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 a b s t r a c t

This paper presents the translational and rotational kinematic interaction factors of flexible suction caissons 
considering structural and soil properties relevant to the seismic analysis of offshore wind turbines. Kinematic 
stresses developed along the foundation skirt are also presented and analyzed. The parametric analysis performed 
considers four height–to–diameter ratios between 0.5 and 2, three skirt thickness–to–diameter ratios between 
0.5% and 2.0%, and four different relevant skirt–soil stiffness ratios for sand soils. The foundations are as-
summed to be founded in homogenous and non-homogeneous soils, and they are considered to be subjected to 
vertically–incident shear waves. The kinematic response of the foundations is computed through an advanced 
boundary element – finite element coupled numerical model. It is found that the kinematic interaction factors 
are fundamentally independent of the skirt–soil stiffness ratio. It is also found that the general pattern of the 
kinematic interaction factors is analogous to that of piles, and that significant filtering of the seismic input mo-
tions can be observed. Results are presented in ready–to–use dimensionless plots. Regarding kinematic stresses, 
shell-like or beam-like behaviour is observed depending on height–to–diameter ratio of the skirt.

1.  Introduction

The knowledge of the kinematic response of a foundation subjected 
to incoming seismic waves is a prerequisite in the framework of the anal-
ysis of the seismic response of structures by substructuring techniques 
and the three–step method (Kausel et al., 1978). This kinematic response 
is usually encapsulated in the harmonic displacements and rotations ex-
perienced by the foundation at the point of connection with the upper 
structure, relative to a measure of the intensity of the incoming planar 
seismic waves, generally the ground motions that would be registered 
at ground surface in the absence of the foundation (free–field response).

Such information is usually provided in the form of frequency–
dependent translational and rotational kinematic interaction factors that 
can later be employed to filter any specific seismic signal to be used in 
the analysis of the structural response. Kinematic interaction factors for 
foundations typologies such as footings (e.g. Conti et al., 2016; Mylon-
akis et al., 2006), single piles (e.g. Anoyatis et al., 2013; Cesaro and 
Di Laora, 2023; Dai et al., 2021; Gazetas, 1984; Kavvadas and Gazetas, 
1993; Kaynia and Novak, 1992), pile groups (e.g. Álamo et al., 2019; 
Di Laora et al., 2017; Fan et al., 1991; Gazetas et al., 1992; Kaynia 
and Novak, 1992; Mamoon and Banerjee, 1990; Medina et al., 2014) or 
monopiles for offshore wind turbines (e.g. Chen et al., 2022; He et al., 
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2021, 2020; Zheng et al., 2023) have received a great deal of attention 
for a long time, so they are readily available in the literature for many 
different configurations. The structural forces produced in the founda-
tion (especially in the case of piles) by the action of the incoming seismic 
waves is another side of the problem of great significance, and it has also 
been researched in depth, considering single piles (e.g. Dezi et al., 2010; 
Di Laora, 2024; Di Laora et al., 2012a,b; Nikolaou et al., 2001; Stacul 
et al., 2022), pile groups (e.g. Dezi and Poulos, 2017; Kaynia and Mah-
zooni, 1996) or both (e.g. Álamo et al., 2020; Maiorano et al., 2009; 
Padrón et al., 2015; Zarzalejos et al., 2014).

The kinematic response of suction caissons, on the contrary, has 
not been studied in detail. Although the impedance problem of this 
type of foundations has been addressed in numerous papers (see for in-
stance Bordón et al., 2019, 2017; Bouneguet et al., 2023; Efthymiou and 
Gazetas, 2019; He and Kaynia, 2021; Jalbi et al., 2018; Latini and Za-
nia, 2019; Li et al., 2024; Lian et al., 2019; Liingaard et al., 2007; Salem 
et al., 2021; Skau et al., 2019; Wang et al., 2024), general kinematic 
interaction factors for suction caissons are not available.

For this reason, this study aims to present and analyze the transla-
tional and rotational kinematic interaction factors of suction caissons 
subjected to vertically incident planar shear waves. A wide range of 
configurations compatible with the case of the foundations for offshore 
wind turbines are considered. Likewise, the kinematic stress resultants 
that develop within the skirt of the foundation due to the action of the 
seismic waves are studied.
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Fig. 1. Problem definition. Sectional view.

Table 1 
Steel and soil material constants.

 Skirt steel  Soil
 Shear modulus 𝐺 [GPa]  80  See Eq. (1)
 Density 𝜌 [kg/m3]  7850  2000
 Poisson’s ratio 𝜇  0.3  0.4
 Damping ratio 𝜉  2%  5%

Section 2 presents in detail the problem at hand and the ranges of 
material and geometrical properties that were considered. Afterwards, 
Section 3 describes and verify the methodology that has been employed 
for computing the kinematic response of the foundation. Then, Section 4 
presents the computed kinematic interaction factors in ready–to–use 
frequency–dependent dimensionless plots from which the translational 
and the rotational factors can be obtained for specific cases. This sec-
tion also analyses different interesting patterns that can be observed 
in the response. The kinematic stress resultants along the bucket skirt 
that can be observed in the foundations are also discussed in a different
subsection.

2.  Problem definition

The foundation under study is a steel suction caisson composed by a 
flexible thin skirt of thickness 𝑡, depth 𝐻 and diameter 𝐷, and a strongly 
stiffened lid of diameter 𝐷, as shown in Fig. 1. Thus, for the purpose of 
studying the kinematic response of the system, the lid is considered rigid 
and massless, and it is assumed to be rigidly welded to the skirt around 
all its perimeter. These assumptions have been largely used for this type 
of foundations as well as monopiles in seismic analysis, see e.g. (He 
et al., 2021; He and Kaynia, 2021; Liingaard et al., 2007). The soil is 
modelled as a viscoelastic halfspace that can be either homogenous or 
depth-dependent non-homogeneous, with a soil shear modulus 𝐺soil(𝑧)
defined as 

𝐺soil(𝑧) = 𝐺soil,𝐷

( 𝑧 + 0.2
𝐷 + 0.2

)𝛽
(1)

where 𝑧 is the depth within the soil measured from ground surface, 
𝐺soil,𝐷 is the shear modulus of the soil assumed at a depth 𝑧 = 𝐷, and 
𝛽 is the parameter that governs the type of profile (Carbonari et al., 
2022), with 𝛽 = 0 leading to a constant value (homogeneous soil) and 
𝛽 = 0.5 leading to an exponential continuous (non-homogenous) profile 
for which the shear modulus at ground surface is small but not zero. The 
rest of the material properties are those presented in Table 1. Hysteretic 
material damping is introduced in the model through complex–valued 
stiffnesses of the type 𝐺 = Re[𝐺](1 + 2i𝜉), where i =

√

−1. In all cases, 
the structure and the soil are considered to be in close contact, and no 
sliding or separation are allowed. Thus, perfectly welded contact condi-
tions are assumed between soil and skirt, and between the lower face of 
the lid and the surface of the soil.

The foundation is assumed to be subjected to vertically–incident pla-
nar shear waves that produce a unitary horizontal displacement at free–
field ground surface. The response of the foundation under the imping-

Table 2 
Parameter values adopted for the parametric study.
 Parameter  Adopted values
 Skirt–soil stiffness ratio (𝐽 )  10, 25, 100 and 250
Soil type  homogeneous (𝛽 = 0)

 non–homogeneous (𝛽 = 0.5)
 Slenderness ratio (𝐻∕𝐷)  0.25, 0.5, 1.0 and 2.0
 Thickness ratio (𝑡∕𝐷)  0.5%, 1.0% and 2.0%

ing seismic waves is presented in terms of translational and rotational 
kinematic interaction factors  (Gazetas, 1984; Kaynia and Novak, 1992) 
respectively defined as 

𝐼𝑢
(

𝑎0
)

=
𝑢lid−center𝑦

(

𝑎0
)

𝑢f ree−f ield𝑦
(

𝑎0
) and 𝐼𝜃

(

𝑎0
)

=
𝜃lid−center𝑥

(

𝑎0
)

⋅𝐷∕2

𝑢f ree−f ield𝑦
(

𝑎0
) (2)

where 𝑢f ree−f ield𝑦
(

𝑎0
) is the frequency–dependent free–field displacement 

at ground surface produced by the incoming seismic shear waves, 
𝑢lid−center𝑦

(

𝑎0
) is the frequency–dependent horizontal displacement com-

puted at the center of the lid, 𝜃lid−center𝑥
(

𝑎0
) is the frequency–dependent 

rotation measured at the rigid lid, and 𝑎0 = 𝜔 ⋅ 𝑅∕𝑐𝑠,𝐷 is the dimension-
less frequency, with 𝜔 being the angular frequency, 𝑅 = 𝐷∕2 and 𝑐𝑠,𝐷
the soil shear wave velocity at 𝑧 = 𝐷.

The kinematic response of such type of foundation is computed for 
a wide range of geometrical ratios that are representative of the dimen-
sions of suction caissons designed for offshore wind turbines. The spe-
cific values that have been considered in this parametric study are pre-
sented in Table 2. Here, the range of relative stiffnesses between skirt 
and soil (primarily due to the possible different properties of the soils) 
is represented by a dimensionless skirt–soil stiffness ratio defined as 
(Álamo et al., 2021; Doherty et al., 2005) 

𝐽 =
𝐺skirt
𝐺soil,𝐷

𝑡
𝐷

(3)

where 𝐺skirt is the shear modulus of the skirt material (steel in this case). 
Since the value of 𝐽 is established at depth 𝑧 = 𝐷 in order to being able to 
compare homogeneous and non-homogeneous soils, a depth-dependent 
skirt–soil stiffness ratio is actually present in non-homogeneous soil 
cases, which for the defined soil profile is 

𝐽 (𝑧) = 𝐽
( 𝑧 + 0.2
𝐷 + 0.2

)−𝛽
(4)

leading to quite greater 𝐽 (𝑧) > 𝐽 for depths 𝑧 < 𝐷, and somewhat 
smaller 𝐽 (𝑧) < 𝐽 for depths 𝑧 > 𝐷, as shown in Fig. 1. This way, the re-
sults can be presented, mostly, in terms of dimensionless parameters, so 
that they can be employed to a wide range of particular cases. Given 
the fixed adopted value for the shear modulus of the steel given in
Table 1, the values presented in Table 2 are representative of soils with 
shear wave velocities between 28m/s (𝐽 = 250) and 283m/s (𝐽 = 10). 
Fig. 2 illustrates the geometry of the studied typologies considering the 
four different diameter–to–embdement ratios under consideration. The 
parametric study represented by the values of the table give rise to a to-
tal of 96 different configurations. All the results for homogeneous cases 
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Fig. 2. Suction caisson geometries and meshes.

are fully generalizable as the problem can be fully written in dimension-
less terms. However, the results for non-homogeneous cases are not fully 
generalizable due to the soil profile defined, which requires defining the 
diameter, or the ratio between the shear modulus at the free-surface and 
the shear modulus at depth 𝑧 = 𝐷. In the present paper, all results for 
the non-homogeneous soil assume 𝐷 = 12m (intermediate bucket diam-
eter), which leads to 𝐺soil(0) = 0.128 ⋅ 𝐺soil,𝐷.

3.  Methodology

The methodology used to tackle the previously defined problem is 
based on a coupled model of boundary elements and finite elements de-
veloped within MultiFEBE Bordón et al. (2022). In particular, a horizon-
tally layered elastic half-space Green’s function Pak and Guzina (2002) 
has been introduced in the code, so that neither free-surface nor inter-
face between layers need to be discretized. In the following, such model 
is described.

3.1.  Skirt and lid modeling

The whole foundation is modeled using shell finite elements, where 
the skirt is a cylindrical steel shell of thickness 𝑡, depth 𝐻 and diameter 
𝐷, and the lid is considered as a simple circular plate of diameter 𝐷 with 
modified material properties which approximates a massless and rigid 
lid (shear modulus of 106 ⋅ 𝐺skirt and null density). Both are perfectly 
welded together with continuity of displacements and rotations.

Locking-free MITC Reissner-Mindlin shell finite elements (Bucalem 
and Bathe, 1993) are used. The usual element equilibrium equation for 
time harmonic analyses can be written in matrix form as (Oñate, 2013) 

�̃�(𝑒)(𝜔) ⋅ 𝐚(𝑒)(𝜔) −𝐐(𝑒) ⋅ 𝐟 (𝑒)(𝜔) = 𝐪(𝑒)(𝜔) (5)

where 𝜔 is the angular frequency, �̃�(𝑒)(𝜔) = 𝐊(𝑒) − 𝜔2𝐌(𝑒) is the element 
time–harmonic stiffness matrix with 𝐊(𝑒) and 𝐌(𝑒) respectively being 
the stiffness and mass matrices, 𝐚(𝑒)(𝜔) is the vector of element degrees 
of freedom, 𝐐(𝑒) is the matrix which transforms mid-surface distributed 
forces 𝐟 (𝑒)(𝜔) into equivalent nodal loads, and 𝐪(𝑒)(𝜔) is the element equi-
librating load vector. More specifically, for an element 𝑒 with 𝑁 nodes

𝐚(𝑒) =
(

𝐚(𝑒)1 ,… , 𝐚(𝑒)𝑁

)𝑇
=
(

𝐚(𝑛1),… , 𝐚(𝑛𝑁 ))𝑇 (6)

𝐟 (𝑒) =
(

𝐟 (𝑒)1 ,… , 𝐟 (𝑒)𝑁

)𝑇
=
(

𝐟 (𝑛1),… , 𝐟 (𝑛𝑁 ))𝑇 (7)

and, for a given node 𝑛

𝐚(𝑛) =
(

𝑢(𝑛)𝑥 , 𝑢(𝑛)𝑦 , 𝑢(𝑛)𝑧 , 𝜃(𝑛)𝑥 , 𝜃(𝑛)𝑦 , 𝜃(𝑛)𝑧

)𝑇

(6 DOF shell node with global rotations) (8)

𝐚(𝑛) =
(

𝑢(𝑛)𝑥 , 𝑢(𝑛)𝑦 , 𝑢(𝑛)𝑧 , 𝛼(𝑛), 𝛽(𝑛)
)𝑇

(5 DOF shell node with local rotations)
(9)

𝐟 (𝑛) =
(

𝑓 (𝑛)
𝑥 , 𝑓 (𝑛)

𝑦 , 𝑓 (𝑛)
𝑧

)𝑇
(forces per unit area) (10)

where nodal displacements, rotations and forces are all frequency-
dependant, but the dependency is omitted in the notation for the sake 
of brevity. When modeling shells in typical structures, distributed forces 
𝐟 (𝑒) are prescribed. However, in the present model they remain as ac-
tive degrees of freedom due to the coupling to boundary elements (rep-
resenting the soil-lid interaction loads) or body surface load elements 
(representing the soil-skirt interaction loads).

3.2.  Soil modeling

The soil is modeled using the Boundary Element Method. A starting 
point of the method is the displacement-based boundary integral equa-
tion (Domínguez, 1993) 

𝑐(𝑖)𝑙𝑘 𝑢
(𝑖)
𝑘 + ∫

Γ

𝑡∗𝑙𝑘𝑢𝑘 dΓ = ∫
Γ

𝑢∗𝑙𝑘𝑡𝑘 dΓ + ∫
Ω

𝑢∗𝑙𝑘𝑏𝑘 dΩ, 𝑙, 𝑘 = 1, 2, 3 ≡ 𝑥, 𝑦, 𝑧

(11)

where Einstein summation is implied, and 𝑐(𝑖)𝑙𝑘  is the free-term. It re-
lates body loads 𝑏𝑘 = 𝑏𝑘(𝜔) throughout the domain Ω, displacements 
𝑢𝑘 = 𝑢𝑘(𝜔) and tractions 𝑡𝑘 = 𝑡𝑘(𝜔) throughout the boundary Γ = 𝜕Ω
and the displacement 𝑢(𝑖)𝑘 = 𝑢(𝑖)𝑘 (𝜔) at the collocation point of the point 
load. In this equation, the Green’s function in terms of displacements 
is 𝑢∗𝑙𝑘 = 𝑢∗𝑙𝑘(𝜔) and in term of tractions is 𝑡∗𝑙𝑘 = 𝜎∗𝑙𝑘𝑗 (𝜔)𝑛𝑗 , where the first 
index 𝑙 is related to the load direction, the second index 𝑘 is related to 
the observation direction, and 𝑛𝑗 is the outward unit normal (𝑗 = 1, 2, 3
is a dummy index). A Green’s function for a horizontally layered elastic 
half-space Pak and Guzina (2002) is used in this work. Since the con-
sidered Green’s function already considers the stratigraphy and it also 
fulfill the traction-free conditions at the free-surface, integrals along Γ
are null except along the soil-lid interface when the lid is considered to 
be in contact with the soil, and even in that case the integral including 
𝑡∗𝑙𝑘 is null since this is also null by definition. Body loads are usually a 
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Fig. 3. Comparison of 𝐼𝑢 and 𝐼𝜃 between (Fan et al., 1991) and the present methodology for homogeneous soil. Other dimensionless parameters are 𝜈soil = 0.4, 
𝜈pile = 0.25, 𝜉soil = 0.05, 𝜌soil∕𝜌pile = 0.7.

prescribed load, but here they act as active degrees of freedom together 
with their displacements. This way, boundary integral equations which 
model the soil can be written as 

𝑐(𝑖)𝑙𝑘 𝑢
(𝑖)
𝑘 = ∫

Γlid

𝑢∗𝑙𝑘𝑡𝑘 dΓ + ∫
Πskirt

𝑢∗𝑙𝑘𝑏𝑘 dΠ (12)

where Γlid represents the soil-lid interface and Πskirt represents the soil-
skirt interface.

The discretization of the previous equation follows the usual proce-
dure Domínguez (1993). Two-dimensional isoparametric Lagrange ele-
ments are used for both the soil-lid (boundary elements) and soil-skirt 
(surface body load elements). In the first case, the degrees of freedom 
are the soil displacements 𝑢𝑘 and tractions 𝑡𝑘 along the soil-lid interface. 
In the second case, the degrees of freedom are the soil displacements 𝑢𝑘
and body loads 𝑏𝑘 along the soil-skirt interface.

The collocation procedure consists of using nodal collocation at all 
nodes except at nodes located along the boundary of the surface, where 
non-nodal collocation is applied, see e.g. Bordón et al. (2017).

3.3.  Soil-lid and soil-skirt coupling

A conforming mesh between soil boundary or body load elements 
and suction caisson shell finite elements is used, where a node-node 
coupling between both is considered. Welded contact conditions are im-
posed via displacement compatibility and equilibrium at the interface:

• Each soil boundary element node 𝑛BE coincident with a lid shell finite 
element node 𝑛FE requires

𝑢(𝑛BE)𝑘 = 𝑢(𝑛FE)𝑘 (13)

𝑓 (𝑛FE)
𝑘 = −𝑡(𝑛BE)𝑘 (14)

where 𝑘 = 1, 2, 3 ≡ 𝑥, 𝑦, 𝑧. Then 𝑢(𝑛FE)𝑘  and 𝑡(𝑛BE)𝑘  remain as the active 
degrees of freedom in the linear system of equations.

• Each soil body surface load element node 𝑛LE coincident with a skirt 
shell finite element node 𝑛FE requires

𝑢(𝑛LE)𝑘 = 𝑢(𝑛FE)𝑘 (15)

𝑓 (𝑛FE)
𝑘 = −𝑏(𝑛LE)𝑘 (16)

and then 𝑢(𝑛FE)𝑘  and 𝑏(𝑛LE)𝑘  remain as the active degrees of freedom in 
the linear system of equations.

3.4.  Incident field

The foundation is assumed to be subjected to plane time-harmonic 
SH waves that propagate vertically through the stratified soil and pro-
duce motions along the 𝑦-direction. Therefore, the displacement field 
within each layer is of the form (Achenbach, 1973; Andersen, 2006; 
Domínguez, 1993) 
𝑢f ree−f ield𝑦 (𝑧, 𝜔) = 𝐴𝑗e

i𝑘𝑗𝑧 + 𝐵𝑗e
−i𝑘𝑗𝑧 (17)

where 𝐴𝑗 and 𝐵𝑗 are the amplitudes of the waves ascending and de-
scending through layer 𝑗 and 𝑘𝑗 = 𝜔∕𝑐𝑗 is its wavenumber. Coefficients 
𝐴𝑗 and 𝐵𝑗 are computed in each case considering unitary horizontal dis-
placements at the free surface (𝑧 = 0), zero stresses at that free surface, 
and compatibility and equilibrium at the interfaces between layers. In 
the case of the homogeneous soil, the soil is modeled as a half space, 
and the expression above simplifies. In the case of the inhomogeneous 
soil, the incident field is approximated by considering a sufficiently large 
number of layers. This incident field is introduced into the soil boundary 
element equations by decomposing the total field into the free-field and 
the scattered field 
𝑢𝑦(𝑧, 𝜔) = 𝑢f ree−f ield𝑦 (𝑧, 𝜔) + 𝑢scattered𝑦 (𝑧, 𝜔) (18)

and then the scattered field 𝑢𝑦(𝜔) − 𝑢f ree−f ield𝑦 (𝜔) is the one used in the 
boundary integral equations, see e.g. Domínguez (1993).

3.5.  Verification

In this section, the developed methodology is verified by comparing 
it against reference results. For this purpose, the well-known pile kine-
matic response results from Fan et al. (1991) are considered. In this ref-
erence, the kinematic interaction factors of free-head floating circular 
piles in homogeneous soils are obtained. Results assume fixed dimen-
sionless parameters such as Poisson’s ratios of the soil (𝜈soil = 0.4) and 
pile (𝜈pile = 0.25), hysteretic damping ratio (𝜉soil = 0.05), and soil density 
to pile density ratio (𝜌soil∕𝜌pile = 0.7), while different length to diameter 
ratios (𝐻∕𝐷 = 20, 𝐻∕𝐷 = 40) and pile Young’s modulus to soil Young’s 
modulus ratios (𝐸pile∕𝐸soil = 1000, 𝐸pile∕𝐸soil = 10, 000) are considered. 
Given that the present methodology is developed for cylindrical skirts 
modelled using shells, an equivalence between a solid circular cross sec-
tion and a circular hollow cross section must be established. Given that 
the pile is mainly subjected to bending, the mechanical equivalence be-
tween both is established by imposing equal bending stiffness and equal 
translational inertia

𝐸pile
𝜋𝐷4

64
= 𝐸skirt

𝜋𝐷3𝑡
8

(19)
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Fig. 4. Horizontal displacements 𝑢𝑦 of the free-field and the skirt along the depth at characteristic frequencies. Case: 𝐻∕𝐷 = 1, 𝐽 = 100, 𝑡∕𝐷 = 1%, homogeneous 
soil.

Fig. 5. Translational kinematic interaction factors. Homogeneous soil.
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Fig. 6. Rotational kinematic interaction factors. Homogeneous soil.

𝜌pile
𝜋𝐷2

4
= (𝜌skirt − 𝜌soil)𝜋𝐷𝑡 + 𝜌soil

𝜋𝐷2

4
(20)

where the internal soil bending stiffness is neglected, and the overlap-
ping of masses due to the assumed shell-soil interaction modelling is 
taken into account. This allows to write the relationship between stiff-
nesses ratios as 

𝐽 = 1
8
1 + 𝜈soil
1 + 𝜈skirt

𝐸pile

𝐸soil
(21)

and between density ratios as 

𝜌skirt
𝜌soil

= 1
4

(

1 +
𝜌pile
𝜌soil

)

1
𝑡∕𝐷

(22)

Therefore, by establishing any values to 𝐷, 𝐸soil and 𝜌soil, the rest of 
the parameters are found by using the previous dimensionless relation-
ships. Fig. 3 shows the absolute value of the translational and rotational 
kinematic interaction factors given by Fan et al. (1991) together with 
those obtained from the present methodology. A close agreement of the 
present method is observed.

4.  Results

4.1.  Kinematic interaction factors

Figs. 5 and 6 present the translational and rotational kinematic inter-
action factors obtained in the case of a homogeneous soil. Each figure 
presents eight subplots, with the real parts on the left, the imaginary 
parts on the right, and one row per value of the embedment ratio 𝐻∕𝐷. 
The dimensionless factors are presented as a function of the dimension-
less frequency 𝑎0, and the curves that correspond to different values of 
the skirt–soil stiffness ratio 𝐽 are presented in different colors in each 
subplot.

The general characteristics of the kinematic interaction factors of 
these suction caissons are, even with very small embedment ratios, anal-
ogous to those already well known for piles (see for instance Fig. 3a 
in Gazetas et al. (1992) for the translational kinematic interaction fac-
tors). The results can be explained by examining Figs. 5, 6 together with 
Fig. 4, which illustrates the physical phenomena for a specific case by 
showing the real part of the horizontal displacements of the free-field 
and the average kinematics of the skirt along the depth.

At very low frequencies, i.e. very large soil wavelengths with re-
spect to the foundation depth, the foundation mainly translates in phase 
with the free-field, as it can be observed from the first column of Fig. 4 
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Fig. 7. Translational kinematic interaction factors. Non-homogeneous soil.

(𝑎0 = 0.4). Thus, at this very low–frequency part, the real part of the 
translational kinematic interaction factors start from unit values and the 
rotational ones start from zero, while the imaginary parts of both kine-
matic interaction factors start from zero. That means that the seismic 
excitation is not being filtered by the foundation.

Then, as the frequency increases and the foundation depth encom-
passes more than one-quarter of the soil wavelength, the foundation 
still translates in phase with the free-field but with a smaller ampli-
tude, and it starts to rotate since the displacements of the free-field at 
the free-surface and at the foundation bottom start to be out of phase. 
That means that the real part of the translational kinematic interaction 
factors decreases and the rotational ones increases with the frequency, 
while the imaginary parts of both factors increase. The first peak in the 
real part of the rotational kinematic interaction factor occurs at the fre-
quency when one-half of the soil wavelength coincides with the foun-
dation depth because free-surface displacement are 180◦ out-of-phase. 
This can be observed from the second column of Fig. 4 (𝑎0 = 𝜋∕2), which 
in general occurs approximately at 𝑎0 = (𝜋∕2)∕(𝐻∕𝐷).

As the frequency keeps increasing, the free-field at the bottom part 
of the foundation starts loosing the out of phase condition, until the 
frequency where the foundation depth coincides with the soil wave-
length, where the free-field at the free-surface and at the foundation 
bottom are in phase. At this stage, the average free-field displacement 

along the foundation depth is approximately zero, leading to nearly zero 
translational interaction factors. This can be observed from the third 
column of Fig. 4 (𝑎0 = 𝜋), which in general occurs approximately at 
𝑎0 = (𝜋)∕(𝐻∕𝐷). Regarding the rotational interaction factors, their real 
parts are nearly zero while the imaginary parts reach a maximum, in-
dicating a 90◦ out of phase between seismic excitation and foundation 
rotational response at the ground surface.

The last part of higher frequencies is characterized by an irregular 
and alternating response around zero of both the real and the imaginary 
parts. Thus, the phase lag between the incident seismic wave and the 
kinematic response of the foundation will be maximum around the peaks 
of the imaginary part of the function in each case. It is in this high-
frequency range where the relative stiffness between the cylindrical skirt 
and the soil starts to be noticeable, as it is illustrated in the last column 
Fig. 4.

Overall, it can be seen that the resulting kinematic ratios are found 
to be almost independent of 𝐽 and 𝑡∕𝐷, within the ranges of properties 
considered in the study, and especially for the low frequencies. This is 
so because the high stiffness of the skirt of the foundation is provided 
by its cylindrical geometry, and the variations of the stiffness of the soil, 
and of the stiffness of the plate of the skirt due to the changes in thick-
ness 𝑡, do not affect its structural behaviour at relatively low frequencies.
Evidently, the high frequency response of the foundation is indeed heav-
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Fig. 8. Rotational kinematic interaction factors. Non-homogeneous soil.

Fig. 9. Local axes and stress resultants at relevant locations.

ily influenced by changes in structural stiffness, but the results show 
that,  in many cases, this parameter will not be very relevant when com-
puting the seismic response of offshore wind turbines founded on suc-
tion caissons due to the very low natural frequencies of such turbines. In 
relative terms, the variations of the rotational kinematic interaction fac-
tors with the skirt–soil stiffness ratio 𝐽 seem to be slighly higher than 

those obtained for the translational factors, but this is so because the 
total range of the function is larger in the latter case.

Similar observations can be made with respect to the kinematic in-
teraction factors obtained in the non-homogeneous soil, which are pre-
sented in Figs. 7 and  8. Due to the varying stiffness with depth of the 
non-homogenous soil, see Fig. 1, and taking into account that 𝑎0 is based 
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Fig. 10. Absolute values of the dimensionless stress resultants around the skirt at 𝑧 = 𝐷∕2 and at frequency 𝑎0 = 5 for the case 𝐻∕𝐷 = 1, 𝐽 = 100, 𝑡∕𝐷 = 1% and 
homogeneous soil.

on the value of 𝑐𝑠,𝐷 at 𝑧 = 𝐷, the translational kinematic interaction fac-
tors for the non–homogeneous soils decrease more rapidly than its ho-
mogeneous counterpart. When comparing the results for homogeneous 
soils against the results for non-homogeneous soils, it is also observed 
that the relevance of the relative stiffness between skirt and soil (𝐽 and 
𝑡∕𝐷) is smaller for non-homogeneous soils. This behaviour is due to the 
fact that the skirt-soil stiffness ratio 𝐽 is fixed at 𝑧 = 𝐷, so that the ho-
mogeneous and non-homogeneous soils have the same shear modulus 
and 𝐽 at 𝑧 = 𝐷, but 𝐽 is greater in the non-homogeneous soil that in 
the homogeneous soil for 𝑧 < 𝐷 and vice versa when 𝑧 > 𝐷. Therefore, 
given that the skirt mostly behaves as rigid for 𝐽 > 20 (Álamo et al., 
2021; Doherty et al., 2005), all the kinematic interaction factors for 
non-homogeneous soils and 𝐻∕𝐷 ≤ 1 are greatly independent from the 
𝐽 and 𝑡∕𝐷 values studied. On the other hand, for 𝐻∕𝐷 = 2 it is observed 
that the kinematic interaction factors depends more on these because 𝐽
are smaller in the non-homogeneous case than in the homogeneous case 
when 𝑧 > 𝐷.

In summary, when the kinematic interaction factors are presented in 
dimensionless terms, as it is done here, the responses are relatively in-
sensitive to the skirt–soil stiffness ratio 𝐽 and the thickness-to-diameter 
ratio 𝑡∕𝐷.  The differences between the results for the different config-
urations grow for increasing frequencies and for increasing embedment 
ratios, being such differences negligible for low frequencies, especially 
in the case of the non-homogeneous soil. It is also worth noting that 
the situation of the peaks and troughs of both the real and the imagi-
nary parts of the functions are not significantly shifted in frequency in 
most cases. At the same time, the natural frequencies of offshore wind 
turbines tend to be very low (with values well below 0.2 and 2.0 Hz, 
for instance, for the first and second fore-aft or side-to-side modes), and 
the energy content of the earthquakes usually decrease for larger fre-
quencies. For these reasons, it could be possible to consider one single 
curve per embedment ratio, which could be then applied to most of the 
cases that can be defined within the ranges included in this study, when 
the combination of properties is such that the most relevant frequency 
range corresponds to the lower range of the presented dimensionless 
frequencies.

4.2.  Skirt kinematic stresses

The behaviour of the kinematic stresses that arise in the skirt is stud-
ied in this section. For the sake of brevity, results are presented only 
for the representative case of a foundation with a skirt–soil stiffness ra-
tio of 𝐽 = 100 and a thickness ratio of 𝑡∕𝐷 = 0.01 in a homogeneous 
soil, whose response is representative of the response of all of the cases
studied.

Fig. 9 summarizes the naming conventions that will be used in this 
section when describing the results. The shell local axis 𝑥′ is defined as 
parallel to the global 𝑧 axis along the whole skirt, while the local axis 𝑧′
is pointing outwards, with 𝑧′ = 0 being located at the midsurface of the 
shell. The usual shell stress resultants naming conventions, as described 
in the figure, are employed for locally describing the stress state. Taking 
into account that the vertically-incident S wave produces displacements 
along the 𝑦 direction, the most relevant locations of the bucket skirt are 
the two cut lines parallel to the 𝑧 axis that are highlighted in Fig. 9 with 
thick black lines:

• Cut line at 𝑥 = 0 and 𝑦 = 𝐷∕2, where the maximum normal stresses 
occur. Due to the symmetry of the response, only 𝑁𝑥′ , 𝑁𝑦′ , 𝑀𝑥′ , 𝑀𝑦′

and 𝑉𝑥′  are non-zero.
• Cut line at 𝑦 = 0 and 𝑥 = 𝐷∕2, where the maximum tangential 
stresses occur. Due to the symmetry of the response, only 𝑁𝑥′𝑦′ , 𝑀𝑥′𝑦′

and 𝑉𝑦′  are non-zero.
The distribution of the stress resultants around the skirt is complex 

as it varies from case to case and with the frequency. The choice of 
the mentioned cut lines for analyzing the stresses are based on estab-
lishing reasonable fixed locations where maximum stress resultants are 
present in most of the cases. In order to illustrate how the different 
stress resultants vary around the skirt, Fig. 10 shows these for a given 
case of 𝐻∕𝐷 = 1 at 𝑧 = 𝐷∕2 and at an intermediate frequency 𝑎0 = 5. 
Stress resultants are expressed in dimensionless terms in a way that al-
low being compared in terms of stresses (it is explained afterwards). It is 
observed that 𝑁𝑥′ , 𝑁𝑦′ , 𝑀𝑥′ , 𝑀𝑦′  and 𝑉𝑥′  have maximum absolute values 
at 𝑦 = 𝐷∕2, and zero values at 𝑦 = 0. On the other hand, 𝑁𝑥′𝑦′ , 𝑀𝑥′𝑦′  and 
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Fig. 11. Real and imaginary parts of the dimensionless 𝑁𝑥′ , 𝑀𝑥′ , 𝑁𝑦′ , 𝑀𝑦′  and 𝑉𝑥′  along the 𝑥 = 0, 𝑦 = 𝐷∕2 cut for the case 𝐻∕𝐷 = 0.25, 𝐽 = 100, 𝑡∕𝐷 = 0.01, and 
homogeneous soil.

𝑉𝑦′  reach maximum absolute values at 𝑦 = 0, while they become null at 
𝑦 = 𝐷∕2. These results show that even though it is a shallow structure 
(𝐻∕𝐷 = 1) and the skirt have a complex stress state, if the skirt is seen 
as a beam with rigid circular hollow cross section, then the “beam” nor-
mal stresses (role played by 𝑁𝑥′ ) follow the plane section hypothesis, 
i.e. linear distribution of stresses with respect to the neutral axis, and 
the “beam” tangential stresses (role played by 𝑁𝑥′𝑦′ ) follow a parabolic 
distribution of stresses. The other stress resultants distributions are a 
consequence of the intrinsic shell behaviour of the skirt, where the cir-
cular hollow cross section of the “beam” is obviously not rigid.

4.2.1.  Stresses along 𝑧 at cut line at 𝑥 = 0 and 𝑦 = 𝐷∕2
The normal stresses 𝜎𝑥′  and 𝜎𝑦′  along the cut line at 𝑥 = 0, 𝑦 = 𝐷∕2

can be obtained as
𝜎𝑥′ =

𝑁𝑥′

𝑡
−

𝑀𝑥′

𝑡3∕12
𝑧′ (23)

𝜎𝑦′ =
𝑁𝑦′

𝑡
−

𝑀𝑦′

𝑡3∕12
𝑧′ (24)

These can be expressed at the external and internal faces of the skirt 
(𝑧′ = ±𝑡∕2) in dimensionless form as
𝜎𝑥′

(

𝑧′ = ±𝑡∕2
)

𝐸skirt
=

𝑁𝑥′

𝐸skirt 𝑡
∓

6𝑀𝑥′

𝐸skirt 𝑡2
(25)

𝜎𝑦′
(

𝑧′ = ±𝑡∕2
)

𝐸skirt
=

𝑁𝑦′

𝐸skirt 𝑡
∓

6𝑀𝑦′

𝐸skirt 𝑡2
(26)

that would represent the maximum and minimum normal stresses at 
those surfaces. Likewise, the maximum shear stress produced by the 
shear force 𝑉𝑥′  at 𝑧′ = 0 can be expressed as 
√

3
𝜏𝑥′𝑧′
𝐸skirt

=
√

33
2

𝑉𝑥′
𝐸skirt 𝑡

(27)

where the factor 
√

3 is used to enable the comparison between the con-
tributions of normal and shear stresses based on the von Mises yield 
criterion.

Taking these expressions into account, Figs. 11–14 present the real 
and imaginary parts of the three types of summands presented in 
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Fig. 12. Real and imaginary parts of the dimensionless 𝑁𝑥′ , 𝑀𝑥′ , 𝑁𝑦′ , 𝑀𝑦′  and 𝑉𝑥′  along the 𝑥 = 0, 𝑦 = 𝐷∕2 cut for the case 𝐻∕𝐷 = 0.5, 𝐽 = 100, 𝑡∕𝐷 = 0.01, and 
homogeneous soil.

Eqs.  (25)–(27) with respect to the dimensionless frequency 𝑎0. At each 
figure, the top row presents the contribution of the axial force 𝑁𝑥′  and 
bending moment 𝑀𝑥′  to the normal 𝜎𝑥′

(

𝑧′ = ±𝑡∕2
)

∕𝐸skirt (Eq.  25), the 
middle row presents the contribution of the axial force 𝑁𝑦′  and bending 
moment 𝑀𝑦′  to the normal stress 𝜎𝑦′

(

𝑧′ = ±𝑡∕2
)

∕𝐸skirt (Eq.  26), and the 
bottom row presents the contribution of the shear force 𝑉𝑥′  to the shear 
stress 𝜏𝑥′𝑧′∕𝐸skirt component (Eq.  27). The range of the color plots is 
common to all subplots, so that the relative importance of each stress 
resultant along the depth and with the frequency is clearly identified. 
The real and imaginary parts represent, in all cases, the components of 
the complex-valued response that are in phase, or 90◦ out of phase, re-
spectively, with respect to the peak horizontal free-field displacement 
produced by the impinging waves at ground surface. Therefore, for any 
given depth and frequency, the amplitude of the response could be ob-
tained as the modulus of such vector. As can be seen in the color scale 
shown at the bottom of each figure, the green colors represent small 
amplitudes in the response, while the peak responses are represented 
by intense red and blue colors.

Several relevant trends can be observed in these plots. Firstly, the 
contribution of the shear stress 𝜏𝑥′𝑧′  produced by the shear force 𝑉𝑥′
is negligible when compared to normal stresses in all cases, even for 
the highest values of 𝜏𝑥′𝑧′ , which are located at the bottom part of the 
skirt. In contrast, the stress resultant that contribute the most to the total 
stresses tend to be the bending moments around the axis perpendicular 
to the seismic shaking, 𝑀𝑥′ , and the axial force parallel to this same 
direction, 𝑁𝑦′ .

Regarding normal stresses and the structural response for increas-
ing slenderness ratios, there are several observations that can be made 
on how the skirt responds to the seismic action depending on the skirt 
depth to diameter ratio. In the cases of shallow buckets (𝐻∕𝐷 = 0.25
and 𝐻∕𝐷 = 0.5), whose response is shown in Figs. 11 and 12, the 𝜎𝑥′
normal stress is mainly produced by the 𝑀𝑥′  bending moment, and the 
maximum values are located at around 80% depth of the skirt. The 𝜎𝑦′
normal stress is fundamentally produced by the 𝑁𝑦′  axial force, and the 
maximum values occur at the bottom part of the skirt. Of the two, the 
most important normal stress is clearly 𝜎𝑦′ , showing that the potential 
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Fig. 13. Real and imaginary parts of the dimensionless 𝑁𝑥′ , 𝑀𝑥′ , 𝑁𝑦′ , 𝑀𝑦′  and 𝑉𝑥′  along the 𝑥 = 0, 𝑦 = 𝐷∕2 cut for the case 𝐻∕𝐷 = 1, 𝐽 = 100, 𝑡∕𝐷 = 0.01, and 
homogeneous soil.

seismic failure of this shallow buckets is related to the circumferential 
stresses at the skirt bottom.

In the cases of normal and moderately deep buckets (𝐻∕𝐷 = 1 and 
𝐻∕𝐷 = 2), whose response is shown in Figs. 13 and 14, there is a change 
of behaviour of the skirt. First, the 𝜎𝑥′  normal stress is produced mainly 
by the 𝑁𝑥′  axial force in most of the skirt for 𝐻∕𝐷 = 2, except at the 
bottom of the skirt (90% to 95% depth) where the 𝑀𝑥′  bending mo-
ment dominates. This shows that, when the ratio 𝐻∕𝐷 goes beyond the 
unity, the mid the part of the skirt starts to behave as a circular hollow 
section beam. Regarding 𝜎𝑦′  normal stress, the 𝑁𝑦′  axial force remains 
as the dominant part. However, now both 𝜎𝑥′  and 𝜎𝑦′  are equally im-
portant, being 𝜎𝑦′  more important at the skirt bottom and 𝜎𝑥′  at the mid 
part of the skirt. It is also observed that the stress resultants related to 
the response of the skirt as a cylindrical shell (𝑀𝑥′  and 𝑁𝑦′ ) are much 
less relevant for 𝑎0 < 𝜋 than for 𝑎0 > 𝜋. This cut-off frequency (𝑎0 ≈ 𝜋) 
corresponds with the frequency for which the wavelength 𝜆𝑠 in the soil 
coincides with the diameter of the skirt (note that 𝜆𝑠∕𝐷 = 𝜋∕𝑎0). This be-
haviour illustrates that, as it is physically expected, for 𝜆𝑠 < 𝐷, the struc-

ture responds fundamentally through shell vibrations, while for 𝜆𝑠 > 𝐷, 
the whole skirt starts to behave as a beam. Also, the representation pro-
vided in this Figure in terms of modulus of the functions complements 
those representations given in Figs. 11–14 in terms of real and imagi-
nary parts. Those figures showed that both parts followed similar trends 
of rapid variation in frequency that, in contrast, give rise to more clear 
patterns when presented in form of the absolute value, with the stresses 
concentrated in the bottom part of the skirt.

This evolution, for increasing slenderness ratios, of the terms that 
contribute to the 𝜎𝑥′  and 𝜎𝑦′  stresses is illustrated more clearly in Fig. 15. 
The upper part of the figure presents the absolute values of the two 
terms that contribute to 𝜎𝑥′  (i.e., |𝑁𝑥′∕(𝐸skirt 𝑡)| and |𝑀𝑥′∕(𝐸skirt 𝑡2)|, on 
the left and right of each pair of plots), and the lower part of the figure 
presents the absolute values of the two terms that contribute to 𝜎𝑦′  (i.e., 
|𝑁𝑦′∕(𝐸skirt𝑡)| and |𝑀𝑦′∕(𝐸skirt𝑡2)|, on the left and right of each pair of 
plots). In each case, the color maps for each slenderness ratio are pre-
sented keeping the proportions in height, so that the distributions of ef-
forts along the vertical direction can now be directly compared among 
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Fig. 14. Real and imaginary parts of the dimensionless 𝑁𝑥′ , 𝑀𝑥′ , 𝑁𝑦′ , 𝑀𝑦′  and 𝑉𝑥′  along the 𝑥 = 0, 𝑦 = 𝐷∕2 cut for the case 𝐻∕𝐷 = 2, 𝐽 = 100, 𝑡∕𝐷 = 0.01, and 
homogeneous soil.

foundations. The plots illustrate very clearly how the largest kinematic 
stresses appear always at the bottom part of the foundations, especially 
in the case of the stresses associated to 𝑀𝑥′  and 𝑁𝑥′ . They also show 
that the vertical axial forces 𝑁𝑥′  are relevant only in the most slender 
foundation 𝐻∕𝐷 = 2, when the structure starts to behave as a beam.

In order to further illustrate this last observation, additional results 
for the case of a foundation with a much larger slenderness ratio of 
𝐻∕𝐷 = 5 are also presented in Fig. 16. In this case, which is more rep-
resentative of a monopile than of a bucket, it is clearly observed that the 
longitudinal axial force 𝑁𝑥′  becomes the most relevant internal force, 
illustrating the fact that, as expected, with an increasing slenderness 
ratio, vertical axial forces 𝑁𝑥′  continues to gain relevance while the 
foundation behave increasingly as a beam, in addition to its shell-like 
response.

4.2.2.  Stresses along 𝑧 at cut line at 𝑦 = 0 and 𝑥 = 𝐷∕2
In is also relevant to study what happens at the cut made to the 

cylinder by the 𝑥𝑧 plane at 𝑥 = 0. Now, the shear stress 𝜏𝑥′𝑦′  along the 

line at 𝑥 = 0, 𝑦 = 𝐷∕2 can be obtained as 

𝜏𝑥′𝑦′ =
𝑁𝑥′𝑦′

𝑡
−

𝑀𝑥′𝑦′

𝑡3∕12
𝑧′ (28)

which can be expressed, at the external and internal faces of the skirt 
(𝑧′ = ±𝑡∕2) in dimensionless form as 
√

3
𝜏𝑥′𝑦′

(

𝑧′ = ±𝑡∕2
)

𝐸skirt
=
√

3
𝑁𝑥′𝑦′

𝐸skirt 𝑡
∓
√

3
6𝑀𝑥′𝑦′

𝐸skirt 𝑡2
(29)

that would represent the maximum and minimum shear stresses at those 
surfaces. Likewise, the maximum shear stress produced by the shear 
force 𝑉𝑦′  at 𝑧′ = 0 can be expressed as 
√

3
𝜏𝑦′𝑧′
𝐸skirt

=
√

33
2

𝑉𝑦′
𝐸skirt 𝑡

(30)

Thus, Figs. 17–20 present the real and imaginary parts of the five 
types of summands presented in Eqs.  (29) and (30) along the cut at 
𝑦 = 0, 𝑥 = 𝐷∕2, as a function of the dimensionless frequency 𝑎0. At each 
figure, the top row presents the contribution of the shear force 𝑁𝑥′𝑦′
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Fig. 15. Comparison of the distribution of the absolute values of 𝑁𝑥′  and 𝑀𝑥′  (top plots) and 𝑁𝑦′  and 𝑀𝑦′  (bottom plots) in dimensionless terms along the 𝑥 = 0, 𝑦 =
𝐷∕2 cut, for the different slenderness ratios considered. 𝐽 = 100, 𝑡∕𝐷 = 0.01, homogeneous soil.
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Fig. 16. Real and imaginary parts of the dimensionless 𝑁𝑥′ , 𝑀𝑥′ , 𝑁𝑦′ , 𝑀𝑦′  and 𝑉𝑥′  along the line at 𝑥 = 0 and 𝑦 = 𝐷∕2 for the case 𝐻∕𝐷 = 5, 𝐽 = 100, 𝑡∕𝐷 = 0.01, 
and homogeneous soil.

and the twisting moment 𝑀𝑥′𝑦′  to the shear stress 𝜏𝑥′𝑦′
(

𝑧′ = ±𝑡∕2
)

∕𝐸skirt
(Eq.  29), and the bottom row presents the contribution of the shear 
force 𝑉𝑦′  to the shear stress 𝜏𝑦′𝑧′∕𝐸skirt component (Eq.  30). These three 
stress resultants (𝑁𝑥′𝑦′ , 𝑀𝑥′𝑦′  and 𝑉𝑦′ ) produce only shear stress along 
this cut. The range of the color plots is common to all subplots, so that 
the relative importance of each stress resultant along the depth and with 
the frequency is clearly identified.

It is observed that the twisting moment 𝑀𝑥′𝑦′  and the shear force 
𝑉𝑦′  are clearly negligible when compared to the membrane shear force 
𝑁𝑥′𝑦′  in all cases. The twisting moment 𝑀𝑥′𝑦′  only becomes relevant 
at the bottom part of the skirt at the higher depth to diameter ratios. 
The shear force 𝑁𝑥′𝑦′  reach maximum values at the lower half of the 
skirt, but is relevant along the whole length. This is seen more clearly 
in Fig. 21, where the absolute values of the twisting moment 𝑀𝑥′𝑦′  and 
of the shear force 𝑁𝑥′𝑦′  are presented for all four slenderness ratios side 
by side, in the same format used for Fig. 15. This representation allows 
to see that the shear stresses at 𝑦 = 0 are of the same order of magnitude 
as the normal stresses at 𝑥 = 0, although the peak values does not arise 
in exactly the same parts of the skirt in both cases.

5.  Conclusions

This work has aimed to provide rotational and translational kine-
matic interaction factors for a foundation configuration for which they 
were not yet present in the literature. To this end, the kinematic interac-
tion factors of flexible suction caissons subjected to vertically–incident 
planar shear waves have been computed using a boundary elements 
– finite elements coupled model that takes into account the real flex-
ibility of the skirt, the soil–skirt and the soil–lid interaction, the three–
dimensionality of the problem and the boundless nature of the soil. The 
translational and the rotational components of the function have been 
obtained considering ranges of soil and structural properties relevant to 
the problem of the seismic response of suction caissons as foundations 
for offshore wind turbines with only one support. Real and imaginary 
parts of these functions are provided in the frequency range of interest 
for the seismic analysis of this type of structures. Results are provided 
for a range of embedment ratios 𝐻∕𝐷 from 0.5 to 2.0, for a thickness 
ratio 𝑡∕𝐷 of 0.5%, 1.0% and 2.0%, and for homogeneous and non-
homogeneous (continuously varying) soils.
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Fig. 17. Real and imaginary parts of the dimensionless 𝑁𝑥′𝑦′ , 𝑀𝑥′𝑦′  and 𝑉𝑦′  along the line at 𝑦 = 0 and 𝑥 = 𝐷∕2 for the case 𝐻∕𝐷 = 0.25, 𝐽 = 100, 𝑡∕𝐷 = 0.01, and 
homogeneous soil.

Fig. 18. Real and imaginary parts of the dimensionless 𝑁𝑥′𝑦′ , 𝑀𝑥′𝑦′  and 𝑉𝑦′  along the line at 𝑦 = 0 and 𝑥 = 𝐷∕2 for the case 𝐻∕𝐷 = 0.5, 𝐽 = 100, 𝑡∕𝐷 = 0.01, and 
homogeneous soil.
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Fig. 19. Real and imaginary parts of the dimensionless 𝑁𝑥′𝑦′ , 𝑀𝑥′𝑦′  and 𝑉𝑦′  along the line at 𝑦 = 0 and 𝑥 = 𝐷∕2 for the case 𝐻∕𝐷 = 1, 𝐽 = 100, 𝑡∕𝐷 = 0.01, and 
homogeneous soil.

Fig. 20. Real and imaginary parts of the dimensionless 𝑁𝑥′𝑦′ , 𝑀𝑥′𝑦′  and 𝑉𝑦′  along the line at 𝑦 = 0 and 𝑥 = 𝐷∕2 for the case 𝐻∕𝐷 = 2, 𝐽 = 100, 𝑡∕𝐷 = 0.01, and 
homogeneous soil.

It is shown that, when presented in a dimensionaless format, these 
functions are fundamentally independent of the soil–skirt stiffness ratio 
𝐽 for the ranges of frequencies, and of soil and structural properties, 
relevant to the problem at hand. It is also shown that the general patterns 
of the kinematic response of this type of foundation is analogous to that 
of the monopile, even though the embedment ratios of this last typology 
is much larger. It is also shown that this type of foundation presents 

capacity to filter the input seismic signal, especially in the case of soft 
soils and large–diameter buckets, which should not be an uncommon 
situation in the case of offshore wind turbines.

These translational and rotational kinematic factors of flexible suc-
tion caissons are presented in ready–to–use dimensionless charts that 
can be easily employed in the analysis of the seismic response of these 
systems, for instance, when filtering the seismic input to be applied 
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Fig. 21. Comparison of the distribution of the absolute values of 𝑁𝑥′  and 𝑀𝑥′  in dimensionless terms along the 𝑦 = 0, 𝑥 = 𝐷∕2 cut, for the different slenderness ratios 
considered. 𝐽 = 100, 𝑡∕𝐷 = 0.01, homogeneous soil.

to the foundation of the system in numerical models of the whole
turbine.

The manuscript has also presented and analyzed the kinematic 
stresses developed along the bucket skirt due to the action of the in-
cident seismic S waves. The stresses at two different cuts of the skirt are 
decomposed into the contributions of the internal forces and moments 
that arise in the shell structure. It is shown that the largest kinematic 
stresses tend to arise at the bottom part of the foundations, although in 
the most slender cases (𝐻∕𝐷 ≥ 2), significant stresses appear along the 
whole length of the skirt because, in such cases, the foundation starts to 
resist the incoming waves working also as a hollow–section monopile, or 
beam. It is also worth noting that stresses increase abruptly at frequen-
cies for which the soil wavelength becomes shorter than the diameter 
of the foundation (𝑎0 ≈ 𝜋).

The results presented in the paper correspond exclusively to the 
response of the foundations under vertically incident shear waves. 
However, vertical components of the seismic excitation (Kaynia, 2019; 
Kjørlaug and Kaynia, 2015; Qianqian Ren and Yu, 2023; Wang et al., 
2025) can also be very relevant to the structural integrity of the super-
structure. For this reason, kinematic interaction factors corresponding 
to obliquely incident seismic waves should also be studied in the future 
together with the effect of foundation-soil-foundation interaction in the 
case of groups of suction caissons.
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