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We develop the kinetic theory of the flux-carrying Brownian motion recently introduced in the
context of open quantum systems. This model constitutes an effective description of two-dimensional
dissipative particles violating both time-reversal and parity that is consistent with standard ther-
modynamics. By making use of an appropriate Breit-Wigner approximation, we derive the general
form of its quantum kinetic equation for weak system-environment coupling. This encompasses the
well-known Kramers equation of conventional Brownian motion as a particular instance. The influ-
ence of the underlying chiral symmetry is essentially twofold: the anomalous diffusive tensor picks
up antisymmtretic components, and the drift term has an additional contribution which plays the
role of an environmental torque acting upon the system particles. These yield an unconventional
fluid dynamics that is absent in the standard (two-dimensional) Brownian motion subject to an ex-
ternal magnetic field or an active torque. For instance, the quantum single-particle system displays
a dissipationless vortex flow in sharp contrast with ordinary diffusive fluids. We also provide pre-
liminary results concerning the relevant hydrodynamics quantities, including the fluid vorticity and
the vorticity flux, for the dilute scenario near thermal equilibrium. In particular, the flux-carrying
effects manifest as vorticity sources in the Kelvin’s circulation equation. Conversely, the energy
kinetic density remains unchanged and the usual Boyle’s law is recovered up to a reformulation of
the kinetic temperature.
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I. INTRODUCTION

The study of chiral fluids, understanding chirality in the sense of broken time reversal or broken parity symmetry
(or both), has drawn an incipient attention in several areas of physics as they host a rich variety of phenomena
[1–3], such as incompressibility [4], topological waves [5] or nondissipative viscosity [6] (coined odd viscosity). Notable
examples include the analysis of triangular anomalies in relativistic quantum field theory [7, 8], the chiral anomaly in
condensed matter physics [9], or the odd viscosity of active Brownian particles in nonequilibirum statistical physics
[10–14]. In the realm of two dimensional (2D) spatial systems special attention has been devoted to the quantum
Hall fluid (QHF) [15], which is a quantum gas of electrons moving in a plane traversed by an external magnetic field.
Importantly, the (Abelian) Chern-Simons (CS) theory has proved crucial in the understanding of the QHF [16], i.e.
the CS action turns to be an essential ingredient in an effective description [17]. Indeed, the CS theory has been an
active area of research over the last decades since it provides a field theoretic formulation for a vast range of physical
phenomena beyond fluid mechanics [18]. Broadly speaking, the successes of the latter substantially relies on the fact
that it encapsulates the notion of flux attachment responsible for the anyonic quasi-particle statistics [19]: that is,
the particles are bound to a pseudomagnetic flux tube enable to induce an Aharonov-Bohm (AB) phase that carries
out the statistics transmutation. Concretely, this concept permits to reinterpret the QHF as a 2D quantum gas of
electrons tied to an even number of flux quanta [20], termed composite particles. To controllably explore the basic
physics behind the QHF, efforts have been made to envisage experimental platforms implementing the flux attachment
idea. In particular, it was shown that identical impurities may behave as flux-tube-charged-particle composites owing
to their interaction with the surrounding 2D bosonic bath [21, 22]. Simultaneously, it was found that a CS gauge field
effectively emerges in a Bose-Einstein condensate coupled to a synthetic gauge field [23] (see also [24]).

Motivated by the relevance of the flux attachment notion in the treatment of 2D quantum many-particle systems,
the CS theory was recently applied to open quantum systems in [25]. More precisely, by just demanding space-time
locality as well as local U(1)-gauge invariance, the authors devised a rather fundamental microscopic description of the
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2D Brownian motion (dubbed flux-carrying Brownian motion) in the context of the nonrelativistic Maxwell-Chern-
Simons (MCS) electrodynamics [26]. This generalizes the conventional dissipative models [27–29] (e.g. the famous
Caldeira-Leggett heat bath [30, 31]) to incorporate the flux attachment concept and to account for chirality from
first principles (i.e. the microscopic constituents behave as ”chiral” particles). Remarkably enough, the flux-carrying
Brownian particle exhibits magneticlike properties beyond the celebrated Landau diamagnetism theory [32], so that
it may shed further light on the influence of chirality on the kinetics and hydrodynamics of 2D quantum fluids. Let
us stress that this novel microscopic description is significantly distinct from most previous treatments within open
quantum system theory to the best of our knowledge [27, 30], in particular, those related to the search for observable
signatures of the Berry curvature [33, 34] or spatial noncommutative effects [35–38].

A. Goals and methods

The main goal of our paper is to address the open quantum system dynamics of the N flux-carrying Brownian
particles endowed with harmonic interparticle interactions and confined by certain harmonic potential. To do so,
we consider, as usual, an initial tensor-product state between the particles and the MCS environment: the particle
system is assumed to be in an arbitrary state, whereas the environment is in a thermal equilibrium state at certain
temperature. Under this prescription, we derive both the quantum kinetic equation, also known as quantum master
equation, and the hydrodynamic conservation laws in the phase-space Wigner framework: the quantum system state
will be represented by the Wigner quasiprobability distribution function, which replaces the familiar distribution
function in the classical kinetic theory of gases [39]. This framework has been extensively used in the kinetic study
of the conventional Brownian motion in the realm of atomic physics, quantum optics [27, 40, 41], as well as quantum
field theory [42–44]. Our approach borrows from previous works [42–45] in the context of path integral formalism,
specifically we derive the quantum master equation by starting from the so-called nonequilibrium generating functional.
The reason to follow this route are twofold: first, it will provide us valuable intuition to understand the consequences
of the flux attachment upon the quantum kinetics and hydrodynamics, and second, the path integral formalism has
played a major role in the description of quantum Brownian systems [27, 28, 30, 31]. Thanks to the separability
property of the initial state, the nonequilibrium generating functional characteristic of the flux-carrying Brownian
particles can be readily obtained from the partition function provided in Ref.[32] after performing the Wick rotation
[27]. Once this is done, we then switch to the phase-space Wigner framework by following the prescription presented
in Refs.[41, 45, 46].

After the discussion of the general dissipative scenario, we focus the attention in the weak coupling regime, i.e.
when the coupling between the environment and the particle system is small relative to the strength of the harmonic
interaction (both the interparticle interaction and confining potential). Concretely, we carried out a Breit-Wigner
approximation that retrieves a Fokker-Plank-type equation for the Wigner function of the N flux-carrying particles.
This encompasses the conventional Brownian motion (in the Markovian regimen) as a particular instance. We further
obtain a mean-field kinetic equation by truncating the Bogolyubov-Born-Gree-Kirkwood-Yvon (BBGKY) hierarchy
[47], and finally derive the quantum balance equations in the low density limit, that is when the hydrodynamics
collision terms or collective effects can be neglected.

B. Brief summary of results

• We derive for first time the quantum kinetic equation of the N flux-carrying Brownian particles. By following a
perturbative approach of the flux-attachement effects, we show that the quantum kinetic equation simultaneously
contains an antysimmetric diffusive component and an environmental torque that closely resemblances the
Lorentz force appearing in classical Brownian systems in presence of a constant magnetic field [48–50], the
mutual advection of 2D point vortices [51] or the active torque included in the paradigmatic description of
chiral active fluids composed of dumbbells [10–12, 14]. Yet, our results are substantially distinct as the flux-
carrying Brownian particles exhibit vortex-like fluid dynamics under equilibrium conditions in contrast to the
vast majority of previous chiral systems [3, 10, 52]. Interestingly, we show that the single flux-carrying particle
displays a persistent vortex flow at thermal equilibrium in the quantum regime.

• We extensively examine the hydrodynamic conservation laws characteristic of the flux-carrying Brownian motion
in the dilute scenario (i.e. in the low density limit). For concreteness, we obtain the quantum balance equations
for the number density, the stream velocity, the kinetic energy density, fluid vorticity and the circulation flux.
We derive an extended Kelvin’s circulation equation where the flux attachment effects play a major role as
vorticity sources. Remarkably, we show that these are responsible for establishing a dissipationless chiral flow
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without the need of an external magnetic field [48, 49] or an intrinsic angular momentum [53]. The kinetic
energy density is, however, unaffected by the flux attachment effects and we get the usual balance equation from
the standard Brownian motion.

• The single-particle scenario is studied in detail. We show that the flux-carrying Brownian particle is subject to
an environmental flux-like noise which is responsible for the aforementioned antisymmetric diffusive coefficient.
Such flux noise is absent in previous treatments exploiting either an external/synthetic magnetic field [21, 22, 33,
34, 36, 38] or an intrinsic angular momentum [10–14]. Notably, we further show that the flow density contains
a vortex-like transport coefficient that has none counterpart on the Fick’s law of conventional diffusion [54]. We
numerically compute the latter for an initial Gaussian state and encounter a similar pattern to the Lorentz flux
found in the conventional Brownian motion in presence of an external magnetic field. Despite of this persistent
vorticity, the flux-carrying Brownian motion retrieves the familiar Boyle’s law up to a reformulation of the
so-called kinetic temperature [55].

• We conclude that the novel flux-attachment effects rely on an environmental AB phase factor that turns into
the aforementioned flux-like noise at the microscopic level. Concretely, we find out that the equilibrium features
of the flux-carrying Brownian fluid are granted by an extended fluctuation-dissipation relation between the
flux-noise and the environmental torque: intuitively, this implies that the strength of the injected energy in the
particle system is balanced by the quantum thermal fluctuations responsible for the equilibrium dynamics. We
show that such environmental AB phase at thermal equilibrium is completely wiped off in the high temperature
limit in agreement with quantum mechanics arguments, and thereby, we eventually recover the equilibrium
dynamics characteristic of the conventional Brownian motion in the classical regime. In particular, in the single
particle scenario we prove that the novel vortex flow cancels in the high temperature limit, as well as the fluid
vorticity and circulation flux.

C. Notation and organization

All the open system dynamics occurs in the x − y plane, with z denoting the unit vector perpendicular to the
plane of motion. The indices i, j, k, = 1, 2, ..., N label the particles, whereas the Greek indices are reserved for the
spatial components of either 2D vectors or 2× 2 tensors (e.g. α, λ, ... = 1, 2). Vectors and matrices shall be denoted
indifferently by bold letters, e.g. In shall represent the n × n identity matrix. The phase-space variables of the N -
particle system is denoted by means of a 4N -dimensional vector x = (q1, · · · , qN ,p1, · · · ,pN )T ∈ R4N , where qi ∈ R2

stems for the spatial displacement of the i-particle with respect to a central position q̄i, and pi ∈ R2 represents its
canonical conjugate momentum. The quantum operators are distinguished from the phase-space variables by a hat
symbol: for instance, the 2D position and momentum operator vectors of the i-particle are denoted by q̂i and p̂i,
respectively. Furthermore, f̌ and f̃ represent the real-time and imaginary-time Fourier transforms of certain function
f , respectively. We shall also use the notation ”flux” and ”Brow” to label the flux-attachment and Brownian effects,
respectively.

The text is intended to be accessible to readers from both condensed matter physics and quantum information
communities, which explains a degree of redundancy and the presence of material which may be skipped by experts.
Sec. II provides a quick introduction to the MCS microscopic description and an extensive comparison with previous
treatments based on extended Caldeira-Leggett models, active Brownian motion or 2D point vortices. Sec. III is
completely devoted to illustrate the essential results found in the single-particle scenario: explicit calculations of
the diffusive coefficients, equilibrium state and hydrodynamics quantities near thermal equilibrium are presented in
III A 1, III B and III B 1. The N -particle flux-carrying Brownian system is treated in full generality in Sec. IV, which
contains the technical and detailed derivation of the quantum kinetic equation by starting from the nonequilibrium
generating functional. Section IV A focus the attention on the weak system-environment coupling regime and the
Fokker-Planck-type equation is obtained. The hydrodynamics description of the flux-carrying Brownian motion is
addressed in Sec. IV B. Finally, we summarize and draw the main conclusions in Sec. V.

II. FLUX-CARRYING BROWNIAN PARTICLES

Before presenting our results, we briefly illustrate the microscopic model that characterizes the flux-carrying Brow-
nian particles and highlight the differences with previous treatments where the microscopic components are chiral
particles (e.g. active Brownian particles [11–14] or 2D point vortices [51]).

The open quantum system dynamics is captured by the recently introduced MCS description [25, 32], which
essentially distinguishes from the standard Brownian motion [27–29] in the fact that a dynamical pseudomagnetic
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flux tube is attached to each system particle. This must not be confused with the ordinary flux notion from the
standard Maxwell electrodynamics (e.g. due to external magnetic fields). To see how arise such flux attachment, it
is convenient to pay attention to the MCS electrodynamics. Let us consider a system composed of N charged point
particles minimally interacting with the MCS elctromagnetic field in the infinite x− y plane. The Lagrangian density
reads [16, 26]

LMCS =
1

2

(
E2 −B2

)
+
κ

2
εµνλAµ∂νAλ +A · J +A0ρ, (1)

with εµνλ being the completely antisymmetric tensor (i.e. ε012 = 1 and εij = ε0ij) and κ ∈ R being the so-called CS
constant. The first term in the righ-hand side of Eq. (1) corresponds to the usual Maxwell kinetic term, whilst the
second term represents the CS action. Here, B and E represents the magnetic and electric fields (i.e. B = εαβ∂αAβ
and Eα = −Ȧα − ∂αA0), whereas ρ and J are respectively the charge and current densities of the particle system.
From Eq.(1) follows an extended Gauss law [26], i.e.

∇ ·E − κB + ρ = 0, (2)

where explicitly appears the magnetic field. By appealing to the Stokes-Gauss theorem (and due to the electric field
decays asymptotically as the photons get massive) once we have integrated (2) over the infinite plane, we obtain the
pseudomagnetic flux associated to the particle system,

ΦCS =

∫
dxB(x) =

qN

κ
, (3)

where q is the fundamental charge of the system particles. Equation (3) reveals that each system particle formally
consists of a magneticlike flux along the z-axis and with strength proportional to q/κ [16, 26]. Notice that this is
exclusively due to the CS action introduced in (1), otherwise it completely disappears in the pure Maxwell electrody-
namics (i.e. when one takes κ→ 0 in Eq.(2)). According to basic electrodynamics, one may expect that the presence
of a magneticlike flux gives rise to a magnetiglike vector potential (for instance, static charges are able to generate
simultaneously electric and magneticlike fields in MCS electrodynamics [56]). Indeed, the authors in Ref.[32] show
that flux-carrying Brownian particles are subject to a dynamical pseudomagnetic field at the microscopic level, so
they can be though of as ”dressed” dissipative particles in much the same fashion as composite particles in condensed
matter physics. Here, it is important to emphasize that such pseudomagnetic field completely arises from the coupling
with the environment, rather than from an external source as occurs in the conventional Brownian motion in presence
of an auxiliary magnetic field.

The MCS description, which is the basis of the present work, is consistent with the (non-relativistic) MCS elec-
trodynamics in the long-wavelength (i.e. dipole approximation [57]) and low-energy regime (i.e. small displacement
approximation), where the MCS electromagnetic field plays the role of a heat bath [25]. This is further discussed in
in the following section.

A. Microscopic model

Our open quantum system consists of an array of N interacting particles of identical mass m which are constrained
to move in the x − y plane around equilibrium positions q̄i ∈ R2 by certain harmonic potential. The confining
harmonic potential as well as the harmonic interpaticle interaction is accounted by a 2N × 2N symmetric matrix U
in the phase space. The MCS electromagnetic field can be viewed as an ensemble of harmonic oscillators with masses
mk and excitation frequencies ωk with k ∈ 2π/L Z2 given by the dispersion relation,

ω2
k = c2|k|2 + κ2, (4)

where c is the speed of light (or the sound velocity of the MCS environment in a more general dissipative scenario),
and L is a characteristic length of the MCS environment. In its simplest version, it was shown in Ref.[25] that the
dissipative dynamics is captured by the following microscopic model expressed in terms of the Lagrangian (see App.A
for further details),

L̂ = L̂Sys + L̂MCS,I, (5)
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with

L̂Sys =

N∑
i=1

m

2

(
˙̂q2
i −

N∑
j=1

∑
α,λ=1,2

(Uren)ijαλq̂
α
i q̂

λ
j

)
, (6)

L̂MCS,I =
∑
k∈R2

mk
2

(
˙̂x2
k − 2

N∑
j=1

∑
α=1,2

gα(k, q̄j)

mk
˙̂xkq̂

α
j − ω2

k

x̂k − N∑
j=1

∑
α=1,2

lα(k, q̄j)

ωkmk
q̂αj

2)
, (7)

where x̂k represents the quantum position operator of the environmental k-mode, we have introduced the auxiliary
coupling coefficients (cf. Eqs. (A1) and (A2)) and (Uren)ijαλ stands for the elements of the 2N × 2N matrix encoding
the renormalized harmonic potential, i.e.

Ûren(q̂1, · · · , q̂N ) =
m

2

N∑
i,j=1

∑
α,λ=1,2

(
U ijαλ − φαλ(∆q̄ij)

)
q̂αi q̂

λ
j , (8)

where ∆q̄ij = q̄i− q̄j quantifies the average distance between the oscillators i and j, and U ijαλ is a shorthand notation
for the matrix elements of U . Aside the gapped spectrum (4), it follows from (8) that the CS action introduces a
potential renormalization as well, namely φαλ(∆q̄ij) (cf. Eq.(A3)). In the phase-space Wigner framework, the latter
is encoded by the 2N × 2N renomalized potential matrix, say Uren, with elements given by

(Uren)ijαλ = U ijαλ − φαλ(∆q̄ij). (9)

Importantly, the CS action is responsible for the second term in the right hand side of Eq.(7), which manifests the
underlying time-reversal symmetry breaking at the Lagrangian level. This represents a bilinear interaction term of type
velocity-position between the environmental and system particle degrees of freedom. To the best of our knowledge,
this term has none counterpart in previous microscopic dissipative descriptions, for instance, it is absent in the famous
Caldeira-Leggett model and recent extended treatments [34]. We will return to this point in the following section.

As stated in the introduction, our starting point is the partition function derived from (5) when the coupled
system-environment complex, composed of the 2D harmonic particles and the environmental MCS field, is in a

canonical equilibrium state at inverse β = 1/kBT (that is e−βĤSys−MCS up to normalization, with ĤSys−MCS being
the Hamiltonian obtained from (5) by the Legendre transform). This was computed in Ref.[32] and it permitted to
extensively analyse the free energy, internal energy, the entropy and the heat capacity of the flux-carrying Brownian
motion. Let us stress that the motivation here is substantially distinct from Ref.[32], since the present work is in
the line to study the open quantum dynamics when the coupled system-environment complex is initially in a tensor-
product state ρ̂0 ⊗ ρ̂β : the particle system is in an arbitrary state ρ̂0, while the environment is supposed to be in a

canonical equilibrium state ρ̂β characterized by the inverse temperature β (that is e−βĤMCS up to normalization, with

ĤMCS being the Hamiltonian obtained from (7) by the Legendre transform after ignoring the system-environment
coupling).

The partition function, which characterizes the quantum thermodynamic properties of the flux-carrying Brownian
particles, is better illustrated in terms of the imaginary-time path integral [32] (the interesting reader can find further
details in App A),

ZBrow-flux =

∮
Dq(·) exp

{
−
(
S

(E)
Brow[{q(·)}] + S

(E)
flux[{q(·)}]

)
/~
}
, (10)

with q(τ) =
∏N
i=1 qi(τ), and τ being the imaginary time [27]. The first term in the right-hand side of (10), denoted

by S
(E)
Brow, is the familiar effective action describing the conventional Brownian motion (cf. Eq.(A4)), while the second

term, denoted by S
(E)
flux, completely emerges from the flux attachment and, therefore, encapsulates the environmental

CS effects at the thermodynamic level. This can be compactly expressed as follows

S
(E)
flux[{q}] =

N∑
i,j=1

∑
α,λ=1,2

∫ ~β

0

dτ

∫ τ

0

dτ ′
(
− φαλ(∆q̄ij) δ(τ − τ ′)

+ Re Λ̌
‖
αλ(τ − τ ′, ∆q̄ij) + i Im Λ̌⊥αλ(τ − τ ′, ∆q̄ij)

)
qαi (τ)qλj (τ ′), (11)

where Λ̌|| and Λ̌⊥ are, respectively, the imaginary-time Fourier transforms of the longitudinal and transverse dy-
namical susceptibilities (cf. Eqs. (A8) and (A9)). It turns out that Λ̌|| is a real functional like the conventional
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dissipation kernel (which is given by Eq.(A6)). Since the real part of the effective action is related to relaxation [27],
the longitudinal dynamical susceptibility is not expected to enrich the open quantum system dynamics beyond the
standard Brownian motion. Indeed, in Sec.IV A we shall see for the weak system-environment coupling that the flux-
carrying effects stemming from Λ̌|| can be recast into the dissipation kernel, and thus, they just modify the friction
tensor. By contrast, the pure imaginary term Λ̌⊥ in (11) plays the role of a AB phase-like factor in the Boltzmann
weight, thereby it must represent a dissipationless environmental mechanism. For instance, Λ̌⊥ recalls the ordinary
Hall action of two-dimensional particles found in the dissipative Hofstadter model [58, 59] or the dissipationless Hall
term in the phonon effective action of a crystal hosting a gapped time-reversal symmetry-breaking electronic state
[60]. However, it is important to realize that the phase source here arises out from the dynamical pseudomagnetic field
mentioned in the previous section: that is, it is consequence of the environmental interaction with the dynamical gauge
field representing the MCS environment [32], rather than being generated by a synthetic magnetic or auxiliary gauge
field [61]. We also notice that (11) has none clear topological significance since the attached flux is not necessarily
quantized [26] (e.g. a proportionality to a topological winding number), though it has to do with special topology
of 2D systems [62]. By beginning from Eq.(10), we shall derive the quantum master and balance equations in Sec.
IV. We anticipate that the bipartite structure of the Euclidean action in terms of the standard Brownian and the
flux-carrying (11) actions is preserved along the kinetic and hydrodynamic equations for weak system-environment
coupling, so hereafter we will be able to clearly distinguishes the contribution due to the flux attachment.

As a final remark, we would like to emphasise that the model (5) eventually returns the relaxation of the particle
system into a thermal equilibrium state (with temperature set by the MCS environment) provided the CS coupling
constant in (1) remains small in comparison with the confining potential [25, 32] (e.g. for a harmonic particle of
width σ and frequency ωren it is found the subsidiary condition e2κ2/mσωren � 1). This will allow us in Sec. IV A to
perform a second-order perturbative analysis of the flux-attachment effects relying on an appropriate Breit-Wigner
approximation. In the opposite limit, when the pure CS action dominates over the Maxwell action in (1), there would
be no environmental dynamics supporting an irreversible transference of energy coming from the reduced system
because the CS action has a vanishing Hamiltonian [16]. In other words, the pure topological electrodynamics alone

is not consistent with a dissipative scenario [32]. From here one may conclude that the Brownian action S
(E)
Brow

(responsible for the dissipative dynamics) results from the Maxwell action in (1), whilst the flux-attachment action

S
(E)
flux completely relies on the CS action. From quantum mechanical arguments follows that Λ̌⊥ solely introduces pure

quantum effects in the equilibrium dynamics, and thus, its influence over the kinetics is expected to be completely
wiped out at thermal equilibrium in the classical regime [32]. In particular, we shall show for the single-particle
scenario in Sec. III A 1 that the usual Brownian kinetics [27–29] is eventually recovered in the high temperature limit.

B. Comparison with previous works based on extended Caldeira-Leggett models

The Lagragian (5) is a fundamental as well as simple dissipative microscopic description that contains the essential
ingredients demanded for a sensible 2D electrodynamic theory. We understand simplicity in the sense that the
environmental degrees of freedom can be analytically integrated out to obtain the open quantum system dynamics,
whereas its universality relies on the fact that the MCS electrodynamics is considered to be the most general (Abelian)
gauge theory [16, 26, 63]. The latter means that our microscopic description preserves space-time locality and local
U(1) gauge invariance. Equivalently, the Lagrangian (5) represents a minimal-coupling theory of the particle system
and the MCS electromagnetic field acting as a heat bath [25]. This feature is common to the famous Caldeira-
Leggett model [64, 65], also known as the independent harmonic oscillator model [64], which is the foundation of
the microscopic treatments of the conventional Brownian motion [28–30, 66, 67]. The latter is fully contained in
our microscopic description (5) as a particular instance [65]: the second term in Eq.(7) completely disappears by
disregarding the CS action, and thus, Eq.(5) returns the Lagrangian characteristic of the Caldeira-Leggett model
[27–30]. Indeed, we shall see that we recover the well-known results of the quantum kinetic theory of the standard
Brownian motion when the flux attachment is turned off (i.e. κ→ 0) [40, 41, 47, 54, 68–73].

The Lagrangian (5) also represents an alternative description to those treatments that go beyond the pure Caldeira-
Leggett model by taking account the Berry curvature of internal degrees of freedom [33, 34], or by endowing the system
particles with either spatial or momentum non-commutative relations [36, 38]. On one side, the authors from Ref.[34]
provide an extended version of the independent-harmonic oscillator model by introducing time-reversal-symmetry-
breaking interacting terms (e.g. x̂k ˙̂qαi ). Contrary to the model (5), this does not guarantee the gauge invariance
for a given choice of the system-environment coupling coefficient, and thus, this is not prevented from spurious
predictions coming from the specific choice of the coordinate-reference system. Similarly, the authors from Ref.[33]
emulate the flux attachment by engineering an static AB phase-like via exploiting the Berry curvature due to the spin
degrees of freedom. By contrast, the flux attachment encoded by Λ̌⊥ is dynamic, which implies that the geometric
phase effects studied here stem in the own open quantum dynamics. Recall that the present flux attachment arises
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from a pseudo-magnetic field that explicitly depends of the environmental degrees of freedom, which yields that Λ̌⊥

would be a function of the environmental spectral density (see Eq.(A9)). On the other side, the authors in Ref.[35–
38] introduce non-commutative relations between system particles degrees of freedom regardless of the dissipative
dynamics. Instead, the CS action give rises to an (equal-time) non-commutative relation between the environmental
degrees of freedom (see Eq.(13) in the following section) [25, 32]. Overall, the novel effects studied here ultimately
relies on the open quantum system dynamics itself, in contrast to the vast majority of preceding works based on the
Caldeira-Leggett model (included the Brownian motion subject to an external magnetic field). We also note that the
treatment in [21, 22] differs from the one provided by Eq.(5): the flux tube in the latter is self-induced by an emergent
(external) gauge field within the classical Fröhlich-Bogoliubov theory (which is a particular instance of the standard
Maxwell electrodynamics), rather than a pseduomagnetic field as occurs in the present description.

Finally, our work also bears important similarities with those treatments addressing particles with an intrinsic
angular momentum [11–14, 51, 53]. Since these systems play an important role in chiral fluids, we devote the
following section to elaborate on the similarities and differences with the flux-carrying Brownian particles.

C. Comparison with active Brownian particles and 2D point vortices

Let us carried out our discussion in terms of the generalized Langevin equation, as it is usually the starting point
in the vast majority of previous treatments of active Brownian particles [11–14, 51] or 2D vortices [51]. In the single
particle scenario (i.e. N = 1), we find out in Sec. IV A that this can be cast in the following form

m ¨̂q +mω2
renq̂ +mγBrow

˙̂q −mΩ2
fluxz × q̂ = ξ̂Brow + ξ̂flux, (12)

where ωren > 0, γBrow > 0 and ξ̂Brow (with null average value) denote, respectively, the usual renormalized potential
frequency, the (Stokes) friction coefficient, and the environmental fluctuating force that are common to the conven-

tional Brownian motion (e.g. ξ̂Brow corresponds to the Gaussian white noise in the classical regime). Additionally,
the open system dynamics of the flux-carrying Brownian particle involves a fourth term in the right hand side of
(12), which has none counterpart in the microscopic descriptions discussed in the previous section [34, 65]. This
must not be confused with the Lorentz force produced by an external magnetic field Bext (recall that the Lorentz

force is proportional to ˙̂q×Bext). Instead this represents an environmental torque of strength Ωflux encoding the CS
coupling (that is, the CS effects cancel by taking Ωflux → 0). Interestingly, this flux-attachment effect resemblances
the active torque of distinct chiral particle systems. The best known examples include the active Brownian particles
[11–14] or 2D point vortices [51]. Indeed, the Brownian terms of Eq.(12) together with such rotational force iden-
tically coincides with the generalized Langevin equation associated to the toy model recently studied in [11], which
consists of frictional granular particles driven by large active torques with equal strength. Similarly, the stochastic
equation of the Brownian motion of 2D point vortices in the overdamped limit, when the inertial term is negligible
(i.e. ¨̂q ≈ 0), takes a closed form to Eq.(94) with advective term given by mω2

ren [51]. For the N -particle dissipative
scenario, we shall see in Sec. IV A that this flux contribution to the generalized Langevin equation also gives rise to an
environmental-mediated interaction among the flux-carrying particles that recalls the long range interaction between
the flux lines in a vortex liquid [74] or the transverse interaction due to self-spinning in chiral active fluids [11, 12].
Hence, one may expect that the flux-carrying Brownian particle will exhibit an intricate vortex-like dynamics that is
completely beyond the conventional Brownian motion subject to an external magnetic field.

Beside the usual Brownian fluctuating force, the flux-carrying particle is subject to an additional environmental

force ξ̂flux in contrast to the aforementioned dissipative chiral systems. We shall see in Sec. IV that the ξ̂flux

completely stems from the transverse dynamical susceptibility Λ̌⊥, so it completely disappears when the CS action is

disregarded. It was shown in detail in [25] that ξ̂flux identifies with a non-conservative electric field which satisfies a
non-commutative relation, i.e. [

ξ̂αflux, ξ̂
β
flux

]
∝ −iκεαβ , (13)

recall that εαβ denotes the totally asymmetric tensor in 2D. In a nutshell, the fluctuations of the pseudomagnetic
field owing to the flux attachment induced such electric field according to Faraday’s law. It turns out that the mean

average value of ξ̂flux cancels (i.e.
〈
ξ̂flux

〉
ρ̂β

= 0), so that the mean average motion of the flux-carrying particle

may evoke the vortex dynamics of the active Brownian systems. However, while the interesting applications of the
vast majority of these systems imply highly nonequilibrium conditions [3, 10, 52], we shall show in Sec.III that the
flux-carrying Brownian motion is able to support vortex flow in thermal equilibrium conditions. As anticipated in
the preceding sections, provided the system satisfies appropriate conditions (these are fully discussed in Sec. IV),
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Eq.(12) becomes asymptotically stable, and thus, the flux-carrying Brownian particle behaves ergodic [27]. In our

model this occurs because there is a complex interplay between ξ̂flux and the environmental torque. Concretely, upon
considering that the MCS environment is in a canonical equilibrium state at inverse temperature β, we find out that
the flux fluctuating force satisfies an extended fluctuation-dissipation relation (see Eq.(90) for further details), i.e.〈{

ξ̂αflux(t), ξ̂βflux(t′)
}〉

= −εαβ2mβ−1Ω2
flux coth

(
π(t− t′)

~β

)
. (14)

The above relation exhibits the parity breaking and time-reversal asymmetry of the underlying microscopic model
(5): the time-reversal transformation (t, t′) → (−t,−t′) produces a change of sign since the hyperbolic cotangent is
an odd function, as well as a 2D parity transformation qx → −qx. Nonetheless, the fluctuation-dissipation relation
remains invariant under a simultaneous parity and time-reversal transformation. The Markovian limit is recovered in
time scales 1� (t− t′)/~β (such that coth(π(t− t′)/~β)→ sgn(t− t′)), Eq.(14) then simplifies to〈{

ξ̂αflux(t), ξ̂βflux(t′)
}〉

= −εαβ2mβ−1Ω2
fluxsgn(t− t′), (15)

with sgn(t) denoting the sign function. According to the linear response theory, from Eqs. (14) and (15) follows that

ξ̂flux is responsible for a transverse linear-response coefficient. This point will be cleared in the next section when we
deal with the single flux-carrying Brownian particle. Notably, the flux-carrying term in (15) closely resemblances the
ordinary Hall response of two-dimensional particles found in the dissipative Hofstadter model [58, 59]. Actually, the
Fourier transform of the statistical correlator (15) in the frequency domain identically coincides with the fluctuations
of an antisymmetric 1/f noise of power spectrum S(ω) = (iω)−1 (to see this one must realize in (66) that coth (~ωβ/2)
renders an inverse scaling for the power spectrum of the transversal correlations, while the spectral density contributes
with a constant value in the Breit-Wigner approximation). Recalling that the 1/f power law is characteristic of the

low-frequency magnetic flux noise in superconducting circuits [75, 76], Eq.(15) suggests that ξ̂flux can be thought of
as a flux-like noise as well.

In summary, the novel essential feature of the flux-carrying Brownian motion in the weak coupling regime is the
additional fluctuating force that satisfies both the extended fluctuation-dissipation relation (14) and the (equal-time)
non-commutative relation (13). This can be regarded as a flux-like noise primarily generated by the dynamical
flux attachment: that is, the erratic motion of the system particles gives rise to a fluctuating pseudomagnetic flux

which in turn induces an intricate electromotive force responsible for ξ̂flux. We shall see in the next section that
the latter gives rises to a nondifussive transport process perpendicular to density gradients. As a consequence, the
flux-carrying Brownian particles may display a vortex-like dynamics under thermal equilibrium conditions. This is in
stark contrast with the vast majority of previous parity-violating or time-reversal-violating descriptions involving an
intrinsic spinning force, such as active Brownian particles, where the detailed balance is broken due to the continuous
injection of energy coming from the active torque [10].

III. QUANTUM KINETIC THEORY OF THE SINGLE FLUX-CARRYING BROWNIAN PARTICLE

In order to illustrate the quantum kinetic theory that emerges from the microscopic description (5), it is instructive
to focus the attention on the single particle scenario (i.e. N = 1) when the system-environment interaction is weak in
comparison with the strength of both the confining potential or the harmonic interparticle interaction. This permit
to make a clear expositions of our main results and to compare them with the case of the 2D conventional Brownian
motion in presence of an external magnetic field [70] or an active torque [11, 12]. The detailed derivation of these
results (quantum master equations, quantum balance equations, etc) and the quantum kinetic theory of a general
dissipative scenario can be found in Sec. IV.

Let us consider the single flux-carrying Brownian particle with mass m, isotropic renormalized frequency ωren,
and isotropic friction coefficient γBrow. Its time evolution is governed by the extended Langevin equation (12). As
illustrated in the preceding section, the strength of the CS effects shall be characterized by Ωflux.

A. Quantum master equation in the weak coupling regime

In our treatment, the quantum state at certain time t is represented by a Wigner quasidistribution function, denoted
by W (x, t), where x = (q,p) ∈ R4 is a point of the particle phase space (notice that q = (qx, qy) and p = (px, py)). As
detailed in Sec. IV A, the quantum evolution of the single flux-carrying Brownian particle is dictated by an extended
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Kramers equation,(
∂

∂t
+
p

m
· ∂
∂q
−mω2

renq ·
∂

∂p

)
W (x, t) =

∂

∂p
·
(
γBrowp+ 2D

(qp)
Brow(t)

∂

∂q
+D

(pp)
Brow(t)

∂

∂p

)
W (x, t)

+
∂

∂p
·
(
mΩ2

flux ẑ × q − 2Dflux(t) z × ∂

∂q

)
W (x, t), (16)

where the symbols · and × represent the matrix product and the cross product, respectively. Equivalently, one may
verify that the quantum master equation (16) can be obtained from the extended Langevin equation (12) by following
the standard derivation of the Fokker-Planck equation for the conventional Brownian motion [40, 41].

While the first line in the right hand side of Eq.(16) is the familiar Fokker-Planck collision operator from the
conventional quantum Brownian motion [31, 40], the second line corresponds to a new collision operator that models
all the novel effects arising from the CS action. Aside the renormalized potential and friction terms, one may recognize

the time-dependent decoherence coefficient D
(pp)
Brow(t), and the system-to-bath diffusion coefficient (also known as the

anomalous diffusion coefficient) D
(qp)
Brow(t) characteristic of the standard Brownian motion [40, 41, 73, 77]. Additionally,

we may interpret the flux-carrying contribution as follows: the first term of the second line acts as a dissipationless
rotational drift of strength Ωflux, whereas Dflux(t) represents a transverse diffusive coefficient between perpendicular
spatial degrees of freedom. The latter has none counterpart in previous treatments in the context of quantum kinetic
theory [39, 68, 70], and its origin traces back to the flux-like noise anticipated in Sec. II C (see Eq. (14)): the linear
response theory tells us that Dflux(t) characterizes the linear reaction of the flux-carrying Brownian particles against

ξ̂flux. According to Eq. (13), this represents a transverse reaction that closely recalls the ordinary Hall response in
quantum Hall fluids [15].

Alternatively, we could rewrite Eq.(16) in terms of the 4 × 4 diffusive matrix, namely DBW (t), encoding all the
diffusion coefficients. The latter can split into separated Brownian and flux parts, i.e.

DBW (t) = DBrow(t) +Dflux(t), (17)

where DBrow(t) represents the customary diffusive matrix from the standard Brownian motion [40, 41], i.e.

DBrow(t) =


0 0 D

(qp)
Brow(t) 0

0 0 0 D
(qp)
Brow(t)

D
(qp)
Brow(t) 0 D

(pp)
Brow(t) 0

0 D
(qp)
Brow(t) 0 D

(pp)
Brow(t)

 (18)

whilst the flux contribution Dflux(t) is a symmetric anti-diagonal matrix, i.e.

Dflux(t) =

 0 0 0 Dflux(t)
0 0 −Dflux(t) 0
0 −Dflux(t) 0 0

Dflux(t) 0 0 0

 . (19)

As expected, the conventional Brownian part returns the standard result, where D
(i)
Brow(t) being the usual diffusion

coefficients from the conventional 1D Brownian motion [41, 78, 79]. Instead, the flux diffusive coefficient is given by
(at leading order in the CS effects)

Dflux(t) =
m~Ω2

flux

π

∫ ∞
0

(γBrowω)3F (t, ω)(
γ2

Browω
2 + (ω2 − ω2

ren)
2
)2 coth

(
~ωβ

2

)
dω, (20)

where we have included the auxiliary function F (t, ω), this involve a lengthy expression that is not crucial for the
following discussion. Clearly, from Eq. (19) follows that the anomalous diffusion matrix acquires antisymmetric
components as consequence of the flux-carrying effects, in contrast to the conventional Brownian situation (18). This
feature implies that the open quantum system dynamics can not be reduced to the problem of two independent 1D
Brownian particles. Instead of providing the full expression of the flux diffusive coefficient, the left panel of the Fig. 1
depicts this as a function of time for several values of the inverse temperature. One may observe that the flux diffusive
coefficient has an initial oscillatory transient behavior, which is a signature of the intrinsic non-Markovinity of the
quantum system dynamics at low temperatures [67]. After this transient behavior, the diffusive coefficient converges
to certain steady value in a time scale longer than the particle renormalized frequency, i.e. ωrent � 1 (see the inset
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FIG. 1. (color online). (Left) The flux diffusive coefficient as a function of time for fixed damping coefficient γBrow = 0.1ωren

and three different values of the inverse temperatures: the solid blue, dashed orange and dot-dashed red lines correspond to
β = 1000(~ωren)−1, β = (~ωren)−1, and β = 0.1(~ωren)−1, respectively. The inset shows the long time behavior. (Right) The
asymptotic flux diffusive coefficient as a function of the inverse temperature for distinct values of the damping coefficient: the
solid and dashed black lines correspond to γBrow = 0.1ωren, and γBrow = 0.2ωren, respectively. In both pictures, we have fixed
ωren = 10, and Ωflux = 0.01ωren.

in fig. 1). This is a trademark of the relaxation process, and the steady value characterizes the thermal equilibrium
state. By paying further attention, one may appreciate that this time scale is roughly determined by γ−1

Brow, which
is usually refereed to as the late-time regime [41]. We shall study the hydrodynamic properties in this regime, as it
permits to substantially simplify the quantum kinetic analysis: the coefficient of the extended Kramer equation (16)
becomes time independent.

Additionally, the time asymptotic behavior of the flux diffusive coefficient in terms of the inverse temperature is
depicted by the right panel of the figure (2) for distinct choices of the friction parameter. One may notice that it
slightly changes with the friction coefficient γBrow. Interestingly, the plot also reveals that Dflux(∞) grows linearly at
high temperatures, which is consistent with the fluctuation-dissipation relation (15). This behavior is also encountered
for the ordinary diffusion coefficients in the conventional Brownian motion [41, 79]. In the opposite temperature limit,
the flux-carrying diffusion coefficient saturates to a non-vanishing value barely determined by γBrow. This value can
be directly computed from the integral expressions (20) by using standard contour integration techniques after taking
the asymptotic time limit t → ∞ (see Eq. (B5) in App. B). Specifically, we obtain in the underdamped regime
(i.e.γBrow < 2ωren) and high temperature limit (i.e. ~ηBrowβ � 1)

Dflux(∞) =
Ω2

flux

βζ3
Brow

(
2
(
ω2

ren −
γ2

Brow

2

)
Re
( 1

ηBrow

)
+ γBrowζBrowIm

( 1

ηBrow

))
+O(β), (21)

and in the low temperature limit (i.e. ~ηBrowβ � 1)

Dflux(∞) = − ~Ω2
flux

2ζ3
Brow

[(
ω2

ren −
γ2

Brow

2

)(
1− i

π
log
(ηBrow

η†Brow

))
+
γBrowζ

2
Brow

2π

(
1 +

ηBrow

η†Brow

)]
+O(β−1), (22)

where

ηBrow =

√
ω2

ren −
1

2

(
γ2

Brow + i
√
γ2

Brow(4ω2
ren − γ2

Brow)
)
. (23)

From Eqs. (21) and (22) follows that the flux diffusion coefficient is mainly characterized by the strength Ω2
flux of

the flux-carrying effects, so that the flux diffusion coefficient does not depend of the sign of the CS constant (κ can
take either positive or negative continuous values in principle). Clearly, Eq. (16) retrieves the familiar Fokker-Planck
equation characteristic of the standard Brownian motion [40, 41] by disregarding the flux-attachment effects (i.e.
Ωflux → 0).
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FIG. 2. (color online). (Left) The flux thermal-covariance coefficient as a function of time for three different values of the
inverse temperature: the solid blue, dashed orange and dot-dashed red lines correspond to β = 1000(~ωren)−1, β = (~ωren)−1,
and β = 0.1(~ωren)−1, respectively. We have fixed ωren = 10, γ = 0.1ωren, and Ωflux = 0.01ωren. (Right) The flux thermal-
covariance coefficient in the asymptotic time as a function of the inverse temperature for three different values of the damping
coefficient: the solid, dashed and dot-dashed black lines correspond to γBrow = 0.1ωren, γBrow = 0.2ωren, and γBrow = 0.5ωren,
respectively. We have fixed ωren = 11, and Ωflux = 0.01ωren.

1. Quantum kinetics at late times

Let us draw some attention to the late-time dynamics. In Sec. IV A, we show that the flux-carrying Brownian
particle will relax to certain thermal equilibrium state provided the following condition is satisfied,

Ωflux

ωren
<
γBrow

ωren
� 1. (24)

The physical intuition behind the above expression is that the environmental spectrum will well accommodate the
renormalized frequency of the flux-carrying particle, making possible an irreversible energy transfer from it to the MCS
environment at least in a finite time sufficiently larger than the natural time scale of the system ω−1

ren. Alternatively,
Eq.(24) establishes formally the weak coupling regimen between the system and environment. Hereafter we work
within the parameter domain where (24) holds.

On the other side, since the quantum master equation (16) is quadratic in the position and momentum coordinates,
the asymptotic state W (x,∞) will be Gaussian, and its covariance matrix, denoted by V (∞), will eventually converge
to the so-called thermal covariance matrix, denoted by σ(t), once the stationary state has been reached [40, 41, 80],
i.e. V (t) → σ(∞) when t → ∞. In the weak coupling regime, a similar decomposition to the diffusive matrix (17)
can be made for the thermal covariance matrix, where the Brownian and flux parts can be clearly distinguished, i.e.
σ(t) = σBrow(t) + σflux(t) with

σBrow(t) =


σ

(qq)
Brow(t) 0 σ

(qp)
Brow(t) 0

0 σ
(qq)
Brow(t) 0 σ

(qp)
Brow(t)

σ
(qp)
Brow(t) 0 σ

(pp)
Brow(t) 0

0 σ
(qp)
Brow(t) 0 σ

(pp)
Brow(t)

 , (25)

where the matrix elements coincide with the well-known expressions from the damped harmonic oscillator [41, 79].
It is important to realize in (25) that the matrix elements related to transversal degrees of freedom are identical, so
(25) formally coincides with the thermal covariance matrix of two 1D Brownian particles. In contrast, we find that
the flux-carrying contribution takes the form of a symmetric anti-diagonal matrix, i.e.

σflux(t) =

 0 0 0 σflux(t)
0 0 −σflux(t) 0
0 −σflux(t) 0

σflux(t) 0 0 0

 . (26)
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with matrix coefficients given by

σflux(t) =
2m~Ω2

flux

π

∫ ∞
0

ω
((
ω2 − ω2

ren

)2 − γ2
Browω

2
)

(
γ2

Browω
2 + (ω2 − ω2

ren)
2
)2 f(t, ω) coth

(
~ωβ

2

)
dω, (27)

where the explicit expression of f(t, ω) is given by Eq. (B1). The left panel of figure 2 depicts σflux(t) as a function of
time for several values of the inverse temperature, whereas the right panel plots its time asymptotic value σflux(∞) as
a function of the inverse temperature for several values of the dissipative coefficent. Remarkably, one may appreciate
that the flux-carrying contribution to the thermal covariance matrix (28) eventually cancels in the high temperature
limit. This immediately implies that the influence of the flux-carrying effects is irrelevant in the classical equilibrium
state. This coincides with the result obtained from the standard Brownian motion under the influence of an static
Berry curvature in the momentum space [33]. To understand the latter we must recall that the transverse dynamical
susceptibility responsible for these flux-carrying effects constitutes a AB phase-like factor to the Boltzmann weight
of the partition function (10), so that we should recover the equilibrium state consistent with the classical statistical
mechanics. A quick glance also indicates that, after an initial oscillatory transient behavior, σflux(t) converges to
certain steady values in a time scale longer than the particle renormalized frequency, as similarly occurs for the
diffusion coefficient (20). Here, it is important to realize that σflux(∞) represents the cross correlation between the
quantum position and momentum operators in the equilibrium thermal state reached (i.e. σflux = 〈q̂xp̂y + p̂y q̂x〉ρ̂β =

−〈q̂yp̂x + p̂xq̂y〉ρ̂β ), so that it equivalently determines the asymptotic average value of the angular momentum of the

flux-carrying Brownian particle.
Additionally, the time asymptotic value of the flux thermal-covariance coefficient can be directly computed from

the integral expressions (27) by using standard contour integration techniques once we have taken the asymptotic
time limit t→∞ (see Eq. (B6) in App. B). Concretely, we obtain in the underdamped regime (i.e.γBrow < 2ω0) and
high temperature limit (i.e. ~ηBrowβ � 1)

σflux(∞) =
β~2Ω2

flux

24ζ3
Brow

(
γBrowRe ηBrow + 2ζBrowIm ηBrow

)
+O(β2), (28)

where ηBrow is given by Eq. (23). Similarly, in the low temperature limit (i.e. ~ηBrowβ � 1) and underdamped
regime, we arrive at

σflux(∞) = −~γBrowΩ
2
flux

4ζ3
Brow

[
1 +

i

2πγBrowη2
Brow

(
− γ3

Brow + 2γBrow(2ω2
ren − iγBrowζBrow),

+ 4iζBrow(ω2
ren + |ηBrow|2)− 2γBrow(η†Brow)2 log

(ηBrow

η†Brow

))]
+O(β−1), (29)

where ηBrow is given by Eq.(23). Eq. (28) proves that the flux-carrying effects completely disappear from the thermal
equilibrium state in the classical regime (i.e. β → 0), as expected from the above discussion. In the opposite
temperature limit (i.e. β → ∞), Eq. (29) revels that the flux-carrying coefficient saturates to a non-vanishing
value independent of the inverse temperature. As a result, the flux carrying Brownian particle is effectively endowed
with a finite angular momentum in the quantum regime. One may also notice that σflux(∞) smoothly changes
with the friction coefficient γBrow, which indicates that the flux-carrying effects are significantly robust to dissipative
mechanisms. This means that we must get a compromise between these dissipative and flux carrying effects in order
to observe a vortex flow of the flux-carrying Brownian particle. This shall be studied in further detail in the next
section.

B. Quantum balance equations

In this section we present the hydrodynamic conservation laws for the number density, the stream velocity, the
kinetic energy density, the fluid vorticity and the vorticity flux. In Sec IV B we treat the more general scenario of N
flux-carrying Brownian particles in the low density and weak coupling regime.

First, since the particle number is conserved, the familiar continuity equation is fully satisfied [54],

∂n

∂t
+∇ · J = 0. (30)
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where ∇ stands for the gradient operator in the variable q, and we have introduced the single particle number density,

n(q, t) =

∫
R2

W (q,p, t) d2p, (31)

as well as the single particle flow density [54, 55, 68],

J(q, t) = n(q, t)u(q, t) =
1

m

∫
R2

pW (q,p, t) d2p, (32)

with u being the stream velocity. One may verify that Eq.(30) is obtained as a consequence of the momentum integral
over the collision operators in (16) vanishes. By introducing the material or hydrodynamic derivative [81], i.e.

d

dt
=

∂

∂t
+ u · ∇,

the continuity equation (30) can be alternatively expressed as

dn

dt
+ n∇ · u = 0. (33)

Now we may take the partial derivative of the definition (32) and insert the extended Kramers equation (16). By
carrying out integration by parts over momentum space once we have replaced the hydrodynamic derivative, we arrive
to the stream velocity balance equation (the interesting reader is refereed to Sec. IV B for further details)

n
du

dt
+

1

m
∇ · T = −γBrow(nu) +Ω2

flux z × (nq), (34)

where the 2× 2 stress tensor T takes the form,

T = PK + PΦren
+ 2

(
D

(qp)
Brow(t) Dflux(t)

−Dflux(t) D
(qp)
Brow(t)

)
n (35)

Here, we have identified the kinetic contribution to the (local) stress tensor [13, 54, 55, 82]

PK(q, t) =
1

m

∫
R2

(p−mu) ◦ (p−mu)W (q,p, t) d2p, (36)

and due to the harmonic confining potential

PΦren(q, t) = ωrenn(q, t)I2, (37)

where I2 denotes the 2 × 2 identity matrix. Notice that the diagonal elements of (36) corresponds to the so-called
hydrostatic pressure, which shall be denoted by pK(q, t).

Equation (34) represents an extension of the damped Euler equation characteristic of the conventional Brownian
motion [54, 68]. As anticipated in Sec. II C, the flux-carrying Brownian particles are subject to a rotational drift
that closely resemblances the active stress tensor of a 2D fluid composed of chiral active dumbbells [12]. We remark
that the latter is absent in the stress tensor characteristic of the conventional Brownian motion subject to an external

magnetic field [55, 83, 84]. Additionally, the flux-like noise ξ̂flux is responsible for the antisymmetric components in
T , which constitutes a hallmark of the nondiffusive nature of the hydrodynamics. In time scales much larger than
the characteristic damping rate γ−1

Brow, namely the diffusive regime [54], we may ignore the time derivative of the
stream velocity field in Eq.(34) and obtain an approximated expression for the flow density. Besides the conventional
contribution satisfying the Fick’s law, we find that the flow density J in the diffusive regime contains an additional
vortex-like component (i.e. J = JBrow + Jflux) which reads

Jflux(q, t) =
Ω2

flux

γBrow
(z × q) n(q, t) +

2Dflux(t)

mγBrow

(
z ×∇n(q, t)

)
. (38)

While the first term in the right hand side of (38) plays an identical role to the active torque in chiral active fluids
composed of dumbbells [11–14], the second term indicates that Dflux characterizes a nondiffusion transport process
perpendicular to density gradients as anticipated above. Significantly, unlike Brownian particles subject to either
an external magnetic field [52] or an active torque [3, 10], Eq. (38) also reveals that the flux-carrying Brownian
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particle will display a persistent vortex flow regardless nonequilibrium conditions (such as temperature gradients or
an intrinsic source of energy). One can draw a parallel with the persistent charge current due to a AB phase in
mesoscopic systems at thermodynamic equilibrium [85]: they both prevail indefinitely in the low-temperature regime
and cannot be dissipated. This is consistent with our preliminary observation that the novel effects due to the flux
attachment are encoded in the transverse dynamical susceptibility which plays the role of an AB phase-like factor in
the partition function (10).

We shall now derive the balance equation for the kinetic energy density, denoted by eK(q1, t). This can be red off
from the expression for the kinetic energy [47, 54, 55], i.e.

EK(q, t) = n(q, t)eK(q, t) =
1

2m

∫
R2

(p−mu)2W (q,p, t) d2p. (39)

To set up the balance equation for (39) we repeat a similar procedure as followed for (34): that is, we replace the
time derivative of (39) by expression (16) and integrate over the momentum variables. After some transformation
and integration by parts, we get

∂(neK)

∂t
= −PK ◦

(
∇ · u

)
−∇ ·

(
JK − (neK)u

)
− 2γBrow(neK) +

2n

m
D

(pp)
Brow(t), (40)

where we have introduced the energy flow vector density or heat current [54, 55, 68],

JK(q, t) =
1

2m2

∫
R2

(p−mu)2(p−mu)W (q,p, t) d2p. (41)

Unlike previous parity-violating fluids [2, 3], one may appreciate that the kinetic energy density is apparently unaf-
fected by the flux-carrying effects, such that we recover the usual balance equation from the conventional Brownian
motion. Once again, this observation supports our argument that the flux-carrying contribution consists of a dissipa-
tionless environmental mechanism.

We conclude this section by paying attention on the fluid vorticity and the circulation flux. In our 2D system, we
understand the fluid vorticity as a pseudo-vector whose value is formally given by [18, 86],

$ =
[
∇× u

]
z

=
∂uy
∂qx
− ∂ux
∂qy

, (42)

where qx and qy stand for the components of the spatial coordinate. To derive the desired evolution equation for the
fluid vorticity, we take the curl of Eq.(34). By using the following vector identities holding in two dimensions [86]

(u · ∇)u = ∇(u2)/2− u× ($ẑ),

∇× (u× ($ẑ)) = −$(∇ · u)− (u · ∇)$, (43)

after some manipulation we obtain an extended Helmholtz equation for the fluid vorticity of the flux-carrying Brownian
particle,

∂$

∂t
= −(u · ∇)$ −$(∇ · u)− 1

mn2

[
∇ · (PK + PΦren

)×∇n
]
z
− γBrow$ + 2Ω2

flux

+
2Dflux(t)

mn

(
∇2n− 1

n
(∇n)2

)
(44)

Upon further inspection of (44), one may identify the first term in the right hand side as the hydrodynamic derivative,
whereas the second term can be replaced by making use of the continuity equation (33). This finally yields the desired
expression for the vorticity balance equation,

d$

dt
= 2Ω2

flux − γBrow$ +
$

n

dn

dt
− 1

mn2

[
∇ · (PK + PΦren

)×∇n
]
z

+
2Dflux(t)

mn

(
∇2n− 1

n
(∇n)2

)
. (45)

A quick glance to the first term in the right hand side of Eq. (45) reveals that the environmental torque plays the
role of a time-independent, uniform vorticity source. This is peculiar to the cyclotron frequency in Brownian particles
subject to an uniform external magnetic field [87]. The second term corresponds to the dissipation of the vorticity
and can be found in active Brownian descriptions [10]: it would be responsible for the equilibration of the system if
the active torque cancels. Now, it is readily to obtain the counterpart of Kelvin’s circulation equation from (34). To
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do so, it is convenient to consider the common definition of the vorticity flux ψ through a (simple connected) area in
terms of the associated line integral around a counter-clock-wise contour C (with unit radii) [18], i.e.

ψ =

∮
C

(∇×$) · dl. (46)

To derive the balance equation for ψ, we directly replace Eq. (45) in (46) and borrow the standard procedure from
hydrodynamic theory [86]. After some manipulation, we arrive at the following balance equation

dψ

dt
= 2πΩ2

flux − γBrowψ −
∮
C

dP

n
− 2Dflux(t)

m

∮
C

∇n
n
× dq. (47)

By regarding the vorticity flux as the fluid counterpart of the magnetic flux definition, Eq. (47) indicates that Ωflux

can be thought of as the magnitude of a coarse-grained pseudomagnetic flux traversing the plane. Conversely, Eq.
(47) reveals that the flux-carrying effects challenge with the dissipative effects to establish a non-vanishing vorticity.

Similarly to Eq. (38), in the diffusive regime Eq. (47) retrieves (when ψ̇ ≈ 0)

ψ =
2πΩ2

flux

γBrow
− 1

γBrow

∮
C

dP

n
− 2Dflux(t)

mγBrow

∮
C

∇n
n
× dq, (48)

which pinpoints that the environmental torque will enforce the flux-carrying Brownian particles to spin with an single
angular speed of strength Ωflux. As somehow expected, this resemblances the situation of a weakly interacting chiral
active gas [10], where the active torque is dominant over the the inter-rotor interaction. We shall show in the following
section that the second term in the right hand side of Eq. (48) cancels, and thereby, both the environmental torque
and the transverse diffusive coefficient are responsible for the novel dissipationless vortex flow.

1. Quantum hydrodynamics at late times

In this section we focus the attention on the hydrodynamics conservation laws at late times, that is, when the
flux-carrying particle is near thermal equilibrium (recall that this occurs when the diffusion coefficients have already
reached their steady values). Although this description does not correspond to the whole time evolution dictated
by the balance equations, it provides the same asymptotic hydrodynamics. More precisely, we concentrate on the
flux-carrying effects upon the flow density, stream velocity, fluid vorticity, energy density and pressure tensor in a
time scale γ−1

Brow � t. For sake of simplicity, we consider a radially symmetric initial Gaussian state with a simple
covariance matrix V (0) = I4 and zero mean values 〈x(0)〉ρ̂β = 0 (this corresponds to the extensively studied coherent

state in quantum optics). The reason to focus the attention on this kind of states is because it retrieves a purely
diffusive flow (which is parallel to the particle density gradient) in the case of the conventional Brownian motion
subject to an uniform magnetic field [48, 49]. Since the initial state is Gaussian, the time-evolved state W (x, t) will
remain Gaussian as well [40, 41, 80], i.e.

W (x, t) =
1

(2π)2
√

det (V (t))
e−

1
2x

T ·(V (t))−1·x, (49)

and one can make use of standard Green’s function methods to determine its covariance matrix V (t) (further details
can be found in App. B). Concretely, we find out

V (t) =


V

(qq)
Brow(t) 0 V

(qp)
Brow(t) Vflux(t)

0 V
(qq)
Brow(t) −Vflux(t) V

(qp)
Brow(t)

V
(qp)
Brow(t) −Vflux(t) V

(pp)
Brow(t) 0

Vflux(t) V
(qp)
Brow(t) 0 V

(pp)
Brow(t)

 , (50)

where the matrix entries are given by Eq. (B13) in App.B.
Let us start analysing the single-particle number density, this is obtained from definition (31) by substituting (49).

As the integrand over momentum space is Gaussian, the integral can be computed exactly, i.e.

n(q, t) =
e
− |q|2

2V
(qq)
Brow

(t)

2πV
(qq)
Brow(t)

, (51)
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FIG. 3. (color online). Depiction of the flow density J(q, t) on the low-temperature limit as a function of the position evaluated
in three different times: (left) t = 1.65ω−1

ren, (central) t = 115.5ω−1
ren, and (right) t = 335.5ω−1

ren. In all pictures, we have fixed
ωren = 11, γ = 0.1ωren, Ωflux = 0.01ωren and β = 100(~ωren)−1. Additionally, we have employed the asymotitc values of the
thermal covariance matrix given by equations from (B9) to (B11) with ωc = 10ωren.

which identically coincides with the well-known result for the standard Brownian motion for weak system-environment
coupling. That is, the chirality features introduced by the flux-carrying action (11) do not modify the initial symmetry
of the spatial distribution of the system. This situation contrast with the conventional Brownian motion in presence
of an external inhomogeneous magnetic field [49], where the particle density evolution may be substantially influenced
by nondifussive fluxes.

We now compute the flow density of the single particle after replacing the result (50) in Eq. (32). This yields

J(q, t) =
n(q, t)

mV
(qq)
Brow(t)

(
V

(qp)
Brow(t) q + Vflux(t) z × q

)
, (52)

where we can recognize the flux-carrying contribution with a vortex flow. Interestingly, the latter completely deter-
mines the asymptotic value of the flow density, i.e.

J(q,∞) =
n(q,∞)σflux(∞)

mσ
(qq)
Brow(∞)

z × q,

which manifests the formation of a non-vanishing vortex flow at thermal equilibrium. This result is also illustrated by
figure (3), which depicts the flow density at three different times in the low-temperature regime. By paying attention,
one may observe that, while the conventional Brownian diffusion dominates at the first stage of the quantum kinetics
(see the left panel), the vortex flow prevails in the asymptotic time (see the right panel). Moreover, the left panel of
figure (4) illustrates the x-component of the flow density, denoted by Jx(q, t), in the asymptotic time. One may clearly
appreciate that this component exponentially decreases when we move away from the center, and more importantly,
it is an odd function in qy, which reflects the vorticity of the flow. Notably, its behavior resemblances the Lamb-Oseen
profile found in dry chiral active fluids [10], as well as its 2D pattern recalls the nonequilibrium stationary Lorentz
flow for the Brownian motion in presence of external magnetic fields [48, 49]. Let us emphasize that the vortex
flux-carrying Brownian flow is consequences of purely quantum effects, and, though it is not show here, Jflux(q,∞)
vanishes in the high temperature limit in line with previous discussions (recall that σflux(∞) cancels in the classical
regime). Furthermore, we must stress out that the heat current (41) is null in the asymptotic time (i.e. JK(q,∞) = 0)
as expected.

From the definition (32) of the flux density, it is immediate to obtain the stream velocity field after replacing the
result (52), i.e.

u(q, t) =
1

mV
(qq)
Brow(t)

(
V

(qp)
Brow(t) q + Vflux(t) z × q

)
. (53)

Additionally, by substituting Eq.(53) in the definition (42), we directly arrive to the expression for the fluid vorticity,
that is

$(q, t) =
2Vflux(t)

mV
(qq)
Brow(t)

. (54)
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FIG. 4. (color online). (Left) The x-component of the flow density as a function of the y-coordinate at three fixed values of

the x-coordinate qx: the solid black, dashed blue and dot-dashed orange lines correspond to qx = 0, qx = 0.13(~/mωren)1/2,

and qx = 0.17(~/mωren)1/2 respectively. Similarly, the inset depicts the x-component of the flow density as a function of the
X-coordinate qx at three fixed values of qy: the solid black, dashed blue and dot-dashed orange lines correspond to qy = 0,
qy = 0.13(~/mωren)1/2, and qy = 0.17(~/mωren)1/2 respectively. (Right) Vorticity in the low-temperature regime as a function
of time. The inset illustrates the asymptotic evolution of the vorticity. We have fixed ωren = 11, γ = 0.1ωren, Ωflux = 0.01ωren

and β = 100(~ωren)−1. Additionally, we have employed the asymotitc values of the thermal covariance matrix given by equations
from (B9) to (B11) with ωc = 10ωren.

Equation (54) reveals that the flux-carrying effects give rise to an uniform vorticity flux in the plane. In other words,
the motion of the fluid in the bulk becomes rotational. This could be expected by paying attention to the vorticity
balance equation: since the flux diffusion coefficient goes quadratic with Ωflux (see Eq.(22)), the first term in Eq.(45)
representing the environmental torque will dominate in the weak coupling (i.e. Ωflux/γBrow < 1) and low temperature
regime. On the other side, it turns out that PK ∝ nI2, see Eq. (56) below, and thus, the forth term in the right hand
side of (45) cancels (or equivalently, the second term in the right hand side of Eq.(48) vanishes). As anticipated in the
previous section, the vortex flow thus arises out of the environmental torque combined with the transverse transport
process characterized by Dflux(∞). Figure (4) showcases its time evolution for a fixed flux-carrying strength. One
may see a highly oscillatory behavior with a varying amplitude upper bounded by Ωflux at the beginning, whereas the
fluid vorticity asymptotically decays to a constant non-zero value (see the inset) as a consequence of the underlying
dissipative effects. Collectively, Figs. (3) and (4) prove the generation of a disipationless vortex flow in the single-
particle scenario. This stands in contrast to the conventional Brownian motion in presence of an external magnetic
field, in which there is no fluxes at thermal equilibrium [48, 49, 52]. We notice that the small strength of both
the steady flow density and the fluid vorticity is in agreement with the subsidiary condition (93), which indirectly
establishes that the flux-carrying effects must remain perturbative in comparison with the dissipative effects (otherwise
the quantum kinetics (16) would deviate from the low-lying description provided by (5) [25, 32]).

Finally, we draw attention to the kinetic pressure and the kinetic energy density. In the single-particle scenario,
these quantities takes the form, respectively,

PK(q, t) =
V

(qq)
Brow(t)V

(pp)
Brow(t)−

(
Vflux(t)

)2 − (V (qp)
Brow(t)

)2
mV

(qq)
Brow(t)

n(q, t) I2, (55)

eK(q, t) =
1

mV
(qq)
Brow(t)

(
V

(qq)
Brow(t)V

(pp)
Brow(t)−

(
Vflux(t)

)2 − (V (qp)
Brow(t)

)2)
. (56)

To obtain the expression (55) and (56) we follow the same procedure as for Eq. (52): we carried out the Gaussian
integral over momentum space, once (53) is substituted in Eqs. (36) and (40). By comparing Eqs. (55) and (56), one
may realize that the hydrostatic pressure is given by pK(q, t) = eK(q, t)n(q, t). Interestingly, this coincides with the
Boyle’s law characteristic of 2D ideal gases [88], where eK(q, t)/kB is the so-called kinetic temperature [55]. In the
asymptotic time limit, the energy density takes the following form at leading order in the flux-attachment effects,

eK(q,∞) =
ωren~

2
coth

(
~ωrenβ/2

)
− 2ωrenσflux(∞)

coth
(
~ωrenβ/2

) , (57)

where the second term in the right hand side is just due to the flux-carrying contribution. Clearly, the latter eventually
cancels in the high temperature limit in agreement with Eq. (28). By replacing this result in the aforementioned
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Boyle’s law, one may see that the flux-carrying contribution manifests as a screen mechanism. This result can be
intuitively understood by recalling that the CS action produce repulsive effects that challenges with the confining
harmonic potential [25]: the flux-carrying particle is drifted away by the vortex flow, which may effectively reduce
the hydrostatic pressure. Furthermore, this result is consistent with the observation that (52) must represent a
dissipationless flow. Besides, the standard equipartition theorem for 2D Brownian particles (just having translational
degrees of freedom) is recovered in the high temperature limit since the kinetic temperature approaches to the
environmental temperature.

IV. GENERAL FORMALISM: THE NON-EQUILIBRIUM GENERATING FUNCTIONAL

In this section we illustrate the derivation of the quantum kinetic equation of the flux-carrying Brownian motion
in general dissipative scenarios. Our strategy basically consists of obtaining the real-time effective action S and the
associated nonequilibrium generating functional ZBrow-flux, and then, we perform the Wigner-Weyl transform in the
context of quantum path integrals to turn the problem to the aforementioned phase-space framework. Recall that we
consider the tensor-product state ρ̂0 ⊗ ρ̂β at initial time t0 between the particle system and the MCS environment

[27, 73], where ρ̂β is e−βĤMCS up to normalization and ĤMCS denotes the free Hamiltonian of the MCS environment.
Owing to the separated property of the initial joint state, the so-called Wick rotation [27] leads us from ZBrow-flux

to ZBrow-flux (i.e. we may pass from S(E) to −iS by doing τ → it). From this point we can follow the path integral
formalism introduced in Refs.[44–46] to recast the nonequilibrium generating functional in the following convenient
form (which we derive in App. A)

ZBrow-flux =

∫
R4N

d4Nx

∫
R4N

d4Nxi W0(xi, t0)

∫
DΞ P[Ξ] δ

[
ẋ(t) (58)

+Φ · x(t) +

∫ t

t0

ds Ψ(t− s) · x(s)−Ξ(t)
]
,

where W0 denotes the Wigner function of the N -particle flux-carrying Brownian system associated to ρ̂0. Here, δ[•]
stands for the functional Dirac delta function in the phase space, and Ξ represents a quantum Gaussian noise fully
characterized by the functional probability distribution [43, 46],

P[Ξ] = exp

(
− 1

2

∫ t

t0

ds

∫ t

t0

ds′ ΞT (s) ·N−1(s, s′) ·Ξ(s′)

)
, (59)

whereN corresponds to the 4N×4N noise matrix, i.e. N(t, t′) = 〈{Ξ(t),Ξ(t′)}〉ρ̂β with 〈{•}〉ρ̂β denoting the average

over the environmental canonical equilibrium state ρ̂β and {A,B} = AT ·B +BT ·A. Owing to the environmental
equilibrium conditions, it is found that both 〈{Ξ(t)}〉ρ̂β cancels and the two-point autocorrelation function of the

fluctuating force satisfies a fluctuation-dissipation relation [45, 89]. This can be compactly expressed in terms of a
2N real vector ξ(t) in the phase space as follows

〈{Ξ(t),Ξ(t′)}〉ρ̂β =

(
02N 02N

02N 〈{ξ(t), ξ(t′)}〉ρ̂β

)
, t′ ≤ t (60)

where its matrix elements are given by [25](
〈{ξ(t), ξ(t′)}〉ρ̂β

)
il

=
2~
π

∑
ν=1,2

∫ ∞
0

dω coth

(
~ωβ

2

)[
δαν

(
1−

(κ
ω

)2
)

cos(ω(t− t′))

+ εαν

(κ
ω

)
sin(ω(t− t′))

]
hνλ(ω,∆q̄ij), λ ≤ α, (61)

with l = 1
2 (i − (α + λ − 1)) + 1 (with i, l = 1, · · · , N and α, λ = 1, 2), and 02N denoting the 2N × 2N null matrix

(i.e. every element is equal to the zero). Notice that ξ is the phase-space counterpart of the quantum operator

ξ̂Brow + ξ̂flux appearing in the generalized Langevin equation (12) in the single particle scenario: indeed, we shall see
that Eq. (61) retrieves the extended fluctuation-dissipation relation (14) in the weak coupling regime. Additionally,
we have introduced the 2× 2 matrix which plays the role of an extended spectral density [66],

h(ω,∆q̄ij) =
~e2

8πL2

∑
k∈R2

ωkf
2(|k|) cos(k ·∆q̄ij)δ(ω − ωk)

(
P11(k) 1

1 P22(k)

)
, (62)
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where Pαλ is the transverse projective operator in momentum space [44], i.e. Pαλ(k) = (δαλ|k|2 − kαkλ)/|k|2. Here,
0 < e determines the coupling strength to the MCS environment, and f(|k|) ∈ R represents the usual spherically
symmetric smooth form factor from non-relativistic quantum electrodynamics [90], which prevents from the ultraviolet
catastrophe. It is important to note that the spectral density (62) explicitly depends on the distance ∆q̄ij between
system particles. In other words, our microscopic description (5) takes into account the non-local self-interactions
carried out by the common MCS environment. Concretely, it is known that an effective environmental-mediated
coupling is established when the average distance between the system particles is sufficiently small in comparison with
the time scale of the environmental memory effects [66]. The latter statement can be expressed as |∆q̄ij |ωc/c � 1,
with ωc being the largest environmental frequency that significantly contributes to the dissipative dynamics (e.g., ωc
correspond to the high-frequency cutoff in Drude-model of the spectral density [91]). In the opposite scenario (i.e.
|∆q̄ij |ωc/c� 1), the system particles can be considered in contact with independent environments.

Importantly, Eq.(58) encodes the open quantum system dynamics in a generating functional form [43]: the time
evolution is computed from a functional integral over all possible stochastic phase-space trajectories of the N -particle
system, where the functional Dirac delta function ensures that a non-vanishing weight is only attributed to those
trajectories obeying the quantum stochastic equations of motion. In other words, the nonequilibrium generating
functional (58) tells us that the open system dynamics of the flux-carrying Brownian particles is encoded by 2N
generalized Langevin equations that can be compactly expressed in a matricial form as follows: while Ξ(t) represents
the fluctuating force vector, the free evolution and the memory kernel are respectively given by the 4N ×4N matrices

Φ =

(
02N − I2Nm
Uren 02N

)
, (63)

and

Ψ(t− t′) =

(
02N 02N

Σ(t− t′) 02N

)
, (64)

Recall the matrix element of Uren are compactly given by (9), and we have further introduced the 2N×2N self-energy
matrix, (

Σ(t)
)
il

= Σαλ(t,∆q̄ij), λ ≤ α, (65)

where l = 1
2 (i− (α+ λ− 1)) + 1 (with i, l = 1, · · · , N and α, λ = 1, 2), and its coefficients are obtained from,

Σαλ(t,∆q̄ij) =− 2

mπ
Θ(t− |∆q̄ij |)

∑
ν=1,2

∫ ∞
0

dω

[
δαν

(
1−

(κ
ω

)2
)

sin(ωt)

− εαν
(κ
ω

)
cos(ωt)

]
hνλ(ω,∆q̄ij), (66)

with Θ(t) denoting the Heaviside step function. For future treatment, it is important to bear in mind that the diagonal
components in the position coordinates are obtained from a frequency-dependent sine Fourier transform, whereas its
off-diagonal elements are given by a frequency-dependent cosine Fourier transform. As expected, Eq. (66) exactly
returns the retarded friction kernel from standard Brownian motion [27] when flux-carrying effects are switched off
(i.e. κ→ 0).

The solution of the generalized Langevin equation encapsulated in the nonequilibrium generating functional (58)
reads [41]

x(t) = xh(t) +

∫ t

t0

ds KR(t− s) ·Ξ(s),

where xh corresponds to the homogeneous solution and KR is the 4N×4N retarded kinetic propagator matrix, which
can be compactly expressed as [41]

KR(t) =

(
mĠR(t) GR(t)

m2G̈R(t) mĠR(t)

)
, (67)

in terms of the 2N × 2N retarded Green’s function matrix GR(t). As the action functional governing the open
qunatum system dynamics takes a quadratic form in the system particle coordinates (see Eqs. (A4) and (11)), the
retarded Green’s function as well. The latter means that GR(t) can be computed by appealing to real-time Fourier
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transform methods [25], so it is convenient to express this in terms of its frequency-dependent Green’s function

G̃R(ω). The latter is obtained via analytic continuation from the imaginary-time Fourier transforms of the dynamical
susceptibilities (we referee the interesting reader to App. A). Concretely, we find

G̃−1
R (ω) = IN (−ω2 − i0+) +Uren + Σ̃(ω + i0+), (68)

where we have introduced the real-time Fourier transform of the self-energy (notice that the infinitesimal imaginary
part 0+ enforces causality),

Σ̃αλ(ω,∆q̄ij) = Γ̃αλ(ω,∆q̄ij) + Λ̃
||
αλ(ω,∆q̄ij) + Λ̃

||
αλ(ω,∆q̄ij), (69)

for i, j = 1, · · · , N and α, λ = 1, 2, where

Γ̃αλ(ω,∆q̄ij) = −δαλ
m

[
i sgn(ω)hλλ(|ω|, ∆q̄ij) + ω2H

(
sgn(ω′)

hλλ(|ω′|, ∆q̄ij))
|ω′|2

(ω)

)]
, (70)

Λ̃
||
αλ(ω,∆q̄ij) =

δαλ
m

(κ
ω

)2
[
i sgn(ω)hλλ(|ω|, ∆q̄ij) + ω2H

(
sgn(ω′)

hλλ(|ω′|, ∆q̄ij))
|ω′|2

(ω)

)]
, (71)

Λ̃⊥αλ(ω,∆q̄ij) = −iεαλ
( κ

mω

)[
i sgn(ω)hλλ(|ω|, ∆q̄ij) + ω2H

(
sgn(ω′)

hλλ(|ω′|, ∆q̄ij))
|ω′|2

(ω)

)]
. (72)

Expressions (71) and (72) are, respectively, the real-time Fourier transforms of the longitudinal and transverse dy-
namical susceptibilities introduced in Sec. II A, whereas Eq.(70) corresponds to the usual dissipation kernel of the
conventional Brownian motion [27, 28]. As similarly occurs in the Caldeira-Leggett model, we would like to emphasize
that the precise form of all the dynamical susceptibilities (70), (71) and (72) is fixed by the choice of the spectral
density (62).

Now, by starting from the generalized Langevin equation characterized by the free evolution matrix (63), the
memory kernel matrix (64) and the fluctuating force vector Ξ(t) satisfying the fluctuation-dissipation relation (60),
one may follow the procedure presented in [41] to obtain the desired expression for the quantum master equation in
the terms of the Wigner distribution function. Up to doing this, we find the quantum kinetic equation

∂W (x, t)

∂t
=

(( ∂

∂x

)T
·Φ · x+

( ∂

∂x

)T
· γ(t) · x+

( ∂

∂x

)T
·D(t) · ∂

∂x

)
W (x, t), (73)

where γ(t) and D(t) are the so-called pseudo-Hamiltonian and diffusion matrices, respectively. These are determined
from the retarded kinetic propagator (67) as follows [41],

γ(t) = −(K̇R(t) ·K−1
R (t) +Φ), (74)

D(t) =
1

2

(
{γ(t) +Φ,σ(t)}+ σ̇(t)

)
, (75)

where σ(t) stands for the thermal covariance matrix (as previously introduced), i.e.

σ(t) =

∫ t

t0

ds

∫ t

t0

ds′ KR(t− s) · 〈{Ξ(s),Ξ(s′)}〉ρ̂β ·K
T
R(t− s′). (76)

Despite the parity and time-reversal symmetry breaking, we note that σ(t) and D(t) are symmetric real matrices by
construction. For our later purposes, it is convenient to decompose the diffusion matrix in terms of the decoherence
and system-to-bath diffusion submatrices, that is

D(t) =

(
ON D(qp)(t)

D(qp)(t) D(pp)(t)

)
,

where D(qp)(t) and D(pp)(t) are 2N ×2N symmetric real matrices, and are referred to as the anomalous and decoher-
ence diffusion tensors, respectively. This block decomposition was employed employed in the analysis of the quantum
master equation (16) in the single particle scenario.

Equation (73) represents the so-called Kramers equation which takes account direct coupling between system
particles or environmental-mediated interactions, as well as non-Markovian effects. This will describe a great diversity
of many-body phenomena related to the (linear) Brownian motion consistent with the MCS electrodynamics in the
low-energy regime [25] (e.g. thermalization, diffusive as well as nondiffusive processes). To circumvent the immense
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complication of solving this general many-particle problem, in the following section we shall focus the attention in
the scenario in which the system and MCS environment are weakly coupled, such that we can employ a suitable
Breit-Wigner approximation of the retarded Green’s function (68). This will lead us to a Fokker-Planck type equation
for the flux-carrying Brownian particles that goes beyond the Markovian treatment widely used in quantum optics
and atomic physics [40, 67].

A. Weak system-environment coupling regime: the Breit-Wigner approximation

The retarded Green’s function (68) may display an intricate mixture of ”particle” poles and brunch cut singularities

in the complex frequency plane [92]. It is well known that G̃−1
R (ω) manifests sharply peakeds characterized by

quasiparticle poles in the weak system-environment coupling regime [44, 46, 93]. In the present work, we focus the
attention on the open system dynamics which is mainly dominated by such quasiparticle poles. This is amount to
approximate G̃R(ω) by a Breit-Wigner resonance shape [25, 44, 94], i.e. G̃R(ω) ≈ G̃BW (ω + i0+) with

G̃−1
BW (ω) = m

(
− ω2I2N − iωΓ +Ω◦2

)
◦Z−1, (77)

where we have introduced the friction tensor Γ and the quasi-particle resonance matrix Ω, i.e.

Γ = −Z ◦ Im Σ̃(Ω) ◦Ω◦−1, (78)

Ω◦2 =
1

m
Uren + Re Σ̃(Ω), (79)

with Z denoting a renormalization matrix, i.e.

Z◦−1 = I − ∂Re Σ̃(ω)

∂ω2

∣∣∣∣∣
Ω

. (80)

Here the symbol ◦ denotes the Haddamard product (e.g. a ◦ b = aijbij), and I is the 2N × 2N all-ones matrix (i.e.
every element is equal to the unit). In order to obtain the expressions (78) and (79) we approximate the real and
imaginary parts of the self-energy as usually in the context of the Breit-Wigner approximation, i.e.

Im Σ̃(ω) = Im Σ̃(Ω)−Z◦−1 ◦ Γ ◦ (ωI −Ω), (81)

Re Σ̃(ω) = Re Σ̃(Ω) +
(
I −Z◦−1

)
◦ (ω2I2N −Ω◦2), (82)

and thus, we substitute (81) and (82) in Eq.(68) to recast the retarded Green’s function in the form of Eq.(77), as
desired. The specific expressions of Γ and Ω are obtained after substituting the real and imaginary parts of the
frequency-dependent retarded self-energy in terms of the spectral density (62) by means of the Fourier transform of
the dynamical susceptibilities (c.f. Eqs. (70)-(72)). Upon doing this we get,

Ω2
il =

1

m
(Uren)il −

δαλΩ
2
il

m

(
1−

( κ

Ωil

)2
)
H
(

sgn(ω)

|ω|2
hαλ(|ω|, ∆q̄i 12 (i−(α+λ−1))+1)

)
(Ωil)

+ εαλ

( κ

mΩil

)
sgn(Ωil)hαλ(|Ωil|, ∆q̄i 12 (i−(α+λ−1))+1), λ ≤ α (83)

and

Γil =
Zil
mΩil

[
δαλ

(
1−

( κ

Ωil

)2
)

sgn(Ωil)hαλ(|Ωil|, ∆q̄i 12 (i−(α+λ−1))+1)

+ εαλκΩil H
(

sgn(ω)

|ω|2
hαλ(|ω|, ∆q̄i 12 (i−(α+λ−1))+1)

)
(Ωil)

]
, λ ≤ α (84)

where i, l = 1, · · · , N ; α, λ = 1, 2; and H stands for the usual Hilbert transform (see Eq.(A17) in App. A). We
would like to emphasize that the Breit-Wigner ansatz (77) relies on general physical grounds, since it is equivalent to
consider the most general time-local memory kernel (64) of the generalized Langevin equation which holds causality
(i.e. Ψ(t− t′) ∝ δ(t− t′)Ψ). Indeed, the form of the friction tensor (78) and the quasi-particle resonance matrix (79)
are very general as we have not made any specific choice of the spectral density.

Before going into the quantum master equation, it is useful to discuss in detail the algebraic properties of the
matrices Ω and Γ that are consistent with expressions (83) and (84). On one side, the first and second terms in (83)
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are akin to the usual situation appearing in the conventional Brownian motion (i.e. they represent both symmetric
and diagonal elements in the spatial coordinates), so they can be grouped together to retrieve a 2N ×2N real matrix,
say Ωren, which contains the usual quasi-particle frequencies [44, 46]. On the other side, the third term stems from
the transverse dynamical susceptibilities (72) (notice that it is linear in the CS coupling constant), which also suggests
the introduction of a 2N × 2N real matrix, namely Ω◦2flux. Hence, we can put the quasi-particle resonance matrix into
the convenient form

Ω◦2 = Ω◦2ren −Ω◦2flux. (85)

The Levi-Civita symbol appearing in the second term of the right hand side of Eq. (83) dictates that Ω◦2flux is skew-
symmetric under spatial coordinates transposition. Hence, the most general expression of Ω◦2flux that we can envisage
is

Ω◦2flux = Ω2
flux


A1 A2 A3 · · · AN

A2 A1 AN · · · A2N−2

...
...

...
AN A2N−2 A3N−5 · · · A1

 , (86)

where (Ai)αβ = εαβai ∈ R, and Ωflux retains the CS constant and, thereby, it denotes the strength of the flux-carrying
effects introduced in Sec. II C. It is important to realize in (86) that the off-diagonal submatrices accounts for the
environmental-mediated interactions among the flux-carrying Brownian particles.

In the same way, one may elucidate the general form of the friction matrix Γ . Similarly, the first term in Eq.(84)
corresponds to a diagonal contribution in the spatial coordinates that closely resemblances the standard Brownian
motion, so this could be identified with the usual dissipative matrix, denoted by ΓBrow. Accordingly, this is a 2N×2N
real matrix that can be expressed as,

ΓBrow =


Γ1 Γ2 Γ3 · · · ΓN
Γ2 Γ1 ΓN · · · Γ2N−2

...
...

...
ΓN Γ2N−2 Γ3N−5 · · · Γ1

 , (87)

with

Γi =

(
γ

(1)
i 0

0 γ
(2)
i

)
,

where γ
(x)
i and γ

(y)
i are interpreted as the common friction coefficients in each spatial coordinate. We note that

the friction matrix (87) contemplates the most general dissipative scenario within the Breit-Wigner approximation:
that is, it encompasses the anisotropic case as well as the common environment situation where an environmental-
mediated interaction arises among the flux-carrying Brownian particles due to interparticle friction. On the other
side, for visualizing the role played by the second term in (84), we resort to the expression (66) for the memory kernel.
By paying attention one may realize that such term is involved in the Fourier cosine transform in the frequency plane.
It turns out that the transformation rules imply that it must cancels in order the memory kernel (64) becomes time
local. Concretely, the Fourier cosine transform just retrieves the Dirac delta function given a frequency-independent
function, which has vanishing Hilbert transform [95]. To be self-consistent the Breit-Wigner approximation (77), we
are thus left with Γ = ΓBrow. In words, this means that Γ is identical to the friction matrix obtained from the
conventional Brownian motion up to an appropriate rescaling of the friction coefficients (notice from (84) that they
are effectively diminished by the longitudinal dynamical susceptibility). This is in agreement with the fact that the
flux-carrying influence coming from the transverse dynamical susceptibility represents a dissipationless environmental
mechanism. In particular, recalling that we treat the isotropic damped harmonic particle in Sec. III, the renormalized
potential, friction and flux-carrying matrices take the form

Ωren = ωren

(
1 0
0 1

)
, ΓBrow = γBrow

(
1 0
0 1

)
, and Ω◦2flux = Ω2

flux

(
0 1
−1 0

)
. (88)

By doing the frequency-dependent integration once inserted (85) and (87) in (66) according to expressions (83) and
(84), one finds that the memory kernel within the Breit-Wigner approximation becomes Ψ(t− t′) = δ(t− t′)(ΨBrow +
Ψflux), for t ≥ t′, with

ΨBrow =

(
02N 02N

02N ΓBrow

)
, Ψflux =

(
02N 02N

−m ◦Ω◦2flux 02N

)
, (89)
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where we have absorbed the renormalization term (80) into the renormalized mass matrix m (i.e. m = mZ−1).
Alternatively, this result can be derived by appealing to the fact that the second and third terms of the retarded
Green’s function (77) identify with the Fourier transform of the memory kernel. Hence, one may verify that the result
of the back Fourier transform to the real-time domain replaced in (64) yields (89). Similarly, by substituting the
coefficients of the friction matrix ΓBrow and the flux-carrying contribution Ωflux deduced from (86) and (87) in the
two-time correlation function (61), after doing the Fourier transform back to the real-time domain we arrive to the
fluctuation-dissipation relation (see App. A for further details)

〈{ΞBW (t),ΞBW (t′)}〉Wβ
=

2m

β

(
d

dt

(
coth

(
π(t− t′)

~β

))
ΥBrow + coth

(
π(t− t′)

~β

)
Υflux

)
, (90)

where we have introduced the noise matrices due to the Brownian and flux-carrying contributions,

ΥBrow =

(
02N 02N

02N ΓBrow

)
, Υflux =

(
02N 02N

02N −Ω◦2flux

)
. (91)

In the single particle scenario, one may verify that the second term of the right hand side of Eq. (90) retrieves
the extended fluctuation-dissipation relation (14) after replacing (88) in (91). Equation (90) manifests that the
open quantum system dynamics remains non-Markovian despite the Breit-Wigner approximation. This is one of
the important aspects that distinguishes the quantum kinetic approach presented here from the usual Boltzmann
equation [44]. As previously mentioned, the strict Markovian limit occurs for time scales 1 � (t− t′)/~β (such that
coth(π(t− t′)/~β)→ sgn(t− t′)). This directly yields,

〈{ΞBW (t),ΞBW (t′)}〉Wβ
=

2m

β

(
2δ(t− t′)ΥBrow + sgn(t− t′)Υflux

)
, (92)

which returns Eq.(15) in the single-particle scenario, as expected. By paying attention to (92), one may recognize
the first term in the right hand side with the usual Gaussian white noise characteristic of the conventional Brownian
motion, whilst the second term corresponds to the flux noise discussed in Sec. II C.

Finally, we conclude the analysis of the Breit-Wigner approximation (77) discussing its validity. Essentially, this
demands that the system-environment coupling is weak in comparison with the particle bare frequencies [93]. Fur-
thermore, as outlined in the Sec. II, we must also impose that the dissipative effects dominate the quantum kinetics
against the flux-carrying effects to be our treatment physically consistent with the microscopic description (5) [25].
These conditions can be compactly rephrased into the following inequality,

Ωflux ◦Ω◦−1
ren < ΓBrow ◦Ω◦−1

ren � 1. (93)

The subsidiary condition (24) for the single particle scenario is directly computed from (93) after substituting the
renormalized potential, friction, and flux-carrying matrices given by (88).

Returning the attention to the quantum master equation (73), we now focus on the generalized Langevin equation
associated to (58) within the discussed Breit-Wigner approximation. This is directly obtained from the approximated
Green’s function (77) after substituting the expressions (85), (86) and (87). By doing the Fourier transform back to
the real time domain, this returns

ẋ+
(
ΦBW + ΨBrow + Ψflux

)
· x = ΞBW , (94)

with the free evolution dynamics described by the 4N × 4N real matrix,

ΦBW =

(
02N − I2Nm

m ◦Ω◦2ren 02N

)
. (95)

In particular, one may verify that we get the approximated Langevin equation (12) discussed in Sec. II C from the
expression (94) after substituting the renormalized potential, friction and flux-carrying matrices (88) in (89) and
(95). Regarding the retarded kinetic propagator (67) within the Breit-Wigner approximation, this is replaced by
KR(t) ≈KBW (t), with

KBW (t) = Θ(t)e−(ΦBW+ΨBrow+Ψflux)t. (96)

Now, inserting (96) in Eq.(74) directly gives the pseudo-Hamiltonian matrix in the weak coupling regime, that is

γBW =

(
02N 02N

−m ◦Ω◦2flux ΓBrow

)
. (97)
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To derive the diffusion matrix (75) in the weak system-environment coupling regime, it is better to split up the kinetic
operator into the conventional Brownian part and the flux contribution as suggested by the effective action in (10).
Let us emphasize that this can be done by virtue of the subsidiary condition (93), which guarantees that Ωflux plays
the role of a perturbative parameter. More precisely, we may employ the Baker-Hausdorff formula to expand (96) in
Taylor series such that the retarded kinetic propagator can be cast in the following convenient form,

KBW (t) = KBrow(t)−KBrow(t) ·Lflux(t) +O
(
Ω4

flux

)
, (98)

where we identify the first term with the usual Brownian kinetic operator [80], i.e. KBrow(t) = Θ(t)e−(ΦBW+ΨBrow)t,
while the second term contains the flux contribution, i.e.

Lflux(t) =

∞∑
n=0

tn+1

(n+ 1)!

[
(ΦBW + ΨBrow)n,Ψflux

]
, (99)

where we have introduced the notation[
(ΦBW + ΨBrow)n,Ψflux

]
=
[
ΦBW + ΨBrow, · · ·

[
ΦBW + ΨBrow,

[
ΦBW + ΨBrow︸ ︷︷ ︸

n times

,Ψflux

]]
· · ·
]
.

Using the block decomposition of ΦBW , ΨBrow and Ψflux (recall they are composed of 2 × 2 submatrices which are
either diagonal or anti-diagonal), one may appreciate that Lflux(t) is a block matrix as well. More precisely, it can
be partitioned in terms of 2 × 2 submatrices which are skew-symmetric and anti-diagonal similarly to Ω◦2flux. The
latter is the hallmark of the time-reversal and parity symmetries breaking. This is immediate to see from the first
term in the right-hand side of (99), whereas we must appeal to the fact that the product between an anti-diagonal
matrix and a diagonal matrix is an anti-diagonal matrix. On the contrary, the conventional Brownian influence of
the retarded kinetic propagator KBrow(t) is a block matrix composed of 2× 2 symmetric, diagonal submatrices. By
substituting Eq. (98) and the approximated fluctuation-dissipation relation in the expression (76) for the thermal
covariance matrix, one finds that the latter can be rewritten as follows

σ(t) = σBrow(t) + σflux(t) +O(Ω4
flux), (100)

where we identify the standard Brownian part,

σBrow(t) =
2m~
π

∫ ∞
0

dω

∫ t

t0

ds

∫ t

t0

ds′ ω cos(ω(s− s′)) coth

(
~ωβ

2

)
(101)

×
(
KBrow(t− s) · ΥBrow ·KT

Brow(t− s′)
)
,

and the flux-carrying contribution,

σflux(t) =
2m~
π

∫ ∞
0

dω

∫ t

t0

ds

∫ t

t0

ds′ sin(ω(s− s′)) coth

(
~ωβ

2

)
(102)

×
(
KBrow(t− s) · Υflux ·KT

Brow(t− s′)

−
[
KBrow(t− s) · ΥBrow ·LTflux(t− s′) ·KT

Brow(t− s′)

+KBrow(t− s) ·Lflux(t− s) · ΥBrow ·KT
Brow(t− s′)

])
.

To obtain the above expressions we have employed the alternative fluctuation-dissipation relation (A19) deduced from
the Breit-Wigner approximation. Finally we insert the result (100) in Eq.(75) to obtain the desired expression for the
diffusion matrix, i.e.

DBW (t) = DBrow(t) +Dflux(t) +O
(
Ω4

flux

)
, (103)

where

DBrow(t) =
1

2

(
{ΦBW + ΨBrow,σBrow(t)}+ σ̇Brow(t)

)
, (104)

Dflux(t) =
1

2

(
{ΦBW + ΨBrow,σflux(t)}+ {Ψflux,σBrow(t)}+ σ̇flux(t)

)
. (105)
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Clearly, Eqs. (100) and (103) manifest that the flux-carrying effects represent a second-order correction to the thermal
covariance and diffusion matrix from the conventional Brownian contribution. At this point, it is also worthy to realize
that σflux(t) and Dflux(t) can be partitioned into 2×2 block matrices which are anti-diagonal. This result can be seen
by following an identical algebraic argument as to deduce the specific form of Lflux(t). In stark contrast, σBrow(t)
and DBrow(t) consist of 2 × 2 block diagonal submatrices. These algebraic properties of the thermal and diffusion
matrices will be exploited in Sec. IV B to obtain the explicit expressions of the hydrodynamic equations.

Now, by replacing the expressions (97) and (103) in Eq.(73), after some manipulation we end up with the general
expression of the quantum kinetic equation of the N flux-carrying Brownian particles for weak system-environment
coupling, (

∂

∂t
+
( ∂
∂q

)T
·
(
m−1 ◦ I2N

)
· p−

( ∂

∂p

)T
·
(
m ◦Ω◦2ren

)
· q
)
W (x, t) = CFP

[
W
]
, (106)

where CFP [W ] = CBrow

[
W
]

+ Cflux

[
W
]

is a Fokker-Planck-type collision operator where we can readily distinguish
the Brownian and flux-carrying contributions (up to higher-order terms in Ωflux), i.e.

CBrow

[
W
]

=
( ∂

∂p

)T
· ΓBrow ·

(
pW (x, t)

)
+

(
2
( ∂
∂q

)T
·D(qp)

Brow(t)

+
( ∂

∂p

)T
·D(pp)

Brow(t)

)
· ∂
∂p

W (x, t), (107)

and,

Cflux

[
W
]

= −
( ∂

∂p

)T
·
(
m ◦Ω◦2flux

)
·
(
qW (x, t)

)
+

(
2
( ∂
∂q

)T
·D(qp)

flux (t)

+
( ∂

∂p

)T
·D(pp)

flux (t)

)
· ∂
∂p

W (x, t). (108)

Equation (107) is the familiar collision operator which models the (two-dimensional) conventional Brownian motion
[31, 40, 41, 70, 96], while Eq.(108) represents a new collision operator that encodes all the flux-carrying corrections
(up to second order in Ωflux). As anticipated in Sec. II, the first-term in the right-hand side of (108) is characteristic
of an array of environmental rotational forces acting on the system particles, whereas the second term is responsible
for a cross-diffusion process between transversal spatial coordinates. In this line, expression (106) can be thought of
as the quantum Kramers equation (106) of a chiral fluid composed of an intricate ensemble of frictional, rotational
harmonic oscillators that effectively interacts through the environment via a rotational force and a pseudomagnetic
flux noise. Recall that this collision term has no counterpart on the Kramers equation of the either conventional
Brownian motion in presence of an external/synthetic magnetic field [35–38, 55, 83, 84] or active Brownian particles
endowed with an intrinsic torque [11–14].

A final remark in this section is about the subsidiary condition (93) guarantees that the real part of the self-energy
in Eq.(94) is positive definite, or equivalently,

ΦBW + ΨBrow + Ψflux > 0. (109)

This amounts to the retarded kinetic propagator will eventually decay and wipe out any dependence of the asymptotic
state with the initial conditions [25]. One may realize the latter from paying attention to Eq.(96) after substituting
(109). This immediately implies that the system is asymptotically stable, or in other words, the open quantum
system governed by Eq.(106) behaves ergodic [27]. Combined with the fluctuation dissipation relation (90), the
system composed of flux-carrying Brownian particles are thus enforced to reach certain thermal equilibrium state
characterized by the inverse temperature β of the MCS environment. Furthermore, the subsidiary condition ensures
that (106) preserves the complete positivity of the quantum state along the time evolution. As it is well-known from
open quantum system theory, we must impose the so-called positivity condition [70]. In our case, this condition requires
that the diffusion matrix is positive definite, i.e. the system-to-bath diffusion remains perturbative in comparison
with the decoherence coefficients. From a dimensional analysis of Eq.(105) (once substituted the expressions (86)
and (87)), one may realize that such condition is guaranteed as long as the conventional Brownian part preserves it,

since both |D(pp)
flux (t)| and |D(qp)

flux (t)| are second-order corrections to the standard Brownian motion. In what follows
we focus the attention to the parameter domain where the subsidiary condition (93) is always satisfied for the choices
of the bare confining potential U and the spectral density (62).
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B. Hydrodynamic description

In this section we complete the kinetic theory of the flux-carrying Brownian particles by addressing the time evolu-
tion of the number density, stream velocity, and energy flow in the usual low-density scenario in which environment-
mediated particle collisions are rare [51, 97]. We shall concentrate on a homogeneous and isotropic system, which
is composed of structurally identical particles. This permits us to follow the standard procedure to obtain a quan-
tum Boltzmann-type equation for flux-carrying Brownian particles by appealing to the molecular chaos assumption
[39, 47, 71]. We start by defining the reduced probability distributions [54],

W (n)(q1,p1︸ ︷︷ ︸
x1

, · · · , qn,pn, t) = V n
∫
R4(N−n)

W (x, t) d2qn+1d
2pn+1︸ ︷︷ ︸

d4xn+1

· · · d2qNd
2pN , (110)

where we have renormalized as W (n)(x1, · · · ,xn, t) = V nW (x). As we are dealing with structurally simple identical
particles, the Wigner function W (x, t) is symmetric upon switching any pair of particles [39, 71, 82, 98]. As a
consequence, W (n)(x1, · · · ,xn, t) is a symmetric function as well, since the functional form of (110) is independent
of any particular choice of n particles [99]. Starting from the N -particle Kramers equation (106), one can derive a
coupled hierarchy of equations for the set of n-particle Wigner functions, which yields the BBGKY hierarchy. This
is done by integrating over the coordinates of (N − n) remaining particles and dropping the integral terms evaluated
at infinity (this terms vanishes rapidly at the boundary of integration since W (x, t) is normalized by definition). In
particular, one arrives at the single-particle Wigner function(

∂

∂t
+

1

m
p1 ·

( ∂

∂q1

)T
−
( ∂

∂p1

)T
·
(
m ◦Ω◦2ren

)
11
· q1

)
W (1)(x1, t)

− N − 1

V

( ∂

∂p1

)T
·
(
m ◦Ω◦2ren

)
12
·
∫
R4

d4x2 q2W
(2)(x1,x2) = C

(1)
FP

[
W (1)

]
+ Chyd

flux

[
W (2)

]
+ Chyd

Brow

[
W (2)

]
, (111)

where
(
Ω◦2ren

)
12

denotes the 2 × 2 real symmetric submatrix of Ω◦2ren that represents the renormalized potential

interaction between the first and second particles, and C
(1)
FP

[
•
]

is the projection of the collision operator (106)
into the phase space supported by the first particle. The rest of collision operators in the right-hand side of (111)
describes collective effects or hydrodynamics collision events arising from environmental-mediated interactions among
flux-carrying Brownian particles, namely

Chyd
Brow

[
W (2)

]
=
N − 1

V

∫
R4

d4x2

[( ∂

∂p1

)T
·
(
ΓBrow

)
12
· p2

+

(
2
( ∂

∂q1

)T
·
(
D

(qp)
Brow(t)

)
12

+
( ∂

∂p1

)T
·
(
D

(pp)
Brow(t)

)
12

)
· ∂

∂p2

]
W (2)(x1,x2), (112)

and

Chyd
flux

[
W (2)

]
= −N − 1

V

∫
R4

d4x2

[( ∂

∂p1

)T
·
(
m ◦Ω◦2flux

)
12
· q2

−
(

2
( ∂

∂q1

)T
·
(
D

(qp)
flux (t)

)
12

+
( ∂

∂p1

)T
·
(
D

(pp)
flux (t)

)
12

)
· ∂

∂p2

]
W (2)(x1,x2), (113)

with
(
D

(pp)
Brow/flux(t)

)
12

and
(
D

(qp)
Brow/flux(t)

)
12

being the 4 × 4 diffusion submatrices supported by the phase spaces of

the first and second particle. Here we are interested in the hydrodynamics for a dilute flux-carrying Brownian gas, so
that we can follow the standard approach in kinetic gas theory to truncate the BBGKY hierarchy at the lowest level.
This consists of taking the thermodynamic limit in the sense of Bogoliubov [54, 72, 98]: N → ∞ for V → ∞, while
N/V = n0 remain constant. At leading order in the low density n0, we may implement the mean field approximation
which consists of factorizing the two-particle Wigner function as follows [51, 54, 97],

W (2)(x1,x2, t) ≈W (1)(x1, t)W
(1)(x2, t). (114)

Substituting the mean field ansatz (114) in the expressions (112) and (113) yields

C̃hyd
Brow

[
W (1)

]
≈ n0

[( ∂

∂p1

)T
·
(
ΓBrow

)
12
· ρp2(x1)

+

(
2
( ∂

∂q1

)T
·
(
D

(qp)
Brow(t)

)
12

+
( ∂

∂p1

)T
·
(
D

(pp)
Brow(t)

)
12

)
· ρ∂p2 (x1)

]
W (1)(x1), (115)
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and

C̃hyd
flux

[
W (1)

]
≈ −n0

[( ∂

∂p1

)T
·
(
m ◦Ω◦2flux

)
12
· ρq2(x1)

−
(

2
( ∂

∂q1

)T
·
(
D

(qp)
flux (t)

)
12

+
( ∂

∂p1

)T
·
(
D

(pp)
flux (t)

)
12

)
· ρ∂p2

(x1)

]
W (1)(x1), (116)

where all the hydrodynamics contribution is retained by the auxiliary functions

ρs =

∫
R4

s W (1)(x2, t) d
4x2, (117)

where s is shorthand for q2, p2, and ∂
∂p2

. We note that the low-density assumption must be taken with the under-

standing that, though the hydrodynamical effects may be eventually neglected, the interparticle potential interaction
still relevant. The latter is encoded by the mean-field harmonic potential, i.e.

Φren(q1) ≈ 1

2
q1 ·

(
m ◦Ω◦2ren

)
11
· q1 +

∫
R4

q1 ·
(
m ◦Ω◦2ren

)
11
· q2 W

(1)(x2, t) d
4x2. (118)

By replacing (115), (116) and (118) in (111), we are left with the following mean-field kinetic equation within the low
density and weak system-environment coupling limit,(

∂

∂t
+

1

m
p1 ·

( ∂

∂q1

)T
−
(∂Φren

∂q1

)T
· ∂

∂p1

)
W (1)(x1, t) = C

(1)
FP

[
W (1)

]
+ C̃hyd

flux

[
W (1)

]
+ C̃hyd

Brow

[
W (1)

]
+O(n2

0), (119)

where the first line looks similar to the extended Kramers equation (106) associated to the single particle. In order to
avoid a misleading interpretation, it is important to point out that the Brownian and flux-carrying contributions to
the diffusion matrix involved in the collision operators in (111) must be obtained from (104) and (105) (rather than
from the expressions (18) and (19) for the single particle scenario). Just when the effective environmental-mediated
interaction is significantly small (e.g. the system particles are sufficiently separated in comparison with the time scales

of the environmental memory effects), the hydrodynamics collision terms (112) and (113) are negligible and C
(1)
FP is

determined from (18) and (19).
Having settled an approximated evolution equation for the single-particle Wigner function, we shall go through

the steps of deriving the hydrodynamic conservation laws characteristic of the flux-carrying Brownian motion. More
precisely, we have applied the standard procedures from the hydrodynamics description [39, 54, 81] in the next section
to derive extended balance equations up to terms of order O(n0Ωflux2).

C. Quantum balance equation in the dilute scenario and weak coupling regime

In the N -particle scenario, we define the (single-particle) number density as usual [13, 82]

n(q1, t) =

∫
R2

W (1)(q1,p1, t) d
2p1, (120)

which satisfies the continuity equation (30) introduced in Sec. III B. Similarly, the hydrodynamic velocity or (single-
particle) flow density for the flux-carrying Brownian motion [54, 55, 68],

J(q1, t) = n(q1, t)u(q1, t) =
1

m1

∫
R2

p1W
(1)(q1,p1, t) d

2p1, (121)

with u being the stream velocity and m1 = (m)11. By introducing the material or hydrodynamic derivative [81], i.e.

d

dt
=

∂

∂t
+ u · ∂

∂q1
,

the continuity equation (30) can be alternatively expressed as

dn

dt
+ n

∂

∂q1
· u = 0. (122)
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Notice that the number and flow densities (120) and (121) identically coincides with the previous (31) and (32)
definitions after replacing W →W (1).

We now take the partial derivative of the definition (121) by replacing the mean-field Kramers equation (119). By
carrying out integration by parts over momentum space, we arrive to the following expression

∂(nu)

∂t
+

1

m1

( ∂

∂q1

)T
·
(
PK +m1nuu

)
= − 1

m1

( ∂

∂q1

)T
· PΦren

− 1

m1

(
m ◦ ΓBrow

)
11
· (nu)

− n0

m1

(
m ◦ ΓBrow

)
12
· δJ +

1

m1

(
m ◦Ω◦2flux

)
11
· (nq1) +

n0

m1

(
m ◦Ω◦2flux

)
12
· δnq2

− 2

m1

((
D

(qp)
Brow(t)

)T
11

+
(
D

(qp)
flux (t)

)T
11

)
· ∂n
∂q1

− 2n0

m1

((
D

(qp)
Brow(t)

)T
12

+
(
D

(pp)
Brow(t)

)T
12

+
(
D

(qp)
flux (t)

)T
12

+
(
D

(pp)
flux (t)

)T
12

)
· δn∂p2

+O(n2
0), (123)

where we have recognized the familiar kinetic pressure [13, 54, 55, 82],

PK(q1, t) =
1

m1

∫
R2

(p1 −m1u) ◦ (p1 −m1u)W (1)(q1,p1, t) d
2p1, (124)

whereas the potential contribution is now given by [54],

PΦren
(q1, t) = I2

∫
R2

Φren(x1)W (1)(q1,p1, t) d
2p1.

Furthermore, we identify the hydrodynamic contribution, coming from the hydrodynamic collision operators (112)
and (113), which produces a distortion of the hydrodynamic momentum, i.e.

δJ =

∫
R2

ρp2
(x1)W (1)(q1,p1, t) d

2p1,

as well as,

δnq2 =

∫
R2

ρq2(x1) W (1)(q1,p1, t) d
2p1,

δn∂p2 =

∫
R2

ρ∂p2(x1) W (1)(q1,p1, t) d
2p1.

Equation (123) can be further simplified by recalling that the Brownian and flux-carrying contributions constitute,
respectively, the symmetric and antisymetric parts of the anomalous diffusive tensor (as remarked in Sec. IV A), i.e.

(
D

(qp)
Brow(t)

)
11

=

(
D

(qxpx)
Brow (t) 0

0 D
(qypy)
Brow (t)

)
,

(
D

(qp)
flux (t)

)
11

=

(
0 Dflux(t)

−Dflux(t) 0

)
. (125)

We would like to remark that the diffusion coefficients (125) reduce to (18) and (19) in the single-particle scenario
equipped with an isotropic harmonic potential. By inserting (125) and combining the hydrodynamic derivative once
replaced the continuity equation (30), we obtain the final expression for the stream velocity balance equation at
leading order in the low density limit (i.e. omitting the hydrodynamic collision operators),

n
du

dt
+

1

m

( ∂

∂q1

)T
· T = −γBrow(nu) +Ω2

flux z × (nq1) +O(n0), (126)

where the stress tensor T coincides with (35) after replacing the difussive coefficients according to (125). For the

single particle scenario, we can rewrite q1 → q and (∂/∂q1)T → ∇, as well as D
(qypy)
Brow (t) = D

(qxpx)
Brow (t) = D

(qp)
Brow(t) and

Dflux(t) are given by Eqs. (18) and (20). Combined with the fact that the hydrodynamics collision effects vanishes,
Eq. (126) directly retrieves (34).

We can go further and obtain the balance equation for the kinetic energy density [47, 54, 55] by starting from the
definition (35) once we have replaced W → W (1). We substitute the time derivative of the kinetic energy density
by expression (119) and integrate over the momentum variables, as well as we appeal to the remark related to the
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diagonal and anti-diagonal properties of the decoherence diffusion matrices
(
D

(pp)
Brow(t)

)
11

and
(
D

(pp)
flux (t)

)
11

. After
some transformation and integration by parts, we find at leading order in the low density limit

∂(neK)

∂t
= −PK ◦

(( ∂

∂q1

)T
· u
)
−
( ∂

∂q1

)T
·
(
JK − (neK)u

)
(127)

− 2γBrow(neK) +
n

m

(
D

(pxpx)
Brow (t) +D

(pypy)
Brow (t)

)
+O(n0),

where JK(q, t) is the energy flow vector density or heat current provided by (41). As expected the above expression
coincides with (40) upon disregarding the hydrodynamic collision events.

We finally examine the hydrodynamics conservation laws for the fluid vorticity and the circulation flux [18, 86],
previously introduced in Sec. III B (see Eqs. (42) and (46)). By taking the time derivative of the vortitcity into the
mean-field Kramers equation (119), after some manipulation we get

∂$

∂t
= −

(
u ·
( ∂

∂q1

)T)
$ −$

(( ∂

∂q1

)T
· u
)
− 1

mn2

[( ∂
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]
z
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1
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mn

(
∂2n

∂q2
1

− 1

n

(( ∂

∂q1

)T
n
)2
)

+O(n0). (128)

where we have employed the identities (43). Next, introducing the hydrodinamic deviate by means of the continuity
equation (122), yields the vorticity balance equation,

d$

dt
= 2Ω2

flux − γBrow$ +
$

n
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dt
− 1

mn2

[
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+
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(
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Brow (t)−D(qypy)
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)( ∂2n

∂q1,x∂q1,y
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n
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∂q1,y
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2Dflux(t)

mn

(
∂2n

∂q2
1

− 1

n

(( ∂

∂q1

)T
n
)2
)

+O(n0). (129)

Beside the hydrodynamic collision effects, one may notice that the second line in the right hand side of (129) is absent
in its single-particle counterpart (45). This is because we considered an isotropic damped harmonic particle (see
Eq.(88)), and thus, the Brownian diffusive coefficient is identical in both degrees of freedom. Similarly, we obtain
the balance equation for the vorticity flux defined by Eq. (46). After some manipulation, we arrive at the following
expression

dψ

dt
= 2πΩ2

flux − γBrowψ −
∮
C

dP

n
− 2

m

∮
C

1

n

(
D

(qxpx)
Brow (t)

∂n

∂q1,x
dq1,x +D

(qypy)
Brow (t)

∂n

∂q1,y
dq1,y

)
− 2Dflux(t)

m

∮
C

1

n

( ∂

∂q1

)T
n× dq1 +O(n0). (130)

One may readily see that Equation (48) is directly obtained from (130) after replacing D
(qypy)
Brow (t) = D

(qxpx)
Brow (t) =

D
(qp)
Brow(t) and ignoring the hydrodynamics collision effects.

V. SUMMARY AND CONCLUDING REMARKS

Motivated by recent progresses in the study of chiral fluids, we developed the quantum kinetic theory of flux-
carrying Brownian particles by following a generic perturbative approach for weak system-environment coupling.
This permitted us to obtain the quantum kinetic equation and hydrodynamic equations up to second-order in the
flux-carrying effects. Compared with the well-known Kramers equation from the conventional Brownian motion, the
kinetic equation here displays an additional collision term encoding both a flux-like noise responsible for non-vanishing
antisymmetric components in the diffusive matrix (as well as stress tensor), and a rotational drift which arises out of
an environmental torque acting upon the flux-carrying Brownian particles. We argue that this equation encompasses
a wide class of previously treated chiral-fluid effects: for instance, the rotational drift resemblances the active torque
in chiral active fluids [11–14], whereas the antrysimetric diffusive coefficients are responsible for a nondiffusive flow
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which is common to conventional Brownian particles subject to a Lorentz force [48, 49]. However, we further showed
that the flux-carrying effects give rise to an unconventional fluid dynamics at equilibrium conditions. Concretely,
we illustrate in the single-particle scenario that a dissipationless vortex flow is eventually reached in the thermal
equilibrium without the need of an external magnetic field or an intrinsic angular momentum. This is in contrast to
most instances of parity violating or time-reversal breaking fluids [2, 3, 10, 52]. Essentially, while the (nonequilibrium)
vortex dynamics of the vast majority of known chiral fluids is due to either an external/synthetic magnetic field or
an intrinsic torque (which represents a continuous injection of energy), the equilibrium vortex dynamics of the flux-
carrying Brownian particles relies on the fact that there exists a balance between both the environmental torque and
the aforementioned flux-like noise which is established by an extended fluctuation-dissipation relation. In addition,
the relevant hydrodynamic quantities, including the fluid vorticity and vorticity flux, and the diffusive matrix are
explicitly computed in the simple particle scenario near thermal equilibrium. Conversely, we find out that the flux-
carrying effects do not influence either the kinetic energy or particle density, so that the usual Boyle’s law is retained
up to a reformulation of the kinetic temperature.

In spite of recent progresses in the study of chiral fluids, the implications of chirality on the kinetics as well as the
hydrodynamics remains largely unexplored under dominant dissipative and noise effects [2, 100], which are ubiquitous
in real life experiments and applications. In this context, the flux-carrying Brownian motion constitutes an ideal
testing ground to get useful insight of the hydrodynamic transport properties and electromagnetic response of open
quantum systems whose microscopic components violates both time-reversal and parity invariance. More directly,
there are several appealing directions in which the present work could be extended. For instance, one may expect that
the flux-carrying Brownian fluid could support odd viscosity in the quantum domain: this would show that the latter
is not exclusive to electronic states with non-trivial adiabatic Berry curvatures. It is therefore of particular interest
to compute the viscosity tensor when short-range interparticle interactions become important.
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Appendix A: Nonequilibrium generating functional

In this appendix we briefly illustrate the derivation of the nonequilibrium generating functional (58) starting from
the microscopic Lagrangian (5) of the N flux-carrying Brownian particles. The latter is expressed in terms of the
auxiliary coupling coefficients,

gα(k, q̄i) = − e
√
mk~

2πL|k|ωk
f(k)

( ∑
λ=1,2

ωk sin(k · q̄i)εαλkλ + κkα cos(k · q̄i)
)
, (A1)

lα(k, q̄i) = − e
√
mk~

2πL|k|ωk
f(k)

( ∑
λ=1,2

ωk cos(k · q̄i)εαλkλ − κkα sin(k · q̄i)
)
, (A2)

and the renormalized potential,

φαλ(∆q̄ij) =
e2κ2~

m(2πL)2

∑
k∈R2

f2(|k|)kαkλ
|k|2ω2

k

cos(k ·∆q̄ij), (A3)

recall that 0 < e determines the coupling strength to the MCS environment, L is a characteristic length of the MCS
environment, and f(|k|) ∈ R represents the usual spherically symmetric smooth form factor from non-relativistic
quantum electrodynamics [90]. Provided that the coupled system-environment complex, composed of the 2D harmonic
particles and the environmental MCS field, is in a canonical equilibrium state at inverse temperature β = 1/kBT , the
partition function governing the statistical mechanics is given by Eq.(10) [32] (after integrating out the environmental

degrees of freedom), where S
(E)
Brow is the familiar effective action describing the conventional Brownian motion. This

can be expressed as usual [27, 28],

S
(E)
Brow[{q}] = S

(E)
free [{q}] +

N∑
i,j=1

∑
α,λ=1,2

∫ ~β

0

dτ

∫ τ

0

dτ ′ Re Γ̌αλ(τ − τ ′, ∆q̄ij)qαi (τ)qλj (τ ′), (A4)
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where Re • stands for the real part of • (Im • denotes the imaginary part) and

S
(E)
free [{q}] =

N∑
i,j=1

∑
α,λ=1,2

∫ ~β

0

dτ

∫ τ

0

dτ ′
(
δijδαλ

∂2

∂τ2
+ U ijαλ

)
δ(τ − τ ′)qαi (τ)qλj (τ ′), (A5)

with U ijαλ takes account any harmonic interparticle interaction as well as the confining harmonic potential. Here, Γ̌αλ
coincides with the imaginary-time Fourier transform of the well-known dissipation kernel or dynamical susceptibility
characteristic of the standard Brownian motion [27, 28], i.e.

Γ̌αλ(τ,∆q̄ij) = −δαλ
π

∫ ∞
0

dω
hλλ(ω,∆q̄ij)

ω2

∂2Bω(τ)

∂τ2
, (A6)

where B(τ) is the imaginary-time boson propagator at thermal equilibrium [27],

Bω(τ) = (1 + n(ω, β−1))e−ωτ + n(ω, β−1)eωτ , (A7)

whereas n(ω, β−1) is the single-particle Bose distribution and h(ω,∆q̄ij) is the extended spectral density given by
(62).

The Euclidean action emerging from the flux attachment is given by Eq.(11) [32], where we have introduced the
imaginary-time Fourier transforms of the longitudinal dynamical susceptibility

Λ̌
||
αλ(τ,∆q̄ij) = δαλ

κ2

π

∫ ∞
0

dω
hλλ(ω,∆q̄ij)

ω2
Bω(τ), (A8)

as well as the transverse dynamical susceptibility

Λ̌⊥αλ(τ,∆q̄ij) = −εαλ
iκ

π

∫ ∞
0

dω
hλλ(ω,∆q̄ij)

ω2

∂Bω(τ)

∂τ
, (A9)

with i being the imaginary unit.
Now, we assume that the initial state of the coupled system-environment complex is the usual product state

[27, 29–31], that is ρ̂0⊗ ρ̂β with ρ̂β being a canonical thermal equilibrium state of the MCS environment with inverse
temperature β. It can be shown that the nonequilibrium generating function in the path integral formalism can be
cast as follows [27, 42]

ZBrow-flux[J+,J−] =

∫
d2Nqf

∫
d2Nq+

i d
2Nq−i ρ(q+

i , q
−
i , t0)

∫ q+(t)=q+f

q+(t0)=q+i

Dq+

∫ q−(t)=q−f

q−(t0)=q−i

Dq−

×

[
exp
( i
~

∫ t

t0

ds
(
J+(s) · q+(s)− J−(s) · q−(s)

))
× exp

( i
~

(
SSys[{q+}]− SSys[{q−}]

))
FIF [{q+}, {q−}]

]
, (A10)

where FIF is the so-called Feynman-Vernon influence functional of the MCS environment, and SSys is the real-time
action given by the N -particle Lagrangian (6). As the microscopic model (5) is quadratic in the coordinates of the
system and environment particles, the latter can be written as [89]

FIF [{q+}, {q−}] = exp

(
i

~

(
1

2

∫ t

t0

ds

∫ t

t0

ds′ X−(s) ·H(s, s′) ·X+(s′)

+
i

2

∫ t

t0

ds

∫ t

t0

ds′ X−(s) ·N(s, s′) ·X−(s′)

))
, (A11)

with X± = q+ ± q−, whereas H and N are the so-called dissipative and noise kernels, respectively. In our case, the
former coincides with the real-time retarded self-energy [45, 89] (or equivalently, with the generalized environmental
susceptibility [25]), i.e. H(t, t′) = Σ(t− t′), which is given by

Σαλ(t,∆q̄ij) = Γαλ(t,∆q̄ij) + Λ
||
αλ(t,∆q̄ij) + Λ

||
αλ(t,∆q̄ij), (A12)
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for i, j = 1, · · · , N and α, λ = 1, 2. Expression (A12) leads to Eq. (66) after replacing the dynamical susceptibilities.
To show the latter we begin with the frequency-dependent Fourier transforms of the dynamical susceptibilities, which
can be computed from the back imaginary-time Fourier transforms (A6), (A8) and (A9) via the analytic continuation
[27], e.g.

Γ̃αλ(ω,∆q̄ij) = lim
ε→0+

Γ̄αλ(−iω + ε,∆q̄ij),

with

Γ̄αλ(s,∆q̄ij) =
1

m

∫ ~β

0

dτ Γ̌αλ(τ,∆q̄ij) e
−isτ .

Specifically, the back imaginary-time Fourier transforms express as follows [32]

Γ̄αλ(s,∆q̄ij) = δαλ
2s2

mπ
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0

dω′
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ω′
1

s2 + ω′2
, (A13)

Λ̄
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αλ(s,∆q̄ij) = δαλ

2κ2

mπ

∫ ∞
0

dω′
hλλ(ω′, ∆q̄ij)

ω′
1

s2 + ω′2
, (A14)

Λ̄⊥αλ(s,∆q̄ij) = εαλ
2κs

mπ

∫ ∞
0

dω′
hαλ(ω′, ∆q̄ij)

ω′
1

s2 + ω′2
, (A15)

where we have made used of the formal definition of the imaginary-time photon propagator [27]. Starting from Eqs.
(A13)-(A15), the analytic continuation can be readily performed by means of the useful identity,

lim
ε→0+

2

π

∫ ∞
0

dω′
hαλ(ω′, ∆q̄ij)

ω′
1

ω′2 − ω2 − iε sgn(ω)
=

=
i

ω2

(
Θ(ω)hαλ(ω,∆q̄ij)−Θ(−ω)hαλ(−ω,∆q̄ij)

)
+H

(
Θ(ω′)

hαλ(ω′, ∆q̄ij)

ω′2
−Θ(−ω′)hαλ(−ω′, ∆q̄ij)

(−ω′)2

)
(ω), (A16)

where H(•)(ω) denotes the Hilbert transform, i.e.

H
(
f(ω′)

)
(ω) =

1

π
P

∫ ∞
−∞

f(ω′)

ω′ − ω
dω′, (A17)

with P being the principal part. To obtain this identity one employed the Sokhotski-Plemelj formula, i.e. 1/(ω+ iε) =
−iπδ(ω) + P(1/ω) for ω ∈ R [39, 41]. Notice that Eq.(A16) is consistent with the Kramers-Kronig relations, which
agrees with the fact that the retarded self-energy is an analytic function in the upper-half complex plane. Upon
replacing the above identity in (A13)-(A15), we arrive at the frequency-dependent Fourier transform of the dynamical
susceptibilities (70), (71) and (72). Once we have carried out the Fourier transform back to the real time domain of
Eqs. from (70) to (72), Eq. (66) is immediately obtained after replacing these results in (A12).

On the other side, since the initial state of the MCS environment is in a canonical equilibrium state, (A12) is related
to the noise kernel through a fluctuation-dissipation relation [44, 45, 89]. This relation was obtained in the frequency
domain in [25], which reads

Ñ ij
αλ(ω, ω′) = − ~

4π
δ(ω − ω′)

(
1 + 2n(ω, β−1)

)(
Im Γ̃αλ(ω,∆q̄ij) + Im Λ̃

||
αλ(ω,∆q̄ij)− iRe Λ̃⊥αλ(ω,∆q̄ij)

)
. (A18)

As before, the real-time Fourier transform of Eq.(A18) retrieves expression (61) after some manipulation. Finally, we
get (58) after taking the Wigner-Weyl transform in (A10) for J+ = J− = 0 and reproducing the program introduced
in [44–46].

Now we briefly show the computation of the fluctuation-dissipation relation (90) after performing the Breit-Wigner
approximation. We start substituting the expressions of the friction matrix ΓBrow and the flux-carrying contribution
Ωflux in the fluctuation-dissipation relation (61), which retrieves

〈{ξ(t), ξ(t′)}〉ρ̂β =
2m~
π

∫ ∞
0

dω coth

(
~ωβ

2

)(
ω cos(ω(t− t′))ΓBrow + sin(ω(t− t′))Ω◦2flux

)
. (A19)
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To obtain the above expression we have replaced the spectral density by means of the relations (83) and (84). Clearly,
the fluctuation-dissipation relation consists of two parts: the Brownian part is obtained from the cosine Fourier
transform, whereas the flux-carrying contribution involves a sine Fourier transform. The latter transform yields

∫ ∞
0

dω coth

(
~ωβ

2

)
sin(ωt) =

π

~β
coth

( πt
~β

)
, (A20)

while the cosine transform,

∫ ∞
0

dω ω coth

(
~ωβ

2

)
cos(ωt) = − π

(~β)2 sinh2
(
πt
~β
) +

2π

~β
δ(t). (A21)

Equation (A21) was extracted from [101], while (A20) is deduced by means of the identity

∫ ∞
0

dω ω coth

(
~ωβ

2

)
cos(ωt) =

d

dt

∫ ∞
0

dω coth

(
~ωβ

2

)
sin(ωt),

where we have employed d
dx sgn(x) = 2δ(x). Replacing (A20) and (A21) in (A19) returns the expression (90).

Appendix B: Diffusive coefficients, thermal covariance matrix and time evolution of the covariance matrix

In this appendix we illustrate the explicit expression of the auxiliary function involved in Eq.(27) from Sec. III, the
computation of the asymptotic values (21)-(22) from Sec. III A 1, and the derivation of the time-dependent covariance
matrix (50) from Sec. III B 1.

Starting from Eq.(102) once replaced (88), the flux-carrying contribution to the covariance matrix in the single
particle scenario can be determined by making use of the symbolic computation handled by MATHEMATICA.
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Specifically, we determine the auxiliary function appearing in (27), i.e.
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Similarly, one may obtain the explicit expression of the auxiliary function F (t, ω) involved in (20) with the help of
such symbolic computation, which we prefer to skip here since the specific form of the latter is not crucial for the
discussion from the main text.

Now, we briefly illustrate the derivation of Eqs. from (21) to (29). These are computed by taking the asymptotic
time limit t→∞ in (27) as well as (20). In such limit the aforementioned auxiliary functions return the unit, i.e.

lim
t→∞

F (t, ω) = − lim
t→∞

f(t, ω) = − 1

m
, (B2)
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which replaced in (20) retrieves after some manipulation
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where we have made use of the fact that the argument of the integrad is an odd function. Since the argument of the
latter decays algebraically as faster as ω3 and has no brunch cut, the above integral can be analytically computed by
means of contour integration methods. First, we replace the rational expression of the hyperbolic cotangent [27, 41],
i.e.
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which permits to split (B3) into the classical and quantum contributions, i.e.
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Notice that the first line in (B3) provides the value of the flux-carrying diffusive coefficient in the high temperature
limit, while the sum term completely encodes the low temperature effects. The former has a degenerate simple pole

in the upper-half complex plain given by Eq.(23) aside its complex conjugate −η†Brow. The residue associated takes
the form,
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and its complex conjugate
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According to the Cauchy’s residue theorem, the first line in (B4) is directly given by 2iπ(Res(ηBrow) + Res(−η†Brow)).
On the other hand, the low temperature contribution contains additional simple poles that corresponds to the so-called
Matsubara frequencies iνn, i.e. νn = 2π

~βn with n = 1, · · · ,∞. In this case, the associated residue simplifies to,
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16iπ2β4γ3
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2 .

Combining these results together, we find after some manipulation the asymptotic value of the flux-carrying diffusive
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coefficient, that is
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which returns the expressions (21) and (22) after taking the high and low temperature limits, respectively. Although
it is not show here, one can repeat this procedure to obtain the time asymptotic expression of the thermal covariance
matrix by starting from (27) after replacing the result (B2). This yields
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from which we obtain Eqs. (28) and (29) in the high and low temperature limits. One may contrast these with the
asymptotic values of the diffusive and thermal covariance coefficients of the standard Brownian motion. These are
well-known for weak system-environment coupling, for instance, in the Drude-model of the spectral density with a
high-frequency ωc [91]. In particular, in the low-temperature limit and large cutoff (i.e. 1� ωc/ωren), these are given
by [41, 79]
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as well as
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σ
(pp)
Brow(∞) =

D
(pp)
Brow(∞)

2γBrow
, (B10)

σ
(qp)
Brow(∞) = 0. (B11)

Finally, we analyse the time evolution of the single-particle scenario at late times. One can make use of stan-
dard Green’s function methods to determine the system state W (x, t) at any time near the asymptotic equilibrium.
Concretely, given an arbitrary initial state W (x, 0), the system state is obtained from [40, 77],

W (x, t) =

∫
R4

W (x′, 0) KR(x,x′, t) d4x′, (B12)

where KR denotes the retarded kinetic propagator defined in the phase space, i.e.
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with

∆BW (t) = σ(∞)−KBW (t) · σ(∞) ·KT
BW (t),
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where KBW (t) is given by Eq. (96), and σ(∞) is obtained from expressions (25) and (26) after substituting the
asymptotic values (B9) to (B11), and (B6). Considering an initial Gaussian state characterized by an arbitrary
covariance matrix V (0), expression (B12) hence returns a Gaussian state for all times with zero mean values and
covariance matrix determined by [40, 41]

V (t) = σ(∞) +KBW (t) · (V (0)− σ(∞)) ·KT
BW (t). (B13)

Since the retarded kinetic propagator KBW (t) is an exponential decaying function in time provided the subsidiary
condition is satisfied (109), from Eq.(B13) is clear that V (t) → σ(∞) for t → ∞. This result is employed in Sec.
III B 1 to study the hydrodynamic properties of the single flux-carrying Brownian particle. In the low-temperature
limit, the covariance matrix V (t) can be obtained from (B13) by appealing to Eqs. (B9)-(B11) and (29).
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