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Abstract

Artificial intelligence, particularly deep learning models, has rapidly advanced recently, demonstrat-

ing exceptional performance in areas such as image processing, natural language understanding, and,

more critically, healthcare. These models hold immense potential in automating tasks traditionally

performed by experts, such as disease diagnosis or medical imaging interpretation. However, despite

their success, a significant barrier to the full integration of deep learning models into critical fields

like medicine is their lack of transparency and interpretability. Often referred to as “black boxes”,

these models make decisions where understanding the processes within the hidden layers is nearly

impossible, raising concerns about their reliability in critical scenarios.

This thesis aims to address the challenge of interpretability in deep learning models, particularly

in medical contexts, by adopting an approach grounded in information theory. This perspective

treats deep learning models as information processors that operate at multiple levels of abstraction,

enabling them to extract useful features from complex, high-dimensional data. Throughout the

dissertation, various deep learning methods are proposed to tackle key challenges in medical data

analysis, including medical screening with limited datasets, feature selection for clinical data, or

anomaly detection in imbalanced clinical data. Furthermore, hyperspectral imaging, an emerging

modality for clinical purposes, has been used in experiments, particularly in the signal decomposition

task known as hyperspectral unmixing. The thesis not only addresses these problems but also focuses

on understanding the underlying mechanisms behind the models’ operations.

The work provides theoretical and experimental insights into how deep learning models balance

data compression and prediction, offering an interpretable framework based on information theory

to gain more in-depth insights into their decision-making processes. The application of information

theory allows for a more general and quantifiable interpretation of deep learning models, making it

possible to evaluate how well these models transmit and process the information required for specific

tasks. By analyzing the models from this abstract perspective, the thesis demonstrates that it is

possible to design more interpretable architectures without compromising their performance.

The results presented in this dissertation demonstrate the potential of deep learning models in

critical applications like healthcare, while also underscoring the importance of interpretability to

ensure their safe and effective use. This work contributes to ongoing efforts to make deep learning-

based artificial intelligence more transparent and reliable in high-impact fields such as medicine.
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Resumen

La inteligencia artificial, en particular los modelos basados en redes neuronales, ha avanzado en los

últimos años, mostrando un rendimiento excepcional en áreas como el procesamiento de imágenes,

la comprensión del lenguaje natural y, de manera especialmente relevante, en ámbitos cŕıticos como

la salud. Estos modelos tienen un inmenso potencial para automatizar tareas que tradicionalmente

realizaban expertos, como el diagnóstico de enfermedades o la interpretación de imágenes médicas.

Sin embargo, a pesar de su éxito, una barrera significativa para la plena integración de los mod-

elos de aprendizaje profundo en campos cŕıticos como la medicina es su falta de transparencia e

interpretabilidad. A menudo denominados “cajas negras” o “cajas opacas”, estos modelos toman

decisiones cuyo proceso en las capas ocultas es imposible de entender, lo cual genera inquietudes

sobre su fiabilidad en escenarios cŕıticos.

Esta tesis tiene como objetivo abordar el desaf́ıo de la interpretabilidad en modelos de aprendizaje

profundo, particularmente en contextos médicos, adoptando un enfoque basado en la teoŕıa de la

información. Esta perspectiva trata a los modelos de aprendizaje profundo como procesadores de

información que operan en múltiples niveles de abstracción, permitiéndoles extraer caracteŕısticas

útiles de datos complejos y de alta dimensionalidad. A lo largo de esta tesis, se proponen varios

métodos de aprendizaje profundo para enfrentar desaf́ıos clave en el análisis de datos médicos, como

la clasificación con conjuntos de datos con muestras limitados, la selección de caracteŕısticas en datos

cĺınicos o la detección de anomaĺıas en datos cĺınicos desbalanceados. Además, se explora el uso de

imágenes hiperespectrales, una modalidad emergente en el ámbito cĺınico, aplicándola especialmente

en la descomposición espectral de señales. La tesis no solo aborda estos problemas, sino que también

se enfoca en comprender los mecanismos subyacentes en las operaciones de los modelos propuestos.

El trabajo proporciona perspectivas teóricas y experimentales sobre cómo los modelos de apren-

dizaje profundo equilibran la compresión de datos y la predicción, ofreciendo un marco interpretativo

basado en la teoŕıa de la información para obtener una comprensión más profunda de sus procesos

de toma de decisiones. La aplicación de la teoŕıa de la información permite una interpretación más

general y cuantificable de los modelos de aprendizaje profundo, haciendo posible evaluar qué tan bien

estos modelos transmiten y procesan la información necesaria para tareas espećıficas. Al analizar

los modelos desde esta perspectiva abstracta, la tesis demuestra que es posible diseñar arquitecturas

más interpretables sin comprometer su rendimiento.

Los resultados presentados en esta tesis demuestran el potencial de los modelos de aprendizaje

profundo en aplicaciones cŕıticas como la salud, al tiempo que subrayan la importancia de la in-

terpretabilidad para garantizar su uso seguro y efectivo. Este trabajo contribuye a los esfuerzos en

curso por hacer que la inteligencia artificial basada en redes neuronales sea más ‘transparente’ y

confiable en campos de alto impacto como la medicina.
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Chapter 1

Introduction

Cuando toca decantar lentamente lo que

siento, yo me impaciento. Luego lo vuelvo

a intentar, tinta y tiempo

Jorge Drexler - Tinta y tiempo

Artifical Inteligence (AI) has recently made substantial advances in perception (the interpretation

of sensory information), allowing machines to better represent and interpret complex data. However,

it is crucial to understand that machines are not genuinely intelligent; they are merely proficient at

executing instructions.

When I began my university studies in computer engineering, a professor highlighted this dis-

tinction by pointing out that while computers excel at performing operations swiftly, they lack true

intelligence. To illustrate this, he conducted an exercise where he asked a colleague to follow precise

instructions to open the classroom door: “Take two steps forward, turn right, take three steps for-

ward, turn the handle, and pull the door”. Consequently, the door struck the colleague’s feet and did

not open. This example demonstrates how computers operate: they follow instructions meticulously

without considering contextual factors. If a machine fails to perform a task correctly, it is because

it has not been provided with accurate instructions. This raises the fundamental question: what

constitutes machine intelligence?

Although there are many formal and informal definitions of ‘intelligence’, in the context of AI

research, there are two main perspectives [1]: one that emphasizes task-specific skill (achieving goals)

and another that focuses on generality and adaptation. The second perspective, inspired by Turing’s

work [2], is especially relevant for AI as it focuses on how machines can learn new skills. Following

this approach, Friedberg provides an intuitive understanding of AI [3]:

If we are ever to make a machine that will speak, understand or translate human lan-

guages, solve mathematical problems with imagination, practice a profession or direct an

organization, either we must reduce these activities to a science so exact that we can tell

a machine precisely how to go about doing them, or we must develop a machine that can

do things without being told precisely how.

AI consists of algorithms that exhibit ‘intelligence’ because someone has designed instructions

to describe the behavior of the machine (which will strictly follow these instructions), such as the

1
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commonly used algorithms in video games, and algorithms aimed at learning from data. This latter

group of AI algorithms is known as Machine Learning (ML). While more details will be covered in

Chapter 2, it is important to clarify that these models are designed to perform tasks without being

explicitly told how to do so; they must learn to accomplish these tasks autonomously.

There is a pragmatic reason why there has always been an interest in AI: facilitating our lives.

For instance, the application of logic and statistical pattern recognition to problems in medicine

has been proposed since the early 1960s [4], focused on creating systems that could replicate the

decision-making processes of human experts. However, these ‘simpler’ methods faced significant

limitations in handling the complexity and variability of real-world medical data.

Over the past few decades, advances in ML have revitalized the field of medical AI, proclaiming

that AI can diagnose a range of diseases. The implication is often that they can reduce the workload

of the specialist and accomplish objectives with minimal manual intervention [5]. These AI models

can outperform traditional statistical methods and even obtain a performance on par with healthcare

professionals [6]. However, there is a trend towards using Deep Learning (DL) models, whose details

are explained in Section 2.2, characterized by their complexity, being complicated how these models

determine their decisions.

The adoption of AI in critical fields like medicine has raised several ethical and practical con-

cerns. A critical issue is AI paternalism, where decisions made by AI systems could potentially

override human judgment, leading to a loss of autonomy for users. For instance, in healthcare sce-

narios, this paternalistic potential leads to several ethical issues [7] such as implicit biases in the

(quantified) notion of health and potential privacy concerns. Additionally, the use of more complex

models, sometimes driven by the myth that there is necessarily a trade-off between accuracy and

interpretability [8], poses another critical issue. Using extremely complex models that we cannot

understand can contribute to problems associated with AI paternalism.

As an engineer, in this thesis I aim to provide insights for enhancing the interpretability of AI

models, specifically DL models, to mitigate some critical issues associated with their use in essential

fields. To achieve this, the key point is information.

1.1 Information is All You Need

Nowadays, information plays a central role in society, and almost every scientific discipline uses

the concept of information within its context. The analysis of information is fundamental for data

processing. However, while the meaning of information might seem intuitive, its absolute definition

is extremely complex. This complexity is well-reflected in the skeptical view expressed by Bodgan

[9]:

My skepticism about a definitive analysis of information acknowledges the infamous ver-

satility of information. The notion of information has been taken to characterize a mea-

sure of physical organization, a pattern of communication between source and receiver, a

form of control and feedback, the probability of a message being transmitted over a com-

munication channel, the content of a cognitive state, the meaning of a linguistic form,

or the reduction of an uncertainty.

This skepticism arises from focusing on the meaning of the data, but this ‘meaning’ is less evident
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Information

Signal

Image

Figure 1.1: Different level of abstraction that defines the way that data is processed. The information
corresponds to the highest level of abstraction, showing that the information processing is more
general.

when viewed more abstractly. For this reason, as Warren Weaver claimed [9], “information must

not be confused with meaning”.

Shannon’s Information Theory (IT) [10], which will be introduced in Chapter 3, provides a

perspective where the meaning of a transmitted message is irrelevant. Instead, the focus is on

quantifying the information contained in that message. This theory simplifies the information and

quantifies it using ‘bits’. Although Shannon did not consider the implications for physics and

physicists did not initially need ‘bits’, this approach offered a new perspective for understanding the

world. As John Archibald Wheeler, the last collaborator of Einstein and Bohr, expressed [11], “It

from Bit”, indicating that information is fundamental and every ‘it’ originates from information,

the ‘bits’.

The main benefit of processing information is abstraction, a key concept for a general viewpoint.

It is assumed that data contains information, and processing data aims to extract that information.

However, in AI, some algorithms are designed exclusively for working with specific data types.

This specificity is particularly relevant if you are interested in the ‘meaning’ of the information

contained in the data, but it comes with constraints, such as the versatility of the algorithms and

the performance achievable for complex tasks.

In image processing, for instance, it is assumed that information is contained within the images

to be processed. Consequently, image processing involves acquiring images or extracting features

of interest from them. These features could be designed to describe and characterize data with a

specific structure, making them unsuitable for data with different structures; in other words, they

are applicable only to images. Moreover, these features might be tailored for specific domains within

the images, limiting their applicability to images from different contexts or image modalities.

As a result, a natural abstraction when working with images is to consider them as signals. In

this way, a signal noise reduction algorithm can be easily adapted to different structures, such as

images. However, the analysis of information is even more abstract than signal processing. Assuming

that data contains information, the information analysis can be applied to any data type. Figure

1.1 illustrates a Venn diagram depicting these different levels of abstraction in data processing.

The task of creating an intelligent machine is complex. Describing the instructions for detecting,

for instance, a dog in an image is challenging. Developing an AI system for general-purpose object

detection is even more complicated. Currently, these tasks are carried out through AI that it can

learn from data. However, this learning process has been described at a high level of abstraction,
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such as describing the learning process based on information processing. As a result, AI extracts

features that contain information, but the ‘meaning’ of this information might not be understandable

from our perspective.

The substantial advances in AI are a consequence of the increasing importance of information.

The amount of information is growing, sometimes excessively, driven by advances in telecommunica-

tions technologies and computer science. “Too much information” is a phrase that likely resonates

with many, reflecting the exhaustion that can be experienced today. It is intuitive to understand

that your data contains information that is not relevant for a specific task, it is specially relevant

in high-dimensional data. Processing this vast amount of information is exhausting, and designing

a well-performing ad-hoc algorithm based on ‘understandable’ features is unapproachable. For this

reason, it is necessary that AI to work at a higher level of abstraction.

As will be discussed in future chapters, in general, DL models outperform other AI models

because they can operate at different levels of abstraction. This capability arises because these

models process information rather than just images or signals. They can extract ‘useful features’

that contain the necessary information from the data, even though these features can be difficult

to understand. The term ‘useful features’ refers to the fact that your data might contain a lot of

information that is not relevant to your task. These irrelevant features are discarded by the model,

which only extracts features that are pertinent to your task.

As a result, it can be stated that DL models, these extremely complex models, can process

information more effectively than other AI methods. Therefore, for a more in-depth understanding

of the problem-solving mechanisms of these methods, it is necessary to analyze how the information

is processed in these models.

1.2 Motivation

Recently, the impact of DL has been particularly notable in various aspects of our lives. In 2022,

generative models based on DL, such as DALL-E [12] and later advancements like Midjourney [13],

transformed image generation from text, showcasing significant improvements. This transforma-

tive trend continued into 2023, marked as the year of AI for text generation with innovations like

ChatGPT [14].

The dominance of DL models extends across different domains, notably in fields such as Com-

puter Vision (CV) or Natural Language Processing (NLP), where classical methods have taken less

relevance, and many of these traditional techniques can be considered ‘outdated’. The superiority of

DL models lies in their easily adaptable framework, surpassing ad-hoc methods. Leveraging available

data, these models offer end-to-end solutions that are considered user-friendly, even for individuals

who may not be considered experts.

Considering that the impact of DL applications in society is unquestionable, in my opinion,

there are still many gaps to solve to get a total integration of these models in our lives. The current

technological advances by DL model are demonstrating that many processes and tedious tasks,

current carried out by humans, will be automatized. However, the emergence of ethical problems

associated with AI-based automation will depend on how these models are integrated into society.

Currently, these problems have arisen in the community. The utilization of images or text

generated by AI is causing certain issues that have not been adequately considered yet. For instance,



1.3. HYPOTHESIS 5

misinformation creates a situation where users cannot identify those images or text that have been

generated by AI, resulting in people accidentally sharing fake news. Additionally, it raises other

concerns associated with copyright, as these models can be trained on data that original authors have

not consented to. These problems might be caused because these tasks that have been addressed

by AI are commonly associated with creative tasks that traditionally can only be carried out by

humans.

The current applications where the AI is being specially relevant are not essential in our lives;

most of them are associated with entertainment. Excluding the non-technical reasons, there is

a specific reason why AI-based on DL is still not considered for integration into crucial fields:

those models are non-reliable. A Deep Neural Network (DNN), the fundamental DL model, is still

considered a ‘black-box’, as they are uninterpretable models where it is not possible to understand

what is happening in the hidden layers.

As example, autonomous driving and medical screening are critical application fields where being

inaccurate implies disastrous consequences. The output of DL models has higher uncertainty than

the output obtained by classical, and simpler, methods. It is easier to understand classical methods,

and in complex models like DNNs, it is much more complicated to understand why a small change

in the input can drastically affect the model’s performance. In this way, classical methods might be

considered more robust.

Considering the medical fields, for instance, the regulation of future therapies using DL-powered

AI is linked to reducing the uncertainty produced by these models. For this reason, opening the

‘black-box’ is a fundamental task for the integration of this technology in our lives.

In addition, several advantages will come with this approach aimed at reducing the uncertainty

of these models. This task will lead to a more intuitive understanding about the problem-solving

mechanism of these models. As a result, architecture design based on these understanding can obtain

more efficient architectures.

1.3 Hypothesis

It is evident that the use of AI algorithms based on DL is specially relevant in contemporary scientific

research, with many authors incorporating these algorithms to solve previously unapproachable

problems. However, the inherent lack of ‘transparency’ in these models introduces a high level of

uncertainty due to their complex problem-solving mechanisms. This uncertainty raises concerns

about their application in critical scenarios.

Considering these factors, the balance between capacity and interpretability becomes pivotal in

choosing suitable methods for different applications. Sacrificing model accuracy is often a conscious

choice to enhance the interpretability of the obtained results, thus mitigating uncertainty.

In the light of these observations, the hypotheses of this dissertation are encapsulated in the

following questions:

1. Is it possible to improve the interpretability of DL models?

2. Can the intuition regarding the mechanisms of these models be formalized within a common

framework?
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These questions will be addressed throughout this dissertation, with the results providing in-

sights into various topics. While the versatility of DL models allows for the exploration of these

questions in diverse domains, this dissertation primarily focuses on medical topics. The medical field

is particularly critical, and there is ongoing debate about integrating DL models into it.

1.4 Objectives

This Ph.D. thesis aims to enhance the interpretability of DL models, providing a more profound

understanding of how these models work. This Ph.D. thesis addresses various problems commonly

encountered in the medical context where AI can be beneficial. Different methods are proposed in

various chapters to achieve consistent results for these problems while offering a perspective on the

problem-solving mechanisms employed by DL models.

The specific problems addressed in this dissertation are:

• Medical screening with scarce dataset: This is a common challenge in the medical context

where data are often limited, yet DL models typically require large labeled datasets. The goal

is to describe the expected features of the DL model, based on theoretical approaches, and

determine if it is possible to assess whether the model is generalizing effectively, despite the

limited number of samples.

• Feature Selection in medical data: This task is particularly relevant for enhancing data

interpretation and reducing variability in clinical decision-making. This thesis aims to provide

an interpretable DL solution to this task, including a theoretical description of the approach.

• Signal decomposition: Although this task will be focused on a specific image modality,

HyperSpectral Imaging, which will be introduced in Section 2.6, the importance of signal de-

composition for medical imaging will be discussed. An interpretable DL solution for addressing

this problem will be provided.

• Anomaly Detection: This task has a fundamental advantage in that it does not require

extremely comprehensive datasets. An alternative state-of-the-art approach using DL will be

provided, along with a theoretical description to enhance the interpretability of the model.

This thesis aims to reduce the gap found in the use of DL-powered AI in critical fields such as

medicine. Additionally, it seeks to emphasize the use of more interpretable models and to design

more efficient architectures that consider the specific task being solved.

1.5 Collaborations and Acknowledgments

This Ph.D. thesis presents the outcomes achieved during the close collaboration between the Institute

for Applied Microelectronics (IUMA) and the Research Institute of Biomedical and Health Sciences

(IUIBS) of the University of Las Palmas de Gran Canaria (ULPGC) and the following research

institutions:

• IACTEC Medical Technology Group, Institute of Astrophysics of the Canary Islands (Spain)

• Exploratory Oncology Research and Clinical Trial Center, National Cancer Center (Japan)
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• Department of Electrical and Computer Engineering, Tokyo University of Science (Japan)

In addition, this research was conducted as part of the ITHaCA (Hyperspectral Identification

of Brain Tumors) project, funded by the Canary Islands Government under Grant Agreement

ProID2017010164.

Finally, this Ph.D. thesis has been co-financed by the Canary Islands Agency for Research,

Innovation and Information Society of the Ministry of Universities, Science, Innovation and Culture

and by the European Social Fund Plus (FSE+) Integrated Operational Program of the Canary

Islands 2021-2027, Axis 3 Priority Topic 74 (85%).

1.6 Thesis organization

This dissertation is structured into three main parts: Part I provides a comprehensive literature

review, Part II presents the original research contributions of this Ph.D. thesis, and Part III includes

the appendix. A brief explanation of each chapter is presented below.

• Part I: Literature Review and Modern Practices

– Chapter 2: Preliminar — Literature Review. This chapter lays the groundwork

by presenting essential concepts and the current state-of-the-art in the field, offering a

foundation for understanding subsequent research contributions.

– Chapter 3: Information-Theoretical Framework. The fundamentals of the IT, a

theory of communication that operates within a probabilistic framework, are introduced

in this chapter. This theory will be fundamental for achieving a general-purposed inter-

pretability of the DL models.

• Part II: Research Contribution

– Chapter 4: Information-theoretical Evaluation in Deep Learning. This chapter

introduces an IT perspective for improving the interpretability of the problem-solving

mechanism used in DNN. A methodology for analyzing DNNs with limited datasets is

introduced and validated within this framework.

– Chapter 5: Feature Selection with Deep Learning: Hyperspectral Band Se-

lection. This chapter proposes a Feature Selection (FS) method based on DL, aimed at

enhancing data interpretability. The mechanism of this model is analyzed and validated

using the IT approach outlined in the previous chapter.

– Chapter 6: Signal Decomposition: HyperSpectral Unmixing. Focusing on Hy-

perSpectral Imaging, this chapter introduces an innovative method for HyperSpectral

Unmixing based on DL models. Additionally, this method is described and validated

through the lens of IT.

– Chapter 7: Anomaly Detection by Deep Learning. This chapter addresses Anomaly

Detection in medical imaging using a parametric statistical approach with a generative

DL model. As in previous chapters, its problem-solving mechanism is examined using the

IT perspective.
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– Chapter 8: Conclusions and Future Lines. This chapter concludes the work pre-

sented in this dissertation by summarizing the main contributions of this thesis and

expressing the importance of striving for more interpretable models. Potential areas for

future research are also identified.

• Part III: Appendix

– Appendix A: Supplementary Material. This appendix contains the supplementary

material related to the research presented in Part II.

– Appendix B: Feature Ranking for Diabetic Foot Ulcers Thermograms. This

section presents the results of the proposed FS method applied to different data modal-

ities. The method provides a ranking of features extracted from thermographic images

using state-of-the-art techniques.

– Appendix C: Code Availability. This appendix provides the location of the reposi-

tories containing the code necessary for the reproducibility of this Ph.D. thesis.

– Appendix D: Resumen en español. A brief summary of the dissertation is provided

in Spanish in this appendix.
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Chapter 2

Preliminar — Literature Review

The grand aim of all science is to cover the

greatest number of empirical facts by

logical deduction from the smallest

number of hypotheses or axioms.

Albert Einstein (1950)

This chapter is designed to provide the foundational insights by presenting essential concepts

and the current state of research in the field. It covers both foundational and advanced topics in

ML, which are crucial for a more in-depth understanding of these models, with particular focus on

the learning process. The discussion will naturally transition into the specialized domain of DL,

explaining key concepts and prevalent concerns associated with these technologies.

A significant focus of this thesis is the interpretability of DL models. This chapter examines

how this critical aspect is addressed in contemporary literature, providing context for the method-

ologies applied in this work. Additionally, for clarity on the challenges discussed throughout this

dissertation, there is an exposition on the nature of the inverse problem and the concept of sparse

representation.

Lastly, although this thesis adopts a broad and general perspective, a brief introduction to

HyperSpectral Imaging (HSI) is included. Since HSI is a specialized imaging modality referenced in

various chapters, this section ensures that all readers, regardless of their previous exposure to the

technology, gain a fundamental understanding of it.

2.1 Artificial Intelligence and Machine Learning

Artifical Inteligence encompasses algorithms aimed at replicating or ‘mimicking’ human-like intelli-

gence, with a recent surge in interest specifically in ML [15]. AI algorithms are designed to solve

specific problems intelligently, often through heuristic rules designed for those problems. An example

of such an algorithm is the Minimax algorithm, which makes decisions by minimizing potential losses

in worst-case scenarios. This algorithm is widely used in strategic games like chess or tic-tac-toe

[16] and it is necessary to define a score-rule based on the state.

Machine Learning, which is a subset of AI originally termed by Arthur Lee Samuel in 1959 [17],

11
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has a specific feature that can be deduced from the name, ‘learning’. This term implies the acquisition

of knowledge. For humans, learning occurs through study or experience. Similarly, in ML, machines

acquire knowledge or information through this learning process, enabling them to perform tasks or

make decisions based on learned patterns within the data, rather than relying solely on predefined

rules or instructions. Essentially, in ML, data describe the task and the expected solution, but the

machine learns how to accomplish it by observing and analyzing the data

The widespread adoption of ML techniques in contemporary times can be attributed to the

abundance of available data for different topics, a direct consequence of the interconnectedness and

digital recording of information [15]. This is a direct result of the ‘Information Age’, also known

as the Third Industrial Revolution, which began at the middle of the XX century, linked to the

development of the transistor in 1947 [18, 11]. Nowadays, it can be considered that we are in the

Fourth Industrial Revolution [19, 15], motivated primarily by the current AI revolution.

The primary challenge with data in ML is the lack of explicit information about the specific

task to be solved. For instance, consider a ML model tasked with identifying a dog from an input

image. The model must extract relevant features from the data (the image) that enable it to identify

the presence of a dog. However, the data may contain irrelevant information, such as background

scenery like a park, which is not directly related to the task of dog identification. Due to this reason,

the majority of the problems addressed in ML aim to extract features from the data that are utilized

to address the corresponding issue.

Although ML models are designed to learn from data, it is worth noting that the task to carry out

is fundamental for the design of the ML algorithm. Mitchel [20, 21] provides the following definition

of the learning process:

A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P , if its performance at tasks in T , as measured by P ,

improves with experience E.

Considering this definition, there are three elements for the description of the type of ML model:

the task T , the performance measure P , and the experience E [21]. Based on these three elements,

it can be defined the type of ML algorithm.

2.1.1 Types of Machine Learning Techniques

In accordance with Mitchell’s definition of ML [20], a wide variety of ML algorithms can be cat-

egorized based on three fundamental elements. While providing an exhaustive description of ML

methods is beyond the scope of this dissertation, this section aims to offer an intuitive overview for

understanding the taxonomy of ML methods. Figure 2.1 illustrates a simplification of the taxonomy

of ML.

The experience E is pivotal for categorizing ML algorithms. Experience describes how AI systems

learn, and it can be classified into four main categories:

• Supervised learning: Supervised learning involves extracting features to describe the func-

tion that maps an input to an output, based on a labeled dataset [22]. In this approach, ML

models are trained using a dataset that contains samples associated with labels or targets [21].
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Figure 2.1: Taxonomy of Machine Learning techniques by learning methods. Some tasks are indi-
cated as reference.

• Unsupervised learning: unsupervised learning consists of analyzing unlabeled datasets

without human intervention to extract features that describe the underlying structure of the

data [21, 15, 22].

• Semi-supervised learning: this type of learning combines aspects of both supervised and

unsupervised learning, operating on both labeled and unlabeled data [15, 22].

• Reinforcement learning: This learning process is a fusion of the trial-and-error ‘law-of-

effect’ tradition in psychology, optimal control theory in engineering, the secondary reinforce-

ment tradition in learning, and the use of decaying stimulus [23]. In ML, this approach in-

volves a software ‘agent’ interacting with an ‘environment’ to automatically evaluate optimal

behaviors, with rewards for desired behaviors and penalties for undesirable ones [24, 25]. In

reinforcement learning, the dataset is not fixed but provided by the environment.

The task T to be performed by the ML algorithm is inherently linked to the learning process,

it is determined by the available data and the nature of the learning process. Figure 2.1 illustrates

various tasks associated with the learning process. Similarly, the choice of performance measure P

is heavily dependent on the specific task being tackled and the model selected.

For instance, in classification tasks, the objective is for the machine to determine which of k

categories some input belongs to. To accomplish this task, the learning algorithm typically aims to

produce a function f : Rn → {1, . . . , k}. Given this map, from Rn to {1, . . . , k} the data has to be

indicated by a labeled dataset, indicating that it is a supervised method. However, the performance

measure is carried out by the loss function, which minimization corresponds to a better performance.

It is worth noting that some ML algorithms, like Random Forest (RF), do not rely on a loss

function to improve model performance [26]. Instead, RF employs a process of random selection

to obtain subsets of the data, knowing as ‘bagging’, and generates different decision trees to tackle

classification tasks. These decision trees are uncorrelated, and the final solution is determined by

majority voting among the trees. In this case, there’s no explicit loss function involved. Instead, the

‘learning’ process involves generating decision trees by partitioning nodes based on impurity metrics

like entropy or the Gini index [26].

In unsupervised learning, where there are no predefined targets for describing the expected

solution, the choice of the loss function depends on the specific ML algorithm being used. For
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Underfitting Optimum Overfitting

Figure 2.2: Example of from an underfitting model to an overfitting model, from left to right.

instance, in clustering, two commonly used ML approaches are the K-Means algorithm [27] and

Expectation-Maximization (EM) algorithm using a Gaussian Mixture Model (GMM) [28], and the

optimization processes for these approaches differ.

In the K-Means algorithm, there is defined a loss function that involves minimizing the squared

distance of each data point to the closest hypersphere centroid [27]. As a result, the K-Means

algorithm provides a model based on centroids. On the other hand, in a GMM, there is not a loss

function in the traditional sense. Instead, the optimization of this model is performed using the EM

algorithm, which entails maximizing the log-likelihood of the data given the model parameters, the

mixture of Gaussian distributions [28]. However, this log-likelihood plays a similar role in guiding

the optimization process and can be interpreted as a loss function aimed at minimizing negative

log-likelihood. These loss functions guide the learning process in each algorithm, enabling them to

identify meaningful patterns or structures in the data without the need for labeled targets.

In semi-supervised learning, which is commonly used for Anomaly Detection (AD) [29, 30], the

approach is considered a classification task, as depicted in Fig. 2.1. Here, the algorithm utilizes

a subset of labeled data, which is significantly smaller than the unlabeled data. In this type of

task, the computer program sifts through a set of events or objects and flags some of them as being

unusual or atypical [29].

On the other hand, reinforcement learning is frequently employed for training ML algorithms in

controlled environments such as video games or robotics [25]. In reinforcement learning, an agent

interacts with an environment and learns to take actions to maximize some notion of cumulative

reward. This approach is particularly useful when the model needs to learn through trial and error,

refining its actions based on feedback received from the environment.

2.1.2 Overfitting and Underfitting

The primary challenge in ML, especially in supervised learning, is achieving good performance on

unseen inputs — that is, inputs that were not used during the training process. The goal is to obtain

a model that can generalize well to new, unseen data and effectively solve the task at hand.

Two common problems encountered in ML are underfitting and overfitting. Underfitting occurs

when the learning model is too simple and cannot capture the underlying relationships present in

the data [31, 32]. This typically happens when the model has insufficient parameters to adequately

represent the complexity of the data and capture the nuances of the input-target relationships. On

the other hand, overfitting occurs when the model is overly complex, with an excessive number

of parameters, and essentially memorizes the training data without truly learning the underlying
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patterns [31, 32]. As a result, an overfit model may perform well on the training data but fail to

generalize to new, unseen inputs. Both underfitting and overfitting lead to poor performance on

unseen inputs. Figure 2.2 illustrates both problems, underfitting and overfitting.

In practice, evaluating ML models often involves dividing the dataset into a training set, used

exclusively for training, and a test set [21, 31, 32]. This approach allows us to estimate the model’s

performance on unseen data. However, certain assumptions must be considered when using this

method, such as the i.i.d. (independent and identically distributed) assumption, which implies that

the training and test sets are drawn from the same distribution. Additionally, independence among

instances is assumed.

By using separate datasets, the expected performance of the model can be assessed. Underfitting

occurs when the model fails to achieve a sufficiently low error (as indicated by the loss function)

on the training set. On the other hand, overfitting happens when the model performs well on the

training set but poorly on the test set, indicating that it has learned to memorize the training data

rather than generalize to new data.

Validation in Machine Learning

It is commonly to find a third subset of the dataset, the known validation set. This set is often

employed during the training for obtaining the optimal parameters of the ML model based on the

validation error. This validation set, which contains samples with known provenance, is not applied

for training the parameters of the model [33], it is exclusively for evaluating the performance of

the model using as it as unseen inputs. As with the test and training set, the i.i.d. assumption is

considered.

In addition, given that the number of samples in the dataset is limited, the K-Fold cross validation

technique [34, 35] is commonly used to validate the algorithm design, not a particular training.

This is specially relevant for a more in-depth understanding of the possible hyperparameters, those

parameters that are not trainable of the model, and how it affects the model. This method involves

randomly dividing the dataset into k groups, or folds, of approximately equal size. One fold is used

as the validation set while the model is trained on the remaining k−1 folds. This process is repeated

k times, with each fold serving as the validation set exactly once [35].

2.1.3 The Relevance of Probability in Machine Learning

Probability plays a fundamental role in ML algorithms due to the nature of ML tasks, which often

involve dealing with uncertain or stochastic quantities. For instance, in the previous section, the

challenges of overfitting were discussed, and probability theory provides a fundamental approach to

address this issue. Even when ML models aim to produce consistent outputs for the same input,

there can still be inherent uncertainty caused by factors such as noise in the data or randomness

in the learning process. Therefore, probability theory provides a framework for reasoning about

uncertainty and making probabilistic predictions or decisions in ML tasks. In essence, as famously

expressed by Laplace:

Probability theory is nothing but common sense reduced to calculation.

Uncertainty about decisions is a fundamental concept in ML. In this context, uncertainty in ML

can arise from three main sources [21]:
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1. Stochastic model: The system being modeled exhibits inherent stochastically, meaning that

its behavior cannot be predicted with certainty.

2. Incomplete observability: Even in deterministic systems, uncertainty can arise when it is not

possible to observe all variables, leading to apparent stochastic behavior.

3. Incomplete modeling: ML models may not fully utilize all the information provided by the data,

resulting in uncertainty in the model’s predictions. This occurs when relevant information is

discarded or overlooked during the modeling process, see Section 2.1.2.

It is important to note that not all ML models are inherently probabilistic. Some ML models

are deterministic, assuming that the data is known with certainty and that there is no randomness

involved in the learning process. However, the probabilistic approach to describing ML algorithms

offers a more versatile framework. By incorporating probability theory, even deterministic models

can be generalized to account for uncertainty, being a special case of probabilistic models. This

allows for a more comprehensive understanding and handling of uncertainty in ML tasks.

Problem Statement — Bayesian Approach

Considering the supervised learning case, see Section 2.1.1, for the problem statement, there is a

dataset with samples X ∈ {x1, . . . , xN} and targets Y ∈ {y1, . . . , yN}, where N is the number of

samples or elements. As a consequence, the ML algorithm has to define a function f : X → Y , i.e.,

a function that maps X into Y . The parameters of the ML model are denoted by ω, so ŷ = f(x;ω)

where x ∈ X. Following the Bayesian approach, the supervised problem is described as follows:

p(ω|X,Y ) =
p(Y |X,ω)p(ω)

p(Y |X)
∝ p(Y |X,ω)p(ω), (2.1)

where p(Y |X,ω) is the likelihood, p(ω) is the prior distribution, and p(ω|X,Y ) is known as posteriori

distribution. The nature of the target data is the condition that allows to differ this supervised

learning problem between, for instance, a classification (Y as discrete variable) or regression (Y as

continuous variable).

As it has been previously indicated, the loss function is the measure considered for training

the model. This loss function arises naturally based on the maximum a posteriori probability in

Bayesian statistics. Based on this loss function, the problem to solve is indicated by:

argmin
ω

L(ω;X,Y ) = argmin
ω

− log p(Y |X,ω)p(ω)⇔ argmax
ω

p(ω|X,Y ), (2.2)

where L(.) is the loss function that corresponds to the negative log-likelihood. The use of maxi-

mization corresponds to the Maximum A Posteriori estimation (MAP). Considering, for instance, in

regression problems in ML, using for instance a linear model, is intuitively considering the minimiza-

tion of the distance d(ŷ, y) as a loss function, so the solution is obtained by finding the parameters

that minimize this distance. If you consider the use of Gaussian Process (GP) [36], which follows

a Bayesian approach, for a simple case where it assumed that the data follows a Gaussian noise,
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likelihood is described as follows:

− log(p(Y |X,ω) = − log

(
1

(2πσ2
1)

N
2

e

(
−||Y −f(X;ω)||22

2σ2
1

))
∝ ||Y − f(X;ω)||22, (2.3)

where σ corresponds to the standard deviation. As it can be observed, the squared Euclidean

distance (||.||22) appears in the equation for solving the regression problem. Additionally, the prior

distribution with the aforementioned assumption is described as:

− log(p(ω)) = − log

(
1

(2πσ2
2)

K
2

e
−∥ω∥22
2σ2

2

)
∝ ∥ω∥22 (2.4)

where ω is composed by K parameters. In this specific case, it is assumed that ω ∼ N (0;σ2), so the

parameters will tend to 0.

The specific case indicated in Eq. (2.3) is describing a regression problem. In the case of a

classification task, with discrete variables, the − log p(Y |X,ω) is associated to the Cross-Entropy

(CE), which will be defined in Section 3.1.2. In practice, the categorical CE is commonly used and

is expressed as follows:

CE(ŷ; y) = −
∑
c

1(y = c) log(p(ŷ)), (2.5)

where ŷ = f(x;ω), 1(·) is the indicator function and p(ŷ) denotes the softmax probability of sample

x (Softmax: Rd → [0, 1]). The ground truth label corresponds to y and c denotes the class category.

The unsupervised problem follows the same description but removing the target variable Y . In

this way, the Bayesian approach for an unsupervised learning problem is described as:

p(ω|X) =
p(X|ω)p(ω)

p(X)
. (2.6)

As happens with the supervised problem, the optimization corresponds to MAP estimation depicted

in Eq. (2.2).

Maximum Likelihood Estimation

In most ML models, the problem is optimized by using Maximum Likelihood Estimation (MLE).

Unlike MAP estimation, here, the parameters of the model, ω, are not considered random variables.

In this approach, the loss function using MLE exclusively depends on the likelihood maximization:

argmin
ω

L(ω;X,Y ) = argmin
ω

− log p(Y |X;ω)⇔ argmax
ω

p(Y |X;ω). (2.7)

An alternative to the notation p(Y |X;ω) would be pω(Y |X), indicating that the parameters are not

considered random variables. The expression depicted in Eq. (2.7) can be adapted for unsupervised

approaches, as happens in the Bayesian approach.

This approach is a particular case of the Bayesian estimator described in Eq. (2.1). The estima-

tor obtained by MLE coincides with the most probable model given a uniform distribution of the

parameters ω. In other words, it is equivalent to setting p(ω) to a uniform distribution in Eq. (2.1).

Using this uniform prior distribution corresponds to not applying any constraints in the solution
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space, i.e., all solutions are equiprobable. An interpretation of this approach is that the model does

not have any prior assumption about which solution is more probable, there is no information. This

lack of prior assumptions means that the MLE approach relies entirely on the data to determine the

best-fitting parameters, without any additional bias or preference for particular parameter values.

MLE involves using probabilities for optimization. However, the use of probability is not inherent

in all ML models, as some model’s optimization processes are not described using probabilities. A

good example of this is the unsupervised method previously mentioned: the centroid-based model

obtained by the K-Means algorithm and GMM used by the EM algorithm.

The model obtained by K-Means algorithm is optimized by minimizing its loss function, defined

as the sum of the squared distances between each data point and the centroid of its assigned cluster.

In contrast, GMM used by the EM algorithm is obtained by maximizing the likelihood. In the case

of GMM, the use of MLE is evident, but the centroid-based model obtained by K-Means algorithm

can also be described within this framework. Specifically, the model obtained by K-Means can

be considered a special case of GMM where the data follow isotropic Gaussian noise (resulting in

‘spherical’ solutions), solving the problem described by the MLE in Eq. (2.7). In other words, while

the likelihood in GMMs is defined by N (µ,Σ), where Σ is the covariance matrix, the likelihood of the

deterministic model obtained by K-Means could be expressed as N (µ, σI), where I is the identity

matrix.

This demonstrates that while not all ML models inherently use probabilities for optimization,

they can be reinterpreted within a probabilistic framework.

2.1.4 Bayesian Inference

Bayesian inference corresponds to the branch of ML where Eq. (2.1) or Eq. (2.6) are applied directly.

Consequently, it is possible to quantify the uncertainty about the unknown parameters of the model

by the posterior distribution, which describes the parameters ω after observing the training set.

For an easier annotation, it will be considered the unsupervised task depicted by Eq. (2.6). Once

it is trained the ML model with parameters ω and the training set X, to obtain the confidence of

p(x′) where x′ ∈ X ′ and X ′ is a subset of test, it necessitates marginalization, which is achieved

through:

p̂(x′) = p(x′|X) =

∫
ω

p(x′|ω)p(ω|X)dω. (2.8)

However, this marginalization is often computationally intractable, especially in high-dimensional

problems. Consequently, p(x′|X), denoted as the marginal distribution p̂(x′), provides the uncer-

tainty of the unobserved event x′ using the parameters ω trained by the training set X.

In order to achieve a feasible solution in practice, it is imperative to consider some approximate

inference methods to compute the integral described in Eq. (2.8). Variational inference plays a

fundamental role in achieving this goal.

Variational Inference

Variational inference is a technique employed to approximate complex probability distributions when

exact inference is computationally expensive or infeasible [37]. The idea is to replace the posterior

distribution with an easy-to-sample approximate parametric distribution, qϕ(ω|X) ≈ p(ω|X).
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As it has been previously described, the objective of the model is to minimize log p(X|ω) but in
this case, it is necessary to solve directly the marginal distribution p̂(x). Considering the x ∈ X,

p(x) =
∫
ω
p(x|ω)p(ω), the idea is to include this new distribution qϕ(ω|x):

p̂(x) =

∫
ω

qϕ(ω|x)
p(x|ω)p(ω)
qϕ(ω|x)

= Eω∼qϕ(ω|x)

[
p(x|ω)p(ω)
qϕ(ω|x)

]
. (2.9)

Solving log p̂(x) and following the Jensen Inequality [38], the problem follows:

log p̂(x) = log

(
Eqϕ(ω|x)

[
p(x|ω)p(ω)
qϕ(ω|x)

])
≥ Eqϕ(ω|x)

[
log

(
p(x|ω)p(ω)
qϕ(ω|x)

)]
. (2.10)

This expression is the Evidence Lower Bound (ELBO) [37]. Based on this bound, it can be obtained

the next expression:

log p̂(x) ≥
∫
w

qϕ(ω|x)
(
log p(x|ω) + log

p(ω)

qϕ(ω|x)

)
=

= Eqϕ(ω|x) [log p(x|ω)]− Eqϕ(ω|x)

[
log

qϕ(ω|x)
p(ω)

]
.

(2.11)

Observing Eq. (2.11), it can be observed that the first expression, Eqϕ(ω|x) [log p(x|ω)], cor-

responds to the log-likelihood and the second is the well-know Kullback-Leibler Divergence (KL

Divergence) [39], denoted as DKL(.||.). The equality, and optimal solution, is only obtained when

DKL(qϕ(ω|x)||p(ω)) = 0, i.e., when p(ω) fits perfectly to the approximate parametric distribution

qϕ(ω|x).
As a result, the loss function used for training is defined by:

argmin
ω

−Eqϕ(ω|x) [log p(x|ω)] +DKL(qϕ(ω|x)||p(ω)). (2.12)

2.2 Deep Learning

Deep Learning is a subset of the ML paradigm, representing a specialized field within ML (see Fig.

2.3) where model architectures consist of multiple processing layers. These layers enable the model

to learn data representations and extract features from various levels of abstraction [40, 41, 21]. DL

is rooted in Artificial Neural Network (ANN), which are ML models inspired by biological learning

processes and the structure of the human brain. For example, insights from the standard model of

the visual cortex proposed by Hubel and Wiesel [42] suggest that the brain initially processes edges,

then progresses to patches, surfaces, and finally identifies objects. This hierarchical representation

enables the extraction of features at different levels of abstraction [40]. Although ANNs have been

around since the 1940s, they were relatively unpopular for many years until experiencing a surge in

popularity in recent times [21].

The term DL has a rich history, initially used by Rina Dechter in 1986 [43] in the context of

efficiency in searching algorithms. However, contemporary use of DL to describe ML methods with

multiple representation learning gained popularity around 2006 [21, 40]. The first precursor of DL

was cybernetics, a field rooted in the idea of biological learning, which emerged in the 1940s with

contributions from Norbert Wiener, who established the principles of control and communication in

machines and living organisms [44], and the McCulloch-Pitts Neuron model, introduced in 1943 [45].
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Artificial Intelligence

Machine Learning

Deep Learning

Figure 2.3: Venn diagram illustrating the logical relationships among artificial intelligence, machine
learning and deep learning.

Cybernetics expanded until the 1960s, with Ivakhnenko and Lapa being notable contributors during

this period [46]. Subsequently, during the 1980s to 1990s, connectionism, inspired by cognitive

science, gained popularity [47, 21]. During this period, the concepts of ANN and hidden layers

were introduced, enabling parallel signal processing across various branches of networks. During

this second precursor of DL, significant figures such as Yann LeCun [48] and Schmidhuber [49]

have made significant contributions. LeCun is widely regarded as a founding father of Convolutional

Neural Network (CNN), heavily influenced by the visual cortex mechanism, and Schmidhuber’s work

on Long Short-Term Memory (LSTM).

The contemporary surge in popularity of DL has been significantly driven by the utilization of

Graphic Processing Units (GPU), which dramatically reduces processing times for extremely DNN,

models that have millions of parameters. LeCun’s groundbreaking work demonstrated the advan-

tages of using CNNs in CV tasks, achieving record-breaking performance in handwritten digit iden-

tification with the widely used MNIST database [48]. Notably, this implementation was conducted

on Central Processing Unit (CPU), as GPUs lacked programmable data processing units, commonly

known as shaders, until 2001 [50]. In 2006, Chellapilla et al. presented an early GPU-based im-

plementation of CNNs, which was reported to be four times faster than its CPU counterpart [51].

However, predating this, Oh and Jung developed the first reported GPU-based DL model, which was

a Fully-Connected DNN,which was reported to be 20 times faster than CPU-based implementations

[52].

Recently, since around 2020, there has been a surge in interest in generative models within the

field of DL. Generative models constitute a subfield of ML where models possess the ability to ‘imag-

ine’ and create new entities, akin to a notable feature of human cognition [53]. Presently, some of

the most powerful generative models rely on DNNs and can be employed for tasks such as image

generation, as seen in Midjourney [13], or for NLP, exemplified by models like ChatGPT [14]. It is

important to highlight that generative models are often formalized using Bayesian approaches, as

discussed in Section 2.1.3. Leveraging current DNN architectures such as Transformers [54], along

with generative approaches in DL such as Variational AutoEncoder (VAE) [55], Generative Adver-

sarial Network (GAN) [56], and Diffusion Probabilistic Model (DPM) [57], enables the attainment

of performance that surpasses that of any previous ML models.
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Figure 2.4: Figure illustrating in (a) a Fully-Connected Neural Network with 2 hidden layers. In
(b) a representation of a single neuron.

2.2.1 Neural Networks

As it has been previously mentioned, DL models refers to ANNs or DNNs. An example of a fully-

connected DNN is illustrated in Fig. 2.4a. In this section, it is going to include a brief description

of these models.

An ANN commonly consists of three specific components known as neurons, hidden layers,

and activation functions. The neuron has the same function that neurons in our brains and are

characterized by having multiple inputs and a unique output. A combination at the same level

generates correspond to the layer. In the case of a fully-connected DNN, as the illustrated in Fig.

2.4a, all neurons have the same input, but the output is different. Finally, the activation function

has the purpose of including the non-linearity in the model, describing the criteria used by each

neuron to decide whether to activate the output. The most common activation function used is the

Rectified Linear Unit (ReLU), but other commons activation functions are the hyperbolic tangent

(tanh : R→ [−1, 1]) or the sigmoid function (sigmoid : R→ [0, 1]).

In Fig. 2.4b, it is illustrated a single neuron with m inputs. The neuron conducts a linear

operation with a bias b, followed by the application of a non-linear activation function. Generalizing

to n outputs (i.e., n neurons in the layer), the output of a layer given an input x ∈ Rm is determined

by the parameters θ, which consist of W ∈ Rn×m and b ∈ Rn, along with an activation function

represented by σ. The operation of the ith-layer, fi, can be expressed as:

fi = σ



w1,1 w1,2 . . . w1,m

w2,1 w2,2 . . . w2,m

...
...

. . .
...

wn,1 wn,2 . . . w1,m



x1

x2
...

xm

+


b1

b2
...

bm


 (2.13)
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Figure 2.5: Convolution operation using a kernel size of 3× 3 over 4× 4 input.

This matrix operation, considering θ ∈ {W, b} corresponds to fi = σ(WTX + b).

In this way, considering the example of Fig. 2.4a, the output corresponds to the sequence of the

different functions fi, where i is the index of the hidden layer. Therefore, the output of the DNN in

Fig. 2.4a is expressed as out = f3(f2(f1(x))).

The use of DNNs have proven to be effective to solve problems in complex domains, such as

supervised-learning for CV or NLP [40]. It is a consequence of the high number of parameters

commonly associated with the DNN.

Convolutional Neural Network

The widespread use of CNNs in CV can be traced back to LeCun’s proposal of this type of DNN for

character recognition tasks [48]. The popularity of CNNs in contemporary CV is primarily driven by

their excellent performance across various tasks, particularly highlighted by their success in beating

the state-of-the-art in the ImageNet [58] image classification challenge [59].

Even CNNs are mainly attributed to LeCun, the first properly CNN was known as Neocognitron

[60] proposed by Fukushima and Miyake in 1982. This Neocognitron was designed to detect pattern

in images, inspired by the hierarchy in the standard model of the visual cortex proposed by Hubel

and Wiesel [42].

The CNNs proposed to replace the linear operation fi =WTX+b, observed in the fully-connected

DNN, by a convolution operation:

fi = σ (K ∗X + b) , (2.14)

where K ∈ Rk×k corresponds to the kernel, X ∈ Rm×m represents the 2-dimensional input (the

image of resolution m×m) and B ∈ R(n+k−1)×(n+k−1) is the matrix of biases. The σ(.) represents

the non-linear operation.

In convolutional operations, there are various parameters to consider beyond just the kernel size

(k) and the input image resolution. Other essential parameters include the ‘stride’, which determines

how the convolutional operation moves across the image, and the ‘padding’. For those interested

in gaining an intuitive understanding of the interplay among different parameters in convolutional

operations, I recommend consulting “A guide to convolution arithmetic for deep learning” by Du-

moulin and Visin [61]. This comprehensive guide provides detailed explanations and visualizations

that can elucidate how these parameters interact and affect the output of convolutional layers in DL

models.
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Convolutional layers typically have sparse interactions. Specific interaction between each output

unit with every input unit is not found, and each convolutional kernel (or filter) is smaller than

the input. In this way, the feature maps, which represent the locations in the input where features

(represented by the filter) are present, contain spatial information.

Figure 2.5 provides a example of a convolution operation over a 2-dimensional input. The

intuitive idea about this operation is related to the ‘locality’ by the sparse interactions. Specific

interaction between each output unit with every input unit is not found, and each convolutional

kernel (or filter) is smaller than the input. For this reason, what a convolutional operation proposes

is to extract ‘local’ features, in this case spatial features which are representative of the subset of the

input size. Depending on the ‘stride’, the displacement of the kernel through the image will make

a difference. For instance, in Fig. 2.5, the kernel size is 3× 3, requiring movement to four different

positions to cover the entire input when the ‘stride’ is set to 1. As depicted, the output undergoes

size reduction, a phenomenon often mitigated through the padding.

It is noteworthy that using a kernel size equivalent to the spatial resolution will discard the sparse

interactions. As a result, this specific case fits to a fully-connected DNN, described in the previous

section.

2.2.2 Optimization

The optimization of DL models is obtained by updating the gradient descent optimization method.

As it was described in Section 2.1, the model is optimized by using a performance measure commonly

known as loss function. The idea is to obtain the parameters that minimize this loss function, as it

was described in Eq. (2.7). Based on the gradient descent, considering the parameters of the DL

model denoted by θ, the first order optimally conditions are:

∂L(θ;X,Y )

∂θ
= 0. (2.15)

DNNs are trained iteratively, updating step by step the parameters of the model based on the

gradient. For instance, the parameters of the output layer of a DNN is depicted as:

θt+1 = θt − α · ∂L(θ;X,Y )

∂θ
. (2.16)

The updating the weight in previous layers, it is carried out by using the chain rule. This process

is known back-propagation, since the input is introduced in the model for obtaining the output and

following the chain rule, the parameters of the layers are ‘back-propagated’. The α in Eq. (2.16) is

commonly known as learning rate.

Optimizers

The optimizer is a crucial concept in optimization problems, especially in DL, where the main

optimizer is Stochastic Gradient Descent (SGD). Considering a supervised problem with the loss

function defined as L(θ;X,Y ), SGD computes the gradient using a randomly sampled batch xb, yb ∈
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{X,Y } of size B as follows:

∂L(θ;X,Y )

∂θ
=

∂

∂θ

1

B

B∑
i

L(θ;xbi , ybi ) (2.17)

Optimization plays a critical role in DL, and alternatives to SGD have been proposed to achieve

optimal model solutions. For instance, the first-order momentum, proposed by Sutskever et al. [62],

is particularly important for model convergence. Algorithm 1 illustrates the SGD with Momentum

approach.

Algorithm 1 Stochastic Gradient Descent optimizer with Momentum

1: Requirements: α, µ ▷ α as learning rate and µ as the momentum
2: Initialize: v = 0
3: while not converged do

4: g ← ∂L(θ;x,y)
∂θ

5: v ← µ · v − α · g
6: θ ← θ + v ▷ Update parameters θ
7: end while

Lately, alternatives to traditional SGD have emerged. Duchi et al. introduced AdaGrad [63],

where the learning rate α is inversely proportional to the past gradient energy. Another popular

optimizer is RMSProp [64], proposed by Alex Graves, which improves upon AdaGrad by introducing

a moving average for the accumulated gradient.

The Adam optimizer, proposed by Diederik Kingma and Jimmy Ba [65], can be considered the

next step beyond RMSProp, incorporating two momentum terms. While RMSProp considers only

the second-order moment of the gradient with exponential decay, Adam adds a first-order term

over the gradient. Algorithm 2 outlines the Adam optimizer, where ⊙ represents the Hadamard

element-wise dot product.

Algorithm 2 Adam optimizer

1: Requirements: α, β1, β2 ▷ β1, β2 ∈ [0, 1]
2: Set: ξ = 10−8

3: Initialize: r = 0, s = 0
4: while not converged do

5: g ← ∂L(θ;x,y)
∂θ

6: t← t+ 1
7: s← β1 · s(1− β1) · g
8: r ← β2 · r(1− β1) · g ⊙ g
9: ŝ← s

1−βt
1

10: r̂ ← s
1−βt

2

11: θ ← θ − α ŝ√
r̂+ξ
⊙ g ▷ Update parameters θ

12: end while

2.2.3 AutoEncoder Architecture

Given the diversity of tasks to be addressed, numerous DNN architectures are available, including the

Transformer [54], initially designed for NLP but also applicable to tasks like CV [66]. Attempting to
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Figure 2.6: AutoEncoder architecture.

enumerate all DNN architectures proposed in the literature is unfeasible. However, the AutoEncoder

(AE) [67] holds significant importance in self-supervised learning, making it a key component in this

dissertation.

The AE architecture was proposed as a self-supervised method (see Fig. 2.1) for obtaining a

low-dimensional data representation, a compression of a high-dimensional data. The idea is simple,

the AE has the purpose of compressing the data in a latent space, Z, and obtaining a reconstruction

from this. A example of this architecture is illustrated in Fig. 2.6. Even the AE illustrated in Fig.

2.6 use a fully-connected DNN, it can be implemented by using CNN.

The AE architecture [67] is characterized by three main components: the encode path or encoder,

the bottleneck, which represents the compressed latent space, and the decode path. The encoder and

decoder consist of a series of layers, {TE1 , ..., TEL
} and {TDL

, ..., TD1}, respectively, with L denoting

the number of layers. An encoder comprises the encode path followed by the bottleneck, i.e.,

TE ∈ {TE1 , ..., TEL
, TZ}, while the decoder encompasses the decode path. In the example depicted

in Fig. 2.6, both the encoder and decoder consist of two layers, making the AE a sequence of layers

denoted as f ∈ {TE1 , TE2 , Z, TD2 , TD1}.

For the loss function, a reconstruction error is calculated by comparing the input and the output

obtained. Typically, the Mean Squared Error (MSE) is employed:

L(θ;X) =MSE(f(X; θ), X) =
1

N

∑
x∈X

(x− f̂(x; θ))2, (2.18)

where N represents the number of samples in the dataset.

This architecture finds extensive use in image denoising [68] and has inspired applications such as

image segmentation. For instance, U-Net [69], originally designed for medical image segmentation,

employs an architecture heavily influenced by the AE, utilizing skip-connections that represent a

direct connection between the encoder and decoder by concatenate outputs along the decode path.

As a result, the input to a decode layer TDi
is composed of the output of the corresponding encoding

layer TEi
and the output of the previous decoding layer TDi−1

.
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2.2.4 Preventing Overfitting in Neural Networks: Dropout Technique

As discussed in Section 2.1.2, overfitting occurs when an ML model memorizes the training data

rather than learning the underlying patterns, typically associated with complex models. DNNs,

for instance, often consist of tens of thousands or even millions of parameters to be learned. For

example, MobileNetV3 [70], an efficient CNN designed for mobile applications, contains around 5

million parameters. Notably, architectures like Transformers [54] are notorious for their propensity

to overfit [71]. While this large parameter count affords significant learning capacity, it also increases

the risk of overfitting, making it a crucial concern to address.

Dropout [72, 73], or Binary Dropout, is a regularization technique commonly used in DL models

to reduce overfitting. This mechanism consists in applying a multiplicative Bernoulli noise for each

hidden unit in the neural network during the training, i.e, it is a feed-forward operation described

as:

z ∼ Bern(ρd),

θ̂ = θ ⊙ z,

y = σ(θ̂x+ b),

(2.19)

where x denotes the vector of inputs into the layer, θ and b are the weights and biases in the layer, σ

is a non-linear activation function such as, for instance, the sigmoid function and ⊙ is a Hadamard

dot product. The ρd value from the Bernoulli distribution, Bern(.), also known as the dropout rate

value, is a hyperparameter and represents the probability of an element being zeroed.

Dropout, according to the authors [73], breaks up complex co-adaptations between neurons that,

rather than learning a good criterion, may learn to compensate for errors made by other neurons.

A brief intuition about why dropout technique works is to understand that the connectivity of the

layer to the prior layer is constantly changing, so you can interpret that the layer is learning using

‘different’ prior layers.

Interestingly, dropout has also been revisited as a Bayesian approximation for representing and

estimating the model uncertainty [74].

2.2.5 Invariant Representation Unsupervised Learning

As previously discussed, one of the key features of DL is its ability to extract data features from

different levels of abstraction, resulting in diverse data representations. However, learning an effective

representation space without human interaction, such as data annotation, is generally challenging.

One common approach to address this challenge is through the use of self-supervised AEs, see

Section 2.2.3. This task becomes even more challenging when the goal is to obtain an invariant

representation space.

In AI, there exist algorithms focused on obtaining features that are invariant to various transfor-

mations. For example, in CV, SURF (Speeded Up Robust Features) [75] and SIFT (Scale-Invariant

Feature Transformation) [76] are commonly used to extract features from images that are invariant

to affine transformations.

In DL, it is often desirable to obtain invariant features. This entails ensuring that any variation

in the input, such as shifts or rotations, results in the same ’point’ in the feature space derived from

the hidden layer. This ‘point’ represents an invariant representation of the input. For instance, in
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Figure 2.7: Framework proposed by SimCLR for contrastive learning.

the case of an image input, the invariant feature space should map both the original image and its

rotated version to the same ‘point’.

Invariant features are crucial for classification tasks, as they enable the model to identify the

same object regardless of its position or orientation in the input space. The most direct method to

achieve this in ML is through supervised learning, where labeled data guides the learning process and

explicitly defines relevant features to extract. However, it is essential for these features to exhibit

invariance to ensure robust and generalizable learning.

A significant challenge in DL lies in obtaining these invariant features through unsupervised

learning. Researchers have explored using DL to derive an invariant representation space for years

[77], with contrastive learning playing a pivotal role in this pursuit.

Contrastive Learning

Contrastive learning, a technique employed in DL, aims to learn a compact, invariant representation

of the input X. In essence, given an image x and a transformed version x̂ (e.g., rotated), the

compressed representations of both images in Z should be close together. Conversely, dissimilar

images should be located distantly in Z. This ‘contrastive’ approach aims to create a space where

similar samples are clustered closely together and dissimilar ones are positioned farther apart. The

primary challenge of this method lies in learning these effective representations without human

supervision, making it an instance of unsupervised learning (see Section 2.1.1).

Although contrastive learning has been used for several years [77, 78], only recently has achieved

comparable outcomes to those obtained with supervised methods [79]. In image classification, Sim-

CLR [80] has produced results comparable to the state-of-the-art supervised method on ImageNet

dataset [58]. SimCLR generates two augmented views of the same image and maximizes the simi-

larity between them in a latent space. Figure 2.7 illustrates the framework proposed in SimCLR,

where the input x is transformed using a subset of transformation defined in T , generating the pair

samples xi and xj , and f(.) represents the encoder that generates the representation space and g(.)

is known as projection head which generates the latent space Z in which the contrastive approach

is carried out.

In the following years, methods based on SimCLR have been proposed. The enhanced SimCLR

version, SimCLRv2 [81], achieves a better performance by utilizing a larger architecture. In addition,

other methods such as MoCo (Momentum Contrast) [82], BYOL (Bootstrap Your Own Latent) [83]
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or SwAV (Swapping Assignments between multiple Views) [84] obtain state-of-the-art results on

multiple benchmarks in image classification and object detection.

As it can be observed in Fig. 2.7, in contrastive learning-based methods, it is necessary to

measure the similarity between the vectors in the latent space, Z. A common approach for high-

dimensional data is to use the cosine angle to quantify this similarity. A high similarity is obtained

when the angle is close to 0. Based on this quantification, it is necessary to define a loss function

to encourage the model to learn to distinguish between similar and dissimilar samples. An example

of such a loss function is the NT-Xent (Normalized Temperature-scaled Cross Entropy) [80, 85]. In

this way, in the latent space the similar samples, those which are likely to belong to the same class,

are projected close to each other, thus defining a specific cluster per class.

Generative Models for Invariant Representation

It is important to note that while contrastive learning is often associated with discriminative models,

it is not the only method for acquiring a invariant representation. The use of a generative model for

this purpose is intuitive, as the objective function aims to estimate the marginal distribution p(X)

for generating samples. The process of generating coherent samples necessitates the extraction of

some invariant features. For example, in images of faces, the positions of the eyes and mouth are

invariant features.

In the context of generative models, Bayesian inference can be considered. However, as previously

discussed in Section 2.1.4, estimating p(X) is often computationally intractable, making variational

inference a suitable alternative.

Through variational inference, if the approximate parametric distribution qϕ(X), where ϕ rep-

resents the parameters, is tightly constrained and there is significant variability in samples X, the

model will be compelled to achieve high levels of feature invariance among samples, which is partic-

ularly relevant. This task can be accomplished using VAEs, a AE that applies variational inference

in the latent space Z. For instance, Dohi et al. [86] proposed the use of a VAE with constraints

to control domain shifts in the latent space Z for anomalous sound detection. Another approach to

achieving shift-invariant visual representation, similar to the one proposed in SimCLR, using VAEs

was introduced by Chadebec and Allassonniere [87], utilizing data augmentation.

2.3 Interpretability in Machine Learning

The previous sections have delved into ML and DL methodologies, with examples on general tasks

oriented to CV and NLP. However, the application of AI spans a wide array of domains beyond CV

and NLP, including biology, healthcare, autonomous driving, and many others. While providing a

comprehensive review of AI applications, particularly in DL, is a monumental task that lies beyond

the scope of this thesis, it is important to note that the upcoming chapters in Part II will focus

on healthcare applications. Healthcare is a domain where the utilization of DL models is gaining

significant traction, albeit their deployment has several challenges.

The aforementioned challenges of DL in healthcare, which could also extend to other critical

fields such as autonomous driving, primarily concern the reliability of the DNNs. Addressing these

challenges will require tackling several ethical considerations. While state-of-the-art algorithms

based on DL have showcased performance comparable to that of healthcare professionals [6], the
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lack of transparency of these models, often denoted as ‘black-box’, could lead to severe consequences

in their predictions.

The decision carried out by a ML model is complicated to justify since its decision-making process

cannot be discussed, particularly when the inner workings of the model are not well understood. The

best way to justify a ML model is by addressing the problem by Bayesian inference (Section 2.1.4)

since it is possible to quantify the uncertainty about the unknown parameters of the model by the

posterior distribution, which describes the parameters after observing the training set. In this way,

it can be deduced how the parameters affect the accuracy of the model. However, in general, humans

do not feel comfortable with these models due to a lack of understanding of the ML problem-solving

mechanisms. This uncertainty becomes more pronounced with the adoption of complex ML models,

such as the DNNs. For instance, Decision Trees are known for their interpretability, making them

among the most easily understandable ML methods, second only to simple linear regression models.

However, in general, models like RF, which utilize multiple Decision Trees, sacrifice interpretability

for improving the accuracy.

As it has been previously mentioned, the effectiveness of DNNs in solving complex problems in

different topics is well-established [40, 6]. The Universal Approximation Theorem [88, 89] under-

pins this capability, asserting that a neural network with a single hidden layer can approximate any

function to the desired level of accuracy, given certain conditions. These conditions usually involve

employing a non-polynomial activation function and ensuring a sufficient number of hidden nodes.

Essentially, this theorem suggests that DNNs can be considered as non-parametric estimators, par-

ticularly when the number of hidden nodes and layers can scale proportionally with the number of

observations. This adaptability helps DNNs to capture and model intricate relationships within data

without being confined by specific parametric forms. However, a major criticism of DNNs is their

interpretability; these models have a decision-making mechanism that is challenging for humans to

understand.

DL models have gained immense popularity in recent times due to their ability to provide highly

adaptable outputs with high accuracy. However, it is important to remember the aphorism expressed

by George Box [90]:

All models are wrong, but some are useful.

Nowadays, DL architectures are becoming increasingly deep [91], driven by the pursuit of better

results. This trend is often fueled by the myth that there is necessarily a trade-off between capacity

and interpretability [8], i.e., better results are obtained by using a more complex model. However,

sometimes a simple preprocessing of data allows obtaining better results using a simpler model.

Consequently, rather than making an effort to create models that are inherently interpretable, there

has been a recent explosion of work on ‘explainable ML’, where a second model is created to explain

the first ‘black box’ model [8].

While it is true that current DL models have surpassed traditional techniques in AI in many

areas, relying solely on specific features of these models, such as the number of hidden layers or

the number of parameters, cannot be considered the exclusive way to improve current results. A

deeper understanding of these models would provide a better intuition about their problem-solving

mechanisms, and, for this reason, the interpretability of ML models should be considered a key

feature in assessing their utility, making them more useful.
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2.3.1 Interpretability versus Explainability

It is necessary to have a description of the concepts of ‘interpretability’ and ‘explainability’, but it

is worth noting that, to the best of my knowledge, there is still no consensus on these definitions

[92]. Although there is no definitive explanation for this, it might be a consequence of the current

popularity of DNNs, albeit interpretability has been an active area of AI research for many years

[92]. However, this thesis will use both expressions with the following descriptions:

Interpretability is associated with explaining the meaning of something 1 in understandable terms.

This definition based on “understandable terms” is reflected in the literature [92]. Although it is

not a formal definition, it effectively conveys the main idea of interpretability as approached in this

dissertation.

Interpretability is fundamental for understanding and reasoning about the inner workings of a

ML model. Interpretability involves deriving logical insights from the observation and establishing a

hypothesis about the problem-solving mechanism employed by the model. This interpretation should

identify specific features in the model, which can be validated through experimentation, ensuring

they are satisfied.

By defining a human-comprehensible framework for understanding how the underlying AI oper-

ates, interpretability allows us to validate or correct the model through experimentation. However,

interpretability should not be considered absolute. The way a model is interpreted may vary depend-

ing on the context, the observer’s perspective, and the objectives of the analysis. Interpretability is,

therefore, a domain-specific notion [8].

In the literature, there are authors who consider that a model it is interpretable if, observing the

parameters, it is possible to understand how the prediction is made [93] or the degree to which a

human can understand the cause of a decision [94, 95]. In this thesis, these definitions fit better to

an ‘explainable ML’ [8].

Explainability in the context of ML goes beyond interpretability by providing an explanation

in a human-readable form of how and why a model came up with a prediction [96]. Therefore,

explainability is associated with the ability of the model to provide an understandable justification

for its decisions. Explainability relies on interpretability as a building block and aims to answer

questions like “why did the AI make this particular decision” [96].

In practice, explainable ML for complex models, such as DNNs, is based on post-hoc techniques

[91, 92] where a second and simpler model is used that provides a score for defining what part of

the input data is responsible for the final decision. However, the use of specific techniques, such

as attention mechanisms, can enhance model explainability by providing better intuition about the

prediction process, as attention mechanisms assign weights to different parts of the input.

Explainability depends on interpretation, which tends to be subjective and based on the ob-

server’s perspective. For instance, in a clinical decision, the explanation of why the model made a

specific decision could be based on the score of the input features, and it is expected to be validated

based on experts’ considerations. However, in high-dimensional data, there could be significant

variability among experts regarding this validation, as each expert might consider different features

relevant for the decision.

The aforementioned descriptions regarding interpretability and explainability fit with the Euro-

1Cambridge Dictionary, accessed 2024-04-18
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pean regulation2. However, although explainability is crucial for trust in ML models, it may not be

necessary if systems are sufficiently interpretable [8].

2.3.2 Interpretability in Deep Learning

As previously discussed, interpretability is a key concept of this thesis. Although there is still no

consensus regarding the definition of interpretability within the DL community, this thesis will un-

derstand interpretability as the ability to provide explanations in understandable terms. Specifically,

in this thesis, ‘understandable terms’ are oriented towards an engineering perspective, meaning that

this interpretation is based on well-known systems. Consequently, the goal is to interpret the ‘black

box’ by relating it to well-studied models or systems and ensuring that the DL model satisfies the

features present in these systems.

One illustrative example of this approach is the Bayesian interpretation of the dropout technique

in DL by Gal and Ghahramani [74]. While there are various interpretations of why the dropout

technique works [73], Gal and Ghahramani viewed dropout in DNN as an approximation of a deep

GP, a probabilistic Bayesian model. This technique minimizes the KL Divergence between an

approximate distribution and the posterior of a deep GP, following the variational approach (see

Section 2.1.4). As a result, given the validation of this interpretation as a deep GP, they proposed

a computationally efficient method for quantifying model uncertainty using Monte Carlo methods.

Another inspiring work for this thesis is the research conducted by Tishby and Zaslavsky [97]. In

this study, the authors use Information Theory (IT) to gain a theoretical understanding of DNNs, de-

scribing them as communication systems and examining the information flow within these channels.

This approach will be further explored in the upcoming chapters.

This interpretation of DL models provides a more in-depth understanding of their problem-

solving mechanisms. As demonstrated in both works [74, 97], this approach helps establish specific

features inherent in DL based on that interpretation. Since evaluating interpretability is complex,

this approach allows for assessments based on the requirements of the aforementioned systems,

providing a more in-depth understanding of the model.

It is worth noting that sparsity is a useful measure of interpretability in models that use structured

data [8]. Sparse models enable a more comprehensible understanding of how variables interact with

each other. This perspective will also be emphasized throughout this thesis.

2.3.3 Explainability in Deep Learning

Most work oriented to understanding DL models is commonly associated with this ‘explainable

ML’ approach [91, 92]. These methods seek to elucidate the ‘black boxes’ by explaining how the

model makes decisions, focusing on the relevance of input features or model parameters. However,

in extremely complex models, such as the DNNs, the explanation based on model parameters is

unfeasible, so it is more commonly to approach this explanation based on the input features. As it

has been previously mentioned, these ‘post-hoc’ methods are those that are typically applied after a

model has been previously trained, and they aim to explain the model’s predictions. They are often

model-agnostic, meaning they can be applied to any type of model. The idea of these methods is to

establish a clear connection between the input and the model’s prediction [91]. However, it is worth

2TechDispatch #2/2023 - Explainable Artificial Intelligence, accessed 2024-08-02

https://www.edps.europa.eu/data-protection/our-work/publications/techdispatch/2023-11-16-techdispatch-22023-explainable-artificial-intelligence_en
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Figure 2.8: Grad-CAM to estimate the feature contribution for skin-cancer detection [102].

noting that employing these methods is resource-intensive, and achieving generalizability is complex

because each sample must be analyzed independently.

Backpropagation-based Approaches

There are several methods that are designed explicitly for DL, which means that those methods

cannot be considered model-agnostic. A general approach of post-hoc methods for DL are the meth-

ods known as backpropagation-based approaches. One of the first works related to these methods

was proposed by Simonyan et al. [98], in the context of classification task of CV, in which there is

computed a ‘saliency map’ using the gradient of the output and backpropagating them to the input

convolutional layer.

The next relevant work of the aforementioned method was the Integrated-Gradient proposed by

Sundararajan et al. [99]. These methods consist of computing the integration of the gradient-based

feature attribution for an input x with respect to a baseline x′. In images, the baseline could be

a black image and the gradient is integrated from the baseline image to the input x, which can be

computed by obtaining n interpolation between x and x′.

An alternative to the Integrated-Gradient is Deep Learning Important FeaTures (DeepLIFT)

[100]. In this case, it is computed the gradients, but it is compared the gradients of the inputs x with

a baseline x′. In this case, it is important that the baseline represent an input without information.

This baseline could be a black image or an image with random noise. However, the selection of a

suitable baseline is crucial [100, 101], as it influences the attribution of feature importance.

However, regarding backpropagation-based methods, Gradient-weighted Class Activation Map-

ping (Grad-CAM) [103] stands out as one of the most popular. Grad-CAM computes a coarse

grained feature-importance map by associating the feature maps in the final convolutional layer

with particular classes based on the gradients of each class w.r.t. each feature map, and then using

the weighted activations of the feature maps as an indication of which inputs are most important.

For instance, in [102], we applied this method for validating the use of an attention mechanism with

the purpose of reducing the number of parameters of a MobileNet model [70]. An illustration of

Grad-CAM result can be observed in Fig. 2.8.

Perturbation-based Approaches

Perturbation-based techniques involve perturbing data around an individual prediction and analyz-

ing the impact on the model’s performance [104]. The explanation is derived from the conclusions

obtained by, for instance, occluding part of the input image with a mask or replacing a word in a sen-
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tence with its synonym and observing the changes in the model’s output. Unlike backpropagation-

based methods, these techniques are model-agnostic because only perturbations in the input are

required.

In the state-of-the-art is possible to find works in which the performance of DL models is affected

by small perturbation. For instance, a well classified image can be drastically wrong by a small

changes, indistinguishable to the naked eye [105, 106]. Those analyses are known as adversarial

example-based sensitivity analysis [104]. In this particular type of analysis, the adversarial examples

pertain to datapoints whose characteristics have been impacted by a subtle yet substantial amount,

sufficient to cause a ML model to make incorrect predictions about them.

One of the most popular methods using this approach is Local interpretable Model-agnostic

Explanations (LIME) [107]. This method involves generating randomly-sampled data around the

neighborhood of a given instance and its corresponding prediction. Subsequently, predictions are

made for the generated instances using the model in question and weighted by their proximity to

the input instance. Finally, by using a simple model such as a Linear Regressor or a Decision

Tree, is trained using this perturbed dataset [107, 104]. LIME, as the authors claimed, provides a

local explanation for individual predictions by approximating the intricate decision boundaries of a

model using the aforementioned simpler model. As a result, an understanding about which features

contributed the most is obtained. A theoretical validation of LIME was carried out by Garreau and

Luxburg in 2020 [108].

However, it is possible to find perturbation-based method designed exclusively for DL. For in-

stance, Zeirver and Fergus [109] proposed to apply occlusion in different segments of an input image

for evaluating the impact in the later layers.

2.4 Inverse Problems

Inverse problems are distinguished by their aim to recover information from noisy data [110]. One

illustrative example is the medical imaging, including techniques such as Computed Tomography

(CT) or Magnetic Resonance Imaging (MRI). In this context, the measurements are taken from the

external surface of a body, and the challenge is to infer properties of the inaccessible ‘interior’ or

‘hidden’ information [111]. In general, the restoration problems, those in which the input signal is

‘noisy’ and the goal is to obtain the clean version of this, are an inverse problem.

In inverse problems, it is commonly assumed that the noise corresponds to an additive white

noise. In this case, if it is considered an inverse problem, the degradation model is defined as follows

[110]:

X = f(X ′) + ϵ

where the noise signal X is obtained by a f(.) transformation over the clean signal X ′ and ϵ is the

noise injected into the X ′. The key to inverse problems is that there is an unknown transformation

of the signal, which is corrupted by measurement noise, and the goal is to estimate the input signal.

This example is illustrated in Fig. 2.9.

It is widely assumed that this white noise corresponds to a Gaussian noise, specially in image

processing. It means that all the elements of ϵ ∈ Rd, where d is the dimension of the X, come

from the same Gaussian distribution with zero mean and standard deviation σ. However, the noise

assumption is selected based on the context. For instance, the noise associated to MRI is commonly
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Figure 2.9: Inverse problem scheme with white noise. In the scheme, X is the input, f(.;ω) represents
a transformation and ϵ is the noise injected and Y is the output. As an inverse problem, the idea is
to obtain the input X, that could be represented by a noiseless signal, or the system with parameters
ω, given the other two quantities. The data observed Y is always known, but it contains errors.

indicated as a Rician noise [112] and in audio signals is the impulse noise [113]. In images, particularly

in Synthetic Aperture Radar (SAR) and medical ultrasound images, speckle noise is a prevalent form

of multiplicative noise [114].

It is essential to recognize that assuming white noise can be a strong simplification of real-world

scenarios. In practice, noise is rarely isolated and may have complex characteristics. Nevertheless,

the white noise assumption serves as a mathematical abstraction that simplifies the analysis, making

problem-solving more tractable [110]. As a result, this approximation is considered suitable for many

practical applications.

As a result, the inverse problem is characterized because the input or the system is unknown.

For instance, in the context of the restoration problem, it is indeed an inverse problem where we

have knowledge of the noisy signal (the effect), and the goal is to obtain the original signal without

noise (the cause). This is a classic scenario in inverse problems and the Linear Fredholm integral

equation of the first kind plays a fundamental role in image restoration [115, 110], including medical

imaging.

However, the aforementioned description did not consider another scenario where inverse prob-

lems are defined: the determination of the parameters ω in the function f(.;ω). Generally, while a

forward problem involves determining the data produced by particular model parameters, an inverse

problem involves estimating the parameters that produced the observed data, the effect [116, 110].

Figure 2.9 illustrates the inverse problem where, from the noisy effects, it is necessary to determine

the cause or the system, given the other two quantities.

Machine Learning is an Inverse Problem

As recently mentioned, obtaining the parameters of a system based on observations is an inverse

problem. This process is precisely what is carried out in ML optimization, it is the learning process.

In supervised learning, the target Y (the effect) and the input X (the cause) are known. The

learning process involves updating the model parameters based on a loss function, typically using

methods such as SGD in DL (see Section 2.2.2). As illustrated in Fig. 2.9, this scenario corresponds

to knowing both the cause and the effect and only needing to determine the model parameters.

For instance, Tarantola’s book on inverse problems [116] illustrates how to estimate model parame-

ters and perform data fitting using methods mentioned in Sections 2.1 and 2.2, demonstrating the

relationship between inverse problems and ML.

Additionally, inverse problems such as obtaining a clean signal from a noisy observation can be
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approached using ML. In DL, architectures based on AEs are commonly used for these tasks [68].

A notable example is the Deep Image Prior (DIP) [117], which addresses various inverse problems

such as super-resolution, inpainting, and denoising using an AE architecture.

2.4.1 Ill-posed Problems

Typically, several inverse problems, as described by Hadamard [118], are considered ill-posed.

Hadamard’s perspective suggested that these problems do not accurately represent real-world sce-

narios, considering that it is a consequence of the problem being not properly presented. However,

it has become evident that he was mistaken in this regard [110].

The well-posed problems are those problems that describe systems of equations whose solutions

behave as it is (heuristically) expected from a physical system. According to Hadamard’s definition,

the well-posed problems are linear problems that satisfy the following requirements:

• Existence: the problem must have a solution. It means that the function f(.) is surjective.

• Uniqueness: it has a unique solution, i.e., f(.) is bijective.

• Stability: the solution must depend continuously on the data. If this property is satisfied, it

is referred as well-conditioned.

In simpler terms, for a problem to be well-posed, it needs to have a unique solution and the solution

should vary continuously with changes in the input data. Conversely, if a problem violates any

of these requirements, such as being ill-conditioned due to lack of stability, then it is considered

ill-posed. In general, many inverse problems are often ill-posed.

Machine Learning for Ill-posed Problem

The properties necessary for obtaining a well-posed problem are essential for developing models that

generalize properly. The learning process in ML should be well-posed to converge to an optimal

solution to the problem.

In Section 2.1.3, three main sources of uncertainty that ML must handle were introduced. For

instance, with incomplete observation, a deterministic system cannot be well-modeled. This lack of

data generates an ill-posed problem that must be addressed by the ML algorithm.

In cases where the problem is ill-posed, it is necessary to detail some implicit ‘prior belief’ to

ensure that the ML algorithm can generalize properly when solving the problem. One of these

implicit priors is the hypothesis space [21], which is implicitly defined by the selected model and

is a determinant for expressing the model’s capacity. For example, the linear regression algorithm

has the set of all linear functions of its input as its hypothesis space. This space can be extended

by including polynomials rather than linear functions [21]. Using a ‘simpler’ hypothesis space can

emphasize obtaining a unique solution.

Other features relevant for ensuring proper learning in ML are the smoothness prior and the

local constancy prior [21]. These priors aim to ensure stability, requiring the problem to be well-

conditioned. The smoothness and local constancy priors assume that the function to learn must

satisfy the condition

f(x) ≈ f(x+ ϵ), (2.20)
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assuming that a minimal variation in the input corresponds to a minimal variation in the output. For

instance, the smoothness prior is especially relevant for optimization methods based on gradients,

such as the SGD used in DL (see Section 2.2.2) and the local constancy is fundamental in methods

based on k-nearest neighbors.

Although there are simpler algorithms that rely exclusively on these priors, in general, they are

not sufficient for solving the complex statistical challenges that current AI-based methods aim to

address. Therefore, to effectively deal with the ill-posed problems commonly associated with AI

tasks, it is necessary to apply the regularization technique.

2.4.2 Regularization

Regularization is a technique employed to address ill-posed problems. It was originally introduced by

Andrey Tikhonov [119]. It involves introducing constraints that enhance the injectivity and stability

of these problems.

Consider an ill-posed problem, and it is desired to obtain a single solution defined by a linear

function y = Φα by introducing some additional identifying criteria. In this way, a regularization

function J(α) that evaluates the desirability of a would-be solution α is introduced. This regu-

larization function, has to be defined for smaller values being preferred. In this way, the general

optimization problem by Tikohonov’s regularization is defined as follows:

min
α
J(α) subject to y = Φα. (2.21)

An ill-posed inverse problem could be considered an infinity of different paths to a set of solutions

given some data. The regularization has the main purpose of selecting a unique or a subset of solution

from this infinity set of solutions, recovering the ideal cause x or, at least, finding a x′ that is close

to this ideal solution.

Bayesian Interpretation

In Section 2.1.3, the problem statement was defined through a Bayesian interpretation. Within

this framework, ML models cast the problem as one of minimizing a loss function subject to a

regularization-based constraint. This can be mathematically formulated as follows:

argmin
ω

L(ω;X,Y ) s.t. J(ω), (2.22)

where (X,Y ) denotes the data and target variable pair in supervised learning, and ω represents the

model parameters. To reframe this expression, a Lagrange multiplier λ is introduced:

argmin
ω

L(ω;X,Y ) + λJ(ω). (2.23)

Finally, in line with Eq. (2.7), the formulation can be refined to:

argmin
ω

− log p(Y |X,ω)− log p(ω|λ). (2.24)

Observing Eq. (2.24), it is possible to find similarities with the objective described in vari-
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Figure 2.10: Lp-norms with p = 2, 1, the Lp-quasinorm with p = 0.5 and the L0-pseudonorm.

ational inference in Section 2.1.4. As it can be observed in Eq. (2.12), the KL Divergence,

DKL(qϕ(ω|x)||p(ω)), is a regularization factor that is forcing to obtain the solution in which the

distribution of the parameters p(ω) approximately follows the easier parametric distribution de-

noted by qϕ(ω|x). In other words, variational inference uses a regularization factor for obtaining a

solution that it is close to the ideal one.

2.5 Sparse Representation

Sparse representation is widely utilized across various domains for tasks such as data compression,

high-dimensional data analysis, and enhancing the performance of ML algorithms. In the context of

ML, as discussed in Section 2.3.2, it considered a measure of interpretability of the model [8] because

it provides insight into how variables interact jointly rather than individually.

In essence, sparse representation involves representing a signal or image using only a few elements

from a considerably large dictionary [120]. These representations comprise a sparse set of non-

zero coefficients, indicating the contribution of each basis vector to the overall approximation. A

prominent example of this concept is the JPEG image compression standard [121], which employs the

Discrete Cosine Transform (DCT) to transform image blocks into a basis where the representation

is sparse. This implies that most of the higher frequency components become zero or near-zero,

facilitating efficient compression.

Moreover, the application of sparse representation extends beyond data compression. It can

be instrumental in data fusion by extracting the most relevant features from diverse sources. For

instance, in medical imaging, sparse representation can aid in obtaining pertinent features from var-

ious imaging modalities and subsequently integrating them through fusion techniques for enhanced

diagnostic accuracy [122]. There are more examples oriented to Feature Selection methods that will

be discussed in Chapter 5.

In this field, the Lp norm plays a fundamental role. Consider a vector x ∈ Rd, the Lp norm is

defined as ||x||p = (
∑

i |xi|p)1/p. However, this norm is defined for p ≥ 1. In the case of 0 < p < 1,

||.||p is known as quasinorm [120]. The L1 and L2 are the well-known Manhattan and Euclidean

norm, respectively.

In the case of p < 1, the aforementioned expression cannot be considered a norm, since it does

not satisfy the triangle inequality [120] (see Fig. 2.10):

||x+ y||p ≤ ||x||+ ||y||. (2.25)
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This inequality formalizes that the shortest distance among two points is a line.

2.5.1 Sparse Vector

In the field of mathematics and signal processing, a vector is said to be sparse if most of its elements

are zero. More formally, a vector is considered sparse if there exists a basis (a set of linearly

independent vectors) in which the vector has a sparse representation. In this way, it is important to

note that the sparsity of a vector can depend on the basis in which it is represented. Some vectors

may not appear sparse in one basis, but may be sparse in another.

In order to measure the sparsity of a vector, the pseudo-norm L0 is the main approach. It is

described as follows:

||x||0 =
∑
i

1(xi = 0) = lim
q↓0
||x||qq, (2.26)

where 1(.) is the indicator function. As a result, this pseudo-norm counts the number of elements

that are 0 in the vector x.

This L0 pseudo norm is a special of Lp-norm in which the absolute homogeneity condition is not

satisfied. For this reason, it is commonly known as pseudo-norm. Nevertheless, it is often referred

to improperly as L0-norm in the literature. In this thesis, it will be indicated as L0-norm.

2.5.2 Sparse Solutions

As inferred, obtaining a sparse representation can be categorized as an ill-posed problem, as outlined

in Section 2.4.1. It is intuitively understood that if there are two subsets of variables containing the

same information, there is no unique solution. However, sparsity can help address ill-conditioning

by improving the stability of the solutions. In the context of ML, it is often assumed that the model

will utilize the entirety of the data to resolve the problem. Here, regularization becomes crucial in

deriving a sparse solution:

The model’s objective, involving the parameters ω is defined as follows:

argmin
ω

L(ω;X,Y ) s.t. ||ω||0. (2.27)

This problem setup will be further explored in Chapter 5. It is important to note, however, that

the L0-norm is non-convex and its computation can become prohibitively expensive and intractable,

particularly with high-dimensional data [120]. This necessitates careful consideration of the com-

putational strategies and approximations used in practical applications to effectively manage the

complexity of such models.

2.6 HyperSpectral Imaging

HyperSpectral Imaging (HSI), also known as imaging spectroscopy, refers to a technology that

combines traditional digital imaging and spectroscopy methods, providing detailed information about

the materials in the captured scene. Indeed, this technology possesses the capability to surpass the

limitations of human vision. Although it is a technology that it has been used in remote sensing —

typically associated with the use of satellite- or aircraft-based sensor technologies to measure objects
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without physical contact — for over three decades [123, 124], recently the access to this technology

has become more widespread, making it more accessible for use in a wide range of fields.

The sensor measures the electromagnetic radiation reflected, emitted, or transmitted by objects

across a range of wavelengths, generating a vector of radiance values for each pixel [125, 126]. This

measurement of the absorbed or reflected radiation at a detailed wavelength range results in a

pattern, known as a spectral signature [125, 126]. As a result, each pixel in an image corresponds to

a unique spectral signature that contains information about the molecular composition and texture

of the materials, which can be potentially used to identify any object. This feature corresponds to

spectroscopy technology, and at the same time, the digital imaging provides the spatial information

in the HSI, which is used for obtaining information about the morphological features [127].

The aforementioned description is similar to another technology known as multispectral imaging,

as both technologies share similar characteristics. The primary distinction lies in the number of

measurements across the wavelengths. The term ‘hyper’ in hyperspectral suggests an abundance, or

“too many”, referring to the extensive number of wavelength bands captured [123]. The ‘bands’ are

a narrow wavelength range of the electromagnetic spectrum. Hyperspectral sensors are engineered

to detect radiation across a broad range of the electromagnetic spectrum. Although the wavelength

range of HSI varies depending on the system and the application, the sensors commonly capture

information from the Visual and Near-Infrared (VNIR) region to the Short-Wavelength Infrared

(SWIR) region, with each band having a bandwidth of around 5-20 nm [126, 128]. Additionally,

some hyperspectral sensors are capable of covering the electromagnetic spectrum up to 12 microns

[127]. In summary, HSI systems are characterized by a more significant number of spectral bands

compared to multispectral sensors, allowing for more detailed and precise data collection. Figure

2.11 illustrates an example of a hyperspectral image, depicted the image obtained in a spectral band

and the spectral signature of a pixel, for the case of a human brain.

2.6.1 Hyperspectral Data Structure

As previously discussed, HSI can be regarded as an imaging modality that delivers substantial

information about the interaction of light with objects across various wavelengths. Like any imaging

modality, the data from HSI is structured, specifically into what is known as a hyperspectral cube.

The hyperspectral cube is essentially a three-dimensional array composed of a sequence of images,

each representing data captured at specific spectral bands or channels, as illustrated in Fig. 2.11.

Each band is dedicated to capturing light interactions within a distinct, narrow range of wavelengths.

Consequently, for a hyperspectral image with spatial dimensions W ×H and L spectral bands, the

data can be represented as X ∈ RW×H×L. However, depending on the application, this structure

may be altered to discard spatial information.

Although spatial data is crucial in some research, such as the study by Wei et al. [130], which

explores spectral-spatial features for HSI classification, in remote sensing applications, HSI is often

characterized by high spectral resolution and low spatial resolution due to each pixel covering ex-

tensive ground areas. In this field, the spatial resolution is one of the most challenging features to

achieve in this technology due to the associated trade-offs between spatial resolution, spectral reso-

lution, and signal-to-noise ratio, since high-spatial-resolution hyperspectral imaging can be difficult

to achieve [131, 132]. As a result, in some scenarios, the spatial information is considered less critical

and is removed by reshaping the hyperspectral cube into a matrix X ∈ RN×L where N = W · H.
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Figure 2.11: Basic structure of a hyperspectral image, single band representation at a certain narrow
wavelength and spectral signature of a single pixel. Image obtained from [129].

This reshaping facilitates analyses focused primarily on spectral data, optimizing processing for

applications where spatial context is secondary.

2.6.2 Medical Hyperspectral Imaging

This technology emerged in the field of earth observation and space exploration since the beginning

of this millennium [123, 133]. It has found widespread applications in various geological studies,

including lithological and mineralogical mapping, ore exploration, and environmental geology [134,

124]. Additionally, this technology is being utilized in other domains such as disease diagnosis and

surgical guidance [135], forensic science for evidence analysis [136], food quality evaluation [137],

plastic identification for the recycling industry [138], or art conservation [139], among others.

This section will specifically delve into the applications of HSI within the healthcare sector,

examining how this technology aids in advancing medical practices and improving patient care

outcomes. One of the key attributes that makes HSI particularly valuable in healthcare is its

non-invasive nature [129]. This feature allows medical professionals to obtain crucial physiological

and biochemical information without direct contact or disruption to tissue, offering a significant

advantage in both diagnostics and therapeutic monitoring.

The study of light propagation through biological tissues is instrumental in identifying various

diseases [140]. This process involves three key photophysical phenomena: refraction, scattering,
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and absorption. Those phenomena serve as distinctive markers of the molecules’ responses to light,

providing critical diagnostic information [140]. These properties of the interaction between light and

biological tissue motivate the use of technologies that exploit the information on light propagation

through tissues to develop tools for diagnosis support.

While various technologies are available for measuring light, such as Raman spectroscopy [141],

HSI stands out as an optical spectroscopy imaging modality that directly measures the incoming

radiance spectra of light [127]. However, it is important to note that the use of HSI systems in

medical applications has not yet become standardized, which is a critical factor to consider in its

broader adoption and implementation. This lack of standardization can affect the comparability of

results across different studies and applications in healthcare scenarios.

The application of HSI in the medical field has been gaining traction recently. While HSI has

been utilized for specific cases, such as assessing neurocognitive disorders [142] and analyzing diseases

in the eye through retina oximetry [143], its use in cancer analysis has been particularly noteworthy

[129]. In 2016, Halicek et al. [144] highlighted the limitations of HSI in cancer detection, offering

valuable insights into its applications and suggesting directions for future enhancements of this

technology. Current research includes diverse studies targeting various types of cancer, such as

gastrointestinal stromal tumors [145], tumor tissues in the head and neck [146], and brain cancer

[147].

Although the potential of HSI for cancer analysis is increasingly recognized, the lack of stan-

dardization in this technology complicates the development of CV algorithms tailored for processing

these specific tasks. Nevertheless, progress is being made; recently, a benchmark dataset focused

on brain cancer detection was released [148]. This dataset, developed from various acquisition cam-

paigns using a customized intraoperative hyperspectral acquisition system, represents a significant

step toward standardizing data and enhancing the reliability and effectiveness of HSI in medical

diagnostics.
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Chapter 3

Information-Theoretical

Framework

Information is the resolution of

uncertainty.

Claude Shannon

Even though DL models demonstrate exceptional performance, their integration into certain do-

mains faces challenges due to their ‘black box’ nature and their multilayer nonlinear structure. This

is particularly important for this thesis, which seeks to provide insights into the internal mechanisms

of such models to facilitate their integration as support tools in the field of medicine.

In conventional practice, ML models undergo validation using designated datasets, with perfor-

mance assessment based on specific metrics, such as ‘accuracy’ or the ‘F1-Score,’ particularly in

classification tasks. Nevertheless, after validation, the critical concern shifts towards establishing

trust in the model’s real-world applicability. This is particularly vital in sensitive domains like

medicine, where the emphasis must be placed on ensuring fairness and reliability in the deployment

of such models. Nevertheless, these qualities can be challenging to ascertain in models where their

predictions are not interpretable by humans. In such cases, would it be possible to trust in the ‘black

box’?

Understanding the model’s problem-solving mechanism is essential for gaining confidence in

its performance. One potential solution is to establish a clear connection between input features

and the model’s predictions [91], the ‘Explainable ML’. In the previous chapter, Section 2.3.3,

various algorithms were discussed with the aim of identifying the features that characterize the

obtained result, that is, the prediction. However, as it was mentioned, employing these methods is

resource-intensive, and achieving generalizability is complex because each sample must be analyzed

independently. This is due to the fact that the explanation provided by these methods relies on

subjective interpretability, which is shaped by the observer’s perspective. This scenario is exemplified

in the study that we conducted about how a specific attention mechanism works for skin cancer

detection [102], where Grad-CAM is employed to assess how the attention mechanism impacts skin

cancer monitoring. As a result, the study aimed to identify patterns commonly used by medical

doctors in their clinical decisions in order to validate the attention mechanism employed.

43



44 CHAPTER 3. INFORMATION-THEORETICAL FRAMEWORK

Information 
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Figure 3.1: This block diagram illustrates the components of a communication system. The trans-
mitter’s primary functions include message compression and encoding to facilitate error-free trans-
mission. At the receiving end, the transmitted message is decoded and decompressed to retrieve the
original information.

Currently, the DL architectures are getting deeper and, as a consequence, the number of param-

eters is increasing. For instance, the well-known architecture VGG-19 [149], which was proposed in

2014, has 19 nonlinear layers, and it contains about 144 million parameters. As you would notice,

this number of parameters is a clear indication that the interpretability or explainability of this

model is really complex. A simpler model is easier to understand at the cost of losing accuracy in

its predictions. In a critical task, such as those found in the field of medicine, the trade-off between

accuracy and interpretability of the model is especially relevant [91].

In this way, the idea of finding a more abstract perspective that allows to understand the mech-

anism of the proposed model is interesting to improve the interpretability of these models. Here,

the ‘information’ plays a fundamental role, since it is an interdisciplinary concept which it applied

by almost every scientific discipline within its context and regarding specific phenomena [9].

A fundamental problem in formalizing our intuitive ideas about information is to provide a

quantitative notion of “meaningful” or “relevant” information. These issues were intentionally left

out of Information Theory (IT) in its original formulation by Shannon, who declared he was not going

to be interested in meaning at all [10]. Shannon focused attention on the problem of transmitting

information rather than judging its value to the recipient, understanding information as something

transmitted from one point to another [11]:

It might, for example, be a random sequence of digits, or it might be information for a

guided missile or a television signal.

The IT is a theory of communication that operates within a probabilistic framework, where

messages are assigned probabilities. This branch of applied mathematics and computer science

was developed to address theoretical issues related to optimally encoding messages based on their

statistical structure [150, 151]. It differs from Wiener’s work, which focused more on prediction and

control, proposing a strategy to optimally filter noise from a received message. In contrast, Shannon’s

IT proposes a scheme in which the message is initially coded to withstand minimal degradation in

the transmission channel and then decoded upon reception to obtain the original message [151], see

Fig. 3.1.

Shannon’s formulation of IT offers a unique perspective that extends beyond communication sys-

tems, the processing of information can describe a machine and its memory. It provides a framework

that can even be extrapolated to the functioning of the human brain. For instance, a psychologist
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cannot fail to consider a scenario where the external world serves as the source of messages, and the

mind, with its intricate network of neurons, acts as the receiver. In this analogy, our sensory organs

such as eyes and ears play the role of communication channels [11].

This perspective aligns with ideas argued by Wiener in the 1940s, suggesting that the brain can

be interpreted, at least in part, as a logical machine. Within the brain, intelligent behavior emerges

from complex interactions of feedback loops involving neurons [152, 11]. While it’s important to

acknowledge that the human brain is the most complex organ in the body, IT offers a valuable

method for enhancing our understanding of how the brain processes information.

It is well-known that DL algorithms, a subset of ML represented by the DNN, were initially

conceived as computational models inspired by biological learning processes. These models aimed

to replicate, to some extent, the learning mechanisms that take place within the human brain [21],

see Section 2.2.

Much like the human brain, the IT framework offers a valuable perspective for comprehend-

ing the inner workings of the ‘black box’ represented by DL models. In this thesis, the various

algorithms proposed have been evaluated and interpreted using an IT-based approach. This ap-

proach justifies the models’ performance by tracing the flow of information through the different

layers. Consequently, this approach enhances interpretability (Section 2.3) and ensures that model

accuracy remains uncompromised.

3.1 Entropy

As mentioned earlier, Shannon did not have an interest in the meaning of a message. Nevertheless,

he was interested in preserving the information that a message contains and for this purpose, it is

necessary to quantify the amount of information that the message contains. To quantify the amount

of information in any source, it is necessary to understand that there is a structure.

The structure is a concept that comes naturally, but defining it with precision is more difficult.

Structure is influenced by a multitude of factors, making it nearly impossible to provide a compre-

hensive definition that encompasses all possible forms [150]. For instance, the distribution of colors

in a row of an image may initially appear entirely random. However, when the image is exam-

ined with a focus on its underlying structure, discernible patterns emerge, revealing the information

encoded within the image. A similar interpretation can be applied to a piece of music, where its

structure, which is defined by different features such as the beat, dynamic, or tonality, can convey

information about the upcoming note or the genre of the composition.

It is noteworthy that structure plays a significant role regarding information. Structures can

exist within sources that initially appear to be random, and when such structures are present,

they enhance the predictability of the source. Therefore, to quantitatively assess structure within

randomness, the application of probability theory becomes essential. In summary, the fundamental

idea behind IT is that discovering the occurrence of an improbable event provides more information

than learning about a probable event. Consequently, the information content of a communicated

message depends on the degree to which the content of the message is surprising or unexpected, i.e.,

the uncertainty of the message. As a result, IT built a bridge between information and uncertainty.

In 1928, Hartley proposed that when a symbol is selected in a message from a finite set of

possible symbols S, the number of available choices can be considered as a measure of information
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[153]. Hartley’s definition of the ‘amount of information’ corresponds to the number of choices, or

the cardinality of the set:

IH(S) = logb |S|,

where |S| represents the cardinality of the set. Essentially, Hartley introduced a measure of uncer-

tainty, quantifying the number of possible distinct messages that could be produced.

The Shannon’s IT was heavily influenced in Hartley’s work, but he recognized the need to go be-

yond the cardinality of the message set to account for other fundamental aspects in the transmission

of information [154]:

I started with information theory, inspired by Hartley’s paper, which was a good paper,

but it did not take account of things like noise and best encoding and probabilistic aspects.

Shannon emphasized that the probability of selecting each message is crucial and must be incorpo-

rated into the formulation.

Considering the random variable X with possible outcomes SX ∈ {s1, . . . , sN}, having probabil-

ities pX ∈ {p1, . . . , pN} where p(x = sk) = pk and N is the number of elements, Shannon noted that

Hartley’s information content holds when we have no prior knowledge about the data, i.e., when

pk = 1/N [151]. To fully characterize an element sk of a set of symbols Sx, occurring with different

probabilities pk, the information amount of an outcome sk is given by:

IH(sk) = log2
1

pk
. (3.1)

It is important to note that the logarithm base can be chosen as needed, but it is often calculated

using the base-2 logarithm (log2) to express the measure in ‘bits’. In Shannon’s terminology, a ‘bit’

is defined as the fundamental unit of information, representing the amount of information conveyed

by a binary question. Using the natural logarithm (log) is also a valid choice, representing a different

scaling of the measured information.

The probabilistic perspective demonstrates that the amount of information associated with a

message is a measure of its unpredictability, as it inversely depends on its probability. For a given

message sk, if pk = 1, the information content is zero (indicating perfect knowledge). However, if

pk is small, the message is more unexpected, resulting in a higher information content. This aligns

with Hartley’s earlier formulation of information content.

Equation (3.1) represents the amount of information, but it does not express the information

provided by the random variable X defined over the set of messages SX . Shannon introduced the

concept of entropy as a measure of uncertainty, where the information content is weighted by the

probability of each message, yielding the average amount of information contained in the set of

messages. The entropy of a random variable X is given by:

H(X) = −
N∑
i=1

p(xi) log2 p(xi) = −E[log2 p(X)], (3.2)

where X ∈ {x1, ..., xN} composed by N number of samples and the probability mass function, p(.),

assigns a probability to each outcome in the samples space X, p : X → [0, 1]. According to Eq.

(3.2), the Hartley’s amount of information proposed in 1928 [153] is satisfied when all individual

samples in the sample space have the same probability of occurrence, as Shannon pointed out.
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Figure 3.2: Information content (IH(p)) and entropy (H(p)) for a Bernoulli random variable mea-
sured in bits.

The entropy expression, as shown in Eq. (3.2), where the information content is weighted by

probability, implies that rare events, which inherently contain a high amount of information, are

undervalued due to their infrequency. Conversely, common events are underestimated due to their

lower information content. This is illustrated in Fig. 3.2, which shows an example of the information

content and Shannon’s entropy using a Bernoulli random variable. This distribution is defined by

a single probability, represented as p. Observing the information content, when p ≈ 0, the event

conveys more information, but the entropy undervalued this information due to its low frequency. In

this specific case, for a Bernoulli random variable, the information content (IH(·)) and the entropy

(H(·)) coincide at p = 0.5, which is the point of maximum information — 1 bit.

For a continuous variable, Shannon proposed that the correct continuous analogue of discrete

entropy, referred to as differential entropy, corresponds to using the Probability Density Function

(PDF) and replacing summations with integrals. However, this continuous approach has been the

subject of debate because it is not invariant regarding changes in scale or changes in coordinates in

general [150]. This differential entropy is typically expressed using the natural logarithm.

The entropy, which name is formed from Greek to mean “transformation content” [11], originally

emerged in the field of thermodynamics in 1865 by Rudolf Clausius, building on the significant

contributions of Sadi Carnot in 1824. However, it was Ludwig Boltzmann who later expressed

entropy from a probability standpoint [11]. Before the IT, the entropy was associated to disorder

or chaos, but both are crude and subjective concepts. However, Shannon’s work in IT provided

a rigorous foundation for understanding entropy as a measure of uncertainty, and ultimately, as a

measure of information. The impact of information sciences extends far beyond the scope of this

thesis, permeating various branches of science and leading to profound insights, as elaborated in

books like [155].

3.1.1 Joint and Conditional Entropy

As previously mentioned, information theory operates within a probabilistic framework. It extends

the concept of entropy to encompass more than a single sample space, introducing the notion of
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a joint probability distribution. This distribution characterizes the probability of events defined in

terms of multiple random variables and represents the likelihood of various combinations of outcomes

for these variables.

Consider two random variables, X and Y, with their joint distribution typically denoted as

p(x, y) = p(X = x ∩ Y = y). This joint distribution provides information about the probability of

X taking on a specific value and Y taking on a specific value simultaneously. The estimation of the

entropy for this joint probability distribution results in the joint entropy, denoted as H(X,Y ),

which is calculated using the joint probabilities p(x, y) in Eq. 3.2.

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x, y) = −EX,Y [log2 p(X,Y )]. (3.3)

A fundamental property of joint entropy is that it is always less than or equal to the sum of the

entropies of the individual random variables:

H(X,Y ) ≤ H(X) +H(Y ). (3.4)

This inequality holds true unless the marginal distributions of X and Y are independent, in which

case equality is established [150, 151].

Beyond joint entropy, IT introduces the concept of conditional entropy to assess the uncer-

tainty of one random variable given knowledge of another. Conditional entropy, denoted as H(Y |X),

quantifies the remaining uncertainty in Y when X is known. It can be calculated using conditional

probabilities, providing valuable insights into the interdependence of random variables in a proba-

bilistic system.

H(Y |X) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(y|x) = −EX,Y [log2 p(Y |X)]. (3.5)

Building upon the concept of conditional entropy, it becomes possible to compute the joint

entropy using the following relationship:

H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ). (3.6)

This relationship highlights the interplay between individual entropy and conditional entropy when

assessing the overall uncertainty in a system characterized by multiple random variables.

Furthermore, drawing from Eq. (3.6) and Eq. (3.4), it can be established that [150]:

H(Y |X) ≤ H(Y ), (3.7)

This inequality signifies that the conditional entropy of Y given X is always less than or equal

to the entropy of Y itself. The equality in this relationship holds true if and only if X and Y

are independent, emphasizing the fundamental role of independence in the context of conditional

entropy.
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3.1.2 Relative Entropy

Another crucial concept in IT is relative entropy, often referred to as KL Divergence [39] or

information divergence. Relative entropy is a measure of how one probability distribution differs

from another. The KL Divergence between two PDF, denoted as p(x) and q(x), is as follows:

DKL(p||q) =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
. (3.8)

KL Divergence indeed quantifies dissimilarity between probability distributions, which concep-

tually resembles a distance metric. However, it does not qualify as a true distance metric because it

adheres to only one of the fundamental properties of distance metrics. Specifically, KL Divergence

is non-negative, but it lacks symmetry, meaning that DKL(p||q) ̸= DKL(q||p) [151].
Indeed, relative entropy, or KL Divergence, provides a valuable measure of inefficiency when

approximating one probability distribution with another. It quantifies the information lost during

this approximation process.

While the asymmetry of KL Divergence can be advantageous in scenarios where directional

coupling is a concern, there are situations where a symmetric information dissimilarity measure is

preferred [151]. For such cases, there are other expressions of divergences with the same purpose,

to capture the information lost when it is using an approximation, but with symmetric properties,

such as the Jeffrey’s divergence (J divergence) [156, 157] or the Jensen-Shannon divergence [158].

Relation with the Cross-Entropy

The CE, described by Eq. (2.5), is commonly used for classification tasks in ML. However, this

expression can be decomposed as follows:

CE(p, q) = −
∑
x

p(x) log q(x) = H(p) +DKL(p||q). (3.9)

Minimizing the CE corresponds to a minimization of the DKL(p||q).
This decomposition makes it more intuitive to understand what the cross-entropy measures. As

previously mentioned, entropy is a measure of uncertainty, and cross-entropy corresponds to the

uncertainty of the events described by p(x) by observing q(x). Consequently, reducing the cross-

entropy implies that q(x) is better modeling the events of p(x).

3.1.3 Mutual Information

Mutual Information (MI) is a fundamental concept that quantifies the amount of information shared

between two random variables. It quantifies the reduction in uncertainty about one variable given

knowledge of the other, thereby capturing the probabilistic dependence between the two variables.

In Section 3.1.1, it was described that the conditional entropy, H(X|Y ) (Eq. 3.5), quantifies

the remaining uncertainty in X when Y is known. In IT, when information is transmitted through

a channel (see Fig. 3.1), the conditional entropy is referred to as the ‘equivocation’ of the input,

X, to the channel [150]. This represents the remaining uncertainty about X after observing the

channel output Y . In conclusion, H(X|Y ) can be considered as a measure of the noise injected in

the channel in Fig. 3.1, since it contributes directly to the uncertainty of the input. In the context of
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Figure 3.3: Diagram showing additive and subtractive relationships of the different information
measures associated with correlated random variables X and Y .

this example, when H(X|Y ) = 0, it signifies that the channel is noise-free, whereas H(X|Y ) = H(X)

implies that the noise completely obscures the transmitted input, there is no information transmitted

through the channel.

Mutual Information quantifies the information obtained about an input variable after accounting

for any degradation due to uncertainty, which is quantified by the conditional entropy:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) =

= H(X) +H(Y )−H(X,Y ).
(3.10)

As it is observed in the last expression, MI can also be measured by taking the sum of the individ-

ual uncertainties H(X) and H(Y ), and then subtracting the uncertainty of the joint distribution,

represented by the joint entropy H(X,Y ). All the expressions that can be used to calculate MI are

summarized in Fig. 3.3.

An alternative, more concise expression for MI is:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x|y)
p(x)

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (3.11)

Observing the last expression in Eq. (3.11), it is evident that mutual information is related to the

Kullback-Leibler Divergence (Eq. (3.8)). MI quantifies the disparity between the joint distribution

of two random variables and what it would be if the two variables were independent, represented by

the product of their marginal distributions:

I(X;Y ) = DKL [p(x, y)||p(x)p(y)] . (3.12)

Properties of Mutual Information

The MI is a non-negative quantity, represented as:

I(X;Y ) ≥ 0, (3.13)

where I(X;Y ) = 0 if and only if p(x, y) = p(x)p(y), indicating that both random variables are

statistically independent.

Furthermore, the expression I(X;Y ) is symmetric with respect to the variables x and y. Thus,
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Figure 3.4: Entropy in an information channel.

by exchanging X and Y , we obtain the following result:

I(X;Y ) = I(Y ;X) ≥ 0. (3.14)

This property implies that the information the channel provides about X when observing Y is the

same as the information the channel provides about Y when recognizing that X was sent. This

symmetry can be intuitively deduced by examining Fig. 3.3.

3.2 Information Channel

The information channel serves as the medium through which information is transmitted from a

source to a receiver. It is important to clarify that the channel itself does not introduce additional

information into the transmitted data; instead, it functions as a conduit for the existing information

[157, 150].

Ideally, the entropy associated with the channel should match the entropy of the message being

transmitted through it, thereby accurately representing the amount of information carried by the

message. However, in practical communication systems, the presence of noise in the channel is a

common occurrence. Noise refers to unwanted signals or effects that accompany the desired signal

carrying the information. This noise can introduce uncertainty and variability into the transmitted

data, thereby increasing the entropy and reducing the amount of information that can be reliably

extracted at the receiver (as illustrated in Fig. 3.1).

As discussed in Section 3.1.1, conditional entropy quantifies the remaining uncertainty of a ran-

dom variable when another variable is observed. With this definition in mind, it becomes intuitive

to think of conditional entropy as a measure of the ‘noise’ in the channels. Taking this into consid-

eration, quantifying the MI is a crucial step in assessing the impact of noise on the channel.

Figure 3.4 provides an illustrative example of the transmission of information from a random

variable A to another variable B through a channel. The channel can be described considering the

following cases [150]:

• noise-free: This is the ideal scenario, where the remaining uncertainty should indeed be

H(A|B) = 0.

• noisy: The presence of noise in the channel, reducing the information carried by A, it is

depicted when 0 < H(A|B) < H(A). This is a consequence of the increasing in the uncertainty

provided by the noise.

• ambiguous: It means that the information of A is not effectively transmitted to B, and it
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Figure 3.5: Cascade of two channel

remains completely obscured. In this case, the H(A|B) = H(A).

The concept of MI can be useful in quantifying the amount of information carried by the channel

(Eq. 3.10). For instance, in the case of a noise-free channel, I(A;B) = H(A) − 0 = H(A), demon-

strating that the mutual information represents the total information carried from A to B without

any loss due to noise.

3.2.1 Cascaded channel

It is common to transmit information through a cascade of different information channels rather

than trough just one channel. In this case, intuitively, we would expect additive loss of information

arising from the cumulative effect of uncertainty (or equivocation) from each channel in the cascade.

If we consider a channel that goes from A to B (Channel AB) and another channel that goes

from B to C (Channel BC), as it is illustrated in the Fig. 3.5; thus we can define a cascade of

channels as occurring when the following condition holds:

p(ck|ai, bj) = p(ck|bj) ∀i, j, k. (3.15)

This description corresponds to a Markov chain, a special type of discrete stochastic process in prob-

ability theory in which the probability of an event occurring depends uniquely on the immediately

preceding event.

For the aforementioned example, the cascade of channel AB with channel BC, it is true that:

H(A|C)−H(A|B) ≥ 0, (3.16)

This inequation indicates that the remaining uncertainty of A regarding C, the conditional entropy,

is greater or equal than the remaining uncertainty of A with respect to B. For the equality condition

corresponds to the ideal scenario, a noise-free cascade channel.

Data processing inequality

As mentioned earlier, the noise level in a channel is quantified using MI. Considering the Eq. (3.16),

it is commonly expressed by the Data Processing Inequality (DPI) [157]. The DPI represents the

hierarchy of information flow through a system consisting of N cascaded channels. It is a series of

inequalities expressed as:

I(A;T1) ≥ I(A;T2) ≥ ... ≥ I(A;TN ), (3.17)

where each Ti corresponds to a specific channel within the system.
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3.3 Information Source

In IT, the information source and the information channel are pivotal components, playing a fun-

damental role in the examination of information transmission and processing. Information sources

refer to the devices or the underlying processes that generate random sequences of data.

Depending on the specific context and field of study, these sequences generated by the information

source may be referred to as time series (in statistics), stochastic processes (in mathematics), or

signals (in engineering) [150]. As illustrated in Fig. 1.1, an image can be treated as a type of signal,

and it is considered that it contains information which is provided by the information source, the

device and “situation” that generates the random sequence.

3.3.1 Memoryless Information Source

Memoryless information sources are a simplified model of information sources where each symbol

or data point generated by the source is considered to be independent of any previous or future

symbols. In other words, the occurrence of each symbol is not influenced by what happened before

or what will happen next, and the probability of each symbol’s occurrence remains constant over

time.

In general, memoryless information sources are considered a naive approach to interpreting data

sources, as they assume that there are no correlations between the source’s outputs at different times.

For instance, in natural language processing, the probability of a word appearing in a sentence can

depend on the words that came before it. However, this approach can be useful in certain contexts,

such as channel coding, where the aim is to transmit information over a noisy channel. In this case,

using a memoryless source can simplify the encoding and decoding process [159].

3.3.2 Information Source with Memory: the Markov Source

On the other hand, an information source with memory, specifically a Markov Source, is a type of

source in which there are correlations between the outputs of the source at different times. In a

Markov Source, the generation of a symbol is conditioned by the current state of the source, and

this state changes with each emitted symbol.

In a Markov Source, each symbol is emitted independently, but the probability of a specific

symbol occurring depends on the current state of the source. This dependence is commonly modeled

by a transition matrix, denoted Π, which describes how the source states evolve over time. The

probability distribution of each symbol is determined solely by the current state of the source and

is not influenced by past emitted symbols:

W t = ΠW t−1, (3.18)

where W t is the state in a state t and Π is the N ×N transition matrix. N is the number of possible

states.
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3.4 Information-Bottleneck Principle

The Information Bottleneck (IB) [160] is an information theoretical principle which describes the

extraction of relevant information that an input random variableX contains about an output random

variable Y . This principle formalized the problem, such as finding a short code for X that preserves

the maximum information about Y . The IB, as claimed the author [160], may be considered a

generalization of the rate distortion theory developed by Shannon [161].

Rate distortion theory, a branch of IT, provides the theoretical foundation for lossy data com-

pression. Its main goal is to find an optimal compressed representation, denoted as Z, of a random

variable X, which eliminates unnecessary details and redundancy. Rate distortion theory addresses

the minimum MI required between the input and output of the channel to ensure that the distortion

in the channel does not exceed a specified threshold D. In this approach, a distortion measure, noted

as d(x, z), has to be defined where distortion or ‘cost’ is defined to penalize the system based on

the input of the channel x ∈ X and its output z ∈ Z. This distortion measure can be defined using

a more generic approach as a squared error (L2 distance) or a Manhattan distance (L1 distance)

[162]. However, this distortion measure is usually adapted based on the purpose, for instance, in

image compression the distortion is commonly measured using the Structural SIMilarity (SSIM)

[163] which is based on the human perception [162, 164]. The average distortion is defined as:

d =
∑
x∈X

∑
z∈Z

p(z|x)p(x)d(x, z) = EX,Z [d(X,Z)], (3.19)

where p(z|x) represents the channel.

Considering this, the goal of rate distortion theory is to identify the optimal channel in which

the average distortion is acceptable, denoted as p(z|x) : d ≤ D. To achieve this, the theory aims

to minimize the MI (transmitting less information) under the given constraint on the expected

distortion. As a result, the rate distortion function that describes the minimum information rate

required for the given average distortion D is defined as follows:

R(D) = min
{p(z|x):d≤D}

I(X;Z). (3.20)

It is important to note that there exists a monotonic trade-off between the rate of quantization

and the expected distortion: as the rate increases, the achievable distortion decreases. Intuitively,

tolerating a larger distortion allows for the use of lower information rates (more compression), and

conversely, increasing the information rate enables lower distortion [150].

As described, the rate distortion theory depends on the distortion measure, which is often not

readily available or difficult to define. The distortion measure quantifies the relevant information

with respect to another random variable. For example, defining a distortion measure to identify a

specific element in an image can be challenging. The concept of IB addresses this by defining the

relevant information in X based on Y , leveraging access to the joint distribution p(x, y) as part of

the problem setup.

Similar to rate distortion theory, the goal of the IB framework is to capture the relevant informa-

tion, but in this case, it is about capturing the relevant information of X with respect to Y . Using

as reference a cascade of channel XZ with channel ZY, similar to the observed in Fig. 3.5, we aim to
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understand how much information about Y is contained in Z, where Z represents the compression

of X. The amount of information about Y present in Z can be quantified as follows:

I(Z;Y ) =
∑
y

∑
z

p(y, z) log
p(y, z)

p(y)p(z)
≤ I(X;Y ), (3.21)

Certainly, it is intuitive to understand that lossy compression cannot transmit more information

than the original data. Just like the trade-off between rate and distortion in rate distortion theory,

there’s a trade-off here between compressing the representation and retaining valuable information.

Obviously, there is no a single right solution for this trade-off [160]. The ideal scenario is to retain

a fixed amount of valuable information about the relevant signal Y while minimizing the number of

bits needed to represent the original signal X. Essentially, we are passing the information that X

provides about Y through a ‘bottleneck’ created by the compact summaries in Z.

The formal definition of the IB for an optimal solution is given by the following equation:

min
p(z|x)

I(X;Z) + βI(Z;Y ) , (3.22)

where β serves as the Lagrange multiplier associated with the constrained meaningful information,

and it ensures the normalization of the mapping p(z|x) for every x. In other words, β controls the

trade-off between compression and meaningful information. It plays a crucial role in determining

how much emphasis is placed on preserving relevant information about the output variable Y while

compressing the input variable X into the representation Z.

Therefore, the IB principle can be considered a rate distortion theory, where the distortion

measure is quantified by the divergence of information (Eq. 3.12) [165]. What makes the IB principle

particularly intriguing is its ability to offer a unified framework for various information processing

tasks, encompassing prediction, filtering, and learning [160]. This versatility allows it to be applied

to a wide range of fields and problems in which information plays a crucial role.

3.5 InfoMax Principle

The InfoMax principle, introduced by Linsker in 1988 [166], serves as a foundational concept in

ANNs. It aims to describe the behavior of ANNs in terms of maximizing information preservation.

The primary objective of this principle is to achieve the highest possible MI between the input

variable X and the compressed representation Z, I(X;Z). This optimization principle is defined as

follows:

max
p(z|x)

I(X;Z) + βR(Z) , (3.23)

where p(z|x) represents a channel, as it was described in the IB principle. The goal is to find

the optimal channel that maximizes the mutual information while considering a regularization term

βR(Z). This regularization helps control the complexity of the model, ensuring that the information

preservation is balanced with model simplicity.

This principle is used in classical methods such the Independent Components Analysis (ICA)

[167], a statistical technique used to extract independent sources from a set of observations that are

linear mixtures of those sources. This is done by assuming that at most one subcomponent is a



56 CHAPTER 3. INFORMATION-THEORETICAL FRAMEWORK

Gaussian and that the subcomponents are statistically independent of each other.

Unlike the IB principle, which considers supervised settings with knowledge of the joint distri-

bution p(x, y), the InfoMax principle is specifically considered for unsupervised settings where the

joint distribution is unknown. Consequently, the InfoMax principle primarily focuses on obtaining

the best possible representation in the variable Z but it does not inherently reduce or discard less

relevant information since there is not a random variable Y which provides that information.

Due to its unsupervised nature and the lack of joint distribution information, the InfoMax prin-

ciple can be challenging to use when the goal is to obtain a compressed representation of input X

that exclusively preserves the most relevant information while discarding less relevant details. This

distinction highlights the differences in the objectives and applicability of the InfoMax principle

compared to the IB principle.

In conclusion, the InfoMax principle does not satisfy the principle of minimum redundancy, as

it compresses all the information contained in X, even if some features are redundant. Redundancy

in information theory refers to information that is predictable and, as a result, does not provide

new or additional information. However, In IT, the redundancy has a specific purpose, it provides

tolerance to errors.

Therefore, it would not be accurate to consider the InfoMax principle as inherently ‘worse’ than

the IB principle. In contrast, InfoMax principle can be interpreted as a generalization of the IB

and both principles have their specific use cases and advantages. The InfoMax principle can be

particularly convenient in scenarios where preserving all the information in the input is essential,

such as in authentication systems [168].

3.6 Kernel-Based Entropy Estimator

In the 1950s, Alfred Renyi introduced a parametric family of entropies as a mathematical general-

ization of Shannon’s entropy [151]. The Renyi’s α-order entropy has the purpose of solving some

discrepancies about the entropy estimation based on units that do not correspond to the bit. The

Renyi’s α-order entropy has been widely applied in ML [151, 169] combined with Parzen window

density estimation [170] in order to estimate the PDF. Nevertheless, the estimation of PDF in

high-dimensional data is a complicated task.

To address this, Giraldo et al. [171] proposed a framework for entropy estimation that leverages

infinitely divisible kernels to construct a Reproducing Kernel Hilbert Space (RKHS). This approach

utilizes the axiomatic characterizations of Renyi’s entropy to define functionals on normalized pos-

itive definite matrices, aligning with these axioms without the prerequisite of known or estimated

event probabilities. Such kernel-based estimators are not only mathematically robust but also com-

putationally efficient [172], making them particularly suitable for DNNs where outputs frequently

manifest in high-dimensional spaces. It is worth noting that similar to ML models based on RKHS,

which guarantee a linear solution in this space, such as Support Vector Machine (SVM) [173], this

method follows a quadratic computational complexity, O(N2).

Given a normalized Gram matrix A ∈ RN×N where N is the number of samples, the Kernel-based
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Renyi’s α-order entropy, Sα(.), is depicted as follows:

Sα(A) =
1

1− α
log2 (tr(A

α)) =
1

1− α

[
N∑
i=1

λi(A)
α

]
(3.24)

where λi(A) is the i
th eigenvalue of A and tr denotes the trace of the matrix. In the limit of α→ 1

is reduced to the Shannon entropy of H(X).

This normalized Gram matrix is obtained by the gram matrix K ∈ RN×N , where N is the

number of samples. This matrix K is obtained by a kernel k(., .), using the random variable X, that

can correspond to a Radial Basis Function (RBF). In this way, this matrix using the RBF kernel by

the kernel trick [174] is depicted as:

Ki,j = k(xi, xj),

k(xi, xj ;σ) = e
1
σ2 ||xi−xj ||2F ,

(3.25)

where ||.||2F denotes the Frobenius norm and σ the kernel width parameter of the RBF kernel.

Finally, this normalized Gram matrix A is obtained by the following normalization:

Aij =
1

N

Kij√
Kii ·Kjj

. (3.26)

3.6.1 Mutual Information

In order to obtain the entropy associated to two random variablesX and Y , the joint entropy, Giraldo

et al. [171] applies Hadamard product, which is a element-wise operation where (A ◦B)ij = AijBij .

If B is assumed to be the normalized Gram matrix of Y , the joint entropy between X and Y is

defined as:

Sα(A,B) = Sα

(
A ◦B

tr(A ◦B)

)
(3.27)

Finally, the MI estimation is identical to the Shannon’s formulation, see Eq. (3.10), which can be

defined as:

Iα(A,B) = Sα(A) + Sα(B)− Sα(A,B) (3.28)

3.6.2 Properties of Radial-Basis Kernel

In order to generate the RKHS, it is possible to use different kernels such as linear, bilinear or

polynomial kernel [173]. However, in this thesis, the RBF kernel is the applied for the kernel-based

entropy estimator, as it is illustrated in Eq. (3.25). This kernel has a hyperparameter to consider,

the known kernel-width σ.

To construct the RKHS, various types of kernels can be employed, such as linear, bilinear, or

polynomial kernels [173]. For the purposes of this thesis, however, the RBF kernel is utilized for

the kernel-based entropy estimator, illustrated in Eq. (3.25). A crucial hyperparameter within this

kernel is the kernel width, σ, which significantly influences the performance of the entropy estimator.

The choice of σ in the RBF kernel is pivotal because it determines how effectively the kernel

captures the data’s underlying structures. The following properties associated with the RBF kernel
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highlight the sensitivity of the estimator to changes in σ [175]:

lim
σ→0

Sσ(A) = log(N)

lim
σ→0
Iσ(A;B) = log(N)

lim
σ→∞

Sσ(A) = 0

lim
σ→∞

Iσ(A;B) = 0.

(3.29)

These equations indicate that σ controls the estimator’s operating point relative to its bounds.

Specifically, if σ is too small, the estimator tends to approach log(N), reflecting a state of high entropy

that suggests minimal effective differentiation between data points. Conversely, a considerable σ

leads to an entropy estimate of 0, implying that all data points are treated as virtually identical,

hence underestimating the true diversity or variability within the dataset. Properly tuning σ is

therefore essential to balance sensitivity and specificity, ensuring that Sσ(A) and Iα(A;B) provide

meaningful insights into the structure and relationships in the data.

3.6.3 Radial-Basis Kernel-width Estimation

As it has been observed in the previous section, by using the RBF kernel for entropy estimation, it is

necessary to define a hyperparameter known as kernel-width, σ. In this section, it will be indicated

some methods commonly used for this purpose.

Silverman’s rule of thumb

Silverman’s rule of thumb [176] is a widely used heuristic for selecting the bandwidth of the RBF

kernel, prized for its computational simplicity. However, it is crucial to exercise caution when

employing this rule, as it can sometimes produce significantly inaccurate estimations. The rule is

based on assumptions about the data’s distribution that may not hold in all cases, particularly

in datasets with non-normal distributions or significant outliers. Therefore, while Silverman’s rule

offers a quick and easy method for setting the kernel width, it is important to validate its effectiveness

within the specific context of the data being analyzed to avoid potential inaccuracies in the results.

Silverman’s rule of thumb is articulated in the following mathematical form for setting the kernel

width σ:

σ∗ = γN (−1/(4+d)), (3.30)

where γ is typically derived from the empirical standard deviation of the data, and N is the number

of data points, while d represents the dimensionality of the data.

While this method is straightforward and commonly used, it has been refined to better accom-

modate datasets of varying dimensionalities. Tapia et al. [175] introduced a modification known as

the Normalized Silverman’s rule, which adjusts the kernel width to account for the dimensionality

of the data:

σ∗ = γN (−1/(4+d))
√
d. (3.31)

This adjustment, multiplying by
√
d, aims to mitigate the effect that increasing dimensionality has

on the mean square distance between points in the dataset. This consideration is crucial because as
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dimensionality increases, the standard Silverman’s rule may not scale the kernel width appropriately,

potentially leading to less effective density estimation and higher error rates in high-dimensional

spaces.

Kernel-Alignment Loss

The method of kernel alignment, proposed by Wickstrom et al. [169] for kernel-based entropy estima-

tion, introduces an advanced technique for optimizing the kernel width σ in supervised learning set-

tings. This technique is particularly useful when dealing with the Gram matrices of high-dimensional

input data Kσ and a lower-dimensional target KY that σ can be estimated by the previous Silver-

man’s rule. The kernel alignment A(Kσ,Ky) [177] focuses on maximizing the alignment between

these matrices to determine the optimal σ, as described by the following equation:

σ∗ = argmax
σ

A(Kσ,Ky),

A(Ka,Kb) =
⟨Ka,Kb⟩F

||Ka||F · ||Kb||F
,

(3.32)

where ||.||F and ⟨., .⟩F denotes the Frobenius norm and inner product, respectively.

This σ estimation corresponds to an iterative process [169] and an exponential moving average

is employed:

σt = βσt−1 + (1− β)σ∗
t (3.33)

where β is a smoothing factor that balances between the previous value σt−1 and the newly optimized

value σ∗
t .
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Chapter 4

Information-theoretical Evaluation

in Deep Learning

If a machine is expected to be infallible, it

cannot also be intelligent.

Alan Turing

This chapter presents an interpretation that provides a general intuition about how the DL

models works. This interpretation will provide an understanding of the problem-solving mechanism

used in these models, which will enable the design of methodologies for validating these models based

on this approach. Although this interpretation can be extended to different contexts, throughout

this chapter, we will focus on a critical scenario: medical screening supported by AI, where the

interpretability of the models is particularly relevant.

The use of medical imaging technologies has become integral to diagnostic decision-making and

treatment planning. CV, a subfield of AI, offers significant advantages in enhancing diagnoses, as

it enables more accurate and faster analysis of medical images, including CT scans, X-rays, MRI,

and mammograms, even sometimes surpassing human capabilities. CV seeks to replicate the human

visual system, providing specialized algorithms for tasks like image recognition and object tracking.

However, the emergence of DL has effectively replaced numerous of these conventional methods,

particularly in tasks such as classification and object detection, drawing considerable attention

recently.

At the same time, the rapid increase in radiological imaging data has created a pressing need

for greater efficiency in analysis, especially considering the limited number of trained radiologists

available. As the workload of radiologists has surged significantly, DL models have emerged as

practical clinical decision support systems, capable of handling extensive datasets and improving

diagnostic accuracy. To keep up with clinical demands, research by Hosny et al. [5] shows that the

average radiologist would need to interpret an image every 3–4 seconds.

Deep Learning models possess the capability to process extensive datasets, addressing challenges

like disease detection in medical images. Studies, such as Liu et al. [6], have demonstrated that

DL models deliver performance on par with healthcare professionals. Consequently, DL models of-
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fer adaptable and highly accurate outputs, mitigating human bias, reducing associated costs, and

reducing the time burden of demanding tasks. Consequently, DL-powered AI can serve as practical

clinical decision support systems, aiding radiologists in real-world scenarios. A seamlessly integrated

AI component within the medical imaging workflow has the potential to enhance efficiency, reduce

errors, and accomplish objectives with minimal manual intervention [5]. This can be achieved by

providing radiologists with pre-screened images and identifying relevant features, ultimately stream-

lining the diagnostic process. In this way, this technology can contribute to reducing the heavy

workload of radiologists today.

Despite the advantages provided by the DL models, its implementation and use in healthcare

settings have not been completely achieved. More studies are required to consider the integration

of these algorithms in the healthcare setting [6, 178]. There are several ethical challenges that

have to be addressed. The interpretability of the model is one of the most challenging ethical

problems that it can be found in the medical domain. The ‘black-boxes’, such as the DNN, lack of

transparency, making it challenging to provide mechanistic explanations and potentially diminishing

their reliability and trustworthiness [179]. In conclusion, understanding the model’s problem-solving

mechanism is essential for gaining confidence in its performance, specially in clinical scenarios since

the clinical decision-making relies heavily on evidence interpretation [179, 180].

In addition, there is another relevant challenge in this domain is the lack of sufficient labeled

data [180], known as the data challenge. This is caused by the difficulty of performing a systematic

collection of data to create large and well-curated datasets for training DL models. As a result,

it is possible to obtain poorly representative training data sets, which can introduce biases into

the algorithms [179]. For instance, this concern was addressed by Leslie et al. [181] since patterns

of systemic health inequity and bias could be embedded in AI systems designed to combat the

COVID-19 pandemic.

The ethical challenge of interpretability is compounded by the data limitations, which can result

in overfitting when training datasets are not sufficiently large. These challenges are prominent in DL

models due to their high number of parameters, which can lead to overfitting if the training dataset

is not sufficiently large. As a consequence, the overfitted model will perform well on the training

data but poorly on new data. However, there are techniques to mitigate this problem, such as

transfer learning [182] or data augmentation [183, 184]. Furthermore, these problems are magnified

by the current trend to deeper neural networks [185, 186, 187], where the vanishing gradient problem

[188] is highly pervasive. Although skip-connections, which connect the outputs of layers at different

levels of depth (different representations), have been proved to overcome this limitation and provide

other benefits during the training process [189].

Considering the aforementioned problems, this thesis puts special emphasis on enhancing the

interpretability of DL models to improve their reliability through an analysis based on the interpre-

tation. This interpretability allows obtaining a more in-depth understanding of the problem-solving

mechanism and establish specific characteristics that a robust model has to satisfy. The approach

used for enhancing the interpretability of these models is based on information, describing the inter-

nal mechanism of the DNNs based on how the information is propagated along the different layers.

In addition, this chapter addresses the use of a limited labeled dataset, highlighting the presence of

data challenges in the experimental results described.

This chapter is structured as follows: it begins by introducing the IT perspective of DNNs, which
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will be evaluated in a case study where the aforementioned data challenge is present. A methodology

based on this perspective is proposed for validating the models in the different experiments. In

addition, the analysis is extended to self-supervised approaches using the AE architecture. Finally,

the effect of the dropout technique on DL models is studied, and an IT interpretation is provided

to describe the technique.

4.1 Information Theoretical Perspective for Deep Learning

Models

DNNs have been particularly relevant for supervised learning tasks; however, the theoretical under-

standing of DL models remains unsatisfactory. As previously discussed, this lack of understanding

raises several ethical concerns in critical fields, such as healthcare. Enhancing interpretability is es-

sential for the integration of these algorithms into such fields. Improved interpretability can leverage

the use of these models, which often outperform simpler and more interpretable ML methods that

have significant limitations in handling the complexity and variability of real-world data.

This thesis draws significant inspiration from the work of Tishby and Zaslavsky, who provided

crucial insights using information-theoretic concepts [97]. This perspective aims to interpret the

DL models as a communication channel, similar to the analogy described in Section 3 where this

approach was extrapolated to the human brain. This interpretation, from an engineering-perspective,

provides theoretical limits for the optimal transmission of information through a DNN, offering a

framework for understanding optimal architectures and features of each layer.

Tishby and Zaslavsky formulated the supervised DL model as an information-theoretic tradeoff

between compression and prediction, using the IB framework (see Section 3.4). In other words, DNN

layers aim to find a maximally compressed mapping of the input variable that preserves as much

as possible the information on the output variable. Therefore, considering the IT-perspective, this

approach describes any this DL model by the quantifying the information in the layers, ignoring the

‘meaning’ of the extracted features (see Section 1.1). This engineering-oriented perspective, distinct

from ‘human-readable’ interpretations used in ‘explainable ML’ (see Section 2.3), provides a basis

for designing optimal DNN architectures and verifying well-fitted models.

In their work [97], Tishby and Zaslavsky describe the structure of DNNs as a Markov cascade,

involving intermediate representations between the input and output layers. This structure can

be interpreted as a cascade channel, as described in Section 3.2.1. Furthermore, they formalize

the aforementioned trade-off between data compression and prediction within DNNs using the IB

framework, depicted in Eq. (3.22), and subject to constraints defined by the Markov chain.

Regarding the information characteristics in the different layers, as the workflow of a typical

DNN is described by a Markov chain, the input of a layer Ti depends exclusively on the output of

the layer Ti−1. Here, the ith hidden layer is denoted as a single multivariate variable. In this way,

the information propagation is defined by the DPI, as shown in Eq. (3.17).

When considering the IB framework and the Markov chain X → Z → Ŷ , we have the inequality

I(X;Y ) ≥ I(Ŷ ;Y ), where Z represents the bottleneck latent space (a lossy-compression of input

X), Ŷ is the prediction of output Y based on X. This inequality means that the prediction obtained

from f : Z → Y cannot be more informative about the class than the original information contained

in the image. Implicitly, this indicates that the lossy compression Z not only results in a loss of
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information from X, but also leads to a loss of information about Y , i.e., I(X;Y ) ≥ I(Z;Y ).

The aforementioned inequality in the Markov chain can be extrapolated to a DNN, even though

the optimal lossy compression Z may not be explicitly represented in the DNN architecture. There-

fore, for a DNN with L hidden layers, the information propagation should satisfy the following

inequality:

I(X;T1) ≥ I(X;T2) ≥ ... ≥ I(X;TL), (4.1)

I(T1;Y ) ≤ ... ≤ I(TL−1;Y ) ≤ I(TL;Y ). (4.2)

These inequalities describe the flow of information from the input layer to the bottleneck latent space

in the forward direction and from the bottleneck to the output layer in the backward direction within

a DNN. This aligns with the concept that as data is processed through the layers of a DNN, the

amount of relevant information may decrease (according to the DPI) respect to the input, but the

deeper representations in each successive layer become more useful for the ultimate prediction task

(aligned with the objective of supervised learning). In addition, these inequalities are describing

that the bottleneck has a balance between the information of the input and the output, as it is

defined in the IB framework.

The aforementioned description is regarding about the supervised DNNs but the IB could not

describe the non-supervised models, such as the AE. AEs are widely recognized for their ability to

compress input data X into a latent representation through self-supervised learning (see Section

2.2.3). This process is achieved by minimizing the difference between the input, X, and the recon-

structed output data, denoted as X̂. This optimization objective can be interpreted as an effort to

maximize the MI between X and the reconstruction X̂.

As deduced, AEs constitute a special subset of DL architectures, typically forming a Markov

chain. However, due to the lack of a labeled dataset that maps the input to an output, the IB

framework cannot describe the learning process carried out in these architectures.

In essence, AEs operate in alignment with the InfoMax principle, which is detailed in Section

3.5, while considering constraints established by the Markov chain, to achieve their main purpose

of compressing high-dimensional data. By maximizing the MI between the input X and the output

X̂, AEs effectively learn to extract the most informative features from the input data and employ

them for the purpose of reconstructing the original data, X̂. However, given that there is no a

variable that describes the relevance of the information, there is no guarantee that less relevant

information or features will be discarded in this process. In other words, AE aims to comprise the

whole information of X but do not prioritize which information should be discarded in this lossy

compression. The information loss in the latent space Z is a consequence of the data compression,

given that Z is dimensionally smaller than the input.

In [190], Yu et al. propose the information theoretic methodology to understand the dynamics

of learning and the design of the AEs, providing fundamental insights into the layer-wise flow of

information. Due to the symmetric nature of such architectures formed as a Markov chain, authors

claimed that AEs must meet specific requirements for the DPI, as it is described in Eq. (4.3) and



4.1. INFORMATION THEORETICAL PERSPECTIVE FOR DEEP LEARNING MODELS 67

Eq. (4.4):

I(X;E1) ≥ I(X;E2) ≥ ... ≥ I(X;EL−1) ≥ I(X;Z), (4.3)

I(X̂;D1) ≥ I(X̂;D2) ≥ ... ≥ I(X̂;DL−1) ≥ I(X̂;Z). (4.4)

In the aforementioned inequalities, the encode path comprises the layers Ei, the decode path

consists of the layers Di, and Z represents the bottleneck in the AE, denoting the compressed latent

space. The number of layers in the encode path and decode path, including the compressed latent

space, is L layers. These properties are established due to the AE’s symmetry, where the decoder

always aims to “undo” the transformations carried out by the encoder [190].

Based on the two DPI described in Eq. (4.3) and (4.4), there is a second type of DPI associated

with layer-wise MI, which indicates that the divergence between the encode and decode layers at the

ith-level does not increase compared to the previous layers. In other words, since entropy decreases as

you go deeper into the network (due to compression) and the divergence between the corresponding

encode and decode layers is minimal, the following inequality must hold, as shown in Eq. (4.5):

I(X; X̂) ≥ I(E1;D1) ≥ I(E2;D2) ≥ ... ≥ I(EL−1;DL−1) ≥ I(X;Z). (4.5)

Yu and Principe [190] indicate that both encoder and decode enforce the entropy in the bottleneck

layer, hence the role of the AE is to maximize the entropy in the hidden layer. In this way, the

I(EL−1;DL−1) ≃ H(Z), which is a consequence of the InfoMax principle since it means that the

H(Z|EL1) ≃ 0. It implies that there is no uncertainty about Z given EL−1. As a result, following

the InfoMax principle with the mentioned constraint, an AE can be defined as follows:

max
p(z|x)

I(X;Z) + βH(Z). (4.6)

4.1.1 Data Processing Inequality: An intuitive explanation

DNNs are capable of learning optimal representations from the inputX to solve tasks described by Y .

These representations capture complex and non-linear interactions among the features of the original

space, interactions that might not be evident from the original space itself. Consequently, it becomes

challenging to understand what these representations describe and whether they are representative

for obtaining Y . The DPI illustrated in Eq. (4.1) and (4.2) describes this phenomenon:in the

initial layers, the relationship with the input X is more evident, while the output Y becomes more

prominent in the later layers.

The explanation methods used in DL, see Section 2.3.3, aim to describe the behavior of the

model using the original space X or Y . For instance, methods like DeepLIFT or Grad-CAM aim to

identify the relevant features in the original input space that are representative for the task. Figure

2.8 illustrates the use of the Grad-CAM algorithm to evaluate the attention mechanism that we

introduced in [102] for skin-cancer screening, by detecting the region of interest in the image used by

the DNN. In contrast, explanation methods based on perturbation, such as LIME, aim to describe

the behavior of the model in the output Y , analyzing the impact of the input features on the model

performance.

The reason behind why explanation methods focus on input or output, beyond the obvious
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Figure 4.1: Illustration of the features obtained in a convolutional network where the first layer
has the parameters θL1

and the second layer corresponds to the parameters θL2
. While in the first

convolutional features obtained can be deduced some features, such as illumination or borders in the
original, others are complicated to deduce. This deduction is more challenging in the second layer.

reasons, can be deduced through DPI. Using Eq. (4.1) as reference, the first layer, T1, is that one

that contains more information about X but less information about Y . However, the T1 is assumed

to have higher entropy, meaning it contains more average information than Y . Therefore, while T1

has sufficient information, the relationship with Y is not evident in this representation, which is a

consequence of the desired property in these models: generalization.

The first layers in DNNs have to deal with higher uncertainty than the latter layers, given that

the input has higher variability than the output, which corresponds to a label. As a result, a first

layer T1 has to obtain a more general data structure that contains the maximum information on the

input X, extracting features present in this input. As a result, the new structure obtained in T1 is

less evident for describing the target Y . Recall that in IT, the data structure plays a significant role

regarding information (see Section 3.1). In subsequent layers, the information in T1 is ‘reorganized’

and ‘transformed’ to make relationships with Y more evident. This transformation process results

in an assumed loss of information, reducing the entropy of the following output layers but increasing

the MI with the output.

This assertion is illustrated in Fig. 4.1, using an image input (the dog) and there are two

convolutional layers (see Section 2.2.1). The figure shows that as we move to deeper layers, there

is not only a loss of information but also a reduction in the evident connection to the input X.

In the filters of the first convolutional layer, f(·; θL1
), some features of the original image, such

as illumination over the dog or border detections, are evident. Nevertheless, these features do

not explicitly describe a dog, for instance, the textures you find on the ground do not have to be

relevant to the dog’s detection, but this information is contained in the input X. It is a consequence

of the expected generalization in the DNN. Regarding the second convolutional layer, f(·; θL2),

the 25 filters highlight features in the image that are considerably more difficult to describe in X.

Additionally, this loss of information can be observed by noting the output of the second layer, which

corresponds with a decrease in entropy. Although it is more complicated to illustrate, this second

layer is obtaining a description that increases the MI with the output Y .

4.1.2 Information Plane

The Information Plane (IP) [97, 191] is a visualization tool that aims to provide a illustrative

understanding of the dynamics of training, learning processes, and the internal representations



4.1. INFORMATION THEORETICAL PERSPECTIVE FOR DEEP LEARNING MODELS 69

Figure 4.2: Information Plane illustrating the evolution of layers in a DNN across different training
data samples. The left panel shows results with 5% of the data, the middle with 45%, and the right
with 85%. Image obtained from [191].

during the training process of DL models. Popularized by Shwartz-Ziv and Tishby [191], the IP

leverages the fundamental aspects of the IT perspective, such as the IB theory and the DPI, to

analyze DNNs.

In the IP, the two key quantities, I(X;T ) and I(T ;Y ), are plotted on the coordinate axes, where

T represents a layer in a DNN. I(X;T ) quantifies the mutual information between the input data

X and the layer T , while I(T ;Y ) measures the mutual information between the layer T and the

output labels Y . This allows for visualization of whether the DPI is satisfied within the proposed

DNN.

Figure 4.2 shows an example extracted from [191] that illustrates the IP estimation of a DNN.

The results in Fig. 4.2 were obtained using a simple DNN with a reduced number of neurons and

layers, trained on a synthetic dataset. The experiment was conducted with a progressively increasing

number of samples. The figure demonstrates that the DPI is violated, particularly Eq. (4.2), except

in the final experiment with most of the data. Given the simplicity of the model and data, it is

difficult to observe the aforementioned generalization in the early layers, but this will be explored

further throughout the thesis.

The analysis using the IP focuses on how the MI on the depicted axes evolves throughout the

training process, shedding light on how the model processes and refines information as training

progresses. The following section provides a concise overview of the phases involved in the training

process.

Information Plane Evolution

The evolution of the IP estimation during the training process encompasses two distinct phases, as

outlined by Shwartz-Ziv and Tishby [191]. In the initial phase, known as the fitting phase, the layers

of the network enhance the information pertaining to the target variable Y (i.e., the MI I(T ;Y )

increases). Subsequently, the training progresses into the compression phase, during which the layers

of the network progressively reduce the information associated with the input data X (i.e., the MI

I(X;T ) decreases).

This compression phase is intricately linked to the concept of generalization, wherein extraneous

or irrelevant information is compressed, thereby mitigating the risk of overfitting [191, 169]. However,

the precise relationship between compression and generalization remains a topic of ongoing discussion

within the research community [192].
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4.2 Deep Learning Insights for Classification

As mentioned in Section 4.1, this thesis draws significant inspiration from the work of Tishby and

Zaslavsky [97], a perspective that has been validated in various works [191, 169, 192, 190]. In this

section, we explore the validation of this interpretation through a case study in which the dataset is

limited, meaning the number of labeled samples is scarce.

Here, we propose the use of the kernel-based entropy estimator [171], as described in Section 3.6,

which is both computationally efficient and mathematically robust. Using this estimator, we will

compute MI estimations to generate the IP, which will be employed to validate the DNN models

using the IT-perspective and the conditions depicted in Section 4.1.

Given the lack of sufficient labeled data, there are several limitations that affect how well a

DNN can perform. The trade-off between the number of samples used for training and those used

for model validation makes it difficult to assess whether the model is overfitting. In other words,

classical classification metrics are not feasible for evaluating the model due to the small test set, and

the limited number of training samples can lead to overfitting. However, we will propose various

architectural configurations and attempt to identify limitations in these approaches using the IP,

with estimations obtained through the kernel-based entropy estimator, as an evaluation tool.

4.2.1 Case Study and Dataset: Diabetic Foot Case with Limited Labeled

Samples

Healthy humans keep their inner temperature within a narrow range of 36.8ºC. Consequently, skin
temperature measurement is a commonly employed method for diagnosing various diseases, includ-

ing diabetes mellitus. Diabetes is a chronic condition resulting from elevated glucose levels due

to the body’s ineffective production or utilization of insulin [193, 194]. The management of this

disease necessitates ongoing medical attention to prevent complications, as it has the potential to

gradually harm the heart, blood vessels, eyes, kidneys, and nerves over time. [194]. According to the

International Diabetes Federation, approximately 537 million adults aged 20 – 79 were living with

diabetes in 2022, and this number is projected to reach 643 million by 2030 [193]. Additionally, it is

estimated that 240 million individuals have undiagnosed diabetes worldwide [193]. This underscores

the fact that diabetes is emerging as one of the most rapidly growing global health crises of the 21st

century.

One of the leading causes of non-traumatic amputations is foot ulcers, a medical complication

often experienced by diabetic patients as a result of diabetes mellitus [193]. Referred to as diabetic

foot, this condition is frequently associated with neuropathy disorders and peripheral vascular disease

affecting the lower limbs. This is because the temperature of extremities is significantly influenced

by peripheral blood flow vessels [194, 195]. Abnormal temperature readings can serve as an early

indicator of ulcer formation. As a result, temperature monitoring can be employed for the early

detection and evaluation of the disease before other symptoms become apparent [194].

Infrared Radiation (IR) thermography, or IR thermal image, is a non-invasive imaging modality

that maps the surface temperature of a body [195], and it is an alternative to the medical that uses a

contact sensor for measuring the skin temperature. In addition, the appearance of low-cost devices,

based on microbolometers, has favored the use of infrared cameras as supplementary diagnostic

tools. These affordable devices allow clinical practitioners to measure the superficial temperature
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(a) (b)

Figure 4.3: In (a), the acquisition system employed to generate the foot image database is composed
by an Intel RealSense D415 camera for visible as well as depth of the pixels (RGB-D), and a Thermal
Expert TE-Q1 Plus for the thermal infrared (IR) modality. In (b) is illustrated the proposed
algorithm which is implemented for the segmentation of the soles of the feet and subsequently
applied to thermal images

under a controlled ambient environment [196] providing multiple recordings at short time intervals.

The viability of infrared sensors to analyze anomalous temperature patterns in diabetic diseases has

been previously reported [195, 197, 198].

Existing literature has used foot temperature asymmetry as a diagnostic tool and for monitoring

the severity of diabetic foot complications [199, 200]. This assessment method involves calculating

the difference between the mean plantar temperature of the affected foot and the unaffected foot,

following a standard contralateral analysis. Furthermore, this analysis is complemented by an ex-

amination of temperature patterns to identify anomalies that could signify potential ulcerations.

Basically, if this temperature difference surpasses a certain threshold, an alarming sign is set.

In alignment with this approach, several studies have been conducted as part of this thesis. For

instance, in the work [201], an algorithm based on U-Net for segmentation has been developed.

This algorithm is applied to extract the feet from thermal images acquired using a custom imaging

system, as depicted in Fig. 4.3a, to obtain images of the soles of the feet. Figure 4.3b illustrates the

developed algorithm, wherein segmentation is derived from the RGB-D image, generating an image

with both visible and depth information for each pixel. This work was extensively compared with

the state-of-the-art in [202], where the proposed approach, optimized using spatial information, was

found to exhibit the best robustness in terms of spatial overlap, accuracy, and precision. Once the

segmentation is obtained, this mask is then applied to the IR image.

Subsequently, a standard morphological model was proposed for a group of healthy subjects

through spatial image registration, which can serve as a template for further analysis of temperature

patterns in diabetic foot disorders [203]. Nevertheless, determining the threshold in contralateral

analysis for Diabetic Foot Ulcer (DFU) detection remains a subject of debate. In patients with

diabetic foot infection, a plantar foot temperature asymmetry of 1.35 °C is considered sufficient

to prompt urgent treatment [204], whereas a threshold of 2.2 °C is typically used for assessing an

inflammatory process and the impending development of a foot ulcer [205]. In our study [203], it

was observed that some healthy subjects exhibited a mean temperature difference exceeding this

threshold. Consequently, it is crucial to acknowledge the heterogeneity among individuals and

advocate for the establishment of personalized thresholds and treatments.
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In conclusion, the early-stage detection of DFU [202, 206] constitutes a challenging medical

analysis scenario for the classification task. The need for personalized analysis for each patient can be

demanding, but recent advancements in AI may offer a potential solution by leveraging temperature

patterns as a more generalized approach compared to traditional contralateral analysis. While DL

models have exhibited potential in wound classification [207, 208], and specifically in diabetic ulcer

identification [209, 210], the majority of existing research concentrates on ulcers that are already

visible. The use of thermal imaging for DFU detection is an emerging area of research, where AI

can play a fundamental role in detecting ulcers in an early stage. However, it has to consider the

ethical problems aforementioned, the mechanism of the DL model and the lack of sufficient data.

In this case study, our goal is to provide an analysis based on the IT perspective described in

Section 4.1, while addressing the significant challenge we face in this work: the data limitation. This

data-related challenge will be detailed in the following section.

Dataset

Currently, one of the largest datasets oriented towards DFU detection is the Diabetic Foot Ulcers

Grand Challenge (DFUC 2020) [211]. This dataset primarily focuses on identifying ulcers that

are already visible and comprises 4000 visible images, offering close-up views of the foot. The

dataset is evenly split into training and testing subsets, with 2000 images allocated to each one.

It has been extensively utilized and evaluated using various state-of-the-art models [212], with the

model presented in [213] achieving the highest performance (an F1-Score of 74.3%). Additionally,

another publicly available dataset includes 754 visible images of healthy and diabetic ulcer skin

from different patients [214]. This dataset has undergone comprehensive evaluation, achieving an

F1-Score exceeding 97% in the best case [215]. Nevertheless, the differences in imaging modality

and the scenarios captured make these datasets unsuitable for our intended application, which is

the early-stage detection of DFU.

As previously mentioned, foot temperature analysis has been employed as a monitoring tool

for diabetic foot complications. In the realm of state-of-the-art research, there exists a dataset

known as the INAOE (Instituto Nacional de Astrof́ısica, Óptica y Electrónica) thermogram dataset

[206]. This dataset consists of thermographic samples obtained from 167 volunteers, with 122 being

diabetic subjects and 45 being non-diabetic individuals. Among the volunteers, 105 are female and

62 are male, with a mean age of 27.76 ± 8.09 in the control group and 55.98 ± 10.57 from the

diabetic group. Originally, this dataset was created to investigate temperature distribution in the

plantar region among diabetic and non-diabetic subjects and measure these differences. However,

the INAOE thermogram database has found extensive use in the early-stage detection of DFU. For

the acquisition, the authors used two different infrared cameras (FLIR E60 and FLIR E6). As stated

by the authors [206], the dataset is slightly unbalanced towards diabetic cases that almost tripled

those from the control group.

Despite the limited sample size and evident class imbalance, both ML and DL models have been

applied to this dataset. The typical workflow involves an initial segmentation step, followed by

feature extraction to generate a feature vector used as input [216]. Remarkably, reported accuracy

levels neared 100% when employing more complex models that had been pre-trained with other

datasets, the technique commonly known as transfer learning. Moreover, the enhancement of images

for diabetic foot detection has been explored using various state-of-the-art CNNs [217]. Notably, an
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Table 4.1: DFU dataset Summary

Dataset Control Images Diabetic Images Image size

INAOE 45 122 64× 64
IACTEC 74 0 64× 64

F1-Score of 95% was achieved using MobileNetV2. Additionally, feature extraction from temperature

maps was conducted for classification tasks using machine learning models. In this case, an F1-

Score of 97% was reported as the best result when utilizing AdaBoost with a set of 10 features.

Furthermore, three advanced deep learning architectures were investigated for classifying subjects

with diabetes [218]. However, it was acknowledged that these complex models require substantial

amounts of training data to optimize the thousands of model parameters. Since the INAOE dataset

is not sufficiently large for training such models, the authors proposed an augmentation technique

based on the Fourier transform, achieving accuracy values above 95%, and even a perfect score of

100% with ResNetV2. However, as we have been described in this chapter, it is complicated to trust

in those models and there is no previous work trying to validate these results.

With the purpose of testing our approach in a binary classification task, DFU detection indicating

diabetic sample or not, a dataset composed by images acquired by infrared thermography has been

generated by the integration and normalization of existing available datasets. These datasets contain

thermal feet images from diabetic and non-diabetic subjects, as summarized in Table 4.1. The

process of creating the custom dataset and merging it with the INAOE dataset is described in the

following subsections.

Internal dataset

In order to balance the number of samples per class in the INOAE dataset [206], we integrated a sec-

ond custom dataset, generated by IACTEC1, the technology center associated to the Astrophysical

Research Institute of the Canary Islands (Instituto de Astrof́ısica de Canarias, IAC)2. This dataset

[202] contains 74 infrared thermal images, captured from 37 non-diabetic volunteers, 15 female and

22 male, with a mean age of 40±8 in a range between 24 and 60 years old. This dataset was acquired

using the system illustrated in Fig. 4.3a, which has a TE-Q1 Plus thermal camera from Thermal

Expert™ (i3system Inc., Daejeon, Republic of Korea). Images were saved using 16-Bit PNG format

with a spatial resolution of 384 × 288 pixels. The acquisition campaign was carried out in November

2020, acquiring two sets of images per subject. The first image (T0) was captured immediately after

the person becomes barefoot and sits with legs extended forward or lies down in a supine position

with the feet off the ground. The second image was taken five minutes later (T5), meanwhile the

subject was at the same resting position.

With the purpose of testing our approach in a binary classification task – detecting DFU and

indicating whether a sample is diabetic or not – a dataset composed by images acquired by infrared

thermography has been generated by the integration and normalization of existing available datasets.

These datasets contain thermal feet images from diabetic and non-diabetic subjects, as summarized

in Table 4.1.

1https://www.iac.es/es/observatorios-de-canarias/iactec
2https://www.iac.es/en
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Figure 4.4: (a) Histograms of a pair of images (T0 and T5) from the same subject extracted from
the IACTEC dataset. The temperature of each foot, left (LF) and right (RF) foot, and environment
(Env) is detailed on the sides in degrees Celsius. (b) Reference histogram. (c) Example of the
histogram matching processing for a single subject.

Data merging

Since both datasets were acquired under different ambient conditions and using different devices, it

was necessary to standardize them in a meaningful way. For this purpose, a histogram matching

process was used over all images, so that all match a reference histogram [219]. Histogram matching

is a useful technique when the contrast level of a group of images has to be unified. As we aim

to analyze spatial features rather than temperature values, histogram matching will not distort the

information contained in the images for the purpose of our analysis.

In this way, the IACTEC dataset was established as a reference, since it offers a well-known

acquisition protocol [202]. Figure 4.4a illustrates histograms of T0 and T5 from the IACTEC

dataset. As observed, the data distributions are similar at T0 and T5. Nevertheless, the images at

T5 tend to have a better qualitative representation of the temperature pattern in the feet, being

more visible to the naked eye. For this reason, the reference histogram was computed using the T5

samples from various subjects. These samples were selected after a qualitative visual inspection of

the complete dataset, selecting 6 initial samples. Then, the histogram distributions were analyzed

to obtain the reference, using the skewness (Skew) and kurtosis (Kurt) statistics. As can be seen

in Fig. 4.4a, a high-rate of T5 data distributions are negatively skewed (or left-skewed). Analyzing

the initial selected samples, the optimal Skew ranges from −0.05 to −0.4, while Kurt achieved

a maximum value of −0.85. Thus, 12 images that fulfilled those requirements were selected as

references. The average histogram, ĥ, from those images was obtained as follows:

ĥi =
1

N

N∑
j=1

hij
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where N is the number of samples and hi represents the value of the i
th bin of the original histogram.

In this experiment, the number of bins for histogram computation was set to 15. Figure 4.4b

illustrates the reference histogram, while Fig. 4.4c shows the distribution of the pixel values and

the examples images before and after performing the histogram matching. The processed histogram

was quite similar to the reference histogram, offering an improvement in the visual interpretation of

the temperature patterns.

As expected, the image contrast increases by applying the histogram matching, as it is illustrated

in Fig. 4.4c. Thus, temperature patterns in both datasets were more visible, having the entire dataset

similar contrast. Finally, histogram matching was applied to the IACTEC images to obtain the same

contrast that in the processed INAOE images, so both datasets were modified. In the IACTEC

dataset, the changes are subtle, but a qualitative improvement was observed in the samples. In

conclusion, data normalization performed to improve temperature patterns, which is acceptable for

our application, looks promising and allows the unification of independent datasets.

4.2.2 Experimental Setup

This chapter is dedicated to the analysis of various DNNs from an information-theoretical perspec-

tive (as discussed in Chapter 4.1). The goal is to identify promising models that demonstrate robust

performance when confronted with a scarce dataset. To draw meaningful conclusions, several ex-

periments will be conducted, encompassing diverse architectural designs and various techniques for

addressing overfitting. This section provides a detailed outline of the experimental procedure.

Proposed Network Architecture

Most popular network architectures for image classification tend to use convolutional layers in the

first steps of the process (e.g., ResNet [220], VGG [149]) to make a representation and reduce the

amount of information, generating a latent space Z with lower dimensionality than the input space

X. It may be described as an encoding phase, where the convolutional layers try to extract features

of the image, and classification in which the last layers have the purpose of identifying the image.

Reducing dimensionality of the input decreases the number of parameters to be used when training

the network, simplifying the overall classification process. Following this motivation, an architecture

based on a first stage of encoding, TE ∈ {E1, E2, Z}, followed by a classifier, TCl ∈ {L1, L2, L3, L4},
was designed. Fig. 4.5a illustrates an example of such architecture. Since the final goal is to classify

images, the training objective, see Eq. (2.7), is defined by the CE (Eq. 2.5).

While the proposed architecture may not be as deep as those found in the current state-of-the-

art for general-purpose image processing, it is important to note that even with this number of

layers, the model will contain millions of parameters. It is crucial to keep in mind that this analysis

is conducted under conditions where the number of available samples is limited. In total, after

the preprocessing step and the merging of both datasets, as described in Section 4.2.1, the dataset

comprises only 211 images (see Table 4.1), which is notably low for the utilization of complex models

such as DNNs.

As mentioned earlier, when working with small datasets, transfer learning can significantly en-

hance the model’s classification performance. This approach involves using a pre-trained model and

fine-tuning it to adapt to the specific classification task with the available samples [221]. In this



76 CHAPTER 4. INFORMATION-THEORETICAL EVALUATION IN DEEP LEARNING

(a) (b)
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Figure 4.5: Proposed network architectures for DFU classification. (a) Architecture proposed for
classification where the convolutional layers are provided by the pre-trained AE. (b) Convolutional
AE proposed where the skip connections are optional depending on the experiment.

study, an AE architecture [67], depicted in Fig. 4.5b, has been used to apply transfer learning from

a pre-trained AE to the first layers of our classification architecture Fig. 4.5a.

AutoEncoders for Fine-Tuning

Transfer learning [221, 182] is a technique that involves using a model initially trained for a specific

task as a starting point for training on a second task. The initial state of the parameters of the

model, θ0, is generated from a training process with another dataset, which is usually larger and

more complete. This approach is commonly employed to address overfitting concerns and ensure

that the trained model performs well on new data. As you will observe in the subsequent section,

we have incorporated experiments where transfer learning is applied.

To implement transfer learning, it has been utilized an AE [67]. As explained in Section 2.2.3, the

primary purpose of an AE is to learn a self-supervised efficient representation (encoding) for a given

dataset, typically for dimensionality reduction. In essence, the AE compress the essential information

within the input data. In this case, the path layers were used as TE in the proposed model to classify

the DFU dataset. Considering that an AE, from an information-theoretical perspective, performs

based on the InfoMax principle, the use of AEs is the best option to obtain a general compression

of the input, without discarding irrelevant features based on a task.

In addition, the AEs allows obtaining different configuration of the latent space. In specific, it

will be analyzed different configuration based on convolutional or fully-connected AEs. In addition,

it will be evaluated the compressed latent space obtained by an AE applying the skip-connection

technique. A more detailed focus on the AEs will be included in Section 4.3.

Considering this approach, AEs were trained to reconstruct an input X from a compressed

representation Z. Thus, applying image reconstruction is straightforward, as labeled samples are

not necessary. Given an output X̂ = f̂(X; θ), representing the reconstructed image, the model is

evaluated by comparing X̂ with the original one X, using the MSE (Eq. 2.18).

This training process has been carried out in two steps: a first training using a dataset with

numerous samples (i.e., the reference dataset) and a second fitting step where the AE was trained

using the DFU dataset. Transfer learning should be applied in the same domain of the target

dataset [222]. However, since the INAOE dataset [206] is the only public thermogram dataset for
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Table 4.2: Summary of the proposed experiment configurations.

Experiment Pretrained Encoder Bottleneck Size

PCAE Yes 16× 8× 8
PCAES Yes 16× 8× 8
PFCAE Yes 256
NPCE No 16× 8× 8
NPNE No -

DFU, currently, it is not possible to obtain another dataset in the same domain. Therefore, Fashion-

MNIST (FMNIST) [223] was selected as the reference dataset for pretraining. It consists of a large

dataset of grayscale images with a black background and a normalized histogram, being a dataset

with similar features to our preprocessed dataset. Remember that the first layers of the proposed

architecture, Section 4.2.2, has the purpose of extracting useful features from the input. Even when

the topic of the dataset (i.e., fashion-related elements) is not associated to our data, the amount,

and quality of its samples has demonstrated in our experiments to be robust for obtaining coherent

feature extraction filters in Z.

4.2.3 Experiment Descriptions

In this section, we provide a comprehensive description of each experiment, outlining the model

architecture and crucial hyperparameters. We conclude with precise instructions for replicating the

training process to enhance the transparency and reproducibility of our research.

PCAE (Pretrained Convolutional AE without skip-connections)

A Pretrained Convolutional AE (PCAE ) without skip-connections was used to generate the encoder

for DFU classification. The architecture of this convolutional AE is illustrated in Fig. 4.5b, excluding

the skip-connections. The encoder contains the convolutional layers, with convolutional kernel size

(K) of 5× 5 with stride and padding of 2. The decoder contains upsample layers, using 2D nearest

neighbor interpolation, followed by convolutional layers with K of 3× 3, with stride and padding of

1. The number of filters in each layer of the encoder path corresponds to 6, 8, and 16 respectively.

PCAES (Pretrained Convolutional AE with Skip-connections)

A Pretrained Convolutional AE with Skip-connections (PCAES ), similar to the previous case but

including the skip-conecctions, was employed. This experiment uses the architecture illustrated in

Fig. 4.5a and 4.5b, applying skip-connections. The configuration of the hyperparameters is the same

as in PCAE.

PFCAE (Pretrained Fully-connected AE)

A Pretrained Fully-connected AE (PFCAE ) was defined for the DFU classification encoder. The

encoder of this AE is conformed by four fully-connected layers TE ∈ {64× 64, 1024, 512, 256}. Thus,
the first layer corresponds to the input layer, defined by the image size of the dataset (see Table 4.1)

and, in this case, Z ∈ R256.
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NPCE (Non-Pretrained Convolutional Encoder)

This classification model architecture is similar to those obtained in PCAE and PCAES experiments.

However, the classification model uses a Non-Pretrained Convolutional Encoder (NPCE ), meaning

there is no transfer learning process.

NPNE (Non-Pretrained No Encoder)

This is the baseline approach in which there is no latent space generated from an encoder, and the

original image is the input of the classifier. This experiment will be referred to as NPNE.

Dataset Split

The dataset, consisting of 241 images, is divided into two subsets: a test set containing 32 samples

and a training set containing the remaining samples. The test set was carefully selected following an

analysis to ensure that the samples are as representative as possible of the original dataset, and it is

balanced, comprising 16 samples from the control group and 16 samples from the diabetic subjects.

For a more comprehensive overview of the dataset and its characteristics, please see Section 4.2.1.

Model Training

For consistency and clarity, the model training details for all experiments are summarized below:

• Batch size: A batch size of 128 samples was used for training.

• Optimizer: The ADAM optimizer [65] was employed for DNN training

– Initial Learning Rate: The initial learning rate (lr) was set to 5 · 10−4.

– Exponential Decay Rates: Parameters β1 and β2 for moment estimation were set to

0.9 and 0.999, respectively.

• Learning Rate Decay: The learning rate decays by κ every iteration t, with κ set to 0.999.

lrt = κ ∗ lrt−1,

4.2.4 Experimental Results

Initially, to assess the classification models, it is employed the classical classification metrics, includ-

ing sensitivity, specificity, precision, and accuracy. It is important to note that, given the limited

size of our test dataset, the reliability of these metrics may be subject to scrutiny. In Table 4.3, it is

presented a concise summary of the classification outcomes for the diverse experimental configura-

tions. As indicated by these conventional metrics, all models appear to be promising at first glance

in addressing the designated task.

However, the effectiveness of these models has been examined from an information-theoretical

perspective, based on the IB principle and the constraints of the architecture (see Section 4.1). This

rigorous assessment helps us identify the models with the highest classification abilities.

To address the limitations of our small test dataset, which comprises only 32 samples (as described

in Section 4.2.3), the IT metrics were estimated using the kernel-based estimator, as discussed in
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Table 4.3: Classification metrics results for each of the experiments.

Experiment Sensitivity Specificity Precision Accuracy

PCAE 0.937 0.937 0.937 0.937
PCAES 1.000 0.687 0.762 0.844
PFCAE 0.812 1.000 1.000 0.906
NPCE 0.937 0.87 0.882 0.906
NPNE 0.875 0.937 0.933 0.906

Section 3.6. This approach, focusing on the analysis of the IP, allows us to obtain a more precise

and credible assessment of the models’ performance, while it is validated the use of kernel-based

entropy estimator for scarce dataset.

DFU Classification Analysis

The analysis of the classification task aimed to determine whether the models generated in the

proposed configurations held the same promise as indicated by the classification metrics presented

in Table 4.3. In experiments where a pretrained AE, summarized in Table 4.2, was employed, the

encoder in the classification model was initialized using the encoder path and bottleneck. Conse-

quently, layers TE ∈ {E1, E2, Z} were initialized based on the AE configuration, as illustrated in

Fig. 4.5b.

In experiments utilizing a pretrained encoder (i.e., PCAE, PCAES, and PFCAE), the AEs

demonstrate robust performance, as evident from the evolution of the loss values shown in Fig.

4.6b. The MSE loss, as defined by Eq. (2.18), representing the error between the desired output X

and the reconstruction X̂, consistently decreases in all configurations. This reduction in loss occurs

during both training and testing, indicating the absence of overfitting in the AEs. The qualitative

results of X̂ shown in Fig. 4.7 also confirm the satisfactory final output for various configurations,

albeit with slightly inferior results in the AE based on fully-connected layers (PFCAE), as antici-

pated. Based on these findings, models employing pretrained encoders are expected to exhibit good

performance.

Subsequently, the classification model was evaluated as previously mentioned, and this analysis

was supported by IP estimation. It is important to note that our test set was limited in size and

the IP has been estimated by the kernel-based entropy estimator.

Regarding the kernel-based entropy estimation, the RBF kernel was applied. In these experi-

ments, the kernel width (σ) selection was carried out by maximizing the kernel-alignment loss (as

detailed in Section 3.6.3). The kernel-alignment loss, Eq. (3.32) was performed on each epoch t

using 200 σ values from 0.1 to 10 times the mean distance between the samples in one mini-batch,

as Wickstrom et al. proposed [169]. To stabilize the σ values across mini batches, an exponential

moving average has been used.

Figure 4.8 and Fig. 4.9 provide insight into the model’s performance during the training process.

Figure 4.8 illustrates the evolution of the CE loss value across different iterations (t). Most models

exhibit a convergence towards an optimal solution, except for NPNE.

In the NPNE experiment, which is the simplest scenario where the encoder is eliminated, the

training and testing loss values exhibit a distinctive pattern of overfitting. This behavior is evident

from the training loss value decreasing while the testing loss value increases over iterations, as
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Figure 4.6: AutoEncoder training for Transfer Learning: Loss values (MSE) during training (left)
and testing (right) on (a) the FMNIST dataset and (b) the DFU dataset.

depicted in Fig. 4.8e.

The IP trajectories shown in Fig. 4.9 were used just in the classifier layers TCl ∈ {L1, L2, L3, L4},
discarding TE (see Fig. 4.5a). In the experiments where a pretrained AE was used, the input X for

computing MI in IP trajectories is Z, i.e., the output of the encode path as it is illustrated in Fig.

4.5a. As a reference, the entropy of these compressed representations obtained by the different AEs

is around 3.2 bits for PCAE, 1.2 bits for PCAES, and 3.5 bits for PFCAE. More details about the

AEs applied will be found in the next section 4.3. In the NPCE and NPNE experiments, the input

is the original X, with an entropy of around 5 bits.

Note that the output Y is the test set which, as mentioned before, is balanced for both classes,

NC1
= NC2

. Thus, the theoretical maximum value in I(T ;Y ) is given by log2(C) = log2(2) = 1. In

addition, the IP trajectories contain the information on the figure at the left, since a minimization

of the CE is translated as an increase in the I(L4;Y ).

When analyzing the non-pretrained experiments (NPCE and NPNE), several noteworthy obser-

vations emerge from the loss progression in Figures 4.8d and 4.8e, as well as from the IP estimation

depicted in Figures 4.9d and 4.9e.

For NPCE, it is evident that there are numerous iterations where the training CE loss struggles

to converge, although it eventually stabilizes (see Fig. 4.8d). The substantial divergence between

training and testing losses, which gradually increases over time, is indicative of overfitting and
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Figure 4.7: Qualitative results in different iterations during FMNIST training: (a) 24 iterations, (b)
170 iterations and (c) 250 iterations.

possibly underfitting. This imbalance between training and testing losses results in limited progress

and decreased generalization on labeled data. While the issue of overfitting is not as pronounced

when considering the training loss alone (as observed in Fig. 4.8d), it becomes more apparent in

the MI estimation, particularly after the compression phase, see Section 4.1.2. Notably, the MI

estimation in Fig. 4.9d reveals a violation of the DPI principle, see Eq. (4.1), where I(X,L2) <

I(X,L3). This DPI violation is likely linked to overfitting during the compression phase, as suggested

by Wickstrom et al. [169]. Furthermore, the MI estimation I(T ;Y ) falls far short of its theoretical

maximum value, indicating suboptimal model performance.

As for NPNE, a clear case of overfitting is observed, where the test CE loss value increases while

the training CE loss value consistently decreases (Fig. 4.8e). The MI trajectories suggest that the

estimation experiences an fitting phase. However, over time, it has become stuck within a narrow

range, fluctuating without showing a discernible increasing or decreasing pattern. This behavior

suggests a potential issue of underfitting, implying that the number of parameters is insufficient

to adequately characterize the data and capture the intricacies of the input-target relationships.

Additionally, there is a DPI violation, see Eq. 4.2, where I(L3;Y ) > I(L4;Y ).

In conclusion, it is evident that the non-pretrained models (NPCE and NPNE) do not exhibit

the same level of promise as suggested by the performance metrics presented in Table 4.3. In both

cases, there are observed violations of DPI, and the values of I(L4;Y ) are significantly distant from

their maximum theoretical counterparts.

Among the pretrained approaches using transfer learning, it is evident that the models achieve a

decreasing test CE loss value, as illustrated in Fig. 4.8, and consistently achieve better progression

compared to the non-pretrained approaches. Additionally, examining the IP trajectories of PCAE,

PCAES, and PFCAE (Figures 4.9a, 4.9b, and 4.9c), it is observed a phase of constant fitting in

most layers, with the exception of L1 in PCAE and PCAES. In these cases, it is noticed an initial

decreasing trend in I(X;T ) during the early iterations, followed by a fitting phase.

Importantly, there are no observed violations of DPI in the different pretrained approaches.

However, in PCAE and PCAES, the IP trajectories of L2 and L3 are closely aligned, overlapping
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Figure 4.8: Loss error in the different experiments: (a) PCAE, (b) PCAES, (c) PFCAE, (d) NPCE
and (e) NPNE.

each other. This overlap may suggest that these layers are similar, potentially indicating that the

model could be further reduced in complexity, i.e., it is possible to reduce the number of parameters.

It is worth noting that PCAES encounters a similar problem to the non-pretrained approach,

where I(T ;Y ) is far from its theoretical maximum value, as depicted in Fig. 4.9b. Additionally, the

MI with respect to the input in PCAES, which corresponds to the output of a pretrained encoder,

suggests that PCAES may be overfitting. Conversely, PCAE and PFCAE demonstrate values closest

to the maximum theoretical value of I(T ;Y ).

In conclusion, transfer learning turns out to be effective even when the reference dataset does not

belong to the same domain as the target dataset, as is the case with the DFU dataset. Furthermore,

the IP trajectories identified theoretical characteristics, which were previously discussed in the state-

of-the-art, in the diverse experiments in a manner that validated the analysis for small datasets using

the aforementioned kernel-based entropy estimator (see Section 3.6).



4.3. AUTOENCODER INSIGHTS 83

0.0 0.2 0.4 0.6
(X; T)

0.0

0.2

0.4

0.6

(T
;Y

)

L1
L2
L3
L4

0
80

0
Ite

ra
tio

ns

(a)

0.00 0.05 0.10 0.15 0.20
(X; T)

0.0

0.1

0.2

0.3

0.4

(T
;Y

)

L1
L2
L3
L4

0
80

0
Ite

ra
tio

ns

(b)

0.0 0.2 0.4 0.6 0.8 1.0
(X; T)

0.0

0.2

0.4

0.6

(T
;Y

)

L1
L2
L3
L4

0
80

0
Ite

ra
tio

ns

(c)

0.00 0.25 0.50 0.75 1.00 1.25
(X; T)

0.0

0.1

0.2

0.3

0.4

(T
;Y

)

L1
L2
L3
L4

0
80

0
Ite

ra
tio

ns

(d)

0.0 0.5 1.0 1.5 2.0
(X; T)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(T
;Y

)

L1
L2
L3
L4

0
80

0
Ite

ra
tio

ns

(e)

Figure 4.9: Information Plane estimation in the different experiments: (a) PCAE, (b) PCAES, (c)
PFCAE, (d) NPCE and (e) NPNE.

4.3 AutoEncoder Insights

In the previous section, an analysis of the classification model performance was conducted from

an information-theoretical perspective. Overall, the characteristics observed in the previous section

align with those discussed in the state-of-the-art, validating this analysis using a scarce dataset

through the kernel-based entropy estimator. This approach has proven valuable for identifying

biases caused by model overfitting, particularly when the dataset size is limited and traditional

classification metrics may not provide reliable insights. While some conclusions were drawn regarding

the use of AEs, this section delves deeper into understanding the specific reasons behind the varying

performance of different models.
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Figure 4.10: Saliency maps with features contribution in F i
Z filters for DFU classification by

DeepLIFT. The figure (a) corresponds to PCAE and (b) belongs to PCAES.

4.3.1 Skip-Connection Effects in Compressed Representation

Based on the results from the Section 4.2.4, it is evident that PCAES exhibited the poorest per-

formance among the models where transfer learning was applied. In this section, we will conduct

a detailed comparison between PCAE and PCAES to uncover the reasons behind the negative

impact of skip-connections on the resulting compressed latent space Z. Both autoencoders were

trained under identical conditions, ensuring a fair comparison between the two experiments, with

skip-connections being the only distinguishing factor.

Leveraging the models’ ability to accurately classify samples, as previously discussed in the pre-

ceding section, we employed DeepLIFT [100] to elucidate which features from Z are influencing the

classifier’s decisions. Essentially, DeepLIFT generates a saliency map in Z, computing an impor-

tance score based on a reference image, enhancing the explainability of the DL model (see Section

2.3.3). The choice of the reference image is a crucial factor that significantly impacts the results,

as it determines what aspects of the input are considered relevant. For the DFU dataset, it was

employed an all-zeros input as the reference, essentially representing the background of the image,

encompassing everything except the feet, as illustrated in Fig. 4.4c.

Figure 4.10a and Fig. 4.10b represent the resulting saliency maps for PCAE and PCAES config-

urations, respectively. A binning-clustering process was applied to help interpret Fig. 4.10, dividing

the saliency scores into 15 equidistant bins. This binning approach is particularly helpful in the case

of PCAES, where the scale of values is relatively narrow.

These findings reveal that the feature contributions in both the control and diabetic groups

exhibit strikingly similar patterns. The saliency maps display comparable patterns and conjugated

values, with what appears as “hot” values (green color) in the control group often corresponding to

“cold” values (blue color) in the diabetic subjects.

In the case of PCAE (Fig. 4.10a), most filters exhibit spatially irregular patterns in their feature

contribution estimations. However, filters F 2
Z and F 8

Z demonstrate limited activation, indicating low

feature contribution.
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Figure 4.11: IP estimation in the FMNIST pretraining step: (a) PCAE, (b) PCAES.

On the other hand, PCAES (Fig. 4.10b) reveals only a few relevant filters, specifically F 1−4
Z .

However, the scale of the feature contributions, as indicated by the colorbar in Fig. 4.10a, differs

significantly between PCAE and PCAES, with PCAES showing a reduction by a factor of 10.

Additionally, the IP estimation based on the kernel-based entropy estimator was computed at

two different stages of the experiment. The first estimation was conducted during the pretraining

process using the FMNIST dataset (Fig. 4.11), and the second estimation was performed during the

fitting process using the DFU dataset (Fig. 4.12). While both figures convey the same information,

the representation has been adjusted to highlight specific details in the IP estimation at different

experiment stages.

As expected, the IP trajectories in the pretraining stage (Fig. 4.11) in the different AEs, shows

that I(X,T ) ≈ I(T, X̂). This is because the desired output is roughly similar to the input. Those

symmetrical trajectories are highly presented because of the high-quality reconstruction in few it-

erations. To verify that these estimations are correct, the DPI principle should be satisfied on the

encoder, Eq. (4.3), and decoder layers, Eq. (4.4) [190].

Observing Fig. 4.11b, a violation of the DPI principle occurred in PCAES, as I(Z, Y ) > I(D2, Y ).

However, the DPI principle assumes that a DNN can be interpreted as a Markov chain, but skip-

connections link the encode and decode path (see Fig. 4.5b), as

Di = fDi([Di−1, Ei]; θDi),

which is a violation of the Markov property. As a result, it is not possible to guarantee that Z is

the best compressed representation of the input X in PCAES.

Regarding the DFU fitting stage, where the AE is trained to fit the pretrained model to the

DFU dataset, it is observed symmetry in the IP estimation, as shown in Fig. 4.12. This symmetry

represents a good behavior of an autoencoder, following the diagonal line in Fig. 4.12. However, when

we focus on PCAE (Fig. 4.12a), it is evident that the model is consistently in a fitting phase, with

different layers progressively increasing I(X;T ). In contrast, PCAES exhibits a different behavior,

constantly losing information in the latent space Z as depicted in Fig. 4.12b. This behavior results in

the resolution of the DPI violation observed in the initial state provided by the FMNIST pretraining

(Fig. 4.11b). It can be concluded that the latent space Z of PCAES is gradually becoming less

relevant for reconstruction, even though the reconstruction remains optimal, as evidenced by the MI

estimations aligning with the diagonal.

The IP estimation of the PCAES experiment reveals that the incorporation of skip-connections

impacts the compression of the input X. Skip-connections attempt to merge information across dif-



86 CHAPTER 4. INFORMATION-THEORETICAL EVALUATION IN DEEP LEARNING

(a)

(b)

Figure 4.12: IP estimation in the DFU training: (a) PCAE, (b) PCAES.

ferent spaces by combining features from a higher-frequency space with those from a lower-frequency

space. It means that the features obtained from an image with more details, the high-frequency space,

are combined with the features of an image with fewer details, having smooth changes in intensity,

such as areas of uniform color or smooth gradients. However, as inferred from the IP estimation

of PCAES, it is not guaranteed that the most compressed space will perform well, as the lower-

frequency space may prove ineffective for the reconstruction task, as observed in this experiment,

being more important the information provided by the “detailed” features.

Convolutional Filters

In this section, the kernel-based entropy estimator will be used to have a better insight about what

is happening in the convolutional filter in PCAE and PCAES. To assess the performance of the

different filters in the convolutional layers, a visualization tool is designed to estimate the similarity

between filters in a given convolutional layer. The purpose of the proposed visualization tool is

to identify the loss of information and additional higher redundancy among filters, providing an

idea about whether the different filters are obtaining different patterns. A higher redundancy is

represented by the higher MI estimation. In essence, each filter should extract specific information

that complements the other filters, so a higher degree of redundancy among filters may serve as an

indicator of worse model performance.

In the case of PCAE (Fig. 4.13), a discernible pattern emerges as we delve deeper into the layers
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Figure 4.13: Mutual information estimation between different filters in the encode path of PCAE,
F i
k where i represents the index of the filter and k the encoder layer. The encode path is composed

by (a) E1, (b) E2 and (c) Z. The trace of the heat-map represents I(F i
k;F

i
k) = H(F i

k). The colorbar
interpretation is applied individually to each row.

of the network. This pattern becomes apparent upon examination of the diagonal elements of the

subfigures of Fig. 4.13, where it becomes evident that the entropy of the filters gradually decreases.

This pattern aligns with what was observed in the IP estimation (Fig. 4.12).

When analyzing the latent space generated by the first convolutional layer, denoted as E1, Fig.

4.13a illustrates that certain filters retain entropy levels close to H(X) = 5 bits. As expected from

the IP estimation (Fig. 4.12), E1 serves as a compression of the input X with minimal information

loss. In this specific case, the F 1
E1

(Fig. 4.13a) shows that contains most information from X, as

indicated by its entropy of approximately 5 bits. However, it is worth noting that F 1
E1

appears

to contain redundant information, as evidenced by the intense color in the first column of the

filter’s mutual information matrix, suggesting that its information is also present in other filters. In

contrast, F 5
E1

appears to be the filter with the least redundant information, offering relevant data

that complements other filters.

Moving on to the latent space E2 (Fig. 4.13b), it is observable that the redundancy of information

has been decreased, so it means that each filter extracts information which can be complementary

for the other filters. In this case, the filter F 2
E2

, which is the filter with the highest entropy, looks like

the most redundant filter, but the MI estimation of the different filters shows that the information
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Figure 4.14: Mutual information estimation between different filters in the encode path of PCAES,
F i
k where i represents the index of the filter and k the encoder layer. The encode path is composed

by (a) E1, (b) E2 and (c) Z. The trace of the heat-map represents I(F i
k;F

i
k) = H(F i

k). The colorbar
interpretation is applied individually to each row.

of the filters is not totally contained in F 2
E2

. Therefore, it can be concluded that in this space,

where the number of filters has increased, the information has been distributed in a way that does

not indicate any significant issues. While there is still redundancy among filters, the information in

each filter is not identical, filters are not completely redundant, and each filter transmits different

information.

In the final latent space Z, which serves as the bottleneck of the AE and represents the optimal-

compressed representation of X, minimal redundant information is retained, and the entropy is low,

as depicted in Fig. 4.13c. Given the specific characteristics of the DFU dataset (see Section 4.2.1),

where the background uniformly appears as black, and the images exhibit similarities, it’s reasonable

that the entropy is low in low-resolution images, as likely values are undervalued. In addition, it

may also be influenced by the saturation effect introduced by the sigmoid function, which bounds

values between 0 and 1.

Specifically, in the case of Z in PCAE, as shown in Fig. 4.13c, two particular filters, F 2
Z and

F 8
Z , exhibit notably lower entropy values compared to other filters. This is likely because the

outputs of these filters produce images with uniform values within a narrow range, indicating reduced

information content. The saliency maps (Fig. 4.10a) further support the findings derived from the

analysis of Fig. 4.13c. Consequently, it can be inferred that these filters could be removed without
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significantly impacting the classifier’s performance, since those do not contain relevant information.

However, there is low redundancy in Z, so the impact of the remaining filters is much more significant

compared to a latent space with higher redundancy, where information may be distributed across

different filters.

Turning our attention to PCAES, as illustrated in Fig. 4.14, a similar pattern to PCAE emerges,

which is attributed to the DPI phenomenon where information progressively diminishes through the

layers. However, as previously discussed, the DPI violation subsides over time, as evidenced by the

gradual loss of information in the latent space Z during training (refer to Fig. 4.12b, where I(X;Z)

reaches its minimum value at the end of training).

Considering the latent space E1 from PCAES (Fig. 4.14a), most filters share a high MI estimation

with F 3
E1

and F 4
E1

. It corresponds to the filters with the highest entropies. Unlike the previous case,

it is observed that the distribution along the filters does not seem so gradual. However, in general,

it looks like a good compression of the input X with minimal information loss as in PCAE.

In the case of the latent space E2 in PCAES (Fig. 4.14b), a trend similar to PCAE is observed.

Information in the different filters is less redundant, leading to decreased mutual information esti-

mates among different filters. However, unlike PCAE, where a few filters clearly dominate in terms

of information content (Fig. 4.13b), PCAES lacks a singular predominant filter. Nevertheless, in

general, it can be inferred that this representation has less distinctive filter roles compared to PCAE.

In both cases, it appears that E2 effectively transmits information without one filter significantly

outweighing the others in importance.

The primary distinction between PCAE and PCAES lies in their respective latent spaces, specif-

ically in Z. As concluded in the previous section, the use of skip-connections in PCAES disrupts the

Markov property, making it uncertain that the bottleneck provides an effective compression of the

input X. Consequently, during the training of PCAES, the I(X;Z) continually decreases, reaching

its minimum value by the end of training (Fig. 4.12b). As a result, Fig. 4.14c demonstrates that

most filters in Z exhibit low entropy, signifying that their activations are concentrated in limited

regions, resulting in a homogeneous output. Furthermore, the more intricate features correspond to

higher values in MI estimation, such as F 8,10
Z (Fig. 4.14c), although this is not clearly discernible

in the saliency map presented in Fig. 4.10b, mainly due to the reduced impact of these features, as

indicated by the colorbar in the figure.

In conclusion, this section has provided insights into the impact of skip-connections on infor-

mation propagation within DNN, particularly in the context of transfer learning with deep neural

networks. This analysis contributes to a more in-depth understanding of how DNN operate, shedding

light on their inner workings and the implications of skip-connections on information flow.

4.3.2 Dropout effect in AutoEncoders

In our quest to understand and validate DL models, it has been conducted various experiments

employing simple models to minimize potential biases in the results. However, one aspect that

has not been thoroughly explored is the impact of the dropout technique within DNN since it

was not considered for the experiments in 4.2.2. This section introduces an analysis of an ad-hoc

convolutional AE that has been designed to incorporate the dropout technique.

As previously introduced in Section 2.2.4, dropout is a popular regularization technique fre-

quently used in DL models to mitigate overfitting [73]. It achieves this by applying multiplicative
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Bernoulli noise to each hidden unit within the deep neural network. In our analysis, it is proposed

a modification in the AE to stabilize the effect of the dropout technique.

The AE utilized in this section is an adaptation of the AE discussed in earlier sections, as depicted

in Fig. 4.5b. Consequently, the number of filters in the convolutional layer remains the same, but it

has been introduced a batch normalization [224] layer after each convolutional layer. This technique

standardizes the inputs to one layer for each mini-batch, which has the effect of stabilizing the

learning process and dramatically reducing the number of training epochs required to train DNN.

Additionally, the original activation function, which was a sigmoid, has been replaced with a ReLU.

Finally, the dropout technique is applied at the end of each layer of the encode path.

In this section, it is considered three different configurations based on the dropout rate ρd depicted

in Eq. (2.19), which represents the probability of an element being set to zero, in the AE. The three

configurations correspond to ρd = {0.5, 0.2, 0}. The last case, with ρd = 0, is equivalent to not

applying dropout at all. This results in a modified AE for each configuration, allowing us to assess

the impact of different ρd on the AE’s performance and ability to reduce overfitting.

Figure 4.15 displays the IP estimation during the training process on the FMNIST dataset. You

can find the IP estimation during the fitting phase on the DFU dataset in Appendix A.1.

An essential consideration is that the DPI, as defined for AE in the decode path (Eq. (4.4)), is

not met in any case. However, this does not necessarily indicate a problem with the AE, contrary

to the original proposal by Yu et al. [190]. While the AE still have the goal of obtaining an optimal

lossy compressed representation by following the InfoMax principle (see Section 4.1), as described

in Eq. (4.6), the introduction of noise through the dropout technique alters the AE’s performance.

The usage of the dropout technique forces the AE to exhibit tolerance towards noise. In essence,

the AE is now effectively addressing the problem described in the rate distortion theory, as defined

by Eq. (3.20) (see Section 3.4). Consequently, the DPI must meet the same conditions observed in

the IB (Eq. (3.17)). In this context, the ideal AE should satisfy the following condition [175]:

I(X; X̂) = I(Z; X̂) = min{η, I(X;X ′)}, (4.7)

where η is the maximum amount of information that the bottleneck, Z, contains. Consequently,

the bottleneck determines the maximum amount of information that can be conveyed in the decode

path. Unlike the AEs analyzed in Section 4.3.1, in this case, the decode path must converge to

I(X;Z). In conclusion, it will never be satisfied the Eq. (4.4) when dropout technique is applied in

AEs.

This effect can be intuitively understood by considering that the information rate, which is

the amount of information transmitted, is influenced by the distortion introduced by noise. To

mitigate this distortion, redundancy in information is necessary. In the context of a DNN, different

neurons must propagate the same information to account for potential distortions in the channel.

The dropout technique deactivates a neuron randomly, the model has to deal with this case having

a redundant way to propagate this information. Consequently, as described by the rate distortion

theory, the amount of information in the layer is compressed due to the noise, more redundant

information leads to a lower information rate.

As a result, the only way for an ideal AE to satisfy Eq. (4.7) is to create a latent space Z large

enough to ensure the propagation of all information even through different redundant pathways.

This approach compensates for the potential distortions introduced by the dropout technique by
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(a)

(b)

(c)

Figure 4.15: IP estimation using dropout technique in the AE among different dropout rates (ρd)
training with FMNIST dataset: (a) ρd = 0.5, (b) ρd = 0.2 and (c) No dropout (ρd = 0).
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maintaining sufficient redundancy in the latent space.

As observed in Fig. 4.15a and Fig. 4.15b, the application of the dropout technique with different

ρd conditions the amount of information. Specifically, in Fig. 4.15a, where ρd = 0.5, I(X;Z) remains

around 2.5 bits. In contrast, Fig. 4.15b demonstrates an increase in I(X;Z) to approximately 3.4

bits. Finally, Fig. 4.15c, where the dropout technique is not applied, illustrates that I(X;Z) ≃ 4.15

bits.

The IP estimation in Fig. 4.15 confirms that the AE’s performance by using dropout technique

can be described by the rate distortion theory. To validate the model, it needs to be considered

the DPI. A DPI violation is only observed when the dropout technique is not applied, as shown

in Fig. 4.15c. In this case, a clear violation in the encode path (left in Fig. 4.15c) is evident,

I(X;Z) > I(X;E1). Additionally, the various convolutional layers tend to approximate the output

(X̂) more closely than the input (X). This behavior is why the MI evolution is observed above the

diagonal that represents the optimal reconstruction of the AE, where the X̂ closely matches the

original input X. In general, there are clear indications that the modified AE has overfitting issues,

which are a consequence of the uses of batch normalization in the convolution layers. As it was

previously mentioned, this normalization allows reducing the number of training epochs required to

train DNN and it was applied to stabilize the effect of the dropout technique.

Considering both cases where dropout is applied, it can be concluded that both AE models work

properly. As mentioned earlier, based on the rate distortion theory, there should be a constant

loss of information during the propagation due to the distortion introduced by the noise produced

by the dropout technique in the encode path. Since the decode path does not include dropout, the

information in the different decode layers must converge to a point conditioned by Z. This means that

there should not be a significant loss of information during the decode path, so I(X;D2) ≈ I(X;D1).

In conclusion, both Fig. 4.15a and Fig. 4.15b provide evidence that both AE models work

properly. In the case of ρd = 0.5, the different convolutional layers of the decoder converge to the

information in Z, as seen on the right side of Fig. 4.15a. In contrast, when ρd = 0.2, the decode

path converges to a point where there is a slight loss of information considering the bottleneck,

I(X;D1) ≈ I(X;D2) > I(X;Z), but it still satisfies the DPI condition established by Eq. 4.7.

Finally, Fig. 4.15b illustrates a consistent decrease in I(T ; X̂) in both cases, for ρd equal to 0.5

and 0.2. However, it is evident that I(Z; X̂) converges to approximately 2.5 bits in both cases. This

suggests that both X̂ produced by different configurations are similar, conditioned by the decode

path, but the second configuration contains more information related to X. To address this, a more

complex AE is needed, involving an increase in the number of layers and parameters.

As it has been done in previous sections, these AEs were fitted using the DFU dataset. The

conclusion drawn from the IP estimation align with those discussed for the FMNIST dataset, and

it can be found in Appendix A.1.

Convolutional Filters

As it was done in the previous Section 4.3.1, the convolutional filters produced in the aforemen-

tioned AEs will be analyzed by the kernel-based entropy estimator to gain further insights into their

performance.

Figure 4.16 illustrates the example where the ρd is 0.5 and Fig. 4.17 represents the AE in which

the ρd is set to 0.2. Firstly, it is noticed that the ρd parameter affects the redundancy in the filters.
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Figure 4.16: Mutual information estimation between different filters in the encode path of the AE
with a dropout rate of 0.5 at the end of each layer, denoted as F i

k where i represents the index of the
filter and k the encoder layer. The encode path is composed by (a) E1, (b) E2 and (c) Z. The trace
of the heat-map represents I(F i

k;F
i
k) = H(F i

k). The colorbar interpretation is applied individually
to each row.

Increasing the ρd the entropy of each filter is reduced, it is specially relevant in the bottleneck as it

is illustrated in Fig. 4.16c and Fig. 4.17c where the entropy of filters is lower with a higher ρd. This

behavior is observable in the different layers, including in E1 and E2. In addition, the MI estimation

among the different filters is reduced when the dropout rate, ρd, is higher.

Comparing the MI estimation in E2 for both cases, as shown in Fig. 4.16b and Figure 4.17b, it

is apparent that the MI is lower with a dropout rate of 0.5. Specifically, F 5
E2

exhibits an entropy of

6.23 bits, which is the filter with the highest MI. This could imply that this filter doesn’t handle the

noise produced by the dropout technique effectively, resulting in higher uncertainty. However, it is

worth noting that the information contained in this filter might be found in other filters.

For instance, by examining F 4
E2

in Figure 4.17b, it is evident that the conditional entropy, which

represents the remaining uncertainty when observing another variable, H(F 4
E2
|F 5

E2
), is only 0.31

bits. This means that when you observe F 5
E2

, F 4
E2

becomes almost entirely predictable. The reduced

redundancy in filters in this case, due to less noise, results in more information being contained within

the filters. This makes sense because filters contain more information, increasing the likelihood that

this information is present in another filter.
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Figure 4.17: Mutual information estimation between different filters in the encode path of the AE
with a dropout rate of 0.2 at the end of each layer, denoted as F i

k where i represents the index of
the filter and k the encoder layer. The encode path is composed by (a) E1, (b) E2 and (c) Z. The
trace of the heat-map represents I(F i

k;F
i
k) = H(F i

k).

In contrast, Figure 4.16b shows that in the encoder layer E2 of the AE with ρd = 0.5, the highest

entropy value is found in F 8
E2

which is considerably lower than in the other case observed in Figure

4.17b.

From a qualitative perspective, both figures illustrate the redundancy of information based on

the uniformity of colors. Using as reference the second encoder layer E2, Fig. 4.16b and Fig. 4.17b

show this property. In Fig. 4.16b, the colors have a more uniform distribution, indicating minimal

differences in MI among filters. This uniformity suggests a higher redundancy of information, as

it was previously discussed. Conversely, Fig. 4.17b displays less uniform colors, indicating greater

variability in MI among filters.

In conclusion, both figures support the expected results discussed in Figure 4.15 and align with

the principles of the rate distortion theory. An increase in the dropout rate, denoted as ρd, leads

to a loss of information as the system must compensate by increasing redundancy to address the

noise. Consequently, the MI values between filters are more similar to each other, resulting in a

more homogeneous color distribution, as shown in Fig. 4.16 compared to Fig. 4.17.

One noticeable difference in the bottleneck Z, when compared to the results described in Figure

4.13, is the higher entropy values in these experiments. This discrepancy is primarily attributed to
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the activation function used. As mentioned earlier, in order to mitigate the dropout effect in the

AE, a batch normalization layer followed by a ReLU activation function was employed. The ReLU

function lacks an upper limit, while the sigmoid function is bound between 0 and 1. Consequently,

the sigmoid function exhibits a saturation effect in the compressed latent space Z, where most

values approach 0 or 1. This saturation results in lower entropy estimations, as likely values are

underestimated

For the reader’s reference, the results of the AE without the dropout technique are provided in

Appendix A.1.2. However, it should be noted that this AE has previously been demonstrated to not

perform adequately.

4.4 Discussion

Artifical Inteligence is a powerful tool for practical clinical decision support systems, offering, for

instance, assistance to radiologists in decision-making and helping to alleviate the workload issues

discussed earlier in this chapter [5]. However, the lack of sufficient labeled data presents significant

limitations for the use of supervised AI algorithms. There is a trade-off between the number of

samples used for training and those used to validate the model, making it difficult to determine

whether the model is overfitted. Additionally, clinical decision-making relies heavily on evidence

interpretation, which is further complicated by the opaque nature of DNN models.

In this chapter, we have explored an emerging area of research related to the early-stage detection

of DFU using DNN models as a case of study. Our focus has been on validating these models from a

theoretical perspective based on IT. It is important to note that this research area faces challenges

related to data availability. The dataset consists of thermogram images, and the experiments have

been conducted with a limited test set of only 32 samples, which may not be representative enough

to thoroughly evaluate the models.

Additionally, the training dataset comprises only 209 images, which is a relatively small number

for DL models. In cases where the dataset size is insufficient, transfer learning is a common approach

to address this limitation. Therefore, in three of our experiments, we applied transfer learning by

using AEs pretrained on the Fashion-MNIST (FMNIST) dataset. Despite the fact that the FMNIST

dataset focuses on fashion-related elements, which is not associated with our data, its quantity and

quality of samples have proven to be robust for feature extraction in our experiments. This is

particularly noteworthy because both datasets share certain characteristics, such as grayscale images

with a uniform background.

Initially, the experiments in this work, as outlined in Section 4.2.2, appeared to yield remarkable

metrics, as evidenced in Table 4.3, which included some perfect scores. At first glance, it might have

been concluded that all the experiments exhibited exceptional performance, with accuracy scores

consistently exceeding 90%.

However, as this chapter has demonstrated, such a conclusion does not hold true when considering

the information transmission in a more nuanced way. Upon closer inspection, it became evident

that two experiments, specifically those involving transfer learning, displayed superior information

transmission capabilities compared to the others. This reveals that while traditional classification

metrics may suggest high performance, a more in-depth analysis focused on the IB principle can

uncover important distinctions in model performance and information processing. This analysis,
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primarily based on the IP, has been validated using the kernel-based entropy estimator for a scarce

dataset. Theoretical characteristics, already discussed in the state-of-the-art with popular datasets

[97, 169], were identified in our analysis. This was particularly evident in experiments where transfer

learning was applied, providing validation for the analysis, especially in the context of small datasets.

On one hand, in the experiments where transfer learning has not been applied, specifically

NPCE and NPNE, both show instances of DPI violations. In the case of NPCE (Fig. 4.9d), the

DPI violation is evident between L2 and L3, where I(X;L2) > I(X;L3). In NPNE (Fig. 4.9e), the

DPI violation occurs between L3 and L4, with I(L3;Y ) > I(L4;Y ). These DPI violations are likely

indicative of overfitting.

Moreover, NPNE exhibits a pattern that suggests a potential issue with underfitting, implying

that the number of parameters is insufficient to adequately characterize the data and capture the

intricacies of the input-target relationships. The MI estimation in NPNE becomes trapped within

a narrow range, fluctuating without a discernible increasing or decreasing trend in the information

plane (Fig. 4.9e).

On the other hand, the experiments where the transfer learning from AEs has been applied,

specifically PCAE, PCAES, and PFCAE, show a consistent phase of fitting in most layers and there

are no observed DPI violations in the different IPs. In the specific case of PCAES (Fig. 4.9b), the

I(T ;Y ) is around 0.4, which is far from the theoretical maximum value. In this case, the theoretical

maximum value is 1, since the limited test set of only 32 samples is balanced so the H(Y ) = 1.

In PCAE and PFCAE (Fig. 4.9a and 4.9c), the I(T ;Y ) reaches a maximum value around 0.7.

However, this detail is also observable from the objective function (Fig. 4.8).

The issues observed in the pretrained experiment PCAES are primarily attributed to the use of

skip-connections in the AE during the transfer learning process. To gain a more in-depth under-

standing of the impact of skip-connections, a comparison was made between the convolutional AE

in both experiments, PCAE and PCAES.

As discussed in Section 4.3.1, the introduction of skip-connections in PCAES disrupts the Markov

property, making it uncertain whether the bottleneck provides an effective compression of the input

X. This disruption led to a DPI, Eq. 4.4, violation during the pretraining of the AE using the

FMNIST dataset (Fig. 4.11b). However, during the fitting phase with the DFU dataset, the DPI

violation disappears, as a consequence that the latent space Z is constantly loosing information (see

Fig. 4.12b).

A more detailed examination reveals that the inadequate compression of information in Z for

PCAES becomes evident when analyzing the individual convolutional filters. Figures 4.13 and

4.14 illustrate the amount of information and redundancy among filters in each latent space of the

encoding path: E1, E2, and Z. Focusing on the compression in Z, Fig. 4.14c demonstrates that

most filters in Z of PCAES exhibit low entropy, indicating that the number of activations in this

layer is limited. In contrast, PCAE (Fig. 4.13c) shows higher entropy values and lower redundancy

among filters, suggesting that the information in these channels is complementary. These findings

are further supported by the saliency maps estimated using the post-hoc method DeepLIFT (Fig.

4.10).

Considering the different theoretical characteristics, which also can be found in the state-of-the-

art, it can be concluded that PCAE and PFCAE are the most promising models and the other

models are not as good as the Table 4.3 suggested. In this way, the proposed kernel-based entropy
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estimator has been validated in those case where the number of samples is limited, since all this

analysis is obtained using only 32 samples.

In this chapter, a description of the DNN’s problem-solving mechanism is provided in this chapter

based on the information-theoretical perspective. However, considering that AE is a self-supervised

DL architecture that has a remarkable similarity with a transmission channel, as described in Section

3.2, we decided to extend this work to analysis another popular technique in DL modes, the dropout

technique.

The outcomes reveal that an AE using dropout cannot strictly adhere to the InfoMax principle,

so it cannot satisfy the description of Section 4.1. Instead, the architecture employing dropout

appears to align more closely with the rate distortion theory, which can be considered a specific case

of the IB, as elaborated in Section 3.5, and it is well-defined for supervised DL models. Considering

that the dropout rate indicates the amount of distortion that the AE has to tolerate, an increase of

this parameter leads to a lower information rate.

The results in Section 4.3.2 have illustrated this approach based on the distortion rate theory,

aligning with the description of AEs described by Tapia et al. [175]. In essence, it was observed that

the decode information flow is limited by the bottleneck Z. For this reason, the decode path DPI

defined in Eq. (4.4) cannot be satisfied. Moreover, the convolutional filters presented in Fig. 4.16

and Fig. 4.17 effectively portray how increasing the dropout rate intensifies the input compression.

Consequently, this heightened compression results in reduced redundancy among filters due to the

increased redundancy within each self-filter, as indicated by the lower entropy value.

Finally, the analysis presented in this chapter is scalable and can be applied to DNNs with a

larger number of layers. While this study focused on validating the method using custom DNNs

with a controlled number of layers, it can certainly be extended to more complex DNN architectures

with deeper layers.

The significance of this analysis becomes particularly relevant in cases where the dataset is small.

While it may be less critical for large datasets, understanding the flow of information among different

layers of a neural network can serve as a valuable metric to ensure the model’s effectiveness and

interpretability. In the case of a scarse dataset, it has been proved that the uses of the Kernel-Based

entropy estimator works properly.

In the context of healthcare, integrating this algorithm for the analysis of radiological imaging

data holds great promise. It has the potential to mitigate human bias and reduce the time burden

on radiologists by providing a more transparent and interpretable approach to image analysis. As

a result, this technology could contribute to alleviating the heavy workload faced by radiologists

today. Furthermore, the proposed analysis from a theoretical perspective not only enhances the

interpretability of the ‘black box’ but also underscores the crucial role these advancements could

play in shaping the future of medical diagnostics and patient care.

4.5 Conclusions

Deep Learning models, characterized by their multilayer nonlinear structure, have earned significant

attention due to their impressive performance in various tasks. However, these models are considered

‘black boxes’ due to their complex relationships between layers and vast parameter space. Despite

their opacity, DL models have rapidly replaced many traditional techniques in CV for image process-
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ing. They hold the potential to be valuable tools in aiding radiologists and healthcare professionals

in clinical decision-making.

Nonetheless, challenges related to transparency of these models and data availability must be

addressed when integrating DL algorithms into the medical domain. The need for large labeled

datasets to allow these models to generalize effectively is crucial. Typically, validation of DL models

is performed using classical classification metrics on a separate test dataset not seen during training.

However, in fields like medicine, data collection can be time-consuming and challenging.

This chapter builds upon our work presented in [172], where different DL models for medical

image classification were evaluated using the theoretical framework of the IB principle, providing

an approach to understand the problem-solving mechanism of the DNN. As described in this chap-

ter, various DL architectures were implemented, in which the training dataset is rather small in

terms of samples. This analysis helps determine whether the promising performance metrics seen

in traditional classification evaluations are due to overfitting, or if the models indeed exhibit robust

generalization capabilities.

Furthermore, the AE, which is a self-supervised deep learning architecture that shares similarities

with a transmission channel, was explored in the context of transfer learning in the experiments

discussed earlier. The analysis of AEs aimed to understand the effects of different techniques on

their performance. The results indicated that utilizing AEs for transfer learning aligns with the

InfoMax principle, signifying that these models effectively learn to maximize MI between input and

output. However, when skip-connections are introduced in AEs, it cannot be guaranteed that it

satisfied the InfoMax principle.

In addition, it was demonstrated that applying the dropout technique transforms AEs into models

described by distortion rate theory. By increasing the dropout rate, these AEs achieve a more

compressed representation of the input data, X, at the expense of introducing distortion. This

insight sheds light on the behavior of DL models, as layers in a DNN can be characterized by the

trade-off between compression and predictability. In this context, the dropout technique emphasizes

data compression. Furthermore, this approach provides valuable insights into the behavior of AEs

and their suitability for specific applications.

The analysis presented in this work offers a perspective for opening the ‘black-box’ of DL models,

providing a more in-depth understanding of their inner workings. This increased transparency

and interpretability can be invaluable in the integration of AI in healthcare scenarios. It has the

potential to mitigate human bias and reduce the time burden on radiologists by offering a more

transparent and interpretable approach to image analysis. This enhanced understanding can lead

to more reliable and trustworthy AI systems, particularly in critical applications such as medical

imaging and diagnosis. It is important to emphasize that this demonstration is particularly relevant

in scenarios with limited data, such as the case study presented in this chapter, where only 32

samples were available for testing. The methods and insights provided here are especially valuable

in situations where data scarcity can be a significant challenge.



Chapter 5

Feature Selection with Deep

Learning: Hyperspectral Band

Selection

Once you understand the way broadly, you

can see it in all things.

Miyamoto Musashi

Chapter 4 introduced ethical challenges related to the integration of complex AI models in

healthcare settings, focusing on issues such as model transparency and the scarcity of data in specific

contexts. The second challenge arises from the fact that supervised ML and DL algorithms typically

require a large number of samples to prevent overfitting and enhance their generalization capacity.

To address these challenges, a perspective based on IT was proposed for describing these models by

examining the information flow, ultimately improving model interpretability. The analysis based on

this perspective helps identify issues in algorithms with limited data samples, as demonstrated by

the methodology employed.

Furthermore, this approach can guide the design of DL models. In this chapter, a FS method

based on DL will be introduced, interpreted through the IT perspective, and applied to select relevant

wavelengths in HSI — a process known as band selection — for biological tissue identification. Band

selection treats the spectral signature obtained from HSI as a feature vector and aims to obtain a

sparse representation (see Section 2.5), offering a more interpretable compressed representation

compared to dimensionality reduction methods [225]. This method is not limited to HSI data; it

can also be applied to other datasets, as shown in Appendix B, where the proposed DL-based FS

method is used, among others, to select the most relevant features extracted from the thermogram

dataset for DFU detection used in Chapter 4 [226, 227].

In healthcare, interpreting high-dimensional data is a major challenge, not only for HSI but

across various clinical domains. Although FS methods, like band selection in HSI, can help improve

interpretability, many datasets still suffer from the ‘curse of dimensionality’ [228]. This expression,

attributed to Richard Bellman, refers to the problems with high-dimensional data such as, for

99
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instance, optimizing any function with too many input random variables. To overcome the ‘curse

of dimensionality’, it is necessary to apply the process of ‘dimensionality reduction’, which consists

of transforming a high-dimensional data into a low-dimensional space [229]. Following the main

branch of this thesis, the dimensionality reduction can be intuitively expressed as a compressed

representation of the data. As it was demonstrated in the Chapter 4, DL models are good at this

task.

Given that the understanding of the problem associated with a clinical case is considered a

fundamental task, and nowadays, it is commonly associated with high-dimensional data, this task

is computationally and statistically challenging. The algorithms of dimensional reduction, such as

Principal Component Analysis (PCA) [230] or ICA, can be used to reduce the cost of analyzing the

data. However, it is important to note that while these techniques effectively reduce dimensionality

and capture the majority of data variance, they may not necessarily improve the interpretability

of the data. For instance, while PCA is a beneficial technique for reducing dimensionality and

capturing the majority of variance in the data, it does not necessarily enhance the interpretability

of the data in the sense that the new dimensions generated by PCA are linear combinations of the

original features, representing an abstraction of the original feature vector, and therefore may pose

a challenge to interpret in terms of the original variables.

In the context of healthcare, where comprehensive data interpretation is essential, the curse of

dimensionality presents a formidable obstacle [231]. A bad interpretation of the data can result in

inconsistencies among experts when diagnosing a disease, leading to increased variability in clin-

ical decision-making [232]. A clear example of this challenge can be observed in the diagnosis of

retinopathy of prematurity [233], a condition that affects infants with low birth weight, leading to

abnormal blood vessel development in the eye’s retina and the potential for blindness [233]. For

the diagnosis, CV techniques are employed to extract features from retinal images, and medical

experts base their clinical decisions on these features. However, diagnosing retinopathy of prematu-

rity has shown significant variability among experts, as some may prioritize certain features more

than others [234]. Given that the issue underlying this inconsistency in diagnosis stems from the

high-dimensional nature of the data, the application of algorithms for identifying the most relevant

features, a process known as FS, offers a viable solution.

Feature Selection is a field that combines statistical multivariate and ML methods to reduce the

number of input variables or features [229]. The main goal of FS is to identify an optimal subset

of input features, specifically the most relevant ones. Unlike dimensionality reduction methods like

PCA, which derive a smaller set of features through linear combinations of the original ones, FS

focuses on selecting a subset of the original features. This is particularly important for making

high-dimensional data more interpretable [229], as it retains the original meaning of the features

rather than transforming them into abstract components.

In ML, FS also improves model interpretability by offering clearer insights into the importance

of individual features in decision-making, which is the fundamental task in ‘explainable ML’ (see

Section 2.3.3). Additionally, by removing redundant or irrelevant input data, FS enhances classifier

performance. This leads to more efficient classifiers with better cost-performance ratios, as reducing

the number of features decreases both computational and memory requirements [235].

As mentioned earlier, DL models are highly effective at achieving compressed representations of

the input data. In particular, AEs were originally designed for this purpose, dimensionality reduction
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to obtain an optimal representation in a lower-dimensional space. However, they operate at a higher

level of abstraction, which complicates the interpretability issues seen in classical methods such as

PCA, as the resulting features are too abstract and impossible to understand. Since DNNs are

inherently capable of learning compressed representations of data, they should, in theory, be well-

suited to performing FS. However, DL models typically do not perform feature selection; they do

not discard irrelevant or redundant features from the original input space. Consequently, a typical

architecture of a DNN is not well-suited for FS.

In this chapter, an adaptation of the DL model will be presented to achieve a compressed rep-

resentation of the input based on FS, and how this approach can be useful in obtaining a more

comprehensive interpretation of data in a medical case study. The model will be analyzed using

the IT approach, identifying key characteristics required to achieve an optimal solution, while high-

lighting the limitations of the proposed method. This chapter is structured as follows: first, the

state-of-the-art in FS will be reviewed. Then, the proposed FS method, based on DL and the IT

perspective, will be introduced to provide a more in-depth understanding of the problem-solving

mechanism. A case study focused on band selection in HSI will be used. Finally, validation of the

IT perspective will be achieved through IP estimation.

5.1 Taxonomy of Feature Selection methods

Feature Selection methods can be traditionally categorized into the following classes: filter, wrapper,

and embedded methods [229]. This section describes various state-of-the-art methods, along with

relevant examples.

5.1.1 Filter Methods

Filter-based methods for feature selection are characterized by their reliance on a scoring criterion

or statistical property to identify and filter out less important features or variables [229]. Unlike

some other techniques, these methods do not require a predictive model for scoring variables, making

them suitable for use as a preprocessing step. However, the filter-based feature selection is a com-

putationally efficient and straightforward method, but it has some limitations. It does not consider

feature interactions or the context of the model, so it may not always select the best features for a

particular model or dataset.

One example of a filter-based method is Relief-based feature selection, which evaluates the rel-

evance of each feature by measuring its ability to distinguish between instances that are near to

each other. Relief-based algorithms are sensitive to feature interactions and can handle various data

characteristics, such as classification, regression, missing values, and noise. Relief-based feature se-

lection has been applied to various biomedical problems, such as gene expression analysis, biomarker

discovery, and disease diagnosis [236].

Another popular approach involves a filtered method based on MI. As it has been described

in Section 3.1.3, This metric serves to evaluate the relevance of a subset of features in predicting

the target variable, as well as assess redundancy in relation to other variables [237]. In addition to

MI, other filtered-based methods may utilize statistical criteria such as correlation or chi-squared to

evaluate the relationship between features.



102 CHAPTER 5. FEATURE SELECTION WITH DEEP LEARNING: HYPERSPECTRAL BAND SELECTION
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Embedded Feature Selection System

Figure 5.1: Block diagram of an embedded method for FS. The variable Xs represents the subset of
the input variable with the selected features S.

5.1.2 Wrappers and Embedded Methods

Wrapper methods involve defining the search space, encompassing all possible variable subsets, and

treating a model as a ‘black-box’ [229]. Within this framework, a search, and evaluation strategy

is implemented to determine the optimal selection of variables or features. While this approach

can lead to substantial advantages in terms of generalization, it comes with the drawback of being

computationally intensive and might result in subsets that are overly specific to the particular

classifier used.

The most common example of wrapper methods is the Recursive Feature Elimination (RFE)

[238] and the Genetic Algorithm (GA) [239]. The RFE method was originally proposed to use with

a SVM classifier and this method, as the name suggests, consists on removing iteratively the least

relevant features based on the SVM weights until a desired number of features is reached. However,

it can be applied to other classification models. On the other hand, GA is a wrapper method

that is based on biological evolution. It is inspired by the process of natural selection and relies

on biologically inspired operators such as mutation, crossover, and selection. Another wrapper FS

method widely used for different applications is the Ant Colony Optimization (ACO) [240].

The embedded methods incorporate the variable selection in the training process, for instance

using a regularization for reducing the number of variables used during classification. For this reason,

this methodology is more efficient than the wrappers methods. The more illustrative example of

these methods is the Least Absolute Shrinkage and Selection Operator (LASSO) [241], originally

introduced in geophysics [242]. LASSO, or L1-regularized regression, assigns zero weights to the

least relevant or redundant features, effectively leading to feature selection within the model.

By using the learning machine as a ‘black box’, wrappers are remarkably universal and simple.

But embedded methods that incorporate variable selection as part of the training process may be

more efficient in several respects: they make better use of the available data by not needing to

split the training data into a training and validation set; they reach a solution faster by avoiding

retraining a predictor from scratch for every variable subset investigated [229].

5.1.3 Nested Subset Methods

Nested subset methods represent a category of feature selection techniques that combine both wrap-

per and filter methods. In these approaches, a wrapper method is initially employed to choose a

subset of features, and subsequently, a filter is applied to this subset to further refine the selection

process [229].

A notable example of this approach is presented in the work of Peng et al. [243], the minimum-

Redundancy Maximum Relevance (mRMR). They introduced a filter-based feature selection method

that relies on MI criteria to identify the most relevant features. The selected features were then
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integrated into a two-step algorithm, resembling a wrapper method. The mRMR is designed to find

the smallest relevant subset of features for a given ML task.

Additionally, these methods can unify filter methods for applying a stop criterion in wrapper

methods. In this context, the use of MI is particularly relevant, as conditional mutual informa-

tion (the expected value of mutual information) naturally emerges when bounding the ideal regres-

sion/classification errors achieved by different subsets of features [237].

5.2 Deep Learning approach for Feature Selection

Utilizing wrapper methods for FS with DL models is a viable approach, albeit demanding in terms

of computational resources. The employment of a DL model for FS represents an embedded method,

wherein the selection of the feature subset is optimized throughout the training process.

If the DNN is considered as an embedded FS method, it becomes necessary to encourage the DNN

to generate a sparse representation in its initial layer. In other words, the DNN should be designed

to select a subset of features in the input layer. However, it is important to acknowledge that

feature selection in certain problems is inherently an ill-posed problem (see Section 2.4.1), implying

that there may not be a unique subset that represents the optimal solution. This characteristic is

especially relevant in DNN due to their stochastic training processes, which can lead to variations

in feature selection.

Indeed, an initial approach to achieve feature selection within a DNN would involve setting the

weights in the input layer to zero for those features that are considered irrelevant, similar to the

approach used in LASSO. However, the L1 regularized approach, LASSO, is primarily designed for

linear models. Nevertheless, there are ways to deal with non-linear features by using LASSO such

as, for instance, Hilbert Schmidt Independence Criterion Lasso (HSIC Lasso) [244].

The HSIC Lasso method consists on applying the LASSO in the RKHS, a high-dimensional space

where lineal solutions are viable. It offers the advantage of providing a clear statistical interpretation,

as it can identify non-redundant features with strong statistical dependence on output values using

kernel-based independence measures. The HSIC is a non-negative value that attains zero if and

only if two random variables are statistically independent [244]. However, a significant drawback

of this method lies in its computational complexity, which scales quadratically with the number of

observations.

Nevertheless, it is crucial to acknowledge that in DNN, the non-linear space generated does not

align with an RKHS. Despite this, certain approaches have implemented L1 regularization in DNN to

achieve a sparse representation. Notably, Feng and Simnon [245] introduced the concept of an input-

sparse DNN, where the input weights are penalized using the group L1 penalty. In this framework,

the weights of the upper layers are subjected to a L2 penalty. The authors demonstrated that the

weights of irrelevant features converge to zero. However, it is crucial to emphasize the significance

of attaining a well-fitted configuration for the Lagrangian multipliers associated with the diverse

regularization penalties, as these represent hyperparameters requiring meticulous tuning.

According to the authors, LassoNet [246] stands as an extension and generalization of the previ-

ously mentioned sparse-input DNN approach. This method distinguishes itself by incorporating an

input-to-output residual connection, a skip-connection representing a linear link between the input

and output layers. This connection allows a feature to possess a non-zero weight in a hidden unit
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Input Layer Hidden Layer Output Layer

Arbitrary Architecture
Figure 5.2: LassoNet architecture [246]. The architecture of LassoNet consists of a single residual
connection and an arbitrary feedforward neural network. The residual layer and the first hidden
layer are jointly passed through a hierarchical soft-thresholding optimizer.

only if its linear connection is active (refer to Fig. 5.2). The objective function is defined as follows:

min
θ
L(Y,X; θ) + λ||ωr||1,

subject to ||w(1)
j ||∞ ≤M |ω

r
j |, j = 1, ..., d,

(5.1)

where L(.) represents the objective function. The parameters of the DNN is composed by θ ∈
{w,ωr}, where ωr are the parameters of the residual network, the skip-connection, and w denotes

the parameters of the different hidden layers. The notation w(1) corresponds to the parameters of

the first hidden layer. The ||.||∞ denotes the max norm, which signifies the maximum absolute value

among the components of the vector [120].

Observing Eq. (5.1), it is clear that it is necessary to tune two important hyperparameters: the

Lagrangian multiplier, λ, which controls the effect of the L1 penalty, and the M that controls the

trade-off between the linear and non-linear components. In addition, it is specially relevant because it

defines the soft-thresholding for obtaining the sparse representation. Regarding the hyperparameter

M , in the extreme where M = 0, the formulation recovers exactly the LASSO; in the other extreme

(by letting M → ∞), one recovers a standard feed-forward neural network with L1 penalty on the

first layer [246].

As it was previously mentioned, the concept behind FS is to acquire a sparse representation

of the input vector. Typically, the sparsity of a vector is quantified using the pseudo-norm L0, as

illustrated in Eq. (2.26). However, LASSO offers a relaxation approach that establishes a convex

problem in which sparsity is achieved by constraining and shrinking the weights.

In the context of DNN, the operation of the L1 penalty becomes more intricate due to the

network’s deep architecture. This complexity is why LassoNet relies on the implementation of a

linear residual connection where input weights are penalized to encourage convergence towards zero

by this approach, Fig. 5.2. In addition, in practice, introducing a L1 penalty into gradient descent

does not sparsify the weights and requires post-training thresholding, as LassoNet proposed.

In summary, L1 penalization offers a relaxed approach to the problem that is suitable for linear

models. However, when applied to DL models, it necessitates precise tuning to achieve a satisfactory

approximation, and it does not drive the weights to zero at any point. Hence, in the subsequent

section, an alternative probabilistic relaxation of the L0 norm is proposed, specifically designed to

work more effectively with DL models.
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Figure 5.3: The proposed architecture uses the dropout technique for feature selection. Each feature
is controlled by a ’gate,’ with its probability of being opened or closed determined by the variational
parameter ϕi, which represents the dropout rate. Features with a gate where ϕi ≃ 1 are discarded,
thereby reducing the number of features selected by the DL model.

5.2.1 Feature Selection by Dropout

The L0 regularization is non-convex and computationally expensive and intractable for high-dimensional

data [120] and it has been demonstrated to be a NP-Hard problem [247]. For this reason, it is nec-

essary to generate a relaxation of this L0 for obtaining an optimal solution to this ill-posed problem.

The Dropout technique [73] plays a fundamental role in proposing a probabilistic interpretation of

the L0 regularization for both linear and non-linear models. Its application for DNN has been applied

previously [248, 249]. Intuitively, Dropout can be likened to a binary ‘gate’, determining whether

a variable is active or ‘dropped out’ (see Section 2.2.4). Examining Eq. (2.19), the contribution of

a variable is determined by a Bernoulli distribution with ρd as the dropout probability, known as

the dropout rate. Each variable, as represented by a ‘gate’, follows a Binomial distribution, i.e.,

n variables following a Bernoulli distribution. However, when the probability for each variable is

a constant ρd, it implies that each variable has an equal chance of activation, and the ‘gates’ are

randomly opened. In other words, there is no a preference among the different variables.

In the context of FS, it is crucial to ensure that the ‘gates’ controlling the most pertinent features

remain consistently open, while the less relevant ones are more likely to be closed. Therefore, it

becomes imperative to assign a probability per ‘gate’, denoted as p(si = 0) = ϕi (a custom dropout

rate per variable).

In this way, considering a Dropout technique as a feature selector method, the subset Xs ⊂ X –

with its indices defined by a vector S ∈ {0, 1}d where d represents the dimension of the input vector

X – is defined by the individual probabilities ϕi:

S ∼
d∏

i=1

Bern(ϕi),

Xs = X ⊙ S,

(5.2)

where ⊙ is the Hadamard element-wise product.
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Loss function

In the context of applying the Dropout technique for FS, the process becomes a statistical model,

necessitating a well-defined approach for drawing inferences from the model during optimal training.

Just like any DL model, it is posed as a problem of minimizing a loss function, but with an added

regularization-based constraint. As any DL model, the problem rephrased as a problem of loss

function minimization but, in this case, there is a regularization-based constraint. Given a DNN

f(.; θ), with θ as the model parameters, and considering the subset indices S, the problem can be

defined as:

min
θ,ϕ
L(f(X ⊙ S; θ), Y )

subject to J(S) ≤ k.
(5.3)

As it can be observed, the regularization factor affects exclusively to S. This J(.) regularization

aims to find a unique solution for the ill-posed problem (see Section 2.4.2). This regularization.

Specifically, this regularization aims to derive a sparse representation of X to create the subset Xs

while ensuring the number of elements remains lower than k. Essentially, the regularization factor

works toward reducing the input vector X to contain k elements or fewer.

Based on the L0 pseudo-norm being optimal for assessing sparseness in the vector Xs, the

goal is to introduce a regularization factor that represents J(S) ≈ ||S||0. This factor relies on a

Bernoulli distribution to select different variables, following the Dropout technique as seen in Eq.

(5.2). Intuitively, the objective is to introduce more noise to those features that are considered less

relevant. For instance, if the ith element xi ∈ X, is deemed irrelevant, the corresponding ϕi dropout

rate should tend towards 1. A ϕi ≃ 1 implies that this feature xi is unlikely to be considered for

problem-solving.

Following the aforementioned deduction, the regularization factor can be described by the Cu-

mulative Distribution Function (CDF) [248]. A higher CDF, means that the dropout rate is low. For

this reason, the regularization factor can be considered the expected value of the different Bernoulli

distribution, defined by the dropout rate ϕi.

As a result, considering a supervised method, given an input X and output Y , the problem can

be described as:

min
θ,ϕ

EX,Y,S [L(f(X ⊙ S, Y ; θ)) + λΦ(S)] , (5.4)

where Φ(.) denotes the Bernoulli’s CDF. The Lagrangian multiplier λ shares a relationship with

the constraint k in Eq. (5.3). Increasing λ effectively decreases k. Hence, the regularization factor

aims to boost the dropout rate, ϕi. The expectation ES [Φ(S)] penalizes activated ‘gates’, si, as it

increases them:

ES [Φ(S)] =
∑
s∈S

s · Φ(s) =
d∑
i

si · (1− ϕi). (5.5)

The loss function detailed in Eq. (5.4) aims to resolve the problem by integrating a regularization

factor that distinguishes the most significant features. Consequently, the dropout rate, ϕi, for the

various features ϕi tends toward 0 for the most significant features and to 1 for the least relevant

ones. Additionally, this constraint is essential for attaining a sparse solution, reducing the number

of features in the subset Xs significantly compared to the original input features.
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5.2.2 Bernoulli Continuous Relaxation

As it was previously described, the DNN are optimized via gradients descent for determining the

optimal model parameters θ (see Section 2.2.2). For this reason, it is natural to think that the

parameters for the Dropout-based FS, the different Bernoulli’s dropout rate ϕi, have to be optimized

by this method too. However, the discrete behavior of the Bernoulli distribution, will suffer high-

variance, so it is not optimal to optimize by a gradient descent method.

To address this limitation, Maddison et al. [250] introduced a continuous relaxation of discrete

distributions, a concept later applied in Concrete Dropout [251]. This technique provides a varia-

tional approach to optimize the dropout rate. For a given feature i of sample j, denoted as xi,j ∈ X,

the binary ‘gate’ defined by a Concrete binary distribution is formulated as follows:

si,j = fC(ϕi, ϵi,j) = σ

(
1

τ
(log ϕi − log(1− ϕi) + log ϵi,j − log(1− ϵi,j))

)
,

ϵi,j ∼ U(0, 1).
(5.6)

In this context, σ(.) represents a sigmoid function, and U(0, 1) denotes a uniform distribution. The

parameter τ ∈ (0, 1] serves as a temperature, controlling the “noise level” in the generated samples

[250]. Notably, as τ → 0, the approximation to the discrete Bernoulli distribution improves.

Leveraging this relaxation, Chang et al. [249] introduced a FS approach that involves penalizing

the number of features not dropped out. Essentially, the authors suggested constraining the solution

using a regularization factor derived from the sum of the elements of S. However, it is important

to note that this approach lacks stability, and its results are highly dependent on the choice of the

regularization factor.

In the continuous relaxation of the distribution mentioned earlier, the ‘gate’ is not strictly con-

strained to values of 0 or 1. Within a narrow range, defined by t and centered around ϕi, the

Concrete distribution lets s to take on values between 0 and 1, rather than being strictly 0 or 1. It

may be considered as spike and slab distribution [252].

In order to mitigate the aforementioned limitation, Louizos et al. [248] proposed the hard-

concrete distribution. This distribution is a modification of the Concrete distribution that forces

the values to tend to 0 or 1.

si,j = fHC(ϕi, ϵi,j) = min(1,max(0, si,j)),

si,j = fC(ϕi, ϵi,j)(ζ − γ) + γ
(5.7)

with γ < 0 and ζ > 1. As it is expressed, the Hard-Concrete distribution ‘stretches’ the Concrete

distribution to the (γ, ζ) interval and the apply a hard-sigmoid.

An example of the proposed Hard-Concrete distribution is illustrated in Fig. 5.4a. As observed

in this figure, the Hard-Concrete, fHC(.), has a steeper slope than the Concrete approach, fC(.). It

is intuitive to understand that this function forces the value to 0 or 1.

Additionally, Yamada et al. [253] proposed a Gaussian-based continuous relaxation of the

Bernoulli distribution. In this approach, the idea is to estimate the relaxation of the Bernoulli

distribution by a normal distribution N (ϕi, σ
2). To compute the gradients effectively, it is applied

the Reparameterization Trick [254] in this normal distribution. As a result, this Gaussian-based
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(a) (b)

Figure 5.4: Different approaches for Bernoulli continuous relaxation. Both figures illustrate an
example where the dropout rate ϕi is 0.6. In (a), the temperature t has been set to 0.2 and, for the
Hard-Concrete distribution, fHC(.), the γ, and ζ has been set to -0.1 and 1.1 respectively. In (b),
the Gaussian relaxation, fG(.), the σ

2 is set to 0.5.

relaxation is defined as follows:

si,j = fG(ϕi, ϵi,j) = min(1,max(0, ϕi,+ϵi,j)),

ϵi,j ∼ N (0, σ2)
(5.8)

where the relaxation depends on the σ2 instead of a temperature t as in the previous approaches.

In the context of the Gaussian-based relaxation, it is important to note that the estimation of the

CDF for solving Eq. (5.4) has to consider σ. In this case, the estimation is obtained by ΦG(ϕi/σ),

where ΦG(.) is the standard Gaussian CDF [253].

As a conclusion, in this section, various relaxations have been introduced to obtain a continuous

relaxation of the discrete Bernoulli distribution. The alternatives to the binary Concrete distribu-

tions [250] have been proposed to force the values to 0 and 1. However, as described in the following

sections, this thesis proposes a training procedure to achieve this sparse representation in the input

X.

5.3 Information Theoretical Perspective for Feature Selec-

tion

Leveraging IT concepts for FS is a logical choice, given that the goal is to identify a subset that

provides the best compression of information. It is specially relevant since MI is measure of re-

dundancy satisfies the following properties: it is symmetric, nonlinear, non-negative, and does not

diminish when adding new features [255]. A popular algorithm is the previously mentioned mRMR

[243]. There are more alternatives, as the Conditional Infomax Feature Extraction (CIFE) [256] or

the Conditional Mutual Information Maximization [257, 255], which are a wrapper and filter-based

method respectively.

In the previous section, it has been introduced a statistical approach for introducing the FS in DL
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models based on dropout technique. This section demonstrates the IT perspective of the proposed

approach for FS. At it will be shown, this perspective has similarity with the mRMR and CIFE and

how this approach based on dropout technique may be considered for wrapper methods, although

it is an embedded method because the feature selector is followed by a DNN.

In addition, aligning with the objectives outlined in Chapter 4, this thesis aims to gain a more

in-depth understanding of the problem-solving mechanisms of DNN through the lens of information-

theoretical concepts. By adopting this approach, it becomes more feasible to enhance the inter-

pretability of the model. The information-theoretical perspective allows for the description of DL

models based on their information flow, elucidating the compression achieved, and the information

lost across different layers. Both concepts, information and compression, are intuitive and contribute

to obtaining a clearer perspective on these complex models.

In the previous chapter, it was established that DNN excel at data compression. Moreover, in the

context of supervised tasks, the inherent trade-off between compression and predictability compels

the model to achieve a compression that retains features relevant for solving the supervised task.

This section seeks to extend the information-theoretical perspective to the realm of FS tasks. Finally,

the insights gained from the IT perspective will be applied to ensure the method is configured for

obtaining the optimal solution.

5.3.1 Feature Selection by Dropout: Information-Theoretic Learning

As it was previously mentioned, the FS may be considered a lossy compression, it consists of ob-

taining a subset Xs (a compression of X) in which it may be considered that there is a loss of

information. In IT, it may be measured by MI. As a result, the compressed representation Xs has

to maximize the MI regarding a task defined by a random variable Y . In other words, Xs has

to be compressed with that features that contain most information of Y , any other information is

irrelevant. Based on a IT-learning approach, the FS optimization may be formulated as [253]:

max
S
I(Xs;Y ) s.t. |S| = k. (5.9)

In this way, the FS is a task as selecting S, which is hypothesized that contains k relevant features

represented by the cardinality of the set (|S|), such that the MI between Xs and Y is maximized.

In the proposed FS method based on the dropout technique (Section 5.2.1), deterministic opti-

mization is not applied. The method is inherently stochastic, employing a binomial distribution as

described in Eq. (5.2). Given an input vector X with d components, the stochastic regularization

factor R(S) might be defined as R(S) = E[S] ≤ k/d, but it is not relevant because it is out of the

scope of the present study. Additionally, the I(Xs;Y ), as developed in Appendix A.2.1, is expressed

as follows:

I(X ⊙ S;Y ) = ES [I(X,Y )] . (5.10)

Therefore, the defined FS approach based on dropout, from an IT-learning perspective, is as follows:

argmax
ϕ

ES [I(X,Y )] s.t. R(S). (5.11)
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In conclusion, the goal is to obtain the parameters, i.e., the different dropout rates ϕ ∈ {ϕ1, ..., ϕd}
that define S as depicted in Eq. (5.2), maximizing this expression. As deduced, this approach follows

the InfoMax principle described in Eq. (3.23) (See Section 3.5).

Given that FS involves a lossy compression, it is guaranteed that I(X;Y ) ≥ I(Xs;Y ). The

optimal scenario is to attain the Markov Blanket [255], which is the subset containing the full

information necessary for inferring Y . However, in practical terms, even if there is minimal loss

of information, Xs is still considered a Markov Blanket. This perspective arises from the under-

standing that the original structure might not be apparent for establishing a relationship with Y .

Consequently, a transformation of Xs defined by a function f(.) can achieve the maximum MI,

denoted as I(f(Xs);Y ) = I(X;Y ).

Reformulating as a Minimization Problem

In the preceding section, it has been outlined the approach of FS based on Dropout, emphasizing

the maximization of the expected MI between X and Y across the ‘gates’. However, in this section,

it will approach the same problem from a minimization perspective, offering, in my opinion, a more

intuitive understanding of the optimization process.

Following the definition of MI in Eq. (3.10), it becomes apparent that maximizing MI over S

can be reframed as minimizing the conditional entropy H(Y |Xs), given that H(Y ) is constant. In

essence, the optimal solution aims to establish a ‘noise-free’ channel (Section 3.2.1), requiring the

noise, quantified by the conditional entropy, to approach zero (H(Y |Xs) = 0):

max
S
I(Xs;Y )⇔ min

S
H(Y |Xs).

In Appendix A.2.2, it has been developed how the conditional entropy for FS based on dropout

technique should be minimized. In this way, the conditional entropy, H(Xs|Y ) = H(X,S|Y ) corre-

sponds to a minimization of the joint entropy H(X,Y, S).
In this way, the FS based on dropout technique is defined as follows:

argmin
ϕ

H(X,Y ) +Hϕ(S) s.t. R(S). (5.12)

As it is indicated, the solution proposed consists in reducing the entropy H(S), the entropy of the

‘gates’. The joint entropy H(X,Y ) is not optimized, but it is indicated for the future mentions in

the next sections.

Keys insights from the IT Perspective

In the context of this information-theoretic learning approach, several key insights can be derived. As

per Eq. (5.12), the FS method based on Dropout operates by minimizing the uncertainty introduced

by the ‘gates’ responsible for dropping out features fromX. This provides valuable information about

the optimal initialization of the dropout rates, ϕi.

Since the ‘gates’ are defined by the indices of the subset S where si ∼ Bern(ϕi) (see Eq. (5.2)),

the initial configuration must be determined by the distribution of S that maximizes entropy. The

optimal initial value is found when ϕi = 0.5. This is illustrated in Fig. 3.2, where it is evident that

the entropy is 1 bit, the maximum entropy value, when p = 0.5.
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Considering this problem as a minimization of H(S), as it is depicted in Eq. (5.12), implies the

objective of reducing the uncertainty introduced by S, akin to mitigating the ‘white noise’ generated

by uncertainty. It is imperative to note that the minimization of H(S) occurs in two scenarios: when

ϕi → 0 and when ϕi → 1, as illustrated in Fig. 3.2. Therefore, the incorporation of the regularization

factor is pivotal for ensuring a stable solution and establishing a well-posed problem (see Section

2.4.2).

It is intuitively evident that a classifier would seek to utilize all features provided by X, so

implementing the optimization of Eq. (5.4) without accounting for the regularization factor would

lead to dropout rates converging to 0. The regularization factor guarantees that H(S) is reduced,

causing dropout rates to converge to 1 for most features, and to 0 for a select few — the relevant

ones.

5.3.2 Deep Learning Perspective: Information Bottleneck

The FS based on dropout technique has been defined by an IT perspective in the previous section.

This section extends this perspective to incorporate the DNN, as this process is carried out within the

DNN. This extension aims to enhance the interpretability for balancing the interpretability-accuracy

trade-off for the selection of the proposed model.

The standard analysis of lossy compression, such as the FS process, often involves rate distortion

theory, as described in Eq. (3.20). A primary challenge in this context is the need to properly specify

the distortion function, which determines the relevant features [160]. Rate distortion theory, however,

does not provide a complete solution, as the choice of the distortion function is not inherently

addressed within the theory. One approach to address this limitation is to consider the generalization

of this theory, the IB [160].

As it has been validated in the Chapter 4, a supervised DL algorithm, as the proposed in this

chapter, can be formulated as an information theoretic trade-off between compression and prediction.

This property is formalized by the IB framework [97], see Section 4.1. In this way, the DNN has to

detect the most relevant features that guarantee the predictability of Y . Additionally, due to DL

architectures, typically forming a Markov chain, it has to considered that the information flow in

the DNN follows the DPI, as it described in Eq. (4.1) and Eq. (4.2).

Following the IB, the FS based on dropout technique, described in Section 5.2.1, forces to identify

the ‘bottleneck’ in the ‘gates’. In other words, the bottleneck Z in Eq. (3.22) is the subset Xs defined

as Eq. (5.2). In this way, the optimal solution is given by the following equation:

min
p(xs|x)

I(X;Xs) + βI(Xs;Y ) , (5.13)

which involves compressing the information on X while retaining the least necessary information

about Y .

As you may have noticed, it may seem contradictory to what was presented in Eq. (5.9) since

minimizing the second term, controlled by the Lagrangian multiplier β, appears to involve reducing

the MI with respect to Y . However, there is an explanation for this, considering the fundamental

role of data structure in information, as mentioned in Section 3.1.

The estimation of I(Xs;Y ) quantifies the information shared between both variables. Since

I(Xs;Y ) is not equivalent to H(Y ), it implies that H(Y |Xs) ̸= 0, as shown in Eq. (3.10). In
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this context, it can be inferred that Xs represents a compressed form of X that has introduced

additional uncertainty in identifying Y , as indicated by the conditional entropy H(Y |Xs). However,

if Xs contains sufficient information (H(Xs) > H(Y )), the features in this subset can be transformed

into a new latent space where their relationship with Y becomes more evident, leading to a reduction

in H(Y |Xs).

In general, any DL model with various hidden layers, defined by the model parameters θ, aims to

reorganize and transform the information within X to map to pθ(Y |X). The multiple layers work to

transform the information, identifying features that are more salient for predicting Y , as illustrated

in Eq. (4.2). From an IT perspective, this process can be considered a reduction in the entropy of

the model, denoted by Hθ(X,Y )

In the previous section, it was introduced how the FS method by dropout technique may be

formulated as a minimization of the joint entropy H(X,Y, S), where S is the set of indices which

identifies Xs. Following the Eq. (5.12), the H(X,Y ) can be replaced by Hθ(Xs, Y ) since the DNN

has to minimize this expression. The use of the Xs in the expression Hθ(Xs, Y ) is justified by the

architecture, see Fig. 5.3, since the hidden layers directly operate on the subset Xs defined by the

indices S. As a result, the FS method by dropout technique is defined as:

argmin
θ,ϕ

Hθ(Xs, Y ) +Hϕ(S) s.t. R(S). (5.14)

In conclusion, the bottleneck defined by Eq. (5.13) represents the minimal information that has

to be propagated to the DNN for solving the problem defined by p(X,Y ). In an ideal case, the

compressed representation Xs would have I(Xs;Y ) = H(Y ) = H(Xs). It means that Xs contains

the minimal information possible and is sufficient for predicting Y . In this way, the information

propagation in the DNN would be considered as a noise-free channel (see Section 3.2), and the DPI

would be satisfied by the special case represented by the equality in Eq. (4.1). In other words, there

would be no loss of information in the information flow through the different layers.

Key Algorithmic Details

This section introduces key insights that can be derived from the IT perspective. These insights are

crucial for establishing the optimal configuration of the DNN with the FS method.

As it is observed in Eq. (5.14), the model has to solve two problems: Hϕ(S) that consists in

solving the FS process and Hθ(Xs, Y ) that is the typical solving problem of a supervised problem.

Each problem is well-defined by fitting the parameters θ (parameters of the hidden layers in the DNN

model) and the parameters ϕ, which consists on the FS method depicted in Eq. (5.2). However,

following the expression of the joint entropy, Eq. (3.6), it depends on H(Xs) that depends on S so

it is deduced that H(Xs) ∼ H(S). It may represent a potential problem to converge the DNN to an

optimal solution.

Considering that H(S) is constantly changing, specially in the initial epochs of training where

the variational parameters ϕi (dropout rates) are initialized to have the highest entropy value,

as proposed in Section 5.3.1, the first epochs can be challenging for the model. To address this,

the use of the annealing trick [258], originally proposed to improve the training of the Variational

AutoEncoder (VAE) [254], is proposed. This involves applying a scheduler that gradually increases

the Lagrangian multiplier of the regularization factor, λ in Eq. (5.4), during the training process.
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By doing so, the model in the initial epochs focuses on resolving Hθ(Xs, Y ), and after a fitting stage,

it gradually shifts towards minimizing Hϕ(S). More details about the scheduler proposed in Section

5.4.1.

Following the IB, another key factor to consider is that the architecture directly influences the

number of features selected. As observed in Eq. (5.13), the bottleneck lies in the FS method, and,

as justified, it defines the minimal information that needs to be propagated to the hidden layers of

the DNN, which aims to reorganize and transform the information within X to solve the problem.

Consequently, a deeper DNN might require less common information for predicting Y from Xs, i.e.,

a lower I(Xs;Y ).

From this observation, it is deduced that using a deeper DNN may pose a challenge in terms

of interpretation with respect to the original variables. While a deeper DNN results in a more

sparse representation of the input X, the relationship between Xs and Y becomes more difficult

to interpret. Therefore, the network architecture must be carefully considered when applying this

method.

5.4 HyperSpectral Band Selection Case

Nowadays, characterized by an ever-growing volume of data, the application of FS methods becomes

crucial to tackle the challenges associated with data analysis. This issue is particularly evident in HSI,

where the continuous increase in data volume poses new challenges, leading to a significant burden

on manual labor and material resources. Addressing these challenges requires effective strategies to

reduce this burden, enhance efficiency, and extract meaningful insights from the data [259].

In the medical domain, the use of HSI is a commonly explored field due to its substantial

diagnostic and surgical guidance potential (see Section 2.6). Nevertheless, the extensive information

furnished by HSI often comprises redundancy and non-essential data. It is vital to discern the

most pertinent wavelengths for a specific application to enhance prediction accuracy and reduce

classification algorithm execution time. Moreover, eliminating noisy wavelength bands can further

enhance the classification process [260].

In this section, it is assessed the effectiveness of FS by DL in the context of HSI, considering its

challenging high-dimensional feature space. The primary objective is to identify the subset of wave-

lengths that provide crucial information, identifying the Markov Blanket, essential for resolving the

supervised problem. Our experiment focuses on the application of HSI for the identification of bio-

logical tissues. To ensure robust validation, the obtained results will be compared with information

available in the state-of-the-art.

5.4.1 Experimental Setup

In HSI, the information is captured and represented by a data structure consisting of a series of

spectral bands or channels, with each band or channel capturing information about the light reflected,

emitted, or transmitted by objects in the environment over a narrow range of wavelengths. Let the

hyperspectral image of spatial dimensionsW×H with L spectral bands be denoted byX ∈ RW×H×L.

However, in this experiment, it is proposed to find the spectral band more relevant for identifying the

variable Y . For this reason, the hyperspectral image is reshaped to produce the matrix X ∈ RN×L

where N =WH is the number of pixels in the image.
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Linear + BatchNorm +
ReLU + Dropout Linear + SoftMaxFeature Selector

Figure 5.5: DNN architecture proposed for experimental results. The feature selector is based on
the FS method based on dropout technique, which has the purpose of identifying the subset Xs.
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Figure 5.6: Proposed scheduler for applying the annealing trick during the training process of 200
epochs.

For the purpose of this study, a DNN is employed, featuring an architecture consisting of var-

ious fully-connected layers, as illustrated in Fig. 5.5. Notably, the proposed architecture for the

experimental results is intentionally not excessively deep. This decision, as discussed in Section

5.3.2, is made to preserve the interpretability of the data, preventing the generation of a subset Xs

where the relationship with Y becomes less evident. The number of neurons in the hidden layers

is adjusted for each dataset. Furthermore, a dropout rate of 0.5 has been applied to the hidden

layers to mitigate overfitting and encourage the model to achieve a higher compression in the latent

space, as demonstrated in Section 4.3.2. It is important to note that the variational parameters of

the feature selector are set to ϕi = 0.5, as this has been identified as the optimal initialization value,

as demonstrated in Section 5.3.1.

Annealing Trick

As it was discussed in Section 5.3.2, we recommend applying this technique to mitigate the problems

associated with the entropy of the subset Xs. This technique is previously proposed for training

VAEs [258] by increasing linearly the regularization factor. However, in this thesis it is proposed a

scheduler based on cosine function. This approach of scheduler are previously proposed for applying

the annealing trick to the learning rate parameter [261] and DPM [262].
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The cosine scheduler is defined as follows:

s(t;T ) = 1− cos
(
t

T
· π
2

)2

, (5.15)

where T is the number of total epochs of the training and t is the current epoch. A visualization of

this scheduler is illustrated in Fig. 5.6.

Examining Fig. 5.6, where the scheduler is defined for training a DNN for 200 epochs, the

regularization factor, intended to emphasize sparseness or reduce Hϕ(S), is minimal in the initial

epochs. Around epoch 50, the regularization factor gradually increases, following an approximately

linear trend until around epoch 150. In the final 50 epochs, it slowly converges to the maximum

value.

This scheduler is particularly relevant in the initial steps, as the model initially focuses on solving

the classification problem. The FS process is considered in the subsequent epochs, thereby increasing

the importance of this function. As the DNN tackles the problem in an environment with maximum

uncertainty, defined by the different ϕi values and the dropout rates of the hidden layers, once the

model generalizes effectively, the reduction of uncertainty in S would not negatively affect the model.

Training process

To ensure consistency across various experiments, common practices have been applied. The exper-

iments are trained for a total of 200 epochs. The batch size is adjusted for each dataset to ensure

100 iterations per epoch, resulting in a total of 20000 iterations throughout the training process.

The chosen optimizer is ADAM [65] with a learning rate set to 10−3.

Additionally, the dataset is divided into a training set and a test set to validate the training

process and ensure that overfitting is avoided. The test set comprises a randomly selected subset,

corresponding to 20% of the dataset. For the sake of reproducibility, a fixed seed has been applied

across different experiments, ensuring that the subset of samples for a specific dataset remains the

same.

5.4.2 HyperSpectral Laparascopy Dataset

HyperSpectral Imaging plays a crucial role in providing non-destructive analysis of object com-

ponents that are challenging to distinguish with visible light (see Section 2.6). Examples include

identifying fat in meat, distinguishing between similarly colored resins, and detecting foreign matter

contamination [263], especially in the NIR region (850-2500 nm). At the Tokyo University of Sci-

ence, a HSI rigid scope system has been developed for medical applications [263]. Indeed, this device

functions as a HSI laparoscopy device, making it suitable for minimally invasive surgery as it can be

introduced through a small incision to operate on internal organs in the abdomen or pelvis. Such

a device holds the potential to enhance current trends in this technology, including robot-assisted

surgery powered by AI or augmented reality [264].

However, the current acquisition process for the system is time-consuming, requiring modifica-

tions to the light source and an acousto-optic tunable filter [263]. Consequently, the acquisition

system takes minutes to obtain an image, as camera settings, optical design, and the number of

wavelengths have not been optimized to prioritize imaging speed.



116 CHAPTER 5. FEATURE SELECTION WITH DEEP LEARNING: HYPERSPECTRAL BAND SELECTION

(a) (b)

Spatial Dimension (W)

S
p
a
tia

l D
im

e
n
sio

n
 (H

)

Spect
ra

l D
im

ensio
n (L

)

10
00

10
42

10
84

11
32

11
74

12
22

12
64

13
12

13
54

14
02

Wavelength (nm)

0.2

0.3

0.4

0.5

0.6

0.7

R
e
fl
e
ct

a
n
ce

(c)

Figure 5.7: Data acquisition with the HSI rigid scope system. In (a), the scenario for data acquisition
is illustrated. In (b) displays a synthetic RGB image generated from the NIR, and (c) illustrates
the data structure of hyperspectral imaging. Here, W and H correspond to the spatial resolution of
1280× 1024, and L represents the spectral dimension with 68 bands.

The proposed FS method aims to optimize the number of wavelengths required, reducing this

number, and thereby improving acquisition time. Additionally, this approach is relevant for enhanc-

ing data interpretability by reducing the number of wavelengths for analysis.

In this section, a hyperspectral image obtained during a research study is utilized to identify

relevant features for distinguishing different tissues, including fat, muscle, nerve, and the hypervas-

cularized zone. Figure 5.7 illustrates the data acquired in-vivo from a porcine. In Fig. 5.7a, the

scenario where the image was acquired is depicted, showing the introduction of the HSI rigid scope

into the subject. An RGB representation derived from the hyperspectral image is observed in Fig.

5.7b.

Concerning the data structure employed in this experiment, as depicted in Fig. 5.7c, the hyper-

spectral image has spatial dimensions W ×H (corresponding to 1280× 1026) with L spectral bands

(68 bands) denoted by X ∈ RW×H×L. However, as the objective of this work is to identify the

most relevant spectral bands, the input X has been reshaped to consider each pixel independently,

i.e., X ∈ RN×L where N = W ·H. For this reason, only the spectral information is considered for

classifying each pixel, which goes from 1000 nm to 1402 nm.



5.4. HYPERSPECTRAL BAND SELECTION CASE 117

Figure 5.8: Spectral data exploration of the dataset using boxplots. The small dots outside the
minimum/maximum values represent the outliers. The box boundaries represent the IQR.

Table 5.1: Laparoscopy Dataset Summary. The label ‘vessel’ represents the hypervascularized zone.

Dataset Fat Muscle Nerve Vessel

Original 199674 230971 27991 170854
Undersampled 10000 10000 10000 10000

Preprocessing

In the acquisition process, four hyperspectral images were obtained from three different angles. The

different images were unified, and the hyperspectral signatures have been reduced by identifying

outliers using the well-known Interquartile Range (IQR) methodology [142]. In this way, those

pixels that contain an outlier in a one or more bands are removed from the dataset. Figure 5.8

shows the result of this methodology.

The dataset comprises more than 600, 000 samples, which correspond to the pixels of the dif-

ferent images. Table 5.1 depicts the number of samples per class that you can find in the dataset.

To mitigate the high imbalance among samples for different classes, particularly focusing on the

identification of nerves, an undersampling technique was employed to balance the dataset.

Three different methods were evaluated for balancing the dataset, the NearMiss method [265], a

second method based on K-Means [260] and a method based on Orthogonal Complements Subspace

Projection (OCSP) [266]. The downsampling method has the purpose of reducing the number

of samples to 10000 per class, as it is shown in Table 5.1, having a dataset composed of the most

relevant 40000 samples. For the evaluation of the different methods, it was considered a quantitative

evaluation based on cross-validation using a SVM for classification and a qualitative result using

Potential of Heat-diffusion for Affinity-based Trajectory Embedding (PHATE) [267] for dimensional

reduction. The use of PHATE allows to obtain a representation that preserves local structure from

the high-dimensional data without losing the global structure.

As a result, the OCSP method was used for carrying out the downsampling. The reason why
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the OCSP was selected is due to that this method allows obtaining more variability in the subset of

samples extracted. More details can be found in Appendix A.2.3.

5.4.3 Feature Selector Configuration: Experimental Evaluation

The FS method based on dropout technique has some hyperparameters that have to be considered for

obtaining an optimal solution. The first of them, is the Lagrangian multiplier (λ) of the loss function

defined by the Eq. (5.4). As it was mentioned in Section 5.2.1, λ shares a direct relationship with

the sparseness of the X. For this reason, it has to be defined as a hyperparameter of the algorithm

that will indicate the maximum value of the penalization factor, which is controlled by the cosine

scheduler defined in Eq. (5.15). In this way, the regularization factor in an epoch t is defined as

follows:

λt = λ · s(t;T ). (5.16)

Regarding the configuration of the FS method, it is necessary to take into consideration different

hyperparameters depending on the Bernoulli relaxation (see Section 5.2.2). In this section, the

Concrete approach, see Eq. (5.6), and the Gaussian approach defined by Eq. (5.8) have been

evaluated.

The feature selector using the Gaussian approach has a ‘locality’ feature in the estimation because

of the use of the Reparameterization Trick, as it was indicated in Section 5.2.2. As illustrated in

Fig. 5.4b, the ϵ is centered on the dropout rate ϕ, and for this reason, the σ of the Gaussian

distribution, which is a hyperparameter, is important. A small σ means that the dropout technique

is not well implemented, and an extremely high σ would reduce the option to a binary case, so the

continuous relaxation is not reflected. As the range is from 0 to 1, the optimal value is using a σ of

0.5, as it is illustrated in Fig. 5.4b. Yamada et al. [253] provide a more in-depth analysis of the σ

hyperparameter tuning, and in conclusion, it was indicated that the optimal value of σ is 0.5.

The Concrete approach for FS is not so intuitive, and it may depend on the dataset. Contrary

to the previous case, the ϵ is defined by a uniform distribution (see Eq. (5.6)) so the effect of the σ

in the previous Gaussian case can be associated to the τ for the Concrete approach. However, it is

not intuitive and, for this reason, different configuration would be considered. In the experimental

results, it will be evaluated different values of τ as 0.2, 0.3 and 0.5.

Experimental Result

As detailed in Section 5.4.1, the DNN architecture proposed is based on Fig. 5.5. In this case, it is

used fully-connected layers of 68 (the number of bands in the hyperspectral image as it is indicated

in Section 5.4.2), 100, 32, and 4 neurons. Remember, considering the output layer’s role in tissue

identification, it is essential to tailor it to the specific classes of interest: fat, muscle, nerve, and the

hypervascularized zone labeled as ‘vessel’. The role of the feature selector is to eliminate irrelevant

features through the dropout technique.

Figure 5.9 illustrates bands selected by different feature selector configurations. When varying

the regularization factor (λ in Eq. (5.4)) from left to right, a notable increase in sparseness is ob-

served in Fig. 5.9 from left to right. The sparsity converges to approximately 81% with various

implementations for λ = 2. This observation underscores the relationship between λ and the con-

straint k in Eq. (5.3). An additional test was carried out using a regularization factor of 3, observing
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Table 5.2: Normalized sparsity of the input achieved through various FS methods under different
regularization factors.

FS Approach
Sparsity

λ =1 1.5 2 3

Concrete
τ = 0.2 0.66 0.71 0.81 0.84
τ = 0.3 0.66 0.74 0.81 0.85
τ = 0.5 0.68 0.75 0.82 0.87

Gaussian σ = 0.5 0.72 0.78 0.81 0.81

the consistent pattern discarding the Gaussian approach, which maintaining sparsity at 81% (see

Table 5.2).

Concerning the different implementations, the Concrete approach exhibits consistent behavior

across different experiments, with modifications to the hyperparameter τ , as illustrated in Fig. 5.9a,

Fig. 5.9b, and Fig. 5.9c. In general, the Concrete approach for FS identifies distinct regions in

the wavelength, grouping various bands of the signal. As λ increases, these clusters consistently

reduce, resulting in a subset of bands in each region. For instance, observing Fig. 5.9b, in the region

approximately between 1213 and 1220, using λ = 1 selects 6 bands, and increasing to 1.5 and 2 the

regularization, this number is reduced to 5 and 4, respectively.

Certainly, as it has been discussed in this chapter, the application of FS methods is instrumental

in improving the interpretability of high-dimensional data, as the HSI. In the context of tissue

identification, state-of-the-art literature indicates that the distinctive absorption characteristics of

fat tissue can be observed in the spectral range around 1200 and 1400 nm, marked by a peak in lipid

absorption [268, 269]. This knowledge is particularly relevant for muscle identification, given the

absence of lipids in muscle tissue [270], especially around 1200 nm, where the absorption coefficients

of water (abundant in muscle) and lipids are comparable [270]. In addition, around 1300 nm there is

clear evidence for discriminating between water and lipids [270, 268], which a range of the wavelength

that it is considered by the FS method.

The identification of nerve tissue is closely tied to the characteristics of the myelin sheath sur-

rounding the nerve axon, which, in turn, is enveloped by collagen. Collagens, crucial components of

Schwann cells, play a vital role in peripheral nerves [271], such as those captured in this dataset. In

existing literature, a soft peak of absorbance around 1100 nm has been identified [268], potentially

justifying the consistent selection of the band corresponding to 1084 nm by the FS method. Addi-

tionally, there is another peak around 1500 nm [268], possibly explaining the selection of the band

corresponding to 1402 nm in various implementations. However, it is worth noting that the 1200

nm range is also significant for collagen.

The identification of the hypervascularized zone, labeled as a ‘vessel’ in the dataset, poses a

challenge in justifying the selection in the range of 1000 to 1400 nm. Upon reviewing the existing

literature, it appears that there is no specific band identified as relevant in this range. However, a

potential justification might be linked to the identification of cholesterol in the blood, leveraging the

bands crucial for identifying lipids, and considering the high composition of water.

Finally, Fig. 5.10 illustrates the classification result of an image acquired from a different porcine,

distinct from the one shown in Fig. 5.7. This image lacks labeled samples and has been utilized

to qualitatively assess the model’s performance using the bands selected by the proposed approach.
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Figure 5.9: HSI band selection using the FS based on dropout technique with different configurations.
The Concrete approach is evaluated with different τ , 0.2 (a), 0.3 (b) and 0.5 (c). The Gaussian
approach (d) is evaluated using the optimal hyperparameter setting σ = 0.5. From left to right,
there are applied three different regularization factors, 1, 1.5, and 2, respectively.
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Figure 5.10: Classification of a hyperspectral image obtained from a second porcine that does not
contain labeled samples.
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Figure 5.11: Histogram depicting the dropout rate values in various configurations of the FS method
based on dropout technique. In (a) and (b), the histogram illustrates the Concrete approach with
τ = 0.3 and λ set to 1 and 2, respectively. In (c), the Gaussian approach is employed with λ set to
1.

Specifically, the bands selected by the Concrete dropout with a regularization factor of 2 were

employed (see Fig. 5.9b). Despite the challenge of identifying different tissues in the synthetic RGB

representation, the model successfully differentiated between various tissues, as evidenced by the

classification result for the ‘Nerve’ tissue shown in Fig. 5.10.

Dropout rate (ϕi) Progression

Another crucial factor to consider is the value of ϕ in different implementations, which it will be

discussed in this section. As explained in Section 5.2.2, the Gaussian approach was introduced to

address the problem associated with the high variance in the Concrete and Hard-Concrete approaches

due to their heavy-tailed nature [253]. In other words, the Concrete approach faces challenges in

obtaining a precise ϕi = 1 and may converge to a value close to ϕi ≃ 1, but achieving an exact 1 is

much more complex. The Hard-Concrete approach attempts to mitigate this problem [248], but it

is still present. This problem in the Concrete approach is evident in Fig. 5.11.

Examining Fig. 5.11a, it is evident that there are ϕi values that are not located near 0 or 1

when the Concrete approach is applied with τ set to 0.3 and λ set to 1. This issue is less noticeable

when using λ set to 2, as shown in Fig. 5.11b. However, there are still some features that cannot

be considered 0 or 1. In contrast, the Gaussian approach with λ set to 1 ensures that all ϕi values

are located at 0 or 1, as depicted in Fig. 5.11c.

Figure 5.12 illustrates the dropout rate progression during the training process. Examining Fig.

5.12a, it is evident that ϕi values converge to 1 for some features but still cannot reach exactly one.

Therefore, it is proposed to apply a threshold in this approach to establish the selected features.
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Figure 5.12: Progression of the dropout rate in the FS method based on the dropout technique. In
(a), the method is illustrated using the Concrete approach, and in (b), it is illustrated using the
Gaussian approach. Two cases are presented based on the regularization factor, with λ set to 1
represented by the solid line and set to 2 depicted by the dashed line. Finally, in (c) is illustrated
the ‘sparsity’ during the training in both approaches using a λ = 2.

The results obtained from the Concrete approach in Fig. 5.9 were obtained using a threshold of

0.9, considering features where ϕi < 0.9 as relevant. Observing Fig. 5.11a, the features that are

located in the last bin are discarded. Intuitively, it can be understood that the ‘gates’ with a 90% of

probability of dropout are irrelevant for the model because it is likely deactivated. If it is necessary,

this threshold might be more aggressive, such as 0.5. The Gaussian approach does not require this

threshold because values converge rapidly to 0 or 1, as illustrated in Fig. 5.12b.

As a result, the Gaussian approach achieves sparsity in fewer iterations compared to the Concrete

approach, as illustrated in Fig. 5.12c. The figure indicates that the Gaussian approach begins to

attain a sparse representation around epoch 40, while the Concrete approach initiates this process

only around epoch 60. In other words, there are no dropout rates in the Concrete approach to

surpass 0.9 (the threshold used) until this epoch. Furthermore, the Gaussian approach reaches its

highest sparsity around epoch 130, whereas the Concrete approach attains its maximum value in the

later epochs. Therefore, the Gaussian approach converges to a sparse representation more efficiently

in terms of number of iterations.

Finally, it is noteworthy that in the initial steps, when λt is small, the different ϕi tend to

approach 0. For instance, Fig. 5.12b shows that the different features have a decreasing ϕi, but

after 40 epochs, the regularization factor λt starts to become relevant, penalizing the number of

activated ‘gates.’ This behavior was expected, as described in Section 5.3.1 because the model aims
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Figure 5.13: LassoNet progression by increasing the L1 penalty indicated by λ.

to minimize H(S) in the case where all features are considered. In other words, it attempts to

minimize the uncertainty produced by the dropout rates while propagating the most information

contained in the inputX. When λt becomes relevant in penalizing the activated ‘gates,’ the irrelevant

features start to be discarded, reducing H(S) by ϕi → 1.

5.4.4 Comparative Evaluation

In this section, the FS method based on dropout will be compared with the other two relaxations

of the L0 methods mentioned in this chapter, namely, LASSO and LassoNet. As mentioned earlier,

these methods address the non-convex L0 problem by incorporating L1 regularization, transforming

it into a convex problem suitable for linear models. LassoNet [246], another DL approach for FS (see

Fig. 5.2), requires post-thresholding due to the optimization of the L1 norm using gradient descent.

This section will provide a comparative analysis of both methods with the proposed approach in

this chapter.

Firstly, it is important to note that LassoNet has two key hyperparameters for optimal perfor-

mance: M , which controls the thresholding, and λ, the regularization factor (see Eq. (5.1)). Setting

M = 0 corresponds to exactly LASSO, so it is crucial to choose a value that considers the non-linear

components introduced by the feed-forward DNN. Various values of M have been evaluated, and for

this experiment, it has been determined that M = 2. Additionally, it is essential to set λ to control

the L1 penalty. Figure 5.13 illustrates the progression of the DNN as λ increases, resulting in higher

sparsity of the subset Xs. Here, it can be observed that the Lagrangian used for the regularization

factor has to scale highly for obtaining a sparse representation, which complicates the selection of

the optimal λ value. Notably, around 85%, the accuracy of the model begins to be penalized. As a

result, a value of λ = 100 is chosen, corresponding to a point of sparsity around 80%.

Regarding the LASSO method, the L1 penalty needs to be set. For comparison purposes, this

value is set to λ = 100 to demonstrate the differences with LassoNet.

The wavelengths selected for the Laparoscopy HSI dataset by LASSO and LassoNet are illustrated

in Fig. 5.14. It is observed that the sparsity obtained with λ = 100 is similar to that obtained in

the FS based on dropout using λ = 2, as shown in Fig. 5.9 on the right.
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Figure 5.14: HSI band selection using (a) LASSO and (b) LassoNet. Both methods have the
regularization factor of the L1 penalty (λ) set to 100.

Table 5.3: Classification metrics results for each FS method. The specific hyperparameters for each
method are indicated.

Method Accuracy Precision Recall F1-Score

Concrete (τ = 0.3, λ = 2) 0.9934 0.9933 0.9933 0.9933
Gaussian (σ = 0.5, λ = 2) 0.9959 0.9958 0.9959 0.9959
LassoNet (M = 2, λ = 100) 0.9666 0.9672 0.9664 0.9665
Lasso (λ = 100) 0.9834 0.9833 0.9833 0.9833

In the case of LassoNet, as shown in Fig. 5.14b, the band selection corresponds to the results

obtained by the method proposed in this chapter. Specifically, the features selected are the same as

those observed in Fig. 5.9c. This result is understandable since both DL methods use a relaxation

of the L0 penalty. The difference lies in the way of obtaining that relaxation, being the proposed

method, based on the dropout technique (see Section 5.2.1), a statistical approach.

Concerning the LASSO method, utilizing a linear model, it demonstrates a distinct pattern of

selecting equidistant bands, as illustrated in Fig. 5.14a. Furthermore, it exhibits a less sparse

representation compared to LassoNet, despite sharing the same value for λ, and the FS method

based on dropout. This distinction emphasizes that the non-linear components controlled by M in

LassoNet contribute to obtaining a more compressed representation of the input X.

Table 5.3 presents the different classification metric values obtained by the various models. As

observed using the test set, the results demonstrate that the different methods perform well in solving

the problem. The primary difference among the methods is the sparsity obtained, with LASSO, the

non-DL method, exhibiting lower sparsity.

It is essential to highlight that FS methods aim to enhance the interpretability of the data, as

emphasized in the introduction section. In Section 5.4.3, the justification for the selected features

in Fig. 5.9 was provided by referring to relevant studies in the literature. This rationale was not

solely derived from the higher sparsity of the FS method based on dropout; rather, conclusions were

drawn based on the specific pattern observed in different clusters of bands. Examining the result

obtained by LASSO (Fig. 5.14a), it becomes evident that such a pattern is not manifested with this
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Figure 5.15: The hyperspectral images from 4 different patients, where the tumor area is surrounded
in yellow (first row). The ground-truth, labeled samples from a semi-automatic labeling tool, are
illustrated in the second row. Normal, tumor, hypervascularized and background classes are repre-
sented in green, red, blue, and black, respectively. Image obtained from [260].

method. However, it is expected that LassoNet could capture this pattern, although the scale of the

regularization factor (see Fig. 5.13) complicates this observation.

5.4.5 Additional Experiment: Band Selection for Brain Cancer Detection

The high-dimensional structure of HSI is expected to contain essential information for tissue identi-

fication, making it potentially valuable for cancer detection. Martinez et al. [260] identified the most

relevant wavelengths for brain cancer detection by reducing the HSI data from 128 bands, spanning

the spectral range from 400 to 1000 nm, to 48 bands.

In their study [260], the authors proposed the use of different wrapper FS methods, such as ACO

and GA. As mentioned in Section 5.1.2, these methods are computationally intensive and may yield

subsets that are overly specific to the particular classifier used.

This section aims to provide a qualitative evaluation of the proposed FS method, comparing

the results obtained with those achieved by the computationally intensive methods proposed in the

original work. The goal is to assess if the proposed method’s results are comparable to those obtained

by the more resource-demanding approaches.

Dataset and Preprocessing

For this study, six hyperspectral images from four different patients were employed. These images

encompass pixels labeled into four distinct classes: normal tissue, tumoral tissue, hypervascularized,

and background. Figure 5.15 illustrates the hyperspectral image, represented by a synthetic RGB

image, along with the labeled pixels. The label ‘background’ is ignored, as it represents elements

outside the brain. Image labeling [260] was conducted using a combination of pathology assess-

ment and neurosurgical criteria through a semi-automatic tool based on the Spectral Angle Mapper

algorithm [272].

As evident from Fig. 5.15, the dataset is imbalanced. The tumoral tissue, as a reference, contains

11,054 labeled pixels, while both normal tissue and hypervascularized contain over 25,000 pixels each.

To address this imbalance across the six images, the proposed K-Means-based method was employed

for dataset balancing [260]. The authors suggested undersampling the dataset to 1000 samples per

class, justifying this reduction due to the quadratic computational complexity of the SVM, the ‘black
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Figure 5.16: Most relevant spectral bands for brain cancer detection. In (a), the bands proposed
in [260]. In (b), the relevant features are illustrated based on the FS method employing dropout
technique.

box’ used in their wrapper methods. This limitation is not necessary in the proposed method but

to ensure unbiased conclusions, the same undersampling method is applied in the results presented

in this section.

Ultimately, the images undergo preprocessing, adhering to the guidelines outlined in the original

work [260]. Moreover, any outliers have been removed using the IQR methodology, as it was done

in Section 5.4.2.

Band Selection Result

The experimental setup, which is described in Section 5.4.1, has been applied using a DNN ar-

chitecture identical to the evaluated using the Laparoscopy HSI dataset (see Section 5.4.3). The

DNN architecture based on Fig. 5.5, it is composed by fully-connected layers of 128, 100, 32, and

3 neurons. The FS configuration used corresponds to the Concrete approach, Eq. (5.6), setting the

hyperparameter τ to 0.3 and the regularization factor λ = 2.

Figure 5.16 presents a comparison between the spectral bands selected in [260] and those selected

by the proposed approach. Firstly, it is evident that the proposed approach achieves higher com-

pression of subset Xs, resulting in increased feature sparsity. Consequently, the 48 bands proposed

in [260], illustrated in Fig. 5.16a have been reduced to 32 spectral bands, depicted in Fig. 5.16b.

From a biological analysis perspective, certain wavelength ranges have been associated with

specific optical properties of cancer tissues [144]. Hemoglobin is particularly relevant for identifying

tumoral tissue, and absorbance peaks in the spectral range from 450 to 600 nm have been observed

[273, 268]. Specifically, oxygenated hemoglobin exhibits two absorbance peaks around 550 and 600

nm [268].

The results in Fig. 5.16 indicate the presence of the aforementioned wavelength ranges in both

methods. Specifically, the wavelength range around 600 and 560 nm is selected in both cases, with

the band around 600 nm appearing more relevant. Around 650 nm, both methods identify a group

of bands that appear relevant.
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Figure 5.17: Model performance progression with increasing sparsity. The graph illustrates a decline
in performance as sparsity is increased.

In the NIR spectrum region, spanning from 700 to 900 nm, there is a region selected by both

methods, particularly around 720 nm. However, there is more discrepancy in this region. Figure

5.16a shows a sparse selection of bands in that region, choosing 8 different bands from 777 to 900

nm. On the other hand, Fig. 5.16b places specific emphasis around 760 nm. However, the specific

reason for the relevance of this wavelength remains unclear, suggesting that the proposed methods

may have identified a pattern influenced by the acquisition system or environment.

Finally, it is worth noting that the feature sparsity in the DL model leads to a loss of performance

in the model, as it is depicted in Fig. 5.17. As it is observed, the model starts to obtain the sparse

representation in the epoch 100 and from that moment the model’s performance, represented by the

CE, is slightly worse, converging to ∼ 0.15. It is not specially relevant, but it provides a perspective

of the problem associated with the wrappers methods, as it was indicated in Section 5.1.2, these

methods might result in subsets that are overfitting the model.

Considering that the dataset consists of different images, it can be assumed that some hyperspec-

tral images may pose challenges in identifying distinct patterns. For example, Fig. 5.18 presents two

examples using the images P008-01 (Fig. 5.18a) and P015-01 (Fig. 5.18b). In these experiments,

it is evident that P008-01 requires the inclusion of bands in the NIR range, specifically from 800

to 900 nm. On the other hand, P015-01 utilizes bands reflected in Fig. 5.16b. Consequently, it

can be inferred that the subset Xs observed in Fig. 5.16b impacts the performance in accurately

estimating the signals extracted from P008-01. However, the selected bands proposed in [260] may

better handle these signals from P008-01, as they include more bands in the NIR range.

Putting aside details, the observations in Fig. 5.18a might be a consequence of the noise present in

the hyperspectral image due to the acquisition process, but this cannot be guaranteed. It is essential

to emphasize that the results presented in Fig. 5.18 are obtained using a heavily unbalanced dataset.

Despite applying techniques to address this issue, the results are presented for comparison purposes

and should not be considered definitive.



128 CHAPTER 5. FEATURE SELECTION WITH DEEP LEARNING: HYPERSPECTRAL BAND SELECTION

HypervascularNormal Tumor

44
2

48
2

52
6

56
6

60
9

64
9

69
3

73
3

77
7

81
7

86
0

90
4

Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0
R

e
fl
e
ct

a
n
ce

Sparsity: 0.55

(a)

44
2

48
2

52
6

56
6

60
9

64
9

69
3

73
3

77
7

81
7

86
0

90
4

Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

R
e
fl
e
ct

a
n
ce

Sparsity: 0.83

(b)

Figure 5.18: Most relevant spectral bands for brain cancer detection in (a) P008-01 and (b) P015-01.

5.5 Feature Selection by Dropout: Information-Theoretical

Validation

This section aims to validate the IT perspective described in Section 5.3. By employing the afore-

mentioned IT perspective, it seeks to establish a theoretical understanding of DL models, with the

goal of bridging the gap between interpretability and accuracy trade-offs in these models. Continuing

from the work presented in Chapter 4, this validation will be conducted through IP analysis.

Figure 5.19 illustrates the IP estimation obtained by the kernel-based entropy estimator using

the RBF kernel and applying the kernel-aligment for the kernel-width estimation (see Section 3.6.3).

However, for obtaining a better estimation in the first iterations, the kernel-width has been initialized

by the normalized Silverman rule, Eq. 3.31. Regarding the DL model used, it has been obtained by

replicating the experiments indicated in Section 5.4.3, specifically using the Concrete approach by

setting the hyperparameter τ to 0.3 and the Lagrangian multiplier in the objective function λ to 2,

see Eq. (5.4). This model obtained the result illustrated in Fig. 5.9b on the right.

As mentioned in Section 5.4.3, the DNN consists of four layers: the feature selector, respon-

sible for generating the subset Xs, and three fully-connected layers with 100, 32, and 4 neurons,

represented in Fig. 5.19 as L1, L2, and L3, respectively.

Firstly, considering the Markov property of the DNN architecture, it is crucial to validate the

DPI. In Section 4.1, it was indicated that a supervised DL model employs mechanisms to solve the

problem defined by p(x, y). In this process, the transmission of information is governed by two DPI:

the forward DPI defined by Eq. (4.1) and the backward DPI depicted in Eq. (4.2). This pattern

is well identified in Fig. 5.19, decreasing the I(X;T ) in the deeper layers and increasing I(T ;Y ) in

the deeper layers.

As documented in Section 5.3.2, within the IB framework, the bottleneck in this architecture is

located in the subset Xs obtained by the FS method using the dropout technique, as shown in Eq.

(5.13). Therefore, subset Xs defines the trade-off between compression and prediction, indicating the

minimal information on X required for predicting Y . This compression of information is illustrated

in Fig. 5.19, continually compressing the input X by selecting the relevant features defined by the
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Figure 5.19: IP estimation using the FS method based on dropout technique. As reference, the
estimation of H(X) is around 5 bits.

subset Xs.

As observed in Fig. 5.19, the loss of information in X results in a smooth reduction in the

predictability of Y . The subset Xs compresses X by more than 1 bit, and this reduction has an

impact on predictability of around 0.1 bit. Based on this observation, it is concluded that in the

original space the compressed information is not fully representative for obtaining Y and the hidden

layers of the model have to ‘transform’ the information contained in the subset for getting a more

evident representation for predicting Y .

Regarding the hidden layers of the DNN, the different layers show a clearly fitting phase during

the training of the model. It can be deduced a light compression phase in the layer L1 but it is

not specially relevant. Additionally, the output layer, L3, converges to a point where I(X;L1) =

I(L1;Y ) = 2. Given that the test dataset is balanced and there are 4 classes to identify, the

theoretical maximum value corresponds to log2(4) = 2. Given this, it can be considered that the

model is perfectly identifying the pattern of both variables, X and Y . This might be a consequence

of defining the bottleneck by Xs, since the DNN has less liberty to extract features from the original

space to extract features that he considered relevant, as it is commonly done in the input layers of

a DNN.

In conclusion, the IT perspective of the proposed method described in Section 5.3 has been

validated through the IP analysis. This analysis, based on IP, is particularly relevant for illustrat-

ing that Xs is a compressed version of the input X and how this compression involves a loss of

information for identifying Y . In other words, the compression of information leads to a loss of

predictability, as expected, and it is far from the theoretically ideal compression mentioned earlier,

where I(Xs;Y ) = H(Y ) = H(Xs). For this reason, it is essential to note that, in general, higher

compression would imply that the selected features become less representative. However, as it has

been previously indicated, a subset Xs with a minimal loss information for predicting Y , in practical

case, can still be considered as a Markov Blanket. Furthermore, if the output layer is considered,

it is observed that it meets the requirements to consider said space as a Markov Blanket, but in a
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space obtained from different non-linear iterations that pose a challenge to interpret in terms of the

original variable.

5.6 Discussion

As introduced at the beginning of this chapter, in medicine, the FS is not focus exclusively on

reducing the dimensionality of the problems but also on reducing costs involved, as it is crucial to

understand reasons behind disagreements regarding disease diagnosis among image-analysis experts

[232]. Therefore, it is necessary to use a FS method that, in this chapter, is proposed a supervised

DL model.

In this chapter, it has been proposed to use a FS method based on the dropout technique,

essentially solving the problem of the sparse representation defined by L0 regularization, which is

non-convex and computationally expensive and intractable for high-dimensional data [120]. On the

other hand, LASSO is a linear approach that transforms the problem into a convex problem by using

the L1 as a regularization factor, instead of the L0. This approach has been adapter to DL model

previously [245], with the current reference being LassoNet [246]. As it has been demonstrated in

Section 5.4.4, the solution obtained by LassoNet and the FS method described in Section 5.2.1 yield

similar results. This is because both methods are addressing the same problem, defined by the

L0, but from different perspectives, with the FS method based on dropout employing a statistical

approach.

The primary goal of this thesis is to enhance the interpretability of DL models to improve their

reliability through the use of IT. This task is specially relevant in different fields, such as medicine,

where the trade-off between accuracy and interpretability of the model is relevant [91]. For this

reason, an IT perspective has been to describe the solving-mechanism of this FS method by dropout,

as discussed in Section 5.3.

Given this IT perspective, it has been identified a specific configuration for improving the per-

formance and dealing with problems of the proposed FS method. Firstly, it has been demonstrated

which is the optimal initial value for the configuration of the different dropout rates, ϕi, for the

mechanism of this approach described in Eq. (5.2). In this case, it has been established that the

dropout rates should be initialized as ϕi = 0.5, starting with the maximum entropy scenario. This is

because the algorithm aims to solve the problem by minimizing entropy, as indicated in Eq. (5.12).

Secondly, the problem has been shown to be well-defined in two additive terms, as seen in Eq. (5.14),

in which the second term has a restriction. To address the challenge of solving both problems si-

multaneously, the annealing trick has been proposed using a cosine scheduler, as illustrated in Eq.

(5.15). Consequently, the model initially focuses on fitting the parameters of the DL model, and

gradually, the sparse representation in the subset Xs, the restriction R(S) in Eq. (5.14), becomes

more important as λ increases in Eq. (5.4).

Initially, the model focuses on reducing the uncertainty produced by the dropout used in the

feature selector by minimizing the entropy, Hϕ(S) in Eq. (5.14) without considering the restriction

in the set of indices S. This involves propagating the maximum possible information from the input

X, represented by ϕi → 0 as it means that the different features will not be dropped out. This

progression is illustrated in Fig. 5.12, where it is observed that in the first epochs, the different ϕi

tend to 0 and later increase in those features that are considered irrelevant. Additionally, Section
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5.5 validates the IT perspective by using the IP. As a conclusion, the subset Xs, based on the IP

analysis, can still be considered as a Markov Blanket, the subset containing the full information

necessary for inferring Y .

Finally, the results obtained for band selection in HSI data have been validated by the spectral

analysis reported in the state-of-the-art. In this case, it has been used a hyperspectral image obtained

from a HSI rigid scope system that has been applied as a laparoscopy device (see Section 5.4.2) and

a HSI dataset, reported in the literature, for brain cancer detection (Section 5.4.5). Using both

dataset, it has been identified that the FS method has selected a subset of wavelengths that are

specially relevant for solving the problem. For instance, the image obtained by the HSI laparoscopy

device has different tissues and the FS method has special emphasis in the range around 1200 nm,

which is specially relevant for identifying muscle and fat tissue (see Section 5.4.3). In the case of the

HSI brain cancer dataset, the subset of wavelengths obtained by the FS method has much similarity

with the band selected in [260], see Section 5.4.5. Additionally, the FS method has selected multiples

bands that are located in the spectral range from 450 to 600 nm, which has been reported to be

specially relevant for identifying tumoral tissue [144].

Dropout Approach: Overfitting Concern

One of the most common concerns associated with DL models is overfitting. In the case of the

study described in Section 5.4, the samples consist of pixels obtained from a limited number of

hyperspectral images. Therefore, it is essential to ascertain whether overfitting is present when using

the DL approach for FS described in Section 5.2. It is noteworthy that the IP analysis observed in

Section 5.5 provides clear evidence that the model is not overfitting, following the work documented

in Chapter 4. It is especially relevant that the output layer converges to I(X;T ) = I(T ;Y ),

representing the theoretical Markov Blanket.

The aforementioned problem has been reported by reviewers from different works that we have

published where it has been used the proposed method for DFU detection, using the dataset de-

scribed in Section 4.2. In these works [226, 227], this approach was employed by using the scarce

dataset for DFU. The FS by dropout technique was employed as a feature ranking instead of FS

by applying different techniques, such as cross-validation, for establishing a ranking based on the

parameters ϕi of the aforementioned FS method. However, for non-specialists, this process might be

questionable because the features selected might be the consequence of a overfitting of the model.

For this reason, we provided a intuitive explanation to mitigate the concerns.

Given that the dropout technique was initially designed to address overfitting in DL models, it is

important that this technique be not only used in the first layer but included in the different layers

of the model. In Section 4.3.2 has been exposed different benefits of using this technique. However,

in the first layer, specifically, the feature selector for obtaining the subset Xs, the dropout rate acts

as a variational parameter that the model can adjust.

Using the dropout technique to obtain the subset Xs imposes a significant restriction, compelling

the model to place particular emphasis on working within the original space to achieve optimal

compression of this space defined by X. This limitation is advantageous for the DNN, enabling it to

identify distinctive ‘patterns’ present in the original space. For example, consider a subset of pixels

in a hyperspectral image that exhibits a specific pattern due to noise injected by the sensor of the

acquisition system, evident in a few specific bands. When employing a FS method, such a pattern
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may not be deemed significant, especially if it appears in only a subset of samples. Consequently,

the ‘information’ (is just noise) conveyed by this pattern should not be transmitted, and it will not

be considered for obtaining the new ‘representation’ of the input X.

In the FS method using the dropout technique, the input layer is characterized by variational

parameters that define a Binomial distribution consisting of d independent Bernoulli ‘relaxed’ dis-

tributions. This configuration serves as a ‘gate’ to identify irrelevant features by introducing noise

through an increase in ϕi. In an ideal scenario, relevant features tend to have a dropout rate close

to 0, while irrelevant features tend towards a dropout rate of 1. Essentially, this imposed restriction

in the input layer helps mitigate concerns related to overfitting, as irrelevant information is not

propagated to the subset Xs. Consequently, the model might experience a loss in performance, as

observed in Fig. 5.17. As indicated in Section 5.4.5, this could be a consequence of utilizing images

from different patients and conditions, where specific patterns may result in a loss of precision for

detecting certain samples.

5.7 Conclusions

Feature Selection methods play a fundamental role in those sceneries where the data interpretation

is fundamental. For instance, in the context of healthcare, the comprehensive data interpretation

is essential since a bad interpretation of the data can result in inconsistencies among experts when

diagnosing a disease, leading to increased variability in clinical decision-making. Additionally, those

techniques permit tackling the multitude of issues triggered by the so-called ‘curse of dimensionality’.

This chapter aims to introduce a FS embedded method utilizing DNN. The current state-of-the-

art includes various FS methods based on DL, and it has been argued that the most compelling

approach for this task is the one presented here.

As this thesis endeavors to enhance the interpretability of the solving mechanisms employed in

DNN models, aiming for a more profound understanding of these algorithms, an explanation has

been offered based on an IT perspective, extending the discussed in Chapter 4. By delving into the

internal mechanisms utilized by DNN to solve problems, this exploration provides insights that can

contribute to improving results and ensuring accurate identification of relevant features.

This study has been evaluated through the hyperspectral band selection problem, with the aim

of identifying the most crucial wavelengths for distinguishing various tissues. The proposed FS has

been validated for identifying relevant wavelengths for the identification of different tissues, aligning

with findings documented in the literature. Furthermore, one case of study has been compared with

the estimation of wavelength selection obtained by wrapper methods, known for their computational

demands. Results indicate similarity between the proposed method and wrapper methods, with the

proposed approach yielding a more compressed subset. This compression discrepancy may stem

from wrapper methods being overly specific to the classifier, selecting wavelengths pertinent to only

a limited number of samples.

As a result, this chapter outlines a DL model that delivers a solution and enhances the inter-

pretability of the provided data. This aspect can be particularly significant for the integration of

DL-powered AI in healthcare scenarios. The FS approach using DNN introduces a more interpretable

trade-off between compression and prediction, as discussed in Chapter 4. With the emphasis on ob-

taining the best compression in the original space defined by the input, the model’s decision-making
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process becomes more intuitively understandable. This improvement can contribute to enhancing

efficiency in medical applications’ workflow and instill greater reliability and trustworthiness.
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Chapter 6

Signal Decomposition:

HyperSpectral Unmixing

The purpose of computing is insight, not

numbers.

Richard Hamming

In Chapter 5, FS was introduced as a method for improving data interpretability, with HSI

employed as the case study for experimental validation. As previously discussed, HSI is a rich

image modality that provides a substantial amount of information. However, the inherent high-

dimensionality of this data presents challenges for analysis and estimation, as well as other issues

related to the ‘curse of dimensionality’ [228]. Chapter 5 addresses these concerns by extracting a

subset of relevant features, thereby identifying the most informative wavelengths for understanding

the spectral content of the hyperspectral images (see Section 5.4).

Nonetheless, the information contained in HSI data can be further leveraged to obtain a more

in-depth understanding of the captured scenes. Specifically, identifying the composition of HSI

data is a crucial task that enables a more comprehensive interpretation of the scene. HyperSpectral

Unmixing (HSU) plays a fundamental role in this process, providing a new data representation based

on the extraction of endmembers —pure signatures— and their abundance estimations. In this

chapter, a DL model for blind HSU will be proposed, drawing inspiration from contrastive learning

approaches and the IT perspective developed in previous chapters, to obtain the endmembers and

their abundance estimation.

HyperSpectral Unmixing is formulated as an inverse problem (see Section 2.4) which aims to

decompose the pixel of the hyperspectral image into pure spectral signatures —endmembers— and

their corresponding proportions, represented as the abundance map. In blind unmixing, both end-

members and abundances are estimated simultaneously, making it an ill-posed problem [110]. The

number of endmembers and their spectral signatures are typically unknown, and the observed spec-

tral measurements are often affected by factors such as atmospheric interference, sensor noise, and

spectral variability of the endmembers [131, 274]. It is also important to note that the notion of a

“pure material” is subjective and problem-dependent [275].

135



136 CHAPTER 6. SIGNAL DECOMPOSITION: HYPERSPECTRAL UNMIXING

While HSU is comparable to dimensional reduction algorithms such as PCA and ICA, it intro-

duces a critical factor absent from traditional methods: the emphasis on interpretability. Specifically,

HSU decomposes signals within the original input space, guided by certain constraints. This ap-

proach ensures that the resulting formulations enhance the physical understanding of the data, so

the solutions are constrained to physically meaningful ranges and regularized solutions.

PCA and ICA have been explored in the context of blind HSU [276] but, as discussed in Chapter

5, they do not necessarily improve interpretability. While HSU is not primarily a dimensionality

reduction problem, it involves projecting the data into a vector space where the basis vectors are

defined by the endmembers. This results in a more structured representation of the data, where

each pixel is expressed as a combination of a smaller set of physically meaningful components, which

in turn improves interpretability by using the original spectral bands. This approach contrasts with

methods like PCA, where the generated dimensions are often linear combinations of the original

features, which can complicate interpretability.

The core of HSU lies in defining the spectral mixture model that relates the abundance map and

the endmembers. The Linear Mixture Model (LMM) is the most widely used [277], particularly in

remote sensing, although Non-linear Mixture Model (NMM) are recognized for their applicability in

more complex scenarios [278].

HyperSpectral Unmixing has been extensively applied to material identification in hyperspectral

images, providing not only spectral signatures but also spatial locations within the image. This is

particularly prevalent in remote sensing [275], though its applications have expanded to new fields,

such as disease diagnosis and surgical guidance [135], forensic science [136], food quality evaluation

[137], plastic identification for recycling [138], and art conservation [139].

In healthcare, where data interpretability is paramount for reducing inconsistencies in disease

diagnosis [232], HSU methods offer a promising avenue for the integration of HSI in medical applica-

tions. For example, HSU has been applied to distinguish between healthy and tumorous brain tissue

using hyperspectral imaging [276], as described in Section 5.4.5. By estimating the abundance maps

of these endmembers, the study enabled classification based on similarity metrics like the Spectral

Angle Mapper (SAM) [279] or Spectral Angle Distance (SAD), methodologies commonly used in

remote sensing [280]. Additionally, Fabelo et al. [281] used HSU for quantifying tissue composition,

validating the use of HSI as a complementary diagnostic tool.

The application of DL-powered AI in HSU tasks is a practical and expected approach. As dis-

cussed in previous chapters, using DL to obtain more interpretable data is a logical-desired step, given

its high performance in obtaining compressed representations of input data. Illustrative examples of

DL’s effectiveness in data compression include AEs, as discussed in Section 4.3, which demonstrate

high-performance compression, and the DL-based FS method in Section 5.2 that achieves a more

interpretable form of compression. In the context of HSU, it can be viewed as another form of

dimensional reduction, compressing information into a new representation using original variables.

However, aligning with the hypothesis of this thesis, the IT-perspective is provided to gain more

in-depth understanding of the problem-solving mechanism of the DNN architecture.

In this chapter, we introduce a novel DL framework for blind HSU, referred to as the Contrastive

Learning for blind Hyperspectral Unmixing (CLHU). This framework is strongly inspired by con-

trastive learning techniques in DL, see Section 2.2.5. In blind HSU, the goal is to estimate both

endmembers and their abundances, with contrastive learning playing a crucial role in endmember
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estimation, controlled by a regularization factor that helps reduce model uncertainty — an essential

factor in enhancing interpretability.

While the proposed DL approach is designed specifically for blind HSU, it holds the potential to

extend to other high-dimensional data modalities. In other words, although we can consider that the

definition of an endmember is problem-dependent, this chapter focuses on blind HSU, the primary

domain for which this framework was developed.

The chapter is structured as follows: it begins by presenting state-of-the-art techniques and

foundational concepts for understanding hyperspectral unmixing. Next, the proposed DL method

for HSU, Contrastive Learning for blind Hyperspectral Unmixing (CLHU), is introduced. Following

this, the IT perspective is applied to offer deeper insight into the problem-solving mechanisms.

Finally, experimental results are provided using a state-of-the-art dataset and a hyperspectral image

for biological tissue identification, followed by a discussion and conclusions

6.1 Foundational Concepts in Hyperspectral Unmixing

In this section, different concepts will be introduced to help to obtain a more in-depth understanding

of the HSU process.

6.1.1 Spectral Mixture Model

The spectral mixture model is an essential part of the HSU and the LMM is widely used. The

rationale behind this is that, despite its simplicity, it serves as a commendable representation of the

light scattering mechanisms in numerous real-world scenarios [275].

From a physical perspective, the LMM is predicated on the assumption that incident light in-

teracts with only one material on the surface before being captured by sensors [277]. This premise

underpins the LMM’s validity, particularly when the mixing scale is macroscopic [275].

According to the LMM, a mixed pixel xi ∈ X ∈ RN×L is a convex combination of endmembers,

with its abundances as coefficients as follows:

x̂i = aiM + ϵi (6.1)

s.t. 1⊤ai = 1 and ai ⪰ 0 ,

where i denotes the pixel index, ai is a row vector in A ∈ RN×P , with A representing the

abundance matrix, M ∈ RP×L is the endmembers matrix and ϵi is an additive noise term. Here,

The P denotes the number of endmembers, N the number of pixels and L the number of bands in the

HSI data. As it can be deduced, the matrix M = {m1, . . . ,mP} defines the different endmembers

that represent the basis of the convex combination. The symbol ⪰ denotes componentwise inequality.

As depicted in Eq. (6.1), the abundance matrix A has two constraints: the Abundance Sum-to-one

Constraint (ASC) and the Abundance Non-negativity Constraint (ANC).

However, the LMM does not consider the spectral variability that is an effect commonly observed

in many scenes. Spectral variability refers to the differences in the spectral signatures of a pure

material produced by external factors, such as illumination, or can also be intrinsic to the pure

material [282, 283]. Spectral variability was addressed by the Extended Linear Mixture Model

(ELMM) [284]. It allows varying the endmembers within a hyperspectral image by using scaling
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factors, resulting in the following representation:

Mi =M0I(φi) , (6.2)

whereM0 represents the original endmember library and I(φi) is the diagonal matrix with the vector

φi ∈ RP , which contains the scaling factor of the P materials. Despite its ability to capture the

spectral variability caused by changes in illumination and topography [285], the ELMM model’s ca-

pacity to represent more intricate variability is limited. This led to the development of a Generalized

Linear Mixture Model (GLMM), which incorporates a scaling factor for each band, as proposed in

[286].

Although the LMM is commonly used in HSU, several NMM have been proposed in the literature

[287]. The NMM is usually due to physical interactions between the light scattered by multiple

materials in the scene. The scattering interaction can be modeled by different levels, a classical,

also known as multilayered level, or microscopic level [287, 275]. As it is expected, the microscopic

level is unapproachable since it is an extremely complex ill-posed problem. For this reason, the

multilayered based models are commonly used.

In general, the first-order multilayered models are sufficient to handle the scattering effect, and

this leads to the bilinear model [287, 275]. There are several works where the bilinear model has been

proposed for HSU [288, 289, 290], incorporating the cross products across different endmembers to

account for the non-linear mixing effects. An extended version of the aforementioned mixture model

is the Generalized Bilinear Model (GBM), which introduces a scalar γ value that denotes the degree

of interaction among the endmembers, mj and mk:

x̂i =MAi +

P−1∑
j=1

P∑
k=j+1

γi,j,kAi,jAi,jmj ⊙mk + ϵi , (6.3)

where ⊙ is the element-wise Hadamard product. In this way, the strength of the non-linear compo-

nents is controlled by γ regarding the overall mixture.

6.1.2 Endmember Extraction

One of the most relevant limitations inherent in the HSU algorithms is the necessity to have prior

information about the endmembers, the pure material signature. In those cases where such informa-

tion is not available, these signatures, the endmembers, have to be estimated from the data [275].

This estimation is carried out by the endmember extraction algorithms.

The most popular endmember extraction algorithms are geometrical based approaches [275],

although there are methods where the spatial contextual information in the analysis is applied for

the endmember extraction process [291]. There are different examples of non-geometrical endmember

extraction algorithms [292, 293], but in this section it will be briefly introduction specific geometrical

endmembers extraction algorithms.

Due to spectral redundancy, a hyperspectral image often lies in a low-dimensional subspace

[294] and, according to convex geometry theory, any data point within a hyperspectral image that

satisfies the LMM assumption must reside within a simplex that is defined by the endmembers

[295]. Therefore, a noise-free hyperspectral pixel has to be contained in the simplex defined in the
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Figure 6.1: Illustration of simplex set to P = 3, M = {m1,m2,m3}. In this case, it is observed the
simplex with the highest volume, represented by dashed lines, is obtained by noisy points, indicated
by red dots.

(P − 1)-dimensional subspace. Thus, any data point that contains artifacts produced by noise will

be located outside the simplex, see Fig. 6.1. In blind HSU, it is a common practice to extract

the endmembers from the hyperspectral image. Most popular endmember extraction methods rely

on the geometry of the data for the estimation of the pure material signature, such as Pixel Purity

Index (PPI) [296], Vertex Component Analysis (VCA) [297] or N-FINDR [298], which aim to identify

the simplex in the low-dimensional subspace whose vertices represent the endmembers, denoted by

M = {m1, . . . ,mP}.
In the case of the N-FINDR algorithm, it operates by identifying the simplex with the maximal

volume, premised on the principle that the volume delineated by a simplex constituted by pure

signatures, the endmembers, surpasses that of any other pixel combination [298, 275]. A notable

challenge with this technique is its susceptibility to noise in the data, potentially mistaking noisy

pixels for pure ones. A example of this is illustrated in Fig. 6.1. The VCA addresses this issue

by iteratively projecting data onto a direction orthogonal to the subspace defined by the already

identified endmembers [297, 275]. Consequently, each new endmember signature aligns with the

extremity of this projection, effectively mitigating the influence of noise. In the case of the PPI,

it introduces a preprocessing that reduces the dimensionality and to improve Signal-to-Noise ratio

(SNR), [296, 275].

6.1.3 Unmixing Algorithms

The HSU algorithms aim to optimally estimate the abundance map based on endmembers, which,

in blind unmixing, need to be derived from the data, as discussed in Section 6.1.2. Given the

constraints of the LMM (Eq. (6.1)), one prevalent method is the Non-negative Matrix Factorization

(NMF) algorithm, which decomposes the hyperspectral data matrix into non-negative matrices of

endmembers and abundances [299].

Additionally, the Fully Constrained Least Squares (FCLS) [300] algorithm, another widely em-

ployed approach, treats unmixing as a constrained optimization problem. The FCLS aims to min-

imize the sum of squared differences between observed and modeled spectra, where the model is

a linear combination of endmember spectra weighted by abundances, subject to constraints on the

abundances such as ANC and ASC. As it has been previously mentioned, both constraints are crucial

for the LMM.
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As it happens with the endmember extraction algorithms, the geometrical approach is popular in

unmixing algorithms. These methods are commonly known as minimum volume-based algorithms

[275]. As it has been described in the Section 6.1.2, those algorithms discussed are associated with

the identification of a pure-pixel endmember extraction, and it is carried out by finding maximum

volume simplex estimation. However, as it has been previously discussed, those algorithms are data-

dependent and the introduction of noise can generate a simplex in the low-dimensional subspace

whose vertices, the estimated endmembers, do not correspond to the real pure material. To counter

this, these HSU algorithms introduce a new constraint, the Minimum Volume Constraint (MVC)

[301].

In these algorithms, initial endmember estimates, M0, obtained through endmember extraction

methods like N-FINDR, are refined during HSU solution. Taking as reference, Miao and Qi [301]

proposed to use the NMF by including this new constraint, MVC. In this way, the algorithm is

solving both problems, the abundance and endmember estimation. This constraint is also applied in

methods such as the simplex identification via variable splitting and augmented Lagrangian (SISAL)

[302] and the minimum volume simplex analysis (MVSA) [303].

These algorithms are not only pivotal in remote sensing but also serve as valuable preprocessing

tools in various domains, including the analysis of biological tissues [304].

Deep Learning Algorithms

As it has been discussed in previous chapters, DL models provide an easily adaptable output with

high accuracy, and they have been recently applied to carry out HSU problems. These models have

been previously proved to be effective for pixel unmixing in multispectral images. Baraldi et al.

[305] compared the performance of a MLP algorithm with two neuro-fuzzy classification schemes.

Nevertheless, Licciardi et al. [306] proposed for the first time the use of an AE architecture [67]

for abundance estimation in HSU, providing the endmembers as hyperparameters of the model.

Rasti et al. proposed UnDIP [307] for abundances estimation based on DIP [117], which is an

approach for solving different inverse problems such as super-resolution, inpainting, and denoising.

In [308], the authors proposed a non-negative sparse AE for endmember extraction. Finally, Palsson

et al. [309] presented a method for blind HSU based on AEs, where the weights of the decoder

are the endmember spectra, see Fig. 6.2, and evaluated the performance using different objective

functions. In addition to the previous works, Hong et al. proposed the EGU-Net [310] for HSU using

a two-stream end-to-end network, which is and AE where the encoder is used for the abundance

map estimation. In this case, one stream is employed to estimate the abundance map of pseudo-

endmembers, obtained by another HSU method. The decoder is not used in this stream. The

other stream estimates the abundance map of the mixed dataset, utilizing the decoder to penalize

the model through reconstruction. Finally, Transformer-based architectures [54] have emerged as a

dominant paradigm lately, and the use of these architectures has been applied for HSU. Ghosh et

al. [311] proposed the use of transformers architecture for abundance and endmember estimation,

providing the spectral and spatial information, obtaining a consistent performance across different

datasets.

Most of these methods leverage DL models’ reconstruction capabilities for abundance estimation,

often following an AE-like architecture. In this context, the models operate as regressors, mapping

input spectral signatures to abundance values. While these models can reconstruct data, they tend
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Figure 6.2: AE proposed by Palsson et al. [309] for blind HSU. The weights of the decoder are
considered the endmember spectra.

to produce physically meaningless endmembers in blind HSU due to the lack of effective guidance

for actual endmembers. For example, endmembers derived from the weights of the final layer in the

study by Palsson et al. [309] often do not match the spectral signals present in the dataset. In some

cases, like EGU-Net [310], there is even an absence of evidence for the endmembers underpinning

the abundance map estimation.

The use of DNN for HSU, particularly in enhancing the physical comprehension of the data,

is pivotal for addressing the challenges posed by spectral variability. As explored in Section 6.1.1,

spectral variability can arise from external factors like illumination or the inherent properties of

the pure materials. Traditional methods tackle this issue using mixture models like the ELMM

or the GLMM. However, as it has been explored through this thesis, the DNN has to reduce the

uncertainty of the data, which can be a consequence of the variability in the data, by obtaining an

optimal compressed representation in the latent space, see Section 4.3.2.

6.2 Contrastive Learning for Hyperspectral blind Unmixing

In the previous section, it has been described the use of DL models for HSU. However, as it has

been discussed, most model rely on the reconstruction capabilities for abundance estimation and the

endmembers for obtaining a physical meaning have to be provided as hyperparameters.

As it has been discussed in the introduction of this chapter, HSU algorithms aim to obtain a

more in-depth understanding of the scene captured in HSI data. Similar to FS methods, the idea is

to obtain a better interpretability of the data and, for this reason, in HSU is specially relevant to

obtain a signal decomposition using the original variables, in the high-dimensional space, providing

the physically meaningful. For this reason, in Section 6.1 has been focused on geometrical approach

since those methods are the most interpretable.

The challenge of spectral variability for external environmental factors, particularly issues like

illumination, poses significant difficulties for classical methods in HSI. This is an area where DL

models demonstrate a distinct advantage. As discussed throughout this thesis, DL models excel

in managing noise within the compressed latent space. From an IT perspective, which has been a

focus of this thesis, the primary objective of the model is to minimize the uncertainty in this latent

space Z, represented as H(Z|X). The spectral variability induced by an external factor, such as

illumination, can be conceptualized as a form of external noise with uncertainty independent of the
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Figure 6.3: The proposed architecture for blind hyperspectral unmixing based on contrastive learn-
ing, where θi represents the parameters of the deep learning model.

data X, it is a white noise in the inverse problem (see Section 2.4). In other words, this external

factor has the same behavior that applying a dropout technique, it is independent of the data and the

uncertainty is the sum of both variables H(X) +H(ψ), where ψ would represent the ‘illumination’.

In this way, DNN are tasked with identifying a representation of Z where this issue is substantially

alleviated.

Nonetheless, akin to the scenario with PCA, tackling the latent space Z would pose a formidable

challenge in obtaining physical significance in HSI. As was the case with FS methods, true compre-

hensibility requires reverting to the original variable space, denoted by X. Consequently, this section

introduces a DL framework specifically designed to achieve interpretable unmixing in blind HSU.

This framework focuses on providing effective guidance for identifying real endmembers, a critical

aspect often overlooked in standard approaches, effectively bridging the gap between advanced DL

techniques and the physical realities of HSI.

The proposed DL framework aims to concurrently estimate endmembers and accurately deter-

mine the abundance map. As a result, it is proposed a DL framework for addressing the problem of

blind unmixing by jointly estimating the endmembers and fractional abundances map. Unlike most

existing DL algorithms, this framework integrates the endmembers estimation and accurately esti-

mates the abundance map by establishing a relationship between the input signal and the estimated

endmembers.

6.2.1 Network Architecture

The CLHU framework introduced in this thesis draws inspiration from contrastive learning meth-

ods, incorporating several key features typical of these approaches. The architecture of CLHU, as

illustrated in Fig. 6.3, follows a structure akin to contrastive learning models. It begins with an

encoder, represented by f(.; θe) where θe denotes the parameters of the encoder. This encoder is

responsible for generating the underlying representation of the input X. Subsequently, this repre-

sentation is further processed by a projection head, f(.; θp), characterized by parameters θp. Unlike

SimCLR [80] where the projection head is a small model with no-linear activation in the different

layers, CLHU’s projection head comprises a single linear hidden layer, designed to project the un-

derlying representation back to the original dimension. In the final stage, CLHU employs the LMM

approach to reconstruct the original spectral signature. This reconstruction is achieved through a

linear combination of M , which are model parameters denoted as θM .

The use of an encoder and a projection head in the design is influenced by contrastive learning



6.2. CONTRASTIVE LEARNING FOR HYPERSPECTRAL BLIND UNMIXING 143

techniques. Additionally, the Similarity module, another component inspired by contrastive learning

methods, is introduced to describe the relationship between the input X and the endmembersM for

the purpose of abundance map estimation. As discussed in Section 6.1.3, the majority of DL-based

unmixing algorithms employ an AE architecture where the decoder is tasked with estimating the

abundance map A [306, 67, 308], aiming to reconstruct the original signal X̂. Conversely, in the

proposed CLHU framework, A is estimated by the similarity or approximation to M of the latent

space Z, positing that the contribution of a endmember is directly proportional to its similarity.

In conclusion, this approach differs from the aforementioned DL-methods by leveraging the rela-

tionship between the latent space and the endmembers to estimate the abundance map, rather than

relying exclusively on the reconstruction capabilities of the AE’s decoder. As mentioned before, in

this work the LMM, (6.1), is considered for the reconstruction. Nevertheless, atmospheric effects and

instrumental noise [131, 274] usually degrade the original hyperspectral image, so the input X does

not interact exclusively with one material, which is the main assumption of LMM. The encoder in

the CLHU framework has the purpose to obtain the underlying representation of the input X, which

has the best representation in the convex geometric space constrained by M . It can be considered a

denoising effect, reducing the spectral variability by external factors, modifying the signal to satisfy

the optimal conditions of the LMM, ensuring that all points are contained in the simplex defined in

the low-dimensional subspace (see Section 6.1.1). At the same time, the encoder can deal with the

spectral variability intrinsic to the pure material.

Similarity Module

As previously mentioned, the CLHU framework enforces a latent space that is constrained by the

endmembers M through the Similarity module, as shown in Fig. 6.3. This module ensures that

all points in the latent space are distributed within a simplex whose vertices correspond to the

endmembers. Drawing inspiration from contrastive learning approaches, the Similarity module

estimates the abundance map ai ∈ A based on the distances between the point zi ∈ Z and the

endmembers M :

ai = σ

(
log

(
ν

1− ν

))
, (6.4)

ν = (ξ · 0.5) + 0.5 ,

ξ = cos(⟨1TP , zi⟩,MT ) ,

where 1P is the row vector of dimension P with the scalar value 1, and ⟨., .⟩ is the inner prod-

uct.Finally, a Softmax function, σ(.), is applied to A to force the value to sum-to-one, guarantying

the (6.4) satisfied the ANC and ASC. Consequently, the fractional abundance of each pixel, denoted

as ai ∈ R1×P , is obtained. This similarity-based approach allows the framework to capture the

relationship between the latent space Z representations and the endmembers M following a logit

function before applying the Softmax, noted as ã ∈ Ã, see Fig. 6.4.

The use of the σ(.) function, specifically the Softmax function commonly used in DL-based

unmixing models [307, 309, 306], imposes a notable constraint on the estimation process. Softmax

ensures that the abundance map represents a mixture of various endmembers, thereby complicating

the identification of instances where a hyperspectral pixel is represented by a singular endmember
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Figure 6.4: Before applying a Softmax for obtaining the abundance map, Ã, the similarity relation-
ship between Z and M follows a logit function.

contribution in A.

Endmember Estimation and Gradient Update

In the proposed CLHU framework, which is designed for blind HSU, the estimation of endmembers

is an essential task. In this framework, the endmembers M are treated as model parameters and are

initialized using a predefined set of endmembers denoted as M0. The results obtained are depen-

dent on this initialization and, for this reason, it is recommended to use an endmember extraction

algorithms such as the introduced in Section 6.1.2, such as N-FINDR or VCA. The aforementioned

methods are based on simplex volume maximization as a search criterion, providing a suitable start-

ing point for the CLHU framework, and are recommended for obtaining interpretable results as it

is expected in blind HSU.

The model parameters θM , that illustrate the endmembers M , have two interactions in the

workflow of the CLHU, particularly in the Similarity module and the reconstruction process based

on LMM as it is illustrated in Fig. 6.3. However, the gradient estimation for updating the parameters

that represent theM are exclusively derived from the LMM, see Eq. (6.1), and the abundance matrix

A. Specifically, the gradient with respect to M can be computed as follows:

∂L
∂M

=
∂L
∂X̂

∂X̂

∂M
=
∂L
∂X̂

A ,

where X̂ was estimated by LMM as illustrated in Fig. 6.3, see Eq. (6.1). The objective function

L measures the quality of the reconstruction and its details can be found in Section 6.2.2. This

gradient is then used to update the endmember matrix M during the optimization process within

the CLHU model. The Similarity module indirectly contributes to the estimation of endmembers

by influencing the optimization of the abundance matrix A.
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6.2.2 Objective function

The HSU task can be interpreted as a reconstruction problem, where the objective is to obtain the

best reconstruction, denoted as X̂, of the input X. Given the interest in the interpretability of data

in HSU, the use of regularization factors is necessary for enhancing the injectivity and stability of

this inverse problem, as it has been described in previous sections. Considering the purpose, the

loss function defined for CLHU is given by:

L =
1

2
∥X − X̂∥2F + LCon(M) + λ

LV ol(M)

ϕ
. (6.5)

Here, the first term represents the widely used reconstruction error between the input X and the

reconstruction based on LMM, denoted as X̂ =MA. This reconstruction approach, widely used in

HSU algorithms [307], is commonly employed for estimating the abundance matrix A.

As it is observed, two regularization terms are depicted in Eq. (6.5), although the second one is

considering optional, and it is inspired by geometrical approaches in HSU. The first regularization

term, LCon(M), promotes the contrastiveness of the endmembers in the endmember matrix M , in

other words, increasing the independence among the different endmembers. The second regulariza-

tion term, λLV ol(M), encourages the minimum simplex volume constraint in M , which is usually

considered for endmember estimation in unmixing algorithms [312, 301]. The normalization factor

ϕ is introduced to control the scaling of the volume to maintain a desired range or magnitude.

The contrastive regularization factor, LCon(M), as it was proposed in the NT-Xent contrastive

loss function applied in SimCLR [80] and proposed in [85], focuses on minimizing the CE among

endmembers. Using this regularization factor, the CLHU framework encourages the endmembers

to be distinct and dissimilar from each other. This regularization term promotes the diversification

of the endmember estimates by penalizing similarity and encouraging large dissimilarities among

the endmembers. Consequently, it helps to prevent redundancy in the endmember set, M . The

underlying representation of X in the latent space Z is impacted by this contrastive approach, as it

was mentioned before because of the Similarity module, and, consequently, this contrastive approach

also influences the estimation of abundances A. This regularization factor is defined as follows:

LCon(M) = − 1

P
∑
ê∈S

1(ê = c) log ê , (6.6)

S =
1

τc
cos(M,MT ) ,

where S is the similarity matrix of the endmembers M and the contrastive regularization factor

is defined by the negative log-likelihood where 1(.) is the indicator function. The temperature

parameter, τc ∈ (0, 1], is for scaling the logits in S which it is mapped as a probability value using

a Softmax function.

The second regularization factor, LV ol(M), imposes a constraint on the volume of the simplex

formed by the endmembers in M . This regularization is employed to reduce the search space for the

endmembers and ensure that they lie on the vertices of a simplex with the smallest possible volume,

while maintaining a significant separation from each other [301]. For this reason, in the previous

section, it was recommended the endmember initialization by endmember extraction algorithms

that are based on simplex volume maximization as a search criterion. This volume constraint
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regularization factor is given by:

LV ol(M) =
1

2(P − 1)!
det2

[
1P

M̂

]
, (6.7)

M̂ = UT (M − µ1TP) ,

U ∈ RL×(P−1) ,

where 1P is the row vector of dimension P with the scalar value 1 and M̂ is the endmember set

projected in the low-dimensional space. The orthogonal matrix U is formed by the P − 1 most

significant principal components of the dataset X, which are obtained through PCA. To address the

variability of the simplex area across different datasets, it is suggested to normalize the regularization

factor by the initial state, denoted as ϕ = LV ol(M0) in Eq. (6.5). This normalization ensures that the

regularization term is relative to the initial volume of the simplex formed by the initial endmember

set M0.

It is noteworthy that the LV ol(.), which constraint can also be addressed using distance metrics

[313], aligns with HSU’s geometrical strategies for enhanced interpretability. However, the relevance

of this constraint can be considered optional, and it is particularly relevant in situations where the

initial endmember initialization results in a small-area simplex, which can occur when the number

of endmembers is relatively high. In such cases, the LCon(.) constraint would significantly expand

the volume. Enforcing this constraint helps in obtaining a set of endmembers that does not change

significantly from the signal spectrum present in the hyperspectral image. In addition, given the

recommendation of using endmember extraction based on simplex volume maximization, this regu-

larization factor can help to deal with the problems associated with a noisy M0.

6.3 Information Theoretical Perspective on CLHU

Aligning with the objective of this thesis, improve the interpretability of the DNN giving a expla-

nation more than a ‘black-box’, in this section it will be discussed the IT perspective of the CLHU

framework. As it has been indicated in previous chapters, IT [10] provides a powerful framework

for studying the theoretical foundations underlying in DL models.

Understanding the CLHU model as a variant of the AE, a self-supervised method, it naturally

aligns with the InfoMax principle [166, 167], Eq. (3.23), as discussed in Section 4.1. Considering

the InfoMax principle, the model aims to maximize the MI between an input X and its latent

representation Z, obtaining the compression with the highest information rate. In the absence of

explicit constraints in the latent space Z, the AE can be expressed as in Eq. (4.6), aligning with

the IT perspective of AEs outlined by Yu and Principe [190].

Yu and Principe conceptualize the decoder’s role as an ‘undo’ function, reversing the encoding

performed at various stages of the AE encoder [190]. However, as demonstrated in Section 4.3.2,

this ‘undo’ function does not fully apply when the dropout technique is utilized in the encoder. The

application of dropout results in potential information loss, as highlighted in Section 3.2.1, even

through the decoding process.

Unique to the CLHU framework, and not previously discussed in this thesis dissertation, is the

introduction of a secondary information ‘channel’ within the model’s ‘bottleneck’, depicted in Fig.
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Figure 6.5: Channel of two inputs. Using the reference of the CLHU, the ‘bottleneck’ information
transmission is carried out by two channels AZ and AM .

6.3. Understanding the theoretical implications of this dual-channel approach within the CLHU

model is crucial for offering an IT interpretation of its problem-solving mechanism.

6.3.1 InfoMax Constraint in CLHU

Considering the information flow in the CLHU, and understanding that the decoder task consists

on ‘decoding’ the encoded message, it is intuitive to understand that A, discarding the Softmax

function at the end, must contain the information on the latent space Z. However, if the dropout

technique is applied and following the information rate theory, this property will not be guaranteed.

The way to deal with this problem is simple, exploiting redundancy among different channels for

minimizing the information loss. This is a feature presented in CLHU as it is illustrated in Fig. 6.5,

where there are two channels that transmit information to A, the channel AZ that corresponds to

the contribution of Z in A and AM that provide information regarding M .

The MI in A regardingM and Z, I(A;M,Z), can be reformulated to considering the contribution

of information per channel. As a result, see Appendix A.3.1, it is described as:

I(A;M,Z) = I(A;M) + I(A;Z|M) =

= I(A;Z) + I(A;M |Z),
(6.8)

where the first term represents the amount of information contributed by a channel and the second

term is the additional information provided by the second channel.

Equation (6.8) outlines the objective of the Similarity module, as detailed in Section 6.2.1. The

goal here is to enhance the additivity of information across both channels, ensuring that each channel

contributes additional, distinct information relative to the other. As a result, I(A;M,Z) ≥ I(A;Z)
with equality if H(A|Z) = H(A|Z,M), meaning that M does not provide additional information.

Given the detailed explanation, it is evident that the constraint in the InfoMax Principle, denoted

asR(Z) in Eq. (3.23), is not solely dependent on Z in this case; the inclusion ofM is also imperative.

Consequently, the constraint applicable to the latent representation should be appropriately denoted

as R(Z,M). Regarding A, since the Similarity module (Section 6.2.1) operates as a non-trainable

function that delineates the relationship between Z and M , it does not necessitate inclusion in the

constraint formulation.

Formulation of the constraint R(Z,M)

Following the InfoMax principle, in contrast to the AEs where the R(Z) is not always explicitly

defined, it has been identified that CLHU has a specific constraint defined. This constraint definition

can be originally deduced because of the use of regularization to address the ill-posed problem [119]
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in the loss function, Eq. 6.5. In the context of HSU, where the primary goal is oriented to data

interpretation, it becomes crucial to explicitly incorporate R(.) to guide the learning process.

Given the description in the previous section, it is intuitive to understand that the constraint

can be defined by I(A;M,Z). In essence, the objective is to maximize the information propagated

to the ‘decoder’ of the CLHU, which is used for the abundance estimation. Given the expression of

MI, I(A;M,Z) = H(A)−H(A|M,Z), and knowing that H(A) is constant since Similarity module

does not contain trainable parameters, then maximizing the MI can be reformulated as minimizing

the conditional entropy:

argmax
θ

I(A;M,Z)⇔ argmin
θ

H(A|M,Z) ,

where θ are the parameters of the DL model.

Following the description of Eq. (3.6), it can be concluded that reducing the H(A|M,Z) corre-

sponds to a reduction of theH(M,Z)−H(A,M,Z). Given that, as it has been previously mentioned,

A is fixed by the Similarity module, it can be concluded that R(Z,M) = H(Z,M). As a result,

CLHU is described by the following InfoMax principle:

argmax
θ

I(X;Z) + βH(Z,M). (6.9)

In summary, Eq. (6.9) aims to enhance the information within the combined set of Z and M .

As indicated by Eq. (6.8), with Z and M serving as compressed representations of the input X, it

is essential that both variables contribute unique information not present in the other.

Reformulation as Information Bottleneck principle

Equation (6.9) provides an interpretation of the CLHU framework aligned with the InfoMax prin-

ciple, detailed in Section 3.5. Nonetheless, this equation can also be adapted to align with the IB

principle.

As it is observed in Eq. (6.9), the CLHU has a constraint that consists of increasing the H(Z,M),

increasing the information contained by the compressed latent space Z and the endmember set M .

However, it might be expressed as a minimization in the MI between both variables, I(Z;M), as

inferred from Eq. (3.6) and Eq. (3.10). Consequently, Eq. (6.9) can be reformulated to reflect the

IB principle as:

argmax
θ

I(X;Z)− βI(Z;M). (6.10)

This reformulation directly correlates with the IB principle depicted in Eq. (3.22). In this way,

the proposed framework achieves statistical properties desired for the unmixing problem on the

representation Z.

Keys insights from the IT Perspective

Given the problem-solving mechanism of the CLHU by IT perspective, both expression, Eq. (6.9)

and Eq. (6.10), allow obtaining a better interpretation about how CLHU is working. Although both

expression has the same meaning, the different descriptions allow obtaining a better interpretation

of the different variables Z and M .
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Considering Eq. (6.9), offers insights into the functionality of the latent space Z and the Sim-

ilarity module within the CLHU framework. As it is observed in this equation, the constraint is

to maximize the H(Z;M) and this task has to be carried out by the Similarity function. For that

reason, using the proposed Similarity and observing Fig. 6.4, it is intuitive to understand that,

given the logit function, the entropy maximization of this relationship is found where ξ in Eq. (6.4)

is around 0. This condition suggests that the lowest H(Z,M) - indicative of maximal information

sharing between Z and M - occurs in situations where certain endmembers have minimal or overly

significant contributions to Z.

Given the relationship between Z and M , Eq. (6.9) formulates the CLHU constraint as a

minimization in I(Z;M). As it has been previously discussed, the optimal solution is obtained

by a description of Z where there is not a predominant endmember that contributes to the signal

representation. In this way, reducing I(Z;M) depends on M . In this way, this task is constrained

by the LCon(.) in Eq. (6.5), aiming to minimize the MI among the elements of M , ideally achieving

I(m1; . . . ;mP) = 0 in an optimal scenario where the different endmembers are independent.

Both description fits with the understanding of input X as a convex combination of M based

on LMM. If it is considering that mi ∈ M are independent, they hold no information about each

other, minimizing MI among them, thereby the information you can obtain about X from knowing a

single component mi is limited. In that case, Z would be a compressed representation of X different

endmembers contributing equality, increasing the entropy H(M ;Z).

Finally, following the IB principle formulation in Eq. (6.10), the latent space Z in CLHU can be

interpreted as a trade-off between a compression of X preserving as much as possible the information

on M . For that reason, this problem is heavily dependent on M initialization, M0. This description

fits with the aforementioned explanation, where the idea is to deal with spectral variability induced

by external factors that does not belong to the endmembers interaction.

6.3.2 Data Processing Inequality

As it has been pointed out in previous chapters, due to the learning mechanism of DL models,

where the input signals are propagated from one layer to another until they reach the output layer

and then errors are back-propagated through all layers in reverse order, this can be interpretable

as a Markov process. However, both propagation are unidirectional and depend exclusively on the

previous variable, such as a Markov chain [191, 190]. In other words, the output of the ith-layer in

the DL model, Ti, depends on the output of the previous layer, Ti−1.

As a consequence, DNN are characterized as cascaded channel, see Section 3.2.1, where there is

loss of information as it is depicted in the the DPI, Eq. (3.17). As a result of a ideal AE would

be satisfied by Eq. 4.3 in the encoder and Eq. 4.4 in the decode path. However, as it has been

previously reported, the use AEs with common techniques for avoiding the overfitting force the

Eq. (4.7) that is a restriction in the decode path. In other words, the decode cannot recover more

information than the contained in Z.

As it has been described in Section 6.3.1, the use of two variables, Z andM , has a special purpose

from a IT-perspective, recovering information that it is not contained in Z. As a consequence, A

estimation by the Similarity module in CLHU - that can be considered as part of the decoder - has

to contain more information than Z exclusively. In other words, the introduction of the random

variable defined byM serves the purpose of incorporating information that aids in the reconstruction



150 CHAPTER 6. SIGNAL DECOMPOSITION: HYPERSPECTRAL UNMIXING

of the original signal.

In the optimal solution, where the endmember are well estimated by CLHU and the reconstruc-

tion model, the LMM in this case, fits with the data, the I(X;A) ≃ H(X). The information lost

in the sequence of layers of the CLHU model has to be recovered by A, which contains information

about how the different endmembers interact. As a result, CLHU should satisfy the following DPI:

H(X) ≥ I(X;A) ≥ I(X;Z). (6.11)

6.3.3 Approximation to Independent Components Analysis

It is possible to approximate the CLHU framework to the ICA [167] in which the InfoMax principle,

Eq. (3.23), is also applied. ICA is a statistical technique used to extract independent sources from

a set of observations that are linear mixtures of those sources, and it has been previously used for

HSU [314, 315, 316]. However, ICA has been questioned as an approach to HSU [317], given that

the ASC in abundance map implies statistical dependence, but recent works have demonstrated that

this method is competitive for this task [318].

The CLHU framework can be approximated as an ICA method, where the goal is to extract

the underlying structure or patterns in X by representing it as a linear combination of independent

components, which are defined by the variableM in the unmixing task. Furthermore, it is important

to note that the quality of the representation in Z and the estimation of A depend on the selected

number of independent components.

On the one hand, if the number of independent components is not accurately estimated, the

resulting space will not be able to capture all the underlying independent sources of variability

in the data, which may result in a loss of information in the reconstructed signals. On the other

hand, if the number of independent components is overestimated, the resulting space may include

some unnecessary or redundant sources of variability, which may also lead to a less informative

representation. Therefore, the accurate estimation of the number of independent components is

crucial for obtaining an effective and informative representation of the data.

In ICA, one of the well-known approaches for estimation is to minimize the MI between the

independent components. This approach aims to decrease the mutual dependence between the inde-

pendent components and the input data. As a result, the MI between the independent components

and the input data should decrease. In light of this, it can be considered as follows:

I0(Z;M) ≥ IT (Z;M) , (6.12)

where I0(Z;M) is the initial state of the latent space and IT (Z;M) at the end of the training.

6.4 Experimental Results

In this section, the CLHU framework has been subjected to experimental evaluation using various

datasets. Since the state-of-the-art dataset for remote sensing lacks a real ground truth, a synthetic

dataset was initially employed to evaluate the performance of CLHU. Subsequently, the proposed

framework was tested on different datasets from the state-of-the-art. As a proof of concept, a

hyperspectral image comprising similar biological tissues was employed to demonstrate the utility
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of the proposed framework in medical applications.

The proposed framework is quantitatively evaluated by comparing the estimated results with

the ground truth reconstruction, denoted as Y , which is obtained from the true endmembers and

abundance maps provided by the dataset. The evaluation metrics used in this study include the

Root Mean Squared Error (RMSE) between the estimated reconstruction, X̂, and ground truth

reconstructions, Y (RMSEY ), the RMSE between the estimated and ground truth abundance frac-

tions (RMSEA), and the SAD in radians, which measures the difference between the estimated and

ground truth endmembers (SADM ).

To ensure unbiased conclusions, the same configuration of hyperparameters was used across all

experimental results. The details of the hyperparameter configuration can be found in Section 6.4.

Hyperparameters configuration

In DNN-based models, the obtained results are typically dependent on the hyperparameter settings.

In this work, the proposed encoder of the CLHU-based model, denoted as f(.; θe), is composed

by three sequential fully connected layers with 512, 128 and 32 neurons, respectively. Each layer

is followed by batch normalization [224] and a dropout layer, which is a regularization technique

commonly used in DL models to reduce overfitting [73] and a ReLU activation function. The

projection head, denoted as f(.; θp), constitutes a fully connected layer that lacks bias and activation

function. It can be represented as a common projection matrix. As for the objective function L,
the Lagrange multiplier λ is set to 10−2, as depicted in Eq. (6.5). For the contrastive loss function

LCon(.), as presented in Eq. (6.6), a temperature value of 0.1, which is denoted as τC , is employed.

Lastly, the ADAM optimizer [65] was utilized to train the CLHU-based model with a learning rate of

10−3. The exponential decay rates for moment estimation, represented by β1 and β2, were configured

to be 0.9 and 0.999, respectively. Finally, the number of epochs is fixed to 50 and the batch size is

modified per dataset to obtain a fixed number of batches, 50.

To ensure unbiased conclusions, the same configuration of hyperparameters was used for the

different experimental results presented in this section. This approach was adopted to avoid any

potential bias in the conclusions due to well-fitted settings for the indicated datasets.

6.4.1 Synthetic Dataset

The Jasper Ridge, Samson, and Urban datasets are often used to assess the endmember extraction

and abundance estimation methods for HSU [319]. However, the ground truth provided in those

datasets is estimated applying state-of-the-art algorithms, and a measurement to validate the spec-

tral mixture has not been performed. Therefore, the goal of generating a realistic synthetic dataset

has been considered for a first validation of the CLHU framework.

The spectral variability, as it has been previously discussed, is produced by many factors such as

temporal condition or illumination and it is one of the main challenges from the spectral signature

perspective. Borsoi et al. [285] generated a synthetic endmember variability dataset, according

to simplifications of some radiative transfer models, for evaluating different state-of-the-art algo-

rithms for HSU. The synthetic dataset is composed of three materials: soil, vegetation and water.

In order to generate soil samples, a simplified version of Hapke’s model [321] was applied. The

vegetation endmembers were generated by the PROSPECT-D model [322], according to different
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Figure 6.6: Synthetic dataset and ground truth generated with an SNR of 30 dB. In (a), the HSI
cube is shown in RGB based on [320]. The abundance maps and endmembers are depicted in (b)
and (c). The endmembers m1, m2, and m3 represent vegetation, soil and water, respectively. The
figure includes the endmember estimation based on two methods: NFINDR, represented by dashed
lines, and VCA, represented by dotted lines.

biophysical parameters. Borsoi et al. also considered the atmospheric compensation to generate

water endmembers according to different viewing angles [285]. Finally, each pixel was created based

on the spectral variability that accommodates the LMM described in (6.1). Three configurations

were tested by modifying the SNR to apply additive random noise, denoted as ϵi. As a result, three

hyperspectral cubes were generated with a spatial resolution of 50× 50 pixels and 198 bands, based

on the Jasper Ridge dataset, by applying additive random noise with SNR values of 10, 20, and

30 dB. Figure 4.3 displays the resulting synthetic dataset generated with a SNR of 30 dB, along

with the corresponding ground truth. The endmembers estimation using N-FINDR and VCA is also

illustrated in Fig. 4.3(c).

In order to evaluate the CLHU framework, LMM by FCLS (LMM-FCLS) [300], which uses

fixed endmembers, and ELMM [284] were considered as references. From this point forward, we

will refer to the method LMM-FCLS as FCLS. Both methods are well-known and commonly used

[323, 324, 325, 326], specially ELMM has demonstrated to achieve promising performance in the

context of non-linear HSU [285]. Given that the ground truth of the synthetic data is linear,

both state-of-the-art models are capable of obtaining the optimal solution. As explained in Section

6.1.1, the computational approach of ELMM yields distinct endmembers for each sample, which are

modifications of the initial endmemberM0 given the scaling factor ϕi, see Eq. (6.2). In contrast, the
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Table 6.1: Quantitative results across different configuration of noise in the synthetic dataset (average
of 10 executions and standard deviation for the CLHU proposed method). In the experiment, two
methods for endmember initialization were considered: N-FINDR and VCA. Since FCLS does not
update the initial endmembers M0, it can serve as a baseline for evaluating how much the CLHU
model improves the endmember estimation.

M0 N-FINDR VCA

SNR (dB) Metrics CLHU FCLS ELMM CLHU FCLS ELMM

30

RMSEY 0.0325± 0.0011 0.0400 0.0354 0.0318± 0.0012 0.0356 0.0337

RMSEA 0.1115± 0.0055 0.1284 0.1130 0.0892± 0.0035 0.0923 0.0864

SADM 0.0779± 0.0007 0.1277 0.1097 0.0721± 0.0008 0.0965 0.0804

20

RMSEY 0.0308± 0.0009 0.0420 0.0359 0.0289± 0.0004 0.0329 0.0332

RMSEA 0.1087± 0.0056 0.1280 0.0682 0.0636± 0.0015 0.1005 0.0698

SADM 0.0874± 0.0005 0.1979 0.1576 0.0549± 0.0008 0.0801 0.0766

10

RMSEY 0.0368± 0.0019 0.0583 0.0486 0.0311± 0.0004 0.0326 0.0467

RMSEA 0.1284± 0.0043 0.1588 0.1053 0.0717± 0.0019 0.0924 0.1448

SADM 0.2309± 0.0012 0.4034 0.3345 0.1585± 0.0015 0.1580 0.1635

FCLS method assumes a single fixed endmember for all samples. Similar to the FCLS, the CLHU

framework has a solution with a set of fixed endmembers, but CLHU includes an M estimation

process that FCLS lacks.

In the different methods, it is necessary to provide an initial set of endmembers, denoted as M0,

which can be estimated using different techniques. In this study, N-FINDR and VCA (see Section

6.1.2) are utilized as endmember extraction techniques. One significant difference between the two

methods is that N-FINDR is known to be more sensitive to noise present in the hyperspectral image.

As a consequence, it generally exhibits slightly lower performance compared to VCA when dealing

with noisy datasets. The outcome of both methods can be observed in Fig. 6.6c. Both state-of-the-

art methods, FCLS and ELMM, have been evaluated using both endmember estimation techniques

as depicted in Table 6.1.

As mentioned in Section 6.2.1, the endmember initialization M0 for the CLHU-based model was

established through the methods that guarantee the maximum volume of the simplex formed by

the endmembers. In addition, it aligns with the concept of the regularization factor LV ol(.), see

Eq. (6.7) for dealing with a noisy M0, as it was described in Section 6.2.2. In the experimental

evaluation, CLHU was tested using both N-FINDR and VCA as endmember initialization methods,

see Section 6.1.2.

The quantitative results in the synthetic dataset can be found in Table 6.1. Since the CLHU-

approach is a stochastic method, the value presented in Table 6.1 was obtained by conducting the

CLHU-approach experiment 10 times and computing the average value and the standard deviation.

As previously mentioned, the FCLS and ELMM approaches are sufficiently effective in obtaining

an optimal solution for the synthetic dataset (Table 6.1). The proposed CLHU model is comparable

to the state-of-the-art models across different level of noise in the reconstruction and abundance

estimation, RMSEY and RMSEA. The endmember initialization, M0, is the differentiating factor of

the results, providing VCA better results, as expected.

Observing Table 6.1, it is noticeable that the metrics are quite similar across the different meth-
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Figure 6.7: Qualitative results for HSU on the synthetic dataset. In (a), it is illustrated A estimation
in the synthetic dataset at a SNR of 10 dB. In (b), M estimation in the synthetic dataset at a SNR
of 20 dB. In both case, The results have been obtained by using VCA for endmember initialization.

ods, especially when using VCA for M0 estimation. One notable difference can be observed in the

case where the dataset has a SNR of 10 dB and VCA is used as the endmember initialization method.

In this particular case, the ELMM exhibits the worst estimation performance based on the RMSEA

metric in Table 6.1. On the other hand, both the CLHU and FCLS methods remain competitive

and show comparable performance in estimating the abundance fractions, with the CLHU method

slightly outperforming the other. This observation is further supported by the qualitative evaluation

shown in Fig. 6.7a, where it can be visually noticed that the CLHU and FCLS methods stand out

in estimating the fractional abundances compared to ELMM.

Regarding the endmember estimation, the proposed model outperforms the other methods, sur-

passing the original M0 initialization in both cases, whether N-FINDR or VCA is used. This im-

provement is particularly significant when using N-FINDR for endmember initialization. The SADM

in the ELMM method is estimated by the average signal obtained from the different samples, Mi,

see Eq. (6.2). In the case of the FCLS method, the M is fixed, estimating A by M0, so it can serve

as a baseline for evaluating how much the CLHU model improves the endmember estimation by

N-FINDR and VCA. The CLHU model initialized by N-FINDR can obtain a better M estimation

than the rest of the models using VCA in the case of SNR 30 dB (Table 6.1). Figure 6.7b provides

a qualitative comparison, illustrating how CLHU improves the endmember matrix M estimation

compared to the initial estimation obtained from VCA in 20 dB. In this figure, a clear improvement

can be observed in the estimation of m2 compared to the initial estimation based on VCA.

Finally, considering the RMSEY , the CLHU approach is robust to the noise level, having a

good reconstruction in the different noise configurations and with a low standard deviation (Table

6.1). This indicates that the CLHU model is consistent, obtaining a practically identical output in

different training sessions.
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As a conclusion, the proposed CLHU framework shows a consistent performance across the

different noise configurations and the estimated endmembers consistently improve from the initial

estimation M0.

6.4.2 State-of-the-art dataset

In the previous section, the CLHU performance has been evaluated using a synthetic dataset which

ground truth is known. However, the HSU algorithms are commonly evaluated with state-of-the-

art datasets, which ground truth is not well-defined, and it has been estimated by different HSU

methods [319]. For this reason, the results obtained in this section should be interpreted as indicative

rather than definitive. Taking this into consideration, in this section, the performance of the CLHU

framework will be assessed using three remote sensing hyperspectral images that are widely used in

the literature.

The Jasper Ridge dataset, is a hyperspectral image of 224 spectral bands with a spectral reso-

lution of up to 10 nm, ranging from 400 nm to 2500 nm. In HSU, a sub-image of 100 × 100 pixels

and 198 spectral bands is used, where the noisy bands contaminated with water vapor density and

atmosphere are removed and a labeled ground truth is provided. This hyperspectral image includes

four endmembers: vegetation, water, soil, and road [319].

The Apex dataset, which has been previously used for HSU [311], is a hyperspectral image which

contains 110× 110 pixels and 285 spectral bands that cover the wavelength range from 413 to 2420

nm. In contrast to the Jasper Ridge dataset, Apex has not been preprocessed to reduce the number

of bands. Therefore, the bands contaminated with water vapor density and atmosphere have not

been removed. This hyperspectral image includes four endmembers: road, vegetation, roof, and

water.

The Samson hyperspectral dataset [327] contains 95 × 95 pixels captured over 156 different

spectral bands in the wavelength range from 401 to 889 nm. This image contains three endmembers

representing soil, tree, and water. The endmember spectra were manually selected from the image

to provide ground-truth information [327].

Since it cannot be guaranteed that FCLS and ELMM are sufficiently effective in obtaining an

optimal solution in these hyperspectral images, two state-of-the-art methods for HSU have been

included for comparison: the Multiple-Endmember Spectral Mixture Analaysis (MESMA) [328]

and Fractional Sparse Spectral Unmixing (FSSU) [329]. The MESMA algorithm and its variants

are computationally demanding optimization methods that achieve good quality in HSU by using

a library for the different endmembers, as ELMM. the FSSU extends the MESMA method by

incorporating a mixed norm technique.

Furthermore, the EGU-Net [310], an AE model for HSU, was also employed (see Section 6.1.3).

Notably, the EGU-Net is a modern DL-model approach that does not explicitly impose spatial

information through its methodology, like our proposed CLHU. This distinction sets it apart from

other DL-based methods where spatial information is integrated via convolutional layers, such as in

the case of UnDIP.[307]. However, it is essential to emphasize that EGU-Net is exclusively designed

for abundance map estimation. In contrast to our proposed method, endmember estimation is not

a task handled by the DNN in the EGU-Net. In their approach, VCA is used to extract a subset of

pseudo-pure endmembers, which are labeled by another HSU method [310]. This labeling is crucial

because the encoder, utilized for abundance map estimation, is trained by two streams. One stream
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Figure 6.8: Jasper Ridge dataset – Result presented here is obtained by initializing the endmembers
by VCA. In (a) is illustrated a visual comparison of A estimation obtained by the different unmixing
techniques. In (b) it is shown a comparison of the endmember estimation using CLHU and MESMA.
The endmembers m1, m2, m3, and m4 represent the vegetation, road, soil, and water, respectively.

optimizes the abundance map of these pseudo-endmembers obtained by another HSU method, while

the other stream optimizes the AE as a reconstruction problem using non-labeled pixels.

Given the architectures proposed for EGU-Net, one of them including spatial information [310]

by convolutional layers, in this work, the spatial information is not considered. The abundance

map of the aforementioned pseudo-pure endmembers has been obtained using Sparse Unmixing by

Variable Splitting and Augmented Lagrangian (SUnSAL) [330]. For the quantitative endmember

estimation of the EGU-Net, it has been considered as a library method, similar to ELMM, MESMA

and FSSU, where the pseudo-pure endmembers serve as the library.

Table 6.2 presents the quantitative results for different datasets. Similar to the synthetic dataset,

two methods were used for the endmember initialization, M0, excluding EGU-Net, in which it is

only used VCA for the restriction of the method. Based on the results presented in Table 6.2, it can

be observed that the reconstruction, RMSEY , metric consistently exhibited good performance for

all methods and datasets. Therefore, it can be concluded that the reconstructed data is similar to

the estimated ground truth data. Upon observing RMSEA and SADM in Table 6.2, it is apparent

that the solutions obtained differ from the proposed ground truth. As previously mentioned, HSU

is an ill-posed inverse problem, so it is common to obtain multiple alternative solutions for the same

input.

The Jasper Ridge dataset yields consistent results across all methods, with the main variation
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Figure 6.9: Apex dataset – Result presented here is obtained by initializing the endmembers by
VCA. In (a) is illustrated a visual comparison of A estimation obtained by the different unmixing
techniques. In (b) it is shown a comparison of the endmember estimation using CLHU, MESMA
and FCLS (VCA). The endmembers m1, m2, m3, and m4 represent the road, vegetation, roof and
water, respectively.

observed in the RMSEA metric (Table 6.2). Qualitative results are illustrated in Fig. 6.8b and Fig.

6.8a. Among those methods that rely on endmember libraries, MESMA and FSSU demonstrate a

larger deviation in RMSEA from the estimated ground truth when compared to other methods, and

this is confirmed in the qualitative inspection in Fig. 6.8a. At the same time, it can be observed

in Fig. 6.8a that the results obtained by CLHU, FCLS, ELMM and EGU-Net are similar, with

the latter achieving the best quantitative result. However, in the case of endmember m3, CLHU

shows the best qualitative result. In terms of M estimation, the CLHU model using VCA as the

endmember initialization method shows more significant differences to the reference compared to the

other methods. This is noticeable in Fig. 6.8b, particularly in the case of endmembers m2 and m3,

which represent the road and soil, respectively. As expected, since the endmember estimation is not

carried out by the EGU-Net, the quantitative result obtained in this method using the pseudo-pure

endmembers shows the worst performance in terms of SADM .

Regarding the Apex dataset, Table 6.2 shows that the abundance estimation by the different

methods, excluding the EGU-Net, is notably distant from the proposed ground truth. The MESMA

and FSSU methods, both based on endmember libraries, and EGU-Net exhibit significant challenges

in accurately estimating the endmembers. It can be observed in Fig. 6.9b and 6.9a that MESMA

supplies identical endmembers for the road and roof, namely m1 and m3. In both figures, it can
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Figure 6.10: Samson dataset – Result presented here is obtained by initializing the endmembers by
VCA. In (a) is illustrated a visual comparison of A estimation obtained by the different unmixing
techniques. In (b) it is shown a comparison of the endmember estimation using CLHU and FSSU,
this last one obtained the best SADM . The endmembers m1, m2 and m3 represent soil, vegetation
and water, respectively.

be observed that MESMA provides a comparable output for the corresponding endmembers. The

estimation of A is found to be identical in the qualitative evaluation based on Fig. 6.9a, and similar

in Fig. 6.9b, having a poor estimation of both output in MESMA. In addition, Fig. 6.9b also

suggests that the identification of m1 is a challenge for the different methods. The CLHU model

appears to struggle with accurately estimating the endmembers corresponding to the road (m1) and

water (m4), respectively. While the poor estimation of m1 is understandable due to the difficulties

in accurately identifying it, the estimation of m4 appears promising based on Fig. 6.9b. However,

the corresponding A estimation in CLHU is not satisfactory, as happens in FCLS and ELMM. More

specifically, the presence of water appears to be observed throughout the entire image (Fig. 6.9a).

It is possible that the lack of preprocessing in the Apex image, as it was mentioned before, could

generate some issues, particularly with the presence of water vapor, which can cause distortions in

the spectral bands. This could result in difficulties for an accurate abundance estimation. However,

the methods based on libraries, such as MESMA, look able to deal with this problem (see Fig. 6.9a).

In the specific case of the EGU-Net, it is the only method that obtains an optimal solution

regarding the A estimation for the Apex dataset, as depicted in Table 6.2 and Fig. 6.9a. However,

the reconstruction and endmember estimation (considering the pseudo-pure endmembers as a library

method for comparison reasons) show that this method is only competitive for abundance map

estimation.

It is worth noting that the Samson image exhibits a unique behavior in the results obtained
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by the CLHU model. Specifically, the solution obtained by CLHU differs significantly from the

solutions obtained by other methods and also from the estimated ground truth, as it is noted in

Table 6.2 and Fig. 6.10b. In the qualitative evaluation, it can be observed that the estimation

of A by CLHU, depicted in Fig. 6.10a, does not differ much from the estimation obtained by the

other methods. The primary disparity in A estimation can be attributed to the abundance of m1,

which represents the soil. Although the estimated locations of this endmember are consistent across

different methods, its composition differs significantly. It appears that in the solution provided by

the CLHU method, m1 is the main contributor for detecting the soil, with the other endmembers

also contributing but to a lesser extent. This is easily observable in the colorbar of Fig. 6.10a, where

the maximum contribution value is limited to 0.6. As shown in Table 6.2, the SADM metric is found

to be consistent among the different methods, except for CLHU, whose results differ significantly

from the ground truth estimation. The main reason for the considerable difference is found in the

m1 estimation by CLHU, and it can be observed in Fig. 6.10b.

In conclusion, this section presents the results obtained by applying the proposed method to

different datasets commonly used in the literature. The performance of the proposed method is

compared with other state-of-the-art methods, and the quantitative results are presented in Table

6.2. Overall, the CLHU model shows robust performance and demonstrates that the proposed

framework is highly competitive. It is worth noting that all results were obtained using the same

configuration of hyperparameters described in Section 6.4 to avoid biased results. Regarding the

qualitative evaluation, the CLHU model shows promising results in all experiments, demonstrating

a good overall performance. Specifically, in the Samson dataset, the CLHU model shows a solution

that differs significantly from the rest of the methods, which is identified in the estimation of the

endmember m1. However, as an inverse problem, this solution cannot be immediately discarded as

an adequate solution, especially considering that the ground truth of these datasets is an estimation

and there are no actual measurements available for validating the spectral mixture. Insights on

endmember estimation will be elaborated in Section 6.4.3.

Comparing with the state-of-the-art DL-based method, EGU-Net, the proposed method pro-

vides two main advantages. Firstly, CLHU does not depend on a different method for establishing

a reference for the abundance map. Additionally, CLHU includes endmember estimation as a task,

something that EGU-Net does not do. These advantages are a consequence of the innovative ap-

proach in HSU method based on DL by leveraging the relationship between the input and the

endmembers to estimate the abundance map.

6.4.3 Insight in Endmember Estimation by CLHU

As indicated in the previous section, the Samson dataset exhibits a unique behavior in the results

obtained by the CLHU model. The A estimation by CLHU does not differ much from the estimation

obtained by other methods and the proposed ground truth. However, the primary disparity in A

estimation can be attributed to the abundance ofm1, which represents the soil. This is a consequence

of a soil endmember estimation that is significantly different from the proposed ground truth.

It is noteworthy that the soil endmember estimation by CLHU exhibits a specific pattern iden-

tified in different datasets, particularly in the aforementioned Samson dataset and the Jasper Ridge

dataset, where m3 endmember is labeled as soil (see Fig. 6.8a). Specifically, a peak of absorbance

around 700 nm is identified, which is not present in the ground truth, as clearly illustrated in Fig.
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Figure 6.11: Soil endmember estimation by CLHU (solid line) and reference (dashed line) normalized
in two independent datasets, Jasper Ridge and Samson.

Table 6.3: Quantitative endmember estimation by SADM relative to the Ground-Truth provided
by the dataset. In the case of the synthetic dataset, it has been used the dataset with an SNR of
30db. Given M̃ is the endmember estimated by CLHU model f(.), the reconstruction provided for
the CLHU is represented by f(M̃).

SADM

Jasper Apex Samson Synthetic

M̃ 0.1825 0.1100 0.1964 0.0720

f(M̃) 0.1055 0.1052 0.1085 0.1083

6.10b and less distinctly in Fig. 6.8b. For a direct comparison, Fig. 6.11 illustrates a representation

of both endmembers extracted from the different datasets in the same wavelength range. This peak

absorbance is observed in Fig. 6.11, where the peak of absorbance is represented by a significant

decrease in reflectance.

Observing Fig. 6.11, it is evident that the peak of absorbance is shifted between the two datasets,

Jasper Ridge and Samson. This discrepancy might be a consequence of dataset notation or given

by the high correlation among adjacent bands, but it cannot be guaranteed. When compared to

the reference signal in the illustrated wavelength range (dashed line), the peak of absorbance is not

observed. The same discrepancy is observed with other approaches, as illustrated in Fig. 6.8b and

Fig. 6.10b, where the endmember estimation is obtained from the library method.

The aforementioned behavior was not observed in the Section 6.4.1, where the experiment is

controlled and the endmember are well-known and CLHU has proved his effectiveness in this exper-

iment. As it has been previously reported, the dataset used in this section have not a well-estimated

ground truth and the reference has been extracted by different HSU methods [319]. For that reason,

the results should be considered as indicative.

As shown in Table 6.2, considering the endmember initialization using VCA, CLHU model ap-

pears to yield less favorable results compared to the VCA. For instance, in Jasper Ridge dataset, the

original VCA (as seen in the FCLS case) yields a SADM of approximately 0.15, whereas in CLHU,

this value increases to around 0.18. This trend is consistent across other datasets, with Samson

exhibiting the most significant discrepancy.

However, an interesting observation is made when the endmembers estimated by CLHU, denoted
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as M̃ , are ‘reconstructed’ using the same CLHU algorithm, resulting in M̂ = f(M̃), where f(.)

represents the CLHU model. This process appears to mitigate the earlier issues. As indicated

in Table 6.3, the reconstruction of M̃ by CLHU improves the results and surpasses the better

estimations in dataset like Jasper Ridge and Apex. In contrast, for the synthetic dataset with

well-known endmembers, the reconstruction quality diminishes, aligning with expectations.

In the absence of more evidence, the result suggests that CLHU could be found non-linear

interaction that it is consequence of the interaction among different endmembers and for that reason,

there is a bigger discrepancy regarding the endmembers provided by the state-of-the-art dataset.

In the synthetic dataset, the linear interpretation is guaranteed and CLHU aligns with expected

outcomes. However, in the other dataset this interpretation is a relaxation of the real conditions.

In this way, CLHU might be found more interactions and not only the spectral variability produced

by external factors such as, for instance, illumination. Table 6.3 describes that endmembers have a

linear interaction among them, fitting with the first-order multilayered mixture models, the bilinear

model, and for that reason, the reconstruction align with the endmembers provided by the datasets.

However, it cannot be guaranteed until more controlled tests are carried out.

6.4.4 Multi-layered Scene: Biological Tissue Decomposition

HyperSpectral Imaging has been applied to numerous areas, including medical applications such

as noninvasive disease diagnosis and surgical guidance [135]. It offers great potential for these

applications because the absorption, fluorescence, and scattering characteristics of tissue change

during the progression of disease. Therefore, the reflected, fluorescent and transmitted light from

tissue captured by a hyperspectral camera carries quantitative diagnostic information about tissue

pathology.

In this sense, the decomposition obtained by HSU provides a valuable additional information

about the analyzed tissue. For instance, this can be useful for identifying and quantifying different

substances within a tissue sample, obtaining a more in-depth understanding of its composition,

which can contribute to various medical diagnostic and research purposes. Given the interest in this

thesis, the CLHU framework has been specifically developed with a focus on the application of HSI

in the medical field. As it has been indicated in the introduction of this chapter, the importance

of HSU techniques in generating significant insights from medical hyperspectral data cannot be

overstated. These techniques allow for the exploration of biochemical properties in tissues, offering

a new dimension to medical analysis.

This experiment described in this section serves as an exemplification of a multilayered scene

where non-linear mixture models, such as the bilinear model outlined in Eq. (6.3), are applicable. In

addition, this experimental test has been designed to focusing on the differentiation of two biological

tissue types: ex-vivo nerve and fat tissue. This particular test scenario was inspired based on previous

research, which highlighted the challenge of distinguishing between these two tissue types using

laser-induced breakdown spectroscopy and their high similarity in terms of qualitative elemental

composition [331].

In this experiment, an obturator nerve and mesentery of approximately 1 mm in thickness were

used. Both tissues were obtained from a pig after euthanization. The mesentery, representing fatty

tissue, intentionally covers the nerve tissue, simulating challenging clinical observation conditions.

For the data acquisition, an imaging system with a high-speed NIR hyperspectral camera (Compo-
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(a) (b) (c)

Figure 6.12: Test scenario for HSU to identify ex-vivo nerve and fat tissue. In (a), the image shows
both types of tissue (nerve and fat) separated. (b) Image used for the test scenario, with fat tissue
covering the nerve tissue. (c) Highlighted nerve tissue under the fat tissue (yellow).

vision, CV-N800HS; Sumitomo Electric Industries, Ltd., Osaka, Japan) was used to obtain the NIR

image with a wavelength range of 1000-2350 nm and a wavelength resolution of 6.3 nm [145].

Considering the specific focus of this experiment, a qualitative evaluation approach is employed.

The outcomes achieved by the CLHU model, which utilizes VCA for the initial estimation of end-

members (M0), are showcased in Fig. 6.13a.

Figure 6.13b shows the estimated abundance matrix A. It is observed that m2 is exclusively re-

lated to the fat tissue, achieving a successful unmixing for this component. However, for m1, it can

be observed that the nerve tissue appears among the fat tissue, suggesting a potential misclassifica-

tion or overlap between these two components. On the other hand, m3 represents the background,

being clearly distinguishable.

The endmember estimation results, Fig. 6.13a, demonstrate that there are similarities in the

spectral signatures of m1 and m2, which aligns with the expectation that distinguishing between

nerve and fat tissues would be a challenging task. As mentioned previously, the two tissues exhibit

similarity, and the presence of the fat tissue covering the nerve further complicates the task. It

is anticipated that the spectral signature of the fat tissue dominates in the mixture, with subtle

variations introduced by the nerve tissue. Therefore, the expected outcome is that the estimated

endmembers would primarily reflect the spectral signature of the fat tissue, with specific variations

indicative of the presence of the nerve tissue.

Given the context of the experiment, the background material’s role within the entire scenario

is noteworthy. As depicted in Fig. 6.13, the background’s contribution is minimal, marked on the

colorbar with a value of 0.2, in those pixels corresponding to nerve tissue locations, which is covered

by the fat tissue. This finding supports the insights discussed in Section 6.4.3, suggesting that the

CLHU framework is detecting interactions between various endmembers. This capability aligns with

expectations for a multilayered scenario, illustrating the model’s potential in accurately interpreting

complex spectral data.

In the absence of additional experiments using different datasets, it can be concluded that the

CLHU framework exhibits promising performance for medical applications. However, further eval-

uation is necessary to assess its effectiveness more comprehensively. Future studies should consider

testing the framework on diverse medical hyperspectral datasets to validate its performance and as-

sess its generalizability across different scenarios and tissue types. By conducting such evaluations, a
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Figure 6.13: CLHU results of the test scenario using ex-vivo nerve and fat tissue. The endmember
estimation (a) and the abundance estimation (b) using CLHU initialized with VCA.

more robust understanding of the capabilities of the proposed CLHU framework and its limitations

in medical applications can be obtained.

6.5 HyperSpectral Unmixing by CLHU: Information-Theoretical

Validation

In Section 6.3, the CLHU was described from an IT perspective to enhance its interpretability by

considering how information is propagated. As in previous chapters, the IT perspective will be

validated based on a visualization tool named IP [191], see Section 4.1.2.

As in the previous chapters, the IP estimation has been carried out using the kernel-based Renyi’s

α-order entropy estimation proposed by Giraldo et al. [171], which is mathematically well-defined

and computationally efficient, and in Chapter 4 was validated for a scarce dataset. As kernel function,

RBF was applied and the kernel-width estimation was carried out by the normalized Silverman’s

rule proposed in [175], Eq. (3.31). The γ in Eq. (3.31) has been set to 10−2.

In contrast to the previous tests that adhered to the standard configuration outlined in Sec-

tion 6.4, this section employed a specific setup to enhance result interpretation. Specifically, the

encoder architecture, f(; θe), was simplified to three fully connected layers comprising 128, 64, and

32 neurons, respectively. As detailed in Section 6.4, each layer incorporates batch normalization,

a dropout, and a ReLU activation function. The loss function, as articulated in Eq. 6.5, had λ

set to 0, thereby omitting the minimum volume constraint that is commonly linked with geometric

HSU methods. As noted in Section 6.2.2, within CLHU, this constraint is considered optional. For
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Figure 6.14: IP estimation using 3 endmembers in the synthetic dataset. Based on that it is a
reconstruction task, the black dashed line represents the maximum possible value in the different
range. The H(Y ) represents the entropy value of the original ground truth.

the experiments, it has been used the synthetic dataset with an estimated SNR of 20 dB. The IP

estimation was computed by the code implemented in [172].

To corroborate the IT perspective in Section 6.3, two experiments were conducted to estimate

the IP using three and five endmembers. Given that the synthetic dataset was generated using three

endmembers, the IP estimation must adhere to all the prerequisites outlined in Section 6.3. Key

aspects include ensuring compliance with the DPI as defined by Eq. (4.3), following the typical

DPI for cascaded channels (see Section 3.2.1), and Eq. (6.11), as well as a reduction in MI among

the endmembers, M , as indicated by (6.12). The latter reduction is facilitated by the contrastive

mechanism within the loss function, LCon(M). In contrast, when employing five endmembers for

IP estimation, potential violations of these properties are expected.

In both cases, VCA was utilized as the endmember initialization method. To improve the clarity

of the visualizations, a moving average filter with a window size of 5 was applied to mitigate high-

frequency noise present in the plots.

Figure 6.14 shows the outcomes of the experiment conducted with three endmembers, aligning

with the scenario’s requisite count. The black dashed line on the left represents the optimal solution

estimated as a reconstruction problem, as the described in Section 4.3, while the purple dotted line

represents H(Y ), where Y is the original synthetic data without noise. The encoder’s three outputs

are labeled E1, E2 and E3. The estimation of the IP reveals that the CLHU model’s layers possess

adequate information for X reconstruction. Nonetheless, the LMM employed for reconstruction does

not sufficiently approximate the noisy input.

In the specific examination of IP estimation with three endmembers (Fig. 6.14), no violations of

the DPI are detected, adhering to Eq. (4.3) and Eq. (6.11). The I(X;A) demonstrates a progression

from minimal initial information to achieving parity with E2 in terms of information content about

X. This progression underscores that M is reducing the uncertainty for reconstructing the input X,

i.e., it is injecting information as it was described in Eq. (6.8).

As it was described in Section 4.1.2, the training process consists of two distinct phases [191]::

the fitting phase and the compression phase. The compression phase should occur in the final
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Figure 6.15: IP estimation using 5 endmembers in the synthetic dataset.

stages of training, where irrelevant information from the input X is discarded to prevent overfitting,

obtaining a higher compression. In Fig. 6.14, a compression phase is noted in E1 and E2, suggesting

the model is nearing the optimal solution, converging towards I(X;A). The compression in E1 and

E2 becomes apparent as the MI in these layers approaches the entropy of the optimal linear solution,

H(Y ) ≃ 1.67 bits.

During the compression phase, it’s noted that the various layers tend to converge towards the

quantity of information present in A. This phase is primarily evident in those layers that possess

more information about X than A, while layers with lesser information, such as E3 and Z, remain

in the adaptation or fitting phase. In the context of I(X;T ), the model appears to be converging

towards a value of 3.5 bits. Nonetheless, the LMM constraints of this informational content to 2

bits. This observation suggests that A contains all the relevant function for obtaining an optimal

solution, but it still contains uncertainty produced by the noise.

In contrast, Fig. 6.15 illustrates the IP estimation when the number of components is not

correctly estimated, using 5 endmembers. In this case, the DPI defined by Eq. (6.11) is not

satisfied, indicating that the injection of M does not adequately reintroduce the lost information

from the input X. Consequently, it is inferred that M introduces uncertainty in the reconstruction

rather than enhancing informative content.

However, as observed in Fig. 6.14, a compression phase is apparent in the initial layers, E1 and

E2. Additionally, it is observed that the different layers are converging, as it was described in the

three-endmembers scenario. From this observation, it can be deduced that while the reconstructions

in both cases exhibit similarity, the endmember estimation is notably inferior in the five-endmember

scenario. As a result, it is concluded that the problem in this scenario is the bad estimation of

endmembers.

In summary, in this section it has been validated the theoretical view defined in Section 6.3.

Specifically, the model explanation defined in Eq. (6.9) and Eq. (6.10) has been validated, and the

problem related to the number of independent components is well-defined in Fig. 6.15. Through the

estimates seen in this section, it can be concluded that the model is well explained following the IT

view.
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6.6 Discussion

The proposed CLHU has demonstrated in the experimental results to be competitive compared with

the state-of-the-art methods. Considering the controlled experiments, specially the Section 6.4.1, it

is observed that CLHU can obtain an optimal solution for HSU, which is considered an ill-posed

inverse problem. Table 6.1 shows that CLHU works perfectly in conditions where the input is noisy

in both task, abundance and endmember estimation.

Despite the promising results using the synthetic dataset, Section 6.4.2 can generate doubt about

the use of CLHU, in specific, considering the quantitative results in Table 6.2. In this section has been

different remote-sensing HSI datasets commonly used in the literature to validate HSU algorithms.

In this case, CLHU shows discrepancy with the ground-truth of these datasets. However, as it was

indicated in Section 6.4.2, the ground-truth provided by these datasets is not well-defined, and it has

been estimated by different HSU. For this reason, the results obtained in this Section 6.4.2 should

be interpreted as indicative rather than definitive. In other words, the ground-truth is not a real

reference and the results are just demonstrated that the proposed CLHU is obtained a different

‘interpretation’ of the dataset that cannot be considered wrong given the ill-posed problem.

In general, in the datasets used in Section 6.4.2, the qualitative results about the abundance

estimation are considered correct, and it does not show special discrepancy with the different meth-

ods. In the case of the Apex dataset, it is observed that the abundance of ‘water’ shows that this

element is observed in the whole image. However, as it was indicated in Section 6.4.2, Apex dataset

has not a preprocessing step in which hyperspectral bands contaminated with water vapor density

and atmosphere have not been removed. For this reason, the result obtained in Apex is considered a

problem because of the lack of preprocessing step. The use of methods in which the solution is reg-

ularized by a sparse factor helps to obtain a better result, compared to the proposed ground-truth,

as it happens in FSSU or in the EGU-Net which was guided by SUnSAL, a method in which the

sparsity is considered.

Regarding the endmember estimation, Section 6.4.2 shows results that differ much from the

proposed ground-truth. In specific, CLHU obtains a solution that differs significantly from the other

methods in Samson dataset. It was a consequence of the m1 estimation, as it is observed in Fig.

6.10b. In Section 6.4.3, it was compared the ‘soil’ signature obtained in Samson with the obtained

in another dataset, Jasper Ridge. In both case, it was observed a specific pattern that it is not

observed in the different ground-truth, a peak of absorbance around 700 nm.

Given the aforementioned observation, in Section 6.4.3 was proposed to analyze what happens

when CLHU has to reconstruct the estimated endmembers. Considering the Similarity module,

Eq. (6.4) shows that the CLHU model force to find a compressed representation Z in which all

endmembers contribute to the A estimation. This observation is well-defined in the IT perspective

given the Eq. 6.9, where it is necessary to maximize H(M,Z). As a result, the reconstruction of

M should be a worse estimation, but Table 6.3 shows that, in terms of SADM , the reconstruction

fits better with the proposed ground-truth in the state-of-the-art dataset used in Section 6.4.2.

Additionally, it is observed that for Jasper Ridge and Apex dataset the results obtained outperforms

the estimation to the other methods. As a conclusion, it was suggested that CLHU consider the

interaction among endmembers, as different NMM such as the bilinear model, Eq. 6.3.

In general, in remote sensing, the LMM is considered a good approximation of the mixture

model since the mixing scale is macroscopic, see Section 6.1.1. However, even the mixture model in
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CLHU is the LMM, the approximation that it has been obtained corresponds to a NMM and it is a

consequence of the discrepancy of CLHU with the different methods.

Finally, for supporting the conclusions obtained from Section 6.4.3, it was considered a multi-

layered scene in which the endmember interaction has to be considered. The experiment was de-

scribed in Section 6.4.4, and it was demonstrated that CLHU works in this scenario. In addition,

this experiment allows illustrating how the HSU technique would be relevant in the medical imaging

domain for a better interpretability of biological tissue data.

6.7 Conclusion

The interpretability of data is crucial for gaining more in-depth insights into its informational con-

tent. The data interpretation is essential in critical applications fields, such as autonomous driving

or medical screening, since bad interpretation of the data can result in inconsistencies and potentially

adverse outcomes. However, this interpretability is demanding in high-dimensional data, such as

HSI, and it is necessary the use of dimensional reduction technique to address the ‘curse of dimen-

sionality’, the challenges encountered when managing data in high-dimensional spaces challenges

that are not present in lower-dimensional settings.

While common dimensionality reduction techniques, like PCA, are widely used, they may not

always aid in enhancing data interpretability. This is because the new representations created by such

methods are typically linear combinations of the original features, which can obscure the physical

significance of the data. In contrast, HSU plays a pivotal role in improving data interpretability.

Unlike PCA or ICA, HSU decomposes signals using the original feature space. This approach ensures

that the outcomes of HSU methods not only enhance the physical understanding of the data but

also constrict the solutions to physically meaningful ranges. This makes HSU a valuable tool in

translating complex high-dimensional data into interpretable and physically relevant information.

It is worth noting that although these methods are used for HSI, it might be extended to different

high-dimensional signal decomposition since, as it was described at the beginning of this chapter.

The result of these methods obtained a decomposition in endmembers and the abundance map but,

as it has been mentioned in this chapter, the endmember definition is problem-dependent as the

components in PCA or ICA.

This chapter presents a novel approach for HSU using a DL model, the CLHU framework. Unlike

existing methods that primarily rely on the DL model’s reconstruction capabilities for abundance

estimation, the proposed CLHU approach leverages the relationship between the input signal and

the estimated endmembers to approximate the abundance map. By incorporating the latent space

and exploiting its connection to the estimated endmembers, the proposed method offers a new

perspective and potential improvements in HSU performance. This method might be extended to

different high-dimensional data, but it is necessary to consider that the endmember initialization is

a fundamental part for obtaining an optimal solution in CLHU.

The proposed method was tested across various hyperspectral datasets, proving that the proposed

method exhibits promising performance and is competitive with existing approaches. Although the

LMM is utilized as a foundational mixture model within the CLHU framework, it has been noted that

CLHU provides a nonlinear perspective without the necessity of adopting a NMM. This is achieved

by incorporating endmember interactions, an aspect often linked with non-linearity in scenarios
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involving multiple layers. Furthermore, CLHU demonstrates its capability to identify patterns in

the estimation of specific material endmembers across diverse datasets, as exemplified by the ‘soil’

endmembers from the Jasper Ridge and Samson datasets.

This thesis aims to improve the interpretability of the algorithms used in DNN models, seeking a

deeper comprehension of these sophisticated mechanisms. An IT perspective has been employed to

enhance the interpretability of the model, extending the discussed in previous chapters, examining

the inner workings of DNNs in problem-solving. This analytical approach offers valuable insights

into adapting the proposed CLHU model for various applications. For example, the IT perspective

elucidates the role of the Similarity module, as detailed in Section 6.2.1, which ensures the interaction

among different endmembers during the hyperspectral signature reconstruction process, following

InfoMax principle depicted in Eq. (6.9). A validation of the IT perspective was carried out in Section

6.5. Given this IT perspective, it is observed that a bad estimation of the number of endmembers

can impact the solving mechanisms employed in CLHU, potentially leading to a situation where the

DPI, Eq. (6.11), might not be satisfied. Based on this analysis, it would be possible to define an

algorithm to estimate the correct number of endmembers found in HSI data.
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Chapter 7

Anomaly Detection by Deep

Learning

The greatest discoveries often lie not in

finding new things, but in seeing familiar

things in new ways.

Alexander Fleming

Beyond the conventional applications of DL models in classification tasks, as illustrated in Chap-

ter 4, the focus has shifted towards enhancing data interpretability in recent chapters. Chapter 5

concentrated on developing a DNN algorithm for FS, while Chapter 6 introduced a DL framework for

interpretable high-dimensional signal decomposition, specifically targeting HSU. This chapter shifts

attention to a crucial task for performing a coherent dataset analysis: Anomaly Detection (AD).

The method based on DL will be evaluated through a toy experiment using the MNIST dataset,

along with two medical datasets — pneumonia detection and brain cancer — both of which will be

tested under an extremely imbalanced configuration in the training set.

The goal of AD is to identify unexpected or outlying observations within the data that deviate

significantly from the norm, potentially signifying errors or noise. This task is critical for ensuring

the integrity and reliability of data analysis, highlighting outliers that may influence the overall

outcomes or indicate novel or rare events worthy of further investigation. However, these outliers

may contain important information, so they cannot be always discarded depending on the hidden

assumptions regarding the data structure.

The concept of an anomaly, or an outlying observation, is crucial for deepening our understanding

of AD. Hawkins provides a foundational definition of an outlier as [332]:

an observation that deviates so much from other observations as to arouse suspicion that

it was generated by a different mechanism.

This definition underscores that the identification of outliers is not solely based on the data structure,

but also heavily influenced by the detection methodology. In other words, the AD algorithm might

be designed for a specific mechanism for generating data and, for this reason, it is worth emphasizing

the need to select or design algorithms capable of identifying various types of anomalies effectively.
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In the healthcare sector, the application of AD has received significant research interest. Within

this context, the pathologies are typically interpreted as unusual patient health conditions [333, 30],

a definition that fits with anomalies or outliers in the data. For instance, an ‘anomalous’ MRI image

may indicate the presence of malignant tumors. This perspective underscores the potential of AD

in identifying rare diseases, atypical symptoms, or unexpected responses to treatment, highlighting

its importance in enhancing patient care and facilitating early intervention strategies.

Chapter 4 discussed how AI could alleviate the radiologists’ workload in analyzing radiological

imaging data [5], such as CT scans or MRIs. However, a significant obstacle in this endeavor is

the data challenge, primarily the scarcity of sufficiently labeled data [180]. This scarcity arises from

the difficulties in systematically collecting data and the labor-intensive nature of labeling datasets,

which paradoxically could increase a radiologist’s workload. For instance, in pathology, annotating

diverse microscopy datasets is both time-consuming and expensive due to that a tissue slide may

potentially contain millions of cells that necessitate specialized expertise from the annotator [334].

In the same chapter, it was evaluated the analysis of DNN models based on IT perspective using

a limited dataset. This approach aimed to diminish the uncertainty inherent in DNNs without the

need for extensive testing datasets, offering an alternative testing methodology for such scenarios.

However, in these cases, a crucial question arises: could the task of labeling datasets be optimized?

AD emerges as a promising solution in this context. By identifying outliers or unusual patterns

automatically, AD has the potential to streamline the labeling process, highlighting data points that

require human expert review. This approach not only aids in efficiently generating labeled datasets

but also ensures that the focus is maintained on the most clinically significant or anomalous cases,

optimizing resource allocation and potentially enhancing diagnostic processes.

Furthermore, in supervised contexts, AD methods are often intended to manage unbalanced

datasets. Semi-supervised AD specifically seeks to train models using solely the normal class [29],

often represented by healthy data, and subsequently applies the model to both healthy and patho-

logical datasets to generate ‘scores’ [30]. It is worth noting that, in general, the samples referring

to a pathology are a minority. Consequently, it is important to acknowledge that these methods

can also serve classification purposes, particularly in medical screening scenarios where there is not

enough labeled data.

Throughout this thesis, the discussion has centered on the ability of DL models to extract

features and optimally compress data. In addition, these models have the benefits that they are

easily-adaptable to large and different complex datasets. This makes them suitable for AD, aiming

to learn feature representations or anomaly scores via DNN for the sake of AD. Recently, numerous

DL-approaches for AD have been introduced, demonstrating significantly better performance than

traditional and ML-based AD methods on addressing challenging detection problems in various

real-world applications [335, 336], including the medical context [192].

The effectiveness of DL in AD can be attributed to its capability for data compression, which

directly addresses the ’curse of dimensionality’ [228], a challenge thoroughly examined in earlier

chapters. This curse represents a significant barrier for numerous AD techniques when dealing

with high-dimensional data, undermining the efficiency of traditional methods like distance-based,

density-based, and clustering-based AD approaches [337]. In the healthcare sector, as highlighted

in Chapter 5, high-dimensional data is increasingly prevalent [231], exemplified by high-resolution

and multimodal medical imaging. Multimodal imaging, which combines various medical imaging
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Figure 7.1: Illustration of the different types of anomalies in the state-of-the-art.

techniques [338], epitomizes the complex data types in healthcare that benefit from DL’s advanced

processing and analysis capabilities.

This chapter details the adaptation of DL models for AD, with a specific focus on medical

imaging. This context is particularly relevant, as the definition of an anomaly often depends on the

AD method employed, as discussed in previous chapters. The chapter is structured as follows: first,

it introduces the different types of anomalies and the various detection methods. The next section

presents the proposed DL-based method, Anomaly Detection in Latent Spaces using Entropy-based

score (ADeLEn), which is built on semi-supervised learning for AD. Following this, the IT perspective

is discussed, describing the mechanism based on the InfoMax principle. Finally, experimental results

are presented, followed by a discussion and conclusions.

7.1 Type of Anomaly and Detection Methods

As previously mentioned, the design of an AD method is fundamentally designed by the character-

istics of the anomalies it aims to detect. The current literature recognizes various ways to classify

how anomalies manifest. The main distinctions are made between anomalies that are extreme yet

genuine parts of the main population, such as random fluctuations at the tails of a distribution, and

contaminants which come from different distributions [339]. Further distinctions are made between

obvious errors and outliers that are unusual but not extremely rare, as well as between weak outliers

(noise) and strong outliers (significant deviations) [339]. However, broadly, anomalies are commonly

classified into three types: point anomalies, contextual anomalies, and collective anomalies [340,

339].

Point anomalies pertain to cases that deviate significantly from the rest of the data. They often

represent irregularities or deviations that occur randomly and may not have a specific interpretation

[340, 339]. Contextual anomalies, on the other hand, are anomalies that, while appearing normal

in a general sense, become deviant when considered within a specifically selected context [340, 339].

Finally, collective anomalies involve collections of individual data points that, while not necessarily

anomalous on their own, appear anomalous as a group compared to the rest of the data [340, 339].

Figure 7.1 illustrates these types of anomalies.

The kind of anomaly is closely linked to the specific task at hand. For example, in NLP con-

textual anomalies are prevalent. These anomalies occur when the usage of words deviates from

the expected context, such as the use of technical jargon in a casual conversation. An illustrative
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example of collective anomalies can be seen in the case of fraudulent credit card transactions, where

a single transaction may not appear anomalous, but a group of unusual transactions together can

be indicative of fraud [335]. However, point anomalies are the simplest case and the majority of

research are focuses on this [340].

7.1.1 Anomaly Detection Methods

Anomaly Detection has been a subject of study since at least the 19th century [341], resulting in a

wide variety of AD methods. The most common techniques for AD are the statistical techniques,

in which we can find the parametric and non-parametric statistical techniques. The parametric

techniques assume that the normal data is generated by a parametric distribution with parameters

ω and a probability density function f(x;ω), where x is an observation [340]. The non-parametric

are those methods in which the model structure is not defined a priori, and it is determinate by the

data.

The simplest case of parametric technique is the box plot rule using the IQR, which was applied in

Section 5.4.2, where the data is assumed to follow a Gaussian distribution. Following this Gaussian

assumption, there are different tests that can be used for AD, such as the Grubb’s test [342], using

a score based on the mean and standard deviation of the data sample, or the student t-test [343],

where a normal sample is compared with a test sample using t-test and, if the test shows significant

difference between them, it signifies the presence of an anomaly. The use of a linear regression is

another practice of parametric statistical technique, in which is assumed a linear relationship between

independent and dependent variables. The idea of this approach is to fit a linear model on the data

and the residual, the part that it is not explained by the model, corresponds to the anomaly score

[340, 332]. Finally, there are techniques based on a mixture of parametric statistical distributions

to model the data. As an example of these methods, one approach consists on the assumption that

the data and the anomaly follow the same distribution but with different parameters, for instance

a Gaussian data with the same mean but with a larger variance [344]. Another approach can be

considered that normal instances follow a mixture of parametric distributions, as a GMM [345], and

if the test does not fit with that mixture distribution, then it is considered an anomaly.

The non-parametric statistical techniques are based on the estimation of the PDF of the normal

data. Here, it can find two approaches based on histograms, frequency-based, or the use of Parzen

windows [170]. For instance, in the use of histograms, requires constructing the histogram of the

normal data, although it can be considered to obtain the histogram of the anomaly distribution too

[346], and the size of the bin used is key for the AD [340].

The use of ML has also considered for AD, including the DL. The taxonomy of these methods is

complicated, and it could be considered based on the learning process using, such as the observed

in Section 2.1.1. However, in the literature it is commonly to categorize the AD method based

on ML considering how the problem is carried out [347]: classification, regression, clustering, etc.

For instance, the clustering-based AD technique assumes that normal data belong to a cluster while

anomalies do not belong to any cluster, similar to the observed in the point anomaly in Fig. 7.1. This

method is mainly an unsupervised technique, although it has been explored in the semi-supervised

approach in clustering [29]. In those techniques, the clusters are generated by using ML algorithms

such as K-Means [27] or DBSCAN [348].

In classification-based AD techniques using ML, it is associated with a supervised or semi-
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supervised technique. Supervised AD involves training a supervised binary or multi-class classifier,

using labels of both normal and anomalous data instances [335]. However, there are alternatives

that are considered unsupervised as the One-Class SVM (OC-SVM) [349]. This method is a kernel-

method where the SVM is trained for finding a maximum margin hyperplane in feature space that

best separates the mapped data from the origin. In this case, the data corresponds to the ‘normal’

data and the anomaly score is based on this distance to the origin, as a result, the anomaly detection

is carried out by using an estimated threshold in this distance. The Support Vector Data Description

(SVDD) [350] is another technique related to the OC-SVM but, instead of using a hyperplane, this

method separates the data using a hypersphere. The use of SVDD then consists in detecting as a

normal every point contained in the hypersphere. Another alternative but using ensembles model is

the Isolation Forest [351], which employs binary Decision Trees for identifying anomalies, assuming

that anomalous data points are easier to separate from the rest of the sample.

7.1.2 Deep Learning Approaches for Anomaly Detection

The use of DL in AD has become increasingly prevalent recently. Deep learning approaches have

been shown to outperform traditional AD methods, including ML, especially as the scale of data

grows [335]. The primary contribution of these DL approaches is related to data compression, a

task at which DL is particularly effective, as has been detailed in previous chapters. For example,

Hawkins et al. [352] proposed the use of a Replicator Neural Network for AD. This architecture,

originally designed for data compression [353], utilizes a staircase activation function that enables

the network to compress data by assigning it to a defined number of clusters. This concept, initially

implemented with replicator neural networks, has evolved into the use of AEs, which serve a similar

purpose, providing a non-linear compressed representation of data through a self-supervised learning

approach [67], see Section 2.2.3.

The primary approach to using AEs for AD rests on the hypothesis that the training dataset

consists exclusively of observations confirmed to be normal [354]. The underlying idea is to learn a

model of what is defined as the normal class; observations that deviate from this learned model are

then classified as anomalies [354, 340, 336]. Consequently, training involves compressing the data

into a latent representation Z and then decompressing it to reconstruct the input x, denoted as x̂.

The reconstruction error, which can be measured as the MSE, is directly utilized as an anomaly

detection score for evaluating test instances [340]. In other words, the score is based on the likelihood

p(x|z), see Section 2.1.3. As a result, the data instances such as anomalies that deviate from the

majority of the data are poorly reconstructed. For contextual anomalies, this method can be adapted

using an LSTM-based AE, which is particularly effective in handling sequence data [355, 356, 357].

Nonetheless, the assumption that the training data solely comprises normal observations cannot

be guaranteed due to the possibility of annotation errors or the impracticality of thoroughly screening

large datasets. While strategies like data standardization can mitigate the impact of outliers during

training, they cannot completely rectify the distortion of the initial hypothesis. Consequently, if

anomalies contaminate the training dataset, they might lead to a misrepresented model of normalcy,

inadvertently causing these outliers to be misclassified as normal. This highlights a critical vulner-

ability in the reliance on AEs for anomaly detection, especially in settings where pristine training

data cannot be reliably guaranteed.

Recently, several AE-based approaches have been proposed to address the issue of training data
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contamination in AD. Zhou and Paffenroth [358] introduced the Robust Deep AE, inspired by Robust

PCA [359], which enhances the robustness of AEs for AD by iteratively separating the original data

into two subsets: a normal instance set and an anomaly set. Chen et al. [360] aimed to further

improve the AE-based approach by learning an ensemble of AEs instead of a single AE. This method

was specifically designed for tabular data [336] but is adaptable to other data types as well.

Additionally, there are robust alternatives to AEs that can handle noise in the normal data. One

such method is the Deep SVDD proposed by Ruff et al. [361]. This method integrates concepts

from one-class classification approaches like the OC-SVM and SVDD. Later, Ruff et al. further

developed this approach into a semi-supervised method known as Deep Semi-supervised Anomaly

Detection (Deep SAD) [362], which utilizes a subset of labeled anomaly samples to ensure that these

samples are distanced from the centroid of the normal samples, thereby enhancing model training

and anomaly detection performance.

Although the use of AEs for AD is commonly associated with describing an anomaly score based

on likelihood, Sakurada et al. [363] recognized that the latent representation in the bottleneck of the

AE can distinguish between normal and anomalous data. In other words, AD can be conducted by

using an anomaly score derived from the latent space Z. Probabilistic interpretations of AEs, such

as those discussed by Vincent et al. [364], can model aspects of the data-generating process more

directly. This form of regularization helps the latent representation to focus on a data manifold,

encoding the most relevant features of the data [354], which enhances the effectiveness of AEs in AD

by emphasizing crucial data characteristics while filtering out noise and less relevant information.

Alain and Bengio [365] indicate that regularized AEs implicitly estimate the data generation process,

and there is a established link between reconstruction error and data generation density.

Based on the aforementioned relationship, the generative models are a suitable option for the

use of AEs for AD. The use of generative models, such as VAE has been well-established in the

literature for AD. An and Cho [366] proposed to use a VAE for reconstruction and the anomaly

score is based on this reconstruction. Additionally, the use of Adversarial AutoEncoder (AAE) [367],

which combines the principles of generative adversarial networks introduced by Goodfellow et al.

[56], has also been proposed for AD [368] using reconstruction error as anomaly criterion. Zhai et

al. introduced an energy-based model for estimating the PDF and applied a criterion based on an

energy score, which has demonstrated superior results compared to traditional reconstruction error

criteria [369].

The application of generative models in AD has been extended to include various types of anoma-

lies. For instance, Longyuan Li et al. [370] explored the use of VAEs for contextual anomalies, par-

ticularly in time-series data. They developed a sequential VAE and proposed two decision criteria

for AD: reconstruction probability and reconstruction error. This illustrates the flexibility and effec-

tiveness of generative models in adapting to different anomaly detection scenarios, reinforcing their

suitability for a wide range of applications. Recently, DL-based DPM have also been considered for

AD using a semi-supervised approach [371].

To enhance the robustness of generative models for AD, various conditions can be applied within

the latent space Z where the PDF is estimated. For example, Beggel et al. [354] utilized an AAE

and implemented an iterative refinement process during training. This process involves removing

samples that are deemed anomalies by an OC-SVM within the latent representation Z after several

training epochs. This approach ensures that by the end of the training period, the estimated PDF of
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Figure 7.2: Example of anomalies in medical imaging: Brain case study.

Z more accurately models the normal data samples, significantly enhancing the model’s effectiveness

in distinguishing between normal and anomalous data.

For multi-class AD scenarios, Norlander and Sopasakis [372] introduced a method that incor-

porates a conditional aspect in the variational inference, based on the labels of different classes.

This strategy allows for distinct representations of ‘normal’ data to be derived based on the specific

classes involved. By doing so, the model can more precisely capture and model the normal behavior

within each class, thereby improving its ability to detect anomalies specific to each class context.

7.2 Proposed algorithm

In this section, it is described the proposed method designed specifically for the healthcare scenario.

As discussed in the introduction of this chapter, AD methods are tailored based on the data acqui-

sition mechanism. In the healthcare sector, anomalies are typically interpreted as pathologies; for

instance, an ‘anomalous’ MRI or CT image can indicate unusual patient health conditions [333, 30].

An illustrative example is depicted in Fig. 7.2.

As observed in Section 7.1.2, most DL-based AD methods generally use reconstruction error as

the anomaly score, operating under the assumption that anomalies will be poorly reconstructed by

the AE. Although there are alternatives, as mentioned in Section 7.1.2, this reconstruction-based

approach is predominant. Generative models such as VAEs, AAEs, and DPMs are well-suited for

this task. However, this approach requires the establishment of a threshold that is heavily dependent

on the data. To sum up, an anomaly is determined by:

∥f(x, θ)− y∥2F > ξ, (7.1)

where θ are the parameters of the model and ξ is the manually assigned threshold.

In this section, a method is proposed that does not rely on the reconstruction error for AD.

Instead, it leverages the latent representation, Z, from the bottleneck of the AE architecture to

compute a score used for AD. The method introduced in this section focuses on medical imaging,

where anomalies can be categorized as point anomalies (see Section 7.1). Consequently, we propose

the ADeLEn semi-supervised DL method.

7.2.1 Parametric Statistical approach for Medical Imaging

Parametric statistical AD methods are based on detecting anomalies by analyzing the probabilities

of the data, p(X). In the context of medical imaging, it is intuitive to consider that normal data,

denoted as X+, and anomalous data, denoted as X−, may follow the same distribution but with
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different parameters. For instance, if p(X) follows a Gaussian distribution, anomalies could be

represented by a larger variance:

X+ ∼ N (0;σ+),

X− ∼ N (0;σ−),

s.t. σ− > σ+.

(7.2)

This idea is grounded in the fact that, in medical imaging, the images are generally similar among

subjects. For instance, as observable in Fig. 7.2, brains are typically similar across subjects, but

a brain with a tumor, considered an anomaly in this context, exhibits a specific pattern that is

uncommon in normal brains. Moreover, apart from the fact that human brains are similar, medical

imaging is conducted following standardized acquisition protocols. These protocols reduce variability

in the images, which facilitates interpretation by radiologists, as the diagnostic information in these

data is heavily dependent on human interpretation [6]. For this reason, the aforementioned approach

is suitable under these conditions.

However, there are two key considerations when applying this approach for anomaly detection

in medical imaging. First, the images are typically high-dimensional data, and due to the ‘curse

of dimensionality’ [228], estimating the marginal distribution p(X) in high-dimensional spaces is

extremely complex. Secondly, the assumption that an image follows a well-known distribution, such

as a Gaussian distribution, is overly simplistic. Even if the images are similar, it is intuitively clear

that they are too complex to be accurately described by a normal distribution. As a result, the

description in Eq. (7.2) is not suitable.

The aforementioned challenges to the use of statistical approach can be carried out using gener-

ative models by incorporating a latent variable Z. In this way, the problem framed as:

pθ(x) =

∫
z

pθ(x|z)pθ(z), (7.3)

where pθ(.) corresponds to the probability function estimated by the model with parameters θ. The

form of the prior pθ(z) and the likelihood pθ(x|z) will depend on the data being modeled. However,

as it was indicated in Section 2.1.4, this marginalization is often computationally intractable.

Assuming that the true prior p(z) ∼ N (0, I) and pθ(x|z) as a factorized Gaussian, the goal is

to fit the model to an empirically observed subset p̂(X). A naive approach involves estimating the

model parameters θ by MLE, Eq. (2.7), using Monte Carlo sampling to approximate the integral

over z.

θ∗ = argmax
θ

Ex∼p̂(x),z∼p(z)[log pθ(x|z; θ)]. (7.4)

However, it is well-known that this approach does not scale well to high-dimensions of Z [373],

another manifestation of the ‘curse of dimensionality’. Here is where DL-based models play a

fundamental role.

DL-based generative models can handle these problems effectively. As discussed throughout this

thesis, from the IT perspective, it has been demonstrated that DL-based models provide efficient

compression of information. In other words, a DNN is well-suited for obtaining a compressed repre-

sentation of the input X, denoted by Z, with a lower dimensionality. Using VAE [55] as reference,

VAE addresses this problem by sampling z from a new distribution qϕ(z|x), where ϕ represents the
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Figure 7.3: Illustration of the VAE. In (a), it is depicted how the latent space follows a normal dis-
tribution based on the variational distribution. In (b), the Reparameterization Trick for optimizing
the model is illustrated.

parameters of the distribution, which is jointly optimized with the generative model.

The idea of VAE is to use the variational inference (see Section 2.1.4) to optimize the variational

parameters, which are obtained by a neural network, so that pθ(z|x) ≈ qϕ(z|x). This is achieved

by optimizing the ELBO, described in Eq. (2.11). As a result of solving the ELBO, the generative

model follows:

log pθ(x) ≥ log pθ(x)−DKL(qϕ(z|x)∥pθ(z|x)). (7.5)

A more detailed description of this alternative description of the ELBO can be found in Appendix

A.4.1. Observing this equation, the VAE will concurrently maximize the marginal likelihood pθ(x)

of the generative model while minimizing the KL Divergence between the approximation qϕ(z|x)
and the true posterior pθ(z|x) obtained by the encode path in the AE. In other words, the solution

is conditioned by the ‘distance’ between qϕ(z|x) and pθ(z|x). However, VAEs address this problem

by setting the prior distribution p(z) (see Section 2.1.4).

As a result, VAE provides a compressed representation that follows a probability distribution

established by qϕ(z|x). Figure 7.3 illustrates a VAE where the latent space Z ∼ N (0, σI), with I is

the identity matrix, as shown in Fig. 7.3a. Figure 7.3b depicts the Reparameterization Trick [254],

which is used for optimizing the DL model. In this approach, the neurons in the bottleneck estimate

the variational parameters that define the distribution, specifically the mean (µ) and the variance

(σ).

7.2.2 Semi-supervised approach for Anomaly Detection

In this section, we describe the proposed method, ADeLEn, a semi-supervised approach for AD

using the parametric statistical approach outlined in Section 7.2.1.

The proposed ADeLEn method utilizes a generative model to obtain the distribution of the

compressed representation Z. The goal is to extend the naive statistical approach observed in Eq.

(7.2) to medical imaging using this compressed representation. As previously discussed, even if the
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images are similar and their variability is limited, they are too complex to be accurately described by

a normal distribution. However, the compressed representation can follow a multivariate Gaussian

distribution. In that way, the hypothesis follows:

pθ(z|x+) ≃ pθ(z|x−), (7.6)

where x+ represents an normal sample and x− the anomalous sample. It is worth noting that it is

assumed that pθ(z|x−) and pθ(z|x−) follows a normal distribution.

As a result, considering the proposed method inspired by Eq. (7.2) and Eq. (7.6), the normal

and anomalous samples follow the same normal distribution, but the latter has a higher standard

deviation, as shown in Eq. (7.2). Consequently, the hypothesis follows the next assumption:

Z+ ∼ N (0;σ+I),

Z− ∼ N (0;σ−I),

s.t. σ− > σ+,

(7.7)

where p(z+) =
∫
p(z|x+)p(x+). The assumption that both distributions follow an isotropic Gaussian

distribution, with a diagonal covariance matriz I, is for simplicity, reducing computational complex-

ity and enhancing efficiency since each dimension in the latent space is independent. However, if

desired, it is possible to extend this to a Gaussian distribution with full covariance [374].

This distinction between the two distributions for normal and anomalous samples is achieved

through semi-supervised learning, see Section 2.1.1. As previously discussed, it is commonly assumed

that the training dataset consists exclusively of observations confirmed to be normal [354]. However,

it is challenging to ensure that the dataset is free of unidentified anomalous samples in practice. This

is particularly relevant in our case, where normal and anomalous samples are quite similar and follow

the same distribution. Therefore, it is necessary to include a subset of labeled anomalous samples.

In this approach, the non-labeled dataset,X+, is assumed to be normal and consists ofN samples.

The subset of labeled anomalous samples, X−, is relatively small, with M samples. Consequently,

the problem addressed in this chapter follows N ≫M . The idea is to use a VAE (although another

DL-based model, such as AAE, could also be used) where the variational parameters ϕ are optimized

to distinguish between both types of samples.

Loss function

This problem is addressed by the ELBO. Specifically, the loss function in a VAE is defined by:

Lθ,ϕ(x) = −Eqϕ(z|x) [log pθ(x|z)] +DKL(qϕ(z|x)∥p(z)), (7.8)

which corresponds to the observed in Eq. (2.11) where the KL Divergence acts as a regularization

term (see Section 2.4.2). However, in this case there are two distributions to consider, as it was

described in Eq. (7.7).

Recall that the latent space in a VAE aims to estimate the variational parameters of the distri-

bution of the model, see Fig. 7.3b, and it is assumed that follows a Gaussian distribution. As it was

previously mentioned, Eq. (7.7), it is assumed that p(z) follows an isotropic Gaussian distribution

to simplify the annotation. Thus, the KL Divergence between two isotropic Gaussian distributions
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is given by:

DKL(Qϕ∥P ) =
1

2

[
ln

(
σ2
p

σ2
q

)
+
σ2
q + (µq − µp)

2

σ2
p

− 1

]
, (7.9)

where qϕ(z|x) ∼ N (µq, σq) and p(z) ∼ N (µq, σq). Observing the hypothesis described by Eq. (7.7),

the KL Divergence can be simplified by removing the mean value µp = 0.

Additionally, for optimizing the problem, it is necessary to describe the σ for both distributions,

σ+ for normal samples and σ− for anomalous samples. It consists on hyperparameters of the model,

and it is from free election. In this chapter, it will be considered that:

z+ ∼ N (0, 1),

z− ∼ N (0, 3).
(7.10)

Given the sample distribution depends on a label, y ∈ {0, 1} where 0 represents the normal samples

and 1 the anomalous samples, the marginal distribution p(z) can be expressed considering the label.

In that way, p(z+) = p(z|y = 0) and p(z−) = p(z|y = 1).

Finally, the loss function in ADeLEn is defined considering this label. As a result, Eq. (7.8) is

modified as follows:

Lθ,ϕ(x) = −Eqϕ(z|x) [log pθ(x|z)] +DKL(qϕ(z|x)∥p(z|y)). (7.11)

In practice, the first term corresponds to the MSE and the second term is the KL Divergence defined

in Eq. (7.9) considering the Gaussian distribution depending on the label y, see Eq. (7.10).

Score

An AD method has to obtain a score which is used by the model for taking a decision. As it has

been previously mentioned, the proposed ADeLEn aims to discriminate the samples in the latent

space Z which follows a variational approach. In this way, following the Bayesian inference approach

(see Section 2.1.4), the score can be expressed based on the confidence of the estimation carried out

by the model.

As a result, it is proposed to use as a score function the uncertainty that the model has about

the distribution pϕ(z|x). The entropy measures this uncertainty Hϕ(Z|x), given the name to the

proposed ADeLEn. In this way, the score function using the Gaussian distribution assumption

follows:

Hϕ(Z|x) = Ez∈Z [− log p(z|x)] = D

2
log(2πe) +

D∑
i

log σ̂2
i , (7.12)

where D is the dimension of the bottleneck and σ̂2
i represents the variational variance estimated by

the model in the bottleneck.

Training

As it can be observed in Eq. (7.11), the solution is obtained by sampling in the bottleneck L

times, where L is a hyperparameter. Consequently, z(i,l) = f(x(i);ϕ, ϵ) corresponds to the set of l

elements in the batch x(i) of size K. The ϵ represents the distribution of the noise injected by the

Reparameterization Trick depicted in Fig. 7.3b.
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Considering the batch size, K, and the sampling size, L, the loss function Eq. (7.11) for a batch

is defined as:

LB
θ,ϕ(x

(i)) = − 1

L

L∑
1

log pθ(x
(i)|z(i,l)) +DKL(qϕ(z|x(i))∥p(z|y(i))). (7.13)

However, Kingma et al. concluded that the sampling is not necessary if the number of samples per

batch is large [55]. For instance, the authors mentioned that a batch size of K = 100 is considered

adequate. Finally, the training process is described in Algorithm 3.

Algorithm 3 ADeLEn training process

1: θ, ϕ← Initialize parameters
2: while not converged do
3: Xb ← Generates random batches of M datapoints

4: for Batches, x
(i)
b ∈ Xb do

5: ϵ(i) ← Random samples from noise distribution p(ϵ) ▷ see Fig. (7.3b).

6: g ← ∇θ,ϕLB(x
(i)
b ; ϵ(i)) ▷ Gradients of batch estimator.

7: θ, ϕ← Update parameters ▷ e.g. SGD or Adam.
8: end for
9: end while

7.3 Information Theoretical Perspective on ADeLEn

As done in previous chapters and in line with the objectives of this thesis, this section provides an

IT perspective on the proposed ADeLEn for AD in medical imaging. The study of the theoretical

foundations of DL is still an ongoing research effort, where IT has emerged as a key approach for

improving the interpretability of these ‘black-box’ models, as illustrated throughout this thesis.

In Chapter 4, it was demonstrated that AE follows the Infomax Principle (see Section 3.5) and

the regularization in this architecture is described by H(Z), see Eq. (4.6) [190]. In other words, an

AE aims to increase the MI between the input X and the compressed representation Z.

In VAEs, the InfoMax principle (see Section 3.5) follows the same condition that in the AEs.

However, VAEs have an additional constraint on H(Z) that forces the model to obtain a manifold —

a connected region that locally appears to be a Euclidean space —[21]. In summary, a VAE achieves

higher compression where the data ‘points’ are ‘compactly’ arranged in a connected region. Given

this ‘compactness’, VAEs are constrained to an entropy minimization in the latent space Z, which

results in a reduction of I(X;Z) due to the compression.

Given that Z is constrained by the mean value and the variance (ϕ ∈ [µ, σ]), the Hθ(Z) (the

entropy of the estimated marginal distribution pθ(Z) is subject to an upper limit that corresponds

to a Gaussian distribution [157]. It fits with the assumption proposed in ADeLEn where the prior

distribution p(Z) is a Gaussian distribution. As a result, the upper limit is defined as:

Hθ(Z) = E[− log pθ(Z)] ≤
1

2
log((2πe)D · |Σ|), (7.14)

where |Σ| is the determinant of the covariance matrix. However, given the assumption that Z follows
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an isotropic Gaussian, see Eq. (7.7), the upper bound can be simplified to:

Hθ(Z) ≤
D

2
log(2πeσ) ∝ log σ , (7.15)

given |Σ| = |σI| = σD, where σ is the variance and D is the dimension of the multivariate Gaus-

sian distribution. Given the aforementioned inequality, the KL Divergence of both distribution is

described as [157]:

DKL(pθ(Z)∥p(Z)) = −Hθ(Z) +H(Z). (7.16)

The upper bound described in Eq. (7.15) can be intuitively understood given the ELBO used in

VAEs. The regularization term in Eq. (7.8) forces a reduction in the ‘distance’ between qϕ(z|x) and
the prior p(z), which implicitly is a constraint in the pθ(z|x) given pθ(z|x) ≈ qϕ(z|x). Consequently,
the VAE minimizes the empirical variance in ϕ to minimize the upper bound depicted in Eq. (7.15),

reducing the entropy and obtaining the data manifold.

The explanation using elements of IT, in addition to the DPI that describes the AEs, is funda-

mental for describing a generative model such as VAE, GAN or DPM. However, it is worth noting

that the proposed ADeLEn is a semi-supervised method. Therefore, it is necessary to incorporate

this approach within the InfoMax principle.

InfoMax in ADeLEn

As discussed in Section 7.2.2, the proposed ADeLEn method uses a semi-supervised approach that in-

cludes a subset of labeled anomalous data. It is assumed that most of the unlabeled data corresponds

to normal samples. For easier annotation, the normal samples are denoted as p(z+) = p(z|y = 0),

and the anomalous samples are denoted as p(z−) = p(z|y = 1), where y ∈ {0, 1} represents the label.
Given that labels play a fundamental role, this can be addressed as a classification problem where

the Information Bottleneck method provides an explanation of the problem-solving mechanism.

However, considering exclusively the latent space Z, the proposed ADeLEn aims to reduce the CE

in Z, discriminating between normal and anomalous samples.

As observed in Eq. (3.9), the CE — CE(p, q), measures of the uncertainty of p by observing q

— corresponds to a reduction of the KL Divergence. Consequently, discrimination between Z+ and

Z− is achieved by maximizing the DKL(p(Z
+)∥p(Z−)). However, given that the model must satisfy

Eq. (7.15) and Eq. (7.7), the KL Divergence follows the Eq. (7.16):

DKL(p(Z
+)∥p(Z−)) = −H(Z+) +H(Z−). (7.17)

As a result, the proposed ADeLEn method for AD is described by the following InfoMax principle:

max
p(z|x)

I(X;Z) + β
(
H(Z−)−H(Z+)

)
. (7.18)

Parameter initialization based from the IT perspective

As mentioned above, the VAE aims to minimize the upper bound described in Eq. (7.15) to obtain

the data manifold. The estimated variational parameters ϕ in the VAE are obtained by the hidden

layer, where one neuron estimates µ and another estimates σ (see Fig. 7.3b). However, it is
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(a) (b)

Figure 7.4: Subset of samples of the dataset for evaluating ADeLEn method using MNIST (a) and
the ‘PneumoniaMNIST’ (b). The red square represents samples that are known anomalies and, as
it is easily illustrated in (a), the normal samples are contaminated with non-labeled anomalies.

intuitive to understand that initially, the upper bound should be higher and is reduced through

training. Therefore, a specific initialization of the parameters of the hidden layer that generates the

variational parameters is proposed.

As illustrated in Eq. (7.15), the entropy in a Gaussian distribution depends exclusively on σ.

Given that the neuron to obtain the σ is described by a function σ =WT
σ X+bσ (see Section 2.2.1), it

is necessary to ensure a higher initial value. For this reason, the following initialization is proposed:

Wσ ∼ U
[
−
(

1√
n

)
,

(
1√
n

)]
bσ = 2 · log(2σ−) ,

(7.19)

where the Wσ initialization corresponds to the Xavier uniform initialization method [375], and n

is the number of inputs of the neuron. As a result, the initial estimation should correspond to the

double of the anomaly distribution, which has the higher entropy as it is observed in Eq. (7.17).

7.4 Experimental Results

In this section, the proposed ADeLEn will be subject to experimental evaluation by using different

datasets. To understand the insights of ADeLEn, it will be used the MNIST [48] as a toy experiment

and a dataset extracted from MedMNIST [376], a large-scale MNIST-like collection of standardized

biomedical images. From MedMNIST, it will be used the known ‘PneumoniaMNIST’ [377], that

corresponds to X-ray images for the diagnosis of pneumonia.

For the simplest case, using the MNIST dataset as a toy experiment, a subset of samples composed

of two numbers will be considered. Using two numbers that share similarities, the aim is to illustrate

how the latent space is mapped in the proposed ADeLEn. In this case, a subset of numbers composed

of 1’s and 7’s is used, where the 7’s represent the anomalies. The number of normal samples, 1’s,
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Figure 7.5: The proposed architecture for evaluating the ADeLEn method in the experimental setup.

has been limited to 2000 samples.

Regarding the ‘PneumoniaMNIST’ dataset, this dataset is composed of 5232 samples and is

a binary classification dataset. Specifically, it consists of 1349 normal samples and 3883 samples

characterized as pneumonia (2538 bacterial and 1345 viral, the two main leading causes of pneumonia

[378, 377]). Given the purpose of this chapter, which is oriented towards AD, the experimental setup

will not discriminate between bacterial or viral pneumonia. However, it is worth noting that both

cases can be identified from the X-ray images. Bacterial pneumonia requires antibiotic treatment,

while viral pneumonia is treated with supportive care [377].

Using the aforementioned datasets, various experiments will be conducted to analyze the behavior

of the proposed ADeLEn and compare it with other approaches. The robustness of ADeLEn will

be investigated regarding an increasing pollution ratio, i.e., an increase in unidentified anomalous

samples contained within the ‘normal’ unlabeled samples. Another experiment will consider the

effect of increasing the number of known anomalies by adding labeled anomalies in the training

process. Additionally, the experiments will examine how increasing the bottleneck dimension D

affects the performance.

The DNN used in this section remains consistent across the various experiments. It consists of an

AE with an encoder path composed of two convolutional layers, with 32 and 48 channels, followed by

three linear layers with 1024, 256, and 32 neurons. The bottleneck corresponds where the variational

parameters described by the dimension D are estimated, see Fig. 7.3. The decode path mirrors the

encode path. The proposed architecture is illustrated in Fig. 7.5. The hidden layers use ReLU as

the activation function, batch normalization, and the dropout technique. The dropout rate for the

convolutional layers is 0.2, while the dropout rate for the linear layers is 0.5, as shown in Fig. 7.5.

The training process of the ADeLEn, described in Algorithm 3, uses a batch size of 128 samples,

as a large batch size helps to discard the of qϕ(z|x) [55] as it was previously mentioned. Regarding the

optimizer, as in the previous chapters, the model training is carried out using the Adam optimizer

[65] (see Section 2.2.2). Finally, the learning rate has been set to 10−3 and the model is trained for

50 epochs.

Additionally, an experiment with higher-resolution images was conducted using the BRAin Tu-

mor Segmentation Dataset (BRATS) dataset, originally designed for brain tumor segmentation and

adapted here as an AD task. In this experiment, the DNN architecture follows that shown in Fig.

7.5, with the addition of two initial convolutional layers and a specific bottleneck size. The training

process is configured identically to that of the other experiments.



186 CHAPTER 7. ANOMALY DETECTION BY DEEP LEARNING

7.4.1 Pollution

In this section, the effect of pollution will be examined, which involves the injection of anomalous

samples into the non-labeled set that is assumed to correspond to normal samples, within the dataset.

This experiment involves using different configurations of pollution levels while maintaining a fixed

number of labeled anomalous samples. Specifically, the number of labeled anomalous samples is set

to 10% of the non-labeled dataset. Regarding pollution, four different cases will be considered: 0%

(no pollution in the dataset), 5%, 10%, and 20% of the non-labeled samples.

The proposed ADeLEn will be compared with a well-known method used in the state-of-the-art

for AD, the oneOC-SVM. Nevertheless, given that the OC-SVM is an unsupervised method and

the comparison may be deemed unfair, the hyperparameters of the OC-SVM have been configured

utilizing the test set. Specifically, the hyperparameters were tuned to obtain the highest Area Under

the Curve (AUC) using a subset of the test set, which consists of 10% of the test set. In addition, a

naive approach will be used where a supervised DNN is employed for binary classification. This DNN

follows the architecture of the encode path without including the bottleneck used in the proposed

architecture of ADeLEn in these experiments, see Fig. 7.5. Instead, a single neuron layer is added

to the output, indicating that the model corresponds to a binary classifier.

For the three methods used in this experiment (the OC-SVM, the supervised DNN, and the

proposed ADeLEn), it is necessary to apply a threshold based on the obtained score. Regarding the

OC-SVM, this work uses the implementation in the Scikit-learn library [379], which has a specific

method for obtaining the optimal threshold based on the score obtained during the fitting process.

For the supervised DNN, where the score corresponds to the model’s output, the threshold will be

fixed at 0.5, the commonly used threshold in binary classifiers.

In the case of the proposed ADeLEn, which uses the entropy of the latent space as a score (see

Eq. (7.12)), a fixed threshold of σ = 1.2 has been set. In this way, an anomaly is identified by

ADeLEn if the following condition is satisfied:

H(Z|x) ≥ D

2
log(2πe · 1.2), (7.20)

where D is the dimension of Z. Given that the proposed ADeLEn in this section will be use a D = 2,

the threshold corresponds to, approximately, 3.02.

MNIST

Firstly, the different methods will be evaluated using the MNIST dataset [48], utilizing the subset of

samples described in Section 7.4. As previously mentioned, this represents a simple toy experiment

that makes it easy to identify if the models are functioning correctly. The results presented here

have been obtained using a test set that is not applied during the training of the model.

Table 7.1 depicts the quantitative results obtained by the different methods using different levels

of pollution in the unlabeled set assumed to be normal. Considering the AUC, it is demonstrated

that the different methods are suitable for discriminating between anomalous and normal samples

with varying levels of pollution. Specifically, the worst case corresponds to the unsupervised OC-

SVM with an AUC of approximately 98%. Here, the worst case is the supervised DNN, given that

the threshold used during training works well during training, but using the test set reveals that

this threshold does not effectively identify the anomalous samples in unobserved data. As a result,



7.4. EXPERIMENTAL RESULTS 187

Table 7.1: MNIST Metrics Anomaly Detection Pollution. The DNN represents a supervised DNN
method.

Method Pollution Accuracy Precision Recall F1-Score AUC

ADeLEn

0 98.63± 2.22 98.44± 4.00 98.97± 0.38 98.61± 2.11 99.84± 0.10
5 97.99± 0.69 99.20± 1.45 96.59± 1.39 97.86± 0.72 99.74± 0.15
10 96.08± 1.83 98.86± 2.23 92.94± 4.45 95.72± 2.13 99.65± 0.15
20 84.94± 6.91 99.60± 0.68 68.64± 14.84 80.32± 10.96 99.5± 0.04

OC-SVM

0 75.85± 1.52 100± 0 53.99± 2.91 70.07± 2.50 99.13± 0.12
5 77.07± 1.63 100± 0 56.30± 3.11 72.01± 2.59 98.93± 0.11
10 96.08± 1.83 98.85± 2.23 92.94± 4.45 95.71± 2.13 99.65± 0.15
20 78.34± 1.91 100± 0 58.73± 3.65 73.93± 2.98 98.69± 0.09

DNN

0 99.30± 0.37 99.95± 0.01 98.57± 0.82 99.61± 0.41 99.97± 0.00
5 89.67± 4.39 99.95± 0.01 78.31± 9.23 87.52± 6.02 99.90± 0.00
10 78.75± 7.25 99.95± 0.00 55.32± 15.29 70.06± 12.27 99.84± 0.01
20 64.99± 5.18 99.95± 0.01 26.32± 10.91 40.48± 14.35 99.61± 0.02

using F1-Score as reference, it is illustrated that the proposed ADeLEn obtains the better results

with higher pollution.

Figure 7.6 illustrates how the pollution affects the scores obtained by the different methods. In

Fig. 7.6a, it is shown that the score difference between normal and anomalous samples narrows as

pollution increases in the unlabeled dataset. In other words, the KL Divergence between Z+ and

Z− is reduced, demonstrating how pollution leads to a worse solution depicted by the Eq. (7.18)

(see Section 7.3). This issue is observed across the different methods, with OC-SVM demonstrating

better tolerance to pollution (see Fig. 7.6b) compared to the supervised DNN (see Fig. 7.6c).

Observing Fig. 7.6c, it can be deduced that the supervised DNN has a problem of overfitting. It

is observed that when there is no pollution, the model can discriminate perfectly both classes but

when there is pollution, given that the model has not able to identify the anomalies, the score is

reduced. Finally, with pollution of 20%, the model can only identify around the 21% of anomalous

samples. Remember that it has been used the dropout technique that it is mainly used for reducing

the overfitting, although it has been demonstrated in Chapter 4 that has another purpose in the

compression. However, even using dropout technique, this model cannot mitigate the problem of

overfitting for this toy experiment.

Finally, Fig. 7.7 illustrates the distribution of the latent representation obtained by ADeLEn

at different levels of pollution. Figure 7.7a shows the ideal case: the normal data is well-defined,

and there is a clear distinction between normal and anomalous samples. Here, the data manifold is

well-illustrated, with normal samples (1’s, as illustrated in Fig. 7.4a) located at the center. There

is a linear interpolation between the 1’s and 7’s, illustrating how a 1 gradually transforms into a

7 as it moves away from the center. Additionally, it is shown how two dimensions are sufficient to

characterize the data manifold, resulting in a symmetric representation in the image.

However, when pollution is injected into the dataset, this symmetry disappears, and the repre-

sentation of the anomalies (7’s) is observed at the borders of the images. This behavior is noted in

Fig. 7.7b, but it is more pronounced in the worst case with 20% pollution, as shown in Fig. 7.7c.

In this figure, it is observed that the border defined by the coordinates (-6, -6) does not represent

a 7 but rather a 1 with a slight disturbance at the top. Despite this disturbance being indicative
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Figure 7.6: Pollution experiments with (a) ADeLEn, (b) OC-SVM and (c) a supervised DNN using
the MNIST dataset. The experiments demonstrate how the pollution in the data affects the different
methods. The pollution, from left to right, corresponds to 0%, 5%, 10% and 20%.

of anomalies, the model can still function for AD. However, as observed in Fig. 7.6a, the difference

between normal and anomalous samples becomes less noticeable.

MedMNIST

The same comparison has been carried out using the aforementioned ‘PneuomoniaMNIST’ dataset,

see Fig. 7.4b. As can be deduced, this problem is more complicated than the toy experiment using

MNIST. For instance, observing Fig. 7.4b, it is complicated to identify the unlabled anomalous

samples in the figure. Additionally, the number of normal’ samples is lower than in the MNIST

experiment. In this case, the number of ‘normal’ samples is 1349, whereas in MNIST, the number

of normal samples was set to 2000.

Table 7.2 illustrates the results obtained using the different methods. Firstly, it is noticeable

that the unsupervised OC-SVM is not suitable for discriminating between normal and anomalous

samples, as observed in the AUC, even though the hyperparameters have been optimized using a

subset of the test set as previously mentioned. Regarding the proposed ADeLEn and the supervised

DNN, both methods have similar performance, with the supervised DNN performing slightly better.

Figure 7.8 illustrates the issues observed in Table 7.2. Figure 7.8b shows that OC-SVM cannot

discriminate between normal and anomalous samples, as indicated by the AUC in Table 7.2. he
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Figure 7.7: Reconstruction obtained by the compressed 2-dimensional latent space in the VAE used
in ADeLEn. The results are depicted with different levels of pollution: (a) 0%, (b) 10% and (c)
20%.

Table 7.2: MedMNIST Metrics Anomaly Detection Pollution. DNN represents a supervised DNN
method.

Method Pollution Accuracy Precision Recall F1-Score AUC

ADeLEn

0 86.91± 3.19 86.36± 3.85 94.27± 1.87 90.07± 1.90 93.47± 0.74
5 83.51± 2.44 91.56± 3.54 81.38± 4.90 86.01± 2.26 91.34± 1.52
10 73.17± 7.29 93.45± 3.87 61.77± 13.34 73.35± 10.26 88.43± 3.39
20 43.53± 5.06 87.57± 22.31 10.57± 7.99 18.12± 12.31 84.08± 4.51

OC-SVM

0 45.85± 8.08 36.17± 0.97 58.22± 28.93 41.81± 9.77 46.87± 1.49
5 44.59± 7.07 34.45± 1.52 55.65± 27.30 40.41± 9.51 44.90± 1.72
10 42.17± 5.83 33.63± 2.11 59.82± 25.27 41.42± 8.92 43.24± 1.59
20 41.98± 4.92 33.03± 2.71 57.86± 26.06 40.69± 9.18 40.91± 1.59

DNN

0 88.70± 1.31 90.15± 2.46 92.13± 3.17 91.06± 1.08 94.29± 0.85
5 81.23± 5.18 92.84± 3.03 76.18± 10.78 83.13± 5.92 91.82± 2.03
10 71.30± 6.98 93.70± 3.34 58.36± 13.08 70.89± 10.32 90.57± 2.86
20 49.35± 6.20 90.15± 8.49 21.20± 10.63 33.18± 13.31 88.51± 3.40

supervised DNN, shown in Fig. 7.8c, appears to avoid overfitting. The only issue arises when the

pollution level is 20%, but in the other experiments, the behavior is as expected, and the samples

can be discriminated.

Regarding the proposed ADeLEn, shown in Fig. 7.8a, , there are overlaps in the distributions

of the normal and anomaly scores. In the case with no pollution (the first column in Fig. 7.8),

some anomalous samples have the lowest scores, while some normal samples have much higher

scores. This behavior appears in both DL-based approaches, ADeLEn and the supervised DNN.

The overlap becomes more severe as pollution increases. This suggests that there may be incorrect

annotations in the original training or test set of the ‘PneumoniaMNIST’ dataset [376].

In Fig. 7.9 illustrates the distribution of the latent representation obtained by ADeLEn at

different levels of pollution. However, interpreting this latent representation is not as straightforward

as in Fig. 7.9.In the case without pollution, Fig. 7.9a, the image shows a symmetry in the latent

representation. Although the center appears well-defined, the anomalous samples are not clearly

delineated, resulting in a noisy representation of anomalies.
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Figure 7.8: Pollution experiments with (a) ADeLEn, (b) OC-SVM and (c) a supervised DNN using
the MedMNIST dataset. The experiments demonstrate how the pollution in the data affects the
different methods. The pollution, from left to right, corresponds to 0%, 5%, 10% and 20%.
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Figure 7.9: Reconstruction obtained by the compressed 2-dimensional latent space in the VAE used
in ADeLEn. The results are depicted with different levels of pollution: (a) 0%, (b) 10% and (c)
20%.
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Figure 7.10: Qualitative results using Monte-Carlo Dropout in ADeLEn and the supervised DNN for
anomaly detection in the MedMNIST dataset. The scores obtained by ADeLEn and the supervised
DNN are illustrated in (a) and (b), respectively. The ROC curve and the average AUC for the
different models are illustrated in (c).

In the presence of pollution, both the 10% pollution case (Fig. 7.9b) and 20% (Fig. 7.9c) show

that the symmetry is lost. Observing the center in these polluted cases, it appears that the model

has not been able to clearly define the normal samples.

7.4.2 Overfitting

Although overfitting is not a significant concern due to the Bayesian approach and the application

of the dropout technique primarily for data compression, a simple test will be conducted to evaluate

the difference between the supervised DNN and the proposed ADeLEn. As observed in the previous

section, the supervised DNN appears to achieve better results for AD on the MedMNIST dataset.

This is particularly noticeable in the qualitative results shown in Fig. 7.8.

As previously mentioned in Section 2.3.2, Gal and Ghahramani [74] provide an interpretation of

the dropout technique in DL models based on deep GP. As a result, they proposed Monte-Carlo

Dropout [74] to estimate the uncertainty in DL models. Although not perfectly accurate, this

approach provides a computationally efficient estimation of the uncertainty in the model’s decisions.
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Using Monte-Carlo Dropout, a simple test will be conducted to evaluate its effect on the models.

Figure 7.10 illustrates the results obtained when Monte-Carlo Dropout is used, sampling 100 times.

The experiments have been conducted with a pollution level of 5%, so the scores should be compared

with the second columns in Fig.7.8.

Figure 7.10a shows how the ‘noise’ in the model affects the proposed ADeLEn. It is observed that

the results do not differ significantly from those obtained without applying Monte-Carlo dropout

(see Fig. 7.8a, second column). However, the effect is dramatic in the supervised DNN, as illustrated

in Fig. 7.10b, which performs considerably worse than what is seen in the second columns of Fig.

7.8c. Finally, the impact on the AUC is illustrated in Fig. 7.10c.

This experiment highlights the expected problems in the supervised DNN, particularly overfit-

ting, even after using the dropout technique. In contrast, ADeLEn, due to its Bayesian approach,

can handle these issues more effectively. This is especially relevant to ensure that the model can

deal with unobserved new anomalies or noisy inputs and provides and provides greater confidence

as an AD method.

7.4.3 Number of Anomalies and Bottleneck Dimension

In Section 7.4.1, it has been demonstrated that the proposed ADeLEn is effective for AD. The results

obtained using the MedMNIST dataset suggested that a simple supervised DNN might perform

better. However, as shown in Section 7.4.2, this apparent superiority is likely a consequence of

overfitting. With a larger test set, the performance of the supervised DNN would probably decline.

On the other hand, ADeLEn has shown robustness and effectiveness even when noise is introduced

during inference through Monte-Carlo dropout.

In this section, experiments are conducted to investigate two important features of the proposed

ADeLEn method: the bottleneck size and the number of known anomalies. Previous sections used

a 2-dimensional bottleneck (illustrated in Fig. 7.7 and Fig. 7.9) and set the number of known

anomalies (labeled data) to 10% of the non-labeled data assumed to be normal. For instance, in the

MNIST dataset, with 2000 non-labeled samples, the number of known anomalous samples was set

to 200.

Table 7.3 depicts the results obtained by varying the bottleneck dimension size (set to 2, 5, and

10) and increasing the number of labeled data from 5% to 50%, progressively. In the experimental

results, it has been applied pollution in the non-labeled data of 5%.

The quantitative results demonstrate that using the MedMNIST dataset for pneumonia detection,

both increasing the number of labeled data and the bottleneck size improve the results. However, as

expected, the number of labeled data is the most significant factor. While increasing the bottleneck

size generally enhances the classification metrics, the impact is not particularly substantial. For

example, with 10% labeled data, there is an improvement of around 2% in the F1-Score.

Figure 7.11 illustrates an example of scores obtained by increasing the number of labeled data

(from left to right) and the bottleneck dimension, D. As observed in Table 7.3, D has been evaluated

for 2 (Fig. 7.11a), 5 (Fig. 7.11b) and 10 (Fig. 7.11a). These figures confirm the findings in Table

7.3, where the most significant improvement is due to the increase in labeled data.

From Fig. 7.11, it is noticeable that using 20% labeled anomalous samples substantially improves

the model, making the score more discriminative and reducing the overlap between distributions.

The threshold used in the experimental results, as depicted by Eq. (7.20), corresponds to 3.02
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Table 7.3: MedMNIST Metrics Anomaly Detection by increasing the number of labeled data and
the dimension of the bottleneck in the proposed ADeLEn. The results are obtained by injecting
pollution of 5% in the non-labeled data.

Dimension N. Labels Accuracy Precision Recall F1-Score AUC

2

0.05 51.25± 10.10 89.24± 17.48 24.21± 18.59 35.06± 21.17 82.46± 0.03
0.10 83.36± 2.45 91.46± 3.41 81.25± 5.71 85.84± 2.49 91.15± 1.22
0.20 87.50± 1.31 88.28± 2.15 92.36± 2.35 90.23± 0.99 92.71± 1.71
0.25 87.51± 1.60 87.02± 2.34 94.17± 1.87 90.42± 1.12 92.93± 1.16
0.50 88.94± 1.18 86.84± 1.54 97.07± 0.78 91.66± 0.81 91.88± 2.25

5

0.05 56.38± 8.48 94.78± 6.17 31.58± 14.17 45.71± 17.08 85.85± 0.02
0.10 84.90± 1.99 91.20± 1.94 84.04± 4.28 87.38± 1.94 91.74± 1.38
0.20 87.78± 1.74 87.71± 2.68 93.72± 2.58 90.56± 1.28 92.34± 1.83
0.25 88.34± 1.49 87.60± 2.59 94.92± 2.64 91.05± 1.10 92.73± 1.58
0.50 89.15± 1.16 86.90± 1.67 97.35± 0.93 91.81± 0.79 91.65± 2.17

10

0.05 57.06± 11.02 96.96± 4.50 32.22± 18.32 45.52± 21.28 87.94± 2.59
0.10 85.20± 2.39 91.34± 2.49 84.46± 4.72 87.65± 2.30 91.96± 1.62
0.20 87.83± 1.41 87.72± 2.16 93.76± 2.98 90.58± 1.15 92.23± 1.54
0.25 88.60± 1.62 88.26± 2.66 94.47± 2.89 91.19± 1.25 92.33± 1.87
0.50 89.65± 1.68 87.89± 2.43 96.88± 1.10 92.14± 1.13 91.53± 2.38

for a 2-dimensional bottleneck, 7.55 for a 5-dimensional bottleneck, and 15.1 for a 10-dimensional

bottleneck.

Figure 7.11 illustrates a example of scores obtained by increasing the number of labeled data,

from left to right, and increasing the bottleneck dimension, D. As it was observed in Table 7.3, the

D has been evaluated for 2 (Fig. 7.11a), 5 (Fig. 7.11b) and 10 (Fig. 7.11a). These figures illustrate

the observed in Table 7.3, where the significant improvement is provided by the number of labeled

data.

In addition, observing Fig. 7.11, it can be concluded that the threshold effectively identifies

normal samples, as reflected in the precision metric in Table 7.3. However, as noted in Section 7.4.1,

a 5% pollution means that using only 10% labeled data is insufficient. The model starts to perform

properly when the labeled anomalous data is increased to 20%. Increasing the bottleneck dimension,

in this particular case, does not appear to be significantly impactful.

7.4.4 Novelty detection

Another important aspect of AD is the ability to identify new, previously unobserved events, known

as novelties. Novelty detection involves applying AD techniques and is commonly used in semi-

supervised approaches. This section explores how the proposed ADeLEn can identify elements not

seen during the semi-supervised training.

To study novelty detection, we will use the MNIST dataset. The experiment will involve a

training set composed of images of the digits 1 and 7. The configuration will be the same as

described in Section 7.4.1 Given that ADeLEn demonstrated no issues with this toy experiment, the

dataset will consist of 2000 samples of the digit 1, with 10% of pollution injected. The number of

anomalous labeled samples will be 10% of the normal samples. As a reference, this setup corresponds

to the third column in Fig. 7.6a.
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Figure 7.11: Labels and dimensional experiments with ADeLEn using D as (a) 2, (b) 5 and (c) 10.
The dataset has been set using pollution of 5% in the ‘normal’ samples. The number of anomalous
labeled samples, from left to right, corresponds to 5%, 10%, 20%, 25% and 50%.

However, in the test set, the anomaly does not correspond to 7’s. Instead, a test set composed of

samples of the digits 1 and 9 will be used. The selection of 9’s is based on the main hypothesis in the

ADeLEn approach: normal and anomalous samples share similarities. This setup allows evaluating

how well ADeLEn can detect novel anomalies that differ from the ones seen during training.

The quantitative results obtained has an AUC over 99% and the F1-Score is around 98%. In

other words, the proposed ADeLEn can differ perfectly between normal samples and the unobserved

anomalies, the 9’s. A illustrative example is depicted in Fig. 7.12.

Figure 7.12a shows the scores obtained on the test set composed of 1’s and 9’s. Similar to

the results with a test set containing anomalies observed during training (Fig. 7.6a), the model

effectively discriminates between normal and anomalous samples. However, a subset of anomalies is

misclassified with high confidence as normal. Some of these most confident misclassifications, with

scores around 2.8, are shown in Fig. 7.12b. In these cases, the distinctive feature of the 9’s (the

‘disturbance’) is almost indistinguishable, making them appear similar to 1’s. When the 9’s clearly

depict this point of difference, the proposed ADeLEn successfully identifies them as anomalies. Based

on these results, it can be concluded that the proposed model functions correctly.

7.4.5 Additional Experiment: Brain Cancer Detection

In this section, it will be carried out a experiment to evaluate the proposed ADeLEn using the

BRATS [380] from the challenge of 2020. This dataset is composed of samples of MRI with dif-
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Figure 7.12: Results using the proposed ADeLEn for novelty detection on a test set composed of
anomalies not previously observed in the training set. In (a), the histogram illustrates the scores
obtained by ADeLEn. An example of samples with their respective scores is shown in (b), where
each sample’s score is indicated in the title.

T1-Weighted (T1) T1-Weighted Post Contrast (T1c) T2-Weighted (T2)
Fluid Attenuated 

Inversion Recovery (FLAIR)
Brain MRI

with Tumor Mask Overlay

Figure 7.13: Example of MRI data in the BraTS dataset. The four modalities used are T1, T1c,
T2, and FLAIR. In addition, it has been included the tumor mask overlaid on the MRI image.

ferent modalities, T1-weighted, T1-weighted with contrasts, T2-weighted and FLAIR. T1-weighted

images are characterized by their ability to highlight differences in tissue composition, making them

particularly useful for identifying fat and anatomical structures with high spatial resolution. T2-

weighted images, on the other hand, excel at detecting fluid and edema, as they enhance the contrast

of water-rich tissues, aiding in the visualization of various pathological conditions such as tumors

and inflammation. FLAIR imaging is a specialized technique that suppresses the signal from free

fluids like cerebrospinal fluid, making it highly effective for identifying lesions adjacent to these fluid

spaces, such as in multiple sclerosis or brain infarction.

Figure 7.13 illustrates the four image modalities of the BRATS dataset alongside the tumor

mask overlaid on the MRI. Given that the current architecture (refer to Fig. 7.5) is designed for 2D

images, only the axial slices are considered. Each slice consists of four channels, corresponding to

each image modality. These images are padded to a size of 256 × 256 and normalized between -1

and 1.

Since tumors primarily occur in the middle of the brain, slices from the lowest 80 and uppermost

26 slices are excluded. A slice is classified as healthy or normal if no tumor is present in the ground

truth label mask. All other slices are labeled as diseased, i.e., anomalous samples. In total, there are

extracted 17712 slices, where 6044 are normal samples and 11668 correspond to slices that contain

pixels labeled as tumor. For training, it has been used the 75% of the normal samples that correspond
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Figure 7.14: Results using the proposed ADeLEn for brain cancer detection in BRATS dataset. In
(a), the histogram illustrates the scores obtained by ADeLEn. An example of samples with their
respective scores is shown in (b), where each sample’s score is indicated in the title.

Table 7.4: Classification metrics by using ADeLEn for anomaly detection in BRATS dataset.

Accuracy Precision Recall F1-Score AUC

81.58± 9.26 95.77± 5.91 65.38± 16.45 76.84± 14.40 89.34± 6.95

to 4533 and the number of labeled anomalies is the 10% of the normal samples for training, 453

samples. In total, 4986 samples compose the training set.

Regarding the ADeLEn architecture, given the higher resolution of the images compared to the

previous experiments using MNIST and MedMNIST, it has been included two more convolutional

layers with the respective activation function, dropout rate and pooling. These two layers have 8 and

16 filters, respectively. As a result, the beginning of the encode path is composed by 4 convolutional

layers of 8, 16, 32 and 48 filters. The decode path has been modified too for keeping the symmetry

in the architecture. The dimension of the bottleneck, d, was set to 10.

7.5 Discussion

Recently, the use of DL-based models for AD has gained significant attention (see Section 7.1.2)

and, in this chapter, it has been proposed a method for AD based on DL model, referred to as

ADeLEn. Similar to most DL-based AD methods, this approach utilizes an AE-based architecture.

However, the main difference with most works in the state-of-the-art in DL-based AD methods lies

in the anomaly score. Generally, AE-based AD methods provide a score derived from the output of

the AE. In contrast, the proposed ADeLEn use a score based on the latent space Z, the compressed

representation of X obtained by the AE. Essentially, while most AE-based methods use a score based

on p(x|z), our proposed method generates a score based on p(z|x). this approach is supported by

previous works demonstrating that the latent representation in the AE bottleneck can distinguish

between normal and anomalous data [363] and has been used in other DL-based methods [361, 362].

Several generative DL-based approaches for AD use the reconstruction error as an anomaly score

(see Section 7.1.2). As mentioned in Section 7.3, generative AE-based models help to obtain a
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latent representation that describes the data manifold, encoding the most relevant features of the

data. This makes it intuitive to understand why these models should provide reconstructions where

anomalies are depicted. This is particularly relevant for obtaining a pixel-wise anomaly map, as

proposed by Wolleb et al. [371], who applied a DPM for pixel-wise AD in medical imaging.

In the proposed ADeLEn, a parametric statistical approach for AD is used based on the latent

representation Z, see Eq. (7.7). To obtain a tractable approximation of the real distribution,

variational inference via VAE is employed. The proposed ADeLEn is a semi-supervised approach,

with the regularization factor conditioned by the labeled dataset, as depicted in Eq. (7.11). As a

result, this variational approach allows obtaining an approximation of the conditional probability

noted as pϕ(z|x), where ϕ represents the variational parameters.

However, the anomaly score in ADeLEn does not correspond to this pϕ(z|x). Instead, the

proposed anomaly score is H(Z|x) (see Eq. (7.12)), which represents the model’s uncertainty. The

intuition behind this approach is that the model understands one type of data well, the ‘normal’

data, but disturbances in this data generate uncertainty. Using the MNIST dataset as an example,

Fig. 7.7a shows that normal samples (1’s) have low uncertainty. However, when the model sees a

pattern similar to a 7, the uncertainty increases, considering it an abnormal (anomalous) 1. Recall

that the entropy of a Gaussian distribution is proportional to σ as depicted in Eq. (7.15).

In general, the proposed ADeLEn can be considered an extension of the Deep SAD [362]. Al-

though Deep SAD is a deterministic approach, the score for AD can be interpreted as the conditional

probability p(z|x). Both semi-supervised approaches can be depicted, from a IT perspective, by Eq.

7.18. However, because ADeLEn aims to obtain the probability distribution of the latent represen-

tation, it can quantify uncertainty, which Deep SAD cannot. Thus, Deep SAD uses the distance to

the centroid as the anomaly score.

Although more intensive experimental are needed to evaluate ADeLEn in real medical cases,

Section 7.4 provides different experiments that offer insight into the ADeLEn mechanism. These

experiments demonstrate that ADeLEn can handle problems where classic AD methods, specifically

the OC-SVM, fail and provide benefits over a naive DNN for classification in this case where the

datasets are not balanced.

The study of the pollution ration in the dataset, i.e., the unidentified anomalies within a dataset

assumed to consist solely of normal observations, offers good insight into the problem-solving mech-

anism in ADeLEn. Figure 7.6 or Fig. 7.8 provide illustrative examples of the explanation described

in Section 7.3, where data compression is constrained by the maximization of the KL Divergence

between distributions, see Eq. (7.18). Additionally, the impact of certain hyperparameters of the

ADeLEn model, such as the number of labeled anomalies and the dimension of the bottleneck, has

been explored.

Overall, the results presented in Section 7.4 and the IT perspective discussed in Section 7.3

provide an interpretation of the proposed ADeLEn and its benefits. However, future work should

include a more exhaustive comparison with other methods.

7.6 Conclusions

Nowadays, AD has received significant research interest in the healthcare scenarios based on the

interpretation that pathologies are unusual patient health conditions, i.e., anomalies. One key
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advantage of these methods is that they do not require extremely comprehensive datasets. In the

healthcare sector, it is often easier to obtain data from healthy subjects, although this can depend

on the data modality. State-of-the-art AD methods frequently do not require labeled data. However,

these methods face limitations, specially in high-dimensional data. For this reason, the use of AD

methods based on DL has gained attention.

In this chapter, it has been proposed a DL-based approach for AD, named ADeLEn. This

method distinguishes itself from conventional DL-based approaches by leveraging the latent space

Z for anomaly scoring, based on the conditional probability. The idea is to apply a parametric

statistical approach in Z, assuming that the distributions of normal and anomalous samples follow

the same form but with different parameters [344]. Specifically, it is assumed that the compressed

representation Z corresponds to a Gaussian distribution for both normal samples and anomalies, with

the distribution differing in their standard deviation, σ. The proposed anomaly score corresponds

to H(Z|x), representing the model’s uncertainty that, which, given the Gaussian assumption, is

proportional to σ. It is worth noting that this AD method has been designed with medical imaging

challenges in mind, where samples are similar among samples and anomalies exhibit specific patterns,

such as a tumor in a human brain.

This thesis aims to enhance the interpretability of the solving mechanisms employed in DNN

models. The proposed ADeLEn is well-defined compared to most state-of-the-art methods based on

AEs. Following the main approach of this thesis, a IT perspective has been discussed, providing a

description of the optimization problem based on the InfoMax principle. Using this IT perspective,

an optimal initialization for ADeLEn has been proposed, as depicted in Section 7.3.

Although more extensive testing is needed, the proposed method could be considered an optimal

approach for the case studies described in this chapter. However, a significant disadvantage of this

approach is the necessity for a subset of previously labeled anomaly samples. The experiments

considered unbalanced datasets, assuming that the dataset consists solely of N normal observations,

with the number of anomalies M being significantly smaller (N ≫M).

This proposed ADeLEn is easier to interpret than other methods based exclusively on AEs and

using the reconstruction error as a score. Additionally, it provides a more robust score than another

semi-supervised approach, such as the Deep SAD. As a result, it can be considered more suitable

for healthcare scenarios than other methods proposed in the state-of-the-art.

The semi-supervised nature of ADeLEn could be considered a disadvantage compared to unsuper-

vised DL-based methods. However, this need for labeled data arises from the necessity of obtaining

a discriminative representation between both distributions, which is challenging to achieve through

unsupervised learning, as discussed in Section 2.2.5. Future work could explore the use of contrastive

learning to achieve this discriminative representation or an iterative training approach, similar to

those proposed in [354] or [358], where the original non-labeled dataset is iteratively separated into

two subsets (normal and anomalous samples) during training.

In conclusion, this chapter has introduced a DL-based method for AD that offers better inter-

pretability compared to other state-of-the-art methods. However, as emphasized throughout this

thesis, this method has limitations and is not considered an absolute solution. The proposed ADeLEn

cannot replace all existing methods; rather, it is essential to understand its advantages in certain set-

tings and limitations in others. Recall, as introduced at the beginning of this chapter, that anomalies

are not solely based on the data structure but are also influenced by the AD methodology.



Chapter 8

Conclusions and Future Lines

In order to determine whether we can

know anything with certainty, we first

have to doubt everything we know.

René Descartes

Nowadays, we are witnessing a new technological revolution driven by the rapid evolution of AI,

powered by DL models. This is particularly evident in the rise of generative AI, which, beyond

entertainment, is becoming increasingly relevant in enhancing human productivity. AI applications

have the potential to significantly boost productivity by assisting humans in performing tasks,

essentially acting as a ‘copilot’ in various activities. From my personal experience, one of the most

impactful changes in my work has been using an AI assistant for software development. This has

significantly reduced my development time, for instance, by avoiding the frequent need to consult

library documentation to recall specific usage details. While it is not infallible, overall, it enables

me to prototype more efficiently in a shorter time frame. As a human being, I have the ultimate

responsibility for the acceptance or rejection of the AI’s suggestions.

As it was mentioned in Section 1.2, there are still challenges to overcome before fully integrating

the current DL-powered AI into our daily lives. Consequently, an increasing amount of research is

focused on examining perceptions of AI tools, their applications, and their impact on key societal

areas such as security [381] and education [382]. One critical issue in this integration is the lack

of intuition regarding the mechanisms behind DL models. These models are so complex that it is

almost impossible to explain how they work. In other words, in DL models, understanding how a

prediction is made by simply analyzing the model’s parameters is unfeasible, which is why these

models are often referred to as ‘black boxes’.

This problem of not being able to explain what is happening inside the ‘black-box’ is particu-

larly significant in critical areas such as medical screening or autonomous driving. To address this

issue, enhancing the interpretability of these models is crucial. However, as noted in Section 2.3.1,

interpretability should not be considered absolute, as interpretations may vary depending on the

context, the perspective of the observer, and the objectivity of the analysis.

This dissertation aims to propose DL models to solve various problems in the clinical field,

particularly focusing on image processing. However, throughout this dissertation, special emphasis
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has been placed on interpreting the problem-solving mechanisms used in the proposed models. I

recognize that the engineering approach to this implies that the interpretations presented might

not please everyone. Nonetheless, this interpretation is objective and quantifiable, which provides a

strong basis for validating the models in any context.

Different tasks have been addressed in this dissertation, and although the approaches may vary in

practice, the underlying mechanisms of these models share key elements formalized through the IT-

based interpretation used throughout this research. This chapter summarizes the main conclusions

and contributions of this research and outlines future research directions that I consider should be

addressed in the near future.

8.1 Practical Conclusions

In Chapter 4, the IT perspective introduced by Tishby and Zaslavsky [97] was explored and

evaluated within a clinical context, focusing on the common challenge in medical problems known as

the data challenge, which is characterized by insufficient labeled data [180]. This aims to provide a

methodology based on the analysis of the IP estimation using a scarce dataset. For the MI estimation

for obtaining the IP, it was applied the kernel-based entropy estimator described in Section 3.6.

As a case of study, it was analyzed in a classification task where the purpose is to obtain early-

stage detection of DFU using thermograms, where the availability of labeled data is limited. The

experiments aimed to identify patterns consistent with the state-of-the-art, grounded in the IT

perspective, using the methodology proposed. As a result, it is demonstrated that, while the classi-

fication metrics alone did not reveal models likely to underperform, the IP analysis identified that

models failed to satisfy the DPI, a critical requirement in IT-based interpretation.

Additionally, given the remarkable similarity of AEs to transmission channels, the effect of the

dropout technique on DNNs was also evaluated using an AE. The results revealed that the dropout

technique aligns with distortion rate theory for achieving optimal compressed representations, pro-

viding a new interpretation of this technique. Consequently, the dropout rate directly impacts the

compression of input data. By formalizing supervised DL models as a trade-off between data com-

pression and prediction through the IB principle, it was demonstrated that increasing the dropout

rate emphasizes data compression within the model.

In Chapter 5, a FS method based on DL models was proposed. This method aims to select

a subset of features from the input that contains the necessary information for a given task. In

clinical scenarios, this would reduce the number of features, reduce analysis costs, and improve the

interpretability of data, ultimately reducing variability in clinical decision-making based on high-

dimensional data. The method was evaluated using a case study focused on identifying relevant

wavelengths for differentiating biological tissues via HSI. The results were consistent with findings

in the literature.

This subset of features can be viewed as a compressed representation of the data, a task at which

DL models excel, as demonstrated in Chapter 4 using the IT perspective. The proposed architecture

is based on the dropout technique, which emphasizes data compression as concluded in Chapter 4,

where the dropout rate is a trainable parameter using a variational approach.

The FS method was framed from an IT perspective to offer more in-depth insight into the

problem-solving mechanism and demonstrate the utility of this perspective for designing optimal
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architectures. Using this approach, it was deduced that classification and feature selection, in the

proposed method, can be treated as independent problems, leading to the proposal of a scheduler

for the regularization factor for data sparsity. Additionally, the optimal initialization of the feature

selector layer, based on dropout, was highlighted. Finally, using the IB principle, the subset of

features was described as the model’s bottleneck, Z. This is particularly relevant because it suggests

that the model may not generalize effectively, with the trade-off between data compression and

prediction occurring at the first layer. An intuitive explanation about how the generalization is

obtained in the first layers is provided in Section 4.1.1.

Chapter 6 focuses on another task related to data interpretability, i.e, signal decomposition.

Specifically, this chapter is dedicated to the HSI decomposition, commonly known as HyperSpectral

Unmixing, given that HSI is characterized as high-dimensional data. This chapter presents a novel

approach for HSU using a DL model, the CLHU framework. Due to the limited availability of

HSI data for medical applications, the proposed method was validated using remote sensing images

typically used to evaluate unmixing algorithms. However, a notable case is presented in Section

6.4.4, where biological tissue decomposition was attempted with promising results, demonstrating

potential applications such as identifying and quantifying substances within tissue samples.

The IT was instrumental in designing the CLHU method, providing insight into its functionality.

Reformulating the method using the IB principle revealed its similarities with contrastive-learning

methods, a technique that originally inspired this work. As a result, it was concluded that the

proposed architecture could be extended to tasks beyond HSU, such as classification with uncertainty

prediction, where the trainable descriptor M could describe the classes, and the similarity function

could quantify model uncertainty. Additionally, it was concluded that the proposed model must

satisfy a specific DPI, depicted in Eq.(6.11). This DPI was validated using the IP.

Finally, Chapter 7 addresses a crucial task in dataset analysis: Anomaly Detection (AD). A

DL-powered AD method, ADeLEn, was proposed, specifically designed for medical imaging chal-

lenges. The method adopts a semi-supervised approach, considering the ‘data challenge’ commonly

encountered in medical contexts, and was evaluated with heavily imbalanced datasets. The ex-

perimental setup considered the number of anomalous samples and dataset “pollution”, referring

to unidentified anomalous samples used during training. In the experimental results, the proposed

method was compared to the state-of-the-art OC-SVM and a supervised DNN. Results revealed that

the proposed method is more versatile than the OC-SVM and does not suffer from overfitting, as

seen in the supervised DNN approach using imbalanced datasets.

The proposed method adopts a generative approach using a VAE. Section 7.3 highlights the key

features of this approach compared to models presented in previous chapters from the IT perspective.

The variational approach in the generative model applies a strong restriction on the information in

the bottleneck Z, establishing an upper limit defined by the variational parameters ϕ, ensuring

that the real data distribution in the bottleneck contains no more information than the variational

distribution. Additionally, the problem was reformulated using the InfoMax principle, where the

bottleneck is designed to increase the divergence between the distributions of normal and anomalous

samples, proposing an optimal initialization of the variational parameters for the ADeLEn method.

It was concluded that ADeLEn is easier to interpret than other AE-based methods, and the

score based on the bottleneck is more robust than using reconstruction error as a score proposed

in most AE-based methods. Moreover, it was observed that the proposed method generalizes the
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Deep SAD, and the upper limit constraint in ADeLEn makes the score threshold more robust and

less dependent on data, making it more suitable for general-purpose healthcare applications.

8.2 Dissertation Results

This section highlights the scientific contributions and achievements obtained during this Ph.D.

thesis. These include academic publications, participation in research projects, scholarships, and

research contracts. Together, they demonstrate the impact and scope of the work conducted, as well

as the collaborations and recognition within the academic and professional communities.

List of Publications

The following acronyms are used to highlight the specific characteristics of each publication: OA:

Open Access, OC: Open Code, IF: Impact Factor, and IC: International Collaboration.
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• Arteaga-Marrero, N., Hernandez-Guedes, A., Ortega-Rodŕıguez, J., & Ruiz-Alzola, J.
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• Hernandez-Guedes, A., Arteaga-Marrero, N., Villa, E., Callico, G. M., & Ruiz-Alzola,
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diabetic foot ulcers. Sensors, 23(2), 757. [Related with Chapter 5] [IF: 3.4 — Q2][OA,
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• Hernandez-Guedes, A., Santana-Perez, I., Arteaga-Marrero, N., Fabelo, H., Callico, G.

M., & Ruiz-Alzola, J. (2022). Performance evaluation of deep learning models for image

classification over small datasets: Diabetic foot case study. IEEE Access, 10, 124373-124386.

[Related with Chapter 4] [IF: 3.4 — Q2, OA, OC]

• Arteaga-Marrero, N., Bodson, L. C., Hernandez-Guedes, A., Villa, E., & Ruiz-Alzola, J.

(2021). Morphological foot model for temperature pattern analysis proposed for diabetic foot

disorders. Applied Sciences, 11(16), 7396. [IF: 2.8 — Q2, OA]

• Arteaga-Marrero, N., Hernandez-Guedes, A., Villa, E., Gonzalez-Perez, S., Luque, C., &

Ruiz-Alzola, J. (2021). Segmentation approaches for diabetic foot disorders. Sensors, 21(3),

934. [IF: 3.4 — Q2, OA, OC]
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• Hernandez-Guedes, A., Fukushima, R., Takamatsu, T., Fabelo, H., Ruiz-Alzola, J., Take-

mura, H., & Callico, G. M. (2023). Contrastive Learning approach for blind Hyperspectral

Unmixing (CLHU). Authorea Preprints. Under Review: IEEE Access. [Related with

Chapter 6] [IC, OA, OC]

International Conference

• Fukushima, R., Takamatsu, T., Sato, K., Hernandez-Guedes, A., Callico, G. M., Okubo,

K., ... & Takemura, H. (2024, January). Detection of Exposed Nerves in Two Individuals In

Vivo and Unexposed Nerves Ex Vivo with Near-Infrared Hyperspectral Laparoscope. In 2024

IEEE/SICE International Symposium on System Integration (SII) (pp. 19-24). IEEE. [IC]

• Castro-Fernández, M., Hernandez-Guedes, A., Fabelo, H., Balea-Fernández, F. J., Ortega,

S., & Callicó, G. M. (2022, August). Towards skin cancer self-monitoring through an optimized

MobileNet with coordinate attention. In 2022 25th Euromicro Conference on Digital System

Design (DSD) (pp. 607-614). IEEE.

• Hernandez-Guedes, A., Arteaga-Marrero, N., Villa, E., Fabelo Gómez, H. A., Marrero

Callicó, G. I., & Ruiz Alzola, J. B. (2019). Automatic segmentation based on deep learn-

ing techniques for diabetic foot monitoring through multimodal images. Lecture Notes in

Computer Science.

Book Chapter

• León Mart́ın, S. R., Hernandez-Guedes, A., Fabelo Gómez, H. A., Ortega Sarmiento, S.,

Balea Fernandez, F. J., & Marrero Callicó, G. I. (2021). SWIR Hyperspectral Imaging to

Assess Neurocognitive Disorders Using Blood Plasma Samples. [IC]
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European Projects

• Ref. 101017385: WARIFA (Artificial intelligence and the prevention of chronic conditions

– GA: 101017385). European Union’s Horizon 2020 research and innovation programme. PI:

Gustavo M. Callico and Ana Wägner. ULPGC. 01/01/2021 – 31/12/2024. 6,726,468.75 €.

Task: HSI processing.

• Ref. MAC/1.1b/098: MACbioIDi (Contribuyendo a la cohesión e internacionalización

de la Macaronesia para impulsar los Objetivos del Desarrollo Sostenible con las TICs y la

I+D+i biomédica). Interreg MAC 2014-2020. PI: Juan Ruiz Alzola. ULPGC. 01/01/2017 -

31/12/2019. 2,354,206.58 €. Task: Thermal imaging processing and ML researcher.

National/Regional Projects

• Ref. PID2020-116417RB-C42: TALENT (HypErsPEctRal Imaging for Artificial intelli-
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Gobierno de Canarias (Canary Islands) Programa de Apoyo a la Investigación Maŕıa del

Carmen Betancourt y Molina. PI: Gustavo M. Callico. ULPGC. 01/01/2018-30/09/2019.

69,914.45 €. Task:

Grants Obtained

• Pre-doctoral grant given by the “Agencia Canaria de Investigacion, Innovacion y Sociedad

de la Información (ACIISI)” of the “Consejeŕıa de Economı́a, Conocimiento y Empleo” of the

“Gobierno de Canarias”, which is part-financed by the European Social Fund (FSE) (POC

2014-2020, Eje 3 Tema Prioritario 74 (85%)).

• Research intership movility grant given by the “Agencia Canaria de Investigacion, Inno-

vacion y Sociedad de la Información (ACIISI)” of the “Consejeŕıa de Economı́a, Conocimiento

y Empleo” of the “Gobierno de Canarias”, which is part-financed by the European Social Fund

(FSE) (POC 2014-2020, Eje 3 Tema Prioritario 74 (85%)).

Research Contracts

• Researcher in the MACbioIDi project (October 2017 – March 2020).

8.3 General Conclusions

Throughout this dissertation, various DL architectures have been proposed and evaluated in relation

to the specific tasks. However, this work does not aim to surpass state-of-the-art results. Instead,

the primary focus is on developing more interpretable solutions using DL. For comparison purposes,

the proposed methods have been assessed using several state-of-the-art algorithms to ensure that

the models yield competitive results. Additionally, key concepts have been addressed in a broader

context, aiming to provide a general intuition about the problems at hand and the mechanisms

required to solve them.

This dissertation aims to emphasize the importance of striving for more interpretable models.

It is not a criticism of using a ‘black box’ to solve problems. There are critical scenarios where

the complexity of the problems makes it necessary to use a ‘black box’ because some problems are

unapproachable by other methods. Nevertheless, the success of this work lies in shifting the focus

away from the assumption that accurate predictions can only be achieved by increasing the number

of parameters in the ‘universal function’, the DNN, and towards exploring alternative architectures

that balance accuracy with interpretability.

As highlighted in Section 2.3, interpretability is a domain-specific concept, and interpretations

that work in one context may not extend to another. However, throughout this dissertation, IT is

presented as a foundational framework for achieving more general-purpose interpretability that can

be used in any context. By conceptualizing models as systems that process and transmit information,

we can shift our focus away from the detailed structure of the data or feature explanations at various
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layers. Instead, the primary concern becomes the amount of information captured and transmitted

through the model’s feature representations.

Information is a key point and, in Chapter 1, it was dedicated a section for describing the

importance of this and how it plays a central role in almost every scientific discipline and how

the skepticism about the information is a consequence of confusing ‘meaning’ with ‘information’.

Shannon points out that ‘meaning’ was “irrelevant to the engineering aspects” [10], as it introduces

subjectivity and human psychology into the equation.

The IT perspective used in this work is applicable to any context, as it abstracts away from the

specific meaning of the data. However, it can be further extended by using the post-hoc human

interpretable explanations used in ‘explainable ML’ (see Section 2.3.3), where the objective is to

describe how DL behaved, and why. While these post-hoc interpretations are subjective and cannot

be universally applied, the IT-based interpretability framework used in this thesis must always be

satisfied. As Warren Weaver noted [9]

It is this, undoubtedly, that Shannon means when he says, “the semantic aspects of

communication are irrelevant to the engineering aspects”. But this does not mean that

the engineering aspects are necessarily irrelevant to the semantic aspects.

A good example of this can be found in Chapter 5, where the results obtained about the FS for

band selection in HSI are presented. The validation of the results presented in Section 5.4.3 were

partially validated because of the selection of specific wavelength that it is considered in the state-

of-the-art such as the selection of a range around 1200 nm for the identification of fat and muscle

tissue because of the absence of lipids in muscle tissue where the absorption coefficients of water

(abundant in muscle) and lipids are comparable [270]. The interpretation obtained from the data

here is context-dependent, and cannot be extrapolated to another context, but the IT validation

used in Section 5.5 can be used in any context.

This post-hoc human interpretable explanation can be used in this specific case because the FS

method has a mechanism used for obtaining a better interpretation about the behavior of the model,

but this explanation would be invalid if the IT perspective is not satisfied in the model. For this

reason, the IT interpretability used in this dissertation should be considered not only for the design

of DL architectures, but also for the validation of the model.

As introduced in Section 1.1, the reason that DL models outperform other ML methods is that

they operate at multiple levels of abstraction, creating representations that are appropriate to the

problem being addressed and acting as ‘information processors’. A DNN does not process images

or signals directly; instead, it processes the information contained in the data. Consequently, the

information from the source must be effectively propagated across the different levels of abstraction,

reflecting the behavior discussed throughout this dissertation. This is a fundamental characteristic

necessary for describing intelligence.

Therefore, satisfying this IT interpretation is a necessary, though not sufficient, requirement

for defining intelligence. Similar to how the human brain works, these models aim to reduce the

uncertainty in the decision-making process — specifically, by minimizing the conditional entropy

H(Y |X). In humans, the information from sensory organs is transmitted to specific parts of the

brain responsible for decision-making, with information passing through various levels of abstraction.

The same principle applies to DL models, which propagate information across layers of abstraction

to support decision-making.
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Throughout this dissertation, we have explored how well DL models transmit information. Just as

an intelligent system must effectively process and transmit information, I trust that the information

presented in this document has been communicated accurately and clearly.

8.4 Future Work

The methodologies and findings presented in this thesis offer multiple avenues for future exploration

and application. These ideas are inherently adaptable and can be extended to various contexts,

paving the way for innovative solutions in different domains. Furthermore, the key concepts in-

troduced throughout the chapters have the potential to be combined, yielding more refined and

effective results. For instance, both Chapter 5 and Chapter 6 focus on HSI data, and a natural

progression would be the integration of the approaches developed in these chapters. An alternative

direction involves utilizing the proposed DL-based AD method in Chapter 7 to eliminate outliers

in the dataset for band selection used in Chapter 5, replacing the IQR approach. Moreover, the

applicability of these methods could be expanded to other fields beyond the scope of this work.

Nevertheless, several conceptual areas remain unexplored within this dissertation, offering sig-

nificant opportunities for further research. The following directions are particularly worthy for

further exploration and have the potential to drive meaningful advancements within the scientific

community:

• Proposed FS method as a quantization technique: The dropout technique, traditionally

considered as a regularization method, can be reinterpreted through the lens of distortion-rate

theory as a compression mechanism. This perspective opens the door to explore dropout as a

quantization method aimed at reducing the size and complexity of DL models.

• Uncertainty estimation using the proposed CLHU framework: From an IT perspec-

tive, the concept of endmembers, grounded in the IB principle, can be extended beyond their

original purpose as class descriptors. The similarity function used for abundance estimation

could serve as a valuable tool for quantifying model uncertainty, providing a deeper insight

into the confidence of predictions.

• Enhancing robustness in AD by normalizing flows in ADeLEn: While the pro-

posed ADeLEn method demonstrates significant potential, especially in handling imbalanced

datasets, further improvements can be achieved by incorporating normalizing flows. This en-

hancement could be particularly beneficial for high-resolution image datasets, offering a more

robust framework for AD by leveraging the expressive power of normalizing flows.

This dissertation has explored a range of learning paradigms (see Fig. 2.1), including supervised,

unsupervised, and semi-supervised learning; however, reinforcement learning remains an area for

future investigation. One of the guiding hypotheses of this dissertation was to establish a common

framework for exploring different tasks, a goal achieved through the consistent application of IT as a

lens for exploring the interpretability of DL models and understanding problem-solving mechanisms.

A valuable extension of this work would be to design a reinforcement learning algorithm inspired by

the IT perspective, using IT principles to enhance interpretability and provide a more comprehensive

understanding of the model’s learning processes.
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Appendix A

Supplementary Material

A.1 Information-theoretical Evaluation in Deep Learning

A.1.1 Information Plane during DFU fitting phase

In Section 4.2.2, we outlined the two-step process of using the AE: first, pretraining the AE with

the FMNIST dataset, and then fine-tuning this pretrained model with the DFU dataset (detailed in

Section 4.2.1). This section presents the IP estimation during the second stage, where we train the

AE, which was initially pretrained with FMNIST, using the DFU dataset.

(a) (b)

(c)

Figure A.1: IP estimation using dropout technique in the AE among different dropout rates (ρd)
fitting with DFU dataset: (a) ρd = 0.5, (b) ρd = 0.2 and (c) No dropout (ρd = 0).

Figure A.1 reveals a relatively stable compression pattern in the IP estimation during the fitting

phase on the DFU dataset across most cases. Notably, when a dropout rate of ρd = 0.2 is applied,

the model appears to still be in a fitting phase, as there is no observable compression in the IP

estimation (Fig. A.1b). In the third case, there is no dropout (Fig. A.1c), there is an evident DPI
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violation, so it is concluded that this model has an evident overfitting although the MI estimation

in the latent space (I(X;Z)) is higher than in the other cases. Apparently, this overfitting is clearly

evident because of the use of batch normalization in the convolutional layers.

However, when these results are compared to the observations in Fig. 4.12, it becomes evident

that the learned representation may not be as effective. This implies that the dropout rate has

a significant impact on the learning process and the quality of the acquired representation. In

summary, Fig. A.1 essentially confirms the conclusions outlined in Section 4.3.2.

A.1.2 Encode path without dropout technique

This section illustrates the example of Section 4.3.2 where the dropout technique is not applied. As

was concluded in that section, this AE exhibits a behavior that indicates it suffers from overfitting.

This outcome can be attributed to the use of batch normalization, a technique that standardizes

layer inputs within each mini-batch, which stabilizes the learning process and significantly reduces

the number of training epochs needed for training DNN.
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Figure A.2: MI estimation between different filters in the encode path of the AE with a dropout
rate of 0.5 at the end of each layer, denoted as F i

k where i represents the index of the filter and k
the encoder layer. The encode path is composed by (a) E1, (b) E2 and (c) Z.

Nevertheless, this AE exhibits some characteristics that were previously described in Section

4.3.2. Figure A.2 presents the MI estimation among the different filters in the various layers of
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the decode path: E1, E2, and the bottleneck Z. In Fig. A.2c, it is apparent that the amount of

information in these layers is higher compared to the other AEs where dropout techniques were

employed. This is evident through the entropy estimation of each layer, which is higher due to the

absence of the dropout technique.

A.2 Feature Selection with Deep Learning: Hyperspectral

Band Selection

A.2.1 Mutual Information

Following the proposed method for FS in Section 5.2.1, the optimization problem based on IT-

learning is indicated in Section 5.3.1. From this perspective, it involves maximizing the MI, as it is

depicted in Eq. (5.9). In this section, it will be described the I(Xs;Y ) expressed in the equation.

The optimization problem considers three variables: the input X, the output Y , and the subset

indices S. As the S only affects to the input X, Eq. (5.2), this operation is represented by p(X,S).

The goal is to maximize the MI between these variables along a Markov chain (X → S → Y ), i.e.,

I(X ⊙ S;Y ) = I(Y ;X,S). It can be expressed as follows:

I(Y ;X,S) =
∑

X,Y,S

p(x, y, s) log
p(x, y, s)

p(y)p(x, s)
=

=
∑

X,Y,S

p(x, y, s) log
p(y|x, s)p(x, s)
p(y)p(x, s)

.

(A.1)

However, it is imported to note that S follows a Bernoulli distribution, and p(x, s) can be

expressed as the product of independent variables X and S. Thus, the joint probability is defined

as p(x, s) = p(x)p(s). Therefore, the Eq. (A.1) is modified as follows:

I(Y ;X,S) =
∑

X,Y,S

p(y|x)p(x)p(s) log p(y|x)p(x)p(s)
p(x)p(y)p(s)

=

=
∑
S

p(s)
∑
X,Y

p(x, y) log
p(x, y)

p(x)p(y)
,

(A.2)

where the second expression corresponds to I(X;Y ), so it may be expressed as:

I(Y ;X,S) =
∑
S

p(s) I(X;Y ) = ES [I(X;Y )]. (A.3)

As a result, the MI estimation can be expressed as the expected value over S of the I(X;Y ), as it

was indicated in Eq. (5.10).

A.2.2 Conditional Entropy

As it was indicated in Section 5.3.1, the objective consists on maximizing the MI between Xs and

Y , I(Xs;Y ). Considering that Eq. (5.2), p(Xs) = p(X,S) and the MI is estimated as:

I(Y ;X,S) = H(X,S) +H(X,S|Y ), (A.4)
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Figure A.3: Quantitative evaluation based on SVM for the downsampling methods. Figure A.3a
represents the dimensional reduction of the subset of samples selected by the method based on K-
Means and Fig. A.3b represents the case where OCSP was applied.

where X is the input, Y corresponds to the output, and S is the subset of indices. In this way, the

maximization of the MI corresponds to a minimization of the conditional entropy, H(X,S|Y ).

Given the Eq. (3.6), the conditional entropy may be expressed as:

H(X,S|Y ) = H(X,Y, S)−H(Y ), (A.5)

and, as the H(Y) is fixed, the minimization of the conditional entropy might be expressed as a

minimization of the joint entropy H(X,Y, S).
Given that S, is defined by an independent Bernoulli distribution p(X,S) = p(X)p(S) and

there is dependent between X and Y , p(X,Y ) = p(Y |X)p(X), the joint probability p(X,Y, S) =

p(Y |X,S)p(X,S) = p(Y |X)p(X)p(S). In this way, the joint entropy is defined as follows:

H(X,Y, S) =
∑
x,y,s

p(y|x)p(x)p(s) log (p(y|x)p(x)p(s)) =

=
∑
x,y,s

p(x, y)p(s) log (p(x, y)p(s)) .
(A.6)

As a result, this expression might be simplified as:

H(X,Y, S) =
∑
X,Y

p(x, y) log p(y|x) +
∑
S

p(s) log p(s) =

=H(X,Y ) +H(S).
(A.7)

A.2.3 Laparoscopy Dataset Downsampling

As it was indicated in Section 5.4.2, the downsampling of the dataset was evaluated by a quantitative

evaluation and a qualitative result based on PHATE. The results obtained indicated that the most

interesting downsampling techniques for this purpose were the one based on K-Means [260] and

the another based on OCSP [266]. Figures A.3 and A.4 represent the quantitative and qualitative

evaluation, respectively.



A.2. FEATURE SELECTION WITH DEEP LEARNING: HYPERSPECTRAL BAND SELECTION 213

In terms of quantitative evaluation, a cross-evaluation was conducted using 10 folds. Simulta-

neously, the SVM used for evaluation was optimized, obtaining specific hyperparameter tuning for

each method. For the K-Means approach, the SVM uses an RBF kernel with γ set to 0.0811, and the

parameter C to 1.52. The SVM for the OCSP method used an RBF kernel with γ set to 0.0811, and

the parameter C to 1. In both methods, the kernel and γ, which controls the spread of the Gaussian

center, are the same. However, the hyperparameter C, which controls the trade-off between decision

boundary and misclassification, is different.

Considering Fig. A.3, it is observed that the method based on K-Means has almost a perfect

score in cross-validation (see Fig. A.3a). For this reason, it can be deduced that there is overfitting

associated with this model. On the other hand, the method based on OCSP shows a clear deficiency

in identifying fat tissue, confusing it with nerve tissue, as it is illustrated in Fig. A.3b. However,

it can be deduced that the subset of samples obtained by OCSP has more variability compared to

K-Means, and for this reason, this subset might be more representative than the one obtained by

K-Means.
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Figure A.4: Qualitative evaluation based on PHATE for the downsampling methods. Figure A.4a
represents the dimensional reduction of the subset of samples selected by the method based on K-
Means and Fig. A.4b represents the case where OCSP was applied.

In terms of qualitative evaluation, a clustering pattern is observed in the K-Means approach,

especially noticeable in local structures (see Fig. A.4a). This pattern is a consequence of obtaining

samples that are closer to different centroids, as proposed in [260]. On the other hand, OCSP

shows a global pattern where samples are well dispersed, but in the local structure, it exhibits more

continuity than the K-Means-based method.

Both evaluations lead to the same conclusions. The clustering pattern in K-Means, observed

by PHATE, might be the reason for the nearly perfect cross-validation results in the quantitative

evaluation. This clustering pattern reduces the variability observed in the subset. Consequently, the

OCSP method for downsampling is selected based on these observations.
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A.3 Signal Decomposition: HyperSpectral Unmixing

A.3.1 Multiple channel contribution

The CLHUmodel proposed in Chapter 6, has the injection of two different variables in the bottleneck,

Z and M for obtaining A, as it is observed in Fig. 6.3. In Section 6.3.1, it was described as there

are two channels for providing information of A. In this way, it is interesting to obtain the amount

of information provided by the different channels.

Considering p(ai|mj), where ai ∈ A and mj ∈ M , as the posteriori distribution given mj and

p(ai|mj , zk), with zk ∈ Z, as the posteriori distribution considering both mj and zk, the posteriori

entropy can be defined as:

H(A|mj , zk) =
∑
a∈A

p(a|mj , zk) log
1

p(a|mj , zk)
. (A.8)

In this way, the uncertainty of A with respect M and Z is defined as follows:

H(A|M,Z) =
∑
m∈M

∑
z∈Z

p(m, z)H(A|m, z). (A.9)

Given the Eq. (A.9) and following Eq. (3.10), I(A;M,Z) = H(A) − H(A|M,Z) provide the

amount of MI among the different variables. Remember, this MI formulation can be decomposed

by the additivity of the information provided for the different channels, AZ and AM , as it has been

called in Section 6.3.1. Considering that I(A;M) is the amount of information in the channel AM ,

the I(A;M,Z) can be decomposed as:

I(A;M,Z) = {H(A)−H(A|M)}+ {H(A|M)−H(A|Z,M)} =

= I(A;M) + I(A;Z|M),
(A.10)

where the first term is the amount of information provided byM and the second term is the additional

information provided by Z.

A.4 Anomaly Detection by Deep Learning

A.4.1 Alternative Expression for ELBO

The VAE uses the variational inference described in Section 2.1.4 to obtain a DL-based generative

model. Although the ELBO corresponds to the Eq. (2.11) and the optimization process is solved by

Eq. (2.12), in this section it will be provided an alternative description, without using the Jensen

inequality, that considers the encode path in the AE and provides insights about the ELBO.

The encode path describes pθ(z|x), where θ are the parameters of the DNN. Based on the

description in Section 2.1.4, the variational inference in a VAE aims to approximate pθ(z|x) to an

easy-to-sample parametric distribution qϕ(z|x). Consequently, for any choice of inference model
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qϕ(z|x), we have:

log pθ(x) = Eqϕ(z|x)[log pθ(x)] =

=Eqϕ(z|x)

[
log

(
pθ(x, z)

pθ(z|x)

)]
=

=Eqϕ(z|x)

[
log

(
pθ(x, z) qϕ(z|x)
qϕ(z|x) pθ(z|x)

)]
=

=Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]
+DKL(qϕ(z|x)∥pθ(z|x)).

(A.11)

In Eq. (A.11), the first term in the final result corresponds to the ELBO:

Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]
= Eqϕ(z|x)

[
log

pθ(z|x) pθ(x)
qϕ(z|x)

]
= log pθ(x)−DKL(qϕ(z|x)∥pθ(z|x))

(A.12)
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Appendix B

Feature Ranking for Diabetic Foot

Ulcers Thermograms

In this study, the proposed method for FS depicted in Chapter 5 will be applied to determine relevant

features extracted from the DFU dataset used in Chapter 4 (see Section 4.2.1). Unlike the band

selection problem that was reformulated considering the hyperspectral signature as a feature vector,

in this case a feature extraction process will be carried out from the thermograms. It is a summary

of the work presented in [226].

The subset of features of the feature extracted from thermograms was employed as input for

a SVM [173] classifier. The SVM classifier was used as a reference, with the aim of assessing the

performance of these features. Finally, for comparison purposes, features previously reported as

state-of-the-art were also fed to the classifier.

B.1 Feature Extraction

Following the workflow proposed in the INAOE dataset, the IT images from the local dataset were

processed to automatically segment the angiosomes, a composite unit of tissues supplied by an

artery, as previously described in [383, 206]. By considering these angiosomes, the foot was divided

into four regions: Medial Plantar Artery (MPA), Lateral Plantar Artery (LPA), Medial Calcaneal

Artery (MCA), and Lateral Calcaneal Artery (LCA), as illustrated in Figure B.1.

This segmentation step was required to extract the features for each angiosome [197], which

included the Thermal Change Index (TCI) [383], Estimated Temperature (ET), Estimated Temper-

ature Difference (ETD), the Hot Spot Estimator (HSE) [197], as well as the summarizing statistics

(mean, standard deviation, maximum, minimum, skewness, and kurtosis). In addition, these fea-

tures also extracted for the entire foot, and following previous approaches [197, 384], a class, based

on the Normalized Temperature Ranges (NTR), was assigned to each foot.

Regarding the extraction of the TCI feature, despite the extended database containing more

control subjects, the average control temperature was kept unchanged, being the values previously

reported [383, 206] considered as reference. These values are displayed in Table B.1, and, for

comparative purposes, the mean values corresponding to the healthy subjects, from the internal

dataset, are also listed.
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Figure B.1: Graphical illustration of the defined angiosomes. The main reference points considered,
and the proportional foot division are also specified [383, 206]. Reference point A was located at the
tip of the innermost toe, whereas B at the center of the calcaneal base. Points C and D corresponded
to the wider part of the foot. Point E corresponded to the 60% height of the foot.

Table B.1: Mean temperature values per angiosome in the control group for the INAOE database
[383] and the internal dataset described in Section 4.2.1. SD indicates standard deviation.

Angiosome
INAOE Local

T (ºC) SD T (ºC) SD

MPA 25.8 1.4 25.0 3.0
LPA 25.7 1.3 24.5 3.1
MCA 26.4 1.3 24.5 2.5
LCA 26.1 1.4 24.5 2.6
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Table B.2: Classes defined according to the temperature of the foot’s thermograms.

Class NTR Class Interval (ºC) Classmark (ºC)

C1 NTR C1 [18,22) 20.0
C2 NTR C2 [22,26) 24.0
C3 NTR C3 [26,27) 26.5
C4 NTR C4 [27,28) 27.5
C5 NTR C5 [28,29) 28.5
C6 NTR C6 [29,30) 29.5
C7 NTR C7 [30,31) 30.5
C8 NTR C8 [31,32) 31.5
C9 NTR C9 [32,33) 32.5
C10 NTR C10 [33,37) 35.0

Furthermore, in order to extract the ET as well as the subsequently associated parameters,

ETD and HSE, thermograms were clustered into classes based on temperature ranges. In the

original study [197], Peregrina et al. used a dataset in which the feet were not segmented, so the

background objects and their respective temperatures were present in the images. As a consequence,

the classes were defined, from C0 to C7, whose temperatures were within the interval [25, 35) ºC and,

excluding C0, each class covered 1 °C. To avoid high temperatures from heat sources unrelated to

the feet, temperatures between [25, 28) ºC were considered cold and associated with the background

(C0). The other classes were selected according to previously reported data [385], in which subjects

with diabetes had a mean temperature of 30.2 ± 1.3 ºC, whereas for healthy subjects, the mean

temperature was 26.8±1.8 ºC. Because the dataset used in this work was previously segmented, the

range of temperatures to be considered was extended, covering the interval [18, 37) ºC; therefore,
the classes were redefined as listed in Table B.2. In this way, the complete range of temperatures in

the dataset was taken into consideration. As can be observed, the number of classes was extended

to 10, covering approximately 1 ºC, except C1, C2, and C10. Furthermore because the considered

temperature interval was extended, the number of NTR classes was subsequently adjusted regarding

the original study [197, 384]. Finally, the mean value of the established intervals, the classmarks,

were used for ET, ETD, and HSE feature extraction.

The nomenclature employed to name the aforementioned extracted features consisted of using a

letter to specify the foot, ‘L’ for left and ‘R’ for right, followed by the name of the corresponding

angiosome. For the features extracted using the entire foot, this second descriptor was discarded.

Then, the variable was set using lowercase letters such as mean, std, max, min, skew, or kurtosis.

Capital letters were employed for TCI, HSE, ET, and ETD, as well as for NTR followed by the

subsequent class.

B.2 Feature Selection

In this study, the number of input variables extracted from thermograms was as high as 188, and

a detailed investigation was proposed to detect the most relevant features based on different ap-

proaches. These included some classical methods, RF and LASSO, as well as the proposed approach

for FS (see Section 5.2.1) using both Bernoulli relaxation, the Concrete and Gaussian approach (see

Section 5.2.2).
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Firstly, the original input set was optimized by removing highly correlated variables. The cor-

relation estimation was carried out using the well-known Pearson correlation coefficient; therefore,

those features with a correlation r > 0.95 were considered highly correlated. For instance, a high

correlation between the mean value and the ET was observed, allowing a reduction in the number

of features. Then, a feature ranking based on logistic regression was developed to select the most

informative variables among them. These redundant variables were ranked based on an AUCROC

analysis using the logistic model as an estimator. As a result, the number of features or input

variables was reduced a ∼25.5%, from 188 to 140.

Five-fold cross-validation was employed, dividing the dataset into five folds (80% training and

20% testing set), and the performance metric for the testing set was computed five times. Therefore,

around 196 samples were used for training and 48 for validation, see Table 4.1. The relevance of the

features was the average value resulting from the five iterations during the cross-validation.

B.3 Results

The performance of the proposed DL-based FS methods was evaluated by applying ϕi > 0.9 in

the Concrete approach to obtain the sparse representation of the original input space. Figure B.2

shows the sparse rate during the training phase of the respective model in each iteration of the

cross-validation. As can be observed, the Concrete approach obtained a sparse rate of around 50%,

and the Gaussian relaxation approach obtained a sparse rate of around 60% in most of the cases.

This means that, in general, more than half of the features were considered irrelevant. Additionally,

the proposed FS method started to become sparser in an early epoch, whereas the concrete approach

required a higher λ in the regularization, which increases using the scheduler Eq. (5.15). According

to the sparse representation, using the test set in each fold, average accuracies were 89.1% and

85.7% for concrete and variational dropout, respectively. In addition, we noticed that using the

variational parameter, ϕ, as feature ranking, the most important features were roughly the same in

all the experiments. In comparison, the LASSO approach received a sparse rate of 44%, using a

lower number of features than the DL approaches, and with an approximate accuracy of 90%. These

results were not reliable for comparison purposes because the models were fully optimized, including

the hyperparameters, and the test set was not large enough to reject a possible overfitting.

B.3.1 Feature Selection

Following the workflow described in Section B.2, the most relevant features, listed in Table B.3, were

extracted for all the approaches considered: LASSO, RF, and the proposed DL-based FS method

using the Concrete relaxation and Gaussian relaxation. For the LASSO approach, the feature

ranking was estimated by the absolute value of its coefficient. In relation to Concrete and Gaussian

proposed FS approach, the variational parameter was used as feature ranking.

The 10 first features extracted for each approach were considered the most relevant and are

highlighted in bold in Table B.3. Therefore, approximately 0.05% of the total features extracted

were considered relevant. Regarding the distribution of these features by angiosome, MPA and LPA

presented the largest number of features with a total of nine and six associated features, respectively.

LCA and MCA angiosomes had, respectively, three and four associated features each. For the entire

foot, only two associated features were found.
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Figure B.2: The sparse rate obtained using the proposed DL-based feature selector in the different
cross-validation iterations. The threshold in Concrete approach is ϕi > 0.9.

Table B.3: The 30 most relevant features extracted, listed according to rank, for all the approaches
considered: LASSO, Random Forest, and the DL-based feature selection approach using Concrete
and Gaussian relaxation. The 10 first features are highlighted in bold as the most relevant for each
method. The nomenclature employed is defined in Section B.1.

Rank LASSO Random Forest Concrete Approach Gaussian Approach

1 R LPA min L MPA min R LPA min R LPA min
2 L LPA std R LPA min R MCA std R MPA HSE
3 Foot ETD L MPA NTR C3 Foot ETD MCA ETD
4 L MPA min R MCA std R LCA kurtosis L kurtosis
5 L MPA skew R LPA std R LPA std L MPA skew
6 L LCA NTR C4 L MPA std L MPA min L MCA skew
7 R LPA NTR C3 L LPA NTR C2 LPA ETD R LCA kurtosis
8 R MPA NTR C4 L LPA std L LPA std R LPA std
9 L MPA HSE R LCA NTR C2 L MCA skew L MPA NTR C4

10 R MCA std R MPA NTR C2 L MPA HSE L LCA std
11 LCA ETD R MPA std R LCA skew R LPA HSE
12 MCA ETD R LCA mean MCA ETD R LCA std
13 R LCA kurtosis L MCA min L MCA std Foot ETD
14 R MPA NTR C3 L LCA NTR C2 MPA ETD R MCA std
15 R LCA NTR C3 L MCA mean LCA ETD LPA ETD
16 L kurtosis R MPA ET R MCA skew L MCA std
17 R std R std L MPA skew R MCA skew
18 R LCA HSE L MCA NTR C2 R kurtosis L MCA NTR C5

19 R skew L LPA ET R HSE R MCA HSE
20 L HSE L LPA NTR C1 L LCA kurtosis R kurtosis
21 R LPA NTR C5 L LCA NTR C3 R LCA std LCA ETD
22 L max Foot ETD L MPA std R LCA skew
23 L MCA std LPA ETD L LCA std R MPA std
24 L LPA NTR C4 L MPA NTR C4 R LCA HSE R MPA NTR C4

25 L MCA NTR C3 L NTR C3 R skew L MPA NTR C3

26 LPA ETD L std R MPA NTR C4 L LPA NTR C2

27 R MCA HSE L kurtosis R MPA HSE R LCA HSE
28 L MCA skew R MPA NTR C3 L MCA kurtosis L MPA HSE
29 L LPA NTR C5 L MCA std L LCA NTR C4 L MCA HSE
30 R NTR C5 L LCA max L kurtosis L skew
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Table B.4: Most relevant features that coincided in all the approaches considered, listed according
to rank.

Rank Features in Coincidence

Rank < 10 R LPA min

Rank < 20 R MCA std

Rank < 30 Foot ETD
LPA ETD
L MCA std
L kurtosis

Rank < 50 L LPA std
R kurtosis
R LCA std

R LCA kurtosis

Table B.5: Performance metrics of the optimized SVM classifier using all available features as input.

Input Dataset Accuracy Precision Recall F1 Score

All features 0.9099 ± 0.0613 0.9473 ± 0.0705 0.8535 ± 0.1016 0.8965 ± 0.0837

Furthermore, the ten first features found to appear in all the implemented approaches are listed

by rank in Table B.4. The ranks of these features changed according to the approach employed.

Thus, the lowest rank of each feature, among the different approaches, was assigned as its final rank.

The search for coincidence was restricted to the first 30 ranked features provided for each approach.

However, as observed in Table B.4, the assigned ranks are listed in intervals ranging from ten units.

Features found up to a rank lower than 50 were considered. As noticed, if only the 10 first features

in coincidence were considered, the angiosomes with more associated features were LPA and the

entire foot, with three associated features both, whereas MCA and LCA had two associated features

each. No associated features were found for the MPA angiosome in this case.

An SVM classifier was used with all the features as input to provide a reference aiming to

quantify the performance of the extracted features, their rank, and selected combination. Initially,

using the available features as input, the SVM classifier was optimized using a randomized search

[386] to obtain the best parameters. As a result, the RBF kernel, was used. The RBF kernel has a

hyperparameter, γ, that controls the spread of the Gaussian center. In addition, the hyperparameter

C in SVM is used for directing the L2 penalty, which controls the trade-off between decision boundary

and misclassification. The best performance, displayed in Table B.5, was achieved with a γ value of

0.0035 and a C value of 7.743.

B.3.2 Evaluation of Features by SVM Classifier

Several experimental settings were considered to evaluate the extracted features for the chosen

classification task, which was to distinguish between healthy and diabetic patients. In this case,

the SVM classifier was not optimized; that is, standard hyperparameters were chosen to offer a fair

comparison between the proposed approaches to rank the features. For the different experiments

described in this section, γ was set to 0.1, motivated by the low dimensional space of the input data.



B.3. RESULTS 223

In addition, the hyperparameter C was set to 1. This configuration was the same for the different

selected features, trying to avoid bias in the conclusions due to well-fitted settings for the indicated

features. The average value resulting from five-fold cross-validation, testing the models five times,

was used for the metrics estimation depicted in Table B.6, as previously reported [384].

First, the SVM was fed with the ten first features extracted for each approach, LASSO, RF, and

the proposed DL-based FS method using the Concrete relaxation and Gaussian relaxation (features

highlighted in bold in Table B.3). Second, the ten first features in coincidence, this is, those that

appeared in all the approaches and are listed in Table B.4, were also employed to feed the classifier.

Finally, to compare the features extracted and the subsequent classification task with those from a

previous study [384], the following ten ranked features were also considered: TCI, NTR C4, NTR C3,

MPA mean, LPA mean, LPA ET, LCA mean, highest temperature, NTR C2, and NTR C1. These

features were among the top ten features resulting from testing several techniques, which included

Pearson, chi square, RFE, logistics, RF, and LightGBM. The metrics of the performance for each

approach, according to the experimental settings described, are listed in Table B.6.

Notice that, contrary to the setup employed in the present study in which all features were

extracted by foot, L or R, the foot to which the previously mentioned features were associated was

not specified in [384]. Therefore, the mean value between both feet was calculated to match these

features and offer a fair comparison. In addition, the NTR class definition considerably differed

from the one considered previously; thus, the equivalent class, based on temperature values, was

used instead. NTR C4 and NTR C3 in the original study corresponded to ranges between 31 and 32

ºC as well as 30 and 31 ºC, respectively [197, 384]. In the present study, the closest approximations

were NTR C8 and NTR C7, for which the respective ranges coincided with the ranges mentioned

above.

Considering the features extracted for each approach and the subsequent classification task, all

approaches provided good metric values. However, the best scores, except for the recall parameter,

were observed for the concrete dropout approach. When the set of relevant features were those

common to all the approaches, although at different rank positions, the performance in this ex-

perimental setting provided the best recall. Furthermore, as noticed, the recall values were lower

in comparison with the other parameters of the performance metrics. This may have been due to

the imbalance between healthy and diabetic samples from the original dataset because a low recall

score is associated with a high number of false negatives. A relevant number of healthy samples

was generated for balancing using SMOTE, which performed a linear interpolation between samples.

Therefore, recall was penalized because it was exclusively dependent on the diabetic samples. In

this case, considering the precision-recall tradeoff, a lower recall was preferred due to the associated

implications.

As shown in Table B.6, the performance of all the models when using the corresponding first

10 features as well as when using the first 10 features in coincidence, was quite similar to those

considered as reference values (shown in Table B.5). However, the classical LASSO approach and

DL-based FS using the Concrete approach exhibited a slightly better performance with only 10

features.
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B.4 Discussion

Several approaches were considered to select relevant features used for DFU detection based on

infrared thermograms. Classical approaches, LASSO and RF, were tested versus the proposed

DL-based FS using the Concrete and Gaussian relaxation. The outputs of these approaches were

analyzed to extract a new set of features considered relevant to classify whether a thermogram

corresponded to a healthy or diabetic person.

Regarding the performance of the traditional approaches in comparison with that of the DL-based

ones, LASSO provided results close to those of the Concrete approach, according to the F1 score,

although the latter exhibited a slightly better performance compared with the established reference

values. However, LASSO is limited to linear solutions, while the Concrete approach does not suffer

from this limitation. No fine-tuning of the models was implemented to increase the respective

performance because a comparison between extracted input features was intended. Thus, when a

few features were used, i.e., 10, both methods produced promising performance. In this particular

case, the LASSO approach would be an easy-to-implement and faster alternative to concrete dropout,

as comparable performance was achieved. Furthermore, considering the most relevant features of

each approach, six of the selected features matched for these two approaches, see Table B.3. Thus,

the similarity in performance may have been due to this coincidence of features.

A previous study [384] was considered as a reference to quantify the performance of the extracted

features for the classification task. This reference study employed a stacking classifier using gradient

boost, XGBoost and RF considering previously ranked features as input: TCI, NTR C4, NTR C3,

MPA mean, LPA mean, LPA ET, LCA mean, and highest temperature. Using these proposed fea-

tures, the values reported in the present study, around 77% in the F1 score, are considerably lower

than those reported previously (see Table B.6). However, although the definition of the features was

slightly modified and the classifier employed considerably differed; the same input features exhibited

a roughly 15% lower performance in comparison with the features extracted in this study. This

difference may be explained by the use of an extended dataset as well as their proposed new labeling

in the INAOE dataset for distinguishing between mild, moderate, and severe cases in the diabetic

foot domain, which was not tested in this study.

Before feature extraction, our initial study focused on establishing a balanced dataset of diabetic

and healthy subjects by fusing a publicly unbalanced available dataset [206] with a local dataset

composed of healthy subjects. Furthermore, the preprocessing of the thermograms was also care-

fully considered, extracting the features previously reported [206, 384]. Among the set of features,

considered within the state-of-the-art features, were the highest temperature, TCI, HSE, ET, NTR,

and several statistical variables such as the mean value, being associated with the entire foot as well

as some defined angiosomes (see Section B.1). Notably, in the present study, these features were

extracted by foot, and considered separately, unlike previous studies in which an average between

the R and L foot was assumed due to the lack of specific information on the procedure. For this

reason, the number of features extracted is considerably much higher than in previous reports [384],

188 versus 37 features.

Of the most important state-of-the-art features, TCI is especially relevant. The TCI is focused

on providing a quantification of the thermal change, independent of the observed distribution, and a

difference of 1ºC is considered enough to notice a significant difference between the classes proposed

[383]. In this study, reference values were not modified, in comparison with the original study, to
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calculate the TCI values despite more healthy subjects being considered in the extended dataset.

Regardless, none of the features related to TCI were considered relevant among all the implemented

approaches or within those features in coincidence.

Regarding NTR, the number of classes based on the thermogram temperatures was extended to 10

because the range of relevant temperatures considered was increased from 18 to 37 ºC compared wtih

the original study, which was from 25 to 35 ºC [197]. These modifications were motivated by, first,

the exclusion of temperature values characteristic of healthy patients, which were excluded in the

original study to avoid the background, because foot segmentation was not available. The private

thermograms from healthy volunteers, fused with the INAOE database for balancing purposes,

showed that the temperature distributions were below 28 °C for many subjects. Second, these

private thermograms were previously segmented; thus, excluding other heat sources within the

background was not required. As a result, we did not discard any NTR class as was proposed in

[197] for removing the background. A better-performing classifier was expected by extending the

temperature ranges. However, most of the features related to the NTR were not considered relevant

and, similar to that observed for the TCI, none were obtained within the features in coincidence

among all the approaches. Furthermore, according to the F1 score, the best-performing approach

was the Concrete approach, and not a single feature related to the NTR was among those considered

relevant.

Opposite to that described above, in the present study, among those specially designed features

for DFU, only HSE and ETD seem to be relevant. Furthermore, as described, the sole was divided

into four different angiosomes, and their individual features were extracted. The extraction demon-

strated an unbalanced significance of the angiosomes and, therefore, the division of the foot into

angiosomes seemed a determinant factor for feature extraction and played an important role in the

analysis. In particular, the LPA angiosome appeared as the most predictive, with more associated

features than the other angiosomes, followed by LCA.
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Code Availability

Talk is cheap. Show me the code.

Linus Torvalds

The majority of the code developed for this thesis is publicly accessible on my GitHub account,

organized into dedicated folders within the ‘Thesis’ repository. Each chapter-specific folder contains

the corresponding code, facilitating reproducibility of the contributions discussed throughout the

thesis.

In the ‘modules’ folder, custom libraries developed for specialized tasks are available. For exam-

ple, the IPDL Library supports experimental methodologies rooted in the IT perspective, offering MI

estimation via a kernel-based entropy estimator and providing visualizations of the IP. Integrated

with PyTorch, this library includes kernel optimizers specifically designed to be compatible with

PyTorch’s architecture. Additionally, the HySpecLab library provides a suite of tools for HSI pro-

cessing, with several modules designed to be compatible with the Scikit-Learn interface, streamlining

the analysis and processing workflows.
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https://github.com/SolidusAbi/HySpecLab
https://github.com/SolidusAbi/IPDL
https://github.com/SolidusAbi/Thesis
https://github.com/SolidusAbi
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Appendix D

Resumen en español

D.1 Introducción y motivación

La inteligencia artificial (IA) ha realizado recientemente avances significativos en percepción (la in-

terpretación de información sensorial), lo que permite a las máquinas representar e interpretar mejor

datos complejos. Dicho avance ha estado motivado principalmente por los modelos de aprendizaje

profundo (AP), la red neuronal (RN). Recientemente, el impacto de las RNs ha sido particularmente

notable en varios aspectos de nuestras vidas. No obstante, las aplicaciones actuales donde la IA está

siendo especialmente relevante no son esenciales en nuestras vidas; la mayoŕıa de ellas están asoci-

adas con el entretenimiento. Excluyendo las razones no técnicas, existe una razón espećıfica por la

cual la IA basada en RNs aún no se considera adecuada para su integración en campos cruciales:

estos modelos no son confiables. Una RN, sigue considerándose una ‘caja negra’, ya que son modelos

dif́ıciles de interpretar donde no es posible entender qué ocurre en las capas ocultas.

Por ejemplo, la conducción autónoma y el diagnóstico médico son campos de aplicación cŕıticos

donde ser inexacto implica consecuencias desastrosas. La salida de los modelos de AP presenta

una mayor incertidumbre que la salida obtenida por métodos clásicos, y más simples. Es más fácil

entender los métodos clásicos, y en modelos complejos como las RNs, es mucho más complicado

entender por qué un pequeño cambio en la entrada puede afectar drásticamente el rendimiento del

modelo. De esta forma, los métodos clásicos podŕıan considerarse más robustos.

Es evidente que el uso de algoritmos de IA basados en AP son especialmente relevante en la inves-

tigación cient́ıfica contemporánea, con muchos autores incorporando estos algoritmos para resolver

problemas que anteriormente eran inabordables. Sin embargo, la falta inherente de ‘transparencia’

en estos modelos introduce un alto nivel de incertidumbre debido a sus complejos mecanismos de

resolución de problemas. Esta incertidumbre genera preocupaciones sobre su aplicación en escenarios

cŕıticos.

Esta tesis doctoral tiene como objetivo mejorar la interpretabilidad de los modelos de AP, pro-

porcionando una comprensión e intuición más profunda de cómo funcionan estos modelos. La tesis

aborda diversos problemas comunes en el contexto médico, donde la IA puede ser beneficiosa. En

distintos caṕıtulos se proponen varios métodos para obtener resultados consistentes en estos proble-

mas, ofreciendo además una perspectiva sobre los mecanismos de resolución de problemas empleados

por los modelos de AP.
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Los resultados obtenidos durante esta tesis han sido posibles gracias a la la estrecha colaboración

entre el Instituto Universitario de Microelectrónica Aplicada (IUMA) y el Instituto Universitario

de Investigación Biomédica y Sanitaria (IUIBS) de la Universidad de Las Palmas de Gran Canaria

(ULPGC) y las siguientes instituciones de investigación:

• Grupo de Tecnoloǵıa Médica de IACTEC, Instituto de Astrof́ısica de Canarias (España)

• Centro de Investigación y Ensayos Cĺınicos en Oncoloǵıa Experimental, Centro Nacional de

Cáncer (Japón)

• Departamento de Ingenieŕıa Eléctrica e Informática, Universidad de Ciencias de Tokio (Japón)

Además, esta investigación se llevó a cabo como parte del proyecto ITHaCA (Identificación

Hiperespectral de Tumores Cerebrales), financiado por el Gobierno de Canarias bajo el Acuerdo de

Subvención ProID2017010164.

Finalmente, esta tesis doctoral ha sido cofinanciada por la Agencia Canaria de Investigación,

Innovación y Sociedad de la Información del Ministerio de Universidades, Ciencia, Innovación y

Cultura y por el Programa Operativo Integrado del Fondo Social Europeo Plus (FSE+) de Canarias

2021-2027, Eje 3, Tema Prioritario 74 (85%).

D.2 Evaluación e Interpretabilidad en Aprendizaje Profundo

Los modelos de AP presentan ventajas, pero su implementación en el ámbito médico sigue en-

frentando retos, especialmente en términos de interpretabilidad. Este caṕıtulo aborda cómo la nat-

uraleza de ‘caja negra’ de las RNs limita su transparencia y reduce la confianza en estos métodos.

La tesis emplea un enfoque basado en teoŕıa de la información (TI), considerando los modelos

de AP como procesadores de información que operan en distintos niveles de abstracción. Aśı, se

propone una interpretación de las RNs que facilita el entendimiento de su mecanismo de resolución

de problemas, permitiendo la creación de metodoloǵıas para su validación.

Desde esta perspectiva, las RNs se modelan como cadenas de Markov en cascada, obteniendo

representaciones progresivas entre la entrada y la salida. Esto se interpreta como un medio de

transmisión en cascada. Mediante el information bottleneck (IB), el modelo se describe en función

de un punto de equilibrio entre la compresión de la información de entrada X y la predictibilidad

de la salida Y , siguiendo la cadena de Markov X → Z → Ŷ , siendo Ŷ la salida estimada y Z el

cuello de botella (el punto de equilibrio). No obstante, debido a sus propiedades Markovianas, una

RN con L capas ocultas óptimas debe cumplir las siguientes desigualdades:

I(X;T1) ≥ I(X;T2) ≥ ... ≥ I(X;TL), (D.1)

I(T1;Y ) ≤ ... ≤ I(TL−1;Y ) ≤ I(TL;Y ). (D.2)

Estas desigualdades describen el flujo de información considerando la entrada X (D.1) y la salida Y

en la dirección inversa D.2. El operador I(.; .) representa la información mutua.

No obstante, otro desaf́ıo relevante en entornos médicos es la escasez de datos para poder entrenar

y validar los modelos de AP. Esto se debe a la dificultad de realizar una recolección sistemática de

datos para crear grandes conjuntos de datos para entrenar modelos de AP. Como resultado, es
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Figure D.1: Information Plane in the different experiments: (a) Modelo con técnicas para evitar el
sobreajusta, y (b) modelo sin técnicas para evitar overfitting.

posible obtener conjuntos de datos de entrenamiento poco representativos, lo que puede introducir

sesgos en los algoritmos. A su vez, usando métodos clásicos de evaluación basados en métricas de

clasificación como ‘exactitud’ o ‘precisión’ también se encuentran sesgados.

Como resultado, se propone un método de evaluación cuantitativa y cualitativa basada en las

propiedades de las desigualdades (D.1) y (D.2) que no requiere un número elevado de muestras de

test. Esto se logra mediante el uso de un método de estimación de entroṕıa basado en kernels.

Estos estimadores basados en núcleos no solo son matemáticamente robustos, sino también com-

putacionalmente eficientes, lo que los hace particularmente adecuados para RNs donde las salidas

frecuentemente se manifiestan en espacios de alta dimensión.

Partiendo de un dataset con pequeño, tan solo 241 muestras, se divide el dataset para tener 32

muestras para evaluar el modelo, teniendo tan solo 209 muestras de entrenamiento. Este reducido

número de muestras conlleva posibles problemas de sobre-ajustes de los modelos. Finalmente, se re-

alizan experimentos para comprobar el método de evaluación propuesto, midiendo la propagación de

información a lo largo de las distintas capas de la RN y empleando una herramienta de visualización

llamada Information Plane (IP).

La Fig. D.1 ilustra los resultados obtenidos; en uno de los modelos se emplean distintas técnicas

de regularización para evitar el sobre-ajuste (Fig. D.1a), mientras que el otro se entrena sin regu-

larización (Fig. D.1b). A pesar de que ambos modelos exhiben el mismo rendimiento en términos

de exactitud, superior al 90%, se observa que las desigualdades (D.1) y (D.2) solo se satisfacen en

la Fig. D.1a, como era de esperar.

Además, dada la similitud de los AutoEncoders (AEs) con canales de comunicación, se evalúa

el efecto del dropout en la compresión de información en RNs. Como muestra la Fig. D.2, el

dropout ayuda a homogeneizar la información entre filtros y aumentar la redundancia, reduciendo

la entroṕıa por filtro al incrementar el ratio de dropout. Esto demuestra cómo el dropout contribuye

a una mayor compresión y robustez en las representaciones de los datos.

Los resultados revelaron que la técnica de dropout se alinea con la distortion-rate theory (teoŕıa

de tasa-distorsión) para lograr representaciones comprimidas óptimas, proporcionando una nueva

interpretación de esta técnica. En consecuencia, la tasa de dropout impacta directamente en la

compresión de información de los datos de entrada.
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Figure D.2: Estimación de información mutua entre diferentes filtros en la capa de convolución del
AE con distintos ratios de dropout, denotado como F i

k donde i representa el ı́ndice del filtro y k la
capa del codificador. Los valores de dropout utilizados son (a) 0.5 y (b) 0.2. La diagonal del mapa
de calor representa la entroṕıa del filtro.

D.3 Selección de Bandas Hiperespectrales con Aprendizaje

Profundo

Inspirado por el enfoque basado en TI, se propone un método de selección de caracteŕısticas (SC)

basado en AP. Este método tiene como objetivo seleccionar un subconjunto de caracteŕısticas de

la entrada que contenga la información necesaria para una tarea dada. En escenarios cĺınicos, esto

reduciŕıa el número de caracteŕısticas, disminuiŕıa los costos de análisis y mejoraŕıa la interpretabil-

idad de los datos, reduciendo aśı la variabilidad en la toma de decisiones cĺınicas basadas en datos

de alta dimensión.

Para tareas de SC se propone una arquitectura de RN donde, basándose en el principio de IB, el

cuello de botella Z se encuentra en la primera capa de la RN. Es decir, la selección de subconjunto

de caracteŕısticas corresponde al cuello de botella del modelo. Para ello, la capa de selección de

caracteŕısticas, emplea la técnica de dropout, la cual puede ser formulada mediante la teoŕıa tasa-

distorsión. Como resultado, la tasa de dropout es un parámetro del modelo, que se ajusta durante

el entrenamiento utilizando un enfoque variacional.

Usando el enfoque basado en TI, se dedujo que la clasificación y la SC, en el método propuesto,

pueden tratarse como problemas independientes, lo que llevó a proponer un gestor del factor de

regularización para la dispersión de datos. Además, se destacó la inicialización óptima de la capa

de selección de caracteŕısticas, basada en dropout.

El método se evaluó utilizando un estudio de caso enfocado en identificar longitudes de onda

relevantes para diferenciar tejidos biológicos mediante una modalidad de imagen conocida como

hyperspectral imaging (HSI) o imagen hiperespectral. Los resultados fueron consistentes con los

hallazgos de la literatura, mostrando patrones en la selección de bandas que se fundamentan en

las propiedades espectrales conocidas de los distintos tejidos. Además, se comparó el método con

modelos encontrados en el estado del arte, logrando subconjuntos más pequeños, lo cual ayuda a

reducir el costo de análisis y mejora la interpretabilidad de los datos. La Fig. D.3 ilustra una
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Figure D.3: Selección de bandas en datos HSI mediante (a) LASSO y (b) el método propuesto en
esta tesis basada en DL.

comparación de la selección de bandas más relevantes usando el método más popular del estado del

arte, LASSO (Fig. D.3b), y el obtenido por el método propuesto en esta tesis (Fig. D.3a).

Los resultados fueron validados, además de con métricas de clasificación, mediante la comparación

con las longitudes de onda espećıficas propuestas en el estado del arte, como la elección de un rango

alrededor de 1200 nm para identificar tejido graso y muscular. Esto es relevante porque en el tejido

muscular no hay presencia de ĺıpidos, y los coeficientes de absorción del agua (abundante en el

músculo) y de los ĺıpidos son comparables. Otro ejemplo es la selección de la banda correspondiente

a 1084 nm por el método propuesto, ya que en la literatura se menciona que el colágeno del tejido

nervioso puede presentar ligeros picos de absorción alrededor de los 1100 nm.

Además de los resultados presentados, se ha llevado a cabo un análisis exhaustivo de los hiper-

parámetros asociados al método propuesto. Esto demuestra la simplicidad en la selección de hiper-

parámetros en comparación con otras implementaciones de SC basadas en AP, como, por ejemplo,

LassoNet.

D.4 Desmezclado Hiperespectral mediante Aprendizaje Pro-

fundo

A lo largo de este caṕıtulo se presenta un método de hyperspectral unmixing (HSU) o desmezclado

hiperespectral mediante un modelo de AP inspirado en métodos de contrastive learning (CL), apren-

dizaje contrastivo. Al igual que en la tarea de SC, el HSU es de especial interés para mejorar la

interpretabilidad de los datos, descomponiendo en las señales en un conjunto de ‘firmas puras’ (end-

members) y sus proporciones correspondientes. El método propuesto, titulado Contrastive Learning

for Blind Hyperspectral Unmixing (CLHU), presenta una innovadora madera para resolver los prob-

lemas de HSU mediante AP.

Aunque el método no sigue la estructura clásica de los métodos CL, el enfoque basado en TI

permite ilustrar cómo el método emplea un enfoque contrastivo. Adicionalmente, debido a la ar-

quitectura del modelo, sse identifican patrones teóricos que deben cumplirse para garantizar el

funcionamiento correcto del modelo. Como resultado, se plantean nuevas desigualdades que deben
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Figure D.4: Mapas de abundancia obtenidos mediante el método propuesto, CLHU, usando dos
escenarios, donde (a) la descomposición de la escena corresponde a un caso lineal con ruido blanco
aditivo y (b) la escena representa un caso multicapa no lineal. La entrada X corresponde a una
representación de la imagen hiperespectral a descomponer.

satisfacerse, partiendo de una interpretación basada en un sistema de transmisión de información de

múltiples canales, lo cual proporciona una mejor comprensión del mecanismo empleado para resolver

el problema. Finalmente, se concluye que la arquitectura propuesta podŕıa extenderse a tareas más

allá del HSU, como la clasificación con estimación de incertidumbre, donde el descriptor entrenable

describe las clases y la función de similitud cuantifica la incertidumbre del modelo.

Para la validación del modelo, se realizan diferentes experimentos que incluyen datos sintéticos,

datos reales utilizados en el estado del arte y datos orientados a aplicaciones médicas. Los resultados

obtenidos son prometedores y compiten con los métodos actuales en el estado del arte. No obstante,

dado que el método propuesto representa una nueva perspectiva para abordar las tareas de HSU,

los resultados obtenidos tienen margen de mejora.

Las Fig. D.4 y D.5 ilustran resultados obtenidos considerando un escenario donde (a) la descom-

posición es lineal con ruido blanco aditivo, y (b) la descomposición es no lineal. Con respecto a Fig.

D.4, esta muestra una representación de la imagen hiperespectral a descomponer, X, y los mapas

de abundancia obtenidos para los distintos componentes o firmas puras (endmembers) usando el

método propuesto. Finalmente, Fig. D.5 muestra la estimación de los endmembers mediante CLHU

y los obtenidos por otros métodos del estado del arte.

Al igual que en los caṕıtulos anteriores, se empleó un estimador de entroṕıa basado en kernels

para hacer una estimación del IP en tiempo de entrenamiento. Los resultados obtenidos garantizan

que las propiedades descritas mediante TI se cumplen cuando las condiciones son correctas. Por

ejemplo, si al realizar el HSU se indica un número erróneo de firmas puras, se observa que las

desigualdades establecidas no se satisfacen. De esta forma, se valida la interpretabilidad basada

en comunicación multicanal y se plantean posibles estrategias futuras para estimar el número de

endmembers presentes en la escena.
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Figure D.5: Estimación de las firmas puras, o endmembers, obtenidas mediante el método prop-
uesto, CLHU, y comparado con los obtenidos con algoritmos del estado del arte. Ambos resultados
corresponden a escenarios donde (a) la descomposición de la escena corresponde a un caso lineal con
ruido blanco aditivo y (b) la escena representa un caso multicapa no lineal. La Fig. D.4 muestra los
datos de entrada y la interpretación de las correspondientes firmas puras.

D.5 Detección de Anomaĺıas por Aprendizaje Profundo

En este caṕıtulo se aborda una tarea crucial en el análisis de conjuntos de datos: la detección de

anomaĺıas (DA). Se propone un método de DA basado en modelos de AP, denominado Anomaly

Detection in Latent Spaces using Entropy-based (ADeLEn), diseñado espećıficamente para los de-

saf́ıos de la imagen médica. El método adopta un enfoque semi-supervisado, teniendo en cuenta el

‘desaf́ıo de datos’ (es decir, la carencia de suficientes datos para entrenar modelos basados en AP),

que es común en contextos médicos. Fue evaluado con conjuntos de datos fuertemente desbalancea-

dos, considerando tanto el número de muestras anómalas como la ‘contaminación’ del conjunto de

datos, que se refiere a muestras anómalas no identificadas usadas durante el entrenamiento. En los

resultados experimentales, el método propuesto se comparó con el One-Class Support Vector Ma-

chine (OCSVM) del estado del arte y una RN supervisada. Los resultados revelaron que el método

propuesto es más versátil que el OCSVM y no sufre de sobreajuste, como sucede con el enfoque

supervisado de RN en conjuntos de datos desbalanceados.

El objetivo es extender enfoques estad́ısticos paramétricos a datos complejos. Dado que las

imágenes médicas suelen compartir patrones semejantes (por ejemplo, las imágenes del cerebro pre-

sentan caracteŕısticas comunes entre pacientes), se asume que la distribución de muestras normales

y anómalas sigue patrones similares. En el caso del cerebro, un cerebro con tumor (una muestra

anómala) seguiŕıa una distribución similar a la de un cerebro sano. Por lo tanto, se propone usar una

RN para obtener una compresión de los datos cuyas distribuciones sean más sencillas de modelar.

No obstante, obtener las distribuciones marginales, incluso de la representación comprimida

en el espacio latente, es generalmente intratable. Por esa razón, el método ADeLEn adopta un

enfoque generativo, empleando un Variational AE (VAE), para aplicar el enfoque estad́ıstico sobre

la distribución de los datos en el cuello de botella. De esta forma, se asume que la representación

comprimida de los datos normales y anómalos sigue una distribución normal, diferenciándose por la
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Figure D.6: Reconstrucciones obtenidas por ADeLEn partiendo de un cuello de botella representado
por una distribución de dos variables. Los resultados corresponden a dos experimentos distintos, (a)
usando un subconjunto de MNIST donde el ‘1’ representa muestras normales y ‘7’ anomalies (siendo
estas últimas un subconjunto más pequeño) y (b) usando un dataset de detección de neumońıa que
presenta las mismas condiciones.

desviación estándar de ambas distribuciones, pero teniendo misma media:

Z+ ∼ N (0;σ+I),

Z− ∼ N (0;σ−I),

s.t. σ− > σ+,

(D.3)

donde Z+ representa la representación comprimida de las muestras normales y Z− la representación

de las muestras anómalas. La detección de anomaĺıas consiste en aplicar un umbral del valor de la

entroṕıa, el cual en este caso es directamente proporcional al valor de σ.

Como se explicó anteriormente, el algoritmo fue diseñado espećıficamente para imágenes médicas,

que comparten una gran cantidad de patrones entre muestras normales y anómalas, y en las que el

número de muestras suele estar desbalanceado. Se realizaron diversos experimentos para demostrar

la robustez del método frente a la contaminación del dataset, asumiendo que este contiene muestras

anómalas no identificadas, y se evaluó cómo actúa ante anomaĺıas con patrones distintos a los obser-

vados por el modelo. Finalmente, se comprobó que el método es más robusto frente al sobreajuste

que un simple modelo entrenado de forma supervisada.

La Fig. D.6 presenta un ilustrativo ejemplo de los resultados obtenidos para dos casos espećıficos.

La Fig. D.6a muestra un experimento usando el dataset MNIST, en el que las muestras de ‘1’ repre-

sentan normales y las de ‘7’ representan anomaĺıas, siendo el número de muestras anómalas consid-

erablemente inferior al de muestras normales. En el caso de la Fig. D.6b emplea un dataset para la

detección de neumońıa bajo condiciones similares. Aunque la Fig. D.6a facilita una interpretación

más clara, en ambas figuras se observa cómo el modelo reconstruye muestras más ‘anómalas’ al tener

un valor de σ mayor.
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Finalmente, se emplea la TI para dar una mayor intuición sobre el mecanismo usado en el método

propuesto para la DA. En este caso, el enfoque variacional en el modelo generativo aplica una fuerte

restricción sobre la información en el cuello de botella Z, estableciendo un ĺımite superior definido

por los parámetros variacionales ϕ, asegurando que la distribución de los datos reales en el cuello

de botella no contenga más información que la distribución variacional. Además, el problema fue

reformulado utilizando el principio de InfoMax, en el que el cuello de botella está diseñado para

maximizar la divergencia entre las distribuciones de muestras normales y anómalas, proponiendo

una inicialización óptima de los parámetros variacionales para el método ADeLEn.

D.6 Conclusiones

A lo largo de esta tesis, se han propuesto y evaluado varias arquitecturas de modelos basados en

AP en relación con tareas espećıficas. Sin embargo, el objetivo de este trabajo no es superar los

resultados del estado del arte, sino explorar y desarrollar soluciones más interpretables utilizando

AP. Para efectos comparativos, los métodos propuestos se han evaluado frente a varios algoritmos

novedosos para asegurar que los modelos produzcan resultados competitivos. Además, se han abor-

dado conceptos clave en un contexto más amplio, con el propósito de proporcionar una intuición

general sobre los problemas estudiados y los mecanismos necesarios para abordarlos.

Esta tesis busca enfatizar la importancia de trabajar hacia modelos más interpretables. No

pretende criticar el uso de una ‘caja negra’ para resolver problemas, ya que existen escenarios

cŕıticos en los que, debido a la complejidad de los problemas, es necesario utilizar una ‘caja negra’,

pues ciertos problemas no se pueden abordar con otros métodos. Sin embargo, el valor de este

trabajo radica en cambiar el enfoque desde la suposición de que solo se pueden lograr predicciones

precisas aumentando el número de parámetros en la ‘función universal’ de la red neuronal, hacia la

exploración de arquitecturas alternativas que equilibren precisión e interpretabilidad.

Aunque soy consciente de que la interpretabilidad presentada en esta tesis sigue una perspectiva

basada en un enfoque orientado a la ingenieŕıa, es importante entender que la interpretabilidad es

un concepto espećıfico del dominio, y las interpretaciones que funcionan en un contexto pueden

no ser aplicables en otro. No obstante, a lo largo de esta tesis, la TI se presenta como un marco

fundamental para lograr una interpretabilidad de propósito general que pueda usarse en cualquier

contexto. Al conceptualizar los modelos como sistemas que procesan y transmiten información,

podemos desviar nuestro enfoque de la estructura detallada de los datos o de las explicaciones de

caracteŕısticas en diversas capas ocultas. En su lugar, la preocupación principal se centra en la

cantidad de información capturada y transmitida a través de las representaciones de caracteŕısticas

del modelo.
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[229] Isabelle Guyon and André Elisseeff. “An introduction to variable and feature selection”. In:

Journal of machine learning research 3.Mar (2003), pp. 1157–1182.

[230] Michael E Tipping and Christopher M Bishop. “Mixtures of probabilistic principal component

analyzers”. In: Neural computation 11.2 (1999), pp. 443–482.

[231] Visar Berisha et al. “Digital medicine and the curse of dimensionality”. In: NPJ digital

medicine 4.1 (2021), p. 153.

[232] Beatriz Remeseiro and Veronica Bolon-Canedo. “A review of feature selection methods in

medical applications”. In: Computers in biology and medicine 112 (2019), p. 103375.

[233] Early Treatment for Retinopathy of Prematurity Cooperative Group et al. “Revised indi-

cations for the treatment of retinopathy of prematurity: results of the early treatment for

retinopathy of prematurity randomized trial”. In: Archives of Ophthalmology (Chicago, Ill.:

1960) 121.12 (2003), pp. 1684–1694.

[234] Verónica Bolón-Canedo et al. “Dealing with inter-expert variability in retinopathy of prema-

turity: a machine learning approach”. In: Computer methods and programs in biomedicine

122.1 (2015), pp. 1–15.

[235] Kenneth E Hild et al. “Feature extraction using information-theoretic learning”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 28.9 (2006), pp. 1385–1392.

[236] Ryan J Urbanowicz et al. “Relief-based feature selection: Introduction and review”. In: Jour-

nal of biomedical informatics 85 (2018), pp. 189–203.

[237] Mario Beraha et al. “Feature selection via mutual information: New theoretical insights”. In:

2019 international joint conference on neural networks (IJCNN). IEEE. 2019, pp. 1–9.

[238] Isabelle Guyon et al. “Gene selection for cancer classification using support vector machines”.

In: Machine learning 46 (2002), pp. 389–422.

[239] John H Holland. Adaptation in natural and artificial systems: an introductory analysis with

applications to biology, control, and artificial intelligence. MIT press, 1992.

[240] Aleem Akhtar. “Evolution of Ant Colony Optimization Algorithm–A Brief Literature Re-

view”. In: arXiv preprint arXiv:1908.08007 (2019).

[241] Robert Tibshirani. “Regression shrinkage and selection via the lasso”. In: Journal of the Royal

Statistical Society Series B: Statistical Methodology 58.1 (1996), pp. 267–288.

[242] Fadil Santosa and William W Symes. “Linear inversion of band-limited reflection seismo-

grams”. In: SIAM journal on scientific and statistical computing 7.4 (1986), pp. 1307–1330.



BIBLIOGRAPHY 253

[243] Hanchuan Peng, Fuhui Long, and Chris Ding. “Feature selection based on mutual information

criteria of max-dependency, max-relevance, and min-redundancy”. In: IEEE Transactions on

pattern analysis and machine intelligence 27.8 (2005), pp. 1226–1238.

[244] Makoto Yamada et al. “High-dimensional feature selection by feature-wise kernelized lasso”.

In: Neural computation 26.1 (2014), pp. 185–207.

[245] Jean Feng and Noah Simon. “Sparse-input neural networks for high-dimensional nonpara-

metric regression and classification”. In: arXiv preprint arXiv:1711.07592 (2017).

[246] Ismael Lemhadri et al. “Lassonet: A neural network with feature sparsity”. In: The Journal

of Machine Learning Research 22.1 (2021), pp. 5633–5661.

[247] Balas Kausik Natarajan. “Sparse approximate solutions to linear systems”. In: SIAM journal

on computing 24.2 (1995), pp. 227–234.

[248] Christos Louizos, Max Welling, and Diederik P Kingma. “Learning sparse neural networks

through L 0 regularization”. In: arXiv preprint arXiv:1712.01312 (2017).

[249] Chun-Hao Chang, Ladislav Rampasek, and Anna Goldenberg. “Dropout feature ranking for

deep learning models”. In: arXiv preprint arXiv:1712.08645 (2017).

[250] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. “The concrete distribution: A continuous

relaxation of discrete random variables”. In: arXiv preprint arXiv:1611.00712 (2016).

[251] Yarin Gal, Jiri Hron, and Alex Kendall. “Concrete dropout”. In: Advances in neural infor-

mation processing systems 30 (2017).

[252] Gertraud Malsiner-Walli and Helga Wagner. “Comparing spike and slab priors for Bayesian

variable selection”. In: arXiv preprint arXiv:1812.07259 (2018).

[253] Yutaro Yamada et al. “Feature selection using stochastic gates”. In: International Conference

on Machine Learning. PMLR. 2020, pp. 10648–10659.

[254] Durk P Kingma, Tim Salimans, and Max Welling. “Variational dropout and the local repa-

rameterization trick”. In: Advances in neural information processing systems 28 (2015).
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