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Summary

This thesis presents a suite of transferable methodologies for environmental
monitoring, focusing on detecting pollutants in aquatic ecosystems. Leveraging
remote sensing with hyperspectral imaging (HSI) and artificial intelligence (AI),
these approaches enable precise pollutant identification and adaptability across
diverse scenarios. Thus, supporting systematic observation over extensive
geographic regions or long-term datasets contributes to developing standardized
solutions for monitoring and protecting Earth’s ecosystems.
Aquatic pollution threatens biodiversity and ecosystem services, especially oil

spills and plastic waste. Oil spills spread quickly across water surfaces, blocking
sunlight and endangering aquatic biodiversity. Plastic waste accumulates
in water bodies, breaking into microplastics that marine organisms ingest,
disrupting food chains. Both pollutants are especially critical to monitor because
they have profound, long-term impacts on ecosystems and food webs. Dye
tracers such as rhodamine can be used as a proxy in oil spill simulations due
to their similar dispersion behaviour in water. This aids in the development of
detection and monitoring techniques for real oil spill events. However, there is
a need for efficient and transferable aquatic pollution monitoring technologies.
HSI is a powerful tool for identifying aquatic pollutants due to its rich spectral

detail. However, the massive data it generates is costly and complex to process,
posing key challenges. Dimensionality reduction techniques—such as spectral
indices and band selection—can trim redundant data, reducing storage and
computational demand while maintaining accuracy. Furthermore, the scarcity of
labelled datasets hinders AI model training. Unsupervised learning approaches
offer a promising solution, enabling models to extract meaningful patterns from
non-labelled data, making HSI more adaptable across diverse environments.
This thesis aims to pioneer efficient and transferable HSI methodologies

for detecting and monitoring critical aquatic pollutants. It focuses on
developing novel approaches that streamline data analysis and improve
transferability across diverse environments. The research progresses from well-
established, straightforward methods such as spectral indexes to cutting-edge
AI methodologies to enhance pollutant detection. Each chapter focuses on
different HSI technology needs, overcoming the challenges of data complexity,
dimensionality, and the scarcity of labelled datasets. This creates a cohesive
framework that addresses the demands of large-scale environmental monitoring
with adaptable HSI methods.

VII



Chapter 2 reduces HSI data complexity by introducing the Normalized 
Difference O il I ndex ( NDOI), a  n ew s pectral i ndex d esigned t o i mprove oil 
spill detection in coastal areas. The study compares the performance of 
several spectral indices utilizing images from multiple satellite and airborne 
sensors—AVIRIS, HICO, and MERIS—captured during the Deepwater Horizon 
disaster in the Gulf of Mexico in 2010. Traditional indices often misclassify 
other elements, such as suspended sediments, leading to inaccurate results. 
The NDOI avoids sand-in-suspension false positives, offering a  m ore reliable 
response in coastal areas. NDOI is suitable for detecting oil spills thicker than 
50 microns, with an average oil F1-score of 83%, and estimating its thickness 
and oil volume exceeding 90% accuracy. It also provides rapid detection of oil 
spills due to its simple calculation compared with other spectral indices and 
IA models, which is crucial for quick responses to environmental crises. This 
development directly contributes to optimizing the use of optical sensors for fast 
and efficient pollutant detection.

Chapter 3 tackles the challenge of hyperspectral data’s high dimensionality 
by presenting a new dimensionality reduction methodology. The spectral 
band selection method identifies t he most r elevant bands f or detecting specific 
pollutants, with testing conducted on plastics and rhodamine. This minimises 
redundant or irrelevant bands, reducing computational cost and resource 
demands. This methodology has been applied to laboratory images and 
outdoor experiments, focusing on analyzing the impact of background effects on 
identifying target objects. The methodology successfully transferred influential 
spectral bands between datasets with 80-90% accuracy, indicating the potential 
for developing specialized sensors with these common bands to enable detection 
across various environments. However, the transfer of pre-trained classification 
models remains an area for further research, particularly regarding semi-
transparent objects or solutions influenced by background reflections in complex 
environments like optically shallow waters. Refined post-processing approaches 
suggest that model transfer could be feasible, potentially reducing the need for 
labelled data or in-situ validation, thus preserving resources and enabling a more 
generalizable classifier.
Chapter 4 addresses the scarcity of labelled data in HSI and AI applications 

through the spectral loss function (Sl), which enhances HSI segmentation in 
unsupervised neural networks. The loss function is tested on HSI benchmark 
datasets, such as Pavia University, Salinas Valley, Indian Pines, and University of 
Houston, and a case study using an AVIRIS image from the Deepwater Horizon 
catastrophe. Sl was introduced in the currently best-performing unsupervised 
segmentation neural network, enhancing evaluation metrics performance by up 
to 6%. The proposed method also outperforms well-established techniques, 
such as spectral indices. For example, spectral indices rely on few spectral 
bands to produce a numerical value for each pixel, requiring an expert to
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establish a threshold for class determination. In contrast, the unsupervised
neural network can directly assign different classes to varying oil thicknesses
based on their complete spectral response, making them fully transferable across
environments. Therefore, the unsupervised approach can generate ground-truth
data, reducing manual labour. This is especially relevant for remote areas such
as the open ocean, where manual labelling is challenging and resource-intensive.
This contribution expands the scope of AI-driven detection techniques to operate
without labelled datasets, thereby enhancing adaptability.
This thesis concludes with a synthesis of the main insights from each

chapter, a reflection on the implications and limitations identified, and
suggestions for future research directions. The thesis successfully develops
new transferable HSI methods that enhance the detection and monitoring
of aquatic pollutants, overcoming critical knowledge gaps. Spectral indices,
such as NDOI, provide a quick and efficient solution for rapid, low-resource
decision-making but rely on manual thresholding. Band selection methods
help identify critical spectral bands, which can improve model transfer and
generalization across environments. Unsupervised methods complement these
techniques by addressing non-labelled datasets, providing a foundation for
large-scale monitoring. This research contributes to more efficient, adaptable,
and transferable environmental monitoring technologies by addressing critical
challenges related to data complexity, dimensionality reduction, and the scarcity
of labelled datasets. The strengths and weaknesses of this suite of methods
should be carefully considered to select the most appropriate approach based on
each study’s specific characteristics.
These advancements hold promise for designing next-generation sensors for

UAVs and space missions, prioritizing data efficiency and precision. Moreover,
the techniques directly apply to environmental management, including early
spill detection, beach cleanup coordination, and supporting data-driven policies.
Future work will focus on further automating hyperspectral monitoring
techniques to minimize manual intervention. Efforts will be directed toward
improving algorithm transferability by incorporating more variability in training
data and advancing post-processing techniques. Additionally, the scalability of
emerging tools, such as cloud computing, will be explored to improve efficient
large-scale monitoring.

This thesis contributes to advancing aquatic pollution monitoring
by presenting novel transferable remote sensing methodologies that
support environmental preservation.
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Chapter 1

Introduction

This section provides an overview of the context, motivations, and objectives
that underpin this research. It begins with a background on key topics, including
the challenges of aquatic pollution, the fundaments of remote sensing and
Hyperspectral imaging, and a summary of the artificial intelligence techniques
applied in the study. The section also highlights significant gaps in current
knowledge, which have driven the focus of this study and its main research
objectives. Additionally, the section includes a brief list of publications arising
from the research, a justification of the thematic unit within the broader
scientific framework, and an outline of the funding sources supporting the work.

1.1 Background

There is a need to improve the detection and monitoring of pollution to
enable more effective responses and strengthen legislation. Pollutants in
aquatic environments have significant and long-lasting effects on biodiversity,
water quality, and ecosystem health [1, 2]. Oil spills and plastic waste are
some of the most widespread contaminants, posing risks to aquatic life and
human communities that rely on healthy coastal and ocean environments [3–5].
Traditional techniques for monitoring aquatic hazardous agents rely on in situ
measurements, which are costly, resource-intensive, time-consuming, require
expert supervision, and face geographical limitations [6–8].
In this context, new technologies and methodologies are needed to improve

the identification of marine debris in a fast, accurate and transferable way
(Figure 1.1) [9]. Remote sensing plays a crucial role in this process by enabling
large-scale data collection without the need for direct physical interaction,
making it ideal for monitoring hard-to-reach areas. Hyperspectral Imaging
(HSI) is an advanced remote sensing technique that captures vast data across
the electromagnetic spectrum for material identification [10]. Combined with
artificial intelligence, HSI improves environmental monitoring efficiency and
facilitates global algorithm application [11–13]. This integration is vital for
rapid response, lower operational costs, and tracking pollution hotspots [14–16].
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Chapter 1 Introduction

Figure 1.1: Aquatic pollutant monitoring needs.

1.1.1 Aquatic Pollution

As human activities have intensified over the past few decades, pollution
in aquatic environments has significantly increased, contributing to the
deterioration of these ecosystems [1]. Coastal areas and rivers are particularly
vulnerable due to their proximity to human activities such as industry,
agriculture, and urbanization [17]. When pollutants such as oil and plastics
enter aquatic environments, they are distributed according to water movement
and hydrodynamics [18], directly disrupting the feeding and breeding behaviours
of marine organisms and smothering coral reefs, which are critical for
biodiversity [19]. The effects of pollution extend beyond wildlife, as they pose
significant risks to human health. Pollutants can bioaccumulate in marine
organisms, leading to higher concentrations of toxins as they move up the food
chain [20]. This poses a direct threat to humans who consume contaminated
seafood. Additionally, pollution degrades the quality of coastal waters, affecting
industries such as tourism and fishing, and leading to economic losses [21].
Figure 1.2 illustrates the pollutants examined in this thesis, emphasizing the
role of hydrodynamics in their distribution and the impact on Earth and society.

Figure 1.2: Overview of aquatic pollution in this thesis
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1.1 Background

Oil spills and plastics have garnered significant attention due to their
widespread prevalence and persistence in marine environments. Plastic pollution
is a pervasive problem affecting terrestrial and aquatic ecosystems globally [4].
The highest concentrations of plastic pollution are seen along shorelines, water
and seafloors, particularly near densely populated regions and industrialized
areas [4]. Plastic degrades into smaller pieces that remain for centuries, posing
long-term ecological threats [22]. Plastics are non-biodegradable material,
accumulating in ecosystems and harming wildlife [23]. Animals often mistake
plastic debris for food, leading to ingestion and entanglement, which causes
injury, starvation, and death [24]. Additionally, plastics act as vectors for
chemical pollutants, which adhere to their surfaces and enter organisms,
leading to long-term toxic effects [25]. Coastal areas, where human activity is
concentrated, often suffer the most, with visible pollution affecting beaches [3].
Oil spills cause immediate and severe damage to ecosystems [2]. Oil spills,

often caused by accidents involving tankers, refineries, or offshore platforms
during drilling and transportation, are among the most destructive forms of
aquatic pollution [26, 27]. Oil floats on the water’s surface and spreads rapidly,
forming slicks that block sunlight [28]. Its harmful effects on invertebrate
fauna vary depending on the oil’s type, exposure duration, and environmental
conditions such as water temperature and depth [29]. Over time, oil can sink
and contaminate the seafloor, severely affecting deep-sea ecosystems [30]. A
notable example is the 2010 Deepwater Horizon disaster, where approximately
800,000 cubic meters of oil were released into the Gulf of Mexico for months,
devastating wildlife and coating thousands of birds, mammals, and sea turtles
in oil [31]. It also caused long-term economic losses including over 25.000 jobs,
$2.3 billion in industry output, and $1.2 billion in gross regional product, along
with hundreds of millions in lost tax revenues. [32].
Another important aspect to consider is hydrodynamics, the study of liquids

in motion, which is essential for understanding how water movement affects
the distribution and transport of pollutants in aquatic environments [33].
Ocean currents, driven by wind, tides, temperature differences, and the Earth’s
rotation, transport pollutants across vast distances [34]. For instance, the spread
of oil spills is affected by water properties and the oil’s viscosity, while oceanic
gyres trap plastic waste in swirling vortexes, such as the Great Pacific Garbage
Patch [35]. This is a massive concentration of plastic debris located in the
North Pacific Ocean, where the convergence of several ocean currents forms a
swirling vortex, pulling in and containing millions of tons of floating plastic
and other waste [36]. Understanding these dynamics is essential for developing
effective monitoring and mitigation strategies [18]. Scientists frequently use dye
tracers, such as rhodamine, to study localized water movement and predict
pollutant dispersion [37]. These dyes help map the flow and velocity of
currents, allowing researchers to create accurate models of how contaminants
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Chapter 1 Introduction

might be transported [38]. Such insights are precious in coastal areas, where
pollution tends to accumulate, and can guide more targeted and efficient cleanup
efforts [39].
Therefore, developing new tools and technologies that allow us to address

these environmental challenges more effectively is essential. With oil spills
and plastics threatening aquatic ecosystems, fast and advanced methods such
as hyperspectral imaging are critical for rapidly detecting these contaminants
and responding to environmental crises [40]. These innovations are crucial for
developing scalable solutions to mitigate the impacts of human activities on
the environment.

1.1.2 Principles of Remote Sensing

Remote sensing is a technology used to gather information about the Earth’s
surface without physical contact, typically through satellites or aircraft [41]. By
detecting and recording reflected or emitted energy from various surfaces, remote
sensing enables monitoring and analyzing environmental changes, mapping
landscapes, and assessing resources across large or hard-to-access areas [42].
Widely applied in fields like agriculture, forestry, climate science, and disaster
management, remote sensing provides crucial data for tracking natural and
human-made changes over time, supporting better-informed decision-making on
global and local scales [43].

Optical Sensing Technologies

Optical sensors are pivotal in remote sensing, converting light into measurable
signals to analyze various biophysical parameters [44]. Within the optical
range, the studies will be focused on the Visible (VIS, 400–700 nm), Near
Infrared (NIR, 700–1400 nm), Visible and Near Infrared (VNIR, 400–1000
nm), and Short-Wave Infrared (SWIR, 1000–2500 nm) regions [42]. These
sensors provide non-destructive measurement capabilities, allowing researchers
to analyze ecosystems without disruption. They can be categorized into
multispectral and hyperspectral sensors (Figure 1.3), each serving distinct
applications and offering unique advantages and limitations [42].

Multispectral Sensors These sensors capture data in a limited number of broad
spectral bands, typically three to ten. RGB sensors, which capture data
in the red, green, and blue bands are widely used in remote sensing for
producing true-color images that resemble what we would see naturally.

Hyperspectral Sensors They collect data across hundreds of narrow, contiguous
spectral bands, allowing for a detailed spectral analysis of materials.

4



1.1 Background

Figure 1.3: Comparison of multispectral and hyperspectral information.

Multispectral sensors provide helpful information for applications like
vegetation mapping and land cover classification, but their spectral resolution
is relatively low [45]. This can limit their ability to differentiate between
similar materials, making them less effective for complex analyses. In contrast,
the high spectral resolution of hyperspectral sensors enables the identification
of subtle differences in material properties and is particularly advantageous
for challenging applications [45]. However, compared to their multispectral
counterparts, hyperspectral sensors are 3 to 5 times more expensive and capture
data across hundreds of narrow spectral bands (typically from 100 to 300),
whereas multispectral sensors capture only from 3 to 10 broad bands [46]. This
high dimensionality in hyperspectral sensors results in 10 to 20 times more data
volume, which presents significant challenges in terms of storage, processing,
and analysis, complicating operational workflows [47].
The versatility of optical sensors allows deployment across various

platforms—satellites, airborne systems, and UAVs—enabling wide-area
monitoring and flexible data collection tailored to specific needs [15,48].

Satellite-based systems These systems offer extensive coverage and are well-
suited for large-scale monitoring of marine environments. However, their
revisit period and spatial resolution may be insufficient for detecting small-
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scale pollution events [49]. Additionally, cloud cover presents a limitation
when relying on these platforms [50].

Airborne systems They can capture higher spatial resolution data than satellites
and be deployed more frequently, allowing for timely assessment of
pollution events. However, airborne systems are typically more costly to
operate and may have flight duration and coverage area limitations [51,52].

UAV-based systems Uncrewed Aerial Vehicles (UAVs) represent a growing
field in remote sensing, offering high spatial resolution and flexibility in
data collection. UAVs are quickly deployable and effective for localized
pollution assessments, but they have limited operational range and require
skilled operators for data collection and analysis [15,38].

In summary, each technology has advantages and limitations, but it is clear
that optical sensors, encompassing multispectral and hyperspectral technologies,
play a crucial role in environmental pollution monitoring.

Hyperspectral Imaging (HSI)

Hyperspectral Imaging (HSI) is a remote sensing technique that captures data
across a broad range of the electromagnetic spectrum [42]. It divides the
spectrum into hundreds of narrow, contiguous bands and generates detailed
spectral profiles for each pixel in an image [53, 54]. The data acquired through
HSI is typically organized into large three-dimensional data cubes, where
each pixel contains an N -dimensional vector, with N corresponding to the
number of spectral bands [55]. This structure facilitates comprehensive material
analysis, as the spectral signature of each pixel can be processed to identify and
differentiate various substances (Figure 1.4 (a)), including pollutants [40].
HSI measures solar radiation reflected off the Earth’s surface after interacting

with the atmosphere. The radiant flux intensity at a specific wavelength and
surface is quantified in watts per square meter steradian [W/(sr ·m2)] [42].
However, this raw data is influenced by atmospheric conditions, as shown in
Figure 1.4 (b), which can distort the measured signals. To mitigate these
effects, reflectance is utilized, which is defined as the ratio of emitted
surface flux to incident solar flux [45]. Reflectance values are obtained after
atmospheric correction, providing a more accurate representation of the surface
characteristics [56]. The underlying principle of HSI is based on the distinct ways
different materials reflect solar radiation [57]. Depending on the atomic structure
of a surface, solar radiation is absorbed or reflected at specific wavelengths,
resulting in a distinct spectral response for each material, which is called
spectral signature [47]. These spectral signatures depend highly on the material’s
physical and chemical properties and surface roughness.
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1.1 Background

(a) Surface reflectance (b) Atmospheric influence

Figure 1.4: Hyperspectral technology fundamentals.

HSI has broad applications across various Earth observation fields, including
precision agriculture, risk prevention, environmental studies, and natural
resource management [42]. In particular, HSI detects pollutants in aquatic
environments by analyzing their unique spectral responses, which are influenced
by their interactions with electromagnetic waves and the optical properties of
water, such as absorption and scattering [58]. This capability allows for accurate
identification and analysis of surface materials, facilitating informed decision-
making and enhancing management strategies for Earth’s observation and
pollution control [59]. HSI remote sensing also enables large-scale monitoring by
facilitating the analysis of extensive data collected across vast geographic areas,
diverse locations, or long-term periods [43]. Thus, HSI is a powerful tool for
providing precise solutions in environmental management [60].

1.1.3 Detection techniques

HSI offers rich spectral information, but its high dimensionality makes analysis
complex due to challenges in managing noise and redundancy within the
datasets [53]. Several techniques can help reduce the complexity of HSI, with
spectral indices and various AI methods being among the most commonly used.
Figure 1.5 summarises the techniques employed in each thesis chapter.
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Figure 1.5: Outline of the techniques applied in this thesis.

Spectral indexes

Spectral indices are powerful tools in HSI that simplify complex data analysis
by combining multiple spectral bands through simple arithmetic operations [61].
These indices highlight specific spectral behaviours of interest while suppressing
background noise or irrelevant information [62].

The choice of bands used in spectral indices is crucial and depends on the
unique spectral characteristics of the phenomenon being studied [63]. For
example, certain materials or pollutants have distinct reflectance patterns at
specific wavelengths, making it possible to create indices that emphasize those
features while reducing the influence of other, less relevant bands [58]. Common
examples include vegetation indices like the Normalized Difference Vegetation
Index (NDVI) [64], which is used to highlight plant health by combining the near-
infrared and red bands (Equation 1.1), or the Chlorophyll content (CHL) [65],
which measures the surface chlorophyll-a using violet, blue and green bands
(Equation 1.2).

NDV I =
NIR−Red

NIR+Red
(1.1)

CHL = log(max(R433,490,510)/R555) (1.2)
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1.1 Background

Artificial Intelligence (AI) Techniques for HSI

AI techniques have become essential tools in overcoming these challenges,
improving the efficiency of surface classification and enhancing hyperspectral
data analysis [66–68]. AI encompasses a broad range of technologies and
methodologies designed to enable machines to mimic human intelligence and
perform tasks that typically require cognitive functions, such as learning,
reasoning, and problem-solving [69]. Within this expansive and changing
discipline, Machine Learning (ML) and Deep Learning (DL) have transformed
various fields, including healthcare, finance, and environmental monitoring [67].
As AI is a large field, we will limit this section to introduce the concepts necessary
to understand the chapters in this study.

Machine Learning Is a branch of AI that focuses on developing algorithms that
allow computers to learn from and make predictions or decisions based on
data without being explicitly programmed [70].

Deep Learning Is a specialized area within ML that employs neural networks
with multiple layers (hence “deep”) to analyze complex patterns in large
datasets [71]. This approach has proven particularly effective for image
recognition [72]. The performance of deep learning models is heavily
influenced by the choice of loss function, which measures the difference
between the predicted and actual outcomes, guiding the optimization
process during training [73].

Dimensionality reduction Is an ML technique that aims to reduce the number
of input variables in a dataset while preserving essential information,
improving model performance and decreasing computational cost [74]. A
common method for HSI dimensionality reduction is Sequential Feature
Selection (SFS) [75], a band selection technique that iteratively selects
relevant bands based on their contribution to model predictive power,
thereby enhancing its efficiency and interoperability [69].

ML algorithms can be classified as follows1 [76]:

• Supervised learning: models are trained on labelled datasets, meaning
that each input is paired with the correct output, and the goal is to learn
a mapping from inputs to outputs so that the model can make accurate
predictions on new, unseen data [69].

– Classification: is one of the most common techniques in supervised
learning, where the goal is to assign a label or category to a new
instance based on the features learned from labelled data [77]. These

1DL and dimensionality reduction techniques can be supervised and unsupervised.
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Chapter 1 Introduction

approaches accurately classify materials based on spectral signatures
but require an expert to identify and label the surfaces [78]. Standard
classification algorithms include Support Vector Machines (SVM) [79]
and Random Forests (RF) [80].

• Unsupervised learning: identify patterns and groupings within the
data through clustering and dimensionality reduction techniques without
labelled data. While less precise, these methods alleviate the need for
specialized experts to label data, which is significantly time-consuming ,
and can also assist in labelling datasets more efficiently [69,81].

– Segmentation: is akin to classification; each pixel is assigned a
category, with neighbouring pixels sharing the same label treated
as part of the same object or region, thus preserving spatial
context. While segmentation can be performed using supervised
methods, unsupervised techniques such as k-means clustering [82] and
unsupervised NNs [83–86] are more commonly utilized in practice to
reveal inherent structures in hyperspectral datasets [81].

Finally, transfer learning is not an ML subcategory but a technique or
strategy that can be applied within various ML paradigms [87]. This strategy
leverages a pre-trained model initially developed for one task and adapts it for
a different but related task [88]. This allows for faster training and improved
performance, especially when the new task has limited data [89]. This strategy
reuses knowledge from one hyperspectral scene and applies it to another, often
improving efficiency and accuracy with less data or computational resources [87].

1.2 Knowledge Gaps

HSI offers a significant advantage over traditional RGB and multispectral
imaging by providing detailed spectral information across hundreds of narrow
bands [45]. HSI’s rich spectral resolution enables precise differentiation between
materials that may look similar in conventional images [90–92]. However, several
challenges remain to be fully addressed, including managing the vast amount of
data that HSI generates, developing models that adapt to diverse environments,
and the restrictions linked to the difficulty in obtaining labelled datasets for
analysis [93–96]. These issues collectively restrict the practical large-scale
deployment of standardized HSI methods for environmental monitoring and
pollution detection [97,98].
HSI provides rich spectral information, but its high dimensionality and

complexity pose significant challenges for data processing [53]. Each pixel of HSI
data contains extensive spectral information, requiring ample storage, advanced
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1.2 Knowledge Gaps

processing power, and efficient algorithms [53, 99]. The sheer volume of data
collected—often comprising hundreds of spectral bands—leads to the “curse
of dimensionality,” where traditional algorithms struggle to find meaningful
patterns amid vast datasets [100]. Furthermore, noise and redundancy in the
data can obscure critical signals, complicating the identification of surfaces and
making pollutant detection a slow and resource-intensive process [74].
Some approaches to reduce HSI complexity are to apply spectral indexes

or dimensionality reduction methods [99]. Spectral indexes combine a few
spectral bands with simple arithmetic operations to extract information about
target characteristics, facilitating analysis for particular applications [101].
Nevertheless, spectral indexes face limitations, such as reliance on manual
thresholding and difficulty distinguishing between multiple objects [102]. Some
band selection methods to reduce HSI dimensionality have been developed,
but most focus on general-purpose spectral bands rather than optimizing
them for specific tasks or detecting particular contaminants [103]. Band
selection methods can aid in developing specialized sensors for specific tasks,
complementing current space missions like Sentinel-2 [104] and Landsat 8 [105],
which use general multispectral bands for broad applications. Specialized
multispectral sensors must balance sensor resolution, cost, and pollutant
detection capabilities [46]. This balance is especially critical for emerging
technologies such as drones (UAVs) and nanosatellites, where constraints on
space and hardware demand efficient data usage [15,106].
A key to improving monitoring effectiveness is developing transferable

methods that enable the use of pre-trained ML models across diverse
scenarios [87]. Band selection methods can facilitate this goal by identifying
the most influential spectral ranges for detecting specific contaminants, thereby
enhancing the robustness of these models in various environmental contexts [74].
Transferable models can reduce the need for extensive labelled data and
expert supervision in new environments, making them ideal for broad-scale
implementation [89]. However, the limited transferability of current detection
techniques across different environments remains a significant challenge for
real-world applications [48]. For instance, estimating rhodamine concentration
typically requires in situ calibration measurements from each location [107].
This requirement constrains the method’s generalizability and limits its usability
across diverse geographic regions, highlighting the need for more adaptable,
site-independent solutions.
Another significant challenge in environmental studies is the scarcity of

labelled data, which is crucial for training supervised machine learning
models [108]. Labelling hyperspectral data is time-consuming and
resource-intensive, often requiring expert knowledge to interpret complex
spectral information accurately [78]. This process is particularly challenging in
remote or hazardous locations, such as the open ocean, where field validation is
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logistically difficult and costly [47]. AI methods significantly reduced manual
effort and increased adaptability, extracting more detailed information from
the data for interpretation, which surpasses the capabilities of visual analysis
and algebra-based methods in handling complex environmental conditions [69].
Still, most algorithms lack the generalizability needed to perform reliably
across diverse environmental conditions [109]. Supervised learning models
typically depend on large, labelled datasets to achieve high accuracy, but
the limited availability of such data hinders their effectiveness across various
scenarios [70, 108]. Integrating unsupervised learning techniques, which do
not require labelled data, has allowed algorithms to learn directly from data
patterns and distributions [81]. However, these methods still face challenges
with the high variability of natural environments, which can result in detection
inconsistencies [110]. For instance, in turbid or optically shallow waters, where
the bottom reflects light, the surface spectral signature received can be altered,
complicating accurate interpretation and detection [38,107].

Figure 1.6: HSI challenges faced in the thesis.

These interconnected challenges shown in Figure 1.6—high data complexity
and volume, limited model transferability across diverse environments, and
scarcity of labelled data—significantly hinder the standardization of HSI
models for environmental monitoring. Overcoming these barriers is essential
not only to enable large-scale and efficient Earth observation but also to
enhance informed decision-making in environmental management. Scalable and
generalizable HSI solutions will support data-driven responses to environmental
crises and guide the development of targeted policies, ultimately contributing to
environmental preservation.

12
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1.3 Objectives

This thesis aims to overcome the critical challenges of HSI that hinder large-
scale systematic monitoring, thus contributing to Earth preservation. The main
objective of this work is to develop a suite of transferable methodologies for
pollutant detection in aquatic environments. To achieve the main goal, several
specific sub-objectives have been outlined (Figure 1.7):

1. Present a novel spectral index to improve oil spill detection and facilitate
a rapid response during an environmental crisis.

2. Develop a dimensionality reduction methodology that optimizes the
spectral bands for water pollutant monitoring and improves the
transferability of results across different environments.

3. Propose a new loss function for unsupervised neural networks to improve
hyperspectral image processing.

The research in this thesis follows a clear progression. It starts with an analysis
of how current remote sensing missions and available sensors can be leveraged to
monitor pollution using established techniques such as spectral indexes. Building
on this, it moves towards more advanced dimensionality reduction approaches
to streamline data processing and enhance the adaptability of detection models
across various environments. The final stage of the work expands the scope
by investigating improvements to unsupervised AI-driven detection techniques,
broadening the scalability of these methods.

Figure 1.7: Main objective and sub-objectives of the thesis.
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1.4 List of Publications

This thesis includes the following journal and conference articles:

2. Spectral Index to ReduceMisclassification inOil Spill Detection

2.1 Á. Pérez-Garćıa, A. Rodŕıguez-Molina, E. Hernández and J. F.
López, “Spectral Indices Survey for Oil Spill Detection in Coastal
Areas,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 17, pp. 15359-15372, 2024. DOI:
10.1109/JSTARS.2024.3438123

3. Band SelectionMethod for EfficientWater PollutionMonitoring

3.1 Á. Pérez-Garćıa, T.H.M. van Emmerik, A. Mata, P.F. Tasseron and J. F.
López, “Efficient plastic detection in coastal areas with selected spectral
bands,” Marine Pollution Bulletin, vol. 207, p. 116914, 2024. DOI:
10.1016/j.marpolbul.2024.116914

3.2 Á. Pérez-Garćıa, A. Mart́ın Lorenzo, E. Hernández, A. Rodŕıguez-Molina,
T.H.M. van Emmerik and J. F. López, “Developing a Generalizable
Spectral Classifier for Rhodamine Detection in Aquatic Environments,”
Remote Sensing, vol. 16, pp. 1-18, 2024, Art no. 3090. DOI:
10.3390/rs16163090

4. UnsupervisedHyperspectralMethods for ScalableMonitoring

4.1 Á. Pérez-Garćıa, M. E. Paoletti, J. M. Haut and J. F. López,
“Novel Spectral Loss Function for Unsupervised Hyperspectral Image
Segmentation,” IEEE Geoscience and Remote Sensing Letters, vol. 20,
pp. 1-5, 2023, Art no. 5506505. DOI: 10.1109/LGRS.2023.3288809.

Additional contributions that have not been included in the thesis are several
publications in various journals (J) and conferences (C):

J.1 J. M. Haut, S. Moreno-Alvarez, R. Pastor-Vargas, Á. Pérez-Garćıa and M.
E. Paoletti, “Cloud-Based Analysis of Large-Scale Hyperspectral Imagery
for Oil Spill Detection,” in IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 17, pp. 2461-2474, 2023.
DOI: 10.1109/JSTARS.2023.3344022
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C.1 Á. Pérez-Garćıa, P. Horstrand and J. F. López, “Ndoi, A Novel Oil
Spectral Index: Comparisons And Results,” 2022 12th Workshop on
Hyperspectral Imaging and Signal Processing: Evolution in Remote
Sensing (WHISPERS), Rome, Italy, 2022, pp. 1-5. DOI:
10.1109/WHISPERS56178.2022.9955062

C.2 Á. Pérez-Garćıa, A. M. Lorenzo and J. F. López, “Spectral Band Selection
Methodology for Future Sensor Development,” 2024 47th MIPRO ICT and
Electronics Convention (MIPRO), Opatija, Croatia, 2024, pp. 152-156.
DOI: 10.1109/MIPRO60963.2024.10569699

C.3 Á. Pérez-Garćıa, A. Rodŕıguez-Molina, E. Hernández, L. Vera and J. F.
López,“Development of Low-Cost Multi-Spectral Cameras for Precision
Agriculture,” IGARSS 2023 - 2023 IEEE International Geoscience and
Remote Sensing Symposium, Pasadena, CA, USA, 2023, pp. 3466-3469.
DOI: 10.1109/IGARSS52108.2023.10282072

C.4 Á. Pérez-Garćıa, T. H. M. Van Emmerik, G. Amanda, M. Russwurm
and J. F. López, “River Plastic Monitoring Workflow: From Satellite to
Cloud Computing,” MICRO 2024: Plastic Pollution From Macro to Nano,
Lanzarote, Spain, 2024, p. 1. DOI: sciencesconf.org:micro2024:552946

Table 1.1 provides a summary of the journal publications produced during the
thesis, along with the key characteristics of each journal.

Table 1.1: Journal publications.
Reference Editorial Journal Name Year Impact Factor(2023) JCR Quartile

2.1 IEEE JSTARS1 2024 4.7 Q1
3.1 Elsevier Marine Pollution Bulletin 2024 5.3 Q1
3.2 MDPI Remote Sensing 2024 4.2 Q1
4.1 IEEE GRSL2 2023 4.0 Q1
J.1 IEEE JSTARS 2023 4.7 Q1

1 JSTARS: Journal of Selected Topics in Applied Earth Observations and Remote Sensing
2 GRSL: Geoscience and Remote Sensing Letters

1.5 Justification of the Thematic Unit

This thesis revolves around the critical environmental challenge of aquatic
pollution and provides new resilient methods favouring generalization to diverse
environments [2, 7, 8]. It addresses essential HSI challenges for environmental
monitoring, such as data volume and complexity and the need for rapid and
global pollutant detection. By developing a novel spectral index, proposing
a band reduction methodology, and presenting a new loss function for
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unsupervised methods, this thesis provides solutions that optimize available
optical sensors, minimizing data processing requirements without compromising
accuracy. The three chapters are closely interconnected and contribute to the
overarching goal of developing efficient and transferable methods for pollution
monitoring. Each chapter complements the others by tackling different aspects
of this challenge.
Chapter 2 introduces the development of a new spectral index for fast

oil spill detection. The Normalized Difference Oil Index (NDOI) reduces
misclassification, particularly in distinguishing oil from sand in suspension, and
it’s more straightforward to calculate than other spectral indices. Furthermore,
since spectral indices are based on a mathematical combination of bands, they
involve significantly lower computational costs than AI algorithms, which is
crucial for quick responses. This chapter directly supports the thesis’s first sub-
objective, improving oil spill detection to rapidly and accurately identify aquatic
pollutants during environmental crises. These techniques lay the groundwork for
practical, real-time monitoring systems that respond swiftly to oil spills. This
innovation is particularly vital for environments where speed and accuracy are
paramount.
Chapter 3 builds on this foundation by addressing hyperspectral data’s

high dimensionality and complexity, which hinders model transfer. A new
dimensionality reduction methodology combines feature selectors and classifiers
to identify the most influential bands for detecting specific contaminants.
The research indicates that even by reducing the number of bands to four,
high detection accuracy can be maintained for pollutants such as plastics
or dye traces like rhodamine. Thus, this chapter supports the second sub-
objective: optimizing the number of spectral bands to improve the efficiency
and adaptability of detection methods across various environments. The chapter
highlights how reducing data complexity while maintaining detection accuracy
is essential for generalizing detection models. This work also demonstrates
the transferability of spectral bands, which is critical for creating cost-effective
multispectral sensors that can be tailored to specific pollutants.
Finally, Chapter 4 explores unsupervised AI techniques, an essential

approach when labelled data is scarce or unavailable. This chapter introduces
a novel spectral loss function that enhances the performance of unsupervised
neural networks, allowing them to classify HSI based solely on spectral
characteristics. This methodology is evaluated on the Deepwater Horizon
disaster in the Gulf of Mexico 2010, demonstrating that unsupervised models
with this spectral loss function can rival traditional methods like spectral indices.
This addresses the third sub-objective of the thesis, improving unsupervised
neural networks. Introducing a novel spectral loss function enhances the
performance of unsupervised models, allowing for accurate pollution detection
in large-scale environments without the need for costly data annotation.
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Together, these three chapters form a cohesive suite of methods that
progressively advances the monitoring of aquatic pollution using HSI through
robust and transferable models. The techniques developed in each chapter
complement one another: the NDOI offers rapid, computationally light
detection; the band selection techniques reduce data complexity while enhancing
adaptability; and the unsupervised methods tackle the challenge of labelled data
scarcity. The outcomes of this research have direct implications for the design
of next-generation sensors, particularly those intended for specialized camera
systems on UAVs or future space missions, where data efficiency and operational
precision are crucial. This integrated approach ensures that the proposed
solutions are optimized for specific circumstances while also being transferable,
thus rendering them suitable for large-scale environmental monitoring.

1.6 Fundings

Pre-doctoral fellowship

This doctoral thesis was conducted while the author was beneficiary of a
predoctoral grant given by the “Agencia Canaria de Investigacion, Innovacion
y Sociedad de la Informacion (ACIISI)” of the “Consejeŕıa de Universidades,
Ciencia e Innovación y Cultura”, part-financed by the European Social Fund
Plus (FSE+) “Programa Operativo Integrado de Canarias 2021-2027, Eje 3
Tema Prioritario 74 (85%)”, with the ID TESIS2021010059.

Research projects

• PERSEO (CPP2021-008527): “Plataforma Aérea Autónoma Solar para
la Monitorización de Eventos Contaminantes en el Ecosistema Marino,”
is funded by the 2021 Public-Private Collaboration program of the
Spanish State Plan for Scientific, Technical, and Innovation Research
2021-2023, as published in Order CIN/1502/2021. The participating
entities are the Instituto Universitario de Microelectrónica Aplicada
(IUMA) at the Universidad de Las Palmas de Gran Canaria, Instituto
Tecnológico de Enerǵıas Renovables (ITER), Plataforma Oceánica de
Canarias (PLOCAN), and Elittoral S.L. The project runs from October 1,
2022, to October 31, 2025, with a grant amount of 654.779,7e. The author
characterized the optical properties of various pollutants and designed AI
algorithms to enhance their automatic detection.

• APOGEO (MAC2/1.1B/226): “Precision Agriculture for the
Improvement of Viticulture in Macaronesia” is funded by the
European Commission and the European Regional Development Fund
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(FEDER). The participating entities are the Instituto Universitario de
Microelectrónica Aplicada (IUMA) at the Universidad de Las Palmas
de Gran Canaria, Instituto de Productos Naturales y Agrobioloǵıa
(IPNA) at the Consejo Superior de Investigaciones Cient́ıficas, Banco
de Germoplasma, ISOPlexis at the Universidad de Madeira, Dirección
General de Agricultura, Gobierno de Canarias of the Cabildo Insular
de Gran Canaria, and Cabildo Insular de La Palma. The project runs
from November 1, 2019, to October 31, 2023, with a grant amount of
977.357,89e. The author investigated the VNIR spectral response of
different vineyards and applied spectral indices to assess their health.

• TALENT-HExPERIA (PID2020-116417RB-C42): “HypErsPEctRal
Imaging for Artificial intelligence applications”, a subproject of TALENT,
is funded by the Ministry of Science and Innovation of the Government
of Spain. The participating entities are the Universidad de Las Palmas
de Gran Canaria, Universidad Politécnica de Madrid, Universidad de
Castilla La Mancha, and Universidad de Cantabria. The project
runs from September 1, 2021, to August 31, 2024, with a grant
amount of 175.813,00e for the subproject. The author contributed to
the characterization of the spectral response of various pollutants and
developed a band selection system to optimize their detection.

• PTOLOMEO: “Plataforma de baja altitud para la observación autónoma
del medio marino mediante tecnoloǵıas térmicas y ópticas”, is funded by
the Cabildo Insular de Gran Canaria (Resolution No. 12/22, dated April
20, 2022). The participating entities are the Instituto Universitario de
Microelectrónica Aplicada (IUMA) at the Universidad de Las Palmas de
Gran Canaria. The project runs from June 13, 2022, to July 31, 2023, with
a grant amount of 16.558,88e. The author created a new loss function to
improve the learning process of unsupervised neural networks.

• CubeSat (C2022/158): “Tecnoloǵıa Cubesat para la Observación del
Medio Marino” is funded by the “Sociedad de Promoción Económica de
Gran Canaria” (SPEGC) of the Cabildo Insular de Gran Canaria and
managed by “Fundación Parque Cient́ıfico Tecnológico” of the Universidad
de Las Palmas de Gran Canaria. The project runs throughout 2023, with
a grant amount of 39.800,00e. The author identified the spectral bands
to be measured by the CubeSat sensor to study different water quality
parameters.

• OASIS-HARMONIE (PID2023-148285OB-C43): “Open AI-driven
Stack for enhanced HPEC platforms in Integrated Systems”, a subproject
of OASIS, is funded by the Ministry of Science and Innovation of the

18



1.6 Fundings

Government of Spain. The participating entities are the Universidad
de Las Palmas de Gran Canaria, Universidad Politécnica de Madrid,
Universidad de Castilla La Mancha, and Universidad de Cantabria. The
project runs from September 1, 2024, to August 31, 2027, with a grant
amount of 100.000,00e for the subproject. The author plans to explore
new large-scale Earth observation techniques to improve the monitoring
of extensive areas.

• SIROCO (CPP2023-010858): “Sistema predictivo de presencia de
residuos ambientales y corrosión en la superficie de los módulos y sistema
estructural de plantas fotovoltaicas, mediante procesado automático
de imagen térmica e hiperespectral,” is funded by the 2023 Public-
Private Collaboration program of the Spanish State Plan for Scientific,
Technical, and Innovation Research 2021-2023, as published in Order
CIN/1025/2022. The participating entities are the Instituto Universitario
de Microelectrónica Aplicada (IUMA) at the Universidad de Las Palmas
de Gran Canaria, Instituto Tecnológico de Enerǵıas Renovables (ITER),
and Fundación Instituto Tecnológico de Galicia. The project runs from
December 2, 2024, to December 31, 2027, with a grant amount of
800.171,75e. The author will assist in spectrally characterizing corrosion
in various materials and optimize the selection of bands for detecting it.

Other funding support

• Research network REINFORCED+: The autor is a member of the
National Research Network for Mobile Robotics and Artificial Intelligence
for Aquatic Ecosystems Monitoring (REINFORCED+) research network,
funded by the Ministry of Science, Innovation and Universities and the
State Research Agency of Spain under the ”Redes de Investigación 2022”
call [111].

• Invited talk at the “Drone: Applications in Various Fields” symposium
at Wageningen University and Research. The university covered all travel
and accommodation expenses for the author to give the talk.

• ERASMUS+ 2022/2023 to undertake a two and a half month stay at
Wageningen University and Research in the Netherlands.

• ERASMUS+ 2023/2024 to undertake a two month stay at Wageningen
University and Research in the Netherlands.

• ACIISI (Agencia Canaria de Investigación, Innovación y Sociedad de
la Información) grant for a short stay in Spain and abroad as part of
an official doctoral programme in the Canary Islands, co-financed by the
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European Social Fund Plus for the year 2024. A short research stay of one
week to continue with previous investigations at Wageningen University
and Research.

• ULPGC: Grants for developing a research career at ULPGC, Ayudas
para el desarrollo de la carrera investigadora en la ULPGC, corresponding
to the academic year 2021-2022. Attendance at the ESA Living Planet
Symposium [112,113] international conferences.

• ULPGC: Grants for developing a research career at ULPGC,
corresponding to the academic year 2022-2023. Attendance at
the EDUNINE 2023 (VII IEEE World Engineering Education
Conference) [114,115].

• ULPGC: Grants for developing a research career at ULPGC,
corresponding to the academic year 2023-2024. Attendance at the MIPRO
2024 (47th ICT and Electronics Convention) [116].

• ULPGC: Payment support for scientific publications corresponding to the
academic year 2024-2025. Article entitled “Spectral Indices Survey for Oil
Spill Detection in Coastal Areas” [61].
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Chapter 2

Spectral Indices to Reduce
Misclassification inOil Spill Detection

The detection and characterization of marine pollutants, particularly oil spills,
have become critical in responding to environmental crises in coastal areas.
Spectral remote sensing techniques offer a powerful means of monitoring these
pollutants. One of the main challenges in oil spill detection is accurately
distinguishing the spectral behaviour of oil from other substances in the water,
such as suspended sediments or vegetation, which can lead to misclassification
and delayed response times during a crisis.
This chapter addresses Sub-objective 1 of the thesis, which aims to improve

oil spill detection with spectral indexes, facilitating a rapid response during an
environmental crisis. Although several spectral indices are available for detecting
oil spills, many are limited by their tendency to misclassify suspended sand as
pollution, leading to inaccurate detection. The author proposed the Normalized
Difference Oil Index (NDOI) to overcome this issue in the conference paper
C.1 “NDOI, A Novel Oil Spectral Index: Comparisons and Results”. This
new spectral index significantly reduces the misclassification of sand, improving
detection accuracy and monitoring of oil spills in coastal areas.
Section 2.1, “Spectral Indices Survey for Oil Spill Detection in Coastal

Areas”, evaluates various spectral indices and their effectiveness in detecting
oil spills. Its performance has been analyzed by employing different satellites
and estimating the spill’s thickness and volume. By providing a more apparent
spectral distinction between oil and other features like suspended sand and
using two bands in the VNIR range, NDOI is a more suitable mechanism for
fast oil spill detection and response. This survey highlights the strengths and
weaknesses of different approaches, reinforcing the need for robust, cost-effective
and adaptable spectral tools like NDOI.
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2.1 Spectral Indices Survey for Oil Spill Detection
in Coastal Areas

• Á. Pérez-Garćıa, A. Rodŕıguez-Molina, E. Hernández and J. F.
López, “Spectral Indices Survey for Oil Spill Detection in Coastal
Areas,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 17, pp. 15359-15372, 2024. DOI:
10.1109/JSTARS.2024.3438123

• Publisher: IEEE.

• Print ISSN: 1939-1404 (Electronic ISSN: 2151-1535).
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– Rank by Journal Impact Factor:

∗ Q1: Engineering, Electrical & Electronic; Remote Sensing;
Imaging Science & Photographic Technology; Geography,
Physical.

22

https://doi.org/10.1109/JSTARS.2024.3438123


IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024 15359

Spectral Indices Survey for Oil Spill Detection in
Coastal Areas

Ámbar Pérez-García , Graduate Student Member, IEEE, Adrián Rodríguez-Molina , Emma Hernández,
and José Fco López

Abstract—When oil spills occur at sea, effective detection and
monitoring are required to establish a successful response plan,
and remote sensing emerges as an appropriate technology to sup-
port this process. Furthermore, Earth observation is progressively
relying on low-cost multispectral sensors developed for monitoring
particular features across various scenarios. However, despite these
advancements, the ongoing challenge lies in reducing computa-
tional costs, resource requirements, and energy consumption. This
work aims to select the spectral index that best detects coastal
spills among those documented. The long-term goal is to develop a
low-cost multispectral sensor with suitable bands. For this purpose,
this study uses data from different sensors that acquired data
of the Deepwater Horizon accident in the Gulf of Mexico. The
confusion matrices, accuracy, and F1-score generated from the
kNN pixel classification based on the indices values are measures of
its performance. For this study, the recently introduced normalized
difference oil index (NDOI) proves to be the best option for iden-
tifying coastal spills since it minimizes the false positives related
to suspended sand and is quick to calculate. In addition, it has
demonstrated that it helps distinguish different spill thicknesses
and estimates the oil volume. Therefore, future research will focus
on developing and validating a low-cost multispectral system that
uses the NDOI bands to detect spills.

Index Terms—Hyperspectral images (HSIs), oil spill, remote
sensing (RS), spectral indices.

I. INTRODUCTION

THE marine environment supports a diverse range of sea
life that is extremely important for global biodiversity and

quality of life, including climate regulation. Oil spills devastate
marine and coastal environments, poisoning and suffocating
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marine wildlife, accumulating on the seafloor and beaches, and
causing long-term environmental impacts. Remote sensing (RS)
and spectral technology are valuable tools for monitoring oil
spills and assessing clean-up. However, there are still limita-
tions in processing speed and, therefore, response time. Spectral
indices offer a swift response with minimal computational over-
head, rendering them a valuable and efficient approximation.
This comparative study is noteworthy as it assesses the perfor-
mance of existing indices and explores their limitations, making
it a valuable contribution to the field.

Tanker accidents, refineries, offshore platforms, and minor
maritime operations produce tons of crude and oil products that
reach the sea yearly [1]. The most common causes of spills are
oil exploration, pipeline leaks, and crude oil transfer to tankers.
Still, they are also caused by illegal oil extraction or natural
causes such as earthquakes or hurricanes [2]. The conventional
method for measuring marine pollution before the 1960s was to
sail into polluted regions, take in situ measurements at different
depths, and then examine them in laboratories to determine water
properties. This way, precise results are obtained but at a high
cost in terms of human and material resources. Besides, this ap-
proach is very time-consuming and is geographically limited due
to the inability to survey broad areas [3]. Aircraft and coastguard
forces were introduced to improve ocean surveillance. Simple
photography and video at short distances are examples of this.
However, data acquisition costs remain high for larger areas [4].

Satellite and aerial RS have proven to be adequate tools for
detecting and mapping marine pollutants, providing valuable
data for time-evolution modeling to track contaminants through
space and time [3]. When monitoring large areas, satellites are
more efficient than aircraft as they can cover more extensive
regions. Hence, they are used to detect spills and lead to a timely
response to the incident. Airborne sensors can then conduct
exhaustive monitoring, quantify the scale of the disaster, and
identify the type of pollutant [5]. In recent years, uncrewed
aerial vehicles (UAVs) have become vital in RS, offering high
flexibility and resolution for rapid real-time data collection, but
face challenges like accurate geo-referencing and real-time pro-
cessing of hyperspectral images [6]. Therefore, given its broad
coverage, satellite monitoring emerges as the optimal choice for
oil spill detection.

It is crucial to remember that not all sensors are equally
effective because each spectral range has advantages and dis-
advantages for a specific scenario. Although synthetic aperture
radar (SAR) sensors are frequently used for the detection of
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spillages, over the past decade, optical sensors have outper-
formed SAR in certain aspects of spill monitoring [7]. Part
of this improvement is attributed to the proliferation of mul-
tispectral and hyperspectral sensors onboard satellites, which
offer unprecedented spectral analysis of scenarios. Progress has
also been made in developing low-cost multispectral sensors
specialized in monitoring and characterizing a particular surface
or features [8], [9], [10]. Optical sensors are a more suitable
alternative than radar sensors for continuous monitoring due
to their higher repetition time. This advantage stems from the
greater presence of optical sensors onboard satellites, resulting
in a higher repetition time for optical information from different
sensors that can be combined. Optical sensor satellites guarantee
a short revisit period, minutes for geostationary satellites, and
a few hours for low Earth orbiting polar satellites. Instead,
SAR satellites may require dozens of days to revisit midlatitude
regions [11].

Multispectral and hyperspectral sensors can capture spectral
signature-based 3-D images that provide valuable information
about the composition of the surface studied in each pixel. A
key feature in the optical detection of oil spills is that under
sunglint, they might appear differently in shape, color, and
contrast between light and dark [12]. The spectral signature of
the spill varies with oil properties, the film thickness, its degree
of evaporation, and the meteorological conditions such as sun
illumination and air-water content [13]. It is possible to estimate
the thickness of oil slicks with optical sensors [14]. Further-
more, due to their capacity to identify the chemical composition
in detail and assess its abundance [15], high-spectral resolu-
tion sensors can differentiate false positives [5], distinguish oil
types [16], [17], and quantify oil volume [18], [19], [20].

Several studies involve machine learning and neural net-
works (NNs) on high-precision maritime pollution detection
with optical and radar sensors [21], [22], [23]. Although some
AI methods discriminate between oil-contaminated and nonpol-
luted regions [24], [25], they are slower than performing a few
mathematical operations such as spectral indices. The simplicity,
dimensional reduction of the data to be processed, and the calcu-
lation speed of spectral indices are significant advantages over
machine learning techniques. Furthermore, implementing spec-
tral indices into hardware acceleration devices like graphics pro-
cessing units (GPUs) and field programmable gate arrays (FP-
GAs) allows for parallel operations, further reducing processing
time and energy consumed. Spectral indices become vital for
monitoring in quasi-real-time, especially when working with hy-
perspectral sensors with hundreds of bands, and a short response
time is required, for example, in a spill accident at sea [26].

The Deepwater Horizon (DWH) event-related hyperspectral
and multispectral data are the focus of this investigation. The
DWH oil spill, also known as the Gulf of Mexico oil spill, started
on April 20, 2010, and discharged 780 000 m3 of oil into the
northern Gulf of Mexico for nearly three months [27]. When a
spill such as the DWH happens, affecting a large coastal area and
lasting for months, response teams cannot efficiently assess and
contain all the damage. Thus, RS is crucial in decision-making.
The long duration of the DWH event allowed scientists to
collect data from a wide range of platforms and sensors, varying

from SAR to optical sensors in the visible and thermal ranges,
including multispectral and hyperspectral sensors, both onboard
satellites and aircraft [28]. Thus, DWH marked a turning point
in developing techniques and algorithms for oil spill monitoring
and response.

This work arises from the interest in developing a low-cost
multispectral sensor to monitor oil spills along coastlines. Based
on the spectral indices, the sensor can be designed with just the
essential bands, considerably decreasing cost and enhancing the
accessibility of this technology. Therefore, this study aims to
select the most suitable spectral index to build such a sensor.
For this purpose, a survey of the spectral index documented
in the literature that can identify oil spills at sea is presented,
along with a section on the distinction of spill thickness and oil
volume based on prior works. Due to the difficulty of accessing
regions of the ocean contaminated by an oil spill, the cost
associated with measuring it, and the hence, they are used to
detect spills and rapidly change the event, obtaining ground
truth for the images above is challenging. Therefore, relevant
pixels are carefully hand-picked from the image and labeled
with the region to which they belong. The recently introduced
normalized difference oil index (NDOI) [29] has given the best
results of the study, with an overall accuracy of 94.5%, and has
proven valuable in differentiating oil-in-water spill thicknesses
and volume.

II. STATE OF THE ART OF SPECTRAL INDICES FOR OIL SPILL

DETECTION

Solar radiation travels through the atmosphere before it is
reflected on Earth’s surface and reaches the sensor. Therefore,
optical RS produces images from the radiation emerging from
the Earth’s surface-atmosphere system in the direction of obser-
vation of the sensor. The intensity of the radiant flux for a given
surface and a given wavelength is a physical quantity measured
in watts per squared meter steradian (W/(sr.m2)). As this quan-
tity is susceptible to atmospheric disturbances, reflectance—
defined as the ratio of the emitted surface flux to the incident
flux—obtained after atmospheric correction is used [30]. The
spectral reflectance signatures help to distinguish the targets be-
cause each material reflects and absorbs light differently for each
wavelength. The interaction between electromagnetic waves and
water depends on the optical properties of water, absorption, and
scattering, which alter its reflectance. This response—captured
by remote sensors—is strongly linked to the concentrations,
types, and presence of substances in water [31]. RS is crucial
in monitoring spills at sea. Hyperspectral sensors with superior
spectral and spatial resolution facilitate the discrimination of
false positives, and the identification of oil type [32]. However,
the high dimension of the hyperspectral and multispectral im-
ages complicates their storage and processing. Furthermore, the
high correlation of bands decreases the efficiency and accuracy
of its analysis and classification [33]. The most relevant bands
for the study are selected to solve this data volume problem.

Spectral indices are combinations of bands by simple arith-
metic operations to highlight some spectral behavior and sup-
press the background. The band choice depends on the spectral
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TABLE I
MOST CITED INDICES FOR IDENTIFYING SPILLS

characteristics of the phenomenon under study. Oil spills can be
found using a variety of thoroughly tested spectral indices. How-
ever, new and improved indices have recently been proposed that
can be adapted to a specific satellite sensor image or a specific
scene [34]. The pixel misclassification due to sand suspension
on the coast is a weakness identified in most spectral indices
in the literature [35]. Misclassification is a significant obstacle
when spills occur in coastal areas. It makes the initial study of the
oil spill, its follow-up, and the analysis of its long-term impact
more difficult. Consequently, the NDOI—a new index that can
mitigate this impact—was introduced [29].

The spectral index family commonly used to detect spills
(see Table I) includes fluorescence index (FI) [36], rotation-
absorption index (RAI), where b is the pixel radiance for the
image band, [36], hydrogen index (HI) [37], and oil slope
index (OSI) [38]. Seawater and vegetation indices are also
included, such as water absorption feature (WAF) [39] and
colored dissolved organic matter (CDOM) [40], or chloro-
phyll content (CHL) [41], normalized difference vegetation
index (NDVI) [42], and normalized difference water index
(NDWI) [43]. Band ratios are spectral indices where only two
bands are used, partially normalizing the effect of clouds and
shadows. Band ratios were born to improve the delineation
accuracy provided by single-band pixels. This study will also
use a custom ratio designed from Sentinel 2 bands to distinguish
between polluted and clean water: ratio B2/B11 [44]. Note that
the wavelengths of the indices will not match exactly on all
sensors, nor will it be possible to obtain all indices on all sensors
due to the spectral ranges of each sensor. As airborne visible
infrared imaging spectrometer (AVIRIS) covers the short-wave
infrared (SWIR) range, it is possible to calculate spectral indices
that are not possible with other sensors: HI, WAF, NDWI, and
the ratio B2/B11.

Three types of spills can be distinguished spectrally by thick-
ness: thin-film spills, thick-film spills, and emulsions (mixing of
oil and seawater). Below 50 microns, the spots appear metallic,
rainbow, or silver in color and are called sheens [45]. Thin-film

oil has a yellow–orange hue and appears in the vicinity of
thick-film oil slicks, which is usually the result of its dispersion.
These spots are typically discontinuous and irregular. They are
generally between 50 and 200 microns thick. The color of
crude oil, dark reddish-brown or black, is visible in thick-film
spills [46]. These spots are commonly continuous and compact,
with a thickness above 200 microns. Finally, emulsions are
water-to-oil mixtures with a red-orange color that appear in the
convergence zones of the waves and look like long, narrow bands
of oil [47]. Its thickness is difficult to measure precisely but is
higher than that of the thick-film oil, exceeding 500 microns.

As mentioned in Section I, although there are several lim-
itations to detecting spills with optical imaging, its potential
and applicability are indisputable [44]. In the case of shallow
water spills, thin-film spills exhibit the same spectral behavior
as the ocean floor [48]. However, in the open sea, it is easier
to distinguish the optical characteristics of crude oil. Seawater
influences thin oil films (sheens) due to its near translucency.
On the contrary, the transparency of thick oil slicks is weak, so
their spectra are weakly affected by seawater. Therefore, the
hydrocarbon spectral indices (NDOI, FI, RAI, HI, and OSI)
help identify emulsions and continuous thick slicks. By contrast,
the water and vegetation spectral indices (WAF, CDOM, CHL,
NDVI, and NDWI) are more suitable for detecting sheens and
seawater [45]. Both are complementary, so their combination
improves recognition accuracy. In general, sheens are more
easily noticed at viewing directions near the sun-glint zone,
while thick films are more likely to be identified at viewing
angles away from the sun [49].

Oil weathering processes act on the spills produced on the
sea surface, causing their spreading, evaporation, dissolution,
emulsion, etc., thus, modifying the volume of oil in the slick.
Processes such as evaporation remove much of the volatile parts,
but emulsification of the spill with seawater can increase the oil
volume [50]. This article uses the Bonn Agreement Oil Appear-
ance Code [51], adopted as a standard method for assessing the
volume of oil in water in 2004. It codes the thickness of the slicks
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TABLE II
CHARACTERISTICS OF THE STUDY’S SENSORS

from 1-5 in order of increasing thickness for sheens (silver/gray),
rainbow, metallic, discontinuous, and continuous true oil colors.
The Bonn Agreement Oil Appearance Code does not provide a
specific code for emulsions due to their thickness variability and,
therefore, volume estimation complexity [51]. Oil sheens have a
thickness between 0.04 and 0.3 microns, rainbow-colored slicks
between 0.3 and 5.0 microns, metallic-looking slicks are typi-
cally between 5.0 and 50 microns, and discontinuous true-color
oil slicks can reach up to 200 microns. Thicker thicknesses fit
into continuous true-color oil slicks or emulsions, depending on
how degraded the oil is by mixing with water.

III. MATERIALS AND METHODS

A. Datasets

In this work, two images from each sensor—AVIRIS, Hy-
perspectral Imager for the Coastal Ocean (HICO), and Medium
Resolution Imaging Spectrometer (MERIS)—have been used to
contrast the results of the spectral indices. Table II shows their
technical characteristics.

The AVIRIS is an airborne instrument that measures up-
welling spectral radiance in 224 contiguous bands at 10 nm
intervals across a wavelength range from 366 to 2496 nm (VNIR
and SWIR) [52]. NASA’s Jet Propulsion Laboratory (JPL) de-
signed and built the sensor in California. Data are available from
1992 to the present. The main objective of the AVIRIS project
is to identify, measure, and monitor constituents of the Earth’s
surface and atmosphere based on molecular absorption and
particle scattering signatures [53]. It has flown in four different
aircraft. The width, length, and spatial resolution of the recorded
images vary with the flight altitude of the vehicle. For example,
when flying at an altitude of 20 km, scenes of 11 km in width
and 800 km in length are obtained with a spatial resolution of
20 m. The HICO is the first space-borne imaging spectrometer
designed to sample the coastal ocean. It was developed by
the Naval Research Laboratory (NRL) for the Office of Naval
Research (ONR) and later cofunded by NASA’s International
Space Station (ISS) Program. It was operational between 2009
and 2014. Its purpose was to provide data for coastal scientific
research worldwide. The instrument can obtain 2000 scenes each
year with a revisit period of approximately three days. HICO has
120 bands between 380 and 960 nm (VNIR) sampled at 5.7 nm,
with a spatial resolution of 90 m and a high signal-to-noise ratio

Fig. 1. Geolocation of survey images in the Gulf of Mexico (source: Google
Earth V 9.147.0.2).

to resolve the complexity of the coastal ocean [54]. This work
uses images with an L1B (sensor units) processing level.

The MERIS was a programmable spectrometer on the Euro-
pean Space Agency (ESA) Envisat mission. Its primary goal was
to measure the color of the ocean, although atmospheric and land
surface studies were also carried out. MERIS was developed
under the leadership of ALCATEL Space Industries and was
in operation from 2002 to 2012. One of its most outstanding
features was the programmability of its spectral bands in width
and position, with 15 bands between 412 and 900 nm and
a bandwidth of 10 nm. The images are in top-of-atmosphere
(TOA) reflectance units, with a spatial resolution of up to 300 m
and a revisit time of around three days [55].

B. Study Area

The DWH oil rig was in the Gulf of Mexico, 93 km southeast
of the Mississippi River Delta. When it exploded, a considerable
volume of crude oil leaked out [56]. Fig. 1 shows the area
covered by each of the images in the study to give the reader
an idea of the dimensions of the different sensors. The oil
spill studied was between 26◦ and 30◦ north and 84◦ and 92◦

west. We concentrate exclusively on the region of the image
that is of the utmost concern, as the oil spill presents all the
characteristics that we consider relevant to the study. Given that
this is a dynamic process, we have provided the dates and times
of image acquisition (see Table III).

The selected set of images contains thick and thin oil spills
to test the effectiveness of the spectral indices against slicks of
different characteristics and thicknesses. It is important to note
that most of the water surrounding the spillage contains a small
part of diluted oil. The whole surface close to the thick stains
suffers from this contamination. As this is a near-shore spill,
some scenes also show sand suspended in the ocean. We have
masked out the clouds in the images following a methodology
proposed by [57] that allows us to ensure accurate cloud masking
tailored to the specific characteristics of our images.

In the AVIRIS scenes (see Fig. 2), the oil can be seen with the
naked eye in the RGB composition. In the image captured on
May 17, different thicknesses of oil slicks can be distinguished,
with several bright lines running across the bottom half of the



PÉREZ-GARCÍA et al.: SPECTRAL INDICES SURVEY FOR OIL SPILL DETECTION IN COASTAL AREAS 15363

TABLE III
DATE OF THE CAPTURE OF THE STUDY IMAGES

Fig. 2. AVIRIS true color RGB images from 17 May 2010, at 20:46 and 18
May 2010, at 19:59. (a) AVIRIS 1. (b) AVIRIS 2.

Fig. 3. HICO true color RGB images from 24 May 2010, at 14:55 and 28 May
2010, at 13:21. (a) HICO 1. (b) HICO 2.

figure, which correspond to an emulsion. There are also thick
oil stains, seen as dark reddish rounded spots in the upper part
of the image. In the May 18 image, traces of thin oil are faintly
visible in a diagonal direction. There is also a tiny cloud in the
lower right part. From now on, the AVIRIS image of 17 May
2010, will be called AVIRIS 1, and that of 18 May 2010, will be
AVIRIS 2.

Regarding HICO images (see Fig. 3), in HICO 1, the one
corresponding to May 24, the trail of sand in suspension from the
Louisiana coast, specifically from the Mississippi River mouth,
can be seen on the left side. On the right side of the image, there
is also a faint vertical line of oil. In HICO 2, the one taken on
May 28, practically no element can be seen, only the clouds in
the bottom left corner.

Unlike the scenes shown, MERIS images cover a much larger
land area at the cost of losing spatial resolution. The two images
of Fig. 4—MERIS 1 and MERIS 2—cover the entire spill. In
addition, both show different thicknesses of oil and part of the
Mexican coastline. Thus, measuring the affected area and the
thickness of the oil film at each point is more complicated. To
highlight the spill-affected region effectively, we have masked

Fig. 4. MERIS false color RGB images from 26 April 2010, at 15:56 and 2
May 2010, at 16:08. (a) MERIS 1. (b) MERIS 2.

Fig. 5. Flowchart of the experimental process. Blue indicates the initial phase
of data preparation, pink represents the algorithm’s training phase, and green
denotes the final phase of analysis and presentation of results. The yellow
diamond indicates a decision point.

the clouds and the coastline in the image since they exhibit
higher reflectivity values than the oil spill area. Both MERIS
scenes are affected by sunglint and are thus displayed in a false
RGB to facilitate the differentiation of the polluting material.
These present an opportunity to explore indices’ behavior and
performance under sunglint.

It is interesting to note the rapid dispersal of the spill, deduced
from its shape change between 26 April and 2 May. These
underline how crucial it is that the clean-up teams and maritime
authorities take immediate action.

C. Experimental Process

Fig. 5 provides a flowchart to facilitate the explanation of
the experimental procedure. The process has three stages: the
preprocessing of the images, the data processing and training
of the computational model, and the result evaluation. Once
the AVIRIS, HICO, and MERIS images have been selected and
downloaded from the corresponding platforms [53], [54], [55],
these must be corrected using the information provided in the
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image metadata. If necessary, cloud masks are applied. Next,
we select the areas of interest from the true-color or false-color
images and, create the subsets train (70%) and test (30%) ran-
domly. Although it is not possible to distinguish thicknesses
in all the scenes, it is essential to ensure that all three subsets
contain different thicknesses of oil slicks and are different from
each other to obtain a consistent sample.

We employed the bands of the multispectral and hyperspectral
images to calculate the corresponding spectral indices for oil
detection and seawater composition. For each spectral index,
pixels of the interest areas are extracted and used to train and
test the computational kNN model. The kNN algorithm [58],
[59] is a popular nonparametric classification method known to
have significant classification performance and simple imple-
mentation. One of the keys to the success of this algorithm is
the hyperparameter k, which allows the selection of the number
of neighbors that influence the classification of a given pixel.
Different values of k have been tested for the dataset, finding
that from k equal to five, the improvement in the accuracy of the
indices is insignificant. This method is efficient in classification
problems with imbalanced class distributions, a situation in
which our scenario is found, given that there are many more
water pixels than spill pixels [60]. Combining the index’s visual
analysis with the calculation of model errors makes it possible
to establish which are most effective in each scenario.

The confusion matrices produced by the classification, com-
bined with its corresponding accuracy, F1-score metrics, and a
figure of merit, γ, will be used to calculate the error. A confusion
matrix illustrates the relationship between predicted and real
labels, enabling assessing the classification model’s quality.
Accuracy is one of the most widely used and favored metrics
in classification. It measures the percentage of correct predic-
tions [61]. Moreover, the F1-score is particularly useful with
uneven class distribution, giving more importance to smaller
classes [62]. Finally, we introduce a figure of merit denoted as
γ, which combines the results of the previous metrics

γ = Accuracy · F1Oil

F1Water
(1)

where Accuracy is the overall accuracy [61], and F1Oil and
F1Water denote the F1-scores [62] for the oil and water classes,
γ encompasses the error metrics by weighing the accuracy with
the ratio between the F1-scores of the oil and water classes.
This approach enables γ to account for accuracy relative to the
performance of unbalanced classes.

D. Validation

Oil spills at sea vary rapidly due to the movement of currents
that disperse the oil and evaporation processes. These circum-
stances mean that measuring the composition and thickness of
spillage in situ in all affected areas is complicated and costly in
terms of time and resources. For these reasons, there is often no
ground truth of spills against which to test the results of spectral
indices and classification algorithms. We propose a technique
to validate them based on the Bonn Agreement Oil Appearance
Code [51]. To address the lack of ground truth, we hand-pick the

Fig. 6. AVIRIS true color RGB and NDOI from 17 May 2010, at 20:46. (a)
AVIRIS 1. (b) NDOI.

pixels that belong to a class, label them, and shuffle them to build
a training and test dataset with a sample ratio of 70/30. Second,
we use the two sets to train the kNN algorithm and validate
its result. These will provide a measure of the effectiveness of
the indices. Although the kNN introduces a small error in the
classification, the primary importance lies in the indices. So, if
the values of a spectral index for a class are similar but different
from other classes, we will achieve satisfactory results in the
confusion matrix and error metrics.

The validation technique has been used both for evaluating
the effectiveness of the indices and for verifying the perfor-
mance of NDOI in estimating thicknesses and volumes of oil
spills. For this purpose, two previous works will be taken as a
reference [20], [45]. The authors estimated the thickness and oil
volume with AVIRIS and MERIS imagery on dates close to those
used in this work. Based on these results as the ground truth, we
conducted tests to evaluate the effectiveness of the validation
method and the spectral index’s capability to estimate the oil
spill’s thickness and volume. The detailed results and analysis
are presented in Section IV-D.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

First, we performed a visual examination of the NDOI about
the RGB representation for the representative image of each
sensor to illustrate the index characteristics found in previous
work [29], [35]. Next, we extend the study by performing a
qualitative analysis of spectral indices from the literature for
several scenes. Then, its performance is quantified using metric
confusion matrices, precision, and F1-score. Finally, we test
whether the NDOI can distinguish different thicknesses and
volumes of oil at sea.

A. NDOI Qualitative Analysis

The first scene to be studied (see Fig. 6) is AVIRIS 1. This
image is of great interest because it shows spots of different
thicknesses. The naked eye can see how the NDOI index per-
fectly highlights the emulsion, which is noticeable in the RGB
image as a narrow orange band of spill across it. It also reveals
the thicker oil slicks, which can be observed in RGB as dark
red-brown spots, although the darker part is not adequately
identified. Thinner, discontinuous areas typically produced by
the dispersion of an emulsion or thick patches are near them in a
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Fig. 7. HICO true color RGB and NDOI from 24 May 2010, at 14:55. (a)
HICO 1. (b) NDOI.

Fig. 8. MERIS false color RGB and NDOI from 26 April 2010, at 15:56. (a)
MERIS 1. (b) NDOI.

softer tone. Fine stains appear as a faint, yellowish color in RGB,
making them more difficult to discern. Thinner spots, known as
sheens, are not detectable with the index—nor are they visible in
RGB, as these are semitransparent, usually acquiring a metallic,
rainbow, or silver color. It is worth noting that most of the ocean
surface surrounding the spills is somehow tainted. Almost the
entire surrounding region, unhighlighted by the spectral index
(white color), is covered by a thin layer of oil. Because the
spectral index can detect several different thicknesses in the
AVIRIS image (emulsion, thick spot, and thin spot), it is to
be expected that the NDOI can help infer spill thickness in a
subsequent scene.

Apart from distinguishing the thickness of the spot, a crucially
important aspect of a spectral index is its ability to discriminate
look-alikes. As mentioned in Section II, most indices in the
literature highlight the suspended sand as if it were part of the
spill. This is a handicap in the study of coastal discharges. Fig. 7
shows HICO 1, where it is possible to identify sand from the delta
produced by the Mississippi River on the left side. The NDOI
index completely dismisses this suspended sand and accentuates
the thin strands of the spill to the right of it. Thus, with this
spectral index, the oil pathways are clearly defined.

Finally, it is relevant to underline how efficiently the index
performs when treating the entire spill. When a slick of this
magnitude is involved, the situation is often quite complex.
Its characteristics can be subject to variations related to ocean
currents or the composition of the water in which it travels.
Although the new index does not highlight all the observable
details in the false-color image (see Fig. 8), it indicates the
thicker spill and the trajectories followed by the thinner spill
strips. In this case, it is difficult to identify the complete slick
using spectral indices due to its wide variety of spectral behavior

and the sunglint. However, NDOI can detect different mixtures
of oil and seawater, which is intricately linked to the volume
of oil (further explored in Section IV-D). More elaborate post-
processing could be performed to classify regions of different
characteristics. At first glance, the novel index distinguishes
between three classes. The filament is highlighted in white,
corresponding to an emulsion zone. The thick spill is marked
in dark gray, and the sea in light gray. The following sections
will test whether sunglint affects the ability of the indices to
differentiate water from oil and to identify their characteristics.

Because the advanced synthetic aperture radar (ASAR) sensor
is also on board the Envisat mission, it was possible to compare
the data generated by the radar with the outcomes of the NDOI
for MERIS in earlier work [35]. NDOI is said to be robust
because its pattern matches the ASAR radar image captured
on the same day.

Given the results, the implementation of the NDOI index is
broadly satisfactory. We must now compare its effectiveness
with the other spectral indices in the literature.

B. NDOI: A Comparative Study

Starting again with AVIRIS 1, Fig. 9 shows a compilation
of the literature indices and the RGB image. At first glance,
most indices present a similar pattern to that observed in NDOI.
Specifically, both RAI, FI, and CDOM seem identical to NDOI.
While RAI highlights fine oil slicks less than NDOI, CDOM
enhances them more than NDOI. The B2/B11 ratio accurately
detects the presence of oil, even highlighting areas with very thin
spill thickness. The NDVI exhibits a similar structure to NDOI,
though not as pronounced in the sheens. However, the index is
inverted, highlighting the unpolluted area. Similarly, the HI and
OSI are inverted. These indices only point to the thickest spill
zone, the emulsions. The HI index shows banding because it
involves AVIRIS bands with wavelengths longer than 1700 nm,
in which the signal-to-noise ratio is poor. The WAF and NDWI
indices also indicate the thicker regions of the spill. Only the
emulsions are identified in the WAF case, whereas, in the case
of NDWI, slightly thinner discharges are also discernible. Very
thick spill parts that turn dark red or almost black have different
spectral behavior and are difficult for the spectral indices to
distinguish, except for NDWI and the B2/B11 ratio. Finally,
the chlorophyll index, CHL, is the least clear. The emulsion’s
narrow lines are visible, and the thick spill spots are highlighted
in white. However, the rest of the scene seems blurred, so the
remaining oil is indistinguishable. It is possible that all indices
are valid in certain aspects but are not equally efficient and do
not provide the same results for different thickness.

Some indices cannot be determined with HICO since this
sensor does not reach the shortwave infrared range: HI, WAF,
NDWI, and ratio B2/B11. The most noticeable difference be-
tween the spectral indices shown in HICO 1 (see Fig. 10) is
how they treat the suspended sand from the delta. As explained
before, NDOI discards this sand completely, and the oil path is
clearly defined, with two thin lines splitting the image. NDVI
presents the same behavior but again inverted. The subsequent
index with similar behavior is RAI. However, the two oil
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Fig. 9. AVIRIS true color RGB and spectral indices from 17 May 17 at 20:46. (a) RGB AVIRIS 1. (b) NDOI. (c) RAI. (d) FI. (e) HI. (f) OSI. (g) WAF. (h)
CDOM. (i) CHL. (j) NDVI. (k) NDWI. (l) RATIO B2/B11.

Fig. 10. HICO true color RGB and spectral indices from 24 May 2010, at 14:55. (a) RGB HICO 1. (b) NDOI. (c) RAI. (d) FI. (e) OSI. (f) CDOM. (g) CHL. (h)
NDVI.

filaments are not as well defined, and some of the suspended sand
could be mistaken for a sheen. The remaining indices mistakenly
highlighted the sand in suspension as a spill. For CDOM, the line
of the oil spill farthest from the delta can be seen, and the closer
one can be intuited. For FI and CHL, just the most distant line
from the mouth of the river can be distinguished. In the case of
OSI, the oil spill is practically indistinguishable, with only the
sand in suspension standing out.

As for HICO, MERIS does not cover the shortwave infrared.
Consequently, HI , WAF, NDWI, and ratio B2/B11 cannot be
applied either. Since MERIS images cover the entire spill and

the sunglint effect, some spectral behaviors in the image differ
significantly from others, making analysis more challenging.
Guided by the false-color composition in MERIS 1 (see Fig. 11),
two oil cores appear in the discharge. One is at the lower left
of the image (principal), and the other is centered on the right
(secondary), joined by a strand, and a second strand rises from
the secondary one. The principal oil cluster is less homogeneous,
and changes in thickness are abrupt, while in the other core, these
changes are gradual. Most spectral indices reveal an area of oil
accumulation as a white filament in the left area of the image. It
is dark in the NDVI but blends into the background in the CHL.
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TABLE IV
ERROR METRICS FOR ASSESSING SPECTRAL INDICES

Fig. 11. MERIS false color RGB and spectral indices from 26 April 2010, at
15:58. (a) RGB MERIS 1. (b) NDOI. (c) RAI. (d) FI. (e) OSI. (f) CDOM. (g)
CHL. (h) NDVI.

This behavior is probably a consequence of the solar illumination
and oil thickness and causes the rest of the image to lose contrast.
NDOI, RAI, and CDOM all show the entire silhouette of the
spill, with NDOI being the clearest. In RAI, the second core
has a lighter film around it, probably produced by sheens. These
can be seen more clearly in FI, obstructing the distinction of
the main spill. In OSI, the principal accumulation stands out
more than the other one. NDVI shows a similar phenomenon,
but in that case, it is more challenging to observe because of
the stark contrast of the image with the highlighted filament.
Finally, CHL has a different pattern from the rest. The right
cluster is distinguishable, and the other has many undetected
gaps. However, the overall silhouette is still distinguishable.

Fig. 12 shows the effect of masking this filament. The image
contrast has improved, and the human eye perceives some spec-
tral indices better. For example, in NDOI and NDVI, it is now
possible to appreciate in more detail the spillage. Furthermore,
the index indicates changes in spill thickness. This is a purely
visual effect of facilitating interpretation, as the pixel values have
not changed.

In conclusion, the thorough analysis of spectral indices from
AVIRIS, HICO, and MERIS imagery has provided valuable
insights into detecting and characterizing oil spills. This study
reveals notable similarities and distinctions in the response of
the spectral indices across different sensors and varying spill
thicknesses. Challenges inherent in specific sensors, such as

the absence of shortwave infrared range in HICO and MERIS,
underscore the importance of careful selection and understand-
ing of sensor capabilities for accurate oil spill assessment. It is
worth noting that a supplementary spectral analysis of AVIRIS
2, HICO 2, and MERIS 2 is presented in the Appendix, further
contributing to the comprehensive understanding of oil spill
detection. This qualitative exploration sets the stage for a sub-
sequent quantitative study.

C. NDOI Quantitative Analysis

In addition to the visual analysis, a quantitative analysis of
the spectral indices is necessary. For this purpose, we present
the confusion matrices, the accuracy, and the F1-score.

Fig. 13 shows the normalized confusion matrices correspond-
ing to the NDOI indices applied to the six spectral images.
Most matrices are very close to the identity, thus, indicating the
effectiveness of the spectral index, except for the AVIRIS 2 and
the HICO 2 matrices. This is because there is almost no coarse
spillage in the scenes, and the index cannot distinguish it. The
remaining confusion matrices have reasonably high hit rates,
exceeding 95% success rate, which is desirable for good quality
indices. In some cases, even the totality of the water pixels
is correctly classified. Generally, for all images, the precision
obtained by the oil class is higher than its recall. The quality
of the pixels classified as oil is high, but the number of pixels
identified is lower.

The median accuracy and F1-score values for the oil and water
classes, as well as the interquartile range (IQR) of the accuracy
and γ for each spectral index, are presented in Table IV. The
best performance for each metric is in bold. NDOI presents a
good compromise among all these values, showing promising
results. It has very high accuracy (0.945) along with FI (0.955)
and RAI (0.940). Moreover, NDOI is the most compact index,
as indicated by its low IQR—noting its robustness. However,
accuracy can be misleading when evaluating spectral indices;
classes are unbalanced when detecting oil slicks in the vast sea.
Therefore, a very accurate result can be obtained associated with
a high hit rate for the water class, independently of the hit rate
of the oil class. To better understand the indices’ performance in
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Fig. 12. MERIS false color RGB and spectral indices with masked glints from 26 April 2010, at 15:58. (a) RGB MERIS 1. (b) NDOI. (c) RAI. (d) FI. (e) OSI.
(f) CDOM. (g) CHL. (h) NDVI.

Fig. 13. Normalized confusion matrices of the NDOI spectral index for all
spectral images. (a) AVIRIS 1. (b) AVIRIS 2. (c) HICO 1. (d) HICO 2. (e)
MERIS 1. (f) MERIS 2.

detecting oil, we have examined the F1-score. This metric gives
more importance to smaller classes, becoming more reliable in
unbalanced situations. NDOI presents a water F1-score (0.961)
that is very close to FI (0.968) and above RAI (0.957). But more
relevant for our study, it has the second highest oil F1-score
(0.830), which is the element that we want to monitor. NDOI
oil F1-score value is after the B2/B11 ratio (0.832), followed
by RAI (0.812). Lastly, NDOI shows the best result for γ
(0.816), followed by ratio B2/B11 (0.808) and RAI (0.797).
Acknowledging the potential bias in the results due to the
inability to apply B2/B11, NDWI, HI, and WAF indices to HICO
and MERIS is indispensable. The results in the overall accuracy
of the best indices—FI, NDOI and RAI—are competitive with
those obtained by AI techniques in similar oil spill studies. An
accuracy of around 95% is attained with Random Forest (RF)
and NN, and higher for support vector machine (SVM) operating
directly on hyperspectral features and convolutional NNs [25].

In light of the above, NDOI has the best overall evaluation,
as it has the second-best result in several metrics and the best
in accuracy IQR and γ. In addition, the best value in the rest
of the metrics does not correspond to a specific index but to
several. RAI also has a very positive overall assessment, as it
has obtained the third-best value in almost all metrics. How-
ever, the arithmetic operations involved in RAI calculation are
computationally more expensive than in NDOI.

D. Thickness and Volume Differentiation

In this last section, the ability of NDOI to detect different
thicknesses of spillage and volumes of oil is analyzed (see
Fig. 14). For this purpose, two previous works will be taken as a
reference [20], [45], where the authors estimate the thickness and
oil volume with AVIRIS and MERIS imagery on dates very sim-
ilar to those used in this work. Hence, the pixels for the training
and test datasets are labeled using the outcomes of the studies as
the ground truth. As already mentioned, the Bonn Agreement Oil
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Fig. 14. Normalized confusion matrix of (a) spill thickness and of (b) the
volume in liters of oil. (a) Thickness. (b) Volume.

Appearance Code has been adopted in this work to describe oil
spills. Considering that the finer parts of the discharge evaporate
quickly—those appearing silver, rainbow, and metallic, i.e., the
part of the spill thinner than 50 microns—shall be grouped
into one category called sheens. Four classes are distinguished:
sheens (0.04–50 microns), discontinuous true-color oil (50–200
microns), continuous true-color (>200 microns), and emulsion
(>500 microns).

Based on the research by Zhao et al. [45], it is possible to
distinguish between three types of oil slicks: sheens, discon-
tinuous true-color oil, and emulsions in AVIRIS 1. However,
continuous true-color oil could not be identified, as it is mistaken
for discontinuous true-color oil, as could already be guessed
from the visual analysis. Denser parts of the spill have different
spectral behavior. As shown in Fig. 14, most of the sheen
pixels are qualified as such using NDOI. Nevertheless, NDOI
misclassifies some discontinuous oil pixels as sheen pixels and
assigns some emulsion pixels to the discontinuous oil class.
Again, the algorithm obtains higher precision than recall for all
categories. F1-score results for sheen, discontinuous true-color
oil, and emulsion classes are satisfactory, with 0.977, 0.944, and
0.946, respectively, and an overall accuracy of 0.964 and an
F1-score of 0.955.

Hu et al. [20] carried out the second work, where they calcu-
lated the oil volume of the spill with MERIS images. Although
there are no images of the exact date, the difference is only two
days with MERIS 2. As the work covered the complete spill, we
estimate that the variations in the volume are not significant in
this period, and the article results serve as a reference for us. The
success rate of the classes using NDOI is very high (above 95%)
except for a volume of about 100 L, which is easily confused with
the regions of around 1000 L (65%). The F1-score for the classes
from less than 1 L to more than 1000 L is 0.990, 0.987, 0.787,
and 0.985, correspondingly, resulting in an overall F1-score of
0.937 and an overall accuracy of 0.985.

Considering that the preceding metrics give very satisfactory
results, above 90% in all cases, we consider that NDOI can
distinguish between different thicknesses of the spill and among
oil volumes. Based on the replication of prior research results,
the index’s performance has overcome the effect of sunglint and
the optical complexity of analyzing the entire spot. Moreover,
AI techniques excel in the differentiation of oil thicknesses at
the cost of increased computational time [25]. Spectral indices
are thus a safe bet for studies using satellites or airborne sensors.

V. CONCLUSION

NDOI has proven to be effective when applied to different
sensor data. It accentuates contaminated parts of medium and
high thickness, although it is more challenging to identify sheens
and very dense spots where the oil is almost black. With NDOI,
we have detected the complete oil spill, with all the difficulties
that this entails, and different thicknesses have been identified
in several scenes. Its performance on all images is comparable
to other indices in the literature, such as FI, CDOM, and NDVI,
and is remarkably consistent with RAI. Its main advantage over
the other indices is that it does not misclassify the sand in
suspension from the Mississippi River delta and the spill. This
can be a significant improvement when studying coastal spills.
The fewer oil slick look-alikes that can occur, the less likely
false spill detection will happen. Another great advantage of
NDOI is that the bands used are ubiquitous in optical sensors,
and it does not need to cover the infrared range, thus making its
applicability wider. Regarding the performance quality, the oil
hit rate exceeds 95% in all images with coarse spillage, reaching
an average accuracy of 0.945 and an average F1-score of 0.830.
Consequently, NDOI achieves the highest overall rating among
the spectral indices, with a figure of merit that combines accuracy
and F1-score (0.816). In addition, even under the sunglint effect,
it has been possible to reproduce the literature estimate of spill
thickness and oil volume with metrics results exceeding 90%.

NDOI is more than adequate for detecting spills with thick-
nesses more significant than 50 microns. It utilizes universal
bands in satellites, and due to its ease of use and quick calculation
time, its incorporation in hardware acceleration devices is also
appropriate, reducing the processing time, the resources needed,
and the energy consumed. At a further stage of our research, the
efficiency of NDOI on other spills will be assessed, along with
the potential for misclassification with other oil slick look-alikes.
We have also started to develop low-cost sensors with bands
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Fig. 15. AVIRIS true color RGB and spectral indices from 18 May 2010, at
19:59. (a) RGB AVIRIS 2. (b) NDOI. (c) RAI. (d) FI. (e) HI. (f) OSI. (g) WAF.
(h) CDOM. (i) CHL. (j) NDVI. (k) NDWI. (l) RATIO B2/B11.

tailored to the specific requirements of particular scenarios. The
combination of low-cost multispectral sensors and UAVs allows
us to respond quickly to environmental crises and minimize their
impact. Implementing multispectral sensors with the required
wavelengths to obtain NDOI will allow real-time results, further
facilitating decision-making in critical situations.

APPENDIX

EXTENSION OF THE QUALITATIVE ANALYSIS

The qualitative analysis of these images is complementary
to the investigations conducted in Section IV-B. It enhances
our understanding by providing nuanced insights and a visual
perspective of AVIRIS 2, HICO 2, and MERIS 2.

AVIRIS 2 (see Fig. 15), taken the following day of AVIRIS 1,
shows similar behavior to that already observed. In this scene,
the spill is not very thick. The RGB image shows how some low-
thickness filaments, perhaps mixed with water, cross the image
horizontally. Around them, there is some sheen coming from thin
layers of oil. The NDOI, RAI, FI, and CDOM indices highlight
the few regions of thicker contamination in the image— which is
more noticeable in CDOM. Analogously, the NDVI emphasizes
the same pattern but reversed. Once again, the index that most
reveals the fine contamination is the B2/B11 ratio, as the shape
of the spill is visible, and some sheens are discernible. On this
occasion, neither HI nor OSI can be accepted as valid indices.
In this scene, the HI banding obstructs the analysis of the image.
Part of the spill is visible in OSI, but the difference between oil
and water is not evident. Similar issues arise with CHL, where
the thin crude oil film can be better distinguished. However, the
separation between the sea and the sheen is still hazy, blurring
the result and making interpretation difficult. The WAF result
is essentially nonexistent because there is no thick film in the
scene except for a few minor soft spots. Finally, despite the lack
of sheens, the NDWI can still make out the narrow bands of
spills.

HICO 2, represented in Fig. 16, has similar characteristics to
AVIRIS 2. It is a scene with clouds in which only thin patches are
found. Consequently, the behavior of the spectral indices is likely

Fig. 16. HICO false color RGB and spectral indices from 28 May 2010, at
13:21. (a) RGB HICO 2. (b) NDOI. (c) RAI. (d) FI. (e) OSI. (f) CDOM. (g)
CHL. (h) NDVI.

Fig. 17. MERIS false color RGB and spectral indices from 2 May 2010, at
03:51. (a) RGB MERIS 2. (b) NDOI. (c) RAI. (d) FI. (e) OSI. (f) CDOM. (g)
CHL. (h) NDVI.

to be similar as well. NDOI and RAI are visually identical, indi-
cating the regions of fuel accumulation. The NDVI reproduces
this same behavior. CDOM, as on previous occasions, highlights
the thicker areas of the spill and some thinner parts. FI and CHL
enhance its fine details even more, reaching a situation where
it is difficult to distinguish the main spill path. Likewise, we
identify the area with the highest accumulation with OSI, but
the distinction with the less polluted area is blurred.

MERIS 2 presents a similar situation to MERIS 1 (see Fig. 17).
The spill is complex and shows significant variations in spectral
behavior. At first glance, CHL indicates all the core characteris-
tics and upper ridges. Next is FI, which outlines the silhouette of
the spill and gives a glimpse of the crests. In RAI and NDOI, it is
more difficult to distinguish the peaks from the background. OSI,
CDOM, or NDVI cannot accurately detect ridges. However, the
core is visible in all three indices, and it is easy to identify with
OSI.

REFERENCES

[1] G. Andreoli, B. Bulgarelli, B. Hosgood, and D. Tarchi, “Hyperspectral
analysis of oil and oil-impacted soils for remote sensing purposes,” Eur.
Commission Joint Res. Centre: Luxembourg, vol. 36, pp. 2–30, 2007.

[2] D. Angelova, I. Uzunov, S. Uzunova, A. Gigova, and L. Minchev, “Kinetics
of oil and oil products adsorption by carbonized rice husks,” Chem. Eng.
J., vol. 172, no. 1, pp. 306–311, 2011. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1385894711006954

[3] M. Fingas and C. Brown, “Review of oil spill remote sensing,” Mar. Pollut.
Bull., vol. 83, no. 1, pp. 9–23, 2014. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0025326X14002021

[4] M. Fingas and C. Brown, “Chapter 5–oil spill remote sensing,” in Oil
Spill Science and Technology, 2nd ed., M. Fingas, Ed. Amsterdam, The
Netherlands: Elsevier, 2017, pp. 305–385.



PÉREZ-GARCÍA et al.: SPECTRAL INDICES SURVEY FOR OIL SPILL DETECTION IN COASTAL AREAS 15371

[5] C. Brekke and A. H. Solberg, “Oil spill detection by satellite re-
mote sensing,” Remote Sens. Environ., vol. 95, no. 1, pp. 1–13, 2005.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0034425704003724

[6] P. Odonkor, Z. Ball, and S. Chowdhury, “Distributed operation of collab-
orating unmanned aerial vehicles for time-sensitive oil spill mapping,”
Swarm Evol. Comput., vol. 46, pp. 52–68, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2210650217309288

[7] N. Aghaei, G. Akbarizadeh, and A. Kosarian, “Osdes_net: Oil spill de-
tection based on efficient_shuffle network using synthetic aperture radar
imagery,” Geocarto Int., vol. 37, no. 26, pp. 13539–13560, 2022.

[8] J. L. E. Honrado, D. B. Solpico, C. M. Favila, E. Tongson, G. L. Tangonan,
and N. J. C. Libatique, “UAV imaging with low-cost multispectral imag-
ing system for precision agriculture applications,” in Proc. IEEE Glob.
Humanitarian Technol. Conf., 2017, pp. 1–7.

[9] A. Morales et al., “A multispectral camera development: From the pro-
totype assembly until its use in a UAV system,” Sensors, vol. 20, no. 21,
2020, Art. no. 6129. [Online]. Available: https://www.mdpi.com/1424-
8220/20/21/6129

[10] A. Pérez-García, A. Rodríguez-Molina, E. Hernández, L. Vera, and J.
F. López, “Development of low-cost multi-spectral cameras for preci-
sion agriculture,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2023,
pp. 3466–3469.

[11] V. Satriano, E. Ciancia, T. Lacava, N. Pergola, and V. Tramutoli, “Improv-
ing the RST-oil algorithm for oil spill detection under severe sun glint
conditions,” Remote Sens., vol. 11, no. 23, 2019, Art. no. 2762. [Online].
Available: https://www.mdpi.com/2072-4292/11/23/2762

[12] C. R. Jackson and W. Alpers, “The role of the critical angle in brightness
reversals on sunglint images of the sea surface,” J. Geophysical Research:
Oceans, vol. 115, no. C9, 2010, Art. no. C09019.

[13] M. Fingas and C. E. Brown, “A review of oil spill remote sensing,” Sensors,
vol. 18, no. 91, pp. 1–18, 2018. [Online]. Available: https://www.mdpi.
com/1424-8220/18/1/91

[14] J. Zhao, M. Temimi, H. Ghedira, and C. Hu, “Exploring the potential of
optical remote sensing for oil spill detection in shallow coastal waters-a
case study in the arabian gulf,” Opt. Exp., vol. 22, no. 11, pp. 13755–13772,
Jun. 2014. [Online]. Available: http://www.opticsexpress.org/abstract.
cfm?URI=oe-22-11-13755

[15] A. J. Brown, “Spectral curve fitting for automatic hyperspectral data anal-
ysis,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6, pp. 1601–1608,
Jun. 2006.

[16] J. Yang, J. Wan, Y. Ma, J. Zhang, and Y. Hu, “Characterization analysis
and identification of common marine oil spill types using hyperspectral
remote sensing,” Int. J. Remote Sens., vol. 41, no. 18, pp. 7163–7185, 2020,
doi: 10.1080/01431161.2020.1754496.

[17] M. Fingas, “Visual appearance of oil on the sea,” J. Mar. Sci. Eng., vol. 9,
no. 97, pp. 1–13, 2021.

[18] R. N. Clark et al., “A method for quantitative mapping of thick oil
spills using imaging spectroscopy,” US Geological Surv. Open-File Rep.,
vol. 1167, no. 2010, pp. 1–51, 2010.

[19] J. Svejkovsky, M. Hess, J. Muskat, T. J. Nedwed, J. McCall, and O. Garcia,
“Characterization of surface oil thickness distribution patterns observed
during the deepwater horizon (MC-252) oil spill with aerial and satellite
remote sensing,” Mar. Pollut. Bull., vol. 110, no. 1, pp. 162–176, 2016.

[20] C. Hu et al., “Remote sensing estimation of surface oil volume during
the 2010 deepwater horizon oil blowout in the gulf of Mexico: Scaling up
AVIRIS observations with MODIS measurements,” J. Appl. Remote Sens.,
vol. 12, no. 2, pp. 1–44, 2018, doi: 10.1117/1.JRS.12.026008.

[21] L. Xu, J. Li, and A. Brenning, “A comparative study of different classifica-
tion techniques for marine oil spill identification using radarsat-1 imagery,”
Remote Sens. Environ., vol. 141, pp. 14–23, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0034425713003805

[22] A. Raeisi, G. Akbarizadeh, and A. Mahmoudi, “Combined method of an
efficient cuckoo search algorithm and nonnegative matrix factorization of
different zernike moment features for discrimination between oil spills
and lookalikes in SAR images,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 11, no. 11, pp. 4193–4205, Nov. 2018.

[23] F. M. Ghara, S. B. Shokouhi, and G. Akbarizadeh, “A new technique for
segmentation of the oil spills from synthetic-aperture radar images using
convolutional neural network,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 15, pp. 8834–8844, 2022.

[24] R. Al-Ruzouq et al., “Sensors, features, and machine learning for oil spill
detection and monitoring: A review,” Remote Sens., vol. 12, no. 20, 2020,
Art. no. 3338. [Online]. Available: https://www.mdpi.com/2072-4292/12/
20/3338

[25] B. Wang et al., “A spectral-spatial features integrated network for hy-
perspectral detection of marine oil spill,” Remote Sens., vol. 13, no. 8,
2021, Art. no. 1568. [Online]. Available: https://www.mdpi.com/2072-
4292/13/8/1568

[26] Z. Xiao, S. Liang, J. Wang, B. Jiang, and X. Li, “Real-time retrieval of leaf
area index from modis time series data,” Remote Sens. Environ., vol. 115,
no. 1, pp. 97–106, 2011. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S003442571000249X

[27] Y. Liu, A. MacFadyen, Z.-G. Ji, and R. H. Weisberg, “Introduction to mon-
itoring and modeling the deepwater horizon oil spill,” Geophys. Monogr.
Ser, vol. 195, pp. 1–7, 2011.

[28] O. Garcia-Pineda et al., “Detection of oil near shorelines during the
deepwater horizon oil spill using synthetic aperture radar (SAR),” Re-
mote Sens., vol. 9, no. 6, 2017, Art. no. 567. [Online]. Available: https:
//www.mdpi.com/2072-4292/9/6/567

[29] A. Pérez-García, P. Horstrand, and J. F. López, “Ndoi, a novel oil spectral
index: Comparisons and results,” in Proc. 12th Workshop Hyperspectral
Imag. Signal Process.: Evol. Remote Sens., 2022, pp. 1–5.

[30] N. Audebert, B. L. Saux, and S. Lefèvre, “Deep learning for classification
of hyperspectral data: A comparative review,” IEEE Geosci. Remote Sens.
Mag., vol. 7, no. 2, pp. 159–173, Jun. 2019.

[31] S. Hafeez et al., “Detection and monitoring of marine pollution using
remote sensing technologies,” in Monitoring of Marine Pollution (ser.
Chapters), H. B. Fouzia, Ed. London, U.K.: IntechOpen, Sep. 2019.
[Online]. Available: https://ideas.repec.org/h/ito/pchaps/163515.html

[32] I. Leifer et al., “State of the art satellite and airborne marine oil spill
remote sensing: Application to the bp deepwater horizon oil spill,” Remote
Sens. Environ., vol. 124, pp. 185–209, 2012. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0034425712001563

[33] B. Zhang, L. Zhao, and X. Zhang, “Three-dimensional convolutional
neural network model for tree species classification using airborne hyper-
spectral images,” Remote Sens. Environ., vol. 247, 2020, Art. no. 111938.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0034425720303084

[34] T. Bijeesh and K. Narasimhamurthy, “A comparative study of spectral
indices for surface water delineation using landsat 8 images,” in Proc. Int.
Conf. Data Sci. Commun., IEEE, 2019, pp. 1–5.

[35] A. Pérez-García, P. Horstrand, and J. F. López, “A novel spectral index for
ocean oil spill detection,” in Proc. ESA Living Planet Symp., 2022, p. 1.

[36] E. Loos, L. Brown, G. Borstad, T. Mudge, and M. Álvarez, “Characteriza-
tion of oil slicks at sea using remote sensing techniques,” in Proc. Oceans,
IEEE, 2012 pp. 1–4.

[37] F. K. C. author, K. Oppermann, and B. Hörig, “Hydrocarbon
index–An algorithm for hyperspectral detection of hydrocarbons,”
Int. J. Remote Sens., vol. 25, no. 12, pp. 2467–2473, 2004,
doi: 10.1080/01431160310001642287.

[38] Q. Li, L. Lu, B. Zhang, and Q. Tong, “Oil slope index: An al-
gorithm for crude oil spill detection with imaging spectroscopy,” in
Proc. 2nd Int. Workshop Earth Observ. Remote Sens. Appl., 2012,
pp. 46–49.

[39] W.-Z. Lu et al., “Modern near infrared spectroscopy analytical technol-
ogy,” 2nd ed. Beijing: China Petrochemical Press, 2007.

[40] T. Kutser, D. C. Pierson, K. Y. Kallio, A. Reinart, and S. Sobek, “Mapping
lake CDOM by satellite remote sensing,” Remote Sens. Environ., vol. 94,
no. 4, pp. 535–540, 2005. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0034425704003670

[41] C. Hu, Z. Lee, and B. Franz, “Chlorophyll algorithms for oligotrophic
oceans: A novel approach based on three-band reflectance difference,” J.
Geophysical Res.: Oceans, vol. 117, no. C1, 2012, Art. no. C01011.

[42] D. A. Carlson and T. N. Ripley, “On the relation between NDVI, fractional
vegetation cover, and leaf area index,” Remote Sens. Environ., vol. 62, no. 3,
pp. 241–252, 1997.

[43] B. cai Gao, “NDWI–A normalized difference water index for remote sens-
ing of vegetation liquid water from space,” Remote Sens. Environ., vol. 58,
no. 3, pp. 257–266, 1996. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0034425796000673

[44] P. Kolokoussis and V. Karathanassi, “Oil spill detection and mapping using
sentinel 2 imagery,” J. Mar. Sci. Eng., vol. 6, no. 4, pp. 1–12, 2018. [Online].
Available: https://www.mdpi.com/2077-1312/6/1/4

[45] D. Zhao, X. Cheng, H. Zhang, Y. Niu, Y. Qi, and H. Zhang, “Evaluation of
the ability of spectral indices of hydrocarbons and seawater for identifying
oil slicks utilizing hyperspectral images,” Remote Sens., vol. 10, no. 3,
2018, Art. no. 421. [Online]. Available: https://www.mdpi.com/2072-
4292/10/3/421



15372 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

[46] V. Klemas, “Tracking oil slicks and predicting their trajectories using
remote sensors and models: Case studies of the sea princess and deepwater
horizon oil spills,” J. Coastal Res., vol. 2010, no. 265, pp. 789–797, 2010,
doi: 10.2112/10A-00012.1.

[47] L. Cong, B. Nutter, and D. Liang, “Estimation of oil thickness and aging
from hyperspectral signature,” in 2012 IEEE Southwest Symp. Image Anal.
Interpretation, 2012, pp. 213–216.

[48] V. Karathanassi, “Spectral unmixing evaluation for oil spill characteriza-
tion,” Int. J. Remote Sens. Appl., vol. 4, pp. 1–17, 2014.

[49] F. Carnesecchi, V. Byfield, P. Cipollini, G. Corsini, and M. Diani, “An opti-
cal model for the interpretation of remotely sensed multispectral images of
oil spill,” Proc. SPIE, vol. 7105, pp. 11–22, 2008, doi: 10.1117/12.800304.

[50] A. K. Mishra and G. S. Kumar, “Weathering of oil spill: Modeling and
analysis,” Aquatic Procedia, vol. 4, pp. 435–442, 2015, International Con-
ference on Water Resources, Coastal and Ocean Engineering. [Online].
Available: https://doi.org/10.1016/j.aqpro.2015.02.058

[51] B. Agreement, “Bonn agreement website,” 2024. [Online]. Available:
https://www.bonnagreement.org/

[52] R. O. Green et al., “Imaging spectroscopy and the airborne visible/infrared
imaging spectrometer (aviris),” Remote Sens. Environ., vol. 65, no. 3,
pp. 227–248, 1998.

[53] N. Jet Propulsion Laboratory, “Airbone visible infrared imaging spectrom-
eter website,” 2021. [Online]. Available: https://aviris.jpl.nasa.gov/

[54] NASA, “Earth data, oceancolor web, HICO,” 2021. [Online]. Available:
https://oceancolor.gsfc.nasa.gov/data/hico/

[55] E. S. A. Signature, “Earth online, envisat, meris,” 2021. [Online]. Avail-
able: https://earth.esa.int/eogateway/instruments/meris

[56] Y. Mo, M. S. Kearney, and J. C. A. Riter, “Post-deepwater horizon oil
spill monitoring of louisiana salt marshes using landsat imagery,” Remote
Sens., vol. 9, no. 6, 2017, Art. no. 547. [Online]. Available: https://www.
mdpi.com/2072-4292/9/6/547

[57] L. Gómez-Chova, G. Camps-Valls, J. Calpe-Maravilla, L. Guanter, and
J. Moreno, “Cloud-screening algorithm for ENVISAT/MERIS multi-
spectral images,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12,
pp. 4105–4118, Dec. 2007.

[58] E. Fix and J. L. Hodges, “Discriminatory analysis: Nonparametric discrim-
ination: Consistency properties,” Int. Stat. Rev./Revue Int. de Statistique,
vol. 57, no. 3, pp. 238–247, 1989.

[59] N. S. Altman, “An introduction to kernel and nearest-neighbor non-
parametric regression,” Amer. Statist., vol. 46, no. 3, pp. 175–185,
1992. [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/
00031305.1992.10475879

[60] I. Mani and I. Zhang, “kNN approach to unbalanced data distributions: A
case study involving information extraction,” in Proc. Workshop Learn.
Imbalanced Datasets, 2003, vol. 126, pp. 1–7.

[61] M. Hossin and M. N. Sulaiman, “A review on evaluation metrics for data
classification evaluations,” Int. J. Data Mining Knowl. Manage. Process,
vol. 5, no. 2, pp. 1–11, 2015.

[62] S. Boughorbel, F. Jarray, and M. El-Anbari, “Optimal classifier for im-
balanced data using Matthews correlation coefficient metric,” PLoS One,
vol. 12, no. 6, 2017, Art. no. e0177678.

Ámbar Pérez-García (Graduate Student Member,
IEEE) was born in Las Palmas de Gran Canaria,
Spain, in 1997. She received the B.Sc. degree in
physics from the University of La Laguna (ULL),
La Laguna, Spain, and the M.Sc. degree in remote
sensing from the University of Valencia (UV), Valen-
cia, Spain, in 2019 and 2020, respectively, the M.Sc.
degree in education from the University of La Rioja
(UNIR), La Rioja, Spain, in 2021. She is currently
working toward the Ph.D. degree in telecommunica-
tions technologies with the University of Las Palmas

de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.
She is with the Institute for Applied Microelectronics, IUMA, University of

Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain. In 2023,
she did a research stay on neural network segmentation with HYPERCOMP,
University of Extremadura, Spain. She was also with HWM, Wageningen
University & Research, The Netherlands, spectrally characterizing plastics.
Her research interests include remote sensing, hyperspectral image processing,
artificial intelligence, and the detection of marine litter.

Adrián Rodríguez-Molina was born in Las Palmas
de Gran Canaria, Spain, in 1998. He received the engi-
neering degree in industrial electronics and automatic
from the University of Las Palmas de Gran Canaria,
Las Palmas de Gran Canaria, Spain, in 2020, and the
master’s degree in applied electronics and telecom-
munications from the Institute for Applied Microelec-
tronics, Las Palmas de Gran Canaria, Spain, in 2021.
He is currently working toward the Ph.D. degree in
telecommunication technologies and computational
engineering with the University of Las Palmas de

Gran Canaria (ULPGC), developing a multipurpose multispectral camera with
built-in artificial intelligence.

Emma Hernández was born in Las Palmas de Gran
Canaria in 1997. She received the bachelor’s degree
in industrial and automatic electronic engineering
from the University of Las Palmas de Gran Canaria
(ULPGC), Las Palmas de Gran Canaria, Spain, and
the master’s degree in control and robotics from the
Polytechnic University of Madrid (UPM), Madrid,
Spain, in 2020 and 2021, respectively. She is currently
working toward the Ph.D. degree in telecommunica-
tions technologies with the ULPGC.

She is a Researcher with the Institute of Applied
Microelectronics, IUMA, University of Las Palmas de Gran Canaria, Las Palmas
de Gran Canaria, Spain. In 2023, she conducted a research stay in thermographic
image processing at the University of Oviedo, Spain. Her research interests
include image processing, unmanned aerial vehicles (UAVs), hyperspectral
technology, and thermography technologies and their applications.

José Fco López received the M.S. degree in physics
(specializing in electronics) from the University of
Seville, Sevilla, Spain, in 1989 and the Ph.D. degree
in high-speed integrated systems from the University
of Las Palmas de Gran Canaria (ULPGC), Las Palmas
de Gran Canaria, Spain, in 1994.

He was with Thomson Composants Microondes,
Orsay, France, in 1992. In 1995, he was with the
Center for Broadband Telecommunications, Techni-
cal University of Denmark (DTU), Lyngby, Denmark.
In 1996, 1997, 1999, and 2000, he was a Visiting

Researcher with the Edith Cowan University (ECU), Perth, Western Australia.
He has conducted investigations with the Institute for Applied Microelectronics
(IUMA), where he has acted as Deputy Director since 2009. He is currently a
Lecturer with the School of Telecommunication and Electronics Engineering and
with an M.Sc. Program of IUMA, ULPGC. He has authored/coauthored around
150 papers in national and international journals and conferences. His current
research interests include image processing, UAVs, hyperspectral technology,
and their applications.

Dr López has been actively enrolled in more than 50 research projects funded
by the European Community, Spanish Government, and international private
industries in Europe, the USA, and Australia.



Chapter 3

Band SelectionMethod for Efficient
Water PollutionMonitoring

Hyperspectral sensors provide valuable data across a wide range of the
electromagnetic spectrum. However, their high spectral dimensionality,
often containing redundant information, presents processing time, resource
consumption, and cost challenges. Therefore, machine learning techniques
for band reduction play a critical role in efficient water pollutant monitoring.
By selecting only the most relevant spectral bands, the complexity and
dimensionality of hyperspectral imagery can be reduced while maintaining high
detection accuracy.

This chapter supports Sub-objective 2 of the thesis, developing a
dimensionality reduction methodology that optimizes the spectral bands for
water pollutant monitoring and improves the transferability of results across
different environments. Finding bands of interest that allow the identification
of contaminants in different scenarios opens the opportunity of transferring
results from one scenario to another and generalizing classification models that
can be applied across various environments. This approach will enable the
classification of different HSI without needing labelled data. Additionally, this
sets the stage for developing cost-effective multispectral sensors specialized to
study specific pollutants or phenomena, reducing the volume of information and
the computational time required to process the images.

A preliminary version of the band selection methodology was presented in the
conference paper C.2 “Spectral Band Selection Methodology for Future Sensor
Development”. This conference paper laid the foundation for the approach used
in this chapter by introducing a strategy to target specific spectral bands relevant
to pollutant classification, aiming to enhance monitoring systems’ efficiency.
This work is also related to the conference paper C.3 “Development of Low-Cost
Multi-Spectral Cameras for Precision Agriculture,” which presented an initial
prototype of a multispectral sensor with interchangeable optical filters. This
prototype allows the selection of spectral bands tailored to specific applications,
enabling the sensor to adapt to different monitoring needs.
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Chapter 3 Band SelectionMethod for EfficientWater PollutionMonitoring

Section 3.1: “Efficient Plastic Detection in Coastal Areas with Selected
Spectral Bands,” focuses on detecting plastic pollutants in coastal areas. This
study builds on the previously presented method and extends the methodology
by incorporating the transfer of results between datasets captured under different
conditions. The research highlights the significant influence that background
elements have on the spectral signature when classifying semi-transparent
surfaces. Additionally, it concludes that while the transfer of selected spectral
bands between datasets proves effective, the transfer of pre-trained classification
models remains limited, indicating that further refinement is needed for robust
generalization across varying environmental conditions.
Moreover, Section 3.2: “Developing a Generalizable Spectral Classifier for

Rhodamine Detection in Aquatic Environments” expands the scope to include
the detection and estimation of the concentration of Rhodamine, a dye often
used as a tracer in hydrodynamics studies in estuaries, rivers and coastal areas.
This study further explores the influence of backgrounds on spectral signatures in
optically shallow areas, where both the background and the water surface reflect
sunlight. The research introduces two techniques to improve the transfer of pre-
trained models. First, by training the classification model with a combination
of different scenarios that may be encountered, the model’s adaptability is
enhanced, and the risk of overfitting is reduced. Second, the study proposes
using the first derivative of the spectral signature instead of the signature itself,
as the derivative better emphasizes spectral differences between classes. These
advancements bring us closer to developing generalizable models capable of
classifying new images without requiring labelled data.
This chapter contributes to optimizing water pollutant monitoring by

identifying the most influential spectral bands to reduce HSI complexity and
improve detection accuracy. It also advances the transferability of results across
different environments, moving closer to developing generalizable models and
reducing the need for labelled data.
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A B S T R A C T

Marine plastic pollution poses significant ecological, economic, and social challenges, necessitating innovative 
detection, management, and mitigation solutions. Spectral imaging and optical remote sensing have proven 
valuable tools in detecting and characterizing macroplastics in aquatic environments. Despite numerous studies 
focusing on bands of interest in the shortwave infrared spectrum, the high cost of sensors in this range makes it 
difficult to mass-produce them for long-term and large-scale applications. Therefore, we present the assessment 
and transfer of various machine learning models across four datasets to identify the key bands for detecting and 
classifying the most prevalent plastics in the marine environment within the visible and near-infrared (VNIR) 
range. Our study uses four different databases ranging from virgin plastics under laboratory conditions to 
weather plastics under field conditions. We used Sequential Feature Selection (SFS) and Random Forest (RF) 
models for the optimal band selection. The significance of homogeneous backgrounds for accurate detection is 
highlighted by a 97 % accuracy, and successful band transfers between datasets (87 %–91 %) suggest the 
feasibility of a sensor applicable across various scenarios. However, the model transfer requires further training 
for each specific dataset to achieve optimal accuracy. The results underscore the potential for broader application 
with continued refinement and expanded training datasets. Our findings provide valuable information for 
developing compelling and affordable detection sensors to address plastic pollution in coastal areas. This work 
paves the way towards enhancing the accuracy of marine litter detection and reduction globally, contributing to 
a sustainable future for our oceans.

1. Introduction

Marine litter, particularly plastic pollution, has become a pervasive 
problem affecting terrestrial and aquatic ecosystems globally, leading to 
significant ecological, economic, and health impacts. Single-use plastics 
and inadequate waste management practices have led to vast contami-
nation of rivers and oceans Morales-Caselles et al. (2021), posing sig-
nificant challenges to the environment Meijer et al. (2021). Plastic 
debris accumulation in marine environments threatens wildlife and 
habitats and challenges maritime industries and coastal communities 
Jambeck et al. (2015). Identifying polymer types is relevant because 
each plastic type has distinct impacts, sources, and transport behaviours, 
making its identification crucial for a comprehensive understanding 
Andrady (2011); Rochman et al. (2013). Monitoring plastic pollution is 
crucial for establishing a baseline understanding to track changes, 

identify hotspots, and assess the efficacy of implemented measures van 
Emmerik et al. (2023); Tasseron et al. (2024).

In situ monitoring of floating marine plastic debris, such as net sur-
veys and visual observation, can be expensive, time-consuming, and 
requires expert supervision Armitage et al. (2022). Recent advances in 
remote sensing (RS) using multi- and hyperspectral imagery are prom-
ising for detecting macroplastics (≥0.5 cm) pollution from space Leb-
reton et al. (2018); Topouzelis et al. (2021); Schreyers et al. (2022). RS 
provides significant advantages over traditional methods by enabling 
efficient and continuous data acquisition and overcoming geographical 
and resource limitations Biermann et al. (2020). Additionally, uncrewed 
aerial vehicles (UAVs) have the potential for long-term plastic moni-
toring, offering advantages such as improved spatial resolution, quick 
response time, and lower operational costs Andriolo et al. (2023).

Numerous object detection and classification machine learning tools 
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have been developed to monitor plastics in aquatic environments van 
Lieshout et al. (2020); Cortesi (2021); Rußwurm et al. (2023). Efforts 
have also been made to enhance detection from space using fusion 
Kremezi et al. (2022) and unmixing techniques Papageorgiou et al. 
(2022), and a benchmark dataset with Sentinel-2 images has been 
created to compare the performance of various artificial intelligence 
algorithms Kikaki et al. (2022). Nevertheless, there is a need for 
affordable and standardized plastic detection methods and equipment to 
address the challenges of monitoring plastic pollution on a global scale 
Martínez-Vicente et al. (2019); Cózar et al. (2024).

Current hyperspectral sensors are expensive and require consider-
able computational resources. Most macroplastic studies focus on the 
near-infrared (NIR) to shortwave infrared (SWIR) range, particularly 
around 1150 nm, where distinct absorption peaks facilitate plastics 
identification Garaba and Dierssen (2020). However, as detectors in the 
SWIR over 1000 nm are more expensive than in the visible and near- 
infrared (VNIR), between 400 and 1000 nm, implementing a multi-
spectral sensor in the VNIR for plastic detection worldwide would lead 
to a significant reduction in costs Pérez-García et al. (2023). Several 
studies suggest that a high level of spectral detail is unnecessary for 
detecting and classifying other pollutants with gradually changing 
spectral signatures Legleiter et al. (2019, 2022); Pérez-García et al. 
(2024b). This indicates that sensors with broader bands could still 
provide reliable plastic classification. Therefore, we envision an 
affordable multispectral sensor with selected spectral bands for plastic 
detection.

We present an assessment of various machine learning models across 
different datasets to identify the key spectral bands for classifying the 
most prevalent marine plastics. By evaluating the transferability of these 
key bands across the datasets, we show that a sensor using these bands 
could identify plastics in various scenarios and conditions. Therefore, 
our study explores the feasibility of developing a VNIR multispectral 
sensor for detecting and identifying coastal macroplastics. This tech-
nology aims to enhance plastic recovery efforts in both field and 
spaceborne remote sensing, supporting the transition towards improved 
ocean health.

2. Materials and methods

In this paper, we applied a refined band selection methodology to 
different plastic datasets to select the optimal number of bands and to 
identify the bands of interest for the detection and classification of 
plastics. We used spectral information from three datasets covering 
various scenarios, from laboratory experiments without a background 
signal to sand and pebble beaches. Based on classification and feature 
selection methods, we identified bands of interest for plastic detection 
and evaluated the transferability across the datasets. Finally, we test its 
applicability by transferring the bands of interest to a fourth new dataset 
collected for the study.

2.1. Datasets

We focused on plastic polymers that are most common in coastal and 
marine environments Schwarz et al. (2019); Morales-Caselles et al. 
(2021); Barry et al. (2023), and which are present across all the datasets 
used in this study. These include high-density polyethylene (HDPE) for 
bottles, low-density polyethylene (LDPE) for bags, polypropylene (PP) 
for containers, and polystyrene (PS), which is represented in both its 
foamed (expanded polystyrene, EPS) and non-foamed forms. The four 
datasets contain items from the four plastic classes (HDPE, LDPE, PP, 
and PS) under different conditions.

We used hyperspectral imagery of virgin rectangular sheets from the 
HyperDrone (HD) project, where the sheets were placed on two different 
Scottish beaches: the sandy, seaweed-covered Tyninghame Beach 
(56.01◦ N, − 2.59◦ W) in 2020 and the pebble-stone shore near Oban 
Airport (56.46◦ N, − 5.40◦ W) in 2021. The measures were made with 

The Headwall Co-aligned VNIR and SWIR imager (NERC Field Spec-
troscopy Facility) Headwall Photonics (2020), which collects about 600 
bands ranging from 450 to 2500 nm. The third dataset (WUR) is mainly 
composed of virgin plastic everyday items from domestic sources Tas-
seron et al. (2021a). The images were taken in the laboratory using 
Specim Fx10 and Fx17 cameras (Konica Minolta Company, Oulu, 
Finland) Specim Spectral Imaging (2019). Together, they range from 
400 to 1700 nm, with about 300 bands. Fig. 1 presents an overview of 
the three datasets used to train the model. These datasets are available 
for further details; see Plymouth Marine Laboratory; Mata, A. (2023a)
(HD20), Plymouth Marine Laboratory; Mata, A. (2023b) (HD21) and 
Tasseron et al. (2021b) (WUR).

We collected a new dataset comprising everyday plastics, with 
plastic bags, jars, bottles, and cups similar to those in the WUR dataset. 
This dataset serves as the testing ground for evaluating the model’s 
applicability. The image was captured on a plain background with the 
Specim Fx10 and Fx17 cameras, following the WUR dataset procedure 
Tasseron et al. (2021a). Further information and the mean spectral 
signatures of this dataset are provided in Section 3.3.

2.2. Band selection methodology

The methodology determines the bands of interest based on a com-
bination of classification and feature selection algorithms (Fig. 2) Pérez- 
García et al. (2024a).

Half of the data is used to train the classification models, of which 60 
% belong to the training dataset, 30 % are for the test dataset, and 10 % 
for validation. We used Random Forest (RF) Ho (1995) and Support 
Vector Machine (SVM) Hearst et al. (1998) as classifiers, both with 
hyperparameter optimization. The feature selection algorithms are 
trained with the remaining half of the data and provided with the 
impurity-based feature importance of the classifiers to determine the 
best bands for classification. The feature selection algorithms used are 

Fig. 1. Datasets overview Plymouth Marine Laboratory; Mata, A. (2023a,b); 
Tasseron et al. (2021b).
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Sequential Feature Selector with forward selection (SFS) and Select 
From Model (SFM), both from the Python Scikit-Learn library Kramer 
(2016). SFS progressively includes or excludes features to optimize a 
classifier’s performance, providing the optimized subset of features. 
SFM evaluates features based on their feature importance for the clas-
sifier Kramer (2016).

The optimal number of bands is determined using the elbow method 
Syakur et al. (2018), identifying the point on the accuracy curve where 
improvement slows, forming an “elbow.” For the optimal number of 
bands, all classification metrics were calculated. Using only the best 
bands, the optimized classification models are re-trained. The validation 
dataset determines the classification metrics to assess performance. The 
overall accuracy (OAC) measures the ratio of correct predictions over 
the total number of samples Hossin and Sulaiman (2015). The F1 score is 
particularly useful with uneven class distribution, giving more impor-
tance to the accuracy of the smaller classes Boughorbel et al. (2017). The 
Kappa statistic (κ) measures inter-rater agreement for categorical items, 
correcting the bias that might occur due to chance agreement, especially 
with imbalanced datasets Cohen (1960).

Finally, we can evaluate the transferability of our results to different 
scenarios. This includes transferring bands of interest or pre-trained 
classification models. Transferring bands of interest involves using the 
identified wavelengths from one scenario to train a classifier in another 
scenario. The model transfer is challenging, as these models are tailored 
to specific scenario characteristics. If the spectral behaviour is suffi-
ciently similar across scenarios, models can be effectively transferred, 
reducing the need for re-training the classifier and the computational 
time Pérez-García et al. (2024b).

Three measures of homogenization are applied to conduct a 
comparative study between the three datasets. First, the VNIR spectral 
range is selected, and the spectral ranges for which there is no data in all 
datasets are discarded. Therefore, the wavelengths of the study range 
from 490 to 850 nm. Second, the study only includes those elements of 
the datasets that match the target plastic types. From HD datasets: virgin 
EPS (PS class), agricultural PP, white HDPE net, and transparent LDPE, 
and from WUR: shampoo bottle and soap flask (HDPE), packaging bag 
(LDPE), bottle cap and food container (PP), and one-use white coffee 
stirrers (PS). The analysis includes backgrounds such as seaweed, rocks, 

and wet and dry sand. Third, to prevent misclassification caused by 
unbalanced classes, pixels from each dataset are randomly selected until 
each class contains 2700 samples, matching the number of pixels in the 
smallest class (PS in HD21).

3. Experiments

We designed three experiments in this study. Experiment 1 includes 
an individual dataset analysis, which offers insights into its complexity. 
Furthermore, optimizing the hyperparameters of the band selection 
model allows for determining the optimal number of bands needed for 
the multispectral sensor. Experiment 2 focuses on transferring the re-
sults and involves applying the findings obtained by training the model 
with one dataset to another. It is possible to transfer both the bands of 
interest and the pre-trained models, providing an understanding of the 
model adaptability. In experiment 3, the results from experiments 1 and 
2 are applied to a real case study with a new dataset to quantify its 
performance.

3.1. Experiment 1: individual dataset analysis

Selecting the optimal number of bands poses one of the most chal-
lenging aspects of dataset analysis. Fig. 3 presents the OAC as a function 
of the number of bands used to train the model. The dataset achieving 
the highest level of accuracy is HD20 (97 %), whereas HD21 exhibits the 
lowest accuracy (93 %). The analysis indicates that SFS presents better 
accuracy than SFM, and its combination with RF further enhances per-
formance. According to the elbow method Syakur et al. (2018), three 
bands are ideal. However, four bands are selected for the analysis, which 
is cost-effective and ensures better accuracy in transferring the research 
results Pérez-García et al. (2023).

The metrics performance is high across all datasets and for the 
different combinations of the model (0.690–0.959; see Table 1), vali-
dating the model adaptability. This substantiates that combining the SFS 
feature selection model with the RF classifier is the most effective. 
Therefore, the rest of the analysis concentrates on the results obtained 
using four bands and the SFS-RF method.

Fig. 3 also shows the confusion matrices for the three datasets, 
illustrating the performance of the optimized SFS-RF model with the 
four best bands for each dataset. Across all datasets, the classes with the 
poorest performance are HDPE and LDPE, between 9 % and 35 % of 
mutual misclassification. These results are consistent as both are poly-
ethylene materials of different densities and are semi-transparent. The 
WUR dataset also identifies a 13 % of misclassification between HDPE 
and PP. Similar results are found in the HD datasets when including the 
background classes of the two datasets: seaweed, dry sand, wet sand, 
and rocks. Fig. 4 shows that all the backgrounds exceed 90 % accuracy, 
except for the rocks that achieve 89 % accuracy.

Combining SFS and RF models yields superior results for selecting 
key bands. The dataset with the highest performance with 4 bands is 
HD20, reaching 95.9 % OAC, 95.9 % F1-score, and 94.6 % κ. HD21 

Fig. 2. Band selection methodology diagram Pérez-García et al. (2024a).

Fig. 3. Overall accuracy of the model combination and confusion matrices for four bands per dataset.
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exhibits the lowest performance, with 90.0 % OAC, 90.0 % F1-score, and 
86.7 % κ. Moreover, distinguishing between the two densities of trans-
parent polyethylene, HDPE and LDPE, and the rock background poses 
the most significant challenge in the individual dataset analysis. Section 
3.2 discusses the transferability of results and trained models from one 
dataset to another.

3.2. Experiment 2: transfer learning

When applying a model across different scenarios, its transferability 
becomes crucial. The greater the model transferability, the broader its 
range of applications and the lower the computational costs by mini-
mizing retraining efforts.

The initial step requires assessing the transferability of bands, i.e. 
whether the information resulting from training the model with one 
dataset can be extended to another without significant accuracy loss. We 
grouped the wavelengths into 25 nm widths to visualise the results. 
Fig. 5 shows the number of bands of interest in each designated spectral 
range. The greatest concentration of bands of interest where the three 
datasets coincide is in the NIR, between 750 and 800 nm, and in the red, 
around 650 nm. The two HD datasets also agree that the blue wave-
lengths between 475 and 500 nm provide relevant information. Finally, 
for HD21 yellow is of interest, concretely at 584 nm, and another band 

appears in the NIR for WUR at 850 nm. Therefore, we can cover 9 out of 
the 12 bands of interest in the datasets using a multispectral camera with 
three bands in the spectral regions of coincidence—475-500 nm, 
650–675 nm and 750–775 nm—, demonstrating band transferability.

In general, using the same dataset for both training and validation 
produces optimal results, as shown in Table 2 (by rows). The two HD 
datasets have the same plastics in different backgrounds (sand and 
pebbles). Training with 2021 and validating with 2020 gives better re-
sults than training and validating with 2021. The OAC suggests superior 
transfer occurs when training the model with the most heterogeneous 
dataset, WUR. This finding was unanticipated because both HD datasets 
use identical plastics.

The next step requires transferring the complete model and 
providing only the values of the validation dataset into the already 
trained classifier. When training with HD20 and transferring to HD21, 
the model achieves 80.8 % of OAC, while transferring from HD21 to 
HD20 results in 70.5 %. However, when transferring between HD and 
WUR datasets, the OAC varies between 25 % and 30 %, potentially 
attributable to the normalization of WUR spectra contrasted with the 
absence of normalization in HD spectra. Therefore, this phase is more 
complex to implement successfully and is more dependent on the 
dataset.

While band transfer proves effective, model transfer encounters 
certain limitations. Section 3.3 evaluates whether these limitations 
restrict its use to identical plastics or allow for broader application in a 
case study.

3.3. Experiment 3: case study

The final evaluation of the model’s applicability involves providing it 
with entirely novel data, employing the dataset produced with everyday 
plastics. Fig. 6 (a) illustrates the everyday objects that constitute this 
dataset. As several objects lack the polymer identification code or 
recycling number standardized by ASTM (American Society for Testing 
and Materials), only the ones identified were used to validate the model: 
HDPE (no. 5, 8), LDPE (no. 13), PP (no. 11, 14), PS (no. 9, 15), with 
between 5500 and 7000 pixels per plastic type. Fig. 6 also shows the 
signatures of the objects used for the case study, with a distinct pattern 
for each plastic type.

Transferring the WUR SFS-RF model with four bands to the new 
dataset reaches 54.4 % accuracy, higher than that obtained for HD20 
and HD21, 47 % and 41 %, respectively. Using the four bands of interest 
determined with the optimized SFS-RF model for any of the three 
datasets achieves an accuracy above 90 % in the new dataset. The 
confusion matrix in Fig. 6 (b) shows high performance, misclassifying 
only a few HDPE and PP pixels, which are the classes with the most 
similar spectral signatures and semitransparent in the VNIR range. 
Consequently, the transfer of results is considered successful.

4. Discussion

Our analysis provides a positive outlook for band transfer and clas-
sifying macroplastics in aquatic and coastal environments. Integrating 
SFS and RF models facilitates the optimal selection of bands of interest. 
The coincidence of the spectral regions of interest across datasets of 
different characteristics, coupled with the high accuracy (above 85 %) in 
terms of the number of bands employed and the transferability of the 

Table 1 
Metrics for all models with four bands in the VNIR.

SFS SFM

OAC F1 κ OAC F1 κ

HD20 RF 0.959 0.959 0.946 0.781 0.781 0.708
SVM 0.944 0.944 0.926 0.904 0.904 0.872

HD21
RF 0.900 0.900 0.867 0.885 0.885 0.847
SVM 0.850 0.849 0.800 0.846 0.846 0.795

WUR
RF 0.930 0.929 0.906 0.917 0.917 0.889
SVM 0.922 0.922 0.896 0.767 0.758 0.690

Fig. 4. HD dataset with backgrounds’ confusion matrix (SFS-RF 4 bands).

Fig. 5. First four bands of interest for each dataset.

Table 2 
OAC for SFS-RF with four band transfer.

Datasets providing the bands

HD20 HD21 WUR
Dataset validating the model HD20 0.959 0.902 0.911

HD21 0.889 0.900 0.891
WUR 0.869 0.889 0.930
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bands between datasets, enhances the sensor feasibility regarding 
efficiency.

The findings in Section 3.1 suggest that accuracy improves when the 
background is spectrally uniform, such as a sandy beach, where the 
spectral response is consistent across the area. This is particularly rele-
vant due to the semi-transparent nature of some plastics. In contrast, a 
heterogeneous background, such as a pebble beach, introduces vari-
ability in light reflection both between and within individual pebbles, 
which introduces noise that hinders the identification of objects. 
Accordingly, HD21 exhibits the least favourable results in the study with 
86.7 % κ. The HDPE and LDPE are usually semi-transparent, making 
them particularly susceptible to misclassification, reaching 35 % when 
both added in HD21.

The significance of a uniform background is evident in achieving 
better results, as also observed in Section 3.2. Training the model with 
HD20 and validating in HD21 outperforms the outcomes obtained when 
training and validating with the latter dataset. Training the model with 
heterogeneous objects helps to improve the transfer of the bands of in-
terest, reducing the risk of the model overfitting. Despite the expectation 
of better band transfer between HD datasets due to the shared objects, 
the transfer from WUR to HD outperforms it, suggesting that incorpo-
rating heterogeneous objects is a valuable strategy for reducing 
overfitting.

The successful transfer of bands in the use case in Section 3.3, with an 
accuracy above 90 %, highlights the validity of the model and the 
conducted experiments. Since the bands of interest were determined by 
training the model on a different dataset, it is expected that they may not 
perfectly align with the spectral signatures of the new dataset. However, 

the robustness of the RF classifier allows it to effectively manage the 
classification of the limited number of objects in the study.

The main limitation lies in the model transfer. Although the accuracy 
exceeds 50 %, indicating promising performance, it also highlights that 
achieving high precision when transferring models between different 
datasets remains a challenge. Another limitation is that object colour can 
influence its spectral signature in the visible range, potentially leading to 
false positives or misclassification, particularly with darker-coloured 
plastics and transparent materials Zhu et al. (2020); Tasseron et al. 
(2022). Also, the reflectance of floating plastics is highly sensitive to 
plastic type, transparency, shape, and surface characteristics Martínez- 
Vicente et al. (2019); this effect is less pronounced for plastics on land. 
Our study focuses on light-coloured plastics found on land, where these 
issues are less significant and are not directly addressed. Future research 
could benefit from expanding the number of datasets and conducting 
more band transfers to datasets with varied backgrounds. This approach 
would help avoid overfitting the model to specific data, thereby 
improving the model transferability to other scenarios.

Within the context of previous research, several studies have 
explored the detection of macroplastics using similar RS techniques 
Topouzelis et al. (2021). In contrast to other SWIR-focused work Tas-
seron et al. (2022), our emphasis on the VNIR range explores the pos-
sibility of developing efficient, low-cost sensors. Several studies suggest 
that a high level of spectral detail is unnecessary for detecting and 
classifying other pollutants with gradually changing spectral signatures, 
indicating that sensors with broader bands could still provide reliable 
classification Legleiter et al. (2019, 2022). Our pipeline, which in-
tegrates various classification and feature selection models, enhances 
the methodology’s effectiveness, surpassing other band selection tech-
niques that need between 10 and 20 bands to achieve optimum accuracy 
Olyaei and Ebtehaj (2024).

To summarise, our findings contribute to a better understanding of 
plastics’ spectral behaviour. The experiments’ results advocate the 
feasibility of transferring bands of interest from one dataset to another 
for efficient macroplastic identification, highlighting the importance of 
training with heterogeneous datasets and uniform backgrounds.

5. Conclusion

This letter provides fundamental input for transferring classifiers 
across datasets to identify the key bands for detecting plastic pollution in 
aquatic environments. Integrating SFS and RF models optimizes band 
selection, enhancing sensor feasibility. Uniform backgrounds prove 
crucial for accurate detection, as seen in the individual findings, with 
successful differentiation of all polymers and backgrounds. Successful 
band transfers between datasets, with an accuracy of 90 %, highlight 
model validity. However, analysis of model transfer is limited, requiring 
classifier retraining in each dataset to achieve accuracy above 60 %. 
Consequently, while successful band transfers suggest the potential to 
develop a sensor capable of detecting plastics across various scenarios, 
the insufficient precision in model transfer indicates that the classifier 
must be trained for each scene. The study suggests expanding datasets to 
address limitations and improve model transferability. For optimal 
adaptability to various plastics, it is recommended to use a combination 
of bands from the three main datasets to cover different regions of the 
spectrum, with the sensor bands centred at 495 nm (blue), 665 nm (red), 
777 nm (NIR) and 850 nm (NIR). In the near future, we will explore the 
effect of several multispectral sensor bandwidths on plastic classification 
and transferability to non-virgin plastics. In summary, these findings 
contribute to understanding the spectral behaviour of plastics and the 
effectiveness of band and model transfer, advocating for developing 
more targeted and adaptable remote sensing technologies for efficient 
plastic detection across diverse aquatic environments.

Fig. 6. Spectral analysis of the new dataset: objects, mean spectral signature 
with red lines indicating WUR best bands. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.)
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Á. Pérez-García et al.                                                                                                                                                                                                                          Marine Pollution Bulletin 207 (2024) 116914 

7 



Chapter 3 Band SelectionMethod for EfficientWater PollutionMonitoring

3.2 Developing a Generalizable Spectral Classifier
for Rhodamine Detection in Aquatic
Environments
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Abstract: In environmental studies, rhodamine dyes are commonly used to trace water movements
and pollutant dispersion. Remote sensing techniques offer a promising approach to detecting rho-
damine and estimating its concentration, enhancing our understanding of water dynamics. However,
research is needed to address more complex environments, particularly optically shallow waters,
where bottom reflectance can significantly influence the spectral response of the rhodamine. Therefore,
this study proposes a novel approach: transferring pre-trained classifiers to develop a generalizable
method across different environmental conditions without the need for in situ calibration. Various
samples incorporating distilled and seawater on light and dark backgrounds were analyzed. Spectral
analysis identified critical detection regions (400–500 nm and 550–650 nm) for estimating rhodamine
concentration. Significant spectral variations were observed between light and dark backgrounds,
highlighting the necessity for precise background characterization in shallow waters. Enhanced
by the Sequential Feature Selector, classification models achieved robust accuracy (>90%) in distin-
guishing rhodamine concentrations, particularly effective under controlled laboratory conditions.
While band transfer was successful (>80%), the transfer of pre-trained models posed a challenge.
Strategies such as combining diverse sample sets and applying the first derivative prevent overfitting
and improved model generalizability, surpassing 85% accuracy across three of the four scenarios.
Therefore, the methodology provides us with a generalizable classifier that can be used across various
scenarios without requiring recalibration. Future research aims to expand dataset variability and
enhance model applicability across diverse environmental conditions, thereby advancing remote
sensing capabilities in water dynamics, environmental monitoring and pollution control.

Keywords: dye tracking; rhodamine; artificial intelligence; band selection

1. Introduction

Understanding the water movement and particle transport in the ocean and rivers is cru-
cial for giving a fast response to environmental disasters. Although numerous mathematical
models predict how these agents are transported, they often come with high computational
costs and may not be adaptable to the highly variable conditions encountered in real-world
scenarios, limiting their effectiveness for quick responses [1]. Thus, to understand and track
hazardous agents in oceans and waterways, new techniques and tools are necessary [2].

Dye tracers offer a simpler and effective solution. They are widely used to study the
transport and dispersion of particles in aqueous environments, such as in the ocean [3],
coastal areas [4,5], rivers [6], and lakes [7]. Rhodamine is a synthetic dye commonly used
as a tracer in environmental studies due to its distinctive colour and high visibility. Its
applications include monitoring water flow, tracking pollutant dispersion, and studying
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hydrodynamic processes in aquatic environments. Rhodamine is a key tool for understand-
ing complex water movement and contamination patterns. Current methods of measuring
rhodamine concentration involve collecting samples for later laboratory analysis [8] or
using fluorimeters for in situ measurements [9]. However, these techniques are costly and
spatially limited, capturing information only at the local levels [10]. In this context, aerial
and near-field remote sensing emerges as a promising alternative, offering greater spatial
coverage than traditional in situ sampling methods [11].

Multispectral and hyperspectral remote sensing have proven to be effective in detect-
ing and mapping the concentrations of dye tracers in aquatic environments [12]. Several
studies successfully utilized multispectral and hyperspectral sensors onboard piloted aerial
platforms to identify rhodamine, also in diverse aquatic environments, including the
ocean [13–15], coasts [16], rivers [10,17], and lakes [1]. Some studies focused on comparing
the intensity of RGB images [18,19], while others utilized hyperspectral sensors to capture
surface reflectance [20]. Combining spectral technology with the emerging use of uncrewed
aerial vehicles (UAVs) allows for conducting studies in much detail, with greater flexibility
and detecting patterns at sub-meter resolution [12]. In addition, the development of lighter
and more specialized optical sensors represents an opportunity to have a sensor with
specialized spectral bands for rhodamine detection and concentration estimation at a low
price [21].

Despite these advancements, several knowledge gaps remain. The widely used Opti-
mum Band Ratio Analysis (OBRA) [10,22] method for selecting bands in hyperspectral and
multispectral sensors to detect rhodamine requires in situ concentration measurements for
calibration, limiting its transferability to different locations. Furthermore, most rhodamine
studies are conducted in controlled environments, such as experimental channels, water
tanks, or deep lakes, where the impact of background reflections is minimized (optically
deep waters) [12]. Only a few studies have analyzed real-world scenarios, such as rivers
with varying degrees of turbidity or optically shallow waters where the bottom reflects
light [12,22]. The optical characterization of rhodamine in aquatic environments presents
several challenges, especially in coastal areas, shallow rivers or turbid environments. As a
semi-transparent solution, its spectral signature captured by sensors is influenced by the
optical properties of suspended components and background reflections. However, more
in-depth work is needed to understand the effect of water properties and bottom reflections
of optically shallow waters on rhodamine’s spectral signature and the transferability of
detection models across varied conditions.

In this study, we conducted experiments to measure rhodamine concentrations with
the goal of improving detection methods. We first spectrally analyzed the rhodamine in
the laboratory with different backgrounds and water types. Using artificial intelligence
algorithms, specifically Sequential Feature Selection (SFS) and Random Forest (RF) models,
we identified the key spectral bands for rhodamine detection and concentration estimation.
We then evaluated the transferability of these bands and the trained classifiers across
different water types and backgrounds. This approach aimed to minimize the need for in
situ calibration and enhance the robustness of detection models.

In our paper, we present the identification of key spectral bands for rhodamine estima-
tion, the influence of background types on spectral signatures, and the transferability of
detection models. We found that combining all samples to train the classification model,
and also applying the first derivative [23] to favor the distinction of spectral signatures,
improved the transfer of the models to all samples. These findings provide valuable in-
sights for developing effective and affordable remote sensing tools to monitor rhodamine
and, by extension, other pollutants in aquatic environments, especially in optically shallow
waters. This research is particularly significant, as it supports the development of low-cost,
multispectral cameras for environmental monitoring, contributing to more efficient and
scalable pollution reduction strategies.
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2. Materials and Methods

The methodology followed in this experiment can be divided into preparing the
rhodamine samples, performing their spectral analysis, and employing the band selection
methodology for classifying rhodamine concentrations. Rhodamine samples were prepared
in beakers with distilled and seawater at concentrations of 1 mg/L, 15 mg/L, and 30 mg/L.
The spectral signatures of samples on two different backgrounds were obtained with
hyperspectral cameras. The spectral signatures of each concentration were provided to the
band selection algorithm to obtain the most influential bands for classifying the rhodamine
concentration.

2.1. Rhodamine Samples

The Rhodamine Water Tracer, hereafter referred to as rhodamine, is a fluorescent
dye primarily used as a tracer in aquatic environments. The company Elittoral [24] from
Las Palmas de Gran Canaria, Spain, has procured the rhodamine from ThermoFisher
Scientific [25] from Massachusetts, USA, identified by the chemical codes CAS 37299-86-
8 and 7732-18-5, with catalogue number 446971000. Initially, the rhodamine is highly
concentrated at 20%, or 200 g/L, requiring dilution in water to achieve an appropriate
concentration for its discharge into the sea. The beakers are from Labbox [26] in Barcelona,
Spain, reference BKT3-250-012. They have a measurable volume of 250 mL, an outer
diameter of 60 mm, and a height of 123 mm. When the beaker is filled with 250 mL of
liquid, the height of the fluid will be 100 mm.

This study uses 250 mL solutions of seawater and distilled water with varying con-
centrations of rhodamine provided by Elittoral. Solutions with different concentrations of
rhodamine are produced: 1 mg/L, 15 mg/L, and 30 mg/L (Figure 1). In addition to the
rhodamine dilutions, pure seawater and distilled water samples are also included in the
study. These pure samples serve as reference spectra and are essential for the comparative
analysis of rhodamine-contaminated samples.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Rhodamine samples for distilled and seawater at different concentrations. (a) Distilled
0 mg/L; (b) Distilled 1 mg/L; (c) Distilled 15 mg/L; (d) Distilled 30 mg/L; (e) Seawater 0 mg/L;
(f) Seawater 1 mg/L; (g) Seawater 15 mg/L; (h) Seawater 30 mg/L.
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Hyperspectral signatures of all samples were collected over two different backgrounds.
Since the rhodamine solutions are semi-transparent, the background signature likely influ-
ences the signature captured by the sensor. We placed two backgrounds underneath the
beaker to observe these differences: a white sheet of paper as the light background and a
low-reflective black foam material [27] as the dark background.

2.2. Hyperspectral Setup

We took images of the rhodamine samples in the Hyperspectral Laboratory at IUMA [27]
in Las Palmas de Gran Canaria, Spain. The system shown in Figure 2 aims to acquire images
with pushbroom hyperspectral cameras. It includes a motorized linear stage for linear
motion and a light source emitting uniformly. Illumination comes from a 150 W Quartz
Tungsten-Halogen (QTH) lamp with broadband emission between 400 nm and 2500 nm
(VIS and NIR spectral range). Images were captured using a Specim FX10 camera (Konica
Minolta Company, Oulu, Finland) [28]. The FX10 is a hyperspectral camera covering
the visible and near-infrared range (VNIR) from 400 nm to 1000 nm, with 224 bands, a
spectral resolution of 5.5 nm, a spatial sampling of 1024 pixels, and a field of view (FoV) of
38 degrees. This spectral range was chosen because rhodamine has the greatest response in
the VNIR.

Figure 2. A 3D model of the acquisition system (adapted with permission from [27], under a Creative
Commons Attribution (CC BY) 4.0 license. Copyright 2022).

We performed single-point reflectance calibration (Equation (1)) before starting mea-
surements to avoid sensor saturation. This pre-processing involves white and dark
(0-photon) references to calculate the reflectance of each pixel from its radiance. The
white reference is a high-reflectance Zenith Polymer [29], and the dark reference is obtained
by covering the camera lens:

re f lectance =
radiance − dark

white − dark
(1)

The measurements are taken by scanning the FX10 camera over the different beakers.
Since the light source is positioned ahead of the camera as shown in Figure 2, this setup
produces glints on the beaker, shadows in certain areas, and increased intensity in others
due to internal reflections and external refractions of the glass.
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The datasets used for the artificial intelligence model are generated by extracting pixels
from the bottom areas of the beaker where no glints are present, while avoiding shadows.
However, due to the varying brightness within the beaker, the standard deviation of the
classes will be high, indicating variation in intensity, though not in the shape of the spectral
signature. The number of pixels per class will not be uniform, as shown in Table 1.

Table 1. Number of pixels per class.

Dark Background Light Background

Distilled Sea Distilled Sea Total

0 mg/L 346 624 233 299 1502

1 mg/L 857 668 821 545 2891

15 mg/L 1302 406 965 650 3323

30 mg/L 924 346 866 750 2886

Efforts have been made to balance the glints and shadowed areas within the beaker.
However, the primary goal of this study was to develop a generalizable classifier, and having
data with variability is advantageous, as it better reflects the reality of experimental conditions.

2.3. Methodology

The methodology is divided into training, result analysis, and transfer (Figure 3).
During training, data are provided to the band selection model. This model provides
evaluation metrics, which are analyzed to determine the optimal number of bands. The
band selection model [30] also identifies the best bands and provides pre-trained classifiers
for the optimal number of bands. The final stage involves transferring the best bands and
pre-trained models to other scenarios to assess their performance and determine if the
classifier is generalizable.

Figure 3. Methodology for transferring results and obtaining a generalizable classifier.

The methodology integrates hyperparameterized classifiers with feature selectors to
provide optimized bands of interest for classification [30]. The procedure is illustrated in
Figure 4. The data are divided into training sets for the feature selectors and classifiers,
as well as a validation set. Employing the information provided by the classifiers, the
feature selectors determine the bands of interest. Subsequently, the classifiers are retrained
exclusively with these bands. Finally, the performance of the updated classifiers is assessed
using the validation dataset to obtain classification metrics.
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Figure 4. Band selection method (adapted with permission from [30], Copyright 2024, IEEE).

For this study, we combined two feature selectors, Sequential Feature Selector (SFS)
and Select From Model (SFM) [31], with three classifiers, Random Forest (RF) [32], Logistic
Regression (LR) [33], and Linear Support Vector Machine (SVM) [34]. SFS is a sequential
search technique that iteratively adds or removes features to improve the classifier’s
performance. SFM ranks features based on a model’s coefficients or importance, facilitating
the selection of efficient feature subsets [31]. RF is a widely used classifier, employing
ensemble learning to combine predictions from multiple decision trees [35]. LR is a linear
model for binary classification [36]. Linear SVM identifies hyperplanes for optimal class
separation [37].

We evaluated the performance of rhodamine concentration classification using the
classification metrics on the validation dataset. The overall accuracy (OAC), also called
accuracy, represents the proportion of correct predictions out of the total samples [38]. The
F1 score is particularly useful with imbalanced class distributions, as it emphasizes the
accuracy of the smaller classes [39]. The Kappa statistic (κ) measures inter-rater agreement
for categorical items, adjusting for chance agreement, and is particularly relevant for
uneven datasets [40]. The confusion matrix provides a detailed decomposition of predicted
classification labels versus real labels [41].

The performance of all pairs of feature selectors and classifiers was evaluated for
different numbers of bands of the FX10 camera [28]. By plotting the accuracy values for
each band on a graph, we were able to use the elbow method [42] to determine the optimal
number of bands. This method selects the number of bands at the point where the curve
bends, forming an elbow and indicating a slowdown in accuracy improvement [42]. For
the optimal number of bands, all classification metrics were calculated.

We also analyzed whether the different feature selector–classifier pairs identify the
optimal bands in the same area of the electromagnetic spectrum. For this purpose, we
grouped the wavelengths into sections of 25 nm wide for several reasons. First, the spectral
signatures of different concentrations of rhodamine are continuous and do not exhibit
abrupt changes, making it practical to group the wavelengths for better visualization of
large-scale behavior. Second, grouping the bands helps us understand their potential
utility in multispectral sensors. The hyperspectral camera used in this study has a spectral
resolution of 5.5 nm [28], so it is appropriate to group them, given that multispectral sensors
typically have a bandwidth of approximately 20 nm or 30 nm. Third, several studies support
that a high level of spectral detail is unnecessary for rhodamine detection, indicating that
sensors with broader bands could still provide reliable concentration estimates [20,22].
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Finally, we can assess the transferability of the results to different scenarios. We can
define different levels of transfer, such as the transfer of the bands of interest or the transfer
of pre-trained classification models. Transferring the bands of interest is a straightforward
way to transmit part of the knowledge acquired from one sample to another. It involves
using the bands identified by the classification model in one scenario to train the classifier
(exclusively with those wavelengths) with another scenario, whether it has a different type
of water or a different background.

Transferring pre-trained classification models is more complex because these models
learn the specific characteristics of each scenario, i.e., the reflectance value of the spectral
signature. One strategy that can be employed to improve the transfer of pre-trained models
is to provide the classifier with a combination of samples from all types of water and
backgrounds for training. Another strategy is calculating the first derivative of the spectral
signatures, which helps identify variations and trends in the data, thereby aiding in the
differentiation of spectral signatures.

If the spectral behavior is similar enough across different scenarios, it is possible
to successfully transfer the models, and the classifiers can be used in multiple scenarios
without retraining. This would decrease the required in situ calibration measurements and
reduce computational time.

3. Results
3.1. Spectral Analysis—Beaker Influence

An important aspect to consider during the analysis of the results is the influence of
the beaker on the spectral signature of its liquid content. The reflections and refractions
caused by the glass lead to non-uniform spectral intensity throughout the beaker, resulting
in a higher standard deviation in the spectral signatures of each class.

To elaborate on the reflections caused by the beaker, Figure 5 compares the spectral
behaviour of the light and dark backgrounds, both with and without the beaker filled with
seawater. The results indicate that the primary effect of the background is to modulate the
intensity of the reflectance, with greater influence between 400 nm and 500 nm. Therefore,
the importance of this spectral range will vary depending on the illumination of the scene
and the scattering capacity of the water and the background. It should also be noted that
the reflectance value of the dark background increases when the beaker is placed, indicating
that reflections and refractions occur in the beaker, which increases the reflectance.

Figure 5. Mean spectral signature and standard deviation (shaded in the corresponding colour) of
the backgrounds with and without the beaker.
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3.2. Spectral Analysis—Rhodamine

We observed variations in spectral response to rhodamine concentrations at different
wavelengths (Figure 6). We had four samples that combined distilled and seawater with light
and dark backgrounds. In all samples, an increase in rhodamine concentration resulted in a
shift of the reflectance peak around 600 nm towards longer wavelengths, giving the solution
an increasingly orange hue. Initially, no differences were observed between distilled water and
seawater samples, but noticeable differences emerged between light and dark backgrounds,
especially at low rhodamine concentrations or when it was absent.

(a) (b)

(c) (d)

Figure 6. Mean spectra with standard deviation (shaded in the corresponding colour) for each
concentration and sample. (a) Distilled water with a dark background; (b) distilled water with a light
background; (c) sea water with a dark background; (d) sea water with a light background.

The most significant difference for both backgrounds was found at a concentration
of 15 mg/L, specifically in the wavelength range of 600 nm to 650 nm (Figure 7). The
samples exhibited a spectral difference of between 0.1 and 0.3 reflectance units; only the
15 mg/L sample with a light background with 0.37 reflectance units exceeded this value.
The spectral differences between the two types of water were insufficient to conclusively
distinguish between them.

More significant differences were observed when comparing the same water sample on
the two different backgrounds, with discrepancies varying between 0.2 and 0.47 reflectance
units. In Figure 8, a substantial decrease in reflectance is observed in the samples on a
dark background, particularly pronounced in the red and near-infrared range (600 nm to
900 nm). The 15 mg/L and 30 mg/L samples show the most noticeable drops, reaching a
difference between the spectral signatures of 0.47 and 0.41 for distilled water. Additionally,
in the pure seawater samples, there is a reflectance peak associated with the blue colour,
around 450 nm, on the light background that is not observed on the dark background,
resulting in a difference in the spectral responses of 0.39.
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Figure 7. Spectral difference between distilled and seawater for the two backgrounds: (a) 0 mg/L;
(b) 1 mg/L; (c) 15 mg/L; (d) 30 mg/L.

Figure 8. Spectral difference between backgrounds: (a) 0 mg/L; (b) 1 mg/L; (c) 15 mg/L;
(d) 30 mg/L.

These findings highlight the influence of background type on the spectral signature
of rhodamine and emphasize the need to consider background effects in remote sensing
applications to improve rhodamine detection accuracy.

3.3. Classification

The first step is identifying the optimal number of bands for detecting rhodamine
concentrations. As illustrated in Figure 9, OAC increases with the number of bands
provided to each feature selector–classifier pair. The OAC achieved is above 80% with few
bands across all samples, demonstrating the strong differentiating power of the classifiers.
There is no apparent difference between the performance of distilled water and seawater.
The models performed better with a light background than with a dark one, achieving
greater accuracy faster. Additionally, it is evident that classifiers combined with the SFS
feature selector yielded more satisfactory OAC. The optimal number of bands for detecting
rhodamine using the elbow method [42] was two for all samples.

(a) (b)

Figure 9. OAC of all model combinations for dark (solid line) and light (dashed line) backgrounds.
(a) Distilled water; (b) seawater.
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The SFS feature selector outperformed SFM, and both RF and SVM classifiers demon-
strated excellent performance as Table 2 shows. For the light background, perfect perfor-
mance was achieved in the three metrics, indicating a correct classification of all pixels
in the validation subset. These results were to be expected, as the four classes are well
differentiated and the number of pixels is limited.

Table 2. Metrics for all models with two bands of interest. The best result for each sample is marked
in bold.

SFS SFM

OAC F1 κ OAC F1 κ

RF 0.992 0.992 0.989 0.800 0.797 0.716

LR 0.950 0.950 0.930 0.759 0.721 0.652Distilled water
Dark background

SVM 0.999 0.999 0.999 0.842 0.799 0.773

RF 1.000 1.000 1.000 1.000 1.000 1.000

LR 0.992 0.992 0.989 0.896 0.863 0.850Distilled water
Light background

SVM 0.998 0.998 0.997 0.946 0.941 0.923

RF 0.997 0.997 0.995 0.845 0.844 0.785

LR 0.995 0.995 0.993 0.853 0.854 0.798
Seawater

Dark background
SVM 0.997 0.997 0.995 0.837 0.838 0.775

RF 0.997 0.997 0.996 0.997 0.997 0.996

LR 1.000 1.000 1.000 0.822 0.764 0.748
Seawater

Light background
SVM 1.000 1.000 1.000 0.896 0.880 0.856

We identified the optimal bands for each model (Figure 10). Two spectral areas of
interest are highlighted, ranging from 400 nm to 500 nm and from 550 nm to 650 nm. These
findings align with the regions of interest identified in the spectral analysis of different
rhodamine concentrations. Samples with light backgrounds show more bands of interest in
the blue region of the spectrum, whereas those taken on dark backgrounds tend to have
significant bands in the yellow-orange region.

Figure 10. Spectral areas of interest, identified by grouping the two most significant bands for each
combination of SFS with RF, LR, and SVM.
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The background affects the spectral signature of the rhodamine and the band selection.
However, transferring the trained artificial intelligence model from one scenario to another
with a different background may be possible.

3.4. Transferability

We differentiated a section for the transfer of the bands of interest (Section 3.4.1) and
another for the transfer of the pre-trained models (Section 3.4.2). In addition, a third section
(Section 3.4.3) was included, where we improved the model transfer by combining all the
samples and calculating the first derivative to train the classifier.

3.4.1. Band Transfer

The two most influential bands obtained with each model and sample were transferred
to the rest of the samples to analyze the effectiveness of transferring spectral bands between
different samples in the dataset. Section 3.3 shows that combining SFS with different
classifiers led to the best results. Therefore, for this experiment, we exclusively analyzed
the results of the SFS-RF combination. The other classifier combinations yielded similar
results without a significant impact on the transferability of the bands and required more
computational time.

The band transfer was successful for all samples as shown in Figure 11. The best
results were obtained when validating the models with seawater samples, with superior
performance observed when transferring from models trained with dark background
samples. For distilled water samples, better performance was achieved when transferring
bands from models trained also with distilled water samples.

Figure 11. Accuracy obtained by transferring bands of interest from one sample to another. The
colours indicate performance: green tones for accuracies above 80%, yellowish for 60–80%, orange
for 40–60%, and red for accuracy below 40%.

3.4.2. Train Model Transfer

Transferring pre-trained classification models is complex due to the limited variability
in the training samples of the dataset, which can easily lead to overfitting and lack of gener-
alization. The accuracy results obtained differ significantly from those seen in band transfer.
As shown in Figure 12, the model trained on distilled water with a dark background is not
transferable to other samples, achieving an accuracy between 32% and 37%. However, the
model trained on distilled water with a light background transfers perfectly to seawater
with a light background, with an accuracy of 95%. This model also achieved 68% accuracy
when transferred to seawater with a dark background. The model trained on seawater
with a light background shows 97% accuracy when validated on distilled water with a
light background and 86% accuracy when validated on seawater with a dark background.
Meanwhile, the model trained on seawater with a dark background achieved 70% accuracy
on both distilled water samples but fell below 50% on seawater with a light background.

The average accuracy, considering all transferred models, was 70%. Models show
higher accuracy when transferring within the same background type, achieving 76% aver-
age accuracy for dark background samples and 98% accuracy for light ones. In contrast,
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models trained on dark backgrounds achieved only 47% accuracy when applied to light
background samples, and those trained on light backgrounds achieved 57% accuracy when
transferred to dark background samples. This indicates that model transfer is performed
effectively with the same background but different water types. Additionally, better results
are obtained with light backgrounds compared to dark backgrounds, whereas performance
decreases with different backgrounds.

Figure 12. Accuracy obtained by transferring trained classifiers from one sample to another. The
colours indicate performance: green tones for accuracies above 80%, yellowish for 60–80%, orange
for 40–60%, and red for accuracy below 40%.

3.4.3. Improving Model Transfer Combining the Samples and Applying the First Derivative

Two approaches improve the model transfer. The first involves creating a new dataset
that combines all types of samples with different water types and backgrounds, thereby
avoiding overfitting the classifier. Secondly, the first derivative highlights variations in
spectral signatures, enhancing the identification of concentrations. These new datasets will
be referred to as combined sample (CS) and combined derivative (CD), respectively.

Analyzing the average spectral signature of CS (Figure 13), we can already antici-
pate that distinguishing between the 15 mg/L and 30 mg/L samples will be challenging
because their spectral signatures are very similar. This similarity occurs because darker
backgrounds attenuate light reflection, causing the reflectance of the 30 mg/L sample on a
dark background to resemble the reflectance of the 15 mg/L sample on a light background.
In the average spectrum of the first derivative, 15 mg/L and 30 mg/L are the closest
concentrations, whereas the signature of the 1 mg/L concentration is well differentiated.
The bands of interest are 580 nm and 610 nm for the combined samples and 591 nm and
607 nm for their first derivative.

(a) (b)

Figure 13. Mean spectra and standard deviation (shaded in the corresponding colour). The two best
bands are indicated with black vertical lines. (a) Combined samples (580 and 610 nm); (b) the first
derivative of the combined samples (591 and 607 nm).
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The transfer of models trained with CS shows higher accuracy than the results pre-
sented in earlier sections. When applying the first derivative, the results are excellent,
surpassing 85% accuracy in all cases except for the distilled samples with a light back-
ground, which only reaches 50%.

The confusion matrices for the best and worst cases provide additional insight into
how the CS and the derivative influence classification (Figure 14). When training with
CS and validating with light background samples, there is significant misclassification
between the 15 mg/L and 30 mg/L, especially for distilled water. The separation of these
two concentrations improves notably when the derivative (CD) is applied.

(a) (b) (c)

Figure 14. Confusion matrix training with CS and CD for the best and worst scenarios in Figure 15. (a) CS
validating on distilled light; (b) CS validating on seawater light; (c) CD validating on seawater light.

This experiment again demonstrates that the background affects the reflectance of
translucent solution spectral signatures. However, training a model with varied samples
enhances classification performance, and using the first derivative aids in better identifying
rhodamine concentrations.

Figure 15. Accuracy obtained by transferring trained classifiers from the combined sample. The
colours indicate performance: green tones for accuracies above 80%, yellowish for 60–80%, orange
for 40–60%, and red for accuracy below 40%.

4. Discussion

Significant differences were observed in the spectral response of samples with light
and dark backgrounds in Section 3.2, with discrepancies of nearly 0.5 reflectance units.
Small differences were observed based on the water type, but they are not sufficiently
representative (between 0.1 and 0.3) to determine their influence. A curve around 810 nm
appeared in all samples, consistent with studies [12,22], likely due to a local minimum in
liquid water absorption common in shallow waters. The spectral regions most affected by
rhodamine concentration were between 550 nm and 650 nm and from 400 nm to 500 nm,
independently of the sample. These results aligned with the findings of Clark et al. [11],
who observed that upwelling spectral radiance from a water body containing dye decreases
in the green portion of the visible spectrum (530–570 nm) due to dye absorption and
increases in the red and near-infrared wavelengths (570–750 nm) due to dye reflectance.
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It should be noted that the influence of the 400 to 500 nm range is affected by the scene’s
illumination and the scattering properties of the water and the background. In our case
study, this range is particularly impacted by the high reflectance caused by the reflections
from the beaker.

The use of classifiers demonstrated high accuracy in differentiating rhodamine con-
centrations and determining that the optimal number of bands for the classification is two
(Section 3.3). Classifiers combined with the SFS feature selector yielded more satisfactory
results than SFM, with all classification metrics exceeding 90%. Several samples even
achieved 100% accuracy, indicating that all pixels in the validation subset were correctly
classified. These results were expected, as the dataset consists of controlled samples mea-
sured in a laboratory setting, with a limited number of pixels. This dataset will be extended
to include more variability in future work, leading to more realistic classification metrics.

The study identified that for all the samples, the two most influential spectral bands
were consistently within the 400–500 nm and 550–650 nm regions, corresponding to the
regions identified in the spectral analysis of Section 3.2. We combined the bands identified
by the best models (SFS + RF, LR, and SVM) to obtain enough data to determine if any pat-
terns emerged in the bands of interest. A notable difference was observed between samples
with light and dark backgrounds regardless of water type. Specifically, the 400–500 nm
wavelengths are more relevant on light backgrounds, while the 550–650 nm range is more
influential on dark backgrounds. This is a direct consequence of the background’s influence
and the rhodamine’s semi-transparency, which is more critical on dark backgrounds due to
lower reflection.

Transferring the results is a crucial phase of the study, as one of the primary objectives
is to estimate the rhodamine concentration without specific scene calibration (Section 3.4).
The successful transfer of bands of interest determined from one sample to another demon-
strated that band transfer is feasible. The transfer of pre-trained models has been highly
effective among light background samples, achieving an accuracy exceeding 95%. Nev-
ertheless, the transfer of models between samples with different background types was
not as effective, which was expected, given the difference in spectral areas of interest
between light and dark backgrounds analyzed in Section 3.3. Also, the spectral range
between 600 nm and 650 nm was both an area of interest for the classifiers and a region of
significant discrepancy between the spectral signatures of distilled and seawater as shown
in Section 3.2. This discrepancy further complicated the transfer between water types.

To overcome the impediments in model transfer caused by background reflectance
differences and spectral signature variations due to water type, two essential measures
were implemented: training the classifier with samples from different backgrounds and
water types, and calculating the first derivative. When applying this approach, accuracy
surpassed 85% in all cases except for the distilled light sample (50%). The optimal bands
were between 580 and 610 nm. The primary difficulty improved by the first derivative was
the differentiation between the 15 mg/L and 30 mg/L concentrations, as the reflectance of
the 30 mg/L samples on dark backgrounds decreased, making it resemble the 15 mg/L
samples on light backgrounds. This approach in Section 3.4.3 prevented overfitting in the
classifier and highlighted variations in the spectral trends, improving the generalizability
of the models.

This new proposed methodology can achieve a generalizable model that overcomes
the limitations of current models. Clark et al. [11] show that band ratio linearity with
rhodamine concentration becomes nonlinear above 0.03 mg/L, a problem that our method
overcomes. Additionally, the Optimum Band Ratio Analysis (OBRA) [20], the most widely
used method for determining rhodamine concentration, still requires on-site calibration for
each specific scenario. Furthermore, the identified spectral areas of interest (400–500 nm
and 550–650 nm) and the transfer of models had direct applications in the design and
optimization of multispectral cameras [21]. These findings can be integrated into existing
camera systems to enhance the detection and quantification of dye concentrations, which is
crucial for applications such as tracking pollutant dispersion in water bodies.
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Another approach to consider is radiative transfer models (RTMs), such as Hydro-
light [43], which simulate light propagation through water and provide insights into
environmental factors like depth, bottom types, and constituent concentrations. These
models can be useful for predicting the behavior of substances like rhodamine in various
aquatic environments, but they rely on precise input parameters that may not fully capture
real-world complexity [44]. While complementary to laboratory measurements, which
offer controlled and empirical data, RTMs may struggle with the complexity of optically
shallow environments, where factors like bottom reflectance and water column effects
introduce significant variability [2]. Given these challenges, we chose to rely on laboratory
measurements combined with artificial intelligence models in our study. This approach
allowed us to more effectively manage the inherent variability and complexity of optically
shallow environments, providing a more robust and generalizable method for detecting
and analyzing rhodamine in such settings.

Our study presents an exhaustive spectral analysis of different water types and back-
grounds to improve the identification of various rhodamine concentrations. The key
findings reveal significant spectral discrepancies based on the background type, highlight-
ing the importance of considering background reflectivity in optically shallow waters. The
transfer of bands of interest was successful, ensuring that multispectral cameras with a
few bands can effectively determine rhodamine concentration. Additionally, training the
classification model with combined samples and applying the first derivative enabled the
successful transfer of pre-trained classification models. This advancement aimed to develop
a classifier that works in several scenarios without the need for on-site calibration, bringing
us one step closer to improving the remote detection of dye in aquatic environments.

Future research should focus on further refining the classification models by incorpo-
rating more diverse sample types and environmental conditions. Additionally, there is an
interest in testing the implementation of a regressor to estimate rhodamine concentration
and conducting experiments with lower concentrations in real-world scenarios. Exploring
advanced machine learning techniques and integrating them with hyperspectral imaging
can provide deeper insights and better transference. Expanding the spectral analysis to
include other fluorescent dyes and pollutants can broaden the applicability of this research.
Moreover, the development of real-time monitoring systems using these enhanced mod-
els could significantly benefit environmental monitoring, pollution control, and water
quality assessment.

5. Conclusions

This study provided new insights into the generalization of spectral semi-transparent
solutions detection across different water types and backgrounds. The spectral analysis
identified relevant regions for rhodamine classification between 400 nm and 500 nm, and
550 nm and 600 nm, related to solution concentration. These wavelengths are commonly
found in sensors and satellites such as Landsat 8 [45], Sentinel-2 [46], and WorldView-2 [47].
The significant differences observed between samples on dark and light backgrounds,
especially with maximum reflectance captured, underscore the necessity of the spectral
characterization of backgrounds when using rhodamine in optically shallow waters.

The classification results are promising, indicating the feasibility of transferring clas-
sification results with high accuracy, especially when integrated with the SFS feature
selector. Our study identified the two most influential spectral bands consistently within
the 400–500 nm and 550–650 nm regions for all samples, correlating with regions identi-
fied in the spectral analysis. While the transfer of spectral bands was successful (>80%),
the transfer of trained models was only successful among light background samples. To
improve these results, a model was trained by combining all samples to avoid overfitting,
and applying the first derivative to enhance the identification of variations in the spectral
signature. As a result, accuracy surpassed 85% in all cases except for the distilled light
sample, where the concentrations of 15mg/L and 30mg/L were misclassified.
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Therefore, the transfer of pre-trained classifiers between different backgrounds is
feasible. This would potentially eliminate the need for on-site calibration each time rho-
damine dispersion is studied in aquatic environments, saving materials and providing
a generalizable classifier. Future research will focus on extending the dataset to include
more variability and backgrounds, exploring the practical applicability of the models in
outdoor scenarios. This expansion will ensure that the model can accurately generalize
across diverse aquatic environments. By doing so, we can advance towards establishing
standardized protocols for remote sensing and monitoring solutions dispersion, facilitating
broader applications in environmental monitoring and water dynamics.
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Chapter 4

UnsupervisedHyperspectral
Methods for ScalableMonitoring

A significant challenge limiting HSI’s large-scale application is the need for vast
amounts of labelled data to train supervised algorithms effectively. Obtaining
labelled data in aquatic environments is challenging due to field deployment
requirements, high personnel and equipment costs, and logistical constraints.
This lack of labelled data creates a bottleneck, restricting the scalability and
generalization of current models and hindering their adoption for broader
monitoring applications.
Sub-objective 3 of this thesis aims to improve HSI processing through a

new loss function for unsupervised neural networks. Developing unsupervised
methods capable of classifying images without large labelled datasets has become
crucial in overcoming large-scale environmental monitoring. Unsupervised
neural networks offer a promising approach. They identify patterns and classify
objects based solely on the data’s spectral characteristics, eliminating the need
for ground truth, which is often unavailable open ocean and other aquatic
environments. However, these methods are still in the early stages and require
optimization to reach the performance levels of supervised models.
In Section 4.1: “Novel Spectral Loss Function for Unsupervised Hyperspectral

Image Segmentation,” the spectral loss function (Sl) is introduced, a novel
approach to enhance unsupervised neural networks. This loss function enables
the algorithm to learn how to differentiate between spectral signatures of
pixels, allowing it to compare them and determine whether they belong to
the same class. Sl improved the performance of the best current unsupervised
segmentation neural network. The proposed approach outperforms spectral
indices, which rely on a few spectral bands and expert-set thresholds, by
using an unsupervised neural network that classifies based on the full spectral
response, enabling direct differentiation of surfaces and transferability across
environments. Unsupervised techniques also help generate ground-truth data
without significant investment in human or material resources, making these
models a more viable solution for large-scale monitoring.
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Novel Spectral Loss Function for Unsupervised
Hyperspectral Image Segmentation

Ámbar Pérez-García , Mercedes E. Paoletti , Senior Member, IEEE,
Juan M. Haut , Senior Member, IEEE, and José F. López

Abstract— Neural networks (NNs) have gained importance in
hyperspectral image (HSI) segmentation for earth observation
(EO) due to their unparalleled data-driven feature extraction
capability. However, in many real-life situations, ground truth
is not available, and the performance of unsupervised NNs is
still susceptible to enhancement. To overcome this challenge, this
letter presents a new loss function to improve the performance of
unsupervised HSI segmentation models. The spectral loss func-
tion, Sl , which can be included in different models, is based on the
purity of the unmixing endmembers and the spectral similarity
of the clusters provided by the NN to determine the classes.
It is incorporated into a 3-D convolutional autoencoder (AE)
to validate its performance on four standard HSI benchmarks.
Furthermore, its performance has been qualitatively examined in
a real case study, an oil spill without ground truth. The results
show that Sl is a breakthrough in unsupervised HS segmentation,
obtaining the best overall performance and highlighting the
importance of spectral signatures. Additionally, the dimensional
reduction is also vital in compacting the spectral information,
which facilitates its segmentation. The source code is available
at https://github.com/mhaut/HSI-3DSpLoss.

Index Terms— Autoencoder (AE), hyperspectral images (HSIs),
semantic segmentation, unsupervised learning.

I. INTRODUCTION

HYPERSPECTRAL imaging (HSI) contributes to many
fields regarding Earth observation (EO), such as preci-

sion agriculture, risk prevention, environmental studies, and
natural resources management. Depending on the atomic struc-
ture of the surface, solar radiation is reflected differently
at each wavelength. Thus, a distinct spectral signature is
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obtained for each material depending on its physical and
chemical characteristics and its roughness. Collected scenes
are organized in large 3-D cubes, where each pixel is an
N -dimensional vector (spectral signature) of N-bands [1].
Thus, processing this rich spectral information provides valu-
able knowledge of the observed materials. Due to strong
intraclass and low interclass spectral variability, HSI classi-
fication has remained difficult [2].

Spectral unmixing, classification, and segmentation are pop-
ular HSI processing methods. Unmixing methods analyze the
pixel content considering it as a mixture of pure spectral
signatures (endmembers) and decomposing its signature into
a set of endmembers and their corresponding abundances.
Classifiers assign a label from a group of land cover categories
to every pixel in the scene, while segmentation models divide
the scene into multiple regions or segments, providing the
boundaries of existing objects. Traditionally, these methods
were based on the spectral features of the scene. Nevertheless,
in EO, it is usual to observe large areas of homogeneous land
cover. Consequently, it is possible to presume that surrounding
regions of a pixel are constituted of the same materials and
exhibit similar spectral behavior. Furthermore, remote-sensing
(RS) data are geolocated, and each pixel corresponds to a
spatial coordinate. As a result, information from spatially
adjacent pixels improves the accuracy of methods, removing
uncertainties caused by spectral variability [3].

Regarding the learning strategy, these methods can be
mainly performed in a supervised or unsupervised manner [4],
where the former needs substantial and properly annotated
datasets to effectively analyze HSIs, especially for data-hungry
techniques like neural networks (NNs) [5]. Ground-truth
generation requires expert knowledge, is time-consuming,
inefficient, and costly and is limited or unavailable in real
scenarios. Some strategies deal with the lack of labeled data,
such as data augmenting, transfer learning, and semisupervised
analysis. Nevertheless, a modest collection of labeled data is
needed to conduct all of them, which makes them unfeasible
in the absence of labeled data. Thus, HSI analysis significantly
benefits from the use of unsupervised approaches, as they do
not require reference data nor prior knowledge, employing
specific measures to assess the segmentation quality [6].

In general, the core of the design of unsupervised methods
depends on the metrics or distances used to compare the
generated and the desired data, and a correct design of the
loss function is critical. RS scientists have used the feature
extraction ability of deep learning (DL) to automatically
discover hidden patterns in images to meet the demands of
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new EO applications and research [7]. Recently, convolutional
NNs (CNNs) [8], fully convolutional networks (FCNs) [9], and
autoencoders (AEs) [10] have significantly increased unsuper-
vised semantic segmentation efficiency compared to previous
approaches [11].

The lack of more accurate unsupervised classification and
segmentation methods has motivated this work, where a new
loss function is proposed to address the problems of no
ground-truth HSI sets. Based on unmixing basics, the proposed
spectral loss function, Sl, analyzes the spectral homogeneity
of the NN output clusters. The contributions of this work are
the following.

1) A novel loss function that employs spectral signatures to
characterize surfaces and facilitate their segmentation.

2) The best-performing unsupervised model for HSI
segmentation.

The unsupervised HSI segmentation procedure is enhanced
by exploiting feature representation through DL architectures
and by the proposed loss function that heightens spectral
characteristics. Segmentation analysis is conducted over four
different HSI benchmark datasets, that is, Pavia University
(PU), Salinas Valley (SV), Indian Pines (IP), and Univer-
sity of Houston (UH2018), and a real use case using an
AVIRIS image. For comparative purposes, the 3D convo-
lutional autoencoder (3D-CAE) architecture for end-to-end
unsupervised HSI segmentation [6] is considered as the base-
line, and its performance is improved by incorporating the
proposed spectral loss function in the decoder phase.

II. METHOD

The pixel spectral signature in the HSI is one of the keys to
classifying them into different land cover categories. Each sub-
stance is known to have a pure spectral signature, the so-called
endmembers in unmixing. A pixel can gather information from
a variety of sources. Thus, it is acknowledged as a collection of
pure signatures that may be decomposed into its endmembers.
This served as the foundation of the proposed spectral loss
function design. The NN provides a distribution of pixels into
clusters of similar spectral properties. Each output neuron of
the network will determine which pixels belong to one of
the clusters. The spectral loss function measures the spectral
homogeneity of the clusters provided by the NN. For this
purpose, the average spectral signature of each cluster is
calculated and compared with each pixel of the corresponding
cluster. If the clusters are well defined, the average spectral sig-
nature of each cluster should be comparable to the signatures
of its pixels. Ideally, the average signatures would be identical
to the individual pixel signatures. Theoretically, this process
can be differentiable to calculate the loss gradient relative to
the source, that is, the model weights.

Regarding the spectral loss function, its two input parame-
ters are the HSI scene to be segmented, H ∈ RR×C×B , where
R is the number of rows in the image, C is the number of
columns, and B is the number of spectral bands, and the NN
output weights, −→z ∈ RR×C×K , where K is the number of
neurons in the last layer, which determines the number of
classes. It is recommended that both the HSI and the NN
output be restructured in the format R ·C × B and R ·C × K

accordingly to operate efficiently. Hence, H may be seen
as a collection of hyperspectral pixels, with pi denoting the
i th pixel and N the total number of pixels (N = R · C).
Similarly, the NN output provides the weights of each neuron
for each pixel. In the mathematical formulations, the subscript
j indicates the operation performed for each output neuron,
j = 1, 2, . . . , K . First, the following equation presents the
softmax function:

σi
(−→z

)
=

ezi

∑K
j=1 ez j

(1)

with i = 1, 2, . . . , N . The softmax function is applied to the
NN output weights. It converts each pixel NN output into
a normalized class membership probability vector, formally
expressed by the following equation:

∀ pi ∈ H :

K∑

j=1

Pj
(

pi
)

= 1 (2)

where Pj is the probability of belonging to class j . The
vector shall be of dimension K , equal to the number of
classes of the multiclass classifier. This shows the likelihood
that a particular pixel belongs to each neuron, that is, class
membership. Thus, it is straightforward to know the class with
the highest membership probability. The composition of class
vectors of all the pixels is the class probability matrix, Mc.
Each row of the Mc corresponds to the probability of a pixel
belonging to each class.

The weighted mean spectral signature, W s ∈ RK×B ,
is obtained by multiplying the class probability matrix by the
image, as shown follows indicates:

W s = McT
· H (3)

where each wi, j is the mean average of band i weighted with
the probability of pixels belonging to a class j . Thus, each
row in W s contains the weighted mean spectral signature of
a particular output neuron.

The total of the probabilities associated with each neuron
is required to determine the class centroids. Each column
of Mc represents the probability of each pixel belonging
to a given class, Pj . The total probability regarding a class
is obtained by summing over all column elements of Mc,
that is, summing over all the pixels. The centroids of each
cluster are then calculated in the following equation through an
element-wise division of the weighted average spectral signa-
ture, wi, j , by the sum of the probabilities of belonging to each
cluster, Pj :

ci, j =
wi, j∑N

i=1 Pj
(

pi
) . (4)

Elements ci, j form the centroid matrix, C ∈ RK×B . Each
row contains the spectral signature of a centroid.

The original image is reconstructed in (5) from the centroids
and the probability of belonging to each cluster. Each element
of the reconstructed image, Ĥ ∈ RN×B , represents a pixel
obtained by weighting the centroids of each class with the

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on July 05,2023 at 09:04:37 UTC from IEEE Xplore.  Restrictions apply. 



PÉREZ-GARCÍA et al.: NOVEL SPECTRAL LOSS FUNCTION FOR UNSUPERVISED HSI SEGMENTATION 5506505

Fig. 1. Graphical representation of the 3-D-CAE model for HSI segmentation.

probability of belonging to that class

Ĥ = Mc · C

=




P1( p1) . . . PK ( p1)
...

. . .
...

P1( pN ) . . . PK ( pN )


 ·




C1,1 . . . C1,B
...

. . .
...

CK ,1 . . . CK ,B


.

(5)

Finally, the spectral loss, Sl, is computed as follows:

Sl =

N∑

i=1

∣∣ pi (B) − p̂i (B)
∣∣ (6)

where pi is the original pixel and p̂i is the reconstructed pixel.

A. Three-Dimensional Convolutional AE

A network with a 3D-CAE architecture is used as a baseline
(Fig. 1). This model has proven to be the best-performing in
the unsupervised HSI segmentation method [6]. The network
encoding phase captures spectral and spatial features inside
an input 3-D patch of size 5 × 5 × B by comprising two
3-D convolution layers with unit stride, which extract the
embedded features. Then, an input to a fully connected (FC)
layer, that is, embedding layer, is created by reshaping the
patch central-pixel features into a 1-D vector. Previous work
has shown that 3-D-CAE is stable and robust against the
number of neurons of the FC layer. The NN produces the
best results when it possesses between 20 and 30 neurons;
therefore, 25 neurons are considered. Furthermore, it matches
the size of the reference model, ensuring a fair and valid
comparison of cluster performance. This first stage uses the
original reconstruction loss and runs until reaching conver-
gence or the stopping condition (25 epochs). In the decoding
phase of the CAE, the embedded features are converted back
to the original 3-D patch. This second phase integrates the
spectral loss function to reconstruct the clusters. The opposite
steps are conducted as in the encoder, with the transposed
convolutions. Thus, a segmented image with the original
dimensions (R × C × 1) is obtained.

III. EXPERIMENTS

The improvement of incorporating the proposed spectral
loss function (Section III-A) is evaluated by compar-
ing the modified 3-D-CAE with state-of-the-art methods
(Section III-B) and studying its effectiveness in a real case
study (Section III-C). Experimental parameters of [12] are
replicated using the same datasets and suggested models for
comparative purposes. The objective is to improve the perfor-
mance of the best-unsupervised segmentation AE using the
spectral loss function, Sl, for HSI data. The experiments are

conducted on four popular HSI datasets: PU, acquired in Italy
(340 × 610 pixels, ROSIS, nine classes, 103 bands, 1.3 m);
SV, gathered in USA (217 × 512 pixels, AVIRIS sensor,
16 classes, 224 bands, 3.7 m); IP, also collected in USA
(145 × 145 pixels, AVIRIS sensor, 16 classes, 200 bands,
20 m), and UH2018, USA (4172 × 1202 pixels, ITRES CASI
1500, 20 classes, 48 bands, 1 m).

Two clustering-quality measures evaluate the results and
quantify the performance of the unsupervised techniques.
On the one hand, the normalized mutual information
(NMI) [13] is a normalization of the mutual information (MI)
that gives a measure of the correlation between the clusters.
On the other hand, the adjusted rand index (ARI) computes a
similarity measure between two clusters. It is the corrected-for-
chance version of the rand index (RI) [14]. The range of values
that the NMI and ARI may take is 0 to 1, with 1 being a perfect
score. Both metrics are unaffected by a permutation of a class
or cluster label values since these measures are independent
of the labels’ absolute values. NMI and ARI calculations do
not include unknown pixels.

Experiments have been run on a hardware platform with an
Intel i9-12900KS processor with 128 GB of DDR4 RAM and
NVidia 4090RTX with 24 GB of RAM. The source code of
the framework was implemented with the Keras library.

A. Improvement of the Loss Function

The first experiment compares the performance of the
original 3-D-CAE network with the proposed network. Both
run under identical conditions. The algorithms are tested on the
full image and over spectrally reduced versions to see the per-
formance. Principal component analysis (PCA), independent
component analysis (ICA), and multispectral simulation from
HSI (S-MSI) are employed for HSI reduction. For every case,
the feature dimensionality is reduced to 25, which corresponds
to the quantity of embedded 3-D-CAE features.

Table I indicates that the spectral loss function improves
the NN performance. The best result for each case, full
image or reduced versions for the two models, is marked
in bold. The best dataset result, that is, for each column,
is outlined in green. In PU, performance has not improved,
probably because it is the simplest dataset and, therefore, less
influenced by spectral differentiation. In general, it is worth
noting that when using dimensional reduction with PCA, the
acquired segmented image results in higher quality. The idea
is that segmenting an HSI becomes more problematic when
the model receives information from the entire spectrum due
to the high spectral variability and redundancies. Dimensional
reduction algorithms compact the spectral data, making spec-
tral differences between classes more noticeable.

B. Comparisons With Other Methods

Additionally, another experiment compares the proposed
method with other techniques, such as k-means, where k is the
number of classes in the dataset. Gaussian mixture modeling
(GMM) is an extension of k-means that integrates knowledge
of the data’s covariance structure and the centers of latent
Gaussians. A variational AE (VAE) is also explored with 2 FC
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TABLE I
AVERAGE RESULTS AFTER FIVE RUNS OF ALL THE METRICS OF THE

ORIGINAL AND THE PROPOSED MODEL

in encoding (512 and 25 activations) and decoding (512 and
25 · B activations) parts. VAE is trained with 5 × 5 patches
over ten epochs.

Lastly, it is compared with three recurrent NNs (RNNs),
which act as asymmetric AEs. The simple recurrent unit
(SRU), the long short-term memory RNNs (LSTM), and the
recurrent gated units (GRUs). Unsupervised results derived
from a supervised 1-D-CNN model are presented (using the
ADAM optimizer with a learning rate of 10−4, β1 = 0.9,
and β2 = 0.999) for better comprehension. Network train-
ing implements Monte-Carlo cross-validation with balanced
training and validation sets. The training, validation, and test
sets consist respectively of 80%, 10%, and 10% of the pixels
of each class selected randomly and without overlapping.
The presented NMI and ARI values have been calculated
only on labeled pixels. The proposed method is abbreviated
as CAE-SL to simplify terminology. All models have been
applied to both the full HSI and the various scaled-down ver-
sions of it. After determining that the number of components
in the PCA has no significant effect on 3-D-CAE performance,
it has been set to 25 for all models, allowing a fair comparison.

Table II provides the experimental results obtained over
all sets. The first row, referring to the supervised trained
1-D-CNN, is presented as a benchmark framework, and the
best model performance for each dataset is underlined in
Table II. The metrics corroborate that the spectral loss function
provides the best segmentation results. CAE-SL obtains the
best performance for the IP dataset and the best NMI for PU
and SV. GRU comes second, with the highest ARI in the PU,
SV, and UH2018 datasets. For UH2018, GMM holds the best
NMI value, and LSTM ties GRU in ARI. Two interesting
facts about the results are worth noting. First, the idea that
dimensional reduction favors segmentation is reinforced, with
the PCA technique standing out among the three studied.
Second, SV leads the metrics ranking. In this dataset, the
methods have generally performed well, and the CAE-SL
proposal rivals the result of the supervised method. Moreover,
Table III shows how the complexity of the proposed model is
significantly lower than that of other models, with only 409 K
parameters. In light of the above, it can be concluded that SL
provides a nonnegligible advantage when segmenting HSIs.

To summarize, the results of experiments in Sections III-A
and III-B place our model as the best-performing, highlighting
the importance of the spectral loss function, Sl. Consider-
ing pixels as combinations of pure spectral signatures and
the influence of the spectral similarity of the clusters helps
improve the HSI segmentation algorithm’s performance. The
last experiment explores a real scenario without labeled data.

TABLE II
UNSUPERVISED SEGMENTATION MEASURES OVER ALL BENCHMARKS

TABLE III
COMPARISON IN TERMS OF PARAMETERS (MODELS USED IN [6])

C. Real Use Case: Oil Spill

Oil spills are a good case study for unsupervised methods
as obtaining a ground truth of the phenomenon is challenging
because it is often far offshore, currents displace and dilute it,
and it is dangerous to collect samples [15]. In this experiment,
the best segmentation method is applied on a real HSI scene,
of which no ground truth is available. The Airborne Visible
Infrared Imaging Spectrometer (AVIRIS) captured the study
image on 17 May 2010 in the Gulf of Mexico. The sensor
detects 224 contiguous bands at 10-nm intervals across a
wavelength range from 366 to 2496 nm (VNIR and SWIR).
The study image is a fragment of the f100517t01p00r11 HSI
scene, which is freely available in [16]. The scene shows part
of an oil spill caused by the Deepwater Horizon drilling rig.

In Fig. 2(a), the oil can be seen with the naked eye in the
RGB composition. The image shows different levels of oil
spill thickness. The bright lines across the bottom half of the
figure are emulsions. There are also true color oil stains, seen
as dark reddish rounded spots in the upper part of the image.
Emulsions and continuous true-color oil slicks are considered
thick spills since their thickness exceeds 200 µm. Medium-
thickness spills, also called discontinuous true color oil slicks,
are yellowish in the RGB and have thicknesses between 50 and
200 µm. Finally, the rest of the scene is covered by a thin film
of oil called sheens. Lastly, sheens are thin oil films that cover
the rest of the scene. These are less than 50-µm-thick and are
not visible in the RGB.

Fig. 2(b) shows the normalized difference oil index
(NDOI) [17]. This spectral index detects oil spills and
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Fig. 2. Image f100517t01p00r11 by AVIRIS on 17 May 2010. (a) RGB.
(b) NDOI. (c) Spill map. (d) Thin spill. (e) Medium spill. (f) Thick spill.

distinguishes their thickness. In NDOI, the areas of thicker
spillage are highlighted darker. Qualitatively, it can be seen
how the network classification map [Fig. 2(c)] separates the
spillage by thickness. The Thick Spill class highlights the
emulsion lines running through the scene and the dark spots
in the upper corner. The Medium Spill class has the same
grainy appearance as the discontinuous spots. The Thin Spill
class indicates the sheens. As a result, the map is reasonably
accurate compared to the RGB and NDOI sceneries. In addi-
tion, NNs outperformed spectral indexes in segmenting HSI
by learning their complex spectral and spatial features.

IV. CONCLUSION

In this letter, a new spectral loss function is presented.
It utilizes spectral information for HSI segmentation employ-
ing unsupervised 3-D-CAE. To validate the effectiveness of
our approach, experiments on PU, SV, IP, and University of
Houston datasets have been conducted, as well as an AVIRIS
image used as a real case study. According to the numer-
ical and visual evidence, the suggested technique’s findings
point to a valuable improvement in the performance of HSI
semantic segmentation utilizing the spectral loss function,
Sl. Incorporating Sl into the 3-D-CAE model yields the
best-performing unsupervised model for HSI segmentation.
The real use case consolidates Sl as a loss function for
unsupervised HSI segmentation, as it reproduces the spill
detection spectral index NDOI behavior. Results underline the
significance of considering pixels as blends of pure spectral
signatures, the impact of the clusters’ spectral similarity,
and the importance of dimensional reduction. Continuing to
improve unsupervised methods is of utmost importance in
RS and EO. The amount of unlabeled data is overwhelming

and unsupervised techniques help to generate ground-truth
data without the need to invest a lot of time and resources,
both human and material. The proposed framework can be
further improved in future work by strengthening dimensional
reduction techniques. We want to test different dimensionality
reduction methods and make combinations and modifications
of those already tested. Enhancing this aspect of the framework
will not only reduce computational time but will also boost
performance.
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Chapter 5

Conclusions

This thesis presents a suite of transferable HSI methodologies for environmental
pollution monitoring in aquatic environments. To achieve this, several HSI
challenges, such as hyperspectral data complexity, the need for efficient
dimensionality reduction, and the scarcity of labelled datasets for training
supervised models, had to be overcome [93–96]. Each chapter offers a unique
strategy for improving HSI-based aquatic pollutant detection. Chapter 2
introduces a quick-calculating spectral index for rapid decisions. Chapter
3 optimizes dimensionality reduction for broader adaptability to various
environments through band and model transfer. Chapter 4 enhances
unsupervised learning to address data scarcity. These approaches tackle specific
gaps and improve transferability across diverse scenarios, advancing towards
standardized HSI methods for environmental monitoring.

Chapter 2 proposes a new spectral index, the Normalized Difference Oil
Index (NDOI), to improve coastal oil spill detection. NDOI fills a critical
gap in the literature by providing a more general solution that discriminates
between oil and sand in suspension under coastal conditions. Thanks to its
simplified mathematical operation, which requires only two spectral bands,
the NDOI offers a faster calculation than similar indices. This approach is
precious when a rapid decision is needed, and computational resources are
limited [101]. Additionally, the spectral bands used by NDOI are centred at
599 nm and 870 nm—wavelengths commonly available on multispectral sensors
in scientific missions, for example, Landsat 8 [105]. Although spectral indices
can reduce HSI complexity, they still face limitations, such as reliance on manual
thresholding—sensitive to changing environmental conditions—and difficulty
distinguishing between multiple object types using a single index [102]. Given
these limitations and the advancement of AI methodologies, choosing a more
sophisticated method is preferable when time and computing power allow [69].

Chapter 3 addresses hyperspectral data’s high dimensionality by introducing
a band selection methodology that identifies the most relevant spectral bands
for detecting target items, such as plastics or rhodamine. Combining selected
spectral bands with a classifier offers richer information than a spectral index,
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as it enables the identification of multiple classes and the assessment of
the method’s accuracy [99]. Other commonly used dimensionality reduction
methods, such as Principal Component Analysis (PCA) [117, 118], do not yield
specific spectral bands, making them less suitable for developing generalizable
methods. This research demonstrated the effective transfer of spectral bands
between hyperspectral datasets. However, further investigation is needed to
apply this method to multispectral sensors, as their wider bandwidths lack the
finer resolution of HSI [42]. Studies indicate that detecting and classifying
pollutants with gradually changing spectral signatures may not require high
spectral detail, suggesting that sensors with broader bands could still effectively
classify some pollutants [91, 107]. Applying the first derivative has proven
helpful in enhancing the transfer of pre-trained classification models, as it
highlights subtle spectral features and improves class separability. Nevertheless,
using the first derivative does not reduce dimensionality, as it depends on the
entire spectra and is unsuitable for multispectral sensors, where the spectral
signature is discontinuous [119]. The transfer of pre-trained models requires
further refinement, highlighting the need for broader datasets and a deeper
understanding of background reflections’ influence isemitransparentnt objects
and optically shallow waters spectra. To address this, emerging workflows that
facilitate the acquisition of large, varied datasets for training and validation hold
promise in improving model generalization and reliability [120].
Chapter 4 presents the spectral loss function (Sl) that enhances the

performance of unsupervised neural networks. This loss function tackles one
of the most critical challenges in HSI and AI-based environmental monitoring:
the scarcity of labelled data [78]. Sl improves the performance of the currently
best-performing unsupervised segmentation neural network [83] and outperforms
spectral indices in detecting oil spills. DL models, especially deep convolutional
neural networks, require more data than traditional ML algorithms due to
the number of parameters they need to optimize [71]. Shallow ML models
(such as SVM or RF) obtain a nice performance with less data, but they
may struggle to capture the full complexity of HSI data [79, 80]. The new
approach offers a significant advantage when labelled datasets are unavailable,
as it can help automatically generate labelled data, reducing the reliance
on expensive and time-consuming manual annotation [81]. Despite their
advantages, unsupervised methods still lag behind supervised techniques in
performance [110]. Nevertheless, supervised models require large datasets, which
are difficult to obtain in hazardous areas such as the open ocean, where manual
labelling is challenging and resource-intensive [70,108]. Therefore, this research
highlights the potential of unsupervised methods to improve monitoring systems’
adaptability, especially in data-scarce environments.
Each chapter of the thesis confronts and addresses a specific aspect of current

HSI knowledge gaps, contributing valuable advancements toward efficient and
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transferable environmental monitoring solutions. Spectral indices, such as the
NDOI, offer a simple and effective solution when rapid responses are needed
with limited computational capacity. [101] They can be quickly calculated,
making them ideal for decision-making in real-time applications. However, they
require manual thresholding to identify classes, which can reduce precision [102].
In contrast, classification algorithms directly assign classes based on spectral
signatures, eliminating the need for manual interpretation and improving
detection accuracy in complex scenarios [78]. Band selection algorithms identify
influential spectral bands that can be used to create more refined spectral indices
and train classifiers that generalize better across different environments [99].
This last approach is promising for decreasing reliance on labelled data [89].
However, further research is needed to deepen our understanding of model
transfer. Finally, unsupervised methods add a crucial dimension by generating
labelled data where none exists, enabling quick predictions and serving as a
foundation for training classifiers [81]. While they do not match the precision of
supervised models, they offer significant potential for addressing data scarcity
in remote monitoring scenarios [69]. Together, these methods create a cohesive
framework that balances speed, accuracy, and transferability in hyperspectral
image analysis.

In conclusion, this thesis has successfully developed novel techniques that
enhance the detection and monitoring of aquatic pollutants using remote sensing
hyperspectral images and artificial intelligence. After a thorough analysis of
these techniques, a clear understanding of their strengths and weaknesses has
been achieved, applying the most appropriate method based on the specific
circumstances of each study. The outcomes of this research can help design
next-generation sensors for UAVs and space missions, where data efficiency and
precision are essential. Additionally, the techniques developed in this thesis have
direct implications for environmental management, with potential applications
in early spill detection, coordination of beach cleanup efforts, and support of
new data-driven policies.

5.1 Future work

Future efforts should prioritize refining automatic techniques and advancing
the transferability of artificial intelligence models. These are essential for
achieving efficient, transferable and scalable environmental monitoring with
minimal manual intervention and reduced computational demands. Building
upon the promising methodologies introduced in this thesis, future research
should focus on enhancing the adaptability and robustness of unsupervised
models across environments. By addressing challenges related to model
transfer—particularly for complex scenarios like optically shallow waters or
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semitransparent pollutants—we can further streamline detection processes,
reduce the need for in-situ validation, and support the rapid deployment of
these tools in urgent environmental crises [109]. Optimizing post-processing
techniques and integrating cloud-based processing frameworks could also
enable large-scale data handling, making monitoring extensive geographic areas
feasible [121, 122]. Through these advancements, we move closer to achieving a
more automated and accessible environmental monitoring system, empowering
data-driven decisions for the conservation and protection of ecosystems.
The future of AI-driven environmental monitoring will revolutionize efforts

to address urgent issues such as oil spills and plastic pollution. By
combining advanced remote sensing with automated detection, upcoming
satellite missions—with reduced computational costs—could enable onboard
processing for large-scale, near-real-time assessments [106]. Novel specialized
sensors and reliable ground truth data will be crucial in refining these models,
enhancing their accuracy across diverse environmental settings [120]. The band
selection model and custom loss function developed here are highly transferable.
They can be applied to other fields of Earth observation such as precision
agriculture and mineralogy, but also to medical imaging and other fields where
data volume reduction is needed. The following subsections outline several key
initiatives I aim to pursue shortly.

Band transferability acrossmultispectral and hyperspectral sensors

Future work will assess the transferability of the band selection methodology
to multispectral sensors by comparing it across various commercial and
experimental sensors with differing spectral resolutions. Hyperspectral sensors
achieve higher spectral resolution than multispectral sensors by capturing
narrow, contiguous spectral bands across the electromagnetic spectrum [42].
The finer resolution allows the detection of subtle variations in materials, while
broader bands capture aggregated information across a wider range, offering
less detailed spectral data [45]. This difference in spectral resolution is crucial
in applications where rapid spectral signature changes occur, as multispectral
sensors may miss these subtle variations.
Specifically, I plan to evaluate commercial multispectral sensors such us

Silios [123] and MAIA [124], which have broad bandwidths, to understand how
well the selected spectral bands perform under reduced spectral resolution. The
Silios CMS-V1 captures the spectral range of 500 to 850 nm, offering bands
with spectral resolutions between 25 and 34 nm [123]. MAIA-S2 aligns with
the spectral bands of the multispectral instrument (MSI) aboard the Sentinel-
2 satellite [104], covering 430 to 880 nm. MAIA includes bands at various
resolutions: seven at 15–35 nm, one at 65 nm, and one at 115 nm [124]. In
addition, I will examine the capabilities of novel experimental sensors such

78



5.1 Futurework

as PANDORA [46], which offers a narrower 10 nm bandwidth comparable
to hyperspectral sensors, often between 5 to 10 nm [125]. This comparison
will show how well the band selection method generalizes across sensors with
different spectral resolutions and will determine the feasibility of extending this
methodology to multispectral systems.

Harnessing CloudComputing for Scalable Environmental Data Processing

Cloud computing is increasingly transforming Earth observation by enhancing
satellite image processing and analysis efficiency and scalability, especially when
integrated with AI algorithms [126]. Unlike local computing, cloud platforms
such as Google Earth Engine (GEE) and Microsoft Planetary Computer offer
immense computational power and eliminate the need to store vast amounts of
satellite imagery locally [127, 128]. These platforms provide access to extensive
image collections directly on the cloud, facilitating time series analysis and
enabling large-scale geographic studies. Thanks to servers’ computational
power, AI models are executed faster [129]. The ability to perform complex
analyses remotely, without high demands on local infrastructure, makes cloud
computing an ideal solution for managing and processing the immense data
volumes involved in environmental monitoring [122].
Cloud computing offers a robust infrastructure to support and scale the

techniques dealt with throughout the thesis. In cloud-based research, the
publication J.1 “Cloud-Based Analysis of Large-Scale Hyperspectral Imagery
for Oil Spill Detection” implements a parallelized computation of the NDOI
on cloud, reducing memory requirements while ensuring scalable processing
for massive datasets [95]. Additionally, the conference abstract C.4 “River
Plastic Monitoring Workflow: From Satellite to Cloud Computing” marks the
beginning of my ongoing research. Here, we propose a novel workflow for
analyzing satellite images using cloud computing, specifically leveraging GEE
and Python to extract critical spectral and spatial information efficiently. This
approach optimizes computational time, enhancing the global identification of
macroplastic hotspots. My work will continue to expand with additional study
sites and a transferability evaluation across diverse locations and dates.
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Appendix A

Resumen en Español

Esta tesis propone un conjunto de metodoloǵıas transferibles para la
monitorización ambiental, centradas en la detección de contaminantes
en ecosistemas acuáticos mediante el uso de teledetección con imágenes
hiperespectrales (Hyperspectral Imaging, HSI) y técnicas de inteligencia
artificial (IA). Estas metodoloǵıasfacilitan la observación sistemática en grandes
cantidades de datos, contribuyendo al desarrollo de soluciones estandarizadas
para monitorizar y proteger los ecosistemas.

Este trabajo aborda las limitaciones actuales de la tecnoloǵıa hiperespectral,
tales como la alta dimensionalidad de los datos, la falta de técnicas eficaces de
reducción dimensional y la escasez de conjuntos de datos etiquetados necesarios
para entrenar los modelos de IA. En esta tesis se desarrollan y exponen métodos
innovadores que mejoran la eficiencia, precisión y adaptabilidad de las técnicas
de detección de contaminantes, como derrames de petróleo y residuos plásticos
en ambientes acuáticos.

Entre los logros más destacados se encuentra el Índice de Diferencia
Normalizada de Petróleo (Normalized Difference Oil Index, NDOI), un nuevo
ı́ndice espectral que reduce la clasificación errónea de arena en suspensión,
mejorando la detección de vertidos en zonas costeras. Se propone también
un método de selección de bandas espectrales que optimiza la detección de
contaminantes espećıficos, reduciendo la complejidad de las HSI y mejorando
la capacidad de los modelos para generalizarse en distintos entornos acuáticos.
Otro avance importante es la función de pérdida espectral (spectral loss function,
Sl), que mejora la segmentación en redes neuronales no supervisadas.

La tesis finaliza con un análisis de las contribuciones realizadas, destacando
los avances logrados en términos de eficiencia y transferibilidad de las tecnoloǵıas
de monitorización ambiental. Estos métodos poseen un alto potencial para
desarrollar la próxima generación de sensores, la gestión ambiental y la
toma de decisiones en situaciones de crisis medioambiental. En futuras
investigaciones, se plantea profundizar en la automatización de estas técnicas,
mejorar la transferibilidad de los algoritmos y aprovechar herramientas como la
computación en la nube para la observación a gran escala de la Tierra.
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Objetivos

Esta tesis aborda algunos desaf́ıos cŕıticos de la teledetección hiperespectral en
la monitorización ambiental, incluyendo la complejidad y volumen de datos, la
limitada transferibilidad de los modelos a distintos entornos y la escasez de datos
etiquetados, que dificultan el seguimiento sistemático a gran escala. Su objetivo
principal es desarrollar un conjunto de metodoloǵıas transferibles para detectar
contaminantes en ambientes acuáticos.
Para alcanzar este objetivo, se establecen varios subobjetivos espećıficos:

1. Presentar un nuevo ı́ndice espectral para mejorar la detección de
derrames de petróleo, facilitando respuestas rápidas en situaciones de crisis
ambiental.

2. Desarrollar una metodoloǵıa de reducción de dimensionalidad que optimice
las bandas espectrales para la monitorización de contaminantes acuáticos
y mejore la transferibilidad de los resultados a diferentes entornos.

3. Proponer una nueva función de pérdida para redes neuronales no
supervisadas que mejore el procesamiento de imágenes hiperespectrales.

La investigación sigue una progresión clara. Comienza con un análisis de los
sensores disponibles y las misiones espaciales para monitorizar la contaminación
con técnicas estándar como los ı́ndices espectrales. Avanza hacia enfoques más
sofisticados para reducir la dimensionalidad, optimizando el procesamiento de
datos y mejorando la adaptabilidad de los modelos de detección a diversos
entornos. La etapa final ampĺıa el alcance y aplicabilidad de los métodos
mediante técnicas de detección no supervisada.

Conclusiones

Esta tesis presenta un conjunto de metodoloǵıas basadas en HSI transferibles
para la monitorización de la contaminación ambiental en entornos acuáticos. La
tesis aborda desaf́ıos asociados a la complejidad de los datos hiperespectrales,
la necesidad de una reducción eficiente de dimensionalidad, y la escasez de
conjuntos de datos etiquetados para entrenar modelos supervisados [93–96].
Cada caṕıtulo introduce una estrategia única para mejorar la detección de

contaminantes acuáticos basada en HSI. El Caṕıtulo 2 introduce el ı́ndice
espectral NDOI, que permite detectar derrames de petróleo en costas de manera
rápida y precisa. El Caṕıtulo 3 propone una metodoloǵıa de selección de
bandas espectrales que optimiza la información para detectar contaminantes
como plásticos, ampliando aśı la capacidad de adaptación de los modelos. En el
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Caṕıtulo 4, se presenta una nueva función de pérdida para redes neuronales no
supervisadas, que ayuda a superar la falta de datos etiquetados.
El Caṕıtulo 2 propone el NDOI, un ı́ndice espectral diseñado para mejorar

la eficaccia de la detección petróleo en zonas costeras. El NDOI llena
un vaćıo cŕıtico en la literatura al discriminar eficazmente entre petróleo
y arena en suspensión. Su cálculo es sencillo y solo requiere dos bandas
espectrales, resultando valioso cuando se necesita una decisión ágil y los
recursos computacionales son limitados [101]. Las bandas espectrales del NDOI,
centradas en 599 nm y 870 nm, están disponibles en sensores multiespectrales
como los de Landsat 8 [105]. Aunque los ı́ndices espectrales pueden reducir
la complejidad de HSI, presentan limitaciones como la dependencia de un
experto para definir umbrales manualmente, que pueden resultar sensibles a las
condiciones ambientales, y la dificultad para diferenciar varios tipos de objetos
con un solo ı́ndice [102]. Por ello, cuando el tiempo y el poder computacional lo
permiten, es preferible optar por métodos más avanzados de IA [69].
El Caṕıtulo 3 aborda la alta dimensionalidad de las HSI mediante una

metodoloǵıa de selección de bandas que identifica las bandas espectrales más
relevantes para detectar elementos como plásticos o rodamina. La combinación
de bandas influyentes con un clasificador proporciona más información que un
ı́ndice espectral, permitiendo la identificación de múltiples clases y la evaluación
de la precisión del método [99]. Métodos de reducción de dimensionalidad
como el Análisis de Componentes Principales [117, 118] no seleccionan bandas
espećıficas, lo cual limita su uso para desarrollar métodos generalizables. Esta
investigación demostró la transferencia efectiva de bandas espectrales entre
conjuntos de datos hiperespectrales. Sin embargo, se necesita una investigación
más profunda sobre su aplicación a sensores multiespectrales, cuyas bandas
más anchas no poseen la resolución fina de HSI [42]. Se ha comprobado
que la primera derivada es útil para resaltar detalles espectrales sutiles y
mejorar la separabilidad de las clases, aunque no reduce la dimensionalidad y
depende del espectro completo, volviéndola inadecuada para desarrollar sensores
multiespectrales [119]. La transferencia de modelos preentrenados requiere un
refinamiento adicional, especialmente para objetos semitransparentes en aguas
ópticamente complejas, lo que sugiere la necesidad de conjuntos de datos más
amplios y una mejor comprensión de los efectos de fondo [120].
El Caṕıtulo 4 presenta la función de pérdida espectral (Sl), que mejora el

rendimiento de redes neuronales no supervisadas, enfrentando la escasez de
datos etiquetados en la monitorización ambiental basada en HSI e IA [78]. Sl
incrementa el rendimiento de la red no supervisada más eficaz en segmentación
actual [83], superando el desempeño de los ı́ndices espectrales en la detección
de derrames de petróleo. Los modelos de aprendizaje profundo, como las
redes neuronales convolucionales, requieren una gran volumen de datos de
entrenamiento debido a la cantidad de parámetros que optimizan [71]. Modelos
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de aprendizaje automático convencionales (como Supper Vector Machine o
Random Forest) funcionan bien con menos datos, pero no captan la complejidad
total de los datos HSI [79, 80]. Esta nueva metodoloǵıa es especialmente
relevante cuando no se dispone de conjuntos de datos etiquetados, pues permite
generar etiquetas automáticamente, reduciendo la necesidad de anotaciones
manuales [81]. Aunque los métodos no supervisados no igualan la precisión de
los supervisados, ofrecen una oportunidad significativa para abordar la escasez
de datos en la monitorización de zonas remotas y de dif́ıcil acceso [69].
Cada caṕıtulo de la tesis aborda un aspecto espećıfico de las lagunas de

conocimiento en HSI, avando hacia soluciones más eficientes y transferibles
para la monitorización ambiental. Los ı́ndices espectrales, como el NDOI,
son soluciones simples y eficaces cuando se necesitan respuestas rápidas con
recursos computacionales limitados [101], aunque requieren umbrales manuales
que pueden reducir la precisión [102]. En cambio, los algoritmos de clasificación
asignan clases basadas en firmas espectrales, eliminando la interpretación
manual y mejorando la precisión en escenarios complejos [78]. Los algoritmos
de selección de bandas identifican las bandas espectrales más influyentes, que
pueden refinar el diseño de ı́ndices espectrales y entrenar clasificadores más
generalizables [99]. Los métodos no supervisados pueden ayudar a generar
datos etiquetados donde no están disponebles, permitiendo predicciones rápidas
y sirviendo de base para el entrenamiento de clasificadores [81]. En conjunto,
estos métodos crean un marco cohesionado que equilibra velocidad, precisión y
transferibilidad en el análisis de imágenes hiperespectrales.
En conclusión, esta tesis desarrolla técnicas avanzadas para mejorar la

detección y monitorización de contaminantes acuáticos mediante imágenes
hiperespectrales e IA. Se ha obtenido una comprensión clara de sus fortalezas y
debilidades, aplicando el método más adecuado según las circunstancias de cada
estudio. Los resultados de esta investigación pueden facilitar el diseño de la
próxima generación de sensores para drones (Uncrewed Aerial Vehicles, UAVs)
y misiones espaciales, donde la eficiencia de los datos y precisión son esenciales.
Además, las técnicas desarrolladas en esta tesis tienen implicaciones directas en
la gestión ambiental, con aplicaciones potenciales en la detección temprana de
derrames de petróleo, la coordinación de limpieza de playas, y el apoyo a nuevas
poĺıticas basadas en datos.
Los esfuerzos futuros deben centrarse en automatizar las técnicas y mejorar

la transferibilidad de los modelos de inteligencia artificial. Los modelos
generalizables, los sensores especializados y el procesamiento eficiente a bordo
de satélites y drones va a revolucionar la monitorización ambiental en las
próximas décadas. Finalmente, la computación en la nube es una herramienta
novedosa que permite realizar análisis complejos de grandes volúmenes de datos
de imágenes satelitales, facilitando estudios a gran escala y aumentando la
eficiencia de procesamiento para aplicaciones de monitorización ambiental.
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spectral loss function for unsupervised hyperspectral image segmentation,”
IEEE Geoscience and Remote Sensing Letters, vol. 20, pp. 1–5, 2023.

[48] C. J. Legleiter, R. R. McDonald, J. M. Nelson, P. J. Kinzel, R. L. Perroy,
D. Baek, and I. W. Seo, “Remote sensing of tracer dye concentrations to
support dispersion studies in river channels,” Journal of Ecohydraulics,
vol. 4, no. 2, pp. 131–146, 2019.

[49] O. Garcia-Pineda, J. Holmes, M. Rissing, R. Jones, C. Wobus,
J. Svejkovsky, and M. Hess, “Detection of oil near shorelines during the
deepwater horizon oil spill using synthetic aperture radar (sar),” Remote
Sensing, vol. 9, no. 6, 2017.
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