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Marta Sampalo *, May Gómez , Rodrigo Almeda *

EOMAR, ECOAQUA, University of Las Palmas of Gran Canaria (ULPGC), Spain

A R T I C L E  I N F O

Edited by Dr Hyo-Bang Moon

Keywords:
Tire particles
Leachates
Phytoplankton
Toxicity
Microplankton community

A B S T R A C T

Tire wear particles (TWP) are a major source of microplastics in the environment. Despite their prevalence, the 
effects of tire particle leachates on marine microplankton communities remains poorly understood. In this study, 
we assessed the acute impacts of tire particle leachates on the structure of coastal microplankton assemblages 
from the Canary Islands. Five laboratory experiments were conducted, exposing microplankton to a range of 
leachate dilutions over 72 h, with TWP leachates prepared from an initial concentration of 1 g L⁻¹ .Our results 
revealed that the abundances of diatoms, most dinoflagellates, and ciliates were significantly reduced following 
exposure to leachates, with median effective concentrations (EC50) ranging from 30 to 660 mg L− 1 depending on 
the plankton community. Interestingly, Ostreopsis cf. ovata, a harmful algal bloom (HAB)-forming species, 
exhibited relatively high tolerance to tire particle leachates compared to other microplankton. Compared to 
other marine biota, ciliates appear to be most vulnerable plankton group to tire particle leachates (EC50 = 30 and 
146 mg L− 1). The higher tolerance of O. cf. ovata to pollution compared to other phytoplankton species (resource 
competitors), in combination with other factors, may contribute to the rise of HABs in polluted coastal areas. 
Although field data on TWP are limited, the observed negative effects on microplankton occurred at environ
mentally relevant concentrations. Our results indicate that TWP pollution can significantly impact marine 
planktonic communities, highlighting the urgent need to reduce TWP emissions and develop less toxic tire rubber 
additives.

1. Introduction

Traffic-related emissions are a significant environmental and public 
health issue (Bai et al., 2022). Besides air pollution, an estimated six 
million tons of tire wear particles (TWP) are produced annually due to 
the friction between tire treads and road surfaces (Kole et al., 2017). 
Although TWPs have been identified as pollutants since the 1970s, these 
particles are now recognized as a major source of microplastic pollution 
(Sundt et al., 2014; Baensch-Baltruschat et al., 2021; Zhang et al., 2023). 
Our understanding of the environmental fate and impact of tire particles 
on marine ecosystems remains limited, especially when compared to 
conventional petroleum-based microplastics, which have garnered sig
nificant attention over the past few decades (Agamuthu et al., 2019; 
Avio et al., 2017; Delaeter et al., 2022; Mennekes and Nowack, 2022).

Tire wear particles (TWP) consist of synthetic rubber (such as 
petroleum-based butadiene rubber and styrene-butadiene rubber), nat
ural rubber (polyisoprene), and chemical additives. Due to their small 
size, ranging from 10 nm to 1000 μm, typically less than 250 μm 

(Baensch-Baltruschat et al., 2021; Kreider et al., 2010), TWPs are easily 
transported into aquatic environments through surface runoff, storm
water, drainage systems, wastewater effluent, and atmospheric deposi
tion (Parker-Jurd et al., 2021). Once in these systems, TWPs release a 
complex mixture of chemicals, referred to as leachates. Recent studies 
have shown that tire particle leachates contain dozens of potentially 
toxic substances, including benzothiazoles, polycyclic aromatic hydro
carbons (PAHs), flame retardants, antioxidants, and heavy metals 
(Capolupo et al., 2020; Müller et al., 2022; Page et al., 2022; Le 
Du-Carrée, 2024). Given the substantial contribution of TWPs to 
microplastic pollution (Boucher and Friot, 2017) and their high levels of 
toxic leachable additives, assessing their potential impacts on aquatic 
ecosystems is essential to evaluate the risk associated to these 
traffic-derived emissions.

Marine plankton plays a major role in most of the ecological pro
cesses (Valiela, 2015). Within this diverse group, its photoautotrophic 
component, known as marine phytoplankton, is particularly remark
able, providing more than 50 % of the oxygen in the Earth’s atmosphere. 
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Furthermore, phytoplankton play a key role in fixing dissolved inorganic 
carbon to produce organic matter (Fenchel, 1988; Field et al., 1998) and 
serve as the main prey for many marine organisms. Among phyto
plankton, diatoms and dinoflagellates are the dominant groups of 
microplankton (20 – 200 µm) (Sieburth et al., 1978). Ciliates are also an 
important group of microplankton, and together with heterotrophic 
dinoflagellates, are major grazers of phytoplankton (Calbet, 2008). A 
recent study (Page et al., 2022) indicates that tire particle leachates are 
acutely toxic to three species of cultured phytoplankton. However, to 
our knowledge, there are no ecotoxicological studies on the effects of 
tire particle leachates on marine microplankton communities. The im
pacts of TWP pollution on key microplankton groups could lead to 
reduced primary production and the disruption of marine food webs, 
necessitating further attention.

This study aimed to determine the acute toxicity of tire particle 
leachates on field-collected marine microplankton assemblages. Spe
cifically, we investigated how exposure to different concentrations of 
tire particle leachates affects the abundance and composition of 
microplankton assemblages collected from coastal waters of Gran 
Canaria (Canary Islands, Spain). We hypothesize that exposure to 
leachates from tire particles negatively affects the growth of marine 
microplankton, and their effects can vary depending on the community 
composition. Our results provide the first data on the toxicity of tire 
rubber leachates on natural microplankton assemblages, offering valu
able insights into the potential risk of TWP pollution on marine food 
webs.

2. Methodology

2.1. Collection of microplankton samples

The plankton samples were collected from coastal waters of Gran 
Canaria Island using a microplankton net with a mesh size of 20 µm. The 
samples were obtained from surface waters through multiple horizontal 
and vertical tows and collected from different sites on different dates 
(Table 1). For all cases, the water temperature and salinity during the 
collection were 20.3 ± 0.8 ºC and 36 ± 0.3 ‰., respectively. After 
collection, the samples were gently transferred into plastic containers 
and kept in a cool box until returning to the laboratory (< 2 h). While 
most samples were collected from the beach, samples from Station 3 
were collected from offshore using a boat. In the laboratory, the samples 
were placed in glass beakers and maintained in a temperature-controlled 
room at 20ºC with cool-white, fluorescent lighting (80 μmol⋅m− 2 s− 1) 
and continuous aeration until starting the experiment (< 6 h from 
collection).

2.2. Leachate preparation

The tire particles were obtained from an unused car tire tread (Im
perial 145/70–13 71T-Snowdragon) and micronized as described in 

Page et al. (2022). Tire particle leachates were prepared with autoclaved 
filtered seawater (A-FSW, salinity = 35 ± 2 ‰) using the procedure 
outlined by Almeda et al. (2023). The used seawater was collected 
nearshore (27º59’27’’ N, 15º22’01’’ W), filtered by 5 μm, UV sterilized 
and stored in a 7-meter-deep well at the Spanish Bank of Algae in Gran 
Canaria. Prior to leachate preparation, the seawater was triple-filtered 
using an activated carbon coconut shell filter (5 μm), PP melt-blown 
filter (1 μm) and PES membrane filter (0.1 μm) filter, and then auto
claved (1 atm, 120ºC, 20 min). A 1 g L− 1 suspension of tire particles in 
A-FSW was prepared in a glass bottle filled and air-free closed with a 
polytetrafluoroethylene (PTFE) protected sea scree cap. This bottle was 
placed on a roller (15 rpm) in an incubator at 20◦C in darkness for 
72 hours. After the lixiviation time, the suspension was filtered over a 
pre-combusted (450ºC for 5 h) glass fiber filter (GF/F grade, 0.7 µm) 
with a vacuum pump system to remove the tire particles, resulting in a 
“stock leachate solution” (i.e., 100 % leachates). pH measurements of 
the leachate stock and A-FSW were taken in triplicate to ensure con
sistency; the pH of the leachates was 8.20 ± 0.02, similar to A-FSW 
(8.22 ± 0.01), so no pH adjustment was necessary. Leachates were 
generally used immediately after filtration, except for the third experi
ment, where the stock solution was stored at − 20 ºC until use. The 
analysis of specific organic compounds and metals in the leachates was 
carried out according to the methods described by Rist et al. (2023). The 
concentrations of the detected PAHs, flame retardants, and metals are 
detailed in Rist et al. (2023) and are also available in Supplementary 
Information Table S1.

2.3. Experimental setup and design

To initiate the bioassays, a microplankton community concentrate 
was prepared from the collected net samples. The samples were first 
filtered through a 100 μm mesh sieve to remove mesozooplankton. The 
remaining fraction (< 100 μm) was then concentrated using a 20 μm 
mesh-sieve and transferred to a glass beaker containing approximately 
100 mL of A-FSW. The filtration was conducted gently, and the samples 
were kept submerged in A-FSW to prevent cell damage. Cell healthy 
appearance was checked in Sedgwick rafter counting chambers (1 mL) 
under an inverted microscope before starting each bioassay.

Each experiment involved exposing the microplankton assemblages 
to five different leachate dilutions in A-FSW (93 %, 50 %, 25 %, 12.5 %, 
and 6.25 %) and a negative control (only A-FSW) for 72 hours. The 
exposure leachate concentrations correspond to equivalent particle 
concentration of 0.93, 0.5, 0.25, 0.125, and 0.0625 g L− 1. Exposures 
were conducted in triplicate 34 mL glass bottles. An aliquot of the 
microplankton concentrate (2.5 mL) was added to each experimental 
bottle, followed by the appropriate volumes of A-FSW and stock leachate 
(100 %) to achieve the desired dilutions. Each bottle received 37.4 μL of 
B1 medium (Hansen, 1989) at a concentration of 1.1 mL L⁻¹ to ensure 
nutrient availability during the exposure. Three additional bottles were 
prepared similarly than the experimental bottles, their content was fixed 
with 1 % of Lugol’s solution and used as “initials” to determine the 
initial concentration and composition of cells in each experiment as 
described above for the other samples (S.I. Table S2). The experimental 
bottles were closed with a PTFE-protected seal cap without headspace 
and placed on rollers at 15 rpm, 20ºC, and a 12:12 h day: night cycle 
using LED lights at an intensity of 72 μmol⋅m− 2 s− 1.

2.4. Sample analyses

After the exposure, samples were fixed with 1 % of Lugol’s solution 
and stored at 4 ºC in darkness. Microplankton abundance and compo
sition were analysed using Uthermol (10–100 mL) or Sedgwick-Rafter 
(1 mL) counting chambers under a Leica DMi1 inverted microscope (x 
200). The samples were mixed by hand rotation of the bottles (10 times) 
before being transferred to the counting chambers. Settling time was 
12 hours (overnight) for Uthermol chambers and 5 min for Sedgwick 

Table 1 
Information on the sampling locations in the island of Gran Canaria where the 
microplankton samples were collected.

Sampling- 
Experiment #

Location Date Longitude Latitude

E1 Tufia beach 09/05/ 
22

15º23’45.9’’W 27º51’22.2’’N

E2 Arinaga 
beach

02/06/ 
22

15º22’46’’ W 27º57’44’’N

E3 South coast 27/10/ 
22

15º65’59.34’’ W 27º70’12.48’’N

E4 Arinaga 
beach

28/02/ 
23

15º22’46’’ W 27º57’44’’N

E5 Arinaga 
beach

10/04/ 
23

15º22’46’’ W 27º57’44’’N
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rafter counting chambers. For counting and composition analyses, or
ganisms were classified into 4 major categories: dinoflagellates, di
atoms, ciliates and micrometazoans. For the category “ciliates” we 
distinguished between oligotrichs and tintinnids. Additionally, the 
dominant species/genus were counted separately and identified 
following the identification guides of Hallegraeff et al. (2003) and Ojeda 

Rodríguez (2011). Microscope images of representative species in each 
experiment were taken (Flexacam C1).

2.5. Data analyses/ statistics

Data were tested for normality and homogeneity of variances using 

Fig. 1. A: Microscope images of representative species from the microplankton assemblage in E1 (Table 1), displayed from left to right and top to bottom: 
C. decipiens, C. lorencianus, C. curvisetus, Lauderia sp., Proboscia alata, and Pseudo-nitzschia spp. Abundance of total diatoms (B), Chaetoceros spp. (C), total di
noflagellates (D) and total ciliates (E) after 72 h of exposure to the various leachate dilutions. The solid lines represent the fitted curves based on Eq. 1., with the 
dotted lines showing the 95 % confidence bands. The estimated model parameters are presented in Table 2. The stars denote statistically significant differences in cell 
concentration compared to the control (p < 0.05).
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the Shapiro-Wilks and Levene Tests, respectively. Parametric data were 
analysed using one-way ANOVA followed by Dunnett’s post hoc test to 
identify significant differences between control and treatment groups 
(p < 0.05). Non-parametric Kruskal-Wallis tests with pairwise compar
isons were applied when data did not meet parametric test assumptions 
(p < 0.05). Based on the pairwise comparison results, we obtained the 
“Lowest Observed Effect Concentration (LOEC)” as the lowest leachate 
dilution that cause an effect significantly different than the control. Data 
analyses were performed using IBM SPSS Statistics 21.

Graphing was done with Sigmaplot software. Cell concentration data 
after 72 hours of exposure to the different leachate dilutions were fitted 
to a logistic sigmoid model (Eq. 1), where C is the cell concentration 
(cells mL− 1), C0 is the cell concentration in the absence of leachates 
(cells mL− 1), D is the leachate dilution (%), ED50 is the median effective 
dilution (i.e., the leachate dilution required to reduce the cell population 
by half compared to cell concentration in the absence of leachates, C0), 
and b is the slope. 

C= C0 / (1 + (D/ ED50)) b                                                              (1)

The EC50 (g L− 1) was estimated from the ED50 (%) considering the 
concentration of particles in stock solution (100 % = 1 g L− 1).

The specific growth rate (SGR, d− 1) was calculated: 

SGR= ln (Cf/Ci) / t                                                                        (2)

where Cf and Ci are, respectively, the final and the initial averaged 
cell concentrations of each treatment, and t is the incubation time 
(days).

3. Results

In the first experiment (E1), representative species of the micro
plankton assemblages were diatoms of the genus Chaetoceros 
(C. decipiens, C. lorencianus, C. curvisetus), Lauderia spp., Proboscia alata, 
and Pseudo-nitzschia spp (Fig. 1A) and different species of dinoflagellates 
(Prorocentrum spp) at lower concentrations. Exposure to tire particle 
leachates caused a notable decrease in cell concentration for total di
atoms, Chaetoceros spp., and total dinoflagellates (Fig. 1B-D). Significant 
differences between the control and leachate dilutions were observed at 
concentrations higher than 12.5 % for total diatoms (Fig. 1B) and 
Chaetoceros spp. (Fig. 1C). Dinoflagellates showed a significant reduction 
in cell concentration compared to the control in all leachate dilutions, 
with a LOEC of 0.06 g L− 1 (Fig. 1D, Table 2). The sigmoidal model 
relating cell concentration to leachate dilutions fits well across all 
groups (R2 = 0.88–0.98, Table 3). The estimated EC50 values for total 
diatoms, Chaetoceros spp., and total dinoflagellates were 0.20, 0.21 and 

0.10 g L− 1, respectively (Table 2). Micrometazoans (mostly copepod 
nauplii) were observed at very low concentrations in some dilutions and 
no clear trend in their abundance relative to leachate concentrations was 
detected (S.I., Table 2).

In the second experiment, conducted with the sample collected in 
Arinaga in June 2022 (E2, Table 1), we observed that the community 
was dominated by the HAB-forming dinoflagellate Ostreopsis cf. ovata, 
alongside other dinoflagellates and diatoms such as C. pentagonum, 
Amphora spp., Actinocyclus octonarius, Guinardia striata, and Licmophora 
spp. (Fig. 2A). The abundance of Ostreopsis was slightly affected by the 
exposure to tire particles (Fig. 2D), whereas cell concentrations of di
atoms and other dinoflagellates showed a sharp decline (Fig. 2B, C). The 
sigmoidal model showed a strong fit for both diatoms (r² = 0.90, 
Table 2) and dinoflagellates (r² = 0.91, Table 3), but not for O. cf. ovata. 
The estimated EC50 values for diatoms and dinoflagellates were nearly 
identical, at 0.2 g L⁻¹ (Table 2). Micrometazoans (e.g., copepod nauplii, 
meroplankton) were observed at low concentrations and their abun
dance decreased with increasing leachate concentration (S.I., Table S4).

In the third experiment (E3), conducted with a sample collected 
offshore to the south of Gran Canaria (Table 1), the microplankton 
community was dominated by various species of diatoms (Grammato
phora spp. and Cylindrotheca spp.; Fig. 3A), small dinoflagellates (Gym
nodinium spp., Scrippsiella spp, Prorocentrum spp.; Fig. 3A) and ciliates (e. 
g., tintinnid Ascampbelliella; Fig. 3A). All studied groups exhibited a 
decline in cell concentration with increasing leachate concentration 
(Fig. 3B-D). The LOEC for diatoms, dinoflagellates, and ciliates was 
0.062 g L− 1. The sigmoidal model fits the data well (R2 = 0.90–0.98), 
with estimated EC50 values of 0.05 for diatoms, 0.08 for dinoflagellates, 
and 0.03 g L− 1 for ciliates (Table 2).

In the fourth experiment (E4), which involved the sampling at the 
Arinaga station in February 2023 (Table 1), only the dominant species 
Ostreopsis cf. ovata was analyzed (Fig. 4A). the cell concentration 
decreased with increasing leachate concentration (Fig. 4B), but the 
reduction was lower compared to the other species (Fig. 4). The LOEC 
for Ostreopsis cf. ovata in E4 was 0.5 g L⁻¹ and the estimated EC50 value 
was 0.66 L⁻¹ (Table 2). In the fifth experiment (E5), conducted with a 
sample from Arinaga in April 2023 (Table 1), the community included as 
dominant species the dinoflallegllate O. cf. ovata and the diatoms Pleu
rosigma elongatum, Actinocyclus octonarius, Licmophora spp., Trachyneis 
spp., and Cylindrotheca spp (Fig. 4A). All groups were negatively affected 
by leachate exposure but the decline in cell concentration was more 
pronounced for total diatoms and other dinoflagellates (Fig. 4C, D) than 
for O. cf. ovata (Fig. 4E). LOEC values were 0.13, 0.06 and 0.5 g L− 1 for 
total diatoms, other dinoflagellates, and Ostreopsis, respectively. The 
sigmoidal model fits the data well (R2 = 0.86–0.96), with estimated EC50 

Table 2 
The lowest observed effect concentration (LOEC) across the tested concentrations (g L− 1) and the parameters obtained from logistic sigmoid model (Eq. 1) used to 
describe the relationships between cell concentrations (cells mL− 1) and tire particle dilutions (%) after 72 h of exposure. #: experiment number as indicated in Table 1, 
C0: cell concentration (cells mL− 1) in the absence of leachates; b: slope; ED50: median effect dilution (%); SE: standard error; r2: coefficient of determination; t and p are, 
respectively, the t-statistic and significance values for the estimated ED50 (%); EC50: estimated median effect concentration (g L− 1).

# Microplankton group/species LOEC 
(g L− 1)

NOEC 
(g L− 1)

C0 ± SE b ± SE ED50 ± SE r2 t p EC50 ± SE 
(g L− 1)

E1 Total Diatoms 0.125 0.063 18507 ± 710 1.7 ± 0.2 20 ± 2 0.97 11.2 < 0.0001 0.20 ± 0.02
Chaetoceros spp. 0.125 0.063 8835 ± 285 1.8 ± 0.2 19 ± 1 0.98 14.0 < 0.0001 0.21 ± 0.01
Total Dinoflagellates 0.063 < 0.063 13 ± 1 1.1 ± 0.3 6.7 ± 1.7 0.88 3.9 0.0015 0.10 ± 0.02
Total Ciliates 0.250 0.125 0.3 ± 0.04 1.8 ± 0.7 14.6 ± 4.2 0.72 3.5 0.0035 0.15 ± 0.04

E2 Total diatoms 0.125 0.063 77 ± 4 0.8 ± 0.1 24 ± 5 0.90 5.3 < 0.0001 0.23 ± 0.05
Other dinoflagellates 0.125 0.063 5.9 ± 0.3 1.1 ± 0.2 15 ± 3 0.91 5.6 < 0.0001 0.20 ± 0.03
O. cf. ovata 0.063 < 0.063 50 % reduction no observed (EC50 >1 g L− 1)

E3 Total diatoms 0.063 < 0.063 30 ± 2 0.7 ± 0.1 4.7 ± 1.5 0.93 3.2 0.0066 0.05 ± 0.02
Total dinoflagellates 0.063 < 0.063 61 ± 2 0.8 ± 0.1 7.9 ± 1.0 0.98 7.9 < 0.0001 0.08 ± 0.01
Total ciliates 0.063 < 0.063 2.8 ± 0.2 0.6 ± 0.2 3.0 ± 1.7 0.90 1.8 0.0978 0.03 ± 0.02

E4 O. cf. ovata 0.500 0.250 25 ± 1 0.9 ± 0.2 65 ± 12 0.87 5.6 < 0.0001 0.70 ± 0.1
E5 O. cf. ovata 0.500 0.250 66 ± 2 2.9 ± 0.6 69 ± 5.8 0.88 11.8 < 0.0001 0.66 ± 0.06

Total diatoms 0.125 0.063 90 ± 3 1.2 ± 0.1 39 ± 4 0.96 9.7 < 0.0001 0.38 ± 0.04
Other dinoflagellates 0.063 < 0.063 11 ± 1 0.8 ± 0.2 12 ± 3 0.86 3.6 0.0027 0.12 ± 0.03
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values of 0.38 g L⁻¹ for total diatoms, 0.12 g L⁻¹ for other di
noflagellates, and 0.66 g L⁻¹ for Ostreopsis cf. ovata (Table 2).

Overall, growth rates for all studied microplankton groups were 
diminished relative to controls and declined with higher leachate con
centrations, with varying degrees of sensitivity across different taxo
nomic groups (Fig. 5), supporting and validating our main hypothesis.

4. Discussion

4.1. Sensitivity of phytoplankton and other microplankton to tire particle 
leachates

Previous research on tire particle leachates’ effects on marine 
phytoplankton is limited and primarily focused on a few cultured species 
(Capolupo et al., 2020; Page et al., 2022). Page et al. (2022) employed 
the same tire particles and leaching protocol as in this study to assess 
toxicity in monocultures of the flagellate Rhodomonas salina, the dino
flagellate Heterocapsa steinii, and the diatom Thalassiosira weissflogii, 
reporting EC50 (72 h) values of 0.64, 0.23, and 0.73 g L− 1, respectively. 
In comparison, our study generally found lower EC50 values for 
field-collected phytoplankton (EC50 = 0.05 – 0.38 g L− 1 for diatoms; 
EC50= 0.08 – 0.20 g L− 1 for “total/other dinoflagellates”, Table 2), 
except for O. cf. ovata, which exhibited higher tolerance to leachates, 
with an EC50 value of 0.66 g L⁻¹ (E4, E5) or showing no significant effect 
(E2, EC50 >1 g/L, Table 2). Capolupo et al. (2020) reported an EC50 of 
19.0 % (equivalent to 15.2 g L− 1) for Skeletonema costatum using a 
different methodology with a higher solid-to-liquid ratio (80 g L⁻¹), a 
value much higher than those observed in our study for diatoms (0.05 – 
0.38 g L⁻¹; Table 3). The differences between our results and theirs likely 
stem from methodological variations, particularly the solid-to-liquid 
ratio. Our findings show that the sensitivity (EC50) to tire particle 

leachates within diatoms and dinoflagellates can vary up to one of 
magnitude depending on the species/community (Table 2) and that, 
generally field-collected phytoplankton species appear more vulnerable 
to tire particle leachates compared to

cultured species used in laboratory studies (Table 3). To our 
knowledge, no prior research has investigated the toxicity of tire particle 
leachates on marine ciliates. Our results revealed that ciliates appear to 
be the most sensitive microplankton group to these leachates, aligning 
with previous studies that have demonstrated their high vulnerability to 
pollution (Almeda et al., 2014, 2018). When compared to studies on 
planktonic metazoans, our data indicate that eukaryotic microplankton 
is generally more sensitive to tire leachates than copepods and mer
oplankton, except for O. cf. ovata (Tables 2 and 3).

4.2. Comparison of the toxicity of tire particle leachates with other plastic 
leachates

Growing evidence suggests that tire wear particles are more toxic to 
marine plankton than most conventional microplastics. For example, 
Capolupo et al. (2020) found that leachates from tire particles and 
polypropylene (PP) were the most toxic to the marine diatom Skel
etonema costatum, with EC50 values of 15.2 g L⁻¹ and 14.4 g L⁻¹ , 
respectively. In contrast, leachates from polyvinyl chloride (PVC) were 
less toxic (EC50 = 28 g L⁻¹), while polystyrene (PS) and polyethylene 
terephthalate (PET) showed either much lower toxicity (EC50 > 80 g L⁻¹ 
for PS) or no effect in the case of PET. Similarly, Chae et al. (2020) tested 
expanded polystyrene (EPS) leachates on four species of micro
phytoplankton, finding no significant damage to photosynthesis and, in 
some cases, even enhanced growth compared to the controls. Schiavo 
et al. (2021) reported moderate toxicity from PP, PS, and polyethylene 
(PE) pellets, with PP being the most toxic (EC50 = 8.5 g L⁻¹), followed by 

Table 3 
Summary of toxicity of tire particle leachates on marine plankton from previous studies.

Ecological Group Species Leachate conc. 
(g L− 1)

Incubation time (h) EC50/LC50 (g L− 1) Ref.

Phytoplankton Skeletonema costatum 80 72 15.2 ± 0.96 (EC50) (Capolupo et al., 2020)
Rhodomonas salina 1 24 0.39 (EC50) (Page et al., 2022)
Rhodomonas salina 1 48 0.55 (EC50) (Page et al., 2022)
Rhodomonas salina 1 72 0.64 (EC50) (Page et al., 2022)
Thalassiosira weissflogii 1 24 0.60 (EC50) (Page et al., 2022)
Thalassiosira weissflogii 1 48 0.65 (EC50) (Page et al., 2022)
Thalassiosira weissflogii 1 72 0.73 (EC50) (Page et al., 2022)
Heterocapsa steinii 1 24 0.11 (EC50) (Page et al., 2022)
Heterocapsa steinii 1 48 0.11 (EC50) (Page et al., 2022)
Heterocapsa steinii 1 72 0.23 (EC50) (Page et al., 2022)

Zooplankton 
(copepods)

Acartia longiremis 5–35 48 < 5 (LC50) (Halsband et al., 2020)
Calanus sp. 5–35 48 35 (LC50) (Halsband et al., 2020)
Tigriopus japonicus 10 96 5.34 (LC50) (Yang et al., 2022)
Acartia tonsa 5 24 1.85 ± 0.17 (LC50) (Bournaka et al., 2023)
Acartia tonsa 5 48 0.54 ± 0.07 (LC50) (Bournaka et al., 2023)
Acartia tonsa 5 72 0.22 ± 0.06 (LC50) (Bournaka et al., 2023)
Temora longicornis 5 24 4.43 ± 4.6 (LC50) (Bournaka et al., 2023)
Temora longicornis 5 48 0.68 ± 0.09 (LC50) (Bournaka et al., 2023)
Temora longicornis 5 72 3.80 ± 0.07 (LC50) (Bournaka et al., 2023)
Centropages hamatus 5 24 3.00 ± 0.18 (LC50) (Bournaka et al., 2023)
Centropages hamatus 5 48 2.06 ± 0.22 (LC50) (Bournaka et al., 2023)
Centropages hamatus 5 72 1.18 ± 0.24 (LC50) (Bournaka et al., 2023)
Oithona davisae 5 24 3.03 ± 0.09 (LC50) (Bournaka et al., 2023)
Oithona davisae 5 48 1.79 ± 0.07 (LC50) (Bournaka et al., 2023)
Oithona davisae 5 72 1.47 ± 0.12 (LC50) (Bournaka et al., 2023)
Amonardia normanni 5 24 4.99 ± 1.22 (LC50) (Bournaka et al., 2023)
Amonardia normanni 5 48 4.12 ± 0.18 (LC50) (Bournaka et al., 2023)
Amonardia normanni 5 72 3.43 ± 0.21 (LC50) (Bournaka et al., 2023)
Acartia tonsa (Nauplii) 1 48 0.401 ± 0.021 – 0.505 ± 0.022 (LC50) (Moreira et al., 2024)
Acartia tonsa (Copepodite) 1 48 0.486 ± 0.022 (LC50) (Moreira et al., 2024)
Acartia tonsa (Adult) 1 48 0.591 ± 0.035 0.599 ± 0.048 (LC50) (Moreira et al., 2024)

Meroplankton 
(larvae/embryos)

Paracentrotus lividus 1 72 0.158 (EC50) (Rist et al., 2023)
Arbacia lixula 1 72 0.345 (EC50) (Rist et al., 2023)
Diadema africanum 1 72 0.456 (LC50) (Rist et al., 2023)
Mytilus galloprovincialis 80 48 1.78 (EC50) (Capolupo et al., 2020)
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PS (12.9 g L⁻¹) and PE (16.5 g L⁻¹). Studies on the cyanobacteria Pro
chlorococcus exposed to PVC and high-density polyethylene (HDPE) 
leachates found EC50 values ranging from 6.25–25 g L⁻¹ for HDPE and 
0.125–5 g L⁻¹ for PVC (Sarker et al., 2020; Tetu et al., 2019). Comparing 
these EC50 values with those from our study (0.03–0.70 g L⁻¹; Table 2), 
tire particle leachates are significantly more toxic than conventional 
microplastic leachates to marine microplankton. This suggests that tire 
wear leachates represent one of the most harmful types of microplastics 
to marine plankton food web.

4.3. Toxic compounds in tire particle leachates

The toxicity of conventional plastic leachates to plankton is primarily 
driven by leached additives, as demonstrated by the microalgae 
Tisochrysis lutea (Beiras et al., 2021). Plastic leachates, such as those 
from HDPE and PVC, disrupt key physiological processes in marine 
phytoplankton like Prochlorococcus, affecting photosynthetic rates, ox
ygen production, and gene expression linked to photosystem II, carbon 
fixation, metal transport, and cell division (Tetu et al., 2019; Amaneesh 
et al., 2023). Similar mechanisms are likely at play with tire rubber 
particles, which release a broad range of chemicals, contributing to their 
high toxicity to microplankton (Halsband et al., 2020; Capolupo et al., 
2020; Page et al., 2022; Yang et al., 2022; Müller et al., 2022; Roubeau 

Dumont et al., 2023). Several toxicants were the detected in the tire 
particle leachates used in these studies, including polycyclic aromatic 
hydrocarbons, flame retardants, and metals like zinc (S.I. Table 1), in 
line with previous findings (Halsband et al., 2020; Capolupo et al., 2020; 
Page et al., 2022). These chemicals create a toxic cocktail likely 
impacting organisms through multiple pathways and mechanisms.

Zinc oxide is used as a vulcanization agent in tire rubber 
manufacturing (Councell et al., 2004). Tire particle leachates have been 
shown to contain high levels of zinc, reaching concentrations up to 
5240 µg L⁻¹ . Studies on marine nanophytoplankton and micro
phytoplankton species have demonstrated significant toxicity from both 
zinc (Jiao et al., 2023; Miao et al., 2005; Miller et al., 2010; Sarker et al., 
2021) and zinc oxide (Hazeem, 2022), leading to growth reductions and 
impaired photosystem activity. Thus, this heavy metal has been sug
gested as one of the primary contributors to the toxicity of tire particle 
leachates on plankton (Capolupo et al., 2020; Halsband et al., 2020; 
Page et al., 2022). However, a recent study by Le Du-Carrée (2024)
found that organic compounds, rather than zinc, were the primary toxic 
agents in tire leachates negatively affecting the marine microalgae 
R. salina.

To better understand the specific compounds or combinations 
responsible for the observed toxicity of tire particle leachates to 
plankton, and their associated mechanisms and pathways, further 

Fig. 2. A: Microscope images of representative species from the microplankton assemblage in E2 (Table 1), displayed from left to right and top to bottom: O. cf. 
ovata., C. pentagonum, Ampora sp., Actinocyclus octonarius, Guinardia striata, and Licmophora sp. (A). Abundances of total diatoms (B), other dinoflagellates (C), and 
O. cf. ovata (D) after 72 h of exposure to different leachate dilutions. The solid lines represent the fitted curves based on Eq. 1., with the dotted lines showing the 95 % 
confidence bands. The estimated model parameters are presented in Table 2. The stars denote statistically significant differences in cell concentration compared to 
the control (p < 0.05).
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studies should focus on testing individual leachable additives alongside 
chemical fractionation of leachates and effect-directed analysis. More 
research is needed on the impact of organic toxicants from tire particles 
on marine microplankton, particularly alkylphenols (e.g., 4-tert-butyl
phenol, 4-tert-octylphenol) and the aromatic heterocyclic compound 
benzothiazole (Calle et al., 2025). Special attention should also be given 
to N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and 
6PPD quinone, tire rubber-derived chemicals of growing concern due to 
its emerging environmental toxicity, with species-specific toxicity (Calle 
et al., 2025). This research is critical for identifying the main drivers of 
toxicity and for developing strategies to mitigate the ecological impact 
of tire wear particle pollution.

4.4. Are HAB-forming species more tolerant to pollution than other 
species?

Previous studies have shown that certain harmful algal bloom 
(HAB)–forming dinoflagellates, such as Prorocentrum spp. and Noctiluca 
scintillans, exhibit a higher tolerance to pollution compared to other 
planktonic organisms (Almeda et al., 2014, 2018). Similarly, the 
response of Ostreopsis cf. ovata to tire particle leachates in this study 
highlights the relatively higher tolerance of certain HAB-forming species 
to pollution. One hypothesis for this resilience is the production of a 
mucilaginous matrix by these species. For instance, Ostreopsis ovata 

produces mucus composed of complex acidic polysaccharides, which 
play a crucial role in its interactions with the environment (Escalera 
et al., 2014; Giussani et al., 2015). While the full function of this mucus 
remains unclear, it has been associated with several ecological advan
tages, including allelopathy to reduce competition, defense against 
predators, metabolic regulation, and buoyancy (Reynolds, 2007). This 
mucus may also serve as a mechanism for retaining toxins, preventing 
their dilution into the surrounding environment, which could offer 
protection from harmful substances (Ternon et al., 2018). This ability to 
sequester substances could extend to toxic organic additives from tire 
particle leachates, limiting their diffusion into the cells and ultimately 
reducing their toxicity. Additionally, the rich carbohydrate content in 
the mucus supports a bacterial community that may contribute to 
detoxification processes (Pavaux et al., 2020). Given that Ostreopsis 
species are notorious for producing potent toxins like palytoxins and for 
generating harmful algal blooms (HABs) that have significant ecological 
and socio-economic impacts, their potential tolerance to pollution 
compared to their grazers (ciliates) and other phytoplankton requires 
further investigation in the context of escalating coastal pollution.

4.5. Environmental risk and ecological implications

There is still limited information on the concentrations of tire wear 
particles (TWP) and their leachates in marine environments, and current 

Fig. 3. A: Microscope images of the representative species from the microplankton assemblage in E3 (Table 1), displayed from left to right and top to bottom: the 
dinoflagellates Scrippsiella sp., Gymnodinium sp., Prorocentrum sp., the tintinnid Ascampbelliella sp, and the diatoms Grammatophora sp., and Cylindrotheca sp. (A). 
Abundances of total diatoms (B), total dinoflagellates (B), and total ciliates. (C) after 72 h of exposure to different leachate dilutions. The solid lines represent the 
fitted curves based on Eq. 1., with the dotted lines showing the 95 % confidence bands. The estimated model parameters are presented in Table 2. The stars denote 
statistically significant differences in cell concentration compared to the control (p < 0.05).
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analytical methods for detecting and quantifying these pollutants 
remain insufficient (Mattonai et al., 2022). However, ecological impacts 
at current TWP pollution levels have already been observed, such as 
massive mortalities of coho salmon, a keystone species, following runoff 
events (Tian et al., 2021). Predicted concentrations of TWPs in surface 

waters range from 0.03 to 56 mg L⁻¹ (Wik and Dave, 2009), while esti
mated discharges from surface water drainage vary between 12 and 
179 mg L⁻¹ (Baumann and Ismeier, 1998; Kumata et al., 1997, 2000, 
2002; Parker-Jurd et al., 2021; Reddy and Quinn, 1997; Zeng et al., 
2004). TWPs that accumulate in sediments or soil can continue to leach 

Fig. 4. A: Microscope images of representatives species from the microplankton assemblages in E4 and E5 (Table 1), displayed from left to right and top to bottom: 
O. cf. ovata., Pleurosigma elongatum, Actinocyclus octonarius, Licmophora spp., Trachyneis spp., and Cylindrotheca spp. Abundances of O. cf. ovata in E4 (B), O. cf. ovata in 
E5 (C), total diatoms (D) in E5, and other dinoflagellates in E5 (E) after 72 h of exposure to different leachate dilutions. The solid lines represent the fitted curves 
based on Eq. 1., with the dotted lines showing the 95 % confidence bands. The estimated model parameters are presented in Table 2. The stars denote statistically 
significant differences in cell concentration compared to the control (p < 0.05).
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Fig. 5. Specific growth rate (SGR, d− 1) of each phytoplankton group and station in the control treatment (A) and the different leachate dilutions (B-F). From 
experiment 1 to experiment 5, the label "others" represents, respectively, the group Chaetoceros spp., O. cf. ovata, total ciliates, O. cf. ovata, and O. cf. ovata.
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toxic chemicals into the water over time. Concentrations of TWPs in 
sediments and soils are often significantly higher than those in the water 
column, reaching up to 155 g kg⁻¹ dry weight (DW) (Wik and Dave, 
2009; Wagner et al., 2018;). Some of the EC50 and LOEC values reported 
in this study fall within the range of predicted TWP concentrations in 
surface waters and drainage discharges, suggesting a potential ecolog
ical risk to marine plankton food webs, particularly in enclosed coastal 
areas and bays that are exposed to wastewater effluents and runoff 
events. Beyond laboratory bioassays, in situ field studies examining the 
effects of TWP on plankton communities after runoff events and 
drainage discharges are necessary to better assess the ecological impact 
of TWP pollution on the coastal marine food web.

The toxic effects of TWPs on the microplankton community could 
significantly disrupt the structure and function of marine food webs, 
thereby compromising the overall health of estuarine and coastal eco
systems. Our findings indicate that tire particles are toxic to key primary 
producers, such as phytoplankton, at environmentally relevant con
centrations, potentially leading to a reduction in primary production, a 
critical foundation of the marine food web. The adverse effects on cili
ates, which are key grazers in marine ecosystems, could further disrupt 
energy transfer up the food web, particularly through the ciliate- 
copepod link, which plays a crucial role in the marine food chain 
(Calbet and Saiz, 2005). Additionally, the reduction of non-toxic 
phytoplankton (nutrient competitors) and major grazers due to TWP 
pollution could increase the proliferation of harmful algal blooms 
(HABs) by species with higher tolerance to TWP, such as O. ovata, in 
certain circumstances. This could contribute to more frequent and 
intense HABs in coastal areas, with significant ecological, health, and 
economic consequences.

Globally, approximately six million tons of TWPs are estimated to be 
emitted annually, with up to 20 % entering aquatic ecosystems 
(Baensch-Baltruschat et al., 2021). As global population and vehicle 
usage continue to rise, TWP pollution and its associated ecological im
pacts are likely to increase. Therefore, more field studies and continuous 
monitoring are urgently needed to better understand the distribution, 
transformation, and toxicity of TWPs and their leachates in coastal 
waters. Overall, our findings highlight the critical need for the devel
opment of ecologically safer tire rubber additives and effective strategies 
to reduce traffic-related TWP emissions. Addressing these issues is 
essential to mitigate the effects of TWPs into aquatic ecosystems and 
prevent further damage to marine biodiversity and ecosystem services.

5. Conclusions

Our study reveals that tire particle leachates have a detrimental 
impact on unicellular microplankton communities, leading to reduced 
growth across various groups at environmentally relevant concentra
tions. The main microplankton groups (diatoms, dinoflagellates, and 
ciliates) exhibited different sensitivities to tire particle leachates. Cili
ates were the most sensitive, while the HAB-forming dinoflagellate 
Ostreopsis cf. ovata showed the highest tolerance. These findings suggest 
that tire particle leachates have the potential to disrupt marine food web 
dynamics by altering both the structure and function of microplankton 
communities. This could have broader ecological implications, partic
ularly in coastal environments where tire particle pollution is more 
concentrated.
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