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A B S T R A C T

Integrated digital diagnostics are transforming complex surgical procedures, with brain tumour surgery being 
among the most challenging. STRATUM, a five-year Horizon Europe-funded project, aims to develop an 
advanced 3D decision support system leveraging real-time multimodal data processing powered by artificial 
intelligence. A key innovation of STRATUM is its design as an energy-efficient Point-of-Care computing system, 
seamlessly integrated into neurosurgical workflows. This system will provide surgeons with real-time, AI-driven 
insights, enhancing decision-making accuracy and efficiency. By optimizing surgical precision and reducing 
procedure duration, STRATUM is expected to improve patient outcomes while streamlining resource utilization 
within European healthcare systems.
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1. Introduction

Brain and Central Nervous System (CNS) cancer ranked as the 12th 
leading cause of cancer-related mortality in 2022, with approximately 
321,731 new cases and 248,500 deaths reported globally across all ages 
and genders [1]. By 2050, these figures are expected to rise by 56.6 % in 
incidence and 64.8 % in mortality [2]. Among young individuals under 
34, CNS cancer was the second most common cause of cancer-related 
deaths (30,427 deaths), following leukaemia [1]. In children under 
14, it also ranked second in both incidence and mortality, with 24,677 
reported cases and 12,249 deaths worldwide [1]. Notably, brain tu
mours account for over 90 % of CNS cancers, posing significant chal
lenges due to their high mortality and morbidity, particularly in 
paediatric patients [3].

Brain tumours are generally categorized into two main types: pri
mary and secondary. Primary tumours originate in the brain and hardly 
ever metastasize to other organs, whereas secondary tumours begin in 
other parts of the body, such as the lungs or breasts, and later spread to 
the brain. Based on the World Health Organization (WHO) classification 
of CNS tumours, primary brain tumours are classified into four grades 
[4], mainly determined by the appearance of the cells under a micro
scope. Grade 1 tumours grow slowly and do not invade surrounding 
tissues, making them highly treatable with surgery. Grade 2 tumours 
also grow at a slow pace but have the potential to infiltrate nearby brain 
tissue. Grade 3 tumours appear more abnormal under a microscope, can 
spread into surrounding brain tissue, and often require additional 
treatments alongside surgery. Grade 4 tumours are the most aggressive, 
characterized by rapid growth and the need for intensive treatment. 
Additionally, the risk of recurrence after surgery increases the higher the 
grade.

Neurosurgery is the primary treatment for brain tumours. During the 
procedure, the neurosurgeon performs a craniotomy, an opening in the 
patient’s skull, to access the tumour. Using a neurosurgical navigation 
system guided by preoperative Magnetic Resonance (MR) images, the 
surgeon aims to remove the entire tumour whenever possible. Complete 
tumour removal, known as gross total resection, significantly improves 
patient survival. However, if full resection risks damaging critical brain 
structures, the surgeon removes as much of the tumour as safely 
possible. This helps alleviate brain pressure and reduces the remaining 
tumour burden for post-surgical treatments such as radiation therapy or 
chemotherapy. Additionally, a small tumour sample is typically 
extracted during surgery and sent for intraoperative pathological anal
ysis, where a pathologist examines it under a microscope to determine 
the tumour type, grade, or origin. The intraoperative pathological 
diagnosis, which can take up to 45 min, assists surgeons in making 
informed decisions during tumour resection by determining the most 
appropriate surgical approach based on the tumour’s type and grade. 
Additionally, other tools, such as Intraoperative Neurophysiological 
Monitoring (IONM), are used to help surgeons minimize the risk of 
damaging critical brain tissue, thereby preserving the patient’s Quality 
of Life (QoL).

Neurosurgeons face several challenges when performing brain 
tumour surgeries, particularly in accurately identifying tumour tissue 
and distinguishing it from normal brain structures. One major limitation 
is the lack of specialized tools that enhance visualization and provide 
real-time, personalized tissue diagnostics to guide surgical decisions. 
This is especially critical for gliomas, which diffusely infiltrate sur
rounding brain tissue, making it difficult to differentiate tumour margins 
with the naked eye. Residual tumour tissue left behind is a leading cause 
of recurrence, morbidity, and mortality [5]. Additionally, the absence of 
real-time interpretation and analysis tools for the vast amount of data 
collected from independent systems before and during surgery further 
complicates decision-making. Another significant challenge is the long 
waiting time for intraoperative pathology consultation, which can take 
up to 45 min and disrupt surgery, increasing the risk of complications. In 
some cases, multiple consultations are required, extending surgical time, 

and in certain instances, the procedure may be aborted if the tumour 
type lacks a surgical solution. Furthermore, there are no commercial 
tools available to analyse and visualize brain shift, a phenomenon where 
brain tissue moves after craniotomy and resection, reducing the accu
racy of patient-to-image mapping and the effectiveness of preoperative 
imaging for intraoperative guidance [6]. The use of photosensitive drugs 
or contrast agents in fluorescent-guided surgery also presents risks, as 
they can cause side effects and have limited effectiveness for certain 
tumour types. These agents are not recommended for paediatric cases or 
pregnant women, even though complete resection of low-grade tumours 
has been shown to significantly improve patient outcomes [7], partic
ularly in children [8].

Therefore, an advanced neurosurgical decision-support tool capable 
of delivering fast, accurate, and highly personalized diagnostics, such as 
the one proposed in STRATUM, could help optimize surgical decision- 
making, minimize errors and delays during procedures, and reduce 
associated medical costs.

This paper presents the STRATUM Horizon Europe funded project 
(ID: 101137416) [9] and its preliminary results, being an extension of a 
previous conference publication [10]. In addition to extending several 
sections, the main new contributions are related to the preliminary re
sults achieved in the development of the intraoperative STRATUM 
acquisition system for multimodal data collection and the data charac
terization. It also introduces early developments related to the imple
mentation onto different Hardware (HW) accelerators of the proposed 
data processing algorithms.

2. Project objectives

The primary goal of STRATUM is to create a clinically validated 3D 
Decision Support Tool for brain surgery guidance and diagnostics. This 
tool will leverage multimodal data processing powered by Artificial 
Intelligence (AI) algorithms and will be designed as an energy-efficient 
Point-of-Care computing solution (Fig. 1). By enhancing surgical preci
sion and patient outcomes, STRATUM aims to shorten surgery duration, 
optimize resource utilization, and improve procedural efficiency, ulti
mately contributing to the sustainability of healthcare systems. STRA
TUM is expected to reach the Technology Readiness Level 7 (TRL7): 
"Demonstration of system or prototype in a real environment" during its five 
years of execution. To accomplish this, STRATUM is focused on 
achieving the following six specific objectives: 

1) Advance personalized medicine by leveraging multimodal data, 
including emerging imaging techniques like Hyperspectral (HS) 
Imaging (HSI) and AI, through the creation of a large public multi
modal database containing data from over 500 brain tumour 
patients.

2) Enhance intraoperative diagnostic accuracy for brain tumours, 
leading to improved surgical outcomes and better patient QoL by 
increasing the rate of gross total resection while minimizing the 
removal of healthy brain tissue within the safety margin compared to 
current procedures.

3) Reduce neurosurgery duration by reducing the need for intra
operative pathological assessment and utilizing High-Performance 
Computing (HPC) platforms for real-time data processing, enabling 
the surgeon to access rapid and up-to-date diagnostic information 
during surgery.

4) Improve the cost- and energy-efficiency of neurosurgical workflows 
by integrating various data sources into an interactive 3D Graphical 
User Interface (GUI), reducing surgical time, and minimizing the 
expenses related to the use of contrast agents and intraoperative 
pathological analysis.

5) Conduct a two-year clinical study to validate the prototype across 
three clinical sites in Spain and Sweden, including an early Health 
Technology Assessment (HTA).
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6) Develop an initial business plan and a strategic roadmap to achieve 
TRL9 following the project’s completion.

3. Project consortium and previous works

The STRATUM consortium (Table 1), coordinated by the University 
of Las Palmas de Gran Canaria (ULPGC), is an interdisciplinary and in
ternational collaboration comprising 12 partners from six European 
countries (Spain, The Netherlands, Sweden, France, Italy and Germany) 
. This diverse consortium brings together experts from various fields, 
including IT scientists (telecommunication, electronic, biomedical, and 
computer science engineers), clinicians (neurosurgeons, oncologists, 
neuroradiologists, neuropathologists, etc.), health researchers (molecular 
biologists, biostatisticians, mathematicians, physicists, health econo
mists, etc.), and social sciences and humanities (SSH) professionals (psy
chologists, linguists, etc.) [11]. By working collaboratively, the 
consortium aims to develop optimal solutions for individual challenges 
as well as for the system as a whole, integrating their diverse expertise 
into the STRATUM tool. Next, the most relevant previous works of the 
consortium partners in the related fields of STRATUM are described.

3.1. Hyperspectral medical imaging

HSI is an emerging imaging modality in the medical field, valued for 
its non-invasive, non-contact, non-ionizing, and label-free sensing ca
pabilities, enabling rapid acquisition and analysis of diagnostic infor
mation [12]. By combining conventional imaging with spectroscopy, HS 
cameras capture both spatial and spectral data, providing insights 
beyond human visual perception (Fig. 1A, B). While HSI has been widely 
used across various fields for years, its application in medicine has 
recently shown promising results, particularly in cancer detection, 
driven by advancements in machine learning algorithms and modern 
computational power [12].

Several members of the STRATUM consortium (ULPGC, UPM, 
UNIPV, TU/e, SERMAS, RS, and FIISC) have conducted pioneering 
research in the field of HSI for cancer detection, with a particular focus 
on brain cancer analysis. These works were initiated within the Euro
pean FP7 project HELICoiD [13], which demonstrated as proof of 
concept to enhance intraoperative brain tumour delineation (Fig. 2) and 
improve real-time visualization of critical tissues through AI-driven 
analysis [14–16]. These initial studies were later expanded through 
other research projects (ITHaCA [17], NEMESIS-3D-CM [18] and 

Fig. 1. STRATUM project overall concept. RGB: Red-Green-Blue; HPC: High Performance Computing; PET: Positron Emission Tomography; CT: Computed To
mography; AR: Augmented Reality; GUI: Graphical User Interface.

Table 1 
STRATUM consortium members.

Partner Name Acronym Country Type Main Expertise

Universidad de Las Palmas de Gran Canaria ULPGC Spain University Medical data processing using AI and 
participatory research

Technische Universiteit Eindhoven TU/e Netherlands University Medical data processing using AI
Region Stockholm (Karolinska University Hospital) RS Sweden Hospital Clinical and health research
Barcelona Supercomputing Center BSC Spain Research and Technology 

Organisation
HW and Software (SW) development 
through HPC

SAS UPMEM UPMEM France Small and Medium Enterprise Industry research and development in HW 
for Processing in Memory (PIM)

Universita Degli Studi Di Pavia UNIPV Italy University HW/SW development through HPC
Universidad Politecnica de Madrid UPM Spain University HW/SW development through HPC
Servicio Madrileno de Salud (Hospital Universitario 12 de Octubre) SERMAS Spain Hospital Clinical and health research
Rheinland-Pfalzische Technische Universitat RPTU Germany University HW/SW development through HPC
Fundación Canaria Instituto de Investigación Sanitaria de Canarias 

(Hospital Universitario de Gran Canaria Dr. Negrin)
FIISC Spain Hospital/Health Technology 

Assessment Body
Clinical and health research, including 
health technology assessment

OPTOMIC ESPAÑA S.A. OPTOMIC Spain Small and Medium Enterprise Industry research and development in 
medical devices

European Citizen Science Association ECSA Germany Non-Governmental 
Organization

Citizen science and participatory research
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ASTONISH [19]) and collaborations, increasing databases and evalu
ating different types of AI-based algorithms and approaches [20–23]. 
The company OPTOMIC presents an extensive expertise in designing, 
manufacturing, and commercializing medical devices. Furthermore, a 
strong collaboration between ULPGC and OPTOMIC is utilizing HSI 
technology to develop an innovative HS-based colposcope aimed at the 
early detection of cervical dysplasia [24]. Finally, TU/e has extensive 
expertise in processing HS medical data, with a focus on selecting 
informative spectral bands and classifying tissues using both traditional 
and advanced machine learning algorithms. TU/e has also developed 
algorithms specifically for identifying glioblastoma tumors [20] and 
skin feature detection [25] in collaboration with RS.

3.1.1. High performance computing for medical applications
Future advancements in complex, high-quality imaging and moni

toring devices used in medicine will require processing vast amounts of 
data to support real-time decision-making for surgeons. Currently, the 
extremely large sizes of medical imaging datasets need robust HW ca
pabilities (memory, storage, transmission, etc.) to handle data process
ing, particularly for achieving real-time computation. For instance, pre- 
stored medical imaging data such as Magnetic Resonance Imaging 
(MRI), Computed Tomography (CT), and Positron Emission Tomogra
phy (PET) scans can exceed 100, 150, and 10 MB, respectively, 
depending on resolution and acquisition system configurations. Mean
while, intraoperative imaging data, including HSI and High-Definition 
(HD) imaging, can reach sizes up to 1 GB and 100 MB per image, 
respectively. In the case of HD video systems capturing 24 frames per 
second, the data throughput can reach 2.4 GB/s. Given the vast range of 
tasks and data types in medical imaging applications, manually ana
lysing and interpreting such large volumes of data through visual in
spection is both time-intensive and costly. To address this challenge, 
STRATUM leverages HPC platforms to integrate, process, and interpret 
multimodal data using advanced and robust AI algorithms. This 
approach enables the rapid delivery of detailed, precise, and highly 
personalized diagnostics to guide brain surgeries in real time, drawing 
on the expertise of BSC, UNIPV, UPMEM, and RPTU.

UNIPV’s expertise in HPC for medical applications stems from its 
collaboration with ULPGC on the HELICoiD and ITHaCA projects, where 
the team developed a parallelized version of the entire processing chain. 
Specifically, the UNIPV team designed a multi-GPU (Graphics Process
ing Unit) implementation of the processing pipeline, successfully 
meeting real-time processing requirements [16]. Additionally, UNIPV 
specializes in developing AI and deep learning parallel algorithms 

optimized for GPUs and FPGA (Field-Programmable Gate Array) devices 
[26,27].

BSC has extensive expertise in HPC infrastructures, AI application 
acceleration through SW-HW optimization, and the advancement of 
European processors for HPC systems [28,29]. Additionally, BSC spe
cializes in AI and deep learning techniques tailored for biomedical ap
plications, enabling the analysis of large and complex datasets using 
GPU, FPGA, ASIC (Application-Specific Integrated Circuit), and PIM 
accelerators [30–32]. Notably, BSC has played a key role in developing 
and optimizing the European Distributed Deep Learning Library and the 
European Computer Vision Library [33] for precision medicine. STRA
TUM will capitalize on BSC’s expertise to deploy and enhance AI-driven 
applications on state-of-the-art HPC systems.

UPMEM’s PIM technology is particularly well-suited for applications 
demanding high throughput and low latency, such as the multimodal 
data processing in STRATUM. Each UPMEM PIM chip integrates mul
tiple Data Processing Units (DPUs) that function independently and 
asynchronously, enabling parallel execution of complex algorithms 
directly where the data is stored. This capability is crucial for real-time 
analysis and visualization during neurosurgical procedures, providing 
surgeons with immediate access to critical information without the de
lays associated with conventional systems. Additionally, UPMEM is 
developing an AI-specific chip designed to significantly enhance pro
cessing power and efficiency for AI-driven applications like those in 
STRATUM. This next-generation chip is optimized for high-performance 
tasks, supporting STRATUM’s AI algorithms in conducting extensive 
data analysis and delivering decision support in critical medical 
environments.

3.1.2. Co-creation in health research
Co-creation in health research projects engages end-users and other 

stakeholders throughout the design, development, and testing phases of 
a system or tool. This collaborative approach ensures that their expec
tations, preferences, and needs are taken into account. The primary 
objective of co-creation is to enable the seamless integration of newly 
developed systems or tools into existing digital infrastructures and 
clinical workflows.

Several STRATUM partners (ULPGC, ECSA and FIISC) incorporate in 
their teams’ experts in SSH, having extensive experience in this field 
through their involvement in various national and international pro
jects, such as IC-Health [34], WARIFA [35,36] and SEEDS [37,38]. 
Furthermore, within STRATUM, the co-created prototype will be vali
dated through a two-year clinical study, leveraging the extensive 
expertise of Karolinska University Hospital (RS), Hospital Universitario 
de Gran Canaria Dr. Negrín (FIISC), and Hospital Universitario 12 
Octubre (SERMAS) in this field.

4. Concept and methodology

4.1. Overall concept

The STRATUM project is creating an advanced and interactive 3D 
Decision Support Tool to enhance diagnosis and clinical decision- 
making in neurosurgical workflows by incorporating (i) an innovative 
intraoperative imaging acquisition system for capturing RGB, HS and 
depth data of the exposed patient brain during surgeries (Fig. 1C), (ii) an 
HPC processing platform where the multimodal pre-stored and in-situ 
data is processed in real-time through innovative AI-based algorithms 
(Fig. 1D), and (iii) an interactive 3D GUI for Augmented Reality (AR) 
neuronavigation and diagnostics, managing also the system in a non- 
contact way (Fig. 1E).

4.1.1. Intraoperative imaging acquisition system
The intraoperative imaging acquisition system captures in-situ data 

during neurosurgery. HSI will serve as both an image guidance and 
diagnostic tool, generating thematic maps to distinguish tumour types 

Fig. 2. HELICoiD classification results obtained from the validation database 
employed in [14]. (A,B,C) Synthetic RGB images; (D,E,F) Thematic maps of the 
HS image, where the tumour tissue is in red colour, the normal tissue in green, 
the hypervascularized tissue in blue and the background in black. (A,D) Normal 
brain tissue; (B,E) Primary grade 4 glioblastoma; (C,F) Primary grade 
1 meningioma.
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and delineate their margins from healthy brain tissue (Fig. 1A and C). 
Additionally, the tool will integrate HD video imaging and depth data, 
providing high spatial resolution and depth information to reconstruct 
3D brain surfaces for surgical guidance. These data, combined with pre- 
stored information, will contribute to the development of a diagnostic 
and integration algorithm. This algorithm will follow a top-down 
approach, breaking down the overall process into smaller, indepen
dently developed and tested modules. This modular approach reduces 
complexity by allowing each module to be addressed separately. The 
algorithm will be functional from the outset, with its capabilities 
expanding as additional modules are developed. Parallel development of 
different modules by separate teams will improve efficiency, while in
dividual testing of each module will simplify the validation process.

A combination of well-established and emerging AI-based algo
rithms, such as Support Vector Machines (SVMs), Random Forest (RF), 
k-Nearest Neighbours (KNN), Artificial Neural Networks (ANNs), hier
archical k-means, Deep Neural Networks (DNNs), Convolutional Neural 
Networks (CNNs), and Recurrent Neural Networks (RNNs), will be 
explored for data classification and segmentation. Additionally, the 
robustness of these AI algorithms will be assessed to align with European 
Commission initiatives for trustworthy and secure AI, ensuring 
compliance with principles such as robustness, explainability, trans
parency, and data protection [39].

4.1.2. High performance computing platform
The STRATUM project is focused on developing a highly heteroge

neous HPC platform capable of addressing the diverse demands of 
various workloads and real-time system requirements (Fig. 1D). This 
initiative seeks to integrate high-end processors with multiple acceler
ators to overcome performance bottlenecks and meet the specific needs 
of different medical applications. The resulting HPC platform will 
incorporate GPUs, FPGAs, and PIM accelerators, optimizing each data- 
processing application based on its unique performance characteristics.

In particular, GPUs (Nvidia) are leveraged for their powerful parallel 
processing capabilities, which are essential for accelerating AI-driven 
medical computations. Meanwhile, FPGAs (Xilinx) are employed for 
their reprogrammable nature, allowing them to be tailored to specific 
algorithmic requirements. This adaptability enables high-throughput 
acceleration for critical medical imaging and data processing tasks, 
ensuring efficient resource allocation and bandwidth management. The 
STRATUM project places a strong emphasis on optimizing memory ac
cess latency, memory usage, and bandwidth utilization.

Additionally, the integration of PIM technology (UPMEM) brings 
data processing closer to memory storage, significantly reducing latency 
and energy consumption associated with data transfers. This advance
ment enhances overall system performance, particularly for real-time 
medical applications. By overcoming the memory wall constraints of 
traditional compute-centric architectures, PIM technology enables su
perior performance, making it highly effective for managing large-scale, 
data-intensive medical workloads.

The integration of various in-situ data sources and the real-time 
processing of both in-situ and pre-stored multimodal data will be 
executed within the HPC processing platform. This project aims to 
develop innovative AI-driven processing algorithms, which will be 
accelerated using a heterogeneous computing platform consisting of 
diverse HW and SW accelerators, selected based on the specific perfor
mance demands of each algorithm.

The development of the HPC platform will primarily follow a 
bottom-up approach, beginning with the creation of small modules that 
will later be combined to form top-level components. Initially, different 
use-case applications will be analysed to identify computationally 
intensive kernels. Next, performance-critical kernels will be profiled and 
evaluated to pinpoint underlying bottlenecks and determine the real- 
time system requirements for the STRATUM tool. The next step in
volves selecting the most suitable HW platform to optimize and accel
erate each performance-critical kernel. For custom HW design, High- 

Level Synthesis tools such as OpenCL, Vivado, and Bluespec, along 
with traditional HW description languages, will be utilized to achieve 
optimal performance. The HPC platform will serve as the core of the 
STRATUM tool, facilitating the integration of the acquisition system 
with other data sources and ensuring seamless communication of results 
to the user interface.

The proposed HPC platform is structured into three key tiers: 

1) The first tier is dedicated to data processing, carefully managing each 
data source independently to build modular components. Real-time 
processing plays a pivotal role in this stage, ensuring swift data 
analysis and preparation for subsequent phases. The emphasis on 
real-time processing is driven by the need to keep up with rapidly 
evolving data streams, enabling timely insights and informed deci
sion-making.

2) The second and third tiers of the HPC platform focus on integrating 
processed data and presenting it in a meaningful way. Once data 
from various sources has undergone intricate processing, the next 
step is seamless integration. This phase demands both accuracy and 
speed, as the rapid fusion of results is crucial for generating 
comprehensive insights. Real-time integration enables dynamic ad
justments and correlations, providing users with up-to-the-minute 
information and a holistic view of the data.

3) The final tier is dedicated to rendering the synthesized results in a 
clear and actionable format. Real-time rendering plays a critical role 
in transforming processed data into meaningful visualizations, 
ensuring that neurosurgeons and other users can quickly interpret 
complex analyses. Fast rendering allows for the immediate presen
tation of insights, supporting timely and well-informed decision- 
making. By combining real-time processing with rapid visualization, 
the platform enhances responsiveness to evolving data landscapes, 
ultimately empowering users with actionable intelligence.

4.1.3. Interactive 3D GUI
The STRATUM tool will feature an interactive, user-friendly, and 

non-contact 3D graphical interface, allowing neurosurgeons to visualize 
a 3D model of the patient’s brain alongside diagnostic results from 
advanced algorithms (Fig. 1E). This system will leverage intraoperative 
AR neuronavigation, integrating pre-operative imaging data such as 
MRI and CT scans with HS data. To ensure precise intraoperative 
guidance, the platform will account for brain shifts and deformations in 
real time. Additionally, the integration of IONM and life support data 
will provide continuous feedback on both the surgical procedure and the 
patient’s condition, enhancing decision-making during surgery. The 
non-contact interaction with the display system will uphold aseptic 
conditions in the operating room, allowing surgeons to directly interact 
with critical information without compromising sterility.

The following approaches will be explored for touchless interaction: 
gesture recognition, voice commands, and proximity sensors. Gesture 
recognition technology utilizes sensors, such as cameras or depth sen
sors, to detect and interpret hand movements. By performing predefined 
gestures in the air, users can control medical devices without the need 
for physical contact with buttons or touchscreens. This method is intu
itive, hands-free, and particularly beneficial for users with limited 
mobility or dexterity. Proximity sensors, on the other hand, detect the 
presence or movement of nearby objects without direct contact. In 
medical applications, these sensors can be used to activate interface 
elements or trigger specific functions based on the user’s hand prox
imity. This enables seamless, touch-free interaction, reducing the risk of 
contamination while enhancing usability and convenience.

The information will be presented in a precise, structured, and sys
tematic manner, incorporating feedback from neurosurgeons and other 
stakeholders to ensure it meets their specific needs. This co-creation 
process, characterized by continuous exchanges of advice and sugges
tions, will be maintained throughout the project’s duration to refine and 
optimize the system.
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To achieve the project’s goal of reaching TRL7, the GUI will be 
developed in compliance with the IEC 62,304:2006 international stan
dard [40]. This standard plays a crucial role in medical device software 
development, emphasizing structured processes, requirements specifi
cation, risk management, usability engineering, verification and vali
dation, and configuration management. Adhering to these guidelines 
ensures the GUI is designed, implemented, and maintained in alignment 
with regulatory requirements, ultimately enhancing usability and 
safety. Additionally, the entire development of the fully functional 
prototype will follow the ISO 13485:2016 international standard for 
medical devices [41], ensuring the highest levels of quality and safety 
throughout the process.

4.2. Co-creation process

The user perspective will be integrated throughout all phases of the 
STRATUM design to ensure that expectations, preferences, and needs 
are addressed through a co-creation methodology. To facilitate this 
process, focus groups comprising participants from different countries 
will be established, fostering collaboration through virtual or in-person 
meetings.

The co-creation process will begin with the identification of a shared, 
open, and inspiring vision that serves as the foundation for creativity. 
This will be followed by an in-depth exploration of various scenarios, 
weighing their pros and cons to determine the most effective solutions. 
Participants will then generate ideas and propose innovative alterna
tives for different aspects of the STRATUM tool, including requirements 
definition, GUI design, system usability, and safety. Finally, the devel
oped tool will undergo technical validation and evaluation, refining 
concepts and integrating feedback to enhance the overall design.

The co-creation protocol that will be followed in STRATUM is based 
on the proposal of McGlade et al. [42] and consists of three main stages 
(Fig. 3): co-design, co-production and co-delivery. Each stage has different 
steps, and each step includes different focus group sessions. Focus 
groups will be the main technic to be used, however, individual in
terviews and questionnaires will be considered during the entire 
execution of the project with the end-users and stakeholders that 
directly participate in the project [43].

4.3. Overall methodology

The STRATUM project is a 5-year project (60 months) which follows 
an interactive, iterative, and incremental methodology divided into four 
main phases as presented in Fig. 4. The first three phases align with the 
project’s Work Packages (WPs), Milestones (MS), and six Specific Ob
jectives (SOs). Project management and coordination and 

communication, dissemination, and commercialization activities will be 
active during these 3 phases, closely following and supervising the ac
tivities performed within the project and disseminating the main results 
achieved to the scientific community and the general public as well as to 
prepare a preliminary business plan and a roadmap to reach TRL 9 for 
the future commercialization of the STRATUM tool. Phase 4 is intended 
to be executed after the project finalization.

4.3.1. Phase-1: Specifications, requirements & ethics
Phase 1 starts at the beginning of the project, where IT scientists, 

industrial experts, neurosurgeons and clinicians, and the HTA body of 
STRATUM consortium share their expertise to establish the specifica
tions and definitions for the development and evaluation of the 3D 
Decision Support Tool for the neurosurgery use case. In this phase, the 
protocol of the clinical study for subjects’ enrolment is prepared and 
submitted to the ethical committees of each clinical site, including the 
registration number of the clinical study. Moreover, the open Data 
Management Plan (DMP) is prepared in this phase, as well the co- 
creation protocol and the plan for the exploitation, dissemination and 
communication of STRATUM results.

4.3.2. Phase-2: Prototype development, integration and technical validation
Phase 2 follows an iterative agile methodology to develop the 

STRATUM tool in two parallel work lines, where the HW and SW de
velopments progresses together providing feedback between them, 
including also a co-creation methodology to ensure achieving mean
ingful results for end-users.

In this phase, the intraoperative imaging acquisition systems based 
on HSI are defined, designed and developed to perform the in-situ data 
collection during surgeries, as well as to collect all the multimodal pre- 
stored and in-situ data. The STRATUM clinical data acquisition and 
management is carried out in this phase, generating at the end of the 
project a publicly available multimodal database. These data are used 
for the algorithms and HPC platform design and development that are 
developed also in this phase. Additionally, in this phase the development 
of the interactive easy-to-use non-contact 3D GUI combined with AR 
intracranial navigation is performed. Finally, the integration of the HW 
and SW developments, as well as the interconnection of the different 
data acquisition systems is completed at this stage, delivering a fully 
working prototype on month 36. This prototype is then technically 
validated using the data collected in the observational clinical study that 
is conducted from month 15 to 36 of the project. Finally, the fully 
working prototype is clinically evaluated in phase 3 by conducting a 
historically controlled non-randomized clinical study using the data 
collected during the observational study as the historical control group.

4.3.3. Phase 3: Prototype demonstration and evaluation in a real 
environment

In this phase, the demonstration and evaluation of the fully working 
prototype during neurosurgical procedures is carried out by conducting 
a historically controlled non-randomized clinical study the last two 
years of the project. This study will deliver a complete report of the 
clinical study on month 60. Since not all the European hospitals has the 
same imaging/data modalities available for neurosurgical procedures, 
three prototypes will be installed in the operating rooms of the three 
clinical sites from Spain and Sweden. This clinical study will report the 
strengths and weakness of the project, ensuring its usability and use
fulness independently of the equipment and capabilities of the operating 
room. It will cover all the necessary steps for later regulatory approvals. 
Additionally, the prototype will be subject to an early process of HTA, 
including cost-effectiveness and economic impact assessment for the 
Swedish and Spanish contexts, together with an examination of the 
potential organizational impact. Moreover, in this phase, a preliminary 
business plan will be prepared and delivered at the end of the project, 
including the roadmap to reach TRL9 for the future commercialization 
of the STRATUM tool two years after the project ending.

Fig. 3. Co-creation methodology used in the STRATUM project, based on the 
proposal from [42].
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5. Implementation work plan

STRATUM is organized into seven WPs interrelated as shown in 
Fig. 5. WP1 and WP7 are transversal, while the other 5 are scientific WPs 
(WP2 to WP6). 

• WP1 (Management and Coordination) adopts a collaborative man
agement approach, incorporating the PRINCE2™ methodology to 
ensure active participation in planning and control processes 
through effective information and communication tools. Its objec
tives include scientific coordination and administrative manage
ment, led by the project manager, scientific coordinator, and the 
ULPGC European Affairs Office project management group.

• WP2 (Intraoperative Acquisition System and Data Collection) fo
cuses on defining the medical and technological specifications for the 
STRATUM tool while developing data acquisition systems for clinical 
sites. It will also establish protocols and secure ethical approvals for 
data collection. WP2 is essential to the project’s success, as it lays the 
groundwork for effective data management and ethical compliance.

• WP3 (Diagnostic and Integration Algorithm Development) is dedi
cated to designing and developing processing algorithms for surgical 
guidance and diagnostics, incorporating both pre-stored and real- 
time data. It creates advanced algorithms to analyse, manage, and 
integrate data from multiple sources during neurosurgical proced
ures. Close collaboration with WP2 on data acquisition and WP4 on 
HPC platform development ensures seamless integration, with the 
final outputs contributing to the fully functional prototype in WP5.

• WP4 (HPC Processing Platform Development) focuses on developing 
an HPC platform to accelerate algorithms, enabling real-time per
formance in brain surgery. It will design a heterogeneous system that 
integrates high-end processors with specialized accelerators opti
mized for medical workloads, ensuring efficient handling of diverse 
computational demands.

• WP5 (Interactive 3D GUI and Prototype Co-creation and Integration) 
is devoted to designing and developing an intuitive, non-contact 3D 
GUI while integrating outputs from WP2, WP3, and WP4 to build a 
fully functional prototype for demonstration in real neurosurgical 
scenarios in WP6, with system performance evaluation. It highlights 

Fig. 4. STRATUM methodology approach. SO: Specific Objective; WP: Work Package; MS: Milestone; DMP: Data Management Plan; PDER: Plan for Exploitation, 
Dissemination and communication of Results. TRL: Technology Readiness Levels; HTA: Health Technology Assessment; CE: Conformité Européenne; FDA: Food and 
Drug Administration.

Fig. 5. STRATUM project implementation work plan.

H. Fabelo et al.                                                                                                                                                                                                                                  Microprocessors and Microsystems 116 (2025) 105157 

7 



the essential involvement and feedback of surgical partners and 
other stakeholders, fostering a continuous, iterative co-creation 
process to ensure the STRATUM tool aligns with end-users’ needs 
and requirements.

• WP6 (Clinical Study and Early HTA of STRATUM Tool) aims to 
validate and assess the fully-working STRATUM prototype from WP5 
while conducting an early HTA. Prototype installations at each 
clinical partner site will enable a two-year clinical study to evaluate 
diagnostic accuracy, safety, and economic impact. Active involve
ment and feedback from medical partners are essential in confirming 
the project’s feasibility.

• WP7 (Dissemination, Communication and Exploitation) is dedicated 
to developing and executing a strategic plan for effectively dissem
inating project results through collaborative activities among par
ticipants. It will also establish a roadmap for result exploitation, 
guiding the STRATUM tool’s progression from TRL7 to TRL9. This 
includes formulating joint impact strategies and creating a business 
plan for its commercialization.

6. Preliminary project results

6.1. Preliminary HSI processing framework

In earlier studies [23], we employed a robust k-fold cross-validation 
approach to show that combining HSI with a processing framework 
holds great potential as an intraoperative tool for the in-vivo identifi
cation and delineation of brain tumours, including both primary 
(high-grade and low-grade) and secondary tumours. This framework 
(Fig. 6) was based on spatial and spectral information (after perform a 
preprocessing of the raw HS data), using a combination of dimension
ality reduction, supervised classification, spatial filtering, and unsu
pervised segmentation. Finally, employing a majority voting algorithm, 
the results from both supervised and unsupervised approaches are 
merged [23].

In STRATUM we consider this framework as a preliminary algorithm 
for the development of the real-time diagnostic and guidance algorithm 
based on HS data. However, this framework was developed based on the 
in-vivo brain cancer dataset [23,44] captured in two previous projects 
where a custom intraoperative acquisition system was employed [14,
45].

The system included a VNIR (Visual and Near Infrarred) HS 

pushbroom camera (Hyperspec® VNIR A-Series, Headwall Photonics 
Inc., Fitchburg, MA, USA) capable of capturing 826 spectral bands 
within the 400–1000 nm range. It featured a Full Width at Half 
Maximum (FWHM) of ~2.5 nm and a maximum spatial resolution of 
741 × 1004 pixels, utilizing a pushbroom mechanism for data acquisi
tion [14]. Nonetheless, due to the high spectral resolution could include 
redundant information, it was studied that the reduction from 826 to 
128 bands through a sampling interval increasing from 0.73 to 3.61 nm, 
did not decrease the classification performance to discriminate between 
tumour and normal tissue [46]. The illumination system was based on a 
150 W Quartz Tungsten Halogen (QTH) lamp, coupled with a fibre optic 
cold light illuminator. This was used to prevent direct heat exposure 
from the QTH lamp on the brain tissue. The HS camera lens was posi
tioned 40 cm from the brain surface, resulting in a pixel size of 128.7 µm 
and a maximum acquisition time of 60 s.

Data captured using this system [23,44] is employed in STRATUM as 
a preliminary dataset for carrying out preliminary experiments both in 
WP3 and WP4 developments.

6.2. Proposed intraoperative HS acquisition system

The proposed HS acquisition system developed in WP2 within 
STRATUM is based on the use of Liquid Crystal Tuneable Filters (LCTFs) 
for filtering the light emitted by the acquisition system, performing a 
spectral scanning through the different wavelengths covered by the 
LCTFs. Hence, the system can use a standard monochromatic camera 
with high spatial resolution, instead of using specific HS cameras that 
require spatial movement (pushbroom) or has reduced spectral and 
spatial resolution (snapshot) [47].

This LCTF-based illumination system consists of the Kurios VB1 and 
the Kurios XE2 (Thorlabs Inc., NJ, USA) for the visible (420–730 nm) 
and NIR (650–1100 nm) spectral ranges, respectively. The integrated 
system aims at producing HS images in a wavelength range from 420 to 
1100 nm, with a maximum configurable number of 680 spectral bands, 
using a sampling interval of 1 nm. Nevertheless, the system is configured 
with a sampling interval of 5 nm, capturing 136 bands between 420 and 
1100 nm to achieve an acquisition time of ~30 s. The FWHM is wave
length dependent and ranges from 6 to 13 nm and from 13 to 24 nm for 
the visible and NIR LCTFs, respectively. In terms of spatial resolution, a 
12.3 MP monochromatic camera Kiralux LP126MU (Thorlabs Inc., NJ, 
USA) is able to provide an image of 4096 × 3000 pixels per wavelength.

Since there are not available yet intraoperative in-vivo brain images 
captured with the STRATUM acquisition system, a method to generate a 
simulated database of in-vivo brain tissue with the spectral character
istics of the data captured by the STRATUM LCTF-based system from the 
previous pushbroom-based dataset was proposed. This simulated data
set helps to (i) initially evaluate the classification performance of the 
preliminary framework using data captured with the STRATUM acqui
sition system (WP3) and (ii) to initially evaluate the preliminary 
implementations of this framework in different acceleration platforms 
(WP4).

6.3. Proposed LCTF-based data simulation approach

The proposed LCTF-based data simulation approach considers the 
different parameters of the acquisition systems at hand (Table 2), as well 
as other properties of the devices, such as the quantum efficiency of the 
pushbroom HS camera sensor and the LCTF-based system, and the 
power density of the light sources. The pushbroom HS camera sensor 
was an Adimec-1000 m (Teledyne Adimec, Eindhoven, Netherlands) 
and its quantum efficiency was digitalized from its Operating and 
Technical Manual (rev. 1.2.doc). The quantum efficiency of the LCTF- 
based system was obtained using an spectrometer (CCS200/M, Thor
labs Inc., NJ, USA) capable of capturing data from 200 to 1000 nm. The 
power density data of the halogen illuminator OSL2IR (Thorlabs Inc., 
NJ, USA), which was used as a reference light source for these 

Fig. 6. HSI processing framework based on preprocessing, dimensionality 
reduction, supervised classifier, spatial filtering, and unsupervised segmenta
tion [23].

H. Fabelo et al.                                                                                                                                                                                                                                  Microprocessors and Microsystems 116 (2025) 105157 

8 



experiments, was extracted from the manufacturer’s website.
It is worth noting that the proposed experiments are performed using 

the effective bandwidth of the pushbroom HS camera, i.e., the spectral 
range between 440 and 900 nm [44]. Hence, although the developed 
LCTF-based acquisition system developed in STRATUM can reach larger 
wavelengths, the simulated LCTF-based data will cover only such 
spectral range (440–900 nm) with 93 equispaced bands at a sampling 
interval of 5 nm. Additionally, it is important to highlight that this 
simulation is only performed spectrally, as it is carried out on a 
pixel-by-pixel basis and no spatial properties are modified from the 
original pushbroom HS data.

The proposed approach (Fig. 7) for generating the simulated LCTF- 
based HS images from the pushbroom HS data essentially consists of 
the following steps: 

1) Acquire or retrieve the raw data from the pushbroom HS camera;
2) Estimate the illuminance in the camera by compensation based on 

the quantum efficiency of the pushbroom HS sensor;
3) Compensate for the light tint introduced by the original QTH lamp in 

the previously measured illuminance;
4) Estimate the transmittance of the LCTF-based system (lamp-filter 

ensemble) by applying the result from step 3 and the spectral char
acterisation of the output of the LCTF filters.

5) Simulate the image obtained with an LCTF-based system using the 
estimated illuminance (Step 2) and the transmittance of the LCTF- 
based system (Step 4).

This simulation approach provides the corresponding LCTF-based HS 
image of an original pushbroom HS image. This does not exclude the 

need to apply the flat field correction to standardize HS images, thus, 
this procedure is applied to the raw HS image, as well as the dark and 
white references, and then the flat field correction is applied to the 
simulated data.

6.3.1. Spectral analysis of the simulated LCTF-based data
To evaluate the proposed LCTF-based data simulation approach, a 

calibration target, SG 3333 Zenith Polymer Wavelength Standard 
(SphereOptics GmbH, Gewerbestr, Germany), was used. Fig. 8 shows the 
mean spectral signature captured with the pushbroom HS camera 
compared to the simulated LCTF-based data. A strong similarity can be 
noticed between both spectral signatures, although the simulated data 
presents less details mainly due to the increased sampling interval (3.76 
to 5 nm) and FWHM (~2.5 to 6–24 nm). A larger discrepancy is 
observed in the short wavelength region, from 440 to 450 nm, that is 
produced mainly due to the low power density of the light source and 
the low transmittance of the LCTF system in that region, increasing the 
signal to noise ratio.

6.3.2. Classification performance using the simulated LCTF-based HS data
In order to evaluate the feasibility of using the proposed intra

operative LCTF-based acquisition system for capturing relevant HS data 
in STRATUM to develop the processing algorithms for intraoperative 
brain tumour diagnosis and delineation, a comparison between the 
classification performance of using the simulated LCTF-based HS data 
versus the original pushbroom data has been carried out. The classifi
cation results were obtained following the data partition based on a 5- 
fold cross-validation employed in [23], and using the two different 
input data: (i) the pushbroom HS dataset and (ii) the simulated 
LCTF-based HS dataset. Additionally, experiments were performed 
using five supervised machine learning classifiers with different con
figurations: a SVM classifier with the linear kernel (SVML) and the 
Radial Basis Function kernel (SVMrbf); a KNN classifier using the 
Euclidean and Cosine distances (KNN-E and KNN–C, respectively); and 
a RF classifier. Fig. 9 shows the F1-Score performance results where is 
possible to observe that the results using the simulated LCTF-based data 
provides similar results respect to the use of the original pushbroom 
data. Hence, the use of the LCTF-based acquisition system ensures that 
the HS database to be acquired in STRATUM will satisfy the minimum 
requirements to obtain comparable results to the ones obtained in pre
vious projects.

Table 2 
Acquisition systems parameters for the LCTF-based data simulation approach.

Parameter Pushbroom-based System LCTF-based System

Spectral range 
(nm)

400–1000 (max) / 
450–900 (effective)

420–730 (VIS) / 650–1100 (NIR) 
/ 420–1100 (Total)

Sampling interval 
(nm)

0.73 (min) / 3.61 
(selected)

1 (min) / 5 (selected)

FWHM (nm) ~2.5 6–13 (VIS) / 13–24 (NIR)
Spatial resolution 

(pixel)
741 × 1004 4096 × 3000

#Spectral bands 826 (max) / 128 
(selected)

680 (max) / 136 (selected)

Fig. 7. Proposed approach for generating the simulated LCTF-based HS images from the pushbroom HS data.
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6.4. Preliminary HSI processing framework characterization and profiling

Accurate and efficient processing of HS data is key for STRATUM’s 
real-time intraoperative use. To support STRATUM’s goal of improving 
brain tumour delineation and surgical outcomes, we seek to perform 
careful benchmarking and performance profiling of the HSI processing 
framework (Fig. 6). For that, a profiling-driven performance study using 
LCTF-based HS data was performed.

For the proposed experiments, two sets of HS image samples from the 
available simulated datasets were selected (Table 3): cropped and full- 
size. The cropped HS image dataset is composed of HS images which have 
been cropped to the region of interest where the parenchymal area is 
presented, making them smaller than the original full sensor captures 
[23]. These simulated data is conformed by 93 spectral bands and 
varying spatial dimensions (i.e., columns ranging from 330 to 752 
pixels, rows from 300 to 721 pixels, and file sizes from 55 MB to 290 
MB). Similarly, the full-size HS images simulate the spatial properties of 
the camera sensor employed in the proposed intraoperative HS acqui
sition system, spanning the entire sensor area at 3000 × 4096 pixels, 
with 93 spectral bands, totalling 6.4 GB per file.

The HSI processing workflow was benchmarked to analyse the 

performance of the different algorithms and determine the most 
computationally intensive kernels. As previously shown in Fig. 6, the 
workflow starts with the data preprocessing step, which includes: i) an 
specific task (BSQ-to-BIP) to make a transformation of the simulated HS 
data from BSQ (Band Sequential) format to BIP (Band Interleaved by 

Fig. 8. Comparison between the spectral signatures of the SG 3333 Zenith polymer captured with the pushbroom HS camera (blue) and the simulated LCTF-based HS 
data (orange).

Fig. 9. Classification performance results using different supervised machine learning classifiers comparing the use of the original pushbroom HS data (blue) versus 
the simulated LCTF-based HS data (orange).

Table 3 
Characteristics of the simulated HS image samples employed in the proposed 
experiments. HS image numbers correspond to the HS brain dataset published in 
[23].

HS Image 
ID

Cropped Size Full-Size Dimensions

(height × width ×
bands)

(MB) (height × width ×
bands)

(MB)

008–01 460 × 549 × 93 135 3000 × 4096 × 93 6400
012–01 443 × 497 × 93 118 3000 × 4096 × 93 6400
015–01 376 × 494 × 93 100 3000 × 4096 × 93 6400
020–01 378 × 330 × 93 67 3000 × 4096 × 93 6400
022–03 592 × 471 × 93 150 3000 × 4096 × 93 6400
034–02 300 × 342 × 93 55 3000 × 4096 × 93 6400
058–02 721 × 752 × 93 290 3000 × 4096 × 93 6400
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Pixel) format; and ii) a calibration and normalization task (Calibration & 
Normalization) related to the flat field correction of the HS data using 
both white and dark references and a spectral signature normalization 
between [0, 1]. Then, the preprocessed HS data is processed in three 
different steps: i) a dimensional reduction to obtain the first component 
of the PCA (Principal Component Analysis) algorithm; ii) a pixel-wise 
supervised classification based on the SVM algorithm; and iii) an un
supervised segmentation based on the K-Means (KMeans) clustering al
gorithm. After this, the results from the PCA and SVM algorithms are 
used as input to a spatial filtering approach based on the k-nearest 
neighbours (KNN) algorithm. Finally, the outputs from the KNN and 
KMeans steps are combined in the spatial-spectral classification 
approach using a majority voting (MajorityVoting) algorithm.

For the performance study, the HSI processing framework was 
executed on high-end computing nodes from the MareNostrum 5 (MN5) 
supercomputer. For the general-purpose CPU performance evaluation, a 
computing node equipped with two Intel Xeon Platinum 8480+ 56C 2 
GHz and 256 GB of main memory was used. For the GPU performance 
evaluation, a node equipped with two Intel Xeon Platinum 8460Y+ 40C 
at 2.3 GHz, 512 GB of main memory, and four NVIDIA Hopper H100 64 
GB HBM2 was used.

6.4.1. CPU performance evaluation
For the general-purpose CPU performance evaluation, Fig. 10 shows 

the overall execution time for the end-to-end HSI processing analysis 
pipeline running in a single core for seven different HS image samples 
(cropped and full-size). Overall, we observe that, from all the execution 
kernels, KNN and KMeans are responsible for 98 % of the time spent in 
the pipeline, where KNN is significantly more time-consuming, taking 
65–82 % of the time, while KMeans takes 13–31 % of the time. Also, we 
observe that execution times grow linearly with the HS image size (i.e., 
number of pixels) on the cropped set, which is the one that has different 
HS image sizes among samples. An average execution time of 88.2 s was 
obtained for the cropped images, while for the full-size HS images an 
average of 463 min was obtained (5.2× longer execution times). It is 
important to note that these results were obtained from single-core ex
ecutions. Multi-core implementations and support for AVX2/AVX-512 
on Intel Xeon are expected to provide substantial speedups in further 
experiments.

6.4.2. GPU performance evaluation
For the GPU performance evaluation, Fig. 11 shows the overall 

execution times for the GPU-enabled HSI processing analysis pipeline 

running on a single NVIDIA Hopper H100. Compared to the CPU ex
periments, GPU executions show a significant speedup, ranging from 
34× to 352× . Nevertheless, we still observe that KNN and KMeans are 
the most time-consuming kernels of the GPU processing pipeline. 
Notwithstanding the GPU acceleration, the CPU preprocessing stage 
BSQ-to-BIP becomes the main performance bottleneck. In the case of full- 
size HS images, the execution time remains relatively constant (i.e., 
average of 75 s) across all samples, dominated by KMeans (GPU) and 
KNN (GPU). In the case of cropped HS images, the execution time is 
reduced to 1.2 s per image on average.

7. Conclusions

The integration of digital diagnostics has the potential to enhance the 
execution of complex surgical procedures across various anatomical 
sites, with brain tumour surgery being one of the most challenging. The 
STRATUM project addresses this critical use case as a reference for a 
broad range of surgeries, aiming to improve patient safety, enhance 
diagnostic accuracy, and optimize healthcare pathways.

At its core, STRATUM focuses on developing a 3D decision support 
tool designed to reach TRL7. This system leverages real-time multimodal 
data processing powered by AI algorithms and will be integrated as a 
Point-of-Care computing tool within the neurosurgical workflow. By 
doing so, it represents a major step forward in merging advanced tech
nology with medicine, fostering the next generation of neuronavigation 
systems.

A key innovation of STRATUM lies in its ability to incorporate both 
existing and emerging data sources, such as HSI technology, and process 
them in real time. This will empower neurosurgeons to make informed, 
efficient, and precise decisions during procedures, potentially maxi
mizing tumour resection rates while minimizing the risk of neurological 
deficits, ultimately benefiting patients.

The project’s development follows a co-creation approach, engaging 
key stakeholders and end users throughout the process. This collabora
tive framework ensures that the STRATUM system is tailored to the real 
needs of medical professionals, significantly contributing to advance
ments in brain surgery care.

Beyond the clinical setting, the long-term impact of STRATUM ex
tends to optimizing healthcare resources. By enabling more time- 
efficient surgical procedures, it is expected to reduce patient 
risks—such as prolonged anaesthesia exposure and postoperative com
plications—while enhancing the overall efficiency of European health
care systems.

Fig. 10. Execution time of the STRATUM HSI processing pipeline on a single-core Intel Xeon Platinum 8480+ using the simulated cropped (left) and full-size (right) 
HS images.
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Current works within this project are focused on the development of 
the intraoperative acquisition system for data acquisition during 
neurosurgical procedures using a HIS system based on a LCTF illumi
nation system. In this sense, an approach for simulating the resultant 
LCTF-based data from previously captured in-vivo human brain HS 
images using pushbroom HS cameras with high spectral resolution. This 
simulation was assessed through a spectral analysis using a reference 
polymer and also comparing the classification performance using the 
proposed HSI processing framework respect to the original pushbroom 
HS data. Additionally, a characterization and a profiling of the proposed 
framework was carried out using two simulated HS dataset with 
different spatial characteristics (cropped and full-size). In this analysis, 
the different steps involved in this processed pipeline were studied using 
a general-purpose CPU and a single NVIDIA Hopper H100. Results 
showed that the KNN step is the most time-consuming task in the CPU 
implementation, while the use of a GPU implementation achieved an 
improved speed-up ranging from 34× to 352×, being the preprocessing 
stage to convert the HS data format from BSQ to BIP executed onto the 
CPU the main bottleneck of the pipeline.

Future work will focus on optimizing the preprocessing stages of the 
HSI processing pipeline. Moreover, a key goal is to isolate and analyse 
each kernel individually and conduct a detailed performance analysis 
using microarchitectural counters (e.g., instructions, cycles, IPC, LLC 
misses), roofline modelling to assess memory- and compute-bound 
behaviour, and memory profiling. Finally, we seek to explore HW ac
celeration strategies, including the deployment of the pipeline on FPGA 
accelerators and PIM-enabled DIMM RAM modules, to further reduce 
latency and energy consumption.
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M. Moreto, BIMSA: accelerating long sequence alignment using processing-In- 
memory, Biorxiv (2024) 2024, https://doi.org/10.1101/2024.05.10.593513, 
05.10.593513May.

[32] Q. Aguado-Puig, et al., WFA-GPU: gap-affine pairwise read-alignment using GPUs, 
Bioinformatics 39 (12) (2023), https://doi.org/10.1093/BIOINFORMATICS/ 
BTAD701. Dec.

[33] M. Cancilla et al., “The deephealth toolkit: a unified framework to boost 
biomedical applications,” Proceedings - International Conference on Pattern 
Recognition, pp. 9881–9888, 2020, doi: 10.1109/ICPR48806.2021.9411954.

[34] C. IC-Health, “IC-Health: improving digital health literacy in Europe (727474).” 
Accessed: Apr. 24, 2024. [Online]. Available: https://cordis.europa.eu/project/id/ 
727474.

[35] C. WARIFA, “WARIFA: watching the risk factors: artificial intelligence and the 
prevention of chronic conditions (101017385).” Accessed: Apr. 24, 2024. [Online]. 
Available: https://cordis.europa.eu/project/id/101017385.

[36] A. Deniz-Garcia, et al., Quality, usability, and effectiveness of mHealth apps and 
the role of artificial intelligence: current scenario and challenges, J. Med. Internet 
Res. 25 (2023) e44030, https://doi.org/10.2196/44030. May.

[37] C. SEEDS, “SEEDS: science engagement to empower disadvantaged adoleScents 
(101006251).” Accessed: Apr. 24, 2024. [Online]. Available: https://cordis.europ 
a.eu/project/id/101006251.

[38] A. Wargers, et al., Citizen Science to improve healthy and active living among 
adolescents in four European countries: a protocol of the cluster randomised 
controlled trial of the Science Engagement to empower aDolescentS (SEEDS) 
project, BMJ Open 13 (5) (2023) e070169, https://doi.org/10.1136/bmjopen- 
2022-070169. May.

[39] European Union, “The articles of the EU Artificial Intelligence Act (25.11.2022).” 
Accessed: Apr. 24, 2024. [Online]. Available: https://www. 
artificial-intelligence-act.com/Artificial_Intelligence_Act_Articles_ 
(Proposal_25.11.2022).html.

[40] International Standard, “IEC 62304:2006 - medical device software — Software life 
cycle processes,” 2006. Accessed: Jul. 08, 2024. [Online]. Available: https://www. 
iso.org/standard/38421.html.

[41] International Standard, “ISO 13485:2016 - medical devices — Quality 
management systems — Requirements for regulatory purposes,” 2016. Accessed: 
Jul. 08, 2024. [Online]. Available: https://www.iso.org/standard/59752.html.
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