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Abstract
The classification of emotions is of vital importance in health care, particularly in the context of early detection of cognitive 
disorders. Given the critical role of emotions as early indicators of cognitive health, this study addresses the need to develop 
effective and accessible classification methods. In this research, we present an innovative approach to emotion classification 
using a proprietary dataset and harnessing the power of deep learning. In particular, we use a specific, innovative combina-
tion of attentional layers and Long-Short Term Memory (LSTM) algorithms to achieve an emotion classification. A key 
differentiator of our methodology is the use of a compact and low-cost array of biometric sensors. This approach provides 
a cost-effective alternative to traditional systems, which often rely on more complex and expensive sensor arrays, such as 
those using electroencephalography (EEG). Despite the affordability of our sensor configuration, our classification model 
achieves an outstanding accuracy rate of 93.75%. This performance not only demonstrates the effectiveness of our method but 
also positions it at the forefront of emotion classification using these sensors. By significantly reducing cost while increasing 
classification accuracy, our method helps to push the boundaries of current state-of-the-art approaches and provides a novel 
and cost-effective solution for emotion classification and cognitive health monitoring.
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Introduction

In the ever-evolving landscape of human–machine interac-
tion, emotion recognition has emerged as a critical frontier 
that transcends disciplinary boundaries and has profound 
implications across multiple domains. The historical trajec-
tory of emotion recognition has been and continues to be, 
deeply rooted in societal advances, technological innova-
tions, and our evolving understanding of human cognition, 
since we are emotions [1]. From its earliest stages, when 
psychological theories laid the groundwork for understand-
ing emotions, to the present era of unprecedented techno-
logical advances, the pursuit of deciphering human emotions 
has become a compelling imperative.

The beginnings of emotion recognition can be traced back 
to early psychological paradigms, such as Paul Ekman’s 

work on facial expressions and their universality in the 
1970 s. In subsequent decades, the integration of sensor 
technologies, particularly electroencephalography (EEG), 
has provided unprecedented insights into the neurophysi-
ological underpinnings of emotions [2, 3]. This integration 
has not only refined our understanding of emotional states 
but also expanded the horizons of potential applications, 
ranging from mental health diagnostics to human–computer 
interaction [4].

The advent of machine learning, especially deep learn-
ing techniques, has exponentially increased the accuracy 
and scope of emotion recognition. The interplay of sophis-
ticated algorithms ranging from Support Vector Machines 
(SVMs), k-neighbors, or perceptrons to Neural Networks 
(NNs), Convolutional Neural Networks (CNNs), attention 
layers, or Long Short-Term Memory (LSTM) networks has 
redefined the landscape [5–9]. This has enabled a nuanced 
analysis of emotional states from multiple data modalities.

Some examples of the use of these algorithms in emotion 
classification are speech recognition, which has ushered in 
a new era of multimodal emotion recognition, where the 
fusion of acoustic features and linguistic patterns contributes 
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to a more holistic understanding of emotional expressions 
[6]. EEG, where brain signals combined with algorithms 
have enabled a better understanding of brain patterns and 
improved emotion recognition and classification [2–4].

The fusion of image recognition methods with artificial 
intelligence has also received great recognition in recent 
years, such as the one carried out by the University of Santa 
Monica together with the company Snapchat [10]. Or the 
more economical search for the application of a set of IoT 
sensors that provide the information to understand and con-
figure a set of tools capable of providing valuable informa-
tion to the algorithms that classify emotions [11].

Related Works

This article aims to explore the current state of the art in 
emotion recognition, as we consider it a key aspect in the 
detection of cognitive disorders and also a useful tool in 
working with all kinds of people with social difficulties 
(autism, Asperger’s). This approach focuses on the use of 
sensors and deep learning algorithms to predict emotions 
with high accuracy.

There are many approaches in the literature, ranging from 
speech recognition analysis to image analysis, using mul-
timodal approaches where several of these techniques are 
mixed with others such as EEG.

Here, thanks to work such as that developed by Khare 
et al. [12] and others, we try to highlight the transformative 
potential of these technologies, highlighting their applica-
tions in different domains, see Fig. 1, and predicting future 
trajectories of emotion recognition research, as the develop-
ment of computational algorithms and artificial intelligence 
has allowed work on emotion recognition and classification 
to multiply in recent decades.

Using the speech recognition approach, Zielonka et al. 
[13] used voice sensors as an input method to perform 
emotion recognition (anger, disgust, fear, happiness, sad-
ness, and neutral) and achieved a 76% success rate in their 

classification. Subsequently, Anvarjon et al. [14] improved 
this approach to emotion recognition in speech and achieved 
a range of 77.01–92.02%. The proposed CNN model was 
trained on the frequency features extracted from the speech 
data and then tested to predict the emotions (anger, happi-
ness, sadness, and neutral).

As mentioned above, another common approach is to 
extract features from images. This technique can be used 
alone or in combination with sensor-based or EEG-based 
techniques. For example, Yadav et al. [15] use facial images 
to detect different emotions (sadness, surprise, happiness, 
anger, disgust, fear, and neutral). This is done by extract-
ing covariance matrices and feature vectors from the facial 
images and then applying Principal Component Analysis 
(PCA), Gaussian Mixture Models (GMM), and Grey Level 
Co-occurrence Matrices (GLCM). Finally, they used an 
SVM to classify the emotions. The results vary between 
87.7 and 93%.

In their study, Hassouneh et al. [16] also focus on the 
line of feature extraction from facial images. However, in 
this study, they rely on the use of EEG to complement the 
results and try to add value using the brainwaves. They aim 
to classify the emotional expressions of children with autism 
and physically disabled people (mute, deaf, and bedridden) 
using facial landmarks and EEG signals. CNN and LSTM 
networks are used and implemented in a real-time emotion 
recognition algorithm. This algorithm uses virtual markers 
through an optical flow algorithm that works effectively in 
non-uniform lighting and subject head rotation (up to 25°), 
different skin tones, and different backgrounds. After carry-
ing out the experiments, the results show an average accu-
racy of 87.25%.

The confluence of emotion recognition and electroen-
cephalography (EEG) has led to promising advances in joint 
applications. Recent studies such as those by Iacoviello et al. 
[17] and Yang et al. [18] exemplify this synergy, applying 
machine learning and deep learning to brain signals to clas-
sify emotions such as fear, happiness, and disgust with suc-
cess rates ranging from 84.2 to 90.2%. All this work from 
around the world has led to major advances in the field of 
emotion recognition. This is illustrated in Fig. 2.

However, these approaches are often limited by cost, 
requiring complex setup and significant computational 
resources. In this work, we present a contrasting approach 
that prioritizes low-cost, high-value systems. We achieve 
this by using inexpensive and readily available sensors, cou-
pled with the power of deep learning to uncover predictive 
patterns, ultimately aiming for a favorable cost–benefit ratio.

Our Proposal

This study presents a novel method for recognizing fear 
and disgust by integrating biometric sensors with a deep Fig. 1   Paradigms used in emotion classification and recognition
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learning classifier. The proposed approach offers a cost-
effective solution with low computational and material 
requirements, achieving performance that is comparable 
or superior to existing methods. A set of biometric sen-
sors—including pulse, oxygen, temperature, conductance, 
and airflow sensors—captures physiological signals asso-
ciated with emotional states while subjects view video 
stimuli. These signals are then pre-processed and filtered 
to enhance data quality before being input into a deep 
learning classifier based on a hybrid CNN-LSTM archi-
tecture augmented with an attention layer. This classifier 
categorizes the signals into fear, disgust, or neutral states.

The combination of low-cost biometric sensors with 
advanced deep learning techniques provides an accessi-
ble solution that achieves accuracies exceeding 92% while 
significantly reducing both computational cost and overall 
expense. Given the limited number of studies exploring 
emotion detection through low-cost sensors, this work rep-
resents a promising new paradigm in the field.

In summary, the proposed method offers an innova-
tive, cost-effective, and highly scalable solution for emo-
tion recognition. Its development is expected to advance 
knowledge in the field and positively impact various 

application areas, including psychology, security, market-
ing, and education.

Material and Methods

Sensors and Controllers

Libelium e‑Health Board

The e-Health board, made by Libelium, Fig. 3, is used to 
add the different types of sensors and capture the signals 
[19]. This board supports all the communication modules 
produced by Cooking Hacks, a brand that belongs to Libe-
lium and oversees extending electronics to creators of all 
audiences in an accessible and educational way.

If our board is too small for the dimensions of the 
project, layers can be added. The layers complement the 
functionality of the board model used, adding circuits, sen-
sors, and external communication modules to the original 
board.

Fig. 2   Emotion recognition research around the world
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Microcontroller: Arduino UNO‑R3

The Arduino UNO-R3 board, a versatile microcontroller 
powered by the ATmega328 chip, serves as the central 
hub for data acquisition and initial processing in this 
study, see Fig. 4. The choice of Arduino stems from its 
open-source nature, ease of programming, and vast com-
munity of support, making it an ideal platform for rapid 
prototyping and experimentation in the context of emo-
tion recognition research. It has 14 digital input/output 
pins, 6 analog inputs, a ceramic resonator at 16 MHz, can 
be powered by battery or USB cable, and is programmed 
by computer. Communication between the two is through 
the serial port.

Sensor Array

To capture nuanced physiological signals indicative of 
emotional states, a carefully curated array of non-inva-
sive, cost-effective sensors forms the foundation of our 
data collection:

Pulse and Blood Oxygenation (SpO2): This sensor illu-
minates the skin with red and infrared light, measuring 
the differential absorption of oxygenated and deoxygen-
ated hemoglobin. Variations in blood oxygenation lev-
els reveal changes in heart rate and respiration, which 
are closely linked to emotional states.
Temperature: Body temperature fluctuations offer valu-
able insights into autonomic nervous system activity, 
which is highly responsive to emotional experiences. 
A dedicated temperature sensor continuously monitors 
the subject’s skin temperature.
Galvanic Skin Response (GSR): By measuring changes 
in the electrical conductivity of the skin, the GSR sen-
sor provides a window into sweat gland activity regu-
lated by the sympathetic nervous system. This offers a 
sensitive indicator of emotional arousal.
Airflow: This sensor measures breathing patterns, which 
can be used to detect changes in breathing rate and 
depth that are associated with emotional arousal.

The e-health board has several additional sensors, such 
as ECG, accelerometer, blood glucose, electromyogram 
(EMG), and blood pressure. However, these are not con-
sidered for several reasons. On the one hand, it has been 
observed that their value is not correlated with emotions in 
many cases, or they add too much noise, as in the case of 
the electromyogram. For this reason, it has been decided to 
adopt the simplest possible approach, seeking to increase 
the cost/benefit ratio.

The deliberate choice of this sensor suite prioritizes the 
following principles:

–	 Non-invasiveness: User comfort and ease of deploy-
ment are prioritized by employing sensors that do not 
require complex procedures or direct penetration of the 
skin.

–	 Cost-effectiveness: The selected sensors align with the 
study’s aim to develop an accessible emotion recogni-
tion system, making it feasible for broader applications.

–	 Established Physiological Correlates: Each sensor 
targets well-understood physiological processes with 
documented links to the autonomic nervous system 
activity and emotional experiences.

–	 Sensors are pre-calibrated according to the manufac-
turer’s specifications (see documentation [19])

Fig. 3   Libellium e-Health board

Fig. 4   Plan view of an Arduino UNO-R3 chip. Its components and its 
motherboard can be seen
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Dataset

The database consists of 14 subjects aged between 25 and 
67 years. The 5 physiological variables mentioned in the 
previous section (Sensor Array), i.e., pulse, oxygen, tem-
perature, conductance, and airflow, were recorded during 
the measurement, all of which together with the date make 
up the database, which is anonymized to meet ethical and 
privacy criteria.

This measurement is recorded from a moment before the 
generation of the emotion, so first, we check that the sensors 
are giving normal values, then we introduce the stimulus 
that generates the emotion, in this case, a video of disgust 
or fear, and finally, we end the video and wait for the person 
to be stable again.

To facilitate the analysis of different emotional states, 
each measurement will be segmented into five stages that 
reflect the temporal dynamics of the emotional response:

•	 Stage 1 (Baseline): Represents the initial stabilization 
period before stimulus presentation, capturing the sub-
ject’s resting physiological state.

•	 Stage 2 (Pre-Emotion): Encompasses the period from the 
start of the stimulus until the onset of the target emotion 
(fear or disgust).

•	 Stage 3 (Emotion): Marks the active experience of the 
target emotion, triggered by a specific event within the 
stimulus. It begins when an event of disgust or fear 
occurs.

•	 Stage 4 (Post-Emotion): Captures the physiological 
changes as the subject transitions from the emotional 
state to its baseline.

•	 Stage 5 (Recovery): Represents the return to the subject’s 
physiological baseline after the emotional experience.

This segmentation strategy allows for a nuanced analysis 
of the physiological patterns associated with each emotional 
stage. It will help identify which stages are most accurately 
classified by the artificial intelligence model and where 
potential challenges lie. For example, the similarity between 
Stage 1 (Baseline) and Stage 5 (Recovery) may pose diffi-
culties for the system, but the crucial focus remains on the 
accurate identification of Stage 3 (Emotion). It has therefore 
been decided that, as they do not make a significant con-
tribution to the results, stages 1 and 5 should be excluded 
to facilitate the reading and presentation of these results. 
Figure 5 depicts the stages of the data acquisition process.

Selection of Subjects

Participants were selected randomly among volunteers to 
ensure that all subjects fell within a range of “normality.” 
All volunteers were screened by a psychologist to confirm 
that they were mentally healthy, as the study is not clinical, 
but aims to capture emotional responses only.

AI Algorithms

To construct the architecture of the emotion recognition 
model, a combination of CNNs, LSTMs, and attention layer 
was chosen among all the algorithms because it was the one 
that gave the best results when compared with other models.

CNN

A CNN is a deep learning architecture that is adept at 
image and video recognition, pattern analysis, and pixel-
based data processing [20–22]. CNN’s use the convolu-
tions to extract features from the input, see Fig. 6. Filters 

Fig. 5   General data acquisition 
scheme
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slide across the input image, performing element-wise 
multiplications and summations to generate feature maps 
(or activation maps). Through multiple layers of convo-
lution and pooling, followed by fully connected layers, 
a CNN learns hierarchical representations—from simple 
edges and textures to complex objects and spatial patterns 
[23].

The basic mathematical expression of a convolution 
operation in a CNN is as follows:

where f is the input function, g is the kernel or filter that is 
applied to the input image, and x is the position in the image 
where the convolution operation is being performed. The 
above expression refers to convolution in one dimension, 
but in CNNs convolution operations are used in multiple 
dimensions, particularly in images that are two-dimensional 
matrices. This mathematical expression of a 2D layer in 
CNN is [24]:

where:

•	 O is the output tensor of dimensions (Io, Jo, K)
•	 I is the input tensor of dimensions (Ii, Ji, C)
•	 K is the kernel, or filter, tensor of convolution of 

dimensions (M, N, C, K)

(1)(f ∗ g)(x) = ∫
∞

−∞

f (t)g(x − t)dt

(2)Oi,j,k = f
(

∑M-1

m=0

∑N-1

n=0

∑C-1

c=0
Ii+m,j+n,c * Km,n,c,k + bk

)

•	 f is the activation function. We chose ReLU because it 
introduces non-linearity into the network, which is essen-
tial for learning complex patterns in the data. Moreover, 
ReLU is computationally efficient and helps mitigate the 
vanishing gradient problem, thereby facilitating faster 
and more stable convergence during training.

•	 b is the bias tensor.
•	 The summation is over the indices m, n, and c to traverse 

the input tensor and the kernel tensor.

LSTM

Long-Short Term Memory Networks are a specialized 
variant of Recurrent Neural Networks (RNNs) designed 
to address the issue of vanishing gradients when handling 
long-term dependencies in sequential data. LSTMs achieve 
this through internal memory cells and gates that selectively 
regulate information flow, allowing them to retain and uti-
lize contextually relevant information across extended time 
steps. This architecture has found success in domains such 
as speech recognition, natural language processing, and time 
series forecasting [25]. Variants like Bidirectional LSTMs 
(BiLSTMs) and Gated Recurrent Units (GRUs) offer addi-
tional refinements and capabilities.

The LSTM cell comprises a memory cell and three pri-
mary gates, which can be expressed mathematically as fol-
lows [26].

For our LSTM, assume that the hidden state ht−1 has 
dimension d and the input xt has dimension k. Then, the 
weight matrices Wi,Wf  , and Wo are of dimension ℝd×(d+k) 
and the corresponding bias vectors bi, bf , and bo are in ℝd.

Input Gate  This gate is responsible for updating the cell 
state using a sigmoidal activation function. It is defined as 
follows:

•	 Wi is the weight matrix associated with the input gate 
of the LSTM. It is used to map the concatenated vector 
[ht−1, xt] (which combines the previous hidden state and 
the current input) into the cell state space.

•	 bi ∈ ℝ
d is the corresponding bias vector.

•	 xt is the input vector at the current time step. It contains 
the features or measurements from the system at time t 
and has a dimension k.

•	 ht−1 represents the hidden state from the previous time 
step in the LSTM. It contains the information that was 
computed up to time t − 1 and is used, together with 
the current input x

�
 , to determine the operations of the 

LSTM’s gates and to update the cell state.

(3)it[= �(Wi.
[

ht−1, xt
]

+ bi)

Fig. 6   Schematic of a CNN architecture with several convolutional 
layers similar to the one used in the model
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•	 σ denotes the sigmoid function, which outputs values 
in the interval [0,1] to determine the proportion of new 
information to be retained [25, 26].

Forget Gate  This gate decides which information should be 
discarded from the cell state. It is expressed as:

 where Wf ∈ ℝ
d×(d+k)and bf ∈ ℝ

d serve similar roles for 
the forget gate (weight representation and bias).

Output Gate  This gate determines the output of the LSTM 
cell based on a filtered version of the cell state [26]. It is 
computed as follows:

(4)ft = �(Wf .
[

ht−1, xt
]

+ bf )

(5)ot = �(Wo.
[

ht−1, xt
]

+ bo)

(6)ht = ot.tanh(Ct)

Here, Wo ∈ ℝ
d×(d+k)and b0 ∈ ℝ

d are the weight matrix 
and bias for the output gate. The tanh function compresses 
the cell state Ct into the range [− 1,1] for output generation.

Cell State Update  Finally, the previous cell state Ct−1 must 
be updated as follows. The complete process can be seen 
in Fig. 7.

where gt = tanh(Wg ⋅ [ht−1, xt] + bg)g_t represents the can-
didate cell state computed using the hyperbolic tangent func-
tion (tanh) , with Wg ∈ ℝ

d×(d+k) and bg ∈ ℝd.

Attention Layer

The attention layer is a fundamental component in deep 
neural network architectures, especially for tasks involv-
ing sequence processing such as machine translation, text 
summarization, and speech recognition. Its main function 
is to focus the model’s attention on the most relevant parts 
of the input in order to produce an accurate output.

An attention layer takes as input a sequence of vectors 
h1, h2, …, hn and produces a sequence of attention vectors 
a1, a2, …, an, where each ai represents the relative impor-
tance of hi in the final output, see Fig. 8.

The attention vectors are computed using a scoring 
mechanism that assigns a score to each input vector. The 
scoring function can be as simple as a dot product or as 
complex as a deep neural network [27].

Where X is the data matrix, Q, K, and V are the sub-
networks of the attention head, w indicates that the sub-
networks are weighted and, finally, after the dot products, 
a concatenation is performed using softmax to output a 
linear vector.

(7)Ct = ft.Ct−1 + it.gt

Fig. 7   Scheme of the components of a LSTM cell

Fig. 8   Scheme of a multi-head 
attention layer
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Important Additional Layers

It is necessary to add other types of layers to optimize the 
procedure and also for the model to work correctly, the 
most important ones are as follows:

Dense Layer  A dense or fully connected layer establishes 
connections between every neuron in that layer and every 
neuron in the subsequent layer. This structure is essential for 
learning complex relationships within data. The mathemati-
cal representation for a simple fully connected network with 
one hidden layer and an output layer is [28]:

where:

•	 xi is the input vector to the network.
•	 Wi are the weight matrices for the connections between 

layers.
•	 b is the bias.
•	 f  is the activation function applied to the output of 

each layer to compute the attention weights. The elec-
tion was the softmax function. This choice ensures that 
the weights are normalized into a probability distribu-
tion across the input sequence, allowing the model to 
focus more on the most relevant features.

Note that deep neural networks often contain multiple 
hidden layers, leading to more intricate formulas with addi-
tional weight matrices and bias vectors.

Dropout layer  Dropout is a regularization technique 
designed to mitigate overfitting in deep learning models. 
During training, it randomly deactivates (sets to zero) a 
specified percentage of neurons at each iteration. Mathe-
matically, a dropout layer multiplies the input vector by a 
randomly generated binary mask with the exact dimensions. 
The probability that a mask element is 1 is termed the “drop-
out rate” (commonly between 0.2 and 0.5).

Note that dropout is typically deactivated during test-
ing (dropout rate set to 0), and dropout rates depend on the 
model’s complexity and the dataset [29].

Hyperparameters

Fine-tuning the hyperparameters is essential to optimize 
performance and prevent overfitting or underfitting. Here 
are shown the most important used in the model:

(8)yfc = f
�
∑n

i=1
(Wi ∗ xi) + b

�

Optimizer: Adam is a popular optimization algorithm 
that combines the strengths of RMSprop and Momentum. 
It computes adaptive learning rates for each parameter 
based on estimates of first and second moments of the 
gradients. The following Eqs. (9–11) describe the Adam 
optimizer [30, 31]:

where:

•	 mt is the first updated moment (mean) estimate.
•	 vt is the second updated moment (variance) estimate.
•	 �1 and �2 are the moment decay parameters.
•	 gt is the gradient at the current step.
•	 α is the learning rate.
•	 ϵ (epsilon) is a small numerical constant to avoid division 

by zero.
•	 �t is the current value of the parameter being updated. 

This is the parameter that the algorithm optimizes.

Adam was selected due to its robustness in handling 
sparse gradients and its proven performance across various 
deep learning tasks [30, 31].

Learning Rate: 1 × 10−4

The learning rate controls the magnitude of parameter 
updates during training. The choice of a learning rate of 
1 × 10−4 is based on preliminary experiments and supported 
by prior literature, ensuring stable convergence without 
overshooting minima.

Batch Size: 5, 10 and 15
The batch size defines the number of examples processed 

per iteration. We evaluated different batch sizes and found 
that a batch size 15 offered a good balance between com-
putational efficiency and convergence behavior. Larger 
batch sizes generally improved gradient stability, but we 
observed diminishing returns beyond a batch size of 15 in 
our experiments.

Epochs: 1000
The number of epochs represents the number of com-

plete passes through the training dataset. An epoch count of 
1000 was determined to be sufficient to allow the model to 
learn the underlying patterns in the data, with early stopping 
applied based on validation performance.

Momentum: 0.99 and 0.999
Momentum values were employed to control the influ-

ence of previous updates on new ones. These values help 

(9)mt= �1mt−1 +
(

1 − �1
)

gt

(10)vt = �2vt−1 +
(

1 − �2
)

g2
t

(11)�t = �t−1 −
�

√

vt + �
mt
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accelerate gradient descent in the relevant direction and 
dampen oscillations, contributing to faster convergence.

Shuffling:
Shuffling the training data at each epoch is applied to 

ensure a random distribution of examples, which helps pre-
vent the model from learning the order of the data.

Activation Function: ReLU
As it was explained in section 2.3.1. ReLu was used in 

the CNN layers due to its ability to introduce non-linearity, 
facilitate efficient gradient propagation, and mitigate the 
vanishing gradient problem.

Regularization: (rate 0.2 to 0.5)
Dropout is a regularization technique where a fraction of 

neurons is randomly deactivated during training. This helps 
prevent overfitting by ensuring that the model does not rely 
too heavily on any single feature

The selection of these values was based on prior literature 
and experimentation with different configurations. Finding 
the optimal hyperparameter configuration is an iterative pro-
cess that requires careful testing and adjustments.

Architecture of the Network

The diagram that is shown in Fig. 9 shows a system that 
uses sensors to capture the emotional responses during video 
viewing. The captured signal is vectorized and normalized 
using the Z-score function, resulting in 1D vectors of dimen-
sion (19,1,1). These overlapped vectors, encompassing mul-
tiple events, are fed into a 3-layer 1D CNN with feature 
maps of decreasing size (128, 64, 32) for efficient feature 
extraction.

The output then passes through a fully connected layer 
with a single output neuron, followed by a dropout layer 
to reduce overfitting. The resulting vector is flattened and 

then processed through sequential LSTMs, each contain-
ing 64 neurons, to capture temporal dependencies within 
the emotional response. Finally, the output of the LSTM 
layer is passed through an attention layer to focus on the 
most relevant features before final classification through 
a softmax layer.

Performance Indices  This study employs a set of widely 
accepted metrics in the literature to validate the obtained 
results [32–34]:

Accuracy: It measures the overall correctness of the mod-
el’s predictions, calculated as the ratio of true positives 
and true negatives to the total number of samples.
Precision: It reflects the proportion of positive predictions 
that are correct, calculated as the ratio of true positives to 
the sum of true positives and false positives.

Recall (Sensitivity): It quantifies the model’s ability 
to identify all positive instances, calculated as the ratio 
of true positives to the sum of true positives and false 
negatives.

F1 Score: It provides a weighted average of precision 
and recall, offering a more balanced assessment of the 
model's performance, calculated as 2 * (precision * recall)/
(precision + recall).

Specificity: It measures the model’s ability to correctly 
identify negative instances, calculated as the ratio of true 
negatives to the sum of true negatives and false positives.

(12)P=TP / (TP + FP)

(13)F1 = 2.(Precision ∗ Recall)∕(Precision + Recall)

Fig. 9   Architecture of the 
network
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where TP are true positives, FP are false positives, TN are 
true negatives, and FN are false negatives.

Confidence interval (CI): is an estimated range of val-
ues, derived from sample data, that is likely to contain the 
true value of a parameter (such as the model’s accuracy) 
95% of the time. The CI provides insight into the preci-
sion and reliability of the estimate. We use the binomial 
proportion approach [35].

where p̂ is the observed accuracy, n is the total number of 
samples, and Z �∕ 2

 is the critical value from the standard 
normal distribution (e.g., 1.96 for a 95% CI). Although the 
Clopper–Pearson exact interval [36] can also be used for 
smaller sample sizes, the normal approximation typically 
suffices for moderately large n . This confidence interval 
helps assess the robustness of our accuracy estimate by pro-
viding a plausible range of values.

p-value: represents the probability of observing the 
given results, or something more extreme, under the 
assumption that the null hypothesis is true. In the context 
of our model, it quantifies the likelihood that the observed 
accuracy (e.g., 93.75%) could have occurred by random 
chance if the true accuracy were at a baseline level (typi-
cally 50% for binary classification). A small p‐value (com-
monly < 0.05) indicates that such an outcome is highly 
unlikely under the null hypothesis, thus suggesting that 
our model’s performance is statistically significant [37].

To determine whether the observed accuracy signifi-
cantly exceeds chance (50% for random binary classifi-
cation), a one‐sided binomial test is performed [38, 39]. 
Under the null hypothesis H0 ∶ p = 0.5 , the probability of 
obtaining k or more correct predictions out of n is:

where n is the total number of predictions (or observations), 

k is the number of successes observed, and 
(

n

i

)

 is the bino-

mial coefficient which represents the number of ways to 
choose i successes out of n trials.

These definitions help ensure that our reported perfor-
mance metrics are both precise (through the CI) and sta-
tistically validated (through the p‐value).

Hardware and Time Computing.
The present work was developed on a hardware with 

the following specifications; CPU i7-9700 K, 16 Gb 
RAM-DDR4, Nvidia RTX-2060 Super Windforce OC (8 

(14)S=TN / (TN + FP)

(15)CI = p̂ ± Z�∕2

√

p̂(1 − p̂)

n

(16)p − value =

n
∑

i=k

(

n

i

)

(

1

2

)n

VRAM). The computation time for training and test was 
85.16 ± 2.065 s and 0.01165 ± 0.004 s (11 ms approx.).

Methodology

In this section, we describe the methodology we used to 
evaluate the performance of our proposed tool and the exper-
iments that were conducted. The results of these experiments 
are presented in the “Results” section. We believe that the 
results of our experiments will provide valuable information 
for the design and implementation of emotion recognition 
tools.

First Tests

To get a starting point, evaluations were started using a sim-
ple neural network with 5 neurons.

Ensembles Tests

A series of ensembles were then used to test different param-
eters. A summary of these and the different variations is 
shown below:

•	 Variation of the number of networks in the ensemble (5, 
10, 50, 100).

•	 Variation of the number of neurons in the hidden layer 
(15–25).

•	 Tests with different number of states (5, 3, 2). These 
stages were explained in the “Dataset” section.

Machine and Deep Learning Algorithms

A set of algorithms famous for pattern recognition with spa-
tiotemporal character was used; these include:

•	 LSTM
•	 Bi-LSTM
•	 GRU​
•	 CNN-LSTM
•	 CNN-LSTM-Attention (The proposed method)

Table 1 presents a summary of the tests conducted.

Results and Discussion

The following section presents the experimental results. For 
clarity, the accuracy metrics for the complete set of tests are 
first reported, followed by a detailed focus on the perfor-
mance of the proposed method. Finally, the results are dis-
cussed in order to evaluate the effectiveness of the proposed 
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model. Table 2 summarizes the global accuracy achieved in 
the experiments.

As can be seen, the simple neural network achieved a suc-
cess rate of 54%. This gave us a starting point to understand 
that a much more complex network should be used.

Therefore, various ensemble configurations and differ-
ent state selections were evaluated to assess their impact 
on overall classification performance. The results varied 
considerably across the different ensemble tests. Notably, 
the best outcomes were observed when only stages 2 and 3 
were considered, followed by those including three stages 
(2, 3, and 4). This observation likely stems from the fact that 
stages 1 and 5—representing baseline and recovery—pro-
vide limited discriminatory information and may introduce 
noise into the classification process. For instance, an ensem-
ble of 20 networks using three states yielded an accuracy of 
62%, whereas an ensemble of 100 networks using two states 
achieved a surprising accuracy of 89%.

Subsequently, when employing more specialized algo-
rithms for processing these types of signals, similar perfor-
mance levels of around 93% were attained across LSTM, 
Bidirectional-LSTM, and GRU models, likely due to their 
similar operational characteristics. However, the addition 
of convolutional layers to the classifier resulted in a slight 
decrease in accuracy to 92.5%, possibly because CNNs pri-
marily focus on extracting spatial features rather than tem-
poral ones. Remarkably, by integrating 1D CNNs with an 
attention mechanism, the accuracy increased to 93.75%—the 
best performance observed in this study. This improvement 
is attributed to the synergistic effect of combining these 
three types of layers, where the attention layer enhances the 
focus on the most relevant parts of the signal.

Figure 10 illustrates the accuracies obtained across the 
different tests and classifiers.

The confusion matrix obtained for the best case, i.e., 
that of the proposed model, is shown in Fig. 11, where it 

Table 1   Summary of all the 
tests performed

*3 stages exclude the baseline stage and the recovery stage
**2 stages exclude the baseline stage, the post emotion stage, and the recovery stage

Type of architecture Number of tests Characteristics

Simple neural network Tests 1 and 2 5 neurons in the hidden layer
Ensemble of networks (5 stages) Tests 3–6 5, 10, 50, and 100 ensembled networks
Ensemble of networks (3 stages) * Tests 7–10 5, 20, 50, and 100 ensembled networks
Ensemble of networks (2 stages) ** Tests 11 and 12 Ensemble of 100 and 200 networks
LSTM Test 13 Double LSTM. 64 neurons in the hidden layer
Bi-LSTM Test 14 Double Bi-LSTM. 64 neurons in the hidden layer
GRU​ Test 15 64 neurons in the hidden layer
CNN-LSTM Test 16 Triple CNN – Double LSTM
CNN-LSTM-Attention Test 17 Defined in Sect. 2.3.6

Table 2   Global accuracy of all 
the tests performed

Type of architecture Number of tests Neurons Global accuracy

Simple neural network Tests 1 and 2 15 54%
Ensemble of networks (5 stages) Test 3 (5 ensembled networks) 23 51%

Test 4 (10 ensembled networks) 21 44%
Test 5 (50 ensembled networks) 19 44%
Test 6 (100 ensembled networks) 21 36%

Ensemble of networks (3 stages) Test 7 (5 ensembled networks) 45 62%
Test 8 (20 ensembled networks) 55 62%
Test 9 (50 ensembled networks) 85 60%
Test 10 (100 ensembled networks) 110 60%

Ensemble of networks (2 stages) Test 11 (100 ensembled networks) 5 89%
Test 12 (200 ensembled networks) 5 89%

LSTM Test 13 64 93%
Bi-LSTM Test 14 64 93%
GRU​ Test 15 64 93%
CNN-LSTM Test 16 - 92.5%
CNN-LSTM-Attention Test 17 - 93.75%
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can be seen that the model matches the TPs and TNs quite 
accurately.

Table 3 shows the classification statistics parameters of 
the proposed model derived from the results presented in the 
confusion matrices.

The high accuracy (0.9375) indicates that the model cor-
rectly classifies a large proportion of samples, while the 
precision (0.95) and specificity (0.989) demonstrate that it 
maintains low rates of false positives and false negatives, 
respectively. Although the recall value (0.76) shows that 
most positive cases are correctly identified, this lower recall 
also suggests that some instances of the target emotions may 

Fig. 10   Global accuracy of the proposed experiments

Fig. 11   Matrix confusion of the classification

Table 3   Classification 
performance indices with the 
proposed model

Metric Value

Accuracy 0.9375
Precision 0.95
Recall 0.76
F1-score 0.848
Specificity 0.989
CI (0.8927, 0.9823)
p-value ≈ 0
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have been missed. This may be attributable to overlapping 
physiological responses among different emotions and the 
inherent limitations of the low-cost sensor setup. Future 
refinements in sensor data acquisition and feature extrac-
tion are anticipated to improve recall further.

Moreover, while the overall F1 score (0.848) reflects 
a balanced performance, there is a possibility that class 
imbalance in the dataset has influenced this measure. It is 
acknowledged that certain emotions might be underrepre-
sented, potentially affecting the F1 score. To mitigate this 
issue, future work will explore strategies such as re-weight-
ing samples or employing oversampling techniques.

In addition to these performance metrics, statistical anal-
yses reinforce the robustness of the model’s performance. 
The 95% confidence interval for accuracy, calculated using 
a binomial approach, ranges approximately from 89.3 to 
98.2%, indicating that the true accuracy is likely within this 
high-performance region. Furthermore, a one-sided bino-
mial test yields a p-value on the order of 10−20, providing 
overwhelming evidence that the observed accuracy is not 
due to chance. Together, these findings confirm the reliabil-
ity of the classifier and underscore its potential for cost-
effective cognitive health monitoring applications.

Context vs. Other Studies

As can be seen in Table 4, the percentages of accuracy in 
classifying emotions are compared. The purpose of this 
comparison is to show the general context and to situate 
the accuracy achieved with our highly efficient model, as 
there are no similar projects using this sensor technology 
that achieve these success rates. Therefore, the accuracy rate 
and the type of sensors and methodology used are shown to 
take into account the cost/accuracy ratio.

To better contextualize the performance of our proposed 
emotion classification system, a comparative analysis of its 
cost-effectiveness relative to more advanced EEG-based 

systems was conducted. Although EEG systems can achieve 
marginally higher accuracy, they typically necessitate 
expensive equipment and complex configurations, thereby 
incurring significantly higher overall costs. In contrast, our 
method employs a compact set of low-cost, readily available 
biometric sensors, rendering it substantially more affordable.

For instance, while typical EEG systems may cost several 
times more than our sensor configuration [42], our approach 
achieves competitive accuracy (93.75%) at only a fraction 
of the cost. This results in a favorable price-performance 
ratio, measured as the success per unit cost. In addition, 
recent studies further corroborate the advantages of low-cost 
approaches in cognitive health monitoring and emphasize 
their significant impact [43].

Moreover, previous work such as that of Francese et al. 
[40] demonstrated a user-centric approach to emotion detec-
tion with low-cost sensors, achieving promising classifica-
tion performance on a relatively small dataset. However, our 
study attains a superior accuracy of 93.75% while incur-
ring a significantly lower cost and yielding a more favorable 
cost-performance ratio. This improvement can be primar-
ily attributed to the integration of advanced deep learning 
techniques—including an attention mechanism—which 
enhances the extraction of discriminative features from 
biometric signals. Collectively, these findings underscore 
the superiority of our approach for practical and cost-
effective emotion detection in cognitive health monitoring 
applications.

Nonetheless, several limitations remain to be addressed 
in future work, including the need to increase both the num-
ber of subjects and the diversity of databases, as well as 
to expand the range of emotions analyzed to gain a more 
comprehensive understanding of the system’s response. It 
is also important to note that this study is based on healthy 
subjects and focuses solely on the detection of fear and 
disgust. Future investigations will aim to compare these 
results with those obtained from subjects suffering from 

Table 4   Comparison of the model with other similar studies

Study name Emotions Sensors Accuracy (%)

Zielonka et al. [13] Anger, disgust, fear, happiness, sadness and neutral Voice 76%
Anvarjon et al. [14] Anger, happiness, sadness and neutral Voice 77.01–92.02%
Yadav et al. [15] Anger, disgust, fear, happiness, sadness, surprise and neutral Facial image 87.7–93%
Hassouneh et al. 16] Anger, disgust, fear, happiness, sadness, and surprise Facial image and EEG 87.25%
Iacoviello et al. [17] Anger, disgust, fear, and happiness EEG 90.2%
Yang et al. [18] Fear, happiness, sadness and neutral EEG 84.21%
Francese, R et al. [40] Anger, fear, contentment, and sadness Heart rate, movement, and audio 84.41–91.47%
Moon, E.et al. [41] Arousal, valence Hearth rate and speech 84.22%
This study Fear, disgust, and neutral Blood oxygenation, temperature, 

galvanic skin response, and 
airflow

93.75%
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neurodegenerative diseases, such as Alzheimer’s disease, to 
assess differences in emotional outputs.

Conclusions

This study presents an innovative emotion detection and 
classification system that uses a unique combination of low-
cost biometric sensors, deep learning, attentional layers, and 
LSTM algorithms to achieve exceptional accuracy (93.75%) 
while significantly reducing costs compared to traditional 
EEG-based approaches. These results represent a break-
through in accessible and accurate emotion classification 
with potential applications in cognitive health monitoring.

Novelty and Impact

This study represents a truly groundbreaking approach to 
emotion classification. The exceptional accuracy achieved 
using low-cost sensors outperforms many traditional facial 
image and EEG-based systems, highlighting the potential 
to revolutionize emotion recognition and related healthcare 
applications.

Cost‑effectiveness

The affordability of the system is a significant advantage. It 
addresses a critical need for cost-effective solutions in cogni-
tive health monitoring, making it accessible to a wider range 
of individuals and healthcare settings.

High Efficiency

The study’s high accuracy (93.75%), precision (0.95), recall 
(0.76), F1 score (0.848) and specificity (0.989) indicate 
excellent efficiency. The deep learning models, attention 
layers, and LSTM algorithms show optimal performance 
in extracting and classifying emotional markers from the 
sensor data.

Future Directions

On the one hand, larger scale deployment and further vali-
dation of the tool with different populations and age groups 
to ensure wider applicability. Secondly, to explore the clas-
sification of a wider range of emotions for more nuanced 
cognitive health applications.

This study sets a new benchmark in emotion classification 
by combining innovation, affordability, and excellence. It 
holds great promise for transforming cognitive health assess-
ment and intervention and makes a significant contribution 
to the field.
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