MIP and by
water vacuum saturation were compared, finding that the latter presented higher porosity
values. But in [48], the opposite result was obtained, where the porosity using water was
lower than that obtained by MIP, probably because in this work, vacuum saturation was
not used, but rather conditioning at 100% relative humidity until equilibrium was reached.

This lack of systematic data motivated this work, which focuses on comparing the
total porosity obtained by both techniques with a view to avoiding the use of hazardous
substances and on the simplicity of the DWVS method compared to MIP, which would
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facilitate its implementation in quality control laboratories. The comparison was carried out
with concrete samples as well as their pastes, since the presence of aggregates can introduce
differences in the proportion of paste in MIP samples, which are much smaller in size
than those of water-accessible porosimetry (WAP). Based on these results, complementary
analyses were carried out to study the relationship between porosity values and strength.
In addition, the tortuosity factor of the different concretes was characterized from the MIP
results, using an equation proposed in a previous publication [49].

2. Materials and Methods
All cement paste measurements were performed on duplicate samples, and on tripli-

cate samples for concrete samples, to validate the reliability of the results. In all cases, these
analyses were performed on samples from the same batch. Surface tension and contact
angle values were taken from the literature. Figure 1 shows two concrete samples prepared
for MIP measurements.
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2.1. Materials

As shown in Table 1, six pastes of different types of cement, coded from C1 to C6, thirty-
seven concretes of different compressive strength and characteristics, coded from H1 to H36,
and one sample of typical basaltic aggregates (called A1) were analyzed. The aggregates in
all concrete samples were the characteristic basalt from Tenerife (Canary Islands, Spain).
These concretes were prepared on site in industrial concrete plants and are therefore not
“lab-crete” samples. They were taken from large batches, under real fabrication conditions,
in large mixers of different sizes, and cured in accordance with regulations [50,51]. Table 2
shows the material proportions for the concrete samples. Concrete composition ranges
from a cement content of 240 to 250 kg/m3, with a water/binder ratio of 0.63 and a strength
of 12.18 MPa, to a cement content of 500 kg/m3, with a water/binder ratio of 0.28 and a
strength of 58.55 MPa. There is therefore a wide variety of concrete types.

Table 1. Sample types and main characteristics, as well as the corresponding compressive strength.

Sample Code Type w/c Ratio Cement Content
(kg/m3)

Compressive
Strength at

28 Days (N/mm2)

Cement pastes

C1 CEMIV/B/32.5 0.34 74.10
C2 BL I 52.5R 0.32 53.70
C3 BL I 52.5R 0.40 65.00
C4 CEMI/A-P/52.5R 0.32 74.10
C5 CEMII/A-P/42.5R 0.41 53.70
C6 CEMIV/B/32.5 0.26 65.00
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Table 1. Cont.

Sample Code Type w/c Ratio Cement Content
(kg/m3)

Compressive
Strength at

28 Days (N/mm2)

Concretes

H1 HM-20/B/20/I 0.65 275 24.49
H2 HM-20/B/20/I 0.63 250 12.18
H3 HA-25/B/20/IIa 0.59 344 29.40
H4 HA-25/B/20/IIa 0.59 344 29.20
H5 HA-25/B/20/IIa 0.52 350 37.27
H6 HA-25/B/20/IIa 0.58 340 37.12
H7 HA-25/B/20/IIa 0.60 340 44.64
H8 HA-25/B/20/IIa 0.58 340 35.61
H9 HA-25/B/20/IIa 0.60 350 54.86

H10 HA-25/F/12/IIa 0.56 324 34.33
H11 HA-25/B/20/IIa 0.55 355 44.84
H12 HA-25/B/20/IIa 0.60 390 34.05
H13 HA-25/F/12/IIa 0.58 330 40.50
H14 HA-25/F/12/IIa 0.58 330 34.50
H15 HA-25/B/20/IIa 0.50 325 38.28
H16 HA-25/B/20/IIa 0.50 300 42.54
H17 HA-25/B/20/IIa 0.5 300 42.50
H18 HA-25/F/20/IIIa 0.5 370 48.07
H20 HA-25/F/20/IIa 0.78 300 24.81
H21 HA-25/B/20/IIa 0.56 300 20.25
H22 HA-25/B/20/IIa 0.56 240 24.79
H29 HA-30/B/20/IIIa 0.48 390 42.77
H30 HA-30/B/20/IIIa 0.48 395 42.70
H31 HA-30/B/20/IIIa 0.49 385 39.50
H32 HA-30/B/20/IIIa 0.50 370 57.75
H33 HA-30/B/20/IIIa 0.50 360 45.75
H34 HA-30/B/20/IIIa 0.50 350 58.55
H35 HA-30/F/20/IIIc + Qb 0.45 370 43.46
H36 HA-30/F/20/IIIc + Qb 0.45 360 35.06
H37 HA-30/F/20/IIIa 0.50 360 34.28

H38 HA-30/B/20/IIIa 0.60 365 38.99
H39 HA-30/F/20/IIIa 0.48 300 24.32
H46 HAF-35/P/AC/11/IIa 0.60 380 41.77
H47 HAF-35/P/AC/11/IIa 0.60 380 48.63
H50 HA-50/F/12/IIa 0.28 500 57.99
H51 HA-50/B/20/IIa 0.48 380 51.24

Table 2. Composition of concrete samples (% by weight).

Cement Basaltic Gravel Basaltic Sand African Sand Water Total Mass

Min., % 10.94 36.23 20.71 9.26 6.58 2135
Max., % 15.47 44.31 31.71 19.88 7.43 2263
Med., % 13.15 41.42 24.57 13.45 6.90 2193.2

The pastes and concretes were kept in the mold for 24 h in a humid chamber with a
relative humidity greater than 95% and a temperature of 20 ± 2 ◦C. After demolding, they
remained in the humid chamber for up to 28 days, before being conditioned for the MIP
test or dried for the water-accessible porosity test.
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2.2. Mercury Intrusion Technique (MIP)

The tests were carried out in accordance with the specifications of ASTM D4404 [52],
using 1 cm3 cylindrical samples taken from specimens used in other tests that have not
undergone deterioration (Figure 1 shows photographs of two typical samples). The samples
were dried in an oven at 100 ◦C for 48 h before testing and then placed in a vacuum chamber.
Hydrostatic pressure was then applied, thus increasing the intrusion of mercury.

A PORESIZER Autopore IV 9500 (Micromeritics, Norcross, GA, USA) porosimeter was
used. During testing, the applied pressure ranged from 3.6 × 10−3 to 4.098 × 108 MPa, allowing
the characterization of pores from 3.6 nm to 412 µm. The applied surface tension and contact
angle values were 0.484 N/m and 141◦, respectively, very close to those reported in the literature.

2.3. Porosity Accessible by Water

Porosity quantification by the water-accessibility test is a standardized technique [41,42] used
to quantify the open porosity of natural stones and is also defined as the water-accessible porosity
(WAP) for concrete. The procedure consists of drying a sample of cement paste or concrete to a
constant mass (md) at a temperature of 100 ◦C, then placing it in a vacuum container, where the
pressure is gradually decreased to 2.0± 0.7 kPa, and maintained for 2 h to remove the air contained
in the open pores of the samples. Under these same vacuum conditions, demineralized water
at 20 ◦C is slowly introduced into the container (15 min). When all the samples are submerged,
atmospheric pressure is restored in the container, and they are maintained under these conditions
for another 24 h. The samples are then removed from the container, and excess water is quickly
removed from the surface with a damp cloth, and the samples are weighed, obtaining the saturated
mass (ms). Finally, the samples are weighed by placing them on a hydrostatic balance to measure
the mass of the specimen submerged under water (mh).

The tested samples come from prismatic specimens of 4 × 4 × 16 cm3, cured for
28 days, cut to the appropriate dimensions, and tested within approximately 1 month.
Tests carried out according to UNE-EN 1936 [41] require six specimens with a volume of
4 × 4 × 4 cm3, while tests carried out according to UNE 83980-14 [42] use two specimens
with a weight greater than 800 g and dimensions of 5 × 10 × 10 cm3.

3. Results
The total porosity data were obtained using the MIP and WAP methods for all the

samples under study. Since the procedure employed for porosity quantification is different
for each method, possible differences should be identified in order to derive an equivalence
between the information supplied in each case. Thus, mercury intrusion porosimetry (MIP)
is based on the principle that a non-wetting liquid (with a contact angle greater than 90◦),
such as mercury, only penetrates capillaries under pressure (several hundred MPa). The
relationship between pressure and the capillary diameter (similar to a cylinder) is described
by the Washburn–Laplace equation [53]:

P =
−4 · γ · cos θ

d
(1)

where P = pressure (Pa), γ = surface tension of the liquid (N/m), θ = contact angle between
the liquid and the solid (degrees), and d = capillary diameter (m). The pore size distribution
is determined from the volume of mercury introduced at each increase in pressure. The
total porosity is determined from the total volume introduced.

On the other hand, the procedure used in the WAP technique consists of replacing the
air contained in the open pores of a sample with water. This procedure involves initially
drying the sample to obtain its dry mass (md), followed by removing the air contained
in the pores under vacuum and filling them with demineralized water, resulting in the
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saturated mass (ms). Finally, the samples are also weighed on a hydrostatic balance to
measure the mass of the specimen submerged under water (mh). Open porosity is then
calculated using the expression

P0 =
ms − md
ms − mh

· 100 (2)

Figure 2 and Table 3 present the total porosity values obtained by the MIP and WAP
methods, as well as the compressive strength at 28 days and the dry density of the samples.
These data indicate that the water-accessible porosity is generally, but not always, higher
than that obtained by MIP. Furthermore, the cement paste samples have higher total
porosities than those obtained for concrete, since in the latter, the samples always contain
aggregates (although without aggregates larger than 5 mm given the small volume of the
samples used for the MIP test). Thus, the porosity range observed for the cement paste
samples varies between 27.30% (C4) and 39.83% (C5), while the porosity of the concrete
samples varies between 11.68%. (H5) and 28.58% (H22). Only samples H5, H9, H29, H31,
H32, and H50 show intermediate porosity (between 10% and 15%).
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Figure 2. Porosity data obtained using WAP and MIP techniques.

Regarding the aggregates, it should be noted in Table 3 and Figure 2 that the aggregate
used, A1, of basaltic nature, shows an inverse behavior, its MIP being much higher than that
measured by water intrusion. Six other MIP measurements were carried out with different
aggregates, and Table 2 and Figure 1 illustrate the variability of the basalts used as aggregates
in the Canary Islands. This is reflected in the high variability of the mercury porosimetry data,
with some aggregates having very low porosity (1.3%) and others very high porosity (36.2%).
Figure 3 shows the MIP of the basaltic aggregate with the lowest porosity (1.3%).
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Table 3. Dry density, porosity values, and tortuosity factors obtained from the samples.

Sample Code Dry Density at 70 ◦C
(g/cm2)

Water-Accessible
Porosity (%)

Mercury Intrusion
Porosity (%)

Tortuosity Factor
|τ|

Aggregates

A1 2.66 8.00 18.80

A-635 A1 2.80 14.4
A-635 A2 2.24 36.2
A-635 A3 2.57 16.9
A-365 B1 2.35 1.3
A-365 B2 2.72 12.2
A-365 B3 2.85 6.27

Cement pastes

C1 1.57 37.89 26.44 1.371
C2 1.75 29.45 17.25 1.395
C3 1.59 34.31 20.62 1.639
C4 1.71 27.30 16.57 1.782
C5 1.46 39.83 26.16 1.34
C6 1.58 37.86 25.05 1.355

Concretes

H1 2.14 25.67 20.95 1.602
H2 1.96 27.02 22.32 1.399
H3 2.19 19.67 17.37
H4 2.14 19.00 17.73
H5 2.20 13.80 11.68
H6 2.20 20.50 19.26
H7 2.18 21.50 20.45
H8 2.20 21.83 18.62
H9 2.25 16.94 14.01 1.422

H10 2.07 24.50 20.61
H11 2.22 17.75 17.03
H12 2.18 20.74 18.57 1.377
H13 2.15 20.50 18.42
H14 2.24 21.00 19.34
H15 2.23 21.32 24.88 1.402
H16 2.17 22.31 17.44 1.42
H17 2.23 21.72 15.45 1.398
H18 2.24 20.21 15.33
H20 2.15 22.93 20.36 1.958
H21 2.05 26.32 26.33 1.775
H22 1.98 27.71 28.58 1.502
H29 2.28 14.50 12.31
H30 2.17 16.80 17.37
H31 2.19 14.33 13.94
H32 2.32 15.44 13.71 1.401
H33 2.27 16.50 16.27
H34 2.27 18.04 15.32 1.431
H35 2.19 21.20 18.39
H36 2.14 23.57 25.12 1.745
H37 2.14 22.51 19.09 1.423
H38 2.22 22.00 16.35 1.814
H39 1.97 26.00 21.74 1.437
H46 2.19 17.67 17.36
H47 1.87 26.60 22.18 1.762
H50 2.31 13.20 13.13
H51 2.10 22.83 18.39 1.471
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Similarly, Figure 4 shows the MIP porosities of the pastes, and Figure 5 shows those of
the concretes. Comparing these figures reveals a significant difference between the porosity
distributions obtained by MIP for pastes and concretes. Figure 6 allows us to observe this
difference in more detail for two selected samples by highlighting with a shaded square
the pore sizes for which there are large differences between the distributions of pastes and
concretes. The cement paste samples thus present a pore size distribution within a single
family centered around pores of size 0.05 µm (Figure 4). Pores larger than 0.1 µm contribute
little to the total porosity of the sample, which is concentrated for small diameter values.
The final cumulative porosity value shown in the graph corresponds to the total porosity
of the sample. In contrast, the concrete samples present a different trend. The porosity is
mainly determined by pore diameter values starting from 0.1 µm (Figure 5). Figure 6 shows
more clearly that, while pastes have a pore size of less than 0.1 µm, concretes have a pore
size threshold around 10 µm, representing almost 40% of the total accumulated porosity for
the diameter range from the largest of them to 0.1 µm. This indicates that concrete samples
have a broader pore structure, in terms of pore size distribution, compared to cement pastes.
This difference seems logically attributable to the paste/aggregate interfaces and to the
aggregate itself, because its pores are larger despite its lack of porosity.
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4. Discussion
Firstly, the relationship between the two methods of porosity measurement will be

discussed, and then some relationships between the measured porosity and certain charac-
teristics or properties of concrete will be derived.

4.1. Comparative Analysis of MIP and WAP Data

Figure 7 shows the ratio of MIP to WAP values, suggesting that WAP gives higher val-
ues than MIP, and that cement pastes generally show higher porosity values than concretes.
The differences are somewhat random, with the MIP/WAP ratios being significantly lower
in the case of pastes, indicating that the aggregate contributes to the porosity of concrete,
although in varying proportions. The ratios found between the two porosities range be-
tween 0.71 and 1.16, the average being 0.86 with a coefficient of variation of 15%. This is
interpreted as the influence of the variability of the aggregate being 10 to 15%, which is
considered an acceptable difference and within the accuracies of each measurement method.
Since aggregates are generally more impermeable and less variable in their porosity, it is
also possible to infer that any other less variable aggregate will give a lower coefficient
of variation.
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4.1.1. Equivalence Between WAP and MIP Data

Furthermore, presenting the data in another comparative way as in Figure 8, we find
a very good linear correlation between the two porosities with the exception of concretes
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H15, H21, H22, H30, and H36, where the porosity value due to mercury intrusion is higher
than that accessible to water. This indicates once again that the effect of the aggregate is
relatively small and that, therefore, an equivalence can be established between the two
types of measurement.
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Figure 8. Comparison of MIP porosity values of concretes and pastes with corresponding WAP data.

To find this equivalence, the data of the pastes and concretes were analyzed together.
For this purpose, it can be considered that, in a mass of concrete, the approximate average
proportions of its components are between 30 and 40% of cement paste, and the aggregates
represent between 60 and 70% of the total concrete. Thus, by adjusting, for example,
the amount of paste to 32%, the porosities of the cement pastes and the concretes can be
represented together, as shown in Figure 9. In this graph, if all the points are considered, a
linear relationship with an R2 = 0.985 is obtained as follows:

MIP = 1.18 × WAP (3)
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However, considering only concrete samples, we obtain a worse regression coefficient
(R2 = 0.7093 in Figure 8), with the expression

MIP = 0.8923 × WAP (4)
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These expressions contribute to the main objective of this work, which is to inves-
tigate whether total porosity measured with water under vacuum can replace MIP as a
characterization method for concrete quality control. MIP presents lower values than WAP
in most cases, probably because water, as a fluid, is also able to penetrate air and larger
pores, or because the surface tension in MIP does not adapt to all pore shapes and sizes, as
explained below.

4.1.2. Corrections to WAP Values to Get Closer to MIP Data

A possible cause of the differences between the porosity values determined by each
method could come from the fact that when applying the Washburn–Laplace expression
(Equation (1)) in MIP, the pore shape is not taken into account and, therefore, the variation
in surface tension as a function of the pore size [54]. In fact, this equation assumes that γ

remains constant throughout the test, which might be incorrect, as mentioned. When the
radius of curvature of the mercury meniscus (r) decreases from infinity, it can be assumed
that its surface tension may decrease. Given this consideration, the following generalized
Washburn–Laplace expression was proposed [54]:

d =
−ϕ · γ∞ · cos θ

p
+ 4 · b · cos θ (5)

where ϕ is the pore shape factor, which varies from 2 to 4 [54]. With this modification,
corrections of up to 30% are obtained for pressures below 100 MPa.

Figure 10A shows the effect that different sphericities have on the pore diameter. It is
observed that, as the shape factor decreases, the value of d (pore diameter) also decreases,
reaching values almost 50% lower than those of a pore with a circular cross-section. This
implies a considerable variation in the surface tension of mercury throughout the experiment,
given the tortuous nature of cement and concrete pores. It also influences the pore size
distribution as a function of the volume of mercury introduced for a given operating pressure.
Therefore, for low values of the shape factor, ϕ, higher pressures must be used to obtain the
same cumulative porosity of the sample, as shown in Figure 10B. From these data, it was
obtained that the shape factor that best fits the experimental results is ϕ = 3.37 for the tested
samples, i.e., considering pores of elliptical geometry 1.5:1. And for small diameters, of the
order of 10 nm and less, the best fits are obtained for the shape factor 4.
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Figure 10. (A) Effect of pore factor on pore diameter, and (B) effect of the pore factor on the cumulative
porosity as a function of pore diameter for sample H18. MIP data with γ = 0.481 N/m, θ = 141◦, and
ϕ varying between 2 and 4, as indicated in the figure.

Typically, it is possible to achieve an adjustment of about 10–15% of the observed
difference between the two porosity measurements using this correction procedure. How-
ever, for practical reasons, the increased processing complexity might not compensate for
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the increased accuracy achieved, so this additional recalculation on the MIP data is not
recommended as a general requirement for routine quality control.

4.2. Additional Calculations from MIP and WAP Data

Porosity data can also be analyzed in relation to the characteristics of concrete such as
the water/cement ratio and mechanical strength, to derive information on the tortuosity of
the pores in the samples, and to obtain a frost durability factor.

4.2.1. Tortuosity Factor

Taking advantage of the results obtained with the large set of different concretes,
it was investigated whether they also exhibited different tortuosity in their pores using
the approach proposed in [42]. Therefore, related to pore shape, tortuosity is a relatively
debated concept, with no consensus having been reached on how to quantify it for cement-
based materials. In [42], instead of defining tortuosity, a quantitative criterion was adopted
to characterize a “tortuosity factor”, which is defined as the exponent on the porosity
distribution curve with the pore size, provided that porosity is plotted on the X-axis and
pore size on the Y-axis (cf. Figure 11). In other words, the tortuosity factor can be derived
from the shape of the MIP curve by fitting the following equation:

ϕth = ϕ0 · ε−τ (6)

where ϕth is the pore diameter at any porosity, ϕ0 is the smallest diameter that can be
measured in the MIP equipment used (3.6 × 10−9 m in present case), ε is the porosity, and
τ is the tortuosity factor.
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Figure 11. Fitting a potential function to the cumulative porosity distribution curve of pastes obtained
with MIP.

Figure 11 shows a pore size distribution, but represented in such a way that fit-
ting Equation 6 allows the tortuosity factor τ to be deduced. Thus, the volumetric frac-
tion (cumulative porosity) has been plotted on the X-axis and the pore diameter on the
Y-axis. Tortuosity factor values close to 2 were found for typical pores in Portland cement.
Therefore, lower values imply slightly tortuous pores, while concretes with values τ > 2
indicate notable tortuosity, usually generated by the presence of mineral additions.

The values of the tortuosity factor obtained for 25 of the samples are shown in Figure 12.
All values, both for pastes and concretes, are lower than 2, with those for pastes being
slightly lower than those for concretes. This finding is unusual, as cements contain mineral
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additions and should have presented higher tortuosity factors. A similar comment can
be made for the concrete samples due to their low values despite the presence of mineral
additions in all cases, which could be attributed to the use of basaltic aggregates, whose
porosity is mainly due to larger pores, between 10 and 100 µm. Following the proposal by
Saffiudin and Hearn [47], the tortuosity factor was plotted as a function of the shape factor
ϕ in Figure 13, but a specific relationship between them could not be established, since
the tortuosity varies greatly for the same shape factor. Therefore, it is necessary to further
characterize the influence of the geometry and surface irregularities of concrete pores on
the total porosity values.
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4.2.2. Relationship Between Porosity and Water/Cement Ratio

The relationships between the porosity and water/cement (w/c) ratio were then
analyzed. Figure 14 shows the representations of the MIP and WAP measurements as a
function of the w/c ratios of the pastes (corrected by their proportion in the concrete) and
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concretes, finding a correlation with a high regression coefficient. In the same graph, the
values of the porosity calculated according to Powers [4,54–57] are presented. These were
obtained from capillary porosity and considering a degree of hydration, α, of 100%, using
Equation (7).

ε(%volume) =
w
c − 0.36 · α

w
c + 0.32

· 100 (7)
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Figure 14. Trends in porosity values with w/c ratio of pastes and concretes (•) compared to the
theoretical trend of Powers (▲).

Although this equation is strictly applicable only to pastes prepared with pure Portland
cement, which is not the case, it has been verified that the data do not differ significantly
from those obtained up to a w/c ratio = 0.7, despite the large dispersion between the
experimental values. The slope of the relationship is certainly different between Powers’
data and the measured data, but they have an average value of the same order. The trends
are similar in terms of WAP and MIP. It is certain that the trends and slopes would improve
if the degree of hydration of each sample was known.

4.2.3. Relationship Between Porosity and Compressive Strength

Table 1 shows the characteristic compressive strength at 28 days of the cement pastes
and concretes tested. It is observed that the highest values of compressive strength at 28 days
are presented by the cement paste samples, with values between 53.70 and 74.10 N/mm2.
The difference observed between the different samples is due to the fact that the type of
cement varies from 32.5 to 52.5 N/mm2. As for the concretes, the compressive strength
values at 28 days vary from 12.18 N/mm2 to 58.55 N/mm2. It is observed that concretes
H2, H20, and H21 give compressive strength values lower than those expected according to
the delivery specifications. Thus, concrete H2 has a strength value of 12.18 N/mm2, much
lower than the characteristic compressive strength of concrete of 20 N/mm2 according to its
identification, while H20 and H21 have values of 24.81 and 20.25 N/mm2, lower than the
nominal 25 N/mm2. Finally, as the characteristic compressive strength of concrete increases,
the difference between the porosities obtained by the two methods decreases, maintaining, in
the case of concrete, an excellent linear correlation.

When the relationship between the observed porosity and the compressive strength at
28 days is taken into account, the results shown in Figure 15 are obtained. It is observed
that as the porosity of the sample increases, the compressive strength generally decreases,
which is the expected behavior. The cement paste samples are the only ones that do not
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follow this trend for some of the cases analyzed. The resulting linear function has a low
regression coefficient of R2 = 0.3766 (cf. Figure 15).
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Figure 15. Relationship between compressive strength and MIP porosity for (△) paste and
(•) concrete samples.

In Figure 16, only concretes with porosities measured by both techniques were con-
sidered. Although there is a trend, the regression coefficients are, once again, quite low.
However, analyzing these data by grouping the concretes, we observe a higher R2 with a
linear relationship between the characteristic strength and observed porosity for HM20 and
HA25 concretes (cf. Table 3), and they maintain the same trend as that observed for the
entire group of samples. However, the second group, consisting of HA30, HA35, and HA50
concretes, shows a weaker correlation between the compressive strength and porosity data,
regardless of the porosity determination method. Within this group, if we separate the
HA30 concrete, we observe that, in fact, it presents the same trend as the previous group
(HM20 and HA25 concretes). The observed dispersion could be due to the fact that HA35
is self-compacting and HA50 contains 12 mm aggregates, achieving minimal difference
between porosities regardless of the method used. It should be noted that the concretes
used are not laboratory concrete, but rather come from real construction sites.
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cases given the many variables involved in a composite material such as concrete, which
continuously evolves over time.

4.2.4. Porosity and Frost Resistance

Another parameter directly related to the porosity of a cementitious sample is the
resistance to severe freeze–thaw cycles, conditions that can occur at high altitudes on the
island of Tenerife. This variable is related to the pore structure of the aggregate. Kaneuji
et al. [58] developed a method to quantify it, which is summarized in the following equation

EDF =
0.579
V4.5

+ 6.12 · dm + 3.04 (8)

where EDF is the durability factor of the aggregate, with a threshold value of 40 (below this
value is considered poor), V4.5 is the total mercury intrusion volume, in cm3/g, for a pore
diameter of 4.5 nm, and dm is the average pore size, in µm. Figure 17 shows the freeze–thaw
durability factors for a set of tested samples. It is observed that all the analyzed samples,
except one (H15), have acceptable durability values.
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resistant to frost with the sole exception of H15.

Finally, in Figure 18, these frost durability factors have been plotted against the
tortuosity factors, a parameter also very critical for frost resistance, finding a very low
correlation coefficient. However, the durability factor tends to increase as the tortuosity
increases, which seems contradictory, since one would expect the durability against frost
to decrease with greater tortuosity. Therefore, it is necessary to continue searching for
parameters that may complement the porosity, as well as to control every characteristic or
process related to the durability of concrete.
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5. Conclusions
In this study, the applicability of dynamic water vapor sorption (DWVS) was evaluated

as a suitable technique for characterizing cement-based materials instead of the commonly
used mercury intrusion porosimetry (MIP) method to avoid the use of mercury, which is
a hazardous substance subject to banning regulations, while the former is much simpler
to implement. Porosity was chosen because it is one of the characteristics of concrete
related to both strength and durability. Although MIP data provide a more complete
description of the fundamental characteristics of concrete samples, while DWSV only
accessed total porosity, the use of MIP in control analyses does not necessarily require
further characterization. Therefore, porosity by water intrusion under vacuum (referred to
as WAP) was selected and the equivalence between the two was investigated.

A wide range of cementitious materials, including mortar, paste, and aggregate ob-
tained from concrete, were considered to assess the differences between the MIP and WAP
data. In other words, the equivalence between the methods and MIP and DWSV data was
studied. Cylindrical specimens manufactured on site in small and large concrete mixers
were used for a study related to the search for complementary characteristics of concrete to
strength, in order to verify the consistency of the quality of concrete production. This work
was undertaken due to the limited literature available on the equivalence of porosity data
obtained by mercury intrusion porosimetry and with water under vacuum conditions. The
main conclusions of this work are as follows:

1. The porosity of the pastes was generally, but not entirely, greater than that of the concretes.
2. Similarly, the MIP results were generally smaller than the WAP results, but not in all cases.
3. The following linear relationships with high R2 were found:

MIP = 1.18 × WAP (with R2 = 0.9848) for all concretes, as well as pastes after applica-
tion of a relevant adjustment procedure (i.e., fitted);
MIP = 0.8923 × WAP for concretes alone (with R2 = 0.7093);
Which makes WAP a suitable alternative to MIP for quality control.

4. Regarding the additional information that can be extracted from the porosity mea-
surements, in this work, the following was found:
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a. Tortuosity factors calculated by fitting the MIP pore size distribution with a
power law were less than a value of 2, typical of Portland cement, in both pastes
and concretes.

b. No relationship was found between these tortuosity factors and the pore shape
factors obtained by varying the pore geometry factor and the surface tension in
MIP measurements.

c. Calculation of porosity by Powers formula for capillary porosity presented a
different trend with the water/binder ratio than the values found by MIP or
WAP, although the values for typical w/c ratios of concrete were quite close.

d. The relationship between porosity and strength suggested by Powers was found,
but with low R2 values, although improved when the concretes were grouped
into several “families”.

e. The frost durability factor calculated following the literature had a coherent
trend with the tortuosity factors calculated in the present work.

5. Porosity is the characteristic of concrete that is often related to its durability, but
its determination faces several difficulties. The first of these is the selection of the
measurement technique, followed by the establishment of significant relationships
between the porosity and relevant characteristics of concrete. Much remains to be
performed to achieve a more in-depth understanding than is currently the case.
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