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A B S T R A C T

Metabolome-based biomarkers contribute to identify mechanisms of disease and to a better understanding of 
overall mortality. In a long-term follow-up subsample (n = 1878) of the PREDIMED trial, among 337 candidate 
baseline plasma metabolites repeatedly assessed at baseline and after 1 year, 38 plasma metabolites were 
identified as predictors of all-cause mortality. Gamma-amino-butyric acid (GABA), homoarginine, serine, crea
tine, 1-methylnicotinamide and a set of sphingomyelins, plasmalogens, phosphatidylethanolamines and 
cholesterol esters were inversely associated with all-cause mortality, whereas plasma dimethylguanidino valeric 
acid (DMGV), choline, short and long-chain acylcarnitines, 4-acetamidobutanoate, pseudouridine, 7-methylgua
nine, N6-acetyllysine, phenylacetylglutamine and creatinine were associated with higher mortality. The multi- 
metabolite signature created as a linear combination of these selected metabolites, also showed a strong asso
ciation with all-cause mortality using plasma samples collected at 1-year follow-up in PREDIMED. This 
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association was subsequently confirmed in 4 independent American cohorts, validating the signature as a 
consistent predictor of all-cause mortality across diverse populations.

1. Introduction

Metabolomics has proven to be a reliable way of understanding 
biological pathways leading to chronic disease, aging process, and 
mortality [1–3]. Metabolomics-based biomarkers have shown adequate 
predictability of multi-disease outcomes and they contribute to the 
identification of high-risk individuals [4]. Recent findings suggest a high 
potential for translational research and clinical precision medicine 
through the identification of metabolites related to premature mortality 
across animal models and human subjects [5]. Additionally, several 
plasma metabolites have been associated with all-cause mortality and 
longevity, including acylcarnitines, some amino acids, phospholipids, 
and purine/pyrimidines [6–8]. However, whether these associations are 
independent, replicable or if they provide useful clinical information 
beyond conventional risk factors remains elusive. In the context of a 
worldwide trend of increased overall life expectancy during the second 
half of the twentieth century and the first decades of the twenty first 
century, this type of research has also become essential to identify and 
understand the metabolic alterations underlying the aging process and 
representing additional independent predictors of overall mortality [9]. 
In addition, the association between a metabolomic signature and the 
risk of all-cause mortality has not been addressed in Mediterranean re
gions with long life expectancies likely associated with adherence to a 
healthy traditional Mediterranean dietary pattern.

Previous studies have shown evidence supporting the importance of 
metabolomic profiles for identifying the risk of chronic disease and 
specific causes of death. In particular, in a subsample of participants 
followed-up from 2003 to 2010 in the PREDIMED (“Prevención con 
Dieta Mediterránea”) randomized trial, metabolomics techniques were 
used to identify a metabolomic signature of the Mediterranean diet 
(MedDiet) adherence screener (MEDAS). The identified signature (a 
linear combination of 67 plasma metabolites), reflecting closer adher
ence to the MedDiet, was strongly and robustly associated with a lower 
risk of cardiovascular disease (CVD) during the trial period 
(2003− 2010). That inverse association of the MedDiet with CVD was 
also replicated in independent large American cohorts: the Nurseś
Health Study I (NHS-I) and II (NHS-II), and the Health Professionals 
Follow-Up Study (HPFS). These cohorts consisted of initially healthy 
subjects who were at lower cardiovascular risk compared to the par
ticipants in the PREDIMED trial [10]. Interestingly, the MedDiet, an 
established high-quality dietary pattern, has also been related to healthy 
aging [11].

Beyond those findings, and given that an expanded mortality follow- 
up is now available for participants in the PREDIMED trial up to 2019, 
we sought to identify a metabolomic signature to predict all-cause 
mortality and may provide further molecular insights into the aging 
processes.

In this context, our aim was to identify a plasma metabolite profile 
independently associated with all-cause mortality, after controlling for 
phenotypic data in a long-term follow-up of participants in the 
PREDIMED trial, and then to replicate these findings in four independent 
US cohorts.

2. Methods

2.1. PREDIMED trial

The primary assessment was conducted in PREDIMED (PREvención 
con DIeta MEDiterránea), a well-known multicenter, randomized, pri
mary cardiovascular prevention trial with Mediterranean diets. Table 1
shows baseline characteristics of participants and Supplementary Table 

1 describes characteristics of PREDIMED participants at 1-year follow- 
up. From 2003 to 2010, this large Spanish trial was conducted in 11 
recruiting centers with the participation of 7447 men (aged 55 to 80 
years) and women (aged 60 to 80 years), at high cardiovascular risk but 
initially free of CVD [12]. They were randomized 1:1:1 into three 
intervention groups: MedDiet supplemented with extra-virgin olive oil 
(EVOO), MedDiet supplemented with nuts, and control group (advice on 
a low-fat diet) [13].

2.2. NHS-I, NHS-II and HPFS cohorts

The NHS-I began in 1976, including 121,700 U.S. female registered 
nurses aged 30–55 years; the NHS-II was initiated in 1989, enrolling 
116,429 female registered nurses aged 25–42 years; and the HPFS was 
established in 1986, recruiting 51,525 male health professionals aged 
40–75 years. Supplementary Tables 2 and 3 describe baseline charac
teristics of participants. These cohorts have been described in detail 
elsewhere [14]. Blood samples were collected from 32,826 NHS-I par
ticipants between 1989 and 1990 [15], 29,611 NHS-II participants be
tween 1996 and 1999 [15], and 18,225 HPFS participants between 1993 
and 1995 [16].

2.3. Women’s health initiative

The Women’s Health Initiative (WHI) is a long-term nationwide 
study that focuses on strategies for the prevention and control of the 
most common causes of morbidity and mortality among post
menopausal women [17]. During 1993 to 1998 in 40 clinical centers in 
the U.S., a total of 161,808 women aged 50–79 years were enrolled into 
either an observational study (OS) (n = 93,676) or the hormone 
replacement therapy trials (HT) or dietary medication trial (n = 68,132). 
Supplementary Table 4 describes baseline characteristics of participants. 
The WHI-HT trials included a randomized, placebo-controlled trial of 
conjugated equine estrogens plus medroxyprogesterone acetate (n =
16,608), and a randomized, double-blind, placebo-controlled disease 
prevention trial of 0.625 mg/day of conjugated equine estrogens (n =
10,739) [18].

2.4. Study participants

Two case-cohort studies [19], nested within the PREDIMED trial, 
were designed for metabolite profiling [20]: PREDIMED-CVD (including 
229 incident cardiovascular disease cases and a random subcohort of 
788 participants with 37 overlapping cases) and PREDIMED-T2D 
(including 251 incident type 2 diabetes cases and a random subcohort 
of 694 participants with 53 overlapping cases). Additional participants 
with available oral glucose tolerance tests were also included for 
metabolomics analyses (n = 132). After excluding duplicates and par
ticipants with >20 % missing values in metabolites, 1878 participants 
with metabolomic information were available in PREDIMED. Among 
them, 457 all-cause deaths were observed during a median follow-up 
period of 12.2 years (up to June 30, 2019). As an internal replication, 
we used metabolomics data from PREDIMED after 1 year of interven
tion, for 1628 participants who also had repeated measurements of diet, 
covariates and plasma metabolomics. The protocol was approved by the 
Institutional Review Boards at all PREDIMED study locations, and all 
participants provided written informed consent.

For the current study, NHS-I, NHS-II and HPFS baseline date was set 
as the respective blood draw date for each participant. Participants from 
13 nested case-control studies on metabolomics were included (Sup
plementary Table 3). All participants in these studies were free of the 
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Table 1 
Baseline characteristics of PREDIMED participants included in the analyses, by quintiles of the multi-metabolite score, and by sex. Mean (standard deviation) values for continuous variables. Percentage values by quintiles 
of the metabolomic score and by sex. ANOVA test for continuous values by quintiles of the metabolomic score, t-test for continuous variables by sex and Chi-squared test for proportion (percentage) variables.

Quintiles of the leave-one-fold baseline score Sex Overall

Q1 Q2 Q3 Q4 Q5 P value Male Female P value

N 376 376 376 375 375 799 1079 1878
Mean score (SD) − 0.66 (0.21) − 0.28 (0.08) − 0.02 (0.07) 0.24 (0.08) 0.71 (0.28) <0.001 0.17 (0.48) − 0.13 (0.47) <0.001 0.00 (0.49)
Mean age (SD) 64 (5) 66 (5) 66 (6) 68 (6) 70 (6) <0.001 66 (6) 67 (5) <0.001 67 (6)
Female sex % 80.3 64.9 58.0 46.4 37.6 <0.001 – – – 57.5
All-cause mortality % 8.2 16.8 20.7 26.7 49.3 <0.001 30.9 19.5 <0.001 24.3
Cancer mortality % 2.9 5.3 6.9 7.7 12.8 <0.001 9.5 5.4 <0.001 7.1
CVD mortality % 2.9 4.3 6.4 10.1 21.1 <0.001 11.6 7.0 <0.001 8.9
Mortality from non-cancer non-CVD causes % 2.4 7.2 7.5 8.8 15.5 <0.001 9.8 7.1 0.050 8.3
Type 2 diabetes % 16.0 21.0 29.3 32.0 47.7 <0.001 33.8 25.8 <0.001 29.2
Dyslipidemia % 82.2 83.5 74.2 73.9 70.1 <0.001 71.6 80.6 <0.001 76.8
Hypertension % 87.5 85.9 87.8 86.1 89.3 0.625 84.5 89.4 0.002 87.3
Family history of premature coronary heart disease % 28.2 30.1 23.9 23.5 18.4 0.002 16.8 30.8 <0.001 24.8
Smoking % <0.001 <0.001

Never 71.8 66.0 56.4 56.3 46.1 23.5 85.8 59.3
Former 11.2 18.3 26.9 25.1 36.8 49.1 6.9 24.8
Current 17.0 15.7 16.8 18.7 17.1 27.4 7.3 15.9

Primary education or lower % 93.4 91.0 92.0 92.8 94.4 0.435 88.9 95.6 <0.001 92.7
Mean baseline glucose (SD), mg/dL 105.7 (22.1) 108.9 (27.7) 114.2 (33.5) 117.1 (35.5) 126.3 (42.1) <0.001 118.3 (34.0) 111.6 (33.1) <0.001 114.4 (33.6)
Mean alcohol intake (SD), g/d 6.2 (11.3) 8.2 (12.9) 9.3 (14.7) 11.4 (17.1) 13.1 (19.6) <0.001 17.5 (20.0) 3.8 (6.9) <0.001 9.6 (15.6)
Mean BMI (SD), kg/m2 29.7 (3.3) 29.7 (3.6) 30.1 (3.6) 29.9 (3.9) 30.1 (3.5) 0.366 29.4 (3.2) 30.3 (3.8) <0.001 29.9 (3.6)
Mean waist-to-height ratio (SD) 0.62 (0.06) 0.62 (0.06) 0.63 (0.06) 0.63 (0.06) 0.64 (0.06) <0.001 0.62 (0.06) 0.63 (0.07) <0.001 0.63 (0.06)
Mean total energy intake level (SD), kcal/d 2223(580) 2308 (585) 2345 (632) 2321 (584) 2383 (622) 0.006 2508 (637) 2174 (533) <0.001 2316 (603)
Mean leisure-time physical activity level (SD), MET-min/d 221 (187) 245 (226) 265 (282) 259 (258) 232 (223) 0.068 329 (289) 182 (167) <0.001 245 (238)
Mean Mediterranean Diet Score 8.7 (2) 8.6 (2) 8.6 (2) 8.6 (2) 8.5 (2) 0.767 8.7 (2) 8.6 (2) 0.125 8.6 (2)
Randomized Group % 0.356 0.274

Olive Oil 31.7 37.0 33.0 34.1 36.0 34.3 34.4 34.3
Nuts 38.8 34.3 34.3 34.7 29.9 36.2 33.1 34.4
Control (low fat) 29.5 28.7 32.7 31.2 34.1 29.5 32.5 31.3
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disease under study at the time of blood collection but were selected if 
they developed the endpoint after blood collection or were selected as an 
age-matched control. We excluded participants with a history of CVD or 
cancer at baseline or lost to follow-up after blood collection. A total of 
11,660 participants remained in the prospective mortality risk analyses. 
The study protocol was approved by the institutional review boards of 
the Brigham and Women’s Hospital and Harvard T.H. Chan School of 
Public Health, and those of participating registries as required.

The WHI study included 1153 incident CHD cases and an equal 
number of matched controls (matching factors: age, self-reported race, 
hysterectomy status, and enrollment groups). All participants were free 
of known CVD and cancer at baseline. The research protocol was 
approved by the Fred Hutchinson Cancer Research Center Institutional 
Review Board and the Institutional Review Board of Mass General 
Brigham/Brigham and Women’s Hospital. Informed consent was ob
tained from all participants.

2.5. Metabolite profiling

The fasting plasma metabolomics profiling in the PREDIMED, NHS-I, 
NHS-II and HPFS cohorts was conducted using three liquid chroma
tography tandem mass spectrometry (LC–MS) techniques (HILIC-pos, 
HILIC-neg, and C8-pos) at the Broad Institute of MIT and Harvard 
(Cambridge, MA) during 2015–2021 [21,22]. To account for any tem
poral drift in instrument performance over time and between batches, 
pooled plasma reference samples (prepared by combining small aliquots 
from the study samples) were analyzed every 20 participant samples. 
Additionally, quality control (QC) samples, to which the laboratory was 
blinded, were randomly distributed among the study samples for 
profiling. For the WHI, plasma samples were collected using EDTA- 
containing tubes and then stored at − 70 ◦C before analysis. Metab
olomics analyses of WHI samples were performed using the same LC-MS 
methods used in PREDIMED during 2013–2015. Pooled plasma QC 
samples were analyzed after intervals of 20 WHI samples to ensure 
repeatability and to scale data between batches. Detailed metabolomic 
profiling have been described for the PREDIMED [22], NHS/NHSII/ 
HPFS [22,23] and WHI [22,24].

In PREDIMED, 337 labeled metabolites from the HILIC-pos (cationic 
polar metabolites) and C8 (lipids) platforms were selected for primary 
analyses after quality filtering and standardization. In an ancillary 
analysis, we also added other 41 candidate metabolites measured at 
baseline in PREDIMED using the HILIC-negative method. In NHS-I, NHS- 
II and HPFS, a total of 466 metabolites of known identity were anno
tated. Metabolites for which quality control replicates intraclass corre
lation coefficient was <0.3 (n = 10) or detection rate was <70 % (n =
171) were excluded. The final number of metabolites considered in the 
primary analysis was 243. In WHI, after quality control, 509 known 
metabolites were used in current analyses.

Criteria for exclusion in the PREDIMED and WHI were metabolites 
with at least 20 % of total missing values. Remaining metabolites were 
imputed using half the minimum detected of each metabolite value. 
Finally, they were standardized using Blom’s method (inverse-normal 
transformation) prior to statistical analysis. Specifically, for the NHS-I, 

NHS-II and HPFS cohort, metabolites with a missing proportion higher 
than 30 % were excluded. Metabolite data were log-transformed if its 
distribution was highly skewed (defined as absolute skewness >2). Then 
all metabolites were converted to z-scores within each sub-study and 
imputed missing data using the random forest imputation approach 
[25].

2.6. Measurements of covariates

In PREDIMED, participants self-reported lifestyle factors. Medical 
records, risk factors and family history of diseases were collected during 
the first screening visit. At baseline and during annual visits, MedDiet 
adherence was measured by a validated 14-item questionnaire [26] in a 
face-to-face interview with a registered dietitian, and anthropometric 
traits were measured by trained study personnel. Physical activity was 
collected with validated questionnaires. Hypertension was defined as 
blood pressure > 140/90 mmHg or treatment with antihypertensive 
drugs. Dyslipidemia was defined as LDL-C levels >4.14 mmol/l (>160 
mg/dl) or treatment with hypolipidemic agents; HDL-C concentrations 
<1.29 mmol/l (50 mg/dl) for women or < 1.03 mmol/l (40 mg/dl) for 
men independently of lipid-lowering therapy. Diagnosis of type-2 dia
betes was based on at least one of the following criteria: current treat
ment with insulin or oral hypoglycemic drugs; fasting glucose >126 mg/ 
dl (fasting is defined as no caloric intake at least for 8 h); casual glucose 
>200 mg/dl with polyuria, polydipsia, or unexplained weight loss; or 
glucose >200 mg/dl in two measurements after an oral glucose toler
ance test. Due to the high proportion of participants with type 2 diabetes 
or prediabetes in the PREDIMED trial, baseline glucose levels were used 
as a covariate for multivariable adjustment.

In NHS-I, NHS-II and HPFS, information on body weight, smoking 
status, physical activity, multivitamin use, race, diabetes, hypertension, 
hypercholesterolemia, and the use of antihypertensive medication and 
lipid-lowering medication was obtained through self-reported ques
tionnaires prior to blood collection. Body mass index (BMI) was calcu
lated using the height reported at cohort baseline and the body weight 
reported before the blood draw. Information on age and fasting status 
was obtained via questionnaires completed at blood collection. Total 
calories, alcohol intake, and the Alternate Healthy Eating Index (AHEI, a 
measure of overall diet quality ranging from 0 to 100, not including 
alcohol), were calculated from the last available semiquantitative food- 
frequency questionnaire (FFQ) before the blood draw. The validity and 
reproducibility of the FFQs have been reported elsewhere [27].

In the WHI study, information on age, race/ethnicity, lifestyle factors 
and other covariates, including smoking status, alcohol consumption, 
physical activity, education, female-specific variables (e.g., hysterec
tomy, menopausal status, hormone use), health status (diabetes, hy
pertension, dyslipidemia), medication use (hormone, multivitamin, 
aspirin) were collected at the study baseline. Diet was assessed from the 
year 3 annual follow-up food frequency questionnaire [28]. Body 
weight, height, waist circumference, and hip circumference were 
measured by trained staff at baseline. Medical history was collected 
semiannually during the intervention main phase and annually during 
extension studies.

Fig. 1. Scheme of the study development. Using a combination of two PREDIMED case-cohorts as the main data, the association between baseline plasma metabolites 
and all-cause mortality was addressed through metabolome-wide association approaches and also feature selection by an elastic net penalized Cox regression model, 
which make it possible to create a metabolomic signature (score) using these selected metabolites, separating training sets from testing sets, with special care to avoid 
any overfitting. Further analysis was implemented using an unbiased metabolic signature, evaluating the prediction of all-cause mortality with Cox hazard multi
variable models. Additionally, an assessment of this metabolomic signature in relation to premature mortality was conducted using rate advancement period (RAP) 
and survival analyses. Internal validation of a plasma 38-multimetabolite score was conducted using another sample of PREDIMED (PREDIMED specimens collected 
after 1 year of follow-up instead of baseline). External validations were implemented in American cohorts, using 13 combined studies of Nurses’ Health Studies I and 
II and Health Professionals Follow-Up Study (HPFS), and a case-control study of coronary heart disease nested in 2 combined cohorts from the Women’s Health 
Initiative. 
For Elastic Net Penalized Cox Regression, α and λ are fitting parameters to control the L1-norm and L2-norm penalization of the model, R(ti): risk set at time ti. For 
Metabolomic Signature, xi: abundance of each metabolite; βi: weight of each metabolite to the metabolomic score, n: number of selected metabolites. 
PREDIMED: PREvención con DIeta MEDiterránea; NHS-I: Nurseś Health Study I; NHS-II: Nurseś Health Study II; HPFS: Health Professionals Follow-Up Study.
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2.7. Ascertainment of death

The primary outcome was all-cause death, separated by cause: CVD, 
cancer or other. Each category was added to consider all-cause mortal
ity. In PREDIMED, this information was identified from different sour
ces: annual review of medical records, direct repeated follow-up of 
participants, and a yearly consultation of the National Death Index. In
formation on fatal events was submitted to the Clinical End-Point 
Committee (whose members were blinded to the intervention-group 
assignment) for validation. Materially complete follow-up for all-cause 
mortality was available until June 30, 2019 from the National Death 
Index under an agreement with the National Institute of Statistics.

Deaths in the NHS-I, NHS-II and HPFS were identified from state vital 
statistics records, the National Death Index, and reports from next of kin 
or the postal authorities. The follow-up for mortality in these cohorts is 
over 98 % complete using these methods. The cause of death was 
determined by physician’s review of medical records, autopsy reports, 
or death certificates. We used the International Classification of Dis
eases, Eighth Revision (ICD-8) in NHS and ICD-9 in HPFS, which were 
the ICD systems used at the time the cohorts began.

In WHI, death information was linked with the National Death Index. 
Adjudication of diseases was performed by trained physicians first at the 
Clinical Centers, and then under the auspices of the Clinical Coordi
nating Center. Specific cause of death was assessed by physician adju
dicators or by relatives’ reports.

2.8. Association of individual metabolites with all-cause mortality

Out of 337 available metabolites in PREDIMED, the individual as
sociation between each metabolite (per +1 SD increase) and all-cause 
mortality was studied using a Cox regression for each individual 
metabolite and estimating the association with all-cause mortality and 
specific death causes (cancer, CVD and other causes). Also, analyses of 
all-cause mortality were stratified by sex. Corrections for multiple 
testing were addressed using the Benjamini & Hochberg procedure 
under a < 0.05 false discovery rate (FDR) criteria.

2.9. Metabolomic profile score

To better address potential bias and variance, while taking advan
tage of both features of the Ridge and Lasso penalized regressions, the 
machine learning method used to select metabolites as consistent pre
dictors of all cause-mortality was a 10-fold cross validation elastic net 
Cox regression [29,30]. As their β coefficients were used as weights, for 
the validation samples, each individual score was calculated as the sum 
of the measured metabolite values (previously inverse normally trans
formed) weighted by their corresponding β coefficient. In the training 
sample, to avoid overfitting [31], the score was calculated using a leave- 
one-fold-out (LOFO) approach. For this aim we divided the sample into 
10 folds, and then applied a 10-iteration 10-fold cross-validation elastic 
net Cox regression. We calculated the score for each of the ten left-out 
folds separately using the other 9 folds as training set and applied the 
coefficients independently of the derivation set to the left-out fold in 
each iteration (90 % of the sample was considered in each iteration to 
calculate the remaining 10 % score values).

2.10. Metabolomic score and all-cause mortality

Cox proportional hazard models were run to analyze the association 
between the metabolite score calculated and all-cause mortality in the 
main sample (baseline data of PREDIMED) and in replication samples. 
For replication samples, we used a 38-metabolite score derived from the 
elastic net Cox regression using the baseline PREDIMED sample as 
derivation set. Cox models were run with three different levels of 
adjustment: crude (bi-variable, only the score), adjusted for age and sex, 
and multivariable-adjusted, further adjusted for baseline glucose levels, 

dyslipidemia (yes or no), hypertension (yes or no), family history of 
premature CHD (yes or no), smoking (never, former and current), 
educational level (low or high), alcohol intake (<5 g/d, 5 to 15 g/d and 
> 15 g/d), BMI (<30, 30–35, >35 kg/m2), waist-to-height ratio (3 
categories, <0.6, 0.6 to <0.75 and > 0.75), total energy intake (per 1- 
SD), physical activity (per 1-SD), score of adherence to MedDiet (0 to 
14 points) and randomized diet group (olive oil, nuts or control diet fat). 
For better interpretation, the score was tested in quintiles and also per 
+1 SD.

Finally, as a second metabolite selection step, an additional, more 
parsimonious, version of the score was generated using stepwise 
(backward and forward) Cox regression on the 38 previously selected 
metabolites. The score was then calculated using LOFO coefficients, 
including only the 12 newly selected metabolites.

2.11. Ten-year follow-up association with all-cause mortality

The association between all-cause mortality and the LOFO- 
metabolomic score, survival after 10 years of follow-up in the PRE
DIMED cohort, was analyzed using logistic regression and ROC curve 
analysis. The comparison of multivariable models with and without the 
score was performed using DeLong’s ROC test and the Hosmer- 
Lemeshow goodness of fit for calibration.

2.12. Mortality assessment, survival analysis, and estimation of the rate 
advancement period

A graphical procedure for survival analysis was conducted using 
inverse probability weighting to estimate the probability of the exposure 
observed for a particular participant, the inverse of this predicted 
probability was used as the weighting factor in a survival model. For a 
better graphical understanding of the results, score quintiles 2 and 3 
(materially equivalent) were merged in a single category. Also, a rate 
advancement period [32] (RAP) estimation was performed, stratified by 
specific baseline age groups (in groups of 5 years, from 55 to 59 years to 
75–79 years). To test if there was an interaction between the exposure 
(score) and baseline age [33], Martingale’s residuals from a Cox hazard 
ratio were analyzed assessing the association of the score (per +1 SD) 
with all-cause mortality. For further comparison, different RAPs were 
estimated for participants in two ways: comparing the sample according 
to whether participants were above or below the median of the multi- 
metabolite score, and comparing the fifth versus first quintile of the 
multi-metabolite score.

2.13. Subgroup analyses

As an alternative to sensitivity analyses, and to avoid misinterpre
tation of the data, we performed a series of subgroup analyses. First, we 
use conventional Cox models and competing risk models to analyze the 
association between the score and each particular cause of death (CVD, 
cancer and other causes), representing graphically incidence curves, 
using the score as a continuous variable (per +1 SD) and also comparing 
(HRs) the upper and the lowest quintile. Also, we ran Cox regression 
models after stratifying by sex and categories of baseline age. Finally, to 
discard major influences of the main risk factors (type 2 diabetes, 
smoking, hypertension, dyslipidemia and obesity) a new model was 
designed to analyze the association of the score and a categorical vari
able counting the presence of these risk factors (3 categories, 1, 2, 3 o 
more) was included as a covariate.

2.14. Replication into independent cohorts

As an internal validation of the ability of our metabolomic score to 
predict the risk of mortality, the same methodology for assessing the 
association of the score with mortality was replicated with metab
olomics data of PREDIMED after 1 year of intervention instead of using 
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the baseline metabolomics data. External validations were conducted in 
the NHS-I, NHS-II, HPFS and WHI cohorts. Particularly, 27 metabolites 
out of the 38 selected for the score were available in NHS-I, NHS-II and 
HPFS (two were not available: choline and xanthosine; and nine had 
over 30 % missing values: N-acetylputrescine, hydroxycotinine, trime
thylbenzene, DMGV, CAR18:1 OH, 1-methyladenosine, CAR18:1, PC- 
plasmalogen 36:1 and guanine). In the case of WHI, a total of 32 of 
the initial 38 metabolites were available. Missing metabolites were 
hydroxycotinine, guanine, GABA, DMGV, PC 40:9 and alpha- 
aminoisobutyric acid. As part of the sensitivity analysis, we recon
structed the PREDIMED multi-metabolite score using only the 24 me
tabolites available in all US cohorts, allowing to assess the performance 
of the score when restricted to the available metabolites in each of these 
external validation cohorts. As a sensitivity analysis, different baseline 
scoring tests were performed in PREDIMED with the metabolites dis
carded in the other cohorts.

2.15. Analysis implementation

All analyses were implemented using R version 4.4.1, using the main 
following libraries: ‘glmnet 4.1–8’ for Elastic Net regressions, ‘survival 
3.6–4’ for survival analysis, ‘caret 6.0–94’ and ‘pROC 1.18.5’ for logistic 
regressions, ‘cmprsk 2.2–12’ and ‘tidycmprsk 1.1.0’ for competing risk 
analysis and ‘tidyverse 2.0.0’ features for data transformation and 
graphics.

3. Results

3.1. Study participants

Our primary study sample was made of a subsample of baseline 
PREDIMED data including 1878 participants (mean age = 67 years, SD 
= 5 years) with available baseline fasting plasma metabolomic infor
mation (337 available metabolites). For 1628 of these participants, 
repeated plasma measurements of the 337 metabolites after 1 year were 
also available and they were used for internal validation (Fig. 1). Pre
dominantly, participants had similar baseline characteristics as those in 
the whole roster (N = 7447) of the PREDIMED trial [12] (Table 1, Fig. 2
and Supplementary Table 1). As expected, given the selection of a high- 
risk population for this trial, long-term (2003 to 2019) mortality was 
substantial, and higher for men (30.9 %) than for women (19.5 %).

For external validation, harmonized data from a total of 11,660 
participants in 13 combined studies nested in the NHS-I, NHS-II, and 
HPFS were used, as well as 2306 participants from the combined female 
cohorts of the WHI. In contrast to PREDIMED, participants from the 
Harvard cohorts (NHS-I, NHS-II and HPFS) were younger (mean = 54 
years, SD = 9 years) and had lower baseline prevalence of obesity, 
diabetes, dyslipidemia and hypertension (Supplementary Table 2 and 

Supplementary Table 3), while women participating in the WHI study 
were age similar to female participants of PREDIMED (Supplementary 
Table 4).

3.2. Identification of individual metabolites associated with all-cause 
mortality

To assess the association of each individual plasma metabolite with 
all-cause mortality, a metabolome-wide association analysis was con
ducted. We also assessed specific causes of mortality (cancer, CVD and 
other causes).

When we assessed each individual metabolite in PREDIMED, a total 
of 154 metabolites were associated with all-cause mortality (after cor
recting for multiple testing), out of which 85 showed inverse associa
tions and 69 showed direct associations with all-cause mortality, after 
applying a false discovery rate (FDR) < 0.05 (Fig. 3.a. and Supple
mentary Table 5). Plasma metabolites with strong inverse associations 
with all-cause mortality included SM 22:1, PC-plasmalogen 38:7, several 
other cholesterol esters, glycerophospholipids, creatine, gamma- 
aminobutyric acid (GABA), and other amino acids. On the other hand, 
direct associations with all-cause mortality were observed for several 
acylcarnitines, dimethylguanidino valeric acid (DMGV), nucleosides, 
hypoxanthines, pseudouridine, 7-methylguanine, and other amino and 
keto acids as in 4-acetamidobutanoate and creatinine. Results remained 
consistent for both women and men, with a Pearson r for beta co
efficients between men and women = 0.72 (Fig. 3.b. and Supplementary 
Table 6).

Regarding specific causes of mortality, only 13 metabolites were 
associated with cancer mortality (7 inverse associations and 6 direct 
associations) (Fig. 3.b. and Supplementary Table 7). For CVD-specific 
mortality, 105 metabolites showed significant associations (50 inverse 
associations and 55 direct associations) (Fig. 3.c. and Supplementary 
Table 8). Finally, 54 metabolites were found to be associated with 
mortality from non-cancer non-CVD causes (28 inverse associations and 
26 direct associations) (Fig. 3.d. and Supplementary Table 9).

3.3. Metabolomic signature for all-cause mortality used in replications

Using a 10-fold cross-validation elastic net penalized Cox regression, 
a group of 38 baseline plasma metabolites were identified and selected 
to develop a plasma multi-metabolomic signature (score) able to predict 
all-cause mortality (Supplementary Table 10 and Supplementary Fig. 1). 
This 38-multi-metabolite score was calculated as the weighted sum of 
the selected metabolites with weights equal to the elastic net Cox 
regression coefficients (Supplementary Table 11). High Pearson corre
lations were found between metabolites of glycerophospholipid, nucle
oside and hypoxanthine families (Supplementary Fig. 2). This linear 
combination composed of 38 plasma metabolites with their weights 

Fig. 2. Boxplots of baseline continuous variables in each extreme quintile of the metabolomic score (first row) and stratified by sex (second row).
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(negative or positive) derived from a single elastic net penalized Cox 
regression applied to baseline PREDIMED was used thereafter for rep
lications in PREDIMED after 1 year (but not in the baseline assessment in 
PREDIMED, see in 3.4), and also in external independent cohorts (using 
those metabolites that were available in each cohort, out of the 38 
identified metabolites).

3.4. Leave-one-fold out score (LOFO) in PREDIMED at baseline

To avoid overfitting in the original PREDIMED sample at baseline, 
the multi-metabolite score was initially derived by employing a 10-fold 
cross-validation method. The sample was divided into 10 folds and we 
performed 10 iterations of an elastic net Cox regression. For each iter
ation, 9 folds were used to derive the coefficients, while the remaining 

Inverse associations: lower mortality

(Top 20)

Positive associations: higher mortality

(Top 20)

Metabolite HR (95% CI) Metabolite HR (95% CI)

SM 22:1 0.72 (0.66, 0.79) 4-Acetamidobutanoate 1.47 (1.33, 1.61)

Creatine 0.75 (0.69, 0.83) Pseudouridine 1.45 (1.32, 1.59)

PC-plasmalogen 38:7 0.76 (0.69, 0.83) 7-Methylguanine 1.42 (1.30, 1.56)

CE 18:0 0.76 (0.69, 0.84) Creatinine 1.42 (1.30, 1.56)

GABA** 0.77 (0.70, 0.84) CAR 4:0;OH 1.41 (1.29, 1.55)

PE-plasmalogen 38:7˟ 0.77 (0.70, 0.84) Choline* 1.38 (1.26, 1.52)

SM 22:0˟ 0.77 (0.70, 0.85) N6-Acetyllysine 1.35 (1.23, 1.49)

SM 18:1˟ 0.77 (0.71, 0.85) CAR 18:1;OH* 1.35 (1.23, 1.48)

SM 20:0˟ 0.78 (0.71, 0.85) DMGV*** 1.34 (1.22, 1.47)

PE-plasmalogen 36:5 0.78 (0.71, 0.85) CAR 12:1˟ 1.33 (1.21, 1.46)

Homoarginine 0.78 (0.71, 0.85) N-Acetylputrescine* 1.32 (1.20, 1.45)

TG 54:10˟ 0.78 (0.71, 0.85) 1-Methyladenosine* 1.31 (1.19, 1.44)

Serine 0.78 (0.71, 0.86) CAR 14:1˟ 1.28 (1.17, 1.41)

SM 24:0˟ 0.78 (0.71, 0.86) 1-Methylguanosine˟ 1.28 (1.17, 1.41)

CE 20:4 0.78 (0.72, 0.86) PE 34:2 1.28 (1.16, 1.40)

CE 22:6˟ 0.79 (0.72, 0.86) CAR 18:1* 1.28 (1.16, 1.40)

PC-plasmalogenB 36:5˟ 0.79 (0.72, 0.86) N-Carbamoyl-beta-alanine˟ 1.27 (1.16, 1.39)

CE 18:2˟ 0.79 (0.72, 0.87) Phenylacetylglutamine 1.26 (1.14, 1.38)

1-Methylnicotinamide 0.79 (0.72, 0.87) CAR 12:0˟ 1.25 (1.14, 1.37)

PC-plasmalogen 38:6˟ 0.79 (0.73, 0.87) CAR 10:0˟ 1.25 (1.14, 1.37)

a

b c d e

Fig. 3. Associations between each metabolite and mortality. a. Volcano plot for the individual associations between each metabolite and long-term all-cause 
mortality; The top 40 associations (20 inverse and 20 direct hazard ratios) of individual metabolites with mortality and their respective HRs (95 % CI) per +1 SD 
increment are shown in the upper left graph and the upper right table. b. Scatter plot to compare the results of the beta coefficients [log(HR)] of Cox models for each 
metabolite by sex. Direct and inverse significant associations for both male and female (FDR < 0.05) with individual metabolite and all-cause mortality are rep
resented with red and blue, respectively c. d. & e. Scatters plot for log(HR) of all-cause mortality vs. log(HR) of each cause of death (cancer, CVD and other causes). 
Direct and inverse significant associations for each cause of death (FDR < 0.05) with individual metabolite and all-cause mortality are represented in red (direct) and 
blue (inverse). All p-values were corrected using the Benjamini & Hochberg FDR < 0.05 correction; In the upper right table, we indicate the non-included or non- 
available metabolites: ˟not selected for the 38-multi-metabolomic signature associated with all-cause mortality; *not available in NHS-I, NHS-II and HPFS; **not 
available in WHI, ***not available in NHS-I, NHS-II, HPFS and WHI. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)
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fold was left out for testing (leave-one-fold-out, LOFO). The score for 
each of the ten folds, which were left out, was calculated by applying the 
coefficients obtained in the remaining 90 % of the sample (the other 9 
folds) from which that fold was excluded. This procedure ensured that 
the LOFO score was independently calculated from the derivation set in 
each of the 10 left out folds. The number of metabolites included in each 
of the ten different folds ranged between 31 and 47 metabolites (Sup
plementary Table 12). A comparison of each individual coefficient be
tween the 38-multimetabolite score and the LOFO-multi-metabolite 
score was made (Supplementary Table 13) and the results were consis
tent (Supplementary Fig. 3).

The prediction of all-cause mortality using this LOFO-multi- 
metabolite score was first assessed by quintiles. The results showed a 
significant association with long-term mortality for each of the four 
upper quintiles as compared to the lowest quintile. Specifically, the 
multivariable-adjusted hazard ratio (HR) for the fifth versus the first 
quintile was 3.30 (95 % Confidence interval [CI]: 2.19, 4.97). Addi
tionally, in the continuous analysis, the HR per +1 SD was 1.45 (95 % CI: 
1.31, 1.61) (Fig. 4). C-concordance indexes for the multivariable model 
were satisfactory and similar for the score in quintiles (0.761) and for 
the continuous analysis per +1 SD (0.761).

Consistent results were found when doing a new metabolite selection 
that included HILIC-neg metabolites. This process led to the identifica
tion of seven new metabolites and the exclusion of three from the pre
vious selection, resulting in a score with a total of 42 metabolites 

(Supplementary Tables 14 and 15, and Supplementary Fig. 4), Similarly, 
consistent results were found with a parsimonious 12-metabolite score 
obtained with stepwise Cox regression (Supplementary Table 16) and 
when comparing specific causes of mortality (Supplementary Table 17). 
Also, when the sample was stratified by the number of risk factors, the 
results were consistent (Supplementary Table 18).

The magnitude of the association between the LOFO-multimetabolite 
score was not homogenous when stratifying by sex (Supplementary Fig. 
5), with a stronger association in women than in men. Subgroup analysis 
showed no significant effect modification by the main covariables 
included in the model on the effect of the score on all-cause mortality, 
except for categorized baseline age, showing a stronger effect of the 
multi-metabolite signature among younger than among older subjects, 
with p = 0.004 for interaction (Supplementary Table 19). Finally, using 
mortality at 10-year follow-up, we compared in ROC curves, the area 
under the curve (AUC) for the prediction of death by conventional risk 
factor with or without the LOFO-multi-metabolite score, and we found a 
significant improvement (p = 0.01 for the comparison of the AUC) when 
we added the multi-metabolite score to the conventional predictors of 
all-cause death (Supplementary Fig. 6). Also, the calibration and good
ness of fit of the model were correct according to the Hosmer-Lemeshow 
method (Supplementary Fig. 7).

Fig. 4. Multivariable-adjusted model showing independent associations between baseline variables, including the plasma LOFO-multi-metabolite score, and all-cause 
mortality, adjusted for the conventional risk factors shown in the table and graph. Hazard ratio (HR) for quintiles of the LOFO-multi-metabolite score, adjusted for all 
the variables shown in the graph: age, sex, baseline glucose level (per 20 mg/dL), waist-to-height ratio (3 categories: <0.6, 0.6 to <0.75 and ≥0.75), smoking (3 
categories: never, former and current), alcohol intake (3 categories: <5 g/d, 5 to 15 g/d and ≥15 g/d), hypertension [HT] at baseline (yes or no), educational level 
(low or high), family history of premature coronary heart disease [CHD] (yes or no), dyslipidemia diagnosed at baseline (yes or no), body mass index [BMI] (3 
categories:<30, 30–35, ≥ 35 kg/m2), total energy intake (per 500 kcal/d) and leisure-time physical activity (per 100 MET-min/d). In addition, the shown model was 
also adjusted for baseline adherence to the Mediterranean diet adherence screener (0–14 points) and for the randomized group (3 categories: olive oil, nuts and low 
fat). HR: Hazard ratio; CI: Confidence interval. CHD: Coronary heart disease.
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3.5. Validation of the plasma metabolomic signature

Different assessments were conducted to replicate the observed as
sociation between the identified 38-multi-metabolite score and mortal
ity. As an internal validation, the association of the 38-multi-metabolite 
score with subsequent all-cause death was replicated in PREDIMED 
participants using plasma metabolomic profiles measured after 1 year of 
follow-up (1628 participants). A highly consistent association of the 38- 
multi-metabolite score with subsequent mortality (>1 year follow-up) 
was found, both when comparing extreme quintiles (HR = 3.16; 95 % 
CI = 2.02, 4.95; C-index = 0.756) and per +1 SD score (HR = 1.69; 95 % 
CI = 1.51, 1.90; C-index = 0.766), after adjusting for potential con
founders (Table 2).

Furthermore, several external replications were conducted. In the 
combined sets of participants from the NHS-I, NHS-II, and HPFS, 27 of 

the 38 metabolites were available. The weighted score built with these 
27 metabolites was significantly associated with higher mortality, when 
comparing extreme quintiles (HR = 1.45; 95 % CI = 1.30, 1.63; C-index 
= 0.722) and per +1 SD score (HR = 1.19; 95 % CI = 1.14, 1.23; C-index 
= 0.722), after adjusting for relevant covariables (Table 2). Similarly, 
significant results were observed in the WHI CHD case-control study, 
where the score was based on 32 of the 38 original metabolites, when 
comparing extreme quintiles (HR = 1.26; 95 % CI = 1.08, 1.48; C-index 
= 0.847) and per +1 SD (HR = 1.07; 95 % CI = 1.02, 1.13; C-index =
0.847), after adjusting for relevant covariables (Table 2). When we 
formally assessed the heterogeneity of the 3 HRs (PREDIMED, NHS-I and 
II and HPFS, and WHI) by one SD in the metabolomic score, they showed 
statistically significant heterogeneity according to the Q statistics (Q =
29.1, df = 2, p < 0.001; I squared = 0.93).

As a sensitivity analysis, using LOFO coefficients for each individual, 

Table 2 
Associations between the multi-metabolite score and all-cause mortality in the PREDIMED trial and in replication cohorts.

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 per + 1 SD

HR (95 % 
CI)

HR (95 % CI) HR (95 % CI) HR (95 % CI) HR (95 % CI) P for 
trend

HR (95 % CI) P value

PREDIMED baseline (LOFO score)a)

Cases/participants 31/376 63/376 78/376 100/375 185/375 457/1878
Crude model 1.00 (ref.) 2.07 (1.35, 

3.18)
2.63 (1.74, 
3.99)

3.53 (2.36, 
5.28)

8.04 (5.49, 
11.76)

<0.001 1.94 (1.78, 
2.12)

<0.001

Age & sex adjusted 1.00 (ref.) 1.69 (1.10, 
2.60)

1.93 (1.26, 
2.93)

2.19 (1.45, 
3.31)

3.92 (2.62, 
5.87)

<0.001 1.54 (1.39, 
1.70)

<0.001

Multivariable adjusted 1.00 (ref.) 1.72 (1.11, 
2.65)

1.80 (1.18, 
2.74)

1.98 (1.30, 
3.00)

3.30 (2.19, 
4.97)

<0.001 1.45 (1.31, 
1.61)

<0.001

PREDIMED 1 year (38-metabolite 
score)a)

Cases/participants 26/326 39/326 56/326 89/325 154/325 364/1628
Crude model 1.00 (ref.) 1.51 (0.92, 

2.49)
2.23 (1.40, 
3.55)

3.81 (2.46, 
5.89)

7.57 (5.00, 
11.48)

<0.001 2.21 (2.01, 
2.44)

<0.001

Age & sex adjusted 1.00 (ref.) 1.28 (0.78, 
2.10)

1.71 (1.07, 
2.74)

2.40 (1.53, 
3.77)

3.78 (2.44, 
5.87)

<0.001 1.79 (1.60, 
2.00)

<0.001

Multivariable adjusted 1.00 (ref.) 1.21 (0.74, 
1.99)

1.69 (1.06, 
2.70)

2.07 (1.31, 
3.27)

3.16 (2.02, 
4.95)

<0.001 1.69 (1.51, 
1.90)

<0.001

NHSI/NHSII/HPFS (27-metabolite 
score)b)

Cases/participants 814/2332 744/2332 784/2332 885/2332 1154/2332 4381/11660
Crude model 1.00 (ref.) 1.09 (0.98, 

1.20)
1.21 (1.09, 
1.34)

1.41 (1.27, 
1.56)

1.77 (1.59, 
1.98)

<0.001 1.28 (1.23, 
1.33)

<0.001

Age & sex adjusted 1.00 (ref.) 1.11 (1.00, 
1.23)

1.18 (1.06, 
1.31)

1.42 (1.28, 
1.58)

1.61 (1.44, 
1.79)

<0.001 1.23 (1.19, 
1.28)

<0.001

Multivariable adjusted 1.00 (ref.) 1.10 (0.99, 
1.21)

1.11 (1.00, 
1.23)

1.32 (1.18, 
1.47)

1.45 (1.30, 
1.63)

<0.001 1.19 (1.14, 
1.23)

<0.001

WHI (32-metabolite score)c)

Cases/participants 341/461 347/461 344/462 377/460 1686/2306
Crude model 1.00 (ref.) 1.08 (0.93, 

1.26)
1.02 (0.88, 
1.19)

1.19 (1.02, 
1.39)

1.28 (1.10, 
1.49)

<0.001 1.09 (1.04, 
1.15)

<0.001

Age adjusted 1.00 (ref.) 1.07 (0.92, 
1.25)

0.94 (0.81, 
1.10)

1.08 (0.92, 
1.26)

1.16 (1.00, 
1.35)

0.075 1.06 (1.01, 
1.11)

0.027

Multivariable adjusted 1.00 (ref.) 1.13 (0.97, 
1.33)

0.96 (0.82, 
1.13)

1.11 (0.94, 
1.31)

1.26 (1.08, 
1.48)

0.012 1.07 (1.02, 
1.13)

0.007

HR: Hazard ratio; CI: Confidence interval; LOFO: Leave-one-fold out; PREDIMED: PREvención con DIeta MEDiterránea; NHS-I: Nurseś Health Study I; NHS-II: Nurseś
Health Study II; HPFS: Health Professionals Follow-Up Study; CHD: Coronary heart disease.

a PREDIMED baseline and 1 year. Multivariable model adjusted for age, sex, glucose, waist-to-height ratio (3 categories: <0.6, 0.6 to <0.75 and ≥0.75), smoking (3 
categories: never, former and current), alcohol intake (3 categories: <5 g/d, 5 to 15 g/d and ≥15 g/d), baseline hypertension (yes or no), educational level (low or 
high), family history of premature coronary heart disease (yes or no), baseline dyslipidemia (yes or no), body mass index (3 categories:<30, 30–35, ≥ 35 kg/m2), total 
energy intake, physical activity level, Mediterranean diet score (0–14) and randomized group (3 categories: olive oil, nuts and low fat).

b NHSI/NHSII/HPFS: Crude model was stratified by case/control status, endpoint, and cohort. Multivariable model adjusted for age, sex, race, fasting status, 
multivitamin use, smoking, body mass index, alcohol intake, baseline diabetes, baseline hypertension, dyslipidemia, anti-hypertensive medication, lipid-lowering 
medication, family history of coronary heart disease, modified alternative healthy eating index (no alcohol), and total energy intake.

c WHI: Crude model was stratified by CHD case-control status, WHI sub-studies and intervention arms. Multivariate model adjusted for age, WHI sub-studies and 
intervention arms, CHD case-control status, race/ethnicity, fasting status, education level, smoking (3 categories: never, former and current), alcohol intake (3 cat
egories: <5 g/d, 5 to 15 g/d and > 15 g/d), hormone therapy use, physical activity level (per 1-SD), diabetes (yes or no), hypertension (yes or no), dyslipidemia (yes or 
no), total energy intake (per 1-SD), waist-to-height ratio (per 1-SD), body mass index (3 categories:<25, 25–30, >30).
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we reconstructed the baseline multi-metabolite score in PREDIMED 
using only the 24 metabolites available in the all combined US cohorts. 
The multivariable-adjusted HR was 2.37 (95 % CI = 1.63, 3.45) for the 
fifth versus the lowest score quintile and 1.37 (95 % CI = 1.24, 1.52) per 
+1 SD score increase. We also built a parsimonious 12 metabolite score 
(score 12) using only those baseline metabolites selected by a stepwise 
Cox model. We obtained similar results in PREDIMED with this score 12. 
The multivariable-adjusted HR was 3.11 (95 % CI = 2.09, 4.65) for the 
fifth versus the lowest score 12 quintile and 1.50 (95 % CI = 1.35, 1.66) 
per +1 SD of the score 12 increase. Finally, we made an alternative 
version of these 12 metabolites score excluding 6 metabolites which 
were unavailable in the combined US cohorts: the multivariable- 
adjusted HR in PREDIMED was 1.84 (95 % CI = 1.31, 2.58) for the 
fifth versus the lowest score quintile and 1.29 (95 % CI = 1.16, 1.43) per 
+1 SD score increase (Supplementary Fig. 8).

3.6. Mortality assessment

When participants were grouped in quintiles by the identified 
baseline LOFO-multi-metabolite score, they showed a monotonic 
pattern of increased cumulative mortality across successive quintiles of 
this score, after adjusting for confounders using inverse probability 
weighting (Fig. 5). Almost identical curves for the second and third 
quintiles were found, so they were merged.

The association of the LOFO-multi-metabolite score with all-cause 
death showed effect modification by baseline age, suggesting a higher 
impact on earlier rather than on later mortality. In fact, an effect 
modification by baseline age [34] due to the interaction was suggested 
after analyzing the Martingale residuals of the original Cox hazard re
sults (Supplementary Fig. 9). Consequently, specific comparisons for the 
multi-metabolite score were conducted after stratifying by baseline age 
categories with 3 different criteria for stratification (Supplementary 
Table 20). Using 70 years of baseline age as the cut-off point, the results 
were significant in both strata. For participants younger than 70 years, 
the multivariable-adjusted HR comparing extreme quintiles was 5.34 
(95 % CI: 3.04 to 9.38), and for participants 70 years or older, it was 3.89 
(2.16to 7.01). Alternative cut-off points provided analogous results 

(Supplementary Table 20).
To further develop this concept, within each stratum of baseline age, 

we estimated the rate advancement period (RAP) by quintiles of the 
multi-metabolite score and by values above or below the median. Re
sults showed a stronger impact (in terms of the RAP) on estimates of 
premature mortality for younger baseline age groups than for older 
baseline categories of age (Supplementary Fig. 10).

4. Discussion & conclusions

In an expanded follow-up for a large subset of participants at high 
cardiovascular risk in the PREDIMED trial, we were able to identify a 
linear combination of plasma metabolites strongly and robustly associ
ated with all-cause death, particularly in women and younger subjects. 
This association with mortality was stronger for the multi-metabolite 
score than for chronological age or any conventional risk factor. These 
results were replicated for the linear combination of 38 metabolites after 
1-year follow-up in PREDIMED. Though weaker associations were 
found, these results were replicated with statistically significant asso
ciations for similar combinations of metabolites (some of them were 
unavailable) in several external and independent cohorts conducted in 
the US, mostly composed of participants with a considerably lower 
burden of cardiovascular risk factors.

The individual plasma metabolites most strongly associated with 
reduced mortality included sphingomyelins (SM 22:1, SM 22:0, SM 18:1, 
SM 20:0, SM 24:0), plasmalogens (PC-plasmalogenB 36:5, PC- 
plasmalogen 38:7, PC-plasmalogen 38:6, PE-plasmalogen 38:7, PE- 
plasmalogen 36:5) and cholesterol esters (18 CE:0, 20 CE:4, 22 CE:6 
and 18 CE:2). Other molecules also strongly inversely associated with 
long-term mortality were GABA, homoarginine, serine, creatine and 1- 
methylnicotinamide. In addition, a triglyceride composed of poly
unsaturated fatty acids (TG 54:10) showed an inverse association.

Dysfunction of endothelial cells is a key mechanism in atherogenesis 
and CVD development and sphingolipid metabolism disorders exert this 
effect on endothelial cells [35]. Sphingomyelin (SM), a ubiquitous 
component of cells, is involved in various cellular activities, including 
cell division, proliferation, and autophagy. It also helps maintain a 

Fig. 5. Cumulative all-cause mortality by quintiles of the baseline LOFO-multi-metabolite score. Long-term mortality rates in PREDIMED by quintiles (Q1 to Q5) of 
the baseline multi-metabolomic score, adjusted for potential confounders (the same variables shown in the footnote of Table 2) using inverse probability weighting 
(IPW). Quintiles 2 and 3 were merged because they mostly overlapped.
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balance between pro-inflammatory and anti-inflammatory lipids, thus 
regulating the immune system. Moreover, tumor-necrosis factor (TNF)- 
alpha signaling usually leads to SM hydrolysis to ceramide catalyzed by 
sphingomyelinases. Inflammation increases ceramides by up-regulating 
the activity of sphingomyelinases or sphingomyelin phosphodiesterases 
[36]. Consequently, reduced plasma levels of some SMs and increased 
ceramide levels may reflect a pro-inflammatory status. Also, elevated 
levels of sphingomyelins containing longer-chain fatty acids (SM-20, 22 
and 24) were associated with lower mortality risk [37]. In addition, 
some studies have reported that ceramides are a major contributing 
factor to insulin resistance and type 2 diabetes [38]. In fact, higher 
ceramide levels were associated with CVD risk in the PREDIMED trial 
[39] whereas high SM levels were associated with better physical per
formance in the ARIC cohort [40]. Also, when SM levels decrease and 
ceramide levels increase, there is a pathological progression toward liver 
steatosis and fibrosis formation in the context of fatty liver disease, 
which is very common in patients with diabetes, hypertension and a 
high burden of CVD risk factors, such as the PREDIMED cohort. Under 
these and other mechanistic assumptions, it does not seem surprising 
that higher plasma levels of some SMs were included in the set of me
tabolites associated with longer survival.

GABA, an important inhibitory neurotransmitter in the central ner
vous system, showed the heaviest negative weight in our 38-metabolite 
score. Regarding dietary factors, we previously, reported that plasma 
GABA levels were inversely associated with dietary glycemic load intake 
in a subset of PREDIMED participants [41]. Blood GABA levels were also 
positively associated with physical activity and bone density in a cross- 
sectional study in women [42]. In our data, GABA was positively asso
ciated (p = 0.001) with quintiles of physical activity and this association 
remained significant after adjusting for age and sex (adjusted beta =
0.048, 95 % CI: 0.014 to 0.081 SD, per additional quintile). Compared to 
glutamate (a precursor of GABA), neuroprotective effects have been 
reported for GABA in animal models, particularly after brain or spinal 
injury [43]. In humans, cortical GABA levels were negatively correlated 
with depression scores [44].

L-homoarginine (LHA) is an endogenous non-proteinogenic amino 
acid involved in preserving the endothelial function and consequently 
may affect the pathogenesis of cardiac dysfunction [45]. Consistent with 
a previous report from the WHI, we found reduced mortality with higher 
plasma levels of LHA [6]. LHA is believed to exert protection on vascular 
function and against oxidative damage, partly because it is an alterna
tive substrate for nitric oxide (NO) synthase and contributes to the 
generation of the potent vasodilator NO. LHA was related to lower risk 
of events in patients with cerebrovascular disease and to lower risk of 
heart failure in the PREDIMED study [46]. Importantly, several studies 
reported inverse associations of LHA levels with all-cause mortality, 
particularly in populations with cardiovascular disease or other chronic 
diseases [47].

Sirtuins, associated with protection against atherosclerosis and 
cellular senescence leading to longer survival [48], convert NAD(+) into 
nicotinamide (NAM). We found that higher plasma levels of a metabolite 
of NAM, 1-Methylnicotinamide, were associated with reduced mortality. 
To our knowledge, this is a novel finding which was not previously re
ported. However, it is consistent with the attributed immunomodulatory 
properties for 1-Methylnicotinamide, including a reduction in reactive 
oxygen species (particularly superoxide radical anion and hydroxyl 
radical), an attenuation of the inflammasome, favorable interactions 
with lipid targets and increases in endothelial prostacyclin (PGI2) and 
NO, inducing vasorelaxation [49].

CEs and PC-plasmalogens were reported to be consistently associated 
with a healthy lifestyle score in 4 US cohorts [50]. Additionally, previ
ous reports from the PREDIMED study indicated an inverse association 
of these metabolites with CVD [51] and T2D [52]. In agreement with 
these previous findings, we identified some molecules of these families 
(18 CE:0, 18 CE:2, 20 CE:4, 22 CE:6; PC-plasmalogenB 36:5, PC- 
plasmalogen 38:6 and PC-plasmalogen 38:7) as negatively weighted in 

our score, representing predictors of a lower mortality rates.
The plasma metabolites associated with higher mortality were 

choline (the most heavily positively weighted metabolite in the score), 
short-chain or long-chain acylcarnitines (CAR 4:0;OH and CAR 18:1;OH, 
also heavily weighted in the score), other carnitines, 4-acetamidobuta
noate, pseudouridine, 7-methylguanine, N6-acetyllysine, DMGV, phe
nylacetylglutamine and creatinine.

Substantial derangements in acylcarnitines are considered to be 
associated with disorders of mitochondrial fatty acid oxidation and 
organic acidemias [53]. Higher plasma levels of acylcarnitines have 
been consistently associated with higher T2D risk [54], heart failure 
[55] and mortality in patients with CVD. Concurring with these findings, 
we identified several acylcarnitines (CAR 4:0;OH, CAR 18:1;OH) and 
carnitines (CAR 12:1, CAR 14:1, CAR 18:1, CAR 12:0, CAR 10:0) as 
predictors of a shorter lifespan [56] and worse cardiometabolic health 
[57].

In consistency with previous findings, we also identified serine 
associated with mortality, whereas 4-acetamidobutanoate, 1-methyl
guanosine and pseudouridine were associated with higher risk of mor
tality [8]. These 3 metabolites (4-acetamidobutanoate, 1- 
methylguanosine and pseudouridine) were previously reported to be 
associated with harmful dietary exposures, specifically, sugar- 
sweetened beverages [23]. In our data, they showed significant age 
and sex-adjusted partial correlations with BMI and even stronger partial 
correlations with waist-to-height ratio.

Plasma DMGV was previously associated with liver fat in the Fra
mingham Heart Study Gen III cohort [58]. It was also associated with 
higher all-cause mortality in individuals with type 2 diabetes in the 
Mälmo cohort [59]. Furthermore, this metabolite has been reported to 
be useful to capture an overall unhealthy lifestyle [60]. In our cohort, 
DMGV was a powerful predictor of earlier death and was directly 
associated with both BMI (Pearson r = 0.22) and waist-to-height ratio 
(Pearson r = 0.20), inversely associated with levels of physical activity 
(p value = 0.002) and directly associated with current smoking (p value 
= 0.008 after adjusting for BMI, age and sex).

All the former considerations contribute to provide a high biological 
plausibility for this linear combination of plasma metabolites reflecting 
pathophysiological mechanisms likely related to cardiometabolic pro
cesses that may be leading to death.

The main limitation of our study relies on the fact that all PREDIMED 
participants were subjects at high CVD risk, with a sizable proportion of 
them having type 2 diabetes (or prediabetes) and hypertension at 
baseline. This fact imposes a limit in the generalizability of our results. 
Furthermore, the sample selection was based on case-cohort designs 
with oversampling of cases (participants developing T2D or CVD during 
the follow-up period), and we acknowledge that the estimates in the US 
replication cohorts were significantly lower than in the PREDIMED 
development cohort. The particular population characteristics of the 
derivation sample may have contributed to find stronger associations of 
the metabolite score with mortality in PREDIMED than in other lower- 
risk cohorts. Another potential limitation is that the identification of 
metabolites was done in a subset of the baseline PREDIMED data, and a 
subset of these data was also used to test this prediction. This design may 
seem to entail the risk of overfitting. Nevertheless, we avoided this risk 
by using penalized elastic net regression on only 90 % of the sample for 
the identification of metabolites (and derivation of their coefficients), 
and thereafter we applied this metabolite selection (weighted by their 
coefficients) only to the 10 % of the sample that was not used in the 
derivation set (i.e, the left-out fold). We repeated this procedure ten 
times to ensure that no subject was used simultaneously for derivation 
and testing. Additionally, we conducted internal replications using 
metabolites measured after one year in PREDIMED for the 38 selected 
metabolites from an elastic net regression. However, for external vali
dation, 27 out of 38 metabolites were available in the NHS-I, NHS-II and 
HPFS, and 32 out of 38 were available in the WHI, which may have 
influenced the results. Particularly, in the Cox model of PREDIMED 
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using individual metabolites (adjusted for each other) to predict all- 
cause mortality, the following metabolites were significant indepen
dent predictors, but they were missing in the NHS/HPFS: Choline (p =
0.002); GABA (p = 0.003); Guanine (p = 0.005); DMGV (p = 0.016); 
trimethilbenzene (p = 0.049). Nevertheless, when we reconstructed the 
score using only the set of metabolites available in the US cohorts, the 
results were also replicated. The lower values of the HRs estimated in the 
US cohorts can also be attributed to the unavailability of some metab
olites. Lastly, we only assessed identified plasma metabolites, with the 
potential to restrict our findings only to available metabolites. Yet un
identified metabolite peaks measured using untargeted metabolomic 
profiling is warranted in further studies to complement the present 
assessment.

The main strengths of the present analyses include the use of the 
PREDIMED as prospective cohort with subjects at high cardiovascular 
risk, presenting a novel alternative for predictors selection. Also, the 
large sample size, the long-term follow-up, the high predictive capability 
of the score beyond conventional risk factors, and replications of our 
findings in independent cohorts on both sides of the Atlantic, thus 
confirming the external validity of our results. The utilization of 
repeated metabolomic measurements in PREDIMED at baseline and 1- 
year follow-up allows us to assess the stability of metabolomic signa
tures over time. In addition, we utilized robust methods. Elastic net 
regression modelling used in our identification of the predictive score is 
known to be best suited for feature selection in high-dimensional data 
with high correlations among predictors [29].

In conclusion, we identified plasma multi-metabolite profiles able to 
predict overall mortality, and especially, earlier mortality. Scores based 
on identified metabolites could be further investigated to provide 
mechanistic explanations for their causal role on overall survival and for 
their clinical use in the context of precision medicine, particularly in 
patients with T2D or at a high risk of CVD.
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