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A B S T R A C T

The subtropical gyres occupy about 70% of the ocean surface. While primary production (PP) within these
oligotrophic regions is relatively low, their extension makes their total contribution to ocean productivity sig-
nificant. Monitoring marine pelagic primary production across broad spatial scales, particularly across the
subtropical gyre regions, is challenging but essential to evaluate the oceanic carbon budget. PP in the ocean can
be derived from remote sensing however in situ depth-integrated PP (IPPis) measurements required for validation
are scarce from the subtropical gyres. In this study, we collected > 120 IPPis measurements from both northern
and southern subtropical gyres that we compared to commonly used primary productivity models (the Vertically
Generalized Production Model, VGPM and six variants; the Eppley-Square-Root model, ESQRT; the
Howard–Yoder–Ryan model, HYR; the model of MARRA, MARRA; and the Carbon-based Production Model,
CbPM) to predict remote PP (PPr) in the subtropical regions and explored possibilities for improving PP pre-
diction. Our results showed that satellite-derived PP (IPPsat) estimates obtained from the VGPM1, MARRA and
ESQRT provided closer values to the IPPis (i.e., the difference between the mean of the IPPsat and IPPis was closer
to 0; |Bias| ~ 0.09). Model performance varied due to differences in satellite predictions of in situ parameters
such as chlorophyll a (chl-a) concentration or the optimal assimilation efficiency of the productivity profile (PB

opt)
in the subtropical region. In general, model performance was better for areas showing higher IPPis, highlighting
the challenge of PP prediction in the most oligotrophic areas (i.e. PP < 300 mg C m−2 d−1). The use of in situ
chl-a data, and PB

opt as a function of sea surface temperature (SST) and the mixed layer depth (MLD) from gliders
and floats in PPr models would improve their IPP predictions considerably in oligotrophic oceanic regions such
as the subtropical gyres where MLD is relatively low (< 60 m) and cloudiness may bias satellite input data.

1. Introduction

Subtropical gyres are extensive regions that occupy about 70% of
the ocean surface. While primary production per unit of surface within
these regions is relatively low (e.g. Jones et al., 1996; Karl, 1999; Karl
et al., 2001), their immense size makes their total contribution to ocean
productivity significant. In these regions, phytoplankton growth rates

and productivity show large variability with minimal net changes in
biomass (Laws et al., 1987; Marañón et al., 2000, 2003). Monitoring
marine pelagic primary production across broad spatial scales, parti-
cularly across the subtropical gyre regions, is indeed essential to eval-
uate its role in the oceanic carbon budget and food webs (Volk and
Broecker, 1985; Platt and Sathyendranath, 1988; Longhurst et al., 1995;
Field et al., 1998; Duarte et al., 1999).
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Over the last two decades, significant efforts have been made to
derive models that estimate marine primary production from remote
sensing products (PPr, e.g. Platt and Sathyendranath, 1988; Lee et al.,
1996; Behrenfeld and Falkowski, 1997; Behrenfeld et al., 2005;
Westberry et al., 2008; Silsbe et al., 2016). PPr models are able to es-
timate the evolution of PP over different time scales (daily, monthly
and annually) covering almost all parts of the globe. PPr models are
mainly parameterized using remote sensing as input data and may
differ in their complexities when dealing with depth and irradiance
wavelength-dependent variability. However, the performance in re-
producing in situ depth-integrated PP (IPPis) vary across regions, so
evaluation of multiple models by comparing satellite depth-integrated
PP (IPPsat) derived from PPr models and IPPis across different regions is
important to guide model selection (e.g. Behrenfeld and Falkowski,
1997b; Campbell et al., 2002; Westberry et al., 2008; Friedrichs et al.,
2009).

Performance assessment of PPr models in the five subtropical gyre
regions of the ocean has been uneven (e.g. Campbell et al., 2002;
Westberry et al., 2008; Friedrichs et al., 2009), so that the evaluation of
their performance for these areas is still insufficient. Indeed, some
studies covered a broad but still limited spatial area (e.g. ~50 stations
between North Pacific and South Pacific subtropical gyres in Friedrichs
et al., 2009; ~30 stations between North Atlantic and South Atlantic
subtropical gyres in Tilstone et al., 2009). Other studies have analyzed
PPr model skills using long-term time-series data, however they only
included data from two stations located in subtropical gyre regions,
specifically in the North Pacific subtropical gyre (ALOHA station of
Hawaii Ocean Time series, HOT) and the North Atlantic subtropical
gyre (Bermuda Atlantic Time-series Study, BATS) (Westberry et al.,
2008; Saba et al., 2011; Ma et al., 2014). Therefore, the performance of
PPr models in the North and South Pacific subtropical gyre regions
remain insufficiently evaluated, whereas no study has been conducted
yet on the performance of PPr models in the Indian subtropical gyre
region.

Due to the significant contribution of subtropical gyres to total
oceanic primary production, it is essential to improve our knowledge on
the performance of PPr models in predicting PP in these regions. This
requires the comparison between IPPis and IPPsat data covering a
broader spatial scale across the subtropical gyres so far reported. Here,
we provide > 120 IPPis measurements derived from the standard 14C
method along the Malaspina Circumnavigation Expedition (MCE),
which circumnavigated the subtropical and tropical ocean between
2010 and 2011 (Duarte, 2015). It encompassed fourteen Longhurst
biogeochemical provinces (Longhurst, 1995), including four subtropical
gyre regions, and the poorly-sampled Indian subtropical gyre region.
The MCE lasted 7 months and was divided by 6 transects of which each
could be considered as an oceanic cruise on its own. These IPPis data
allowed to compare the performance of five commonly used remote PP
models and explored afterward possibilities for improving their per-
formances to support improved remote sensing assessment of PP in
subtropical gyres.

2. Methods

2.1. Study area

Seawater samples were collected during the Malaspina
Circumnavigation Expedition on board the R/V Hespérides from
December 2010 to July 2011 (Fig. 1). The MCE was divided in seven
transects during which IPPis was measured: 1) from Cádiz, Spain to Rio
de Janeiro, Brazil (Station 6–26) from December 2010 to January 2011;
2) from Rio de Janeiro to Cape Town, South Africa (Station 27–44) from
January 2011 to February 2011; 3) from Cape Town to Perth Australia
(Station 46–68) from February 2011 to March 2011; 4) from Perth to
Sydney, Australia (Station 69–76) in March 2011; 5) from Auckland,
New Zealand to Honolulu, Hawaii (Station 83–99) from April 2011 to

May 2011; 6) from Honolulu to Panama, Panama (Station 104–126)
from May 2011 to June 2011; and 7) from Cartagena de Indias, Co-
lombia to Cartagena, Spain (Station 127–147) from June 2011 to July
2011. Sampled stations were grouped into different provinces following
Longhurst classification (Longhurst, 1995): the North Atlantic gyre re-
gion (NAGR) comprises all sampling sites located between the North
Atlantic Subtropical and Tropical Gyral Provinces (NATR and NASE);
the South African Coastal region (SACR) comprises all the stations
found in the Benguela current (BENG) and the East African coastal
current (EAFR); the West Australian Current region (WACR) comprises
all stations located in the Western Australian and Indonesian coasts
(AUSW and SSTC, respectively).

We maintained the same provinces codes as Longhurst (1995) for
the stations located in the South Atlantic Gyral Province (SATL), in the
Indian South Subtropical Gyre Province (ISSG), in the South Pacific
Subtropical Gyre Province (SPSG), in the North Pacific Tropical Gyre
Province (NPTG) and in the North Pacific Equatorial Countercurrent
Province (PNEC).

2.2. In situ measurement of chlorophyll-a

Chlorophyll-a concentration was measured by High-Performance
Liquid Chromatography (HPLC) as described in Zapata et al. (2000)
with minor modifications (Latasa, unpublished). 2 L of seawater were
filtered onto 25 mm glass fiber filters (Whatman GF/F) and frozen at
−80 °C until analysis by HPLC. Pigments were extracted with 2.5 mL
acetone 90% containing trans-ß-apo-8′-carotenal as internal standard,
sonicated and stored at −20 °C for 24 h. A large volume (720–1400 μL)
of extract was injected onto an Agilent 1200 HPLC system and analyzed
following the procedure described by Latasa (2014). The analytical
precision of the method is better than 1% (Latasa, 2014).

2.3. In situ mixed layer, nitracline and euphotic depths

The mixed layer depth (MLD) was estimated from CTD data
(SBE911plus, Sea-Bird Electronics) using the threshold method with a
finite difference criterion, as the depth at which the potential density
changed by 0.125 kg m−3 relative to the one at a near-surface reference
level (usually 6 m), according to Monterey and Levitus (1997).

The nitracline was determined from nitrate plus nitrite concentra-
tion data, measured on a segmented flow Skalar auto-analyser by
standard methods (Grasshoff et al., 1999; Moreno-Ostos, 2012), as the
depth, from the surface, where the first sustained increase of the con-
centration gradient is observed. It is a region of approximately max-
imum and steady concentration gradient in the first 200 m of the ver-
tical profile, including 4–6 nitrate data points.

At each station, vertical profiles of underwater solar radiation were
measured at noon (between 11 am to 1 pm local time) using a PRR-800
Underwater Profiling Radiometer (Biospherical Instruments). The pro-
filing submarine radiometer measured underwater radiation in the ul-
traviolet and -visible bands. The euphotic zone depth (Zeu) was de-
termined as the depth at which the light intensity reached the 1% of its
intensity at the surface.

2.4. In situ measurement of primary production

Phytoplankton primary production was measured at 124 stations
with the 14C-uptake technique, following the procedures detailed in
Marañón et al. (2000). Seawater was sampled from five depths in the
euphotic zone corresponding to 100% (ca. 3 m depth), 50%, 20%, 7%
and 1% of incident Photosynthetically Active Radiation (PAR). For each
depth, four 72 mL polystyrene bottles (three clear bottles and one dark
bottle) were filled with unfiltered seawater, inoculated with 10–20 μCi
NaH14CO3 and incubated on-deck from dawn to dusk. Temperature and
irradiance in the incubators simulated the water temperature and the
incident irradiance at the corresponding depth of each sample by using
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a combination of neutral density and blue filters (Mist Blue, ref. 061,
Lee Filters®). After incubation, samples from three of the five depths
(100%, 20% and 1% PAR) were sequentially filtered through 20, 2 and
0.2 μm polycarbonate filters while the other depths (50% and 7% PAR)
were directly filtered by 0.2 μm. Immediately after filtering, filters were
then exposed to concentrated HCl fumes at least 12 h to remove the
non-fixed inorganic 14C. Filters were placed in scintillation vials to
which 5 mL of liquid scintillation cocktail was added. The radioactivity
on each filter (disintegrations per minute, DPM) was determined using
a Wallac scintillation counter. To compute the rate of photosynthetic
carbon fixation, the dark-bottle DPM was subtracted from the light-
bottle DPM values. A constant value of 24,720 μg L−1 (or
2060 μmol L−1) was assumed for the concentration of dissolved in-
organic carbon for surface waters in tropical ocean (Key et al., 2004). A
correction factor of 1.05 was applied to this constant value for dis-
crimination isotopic. Total primary production was calculated as the
sum of the primary production on each size class. For all triplicate
measurements of total primary production conducted during MCE
(n= 522), the mean coefficient of variation was 23%. In situ depth-
integrated primary production (IPPis, mg C m−2 d−1) was calculated by
the trapezoidal integration of measurements from the surface to 1%
PAR depth. The IPPis data set is available from Regaudie-de-Gioux
et al., 2019. The original IPPis measurements were reported as hourly
rates and then were converted to daily rates multiplying the hourly
rates by the corresponding day length at each sampled station. The
highest hourly chl-a-specific primary production (PB, mg C chl-
a−1 h−1) in the water column was defined as the observed in situ PB

opt

(Behrenfeld and Falkowski, 1997b) for each station in this study. The
variability in IPPis along MCE transects is described in Pinedo-González
et al. (2015).

2.5. Input data variables for IPPsat: satellite-derived and modelled variables

Ocean color models typically use Level-3, monthly or 8-day, sa-
tellite-derived input data. In this study, daily standard level 3 (i.e.
mapped processed to surface quantities) products of PAR, ocean color
index (OCI)-based chl-a, diffuse attenuation at 490 nm (Kd(490)), sea
surface temperature (SST) and particulate backscatter coefficient at
443 nm (bbp(443) from GSM model) were provided by the OceanColor
Web (https://oceancolor.gsfc.nasa.gov) and were calculated from the
Moderate Resolution Imaging Spectroradiometer aboard the Aqua
NASA spacecraft (MODISA). Spatial resolution of all products was
~9 km at the Equator. Additionally, the mixed layer depth (MLD) and

the nitracline depths (ZNO3) were modelled variables for IPPsat. The
daily product of MLD was provided by the Ocean Productivity Online
Data (https://orca.science.oregonstate.edu). ZNO3 were calculated from
monthly climatological nutrient fields reported in the World Ocean
Atlas 2013 (Garcia et al., 2014) at 1-degree resolution, and defined as
the first depth at which nitrate + nitrite exceeded 0.5 μM. All variables
were extracted from 1 pixel radius windows (i.e. 3 × 3-pixel box)
centered at the pixel nearest to the in situ sample and we calculated the
average of each window (Bailey and Werdell, 2006). Satellite variables
were excluded when > 70% were masked. We used this matchup cri-
teria to increase the number of matchups, particularly in subtropical
areas where cloudiness is important increasing satellite masked data.

2.6. Satellite algorithms

In the present study, we did not focus on the comparison of the
Primary Production Algorithm Round Robin (PPARR) as it has already
been thoroughly assessed (e.g. Campbell et al., 2002; Westberry et al.,
2008; Friedrichs et al., 2009). Instead, we used several well-known PPr

models (Table 1) that are commonly used to estimate satellite IPP
(IPPsat) and assessed their performance in the subtropical gyres.

First, we used the most widely utilized PPr model, the Vertically
Generalized Production Model (VGPM) based on chl-a (Behrenfeld and
Falkowski, 1997). The VGPM uses remote inputs of chl-a, SST and PAR.
Here we proposed several VGPM variants and alternative methods to
estimate PB

opt. The first VGPM variant (here called VGPM1) is the ori-
ginal VGPM as in Behrenfeld and Falkowski (1997) where the PB

opt was
obtained from a 7th-order polynomial SST regression (here called
PB

opt1). For the VGPM2 variant, PB
opt was estimated after Eppley (1972)

as implemented by Antoine and Morel (1996) as an exponential func-
tion of temperature (here called PB

opt2). In the VGPM3 variant, PB
opt was

estimated after Kameda and Ishizaka (2005) as inversely proportional
to phytoplankton size (here called PB

opt3). Additionally, we modified
these three VGPM variants with an alternative method to estimate Zeu,
originally estimated from chl-a concentration (Morel and Berthon,
1989). The three extra variants of the VGPM models cited above (called
hereafter, VGPM11, VGPM22 and VGPM33) included a modified Zeu

estimated from the diffuse attenuation coefficient of PAR (m−1) (fol-
lowing Mobley et al., 2004).

Additionally, we used the simplest PPr model, the Eppley-Square-
Root model (ESQRT; Eppley et al., 1985). The ESQRT model uses only
chl-a as remote inputs assuming that the standing stock is the sole de-
terminant of photosynthetic rate. It ignores any external forcing or

Fig. 1. Location of the sampled station
during the MCE and Longhurst biogeo-
chemical ocean provinces (Longhurst, 1998,
2006). The provinces where IPPis were
sampled were: (2) Australia-Indonesia
Coastal Province, AUSW; (3) Benguela Cur-
rent Coastal Province, BENG; (30) Car-
ibbean Province, CARB; (10) E. Africa
Coastal Province, EAFR; (33) Indian S.
Subtropical Gyre Province, ISSG; (45) N.
Atlantic Subtropical Gyral Province (East),
NASE; (34) N. Atlantic Tropical Gyral Pro-
vince, NATR; (36) N. Pacific Tropical Gyre
Province, NPTG; (37) Pacific Equatorial Di-
vergence Province, PEQD; (35) N. Pacific
Equatorial Countercurrent Province, PNEC;
(38) South Atlantic Gyral Province, SATL;
(51) S. Pacific Subtropical Gyre Province,
SPSG; (52) S. Subtropical Convergence Pro-
vince, SSTC; (40) Western Tropical Atlantic

Province, WTRA. Grey numbers represent the provinces referenced by Longhurst, 1998 and 2006. For a complete list of provinces, please to the Table S1 in Pinedo-
González et al. (2015). Blue numbers represent the station number during MCE and red solid lines represent the MCE transects. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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changes in physiological state. We also used the original Howard–Yo-
der–Ryan model (HYR; Howard et al., 1997) which for many years was
used as a standard MODIS algorithm. The maximum growth rate is
parameterized here as a function of SST according to Eppley (1972). PPr

is integrated here to the MLD rather than the euphotic depth. The HYR
model uses remote inputs as chl-a, SST, PAR and MLD. Furthermore, we
used the PPr model described by Marra et al. (2003) (MARRA) that is
based on chlorophyll-specific absorption parameterized by SST and
maximum quantum yield. The MARRA model uses chl-a, SST and PAR
as remote inputs. Finally, we used the Carbon-based Production Model
(CbPM; Westberry et al., 2008). The CbPM uses remote inputs as chl-a,
bbp(443), PAR, Kd(490), MLD and ZNO3. The CbPM utilizes bbp(443) to
derive phytoplankton carbon biomass.

2.7. Model validation

Performance of each PPr model was analyzed using the total root
mean square difference (RMSD; Campbell et al., 2002):

RMSD 1
N

(i)
i 1

N
2

1/2

=
= (1)

where Δ(i) = log10[IPPsat(i)] − log10[IPPis(i)] and N is the total number
of paired data. The model performance and predictive skills increase as
RMSD values become closer to 0. RMSD captures a model's ability to
represent both the mean and the variability of in situ data and thus, is
composed by the bias (i.e. the difference between the means, B) and the
unbiased RMSD (i.e. representing the difference of variability, uRMSD):

RMSD B uRMSD2 2 2= + (2)

B log (IPP ) log (IPP )10
sat

10
is= (3)

When B is negative or positive, model underestimates or over-
estimates IPPis, respectively. Model estimation is closer to IPPis when B
is closer to 0. The differences in the variability of IPPis and IPPsat are
smaller when uRMSD is closer to 0.

Target diagram (Jolliff et al., 2009) will be used to illustrate model
performances. This diagram allows visualizing bias, uRMSD, and total
RMSD for all models on a single plot. For that, these quantities are
normalized by the standard deviation of log10 IPPis (σd = 0.26):

B B
d= (4)

uRMSD sign( )uRMSD/m d d= (5)

where σm is the standard deviation of log10 IPPsat.
The target diagram provides information about whether the model

standard deviation is larger (uRMSD* > 0) or smaller (uRMSD* < 0)
than the in situ standard deviation and on the presence of positive

(B* > 0) or a negative (B* < 0) bias. The distance of each point from
the origin is the standard deviation normalized total RMSD, RMSD*.
Any points greater than RMSD* = 1 may be considered poor perfor-
mers.

The empirical cumulative distribution function (ECDF) illustrates
the distribution of the data among values and orders the data from the
smallest to the largest data.

2.8. Uncertainty analysis

Considering that ocean color models use satellite-derived input
variables, it is important to estimate how these data can affect their
derived IPPsat. For that, we compared each station in situ variables with
its respective satellite-derived variable when available: in situ chl-a,
SST, PB

opt, Zeu, MLD and nitracline depth with daily satellite chl-a, SST,
PB

opt, Zeu, MLD and nitracline depth data (for details see Section 2.5),
respectively.

The median value of the ratio satellite to in situ inputs points to the
overall bias. The semi-interquartile range (SIQR) provides insight on
the spreading data and is defined as followed:

Q QSIQR 3 1
2

= (6)

where Q1 is the 25th percentile and Q3 is the 75th percentile of each
series of satellite to in situ inputs ratio.

The median percent difference (MPD) was calculated to measure
how accurately the satellite inputs agree with in situ inputs. It is defined
as the median of the individual absolute percent differences (PD) as
followed:

PD X Y
Y

100 | |
i

i i

i
=

(7)

where Yi is the in situ inputs and Xi is the corresponding satellite-de-
rived inputs. Parameters of linear regression between in situ and sa-
tellite-derived inputs were also evaluated.

3. Results

3.1. In situ data

During the MCE, IPPis ranged from 42.4 mg C m−2 d−1 in the Indian
Ocean (station 54) to 877.6 mg C m−2 d−1 in the Pacific Ocean (station
102). The region with the highest mean IPPis was the PNEC with
434.6 mg C m−2 d−1 while the region with the lowest mean IPPis was
the ISSG with 125 mg C m−2 d−1 (Table 2). The region with the highest
variability of IPPis was SACR, while the region with the lowest varia-
bility of IPPis was NPTG (Table 2). The mean input variables ranged as
followed (Table 2): chl-a from 0.06 mg m−3 (SATL) to 0.17 mg m−3

Table 1
Model descriptions.

Model Remote variable input PB
opt⁎ Zeu⁎⁎ Reference

chl-a SST PAR MLD Kd(490) ZNO3 bbp(443)

VGPM1 X X X 1 1 Behrenfeld and Falkowski (1997)
VGPM11 X X X 1 2 Behrenfeld and Falkowski (1997)
VGPM2 X X X 2 1 Behrenfeld and Falkowski (1997)
VGPM22 X X X 2 2 Behrenfeld and Falkowski (1997)
VGPM3 X X X 3 1 Behrenfeld and Falkowski (1997)
VGPM33 X X X 3 2 Behrenfeld and Falkowski (1997)
ESQRT X Eppley et al. (1985)
HYR X X X X Howard et al. (1997)
MARRA X X X Marra et al. (2003)
CbPM X X X X X X X 1 Westberry et al. (2008)

⁎ 1) Behrenfeld and Falkowski (1997) 2) Antoine and Morel (1996); 3) Kameda and Ishizaka (2005).
⁎⁎ 1) Morel and Berthon (1989); 2) Mobley et al. (2004).
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(SACR and WACR, respectively); Zeu from 73 m (PNEC) to 139 m
(SATL); PB

opt from 2.01 mg C mg chl-a−1 d−1 (WACR) to 9.66 mg C mg
chl-a−1 d−1 (PNEC); SST from 19 °C (WACR) to 29 °C (both SPSG and
PNEC); MLD from 27 m (PNEC) to 75 m (NPTG); and nitracline depth
from 30 m (PNEC) to 147 m (SATL).

3.2. Comparison between in situ data and input data variables for IPPsat

Input data variables for IPPsat showed variable agreements with
their corresponding in situ observed variables. Satellite SST showed
very good agreement with in situ SST (R2 = 0.95, r= 0.98, MPD = 2%)
and presented the lowest spreading values (SIQR = 0.02) (Table 3). The
rest of the input data variables for IPPsat showed reasonable agreement
with their corresponding in situ variables with R2 ranging from 0.16 to
0.56, SIQR from 0.09 to 0.23 and MPD from 19% to 35% (Table 3). The
lowest overall bias of input data variables for IPPsat in comparison with
in situ inputs was observed for MLD (median MLD = 0.65) (Table 3).

3.3. Model phytoplankton physiology variable

The three PB
opt variables modelled from satellite-derived data (PB

opt1,
PB

opt2 and PB
opt3) presented weak agreements with observed PB

opt data
(R2 < 0.12) and showed the highest spreading values (SIQR = 0.57,
0.65 and 1.13, respectively). These PB

opt data showed the highest overall
bias in comparison with in situ inputs (median PBopt1 = 1.49, median
PBopt2 = 1.80 and median PBopt3 = 2.69).

While PB
opt1 and PB

opt2 were described as function of SST, PB
opt3 and in

situ PB
opt did not follow any correlation with SST (Fig. 2). PB

opt3 presented
a wider value range (from 5 to > 30 mg C mg chl-a−1 d−1) than in situ
PB

opt (from 0.14 to < 15 mg C mg Chl-a−1 d−1) between 21 and 28 °C.

3.4. Model performance across all regions

The estimation of model biases allowed observing that two models

underestimated IPPis (i.e. B < 0; HYR and MARRA models) while the
rest of the models overestimated IPPis (i.e. B > 0). Furthermore, IPPsat

estimated from VGPM1 and MARRA models provided the closest to
IPPis (B = 0.07 and B = −0.09, respectively; Table 4). RMSD showed
significant variability among the different models ranging from 0.28
(ESQRT) to 0.52 (VGPM33) (Table 4). On contrary, uRMSD did not
show significant variability among the different models ranging from
0.26 to 0.30 (Table 4). All models showed relatively poor agreement
with IPPis with R2 ranging from 0.18 to 0.45 (Table 4).

The target diagram (Fig. 3) illustrates overestimation of observed
productivity (B* > 0) for all models except for MARRA and HYR. All
models, except CbPM and MARRA models, underestimated the variance
of observed productivity (uRMSD* < 0) (Fig. 3).

Although the target diagram gave information about uRMSD for
each model, it does not allow assessing whether a given uRMSD results
from getting the correlation or the variability wrong. The Taylor dia-
gram gives additional information about the variance of IPPsat (the
distance from the origin is the standard deviation) and the correlation
between IPPsat and IPPis (the azimuth angle) (Fig. 4). Correlation
coefficients between modelled and observation estimates ranged be-
tween 0.42 and 0.67. Model standard deviations ranged from < 100 mg
C m−2 d−1 (HYR model) to > 300 mg C m−2 d−1 (CbPM) (Fig. 4). As
the target diagram showed that none of the present models estimated

Table 2
Means and standard deviations of in situ IPP, chl-a, Zeu, PB

opt, SST, MLD and nitracline depth for each regional group and for the whole MCE.

IPPis chl-a Zeu PB
opt SST MLD Nitracline

mg C m−2 d−1 mg m−3 m mg C mg chl-a−1 h−1 °C m m

NAGR 272.2 ( ± 102.9) 0.07 ( ± 0.06) 110 ( ± 20) 5.70 ( ± 2.52) 25.5 ( ± 2.5) 49 ( ± 16) 132 ( ± 43)
SATL 224.8 ( ± 62) 0.06 ( ± 0.02) 139 ( ± 15) 3.77 ( ± 1.20) 25.3 ( ± 2.2) 51 ( ± 14) 147 ( ± 37)
SACR 288.2 ( ± 232.9) 0.17 ( ± 0.18) 79 ( ± 20) 3.26 ( ± 2.32) 22.7 ( ± 2.4) 54 ( ± 11) 69 ( ± 26)
ISSG 125 ( ± 62) 0.06 ( ± 0.02) 124 ( ± 27) 2.82 ( ± 1.07) 23.9 ( ± 1.3) 50 ( ± 16) 130 ( ± 40)
WACR 156.5 ( ± 63.9) 0.17 ( ± 0.10) 119 ( ± 31) 2.01 ( ± 0.96) 19.1 ( ± 2.9) 58 ( ± 17) 91 ( ± 34)
SPSG 210.6 ( ± 120.8) 0.10 ( ± 0.04) 134 ( ± 27) 2.97 ( ± 1.63) 28.9 ( ± 1.1) 59 ( ± 8) 137 ( ± 23)
NPTG 183.2 ( ± 58.2) 0.08 ( ± 0.02) 115 ( ± 22) 2.97 ( ± 1.23) 24.2 ( ± 1.6) 75 ( ± 28) 128 ( ± 39)
PNEC 434.6 ( ± 193.5) 0.15 ( ± 0.05) 73 ( ± 21) 9.66 ( ± 3.58) 28.8 ( ± 0.6) 27 ( ± 12) 30 ( ± 17)
Total 244.8 ( ± 146.7) 0.11 ( ± 0.08) 113 ( ± 28) 4.20 ( ± 2.75) 25.4 ( ± 3.2) 54 ( ± 22) 114 ( ± 48)

Table 3
Uncertainty analysis on differences between in situ data and input data variables
for IPPsat with the statistics of linear regression (R2 and slope ± 95% CI; Fig.
S1), the Pearson correlation coefficient (r), the number of match-ups, the
median value of the ratio satellite to in situ data (Median), the semi-inter-
quartile range of satellite to in situ inputs ratio (SIQR) and the median percent
difference between satellite and in situ inputs data (MPD).

R2 Slope r N Median SIQR MPD

Chl-a 0.16 0.72 ± 0.18 0.39 93 0.89 0.23 29.87
SST 0.95 0.96 ± 0.02 0.98 121 0.98 0.02 2.25
Nitracline 0.53 0.76 ± 0.07 0.73 113 0.83 0.21 23.94
Zeu1 0.32 0.34 ± 0.05 0.56 81 0.81 0.09 19.49
Zeu2 0.23 0.56 ± 0.11 0.48 81 1.08 0.16 20.16
MLD 0.56 0.48 ± 0.04 0.75 107 0.65 0.12 35.03

Fig. 2. Representation of the three PB
opt algorithms used in this study and in situ

PB
opt in function of in situ SST.
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IPP more accurately than using the mean of the observed data (Fig. 3),
the Taylor diagram showed that VGPM1, VGPM3, VGPM11, VGPM33
and ESQRT were better at reproducing the magnitude of IPPis variance
(i.e. closer to the standard deviation of IPPis data) than the other models
(Fig. 4). Furthermore, the Taylor diagram showed that the models with
the highest correlations did not reproduce well the variability in IPPis

(VGPM2, VGPM22, MARRA; Fig. 4).
The empirical cumulative distribution function (ECDF) illustrates

the range of PP from observed data and from the different models
(Fig. 5). Here, we observed that MARRA, VGPM1 and ESQRT models
reproduced accurately the range of IPP from 300 to 400 mg C m−2 d−1.
Below 300–400 mg C m−2 d−1, MARRA model tended to underestimate
the range of IPP and VGPM1 and ESQRT models tended to overestimate
the range of IPP (Fig. 5).

3.5. Region-specific model performance

The average performance of the five models and VGPM variants
tested here varied across regions, with RMSD varying from 0.26 at SATL
to 0.50 at SACR (Fig. 6). The average model performance was sig-
nificantly lower at SATL (RMSD = 0.26) and PNEC (RMSD = 0.27)
than at ISSG (RMSD = 0.43), SACR (RMSD = 0.50) and WACR
(RMSD = 0.47) (t-test, P < 0.05). At SACR, the average model per-
formance was significantly higher than for the rest of the regions (t-test,
P < 0.05), except WACR (t-test, P > 0.05).

Considering individual model skill, we observed that some models
performed better than others in specific regions (Fig. 7). In four regions
(NAGR, SATL, NPTG, PNEC), the ESQRT model showed the lowest
RMSD and in the other four regions (ISSG, SPSG, SACR, WACR), the

Table 4
Number of match-ups, linear regression parameters (intercept, slope and R2; Fig. S2), RMSD, B and uRMSD for each participating model relative to IPPis.

Model N Intercept Slope R2 RMSD B uRMSD

VGPM1 97 143.79 ± 30.26 0.58 ± 0.11 0.22 0.31 0.07 0.30
VGPM2 97 51.70 ± 42.40 1.28 ± 0.15 0.42 0.31 0.16 0.26
VGPM3 90 269.61 ± 28.47 0.68 ± 0.10 0.31 0.40 0.30 0.27
VGPM11 97 255.35 ± 28.89 0.48 ± 0.10 0.18 0.36 0.21 0.29
VGPM22 97 178.59 ± 37.92 1.21 ± 0.14 0.45 0.40 0.30 0.26
VGPM33 90 457.10 ± 22.01 0.52 ± 0.08 0.31 0.52 0.44 0.28
ESQRT 97 169.36 ± 21.40 0.51 ± 0.08 0.32 0.28 0.11 0.26
HYR 85 38.38 ± 12.51 0.29 ± 0.04 0.34 0.43 −0.34 0.26
MARRA 97 f-47.72 ± 39.67 1.14 ± 0.14 0.40 0.30 −0.09 0.28
CbPM 78 204.22 ± 62.03 1.20 ± 0.22 0.27 0.48 0.28 0.38

Fig. 3. Target diagram displaying B* (Eq. (4)) and uRMSD* (Eq. (5)) for the 5 models and VGPM variants relative to the IPPis. The solid circle is the normalized
standard deviation of the IPPis.
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model that mainly showed the lowest RMSD was the MARRA model
(Fig. 7).

3.6. PP model's adjustments

We further explored each model performance by replacing the
variables derived by remotely sensing (i.e. chl-a, SST, Zeu, PB

opt, MLD,
ZNO3) for our in situ data. From the five models tested here, we observed
that when run with in situ values, model performance was improved
only for two models: VGPM (RMSD = 0.18 and B = 0.06) and MARRA
(B = −0.01) (Table 5). For the rest of PPr models, the average per-
formance did not show significant improvement (Table 5). Regionally,
the improvement was not significant for all models (data not shown
here). As explained previously, satellite-derived PB

opt presented the
weakest agreement with observed PB

opt data and might partly cause the
poor agreement between IPPsat from VGPM and IPPis. Hence, adjusting
parameterized PB

opt to match in situ PB
opt data improved VGPM perfor-

mance.
Although previous studies (e.g. Friedrichs et al., 2009; Milutinović

and Bertino, 2011; Jacox et al., 2013) tried to improve the PB
opt esti-

mate, our approach for improving the PB
opt estimate involved testing

first the possible correlations between in situ PB
opt and the other in situ

variables using a principal component analysis (PCA) and then, guided
from the PCA results, formulating PB

opt as a function of the variables
with the highest correlation with PB

opt. From PCA results (Fig. 8), we
observed that PB

opt had a strong positive correlation with SST and a
strong negative correlation with MLD. Then, using multiple least-square

Fig. 4. Taylor diagram of IPP. The black dot represents IPPis data. Blue dashed
lines represent arcs along the standard deviation axes and the black dashed line
represents the standard deviation of IPPis. Symbols falling close to the black
dashed line indicate the best models at reproducing the magnitude of IPPis

variance. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. Empirical cumulative distribution function of IPP for the seven models
and the observed data (black symbols).

Fig. 6. Average RMSD for all 5 models and VGPM variants at each region. The
error bars are 2× standard error.
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regression, we estimated in situ PB
opt as a function of in situ MLD and SST

(R2 = 0.26, P < 0.0001) through the fitted regression equation:

P 10opt
B (1.2264 log (SST) 0.5626 log (MLD) 0.22812)10 10= + (8)

Then we evaluated the VGPM performance (i.e. VGPM1) using this
modelled PB

opt (Eq. (8)). We observed that the VGPM had RMSD = 0.25
and B = −0.0008 (Table 5). We observed also that its normalized
standard deviation was lower than the normalized standard deviation

Fig. 7. Model RMSD for each model at each region. Dark grey bars indicate models with better performance.

Table 5
Pearson correlation coefficient (r), statistics of linear regression (R2), RMSD, B,
uRMSD and N values for the five PPr models tested here with in situ variables
and for VGPM1 (here called VGPM1′) and VGPM11 (here called VGPM11′)
using modelled PB

opt (Eq. (8)).

Model r R2 RMSD B uRMSD N

VGPMis 0.73 0.53 0.18 0.06 0.17 86
CbPMis 0.39 0.07 0.61 0.45 0.42 78
ESQRTis 0.51 0.26 0.28 0.15 0.24 120
HYRis 0.40 0.16 0.39 −0.28 0.27 110
MARRAis 0.60 0.36 0.28 −0.01 0.28 110
VGPM1′ 0.63 0.39 0.25 −0.0008 0.25 83
VGPM11′ 0.66 0.44 0.28 0.14 0.24 83

Fig. 8. Biplot of in situ parameters (SST, sea surface temperature; Chl, chl-a;
MLD, mixed layer depth; Zeu, Zeu; DCM, deep chlorophyll maximum; DL,
daylength; Nitra, ZNO3; Pbopt, PB

opt).
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of the IPPis, meaning that this model estimated IPP more accurately
than using the mean of the observed data (data not shown here).

4. Discussion

Here, we compared here about 100 IPPis with IPPsat values derived
from five of the most commonly used PPr models for the four sub-
tropical gyre regions sampled, including the Indian subtropical gyre
region. IPPis results presented here were consistent as the methodology
was coherent and consistent from the first to the last transect allowing
to dissipate any uncertainties about model prediction variations re-
sulting from the methodology. This comparison allowed us to estimate
model performances and explore pathways to improve them. From the
five models and variants tested here, we observed that most of them did
not derive a good representation of the IPPis variability. Only VGPM1,
MARRA and ESQRT models were better at estimating IPPis with IPPsat

closer to IPPis (|B| ~ 0.09) than for the other models (|B| ~ 0.29).
Although HYR model had been used for many years as a standard

MODIS algorithm, we observed that it showed low performance to
predict IPPis. The original HYR model is extended to MLD and in gen-
eral, MLD was less than Zeu in the studied regions (Table 2). Thus, we
estimated the performance of HYR model extended to Zeu (data not
shown here) and we observed that B and RMSD were lower for HYR
model extended to Zeu (using Zeu1, B = −0.09 and RMSD = 0.30; using
Zeu2, B = 0.04 and RMSD = 0.29) than for HYR model extended for
MLD. Hence, HYR models extended to Zeu derived IPPsat values closer to
IPPis than the original in subtropical gyre regions where MLD is shal-
lower. However, a Taylor diagram revealed that they were not better at
reproducing the magnitude of IPPis variance than the original HYR
model that (data not shown here), and that they had low correlation
with IPPis.

To understand the limitations of the models used here to estimate
IPPis accurately, we examined whether these limitations were caused by
the input data variables for IPPsat or by the model itself. Indeed, PPr

models strongly rely on chl-a and PB
opt and a weak agreement between

satellite-derived chl-a and PB
opt with in situ data may explain the poor

model performance. Although satellite-derived and modelled data in-
puts such as SST, MLD and ZNO3 had a relatively good agreement with
in situ data, chl-a and, especially PB

opt, had poor agreements with in situ
data (R2 = 0.16 and 0.01 < R2 < 0.11, SIQR = 0.23 and
0.57 < SIQR < 1.13, respectively; Table 3). When satellite-derived
and modelled data were substituted by in situ-derived data (when
available), we found that, over the best performing models, the VGPM
and MARRA models improved model-data linear regression statistics
(R2) by 68% and 10%. Total RMSD declined about the half for VGPM
and a large decline was observed in VGPM and MARRA biases (76% and
86% respectively; Table 5).

Several studies concluded PB
opt to be the IPP model input parameter

with the weakest agreement with in situ data (Behrenfeld and
Falkowski, 1997; Behrenfeld et al., 2002; Siegel et al., 2001;
Milutinović and Bertino, 2011). These studies suggested that PB

opt

cannot be derived adequately using only sea surface temperature (SST)
as input, considering that light and nutrient availability may have
analogous physiological effects on algal photosynthetic capacity and,
thus, on PB

opt. Milutinović and Bertino (2011) suggested that the success
of an SST-dependent PB

opt will be variable over time and location. After
our parameterization of PB

opt as a function of MLD and SST, we found
that using satellite-derived and modelled input data, VGPM had its
model-data linear regression statistics (R2) improved by 32%, its total
RMSD reduced by 31% and its bias reduced by 72% (Table 5). In this
study, about 80% of the dataset collected during the MCE was located
in subtropical regions where MLD is relatively shallow (< 60 m). We
believe that the parametrization of PB

opt from SST and MLD in oceanic

ecosystems where MLD is shallower (< 60 m) should improve the es-
timation of PB

opt for IPPsat and thus, improve PPr models. Indeed, when
modelled PB

opt (Eq. (8)) was substituted in the original VGPM1 model
here, its performance was improved by 100% (B < 0.0008, Table 5).
Our results are specific to a circumnavigation that lasted 7 months and
cruised all the subtropical oceans by 6 transects with consistent meth-
odology. Although we believe that our results present a good re-
presentation of subtropical gyres ecosystems, we are aware that further
sampling efforts are required to confirm the improvement of the
parametrization of PB

opt using SST and MLD where MLD < 60 m.
The use of in situ variables, especially chl-a, in PPr models improved

remote PP estimates and provided a pathway to improve their perfor-
mance. Obtaining in situ chl-a data across the oceans is now possible
through use of autonomous technologies such as gliders and profiling
floats. Part of the Argo International Program (www.argo.ucsd.edu),
Bio-Argo aims to contribute to the development of profiling float
equipped with bio-optical sensors to measure chl-a and backscattering.
Starting in 2011, Bio-Argo delivers a series of 5–6 profiling floats on a
yearly basis. Although the deployment of floats equipped with bio-op-
tical sensors did not achieve widespread coverage as yet, it is expected
that these will deliver a high quantity of long-range and months-long
deployments shortly.

The majority of MCE stations where IPPis was estimated en-
compassed subtropical gyre regions with low IPPis (i.e.> 70% of
IPPis < 300 mg C m−2 d−1). Model performances were generally
better for high values of IPP (above 500 mg C m−2 d−1); when model-
data misfit was in general lower (Fig. 4). This observation confirms the
challenge to predict IPPis in the ultra-oligotrophic regions encompassed
by the oligotrophic gyres. We believe that further efforts are required to
improve the performance of ocean color models such as VGPM to be
applied to highly oligotrophic regions such as subtropical gyres, where
IPP is relatively low (< 300 mg C m−2 d−1), the MLD is shallower and
cloudiness may bias satellite input data. Hence, efforts to improve the
algorithms and parameters used in PPr models (such as those provided
in this work) specific for the oligotrophic subtropical gyre regions are
essential to further understand the reasons for the poor predictions
made by the existing models. The development of improved and robust
satellite-based algorithms to predict oceanic primary production in
subtropical gyres requires additional efforts to obtain in situ estimates of
net primary production. This sampling effort is particularly necessary
for some of the subtropical gyre regions, like in the three gyres located
in the Southern Hemisphere (e.g. Marañón et al., 2000; Poultron et al.,
2006; Regaudie-de-Gioux and Duarte, 2013; this study). Because this
ocean biome comprises 70% of the ocean, improving PPr estimates
therein is an imperative to progress toward a global ocean observing
system.
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