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Abstract The CNRM‐Cerfacs Climate Prediction System (C3PS) is a new research modeling tool for
performing climate reanalyzes and seasonal‐to‐multiannual predictions for a wide array of Earth system
variables. C3PS is based on the CNRM‐ESM2‐1 model including interactive aerosols and stratospheric
chemistry schemes as well as terrestrial and marine biogeochemistry enabling a comprehensive
representation of the global carbon cycle. C3PS operates through a seamless coupled initialization for the
atmosphere, land, ocean, sea ice and biogeochemistry components that allows a continuum of predictions
across seasonal to multiannual time‐scales. C3PS has also contributed to the Decadal Climate Prediction
Project (DCPP‐A) as part of the sixth Coupled Model Intercomparison Project (CMIP6). Here we describe
the main characteristics of this novel Earth system‐based prediction platform, including the methodological
steps for obtaining initial states to produce forecasts. We evaluate the entire C3PS initialization procedure
with the most up‐to‐date observations and reanalyzes over 1960–2021, and we discuss the overall
performance of the system in the light of the lessons learned from previous and actual prediction platforms.
Regarding the forecast skill, C3PS exhibits comparable seasonal predictive skill to other systems. At the
multiannual scale, C3PS shows significant predictive skill in surface temperature during the first 2 years
after initialization in several regions of the world. C3PS also exhibits potential predictive skill in Net
primary production (NPP) and carbon fluxes several years in advance. This expands the possibility of
applications of forecasting systems, such as the possibility of performing multiannual predictions of marine
ecosystems and carbon cycle.

Plain Language Summary The study introduces and assesses the new climate prediction platform
C3PS developed by theCNRM‐Cerfacsmodeling group in the framework of theH2020TRIATLASproject. This
prediction system is based on the latest version of the CNRM Earth system model, CNRM‐ESM2.1, and was
designed to produce predictions from seasonal to multiannual scales. C3PS is the result of the joint long‐term
effort of experts in seasonal and decadal forecasting and modellers of ocean physics and biogeochemistry within
the CNRM‐Cerfacs research group. An innovative aspect of our study is that it focuses on validating the
initialization procedure, which is not often done in other studies presenting forecasting systems. We believe that
the study of the reconstructions created to initialize the climate prediction systems is relevant, and evenmore so in
the context of the new applications offered in the prediction of marine biogeochemistry and carbon fluxes.
Regarding forecast skill, C3PS exhibits comparable seasonal predictive skill to other systems. On a multi‐year
scale, C3PS shows potential skill not only in physical climate variables, but also in NPP and carbon fluxes up to
3 years in advance, which extends the possibilities of application to marine ecosystems and multi‐year carbon
cycle forecasts.

1. Introduction
The field of near‐term climate prediction has grown rapidly since the pioneering studies of Smith et al. (2007),
Keenlyside et al. (2008), Pohlmann et al. (2009) and the very first attempt of decadal prediction coordinated
experiments as conducted under the umbrella of the Fifth Phase of the Coupled Model Intercomparison Project
(CMIP5). The analysis of CMIP5 decadal prediction experiments revealed a wide range of skill for different
variables and across various prediction systems (Bellucci et al., 2015; Doblas‐Reyes et al., 2013; Garcia‐
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Serrano et al., 2015 amongst others). Following this, CMIP6 undertook a new decadal prediction coordinated
exercise with improvements with respect to CMIP5 (Boer et al., 2016). These improvements include not only
model improvements, but also the increase of the number of starting dates and ensemble members in the
decadal forecast archive, in order to ensure a robust assessment of decadal predictive skill. Results from CMIP6
show a substantial improvement of the Sea Surface Temperature (SST) prediction in the North Atlantic, in
particular over the subpolar gyre (Borchert et al., 2021; Delgado‐Torres et al., 2022). Over land, a significant
increase in prediction skill of surface air temperature (SAT) is also reported (Monerie et al., 2018; Smith
et al., 2019; Wu et al., 2019). Moreover, by the use of large ensembles, skillful predictions have been achieved
for atmospheric patterns such as blocking (Athanasiadis et al., 2020; Schuster et al., 2019) and the North
Atlantic Oscillation (Smith et al., 2020).

While the potential for useful applications has been demonstrated, the CMIP5/CMIP6 experiments have also
highlighted a number of outstanding research questions and challenges in the climate prediction field (Bojovic
et al., 2019; Cassou et al., 2018; Dunstone et al., 2022; Kirtman et al., 2013; Meehl et al., 2014; O’Kane
et al., 2023). Previous decadal prediction exercises highlight the need for a better understanding of three key
aspects for better exploiting the climate predictive potential and improving estimates of climate predictability at
different timescales (Cassou et al., 2018; Keenlyside and Ba, 2010; Verfaillie et al., 2020): (a) The physical
mechanisms of climate predictability, (b) initialization, and response to external forcing; (c) and an improvement
of the forecast quality evaluation process.

One of the outstanding challenges is to identify the extent to which model prediction skill across a continuum of
time‐scales may benefit from initialization. Indeed, by establishing a framework for testing the added value of
model initialization, as well as prescribing external forcings, decadal prediction systems have bridged the gap
between well‐established seasonal prediction and near‐term projections (Meehl et al., 2009). In this sense, decadal
predictions can provide seamless climate information from 1 month to several years ahead, offering the oppor-
tunity of exploring predictability at different timescales (Choi et Sun, 2022). This is relevant as it provides climate
information addressing a growing demand from policy makers and stakeholders in the context of climate risk
management.

Moreover, the required reduction of human‐induced CO2 emissions and the need for adaptation of several
sectors have, over the recent years, widened the range of application of climate predictions, with the inclusion
of new Earth System components. Earth System Models (ESMs) have been recently implemented in climate
prediction systems, allowing to explore the predictability of marine biogeochemistry and marine ecosystems
(Park et al., 2019; Séférian et al., 2014; Yeager et al., 2022), terrestrial carbon fluxes (Séférian et al., 2018)
and air‐sea carbon fluxes and carbon budgets (Ilyna et al., 2021; Lovenduski et al., 2019). Following this path
and in order to provide seamless seasonal to multiannual predictions for relevant physical and Earth system
variables, the CNRM‐Cerfacs modeling group has developed a new prediction platform, called C3PS, which is
based on the CNRM‐ESM2.1 model (Séférian et al., 2019). The birth of C3PS was possible by bringing
together the expertise of the CNRM‐Cerfacs modeling group in terms of seasonal and multiannual climate
predictions and the latest developments in Earth system modeling made in the context of CMIP6 (Séférian
et al., 2020).

In the present study, we introduce the C3PS system, by highlighting its main characteristics, and the seamless/
coupled initialization method used for the atmosphere, ocean and marine biogeochemistry components. This
coupled initialization has been achieved to enable the investigation of predictability across a continuum of time‐
scales, from seasons to years. Conversely to other studies presenting climate prediction systems, we perform an
exhaustive evaluation of the initialization procedure, assessing its strengths and weaknesses. Finally, we also
evaluate the performance of the C3PS system based on a variety of diagnostics and metrics.

Section 2 describes the main characteristics of C3PS, the initialization procedure and the experimental protocol
used to perform the seasonal to multiannual predictions. Section 3 presents the reference data sets and metrics
used. Section 4 provides a basic evaluation of the assimilation experiments used in the C3PS initialization.
Section 5 assesses the skill of essential physical and biogeochemical fields at different time scales, and the
concluding remarks are presented in Section 6.
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2. Earth System‐Based Prediction Platform
2.1. Model Description

The backbone of the C3PS platform is CNRM‐ESM2‐1 which is the Earth System model of second generation
developed by CNRM‐Cerfacs modeling group for CMIP6 (Séférian et al., 2019).

The atmosphere component of CNRM‐ESM2‐1 is based on the global spectral model ARPEGE‐Climat version
6.3 (Roehrig et al., 2020). ARPEGE‐Climat resolves atmospheric dynamics using a T127 linear truncation. The
physics is resolved on the corresponding reduced grid which offers a spatial resolution of about 150 km in both
longitude and latitude. CNRM‐ESM2‐1 employs a ‘‘high‐top’’ configuration with 91 vertical levels that extend
from the surface to 0.01 hPa in the mesosphere; 15 hybrid σ‐pressure levels are available below 1,500 m.

The atmospheric chemistry scheme of CNRM‐ESM2‐1 is Reactive Processes Ruling the Ozone Budget in the
Stratosphere version 2 (REPROBUS‐C_v2). This scheme resolves the spatial distribution of 63 chemistry species
but does not represent the low troposphere ozone non‐methane hydrocarbon chemistry. CNRM‐ESM2‐1 also
activates an interactive tropospheric aerosol scheme included in the atmospheric component ARPEGE‐Climat.
This aerosol scheme, named Tropospheric Aerosols for ClimaTe In CNRM (TACTIC_v2), represents the main
anthropogenic and natural aerosol species of the troposphere.

The surface state variables and fluxes at the surface‐atmosphere interface are simulated by the SURFEXmodeling
platform version 8.0 over the same grid and with the same time‐step as the atmosphere model. Over the land
surface, CNRM‐ESM2‐1 uses the ISBA‐CTRIP land surface modeling system to solve energy, carbon and water
budgets at the land surface (Decharme et al., 2019; Delire et al., 2020). Its physical core explicitly solves the one‐
dimensional Fourier and Darcy laws throughout the soil, accounting for the hydraulic and thermal properties of
soil organic carbon. It uses a 12‐layer snow model of intermediate complexity that allows to separate water and
energy budgets for the soil and the snowpack. CTRIP is a dynamic river flooding scheme in which floodplains
interact with the soil and the atmosphere through free‐water evaporation, infiltration and precipitation inter-
ception. The ISBA‐CTRIP land surface scheme also embeds a two‐dimensional diffusive groundwater scheme to
represent unconfined aquifers and upward capillarity fluxes into the superficial soil. More details on these
physical aspects can be found in (Decharme et al., 2019). ISBA‐CTRIP captures the land carbon cycle and
vegetation‐climate interactions with the representation of plant physiology, carbon allocation and turnover, and
carbon cycling through litter and soil. It includes a module for wildfires, land use and land cover changes, and
carbon leaching through the soil and transport of dissolved organic carbon to the ocean. A detailed description of
the terrestrial carbon cycle can be found in Delire et al. (2019).

The ocean component of CNRM‐ESM2‐1 is the Nucleus for European Models of the Ocean (NEMO) version 3.6
(Madec et al., 2017) which is coupled to both the Global Experimental Leads and ice for ATmosphere and Ocean
(GELATO) sea‐ice model (Salas Mélia, 2002) version 6. NEMOv3.6 operates on the eORCA1L75 grid (Mathiot
et al., 2017) which offers a nominal resolution of 1° to which a latitudinal grid refinement of 1/3° is added in the
tropics; this grid describes 75 ocean vertical layers using a vertical z*‐coordinate with partial step bathymetry
formulation (Barnier et al., 2006).

The ocean biogeochemical component of CNRM‐ESM2‐1 uses the Pelagic Interaction Scheme for Carbon and
Ecosystem Studies model version 2 coupled with trace gases module (PISCESv2‐gas), which derives from
PISCESv2 as described in Aumont et al. (2015). PISCESv2‐gas simulates the distribution of five nutrients (from
macronutrients: nitrate, ammonium, phosphate, and silicate to micronutrient: Iron), which regulate the growth of
two explicit phytoplankton classes (nanophytoplankton and diatoms). PISCESv2‐gas also simulates the ocean
carbon cycle with the ocean carbonate chemistry, that is the dissolved inorganic carbon (DIC) and the alkalinity
(Alk) and two organic carbon pools. The dissolved oxygen is prognostically simulated using two different
oxygen‐to‐carbon ratios, one when ammonium is converted to or mineralized from organic matter, the other when
oxygen is consumed during nitrification. Their values have been set respectively to 131/122 and 32/122. At the
ocean surface, PISCESv2‐gas exchanges carbon, oxygen, dimethylsulfide (DMS) and nitrous oxide (N2O) tracers
with the atmosphere using the revised air‐sea exchange bulk formulation as in Wanninkhof (2014). PISCESv2‐
gas uses several boundary conditions which represent the supply of nutrients from five different sources: at-
mospheric deposition, rivers, sediment mobilization, sea‐ice and hydrothermal vents.
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2.2. Forcings

This section details the CMIP6 external forcing implementation into the C3PS platform. CNRM‐ESM2.1 is run in
concentration‐driven mode to align with the CMIP6 Decadal Prediction Project (DCPP) protocol (Boer
et al., 2016). For all the experiments whose simulated period lies within the historical period as labeled by CMIP6,
that is, from 1850 to 2014, we implement the exact set‐up that was used for the contribution to the CMIP6/DECK
historical experiment (Eyring et al., 2016). Greenhouse gas concentrations, with the exception of stratospheric
ozone, are implemented as recommended by Meinshausen et al. (2017). Specifically, in concentration‐driven
mode, atmospheric CO2 is restored to a global mean concentration and is not accounted for by the land and
ocean carbon cycle modules. For details on the implementation of the forcings for CMIP6, please refer to Séférian
et al. (2019) and Michou et al. (2020).

For simulated years after 2014 and in accordance with the DCPP protocol, the Shared Socioeconomic Pathway
(SSP) 2–4.5 scenario forcing is prescribed (O’Neill et al., 2016). This is the “middle‐of‐the‐road” scenario of the
SSP2 socioeconomic pathways, with an intermediate 4.5 W/m2 radiative forcing level by 2,100 (Gidden
et al., 2019).

The major difference between the implementation of the external forcing in the C3PS platform and the usual
CMIP6 simulation set‐up for CNRM‐ESM2‐1 is the volcanic forcing. The CMIP6 experimental protocol now
requires the use of a stratospheric volcanic background forcing (monthly climatology computed from years 1850
to 2000 volcanic forcing) during pre‐industrial and future eras. However, over the 1850–2014 period, the volcanic
forcing can be lower than the background forcing as used for the future period (beyond 2015). In consequence, we
applied a linear ramp‐up from the 2014 level to the background level over the 2015–2025 period, as suggested in
Gillett et al. (2016).

2.3. Workflow and Data Production

Currently, the C3PS platform provides for both, seasonal and multiannual timescales the variables requested in
the DCPP/CMIP6 tables (Boer et al., 2016), which are those variables relevant for forecast evaluation against
observational data sets. Besides, we have included additional biogeochemical and ocean physics variables that are
necessary to force marine ecosystem models. Most of these variables are already requested by the FishMIP
initiative (Tittensor et al., 2019). Higher frequency variables, such as daily ocean potential temperature and
oxygen are also. Concerning the atmosphere, C3PS also provides daily low‐level winds (∼100 m) and solar
radiation variables as requested for renewable energy applications. The last mentioned variables are not available
on ESGF but are available upon request.

The C3PS platform follows the DCPP/CMIP6 experimental protocol with regard to the multiannual predictions,
although additional members have been performed to increase the ensemble size from 10 to 15 members.

All the C3PS related simulations were performed on the Belenos supercomputer, hosted at Météo‐France site in
Toulouse from June 2021 to February 2022. The work‐flow is handled by the ECLIS (Environment for CLImate
Simulations) package tool that was developed by the CNRM (https://www.umr‐cnrm.fr/cm/spip.php?article14).

ECLIS is an ensemble of scripts and tools that allow for setting up and running all the experimental protocols
performed by the CNRM‐Cerfacs modeling group within CMIP and beyond. In particular, C3PS required
additional ECLIS developments, such as dedicated scripts for the perturbation of initial atmospheric conditions
and the management and launching of the members for all the starting dates (see Section 2.4).

The C3PS diagnostics production is managed by the XIOS output server (Meurdesoif, 2018; Meurdesoif, 2018).
XIOS has been implemented in all the models developed by the CNRM‐Cerfacs group, in particular to facilitate
the huge CMIP6 data production. XIOS allows for declaring a priori the requested variables to be saved in the
output files for a given experiment. Moreover, XIOS performs online operations on fields, such as spatial and
vertical interpolations, vertical, spatial and time averages, vertical level extraction, thus saving a lot of post‐
processing time. XIOS has also been adapted to produce netCDF “CMOR” (Climate Model Output Rewriter)
format files compliant with the CMIP6 Data Request specificities. More information about XIOS functioning can
be found in Voldoire et al. (2019).
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2.4. Seamless Prediction Procedure and Simulations

Most of the efforts involved in the development of the C3PS platform were oriented to achieve a satisfactory
initialization procedure. In this regard, several challenges needed to be tackled. The first challenge was to
participate in the DCPP/CMIP6, for which the required hindcast period starts in 1960, when biogeochemical
observations required to initialize the biogeochemistry model are practically non‐existent. A second challenge is
how to robustly initialize a seamless climate prediction platform in which a continuum of timescales need to be
considered. For seasonal prediction, atmospheric initialization is relevant for climate prediction (Materia
et al., 2014). For longer timescales, atmospheric initialization is less relevant as the predictability mostly lies on
the ocean and sea ice persistence and memory. A third challenge is to minimize the climate drifts that occur when
the model is initialized from a state away from the climate model attractor. Besides, physical coherence amongst
the initial states of all the model components of CNRM‐ESM2‐1 is necessary in order to avoid incompatibilities
that could lead to abrupt initial shocks right after the initialization (Bilbao et al., 2021; Pohlmann et al., 2017;
Sanchez‐Gomez et al., 2016). Although model drifts in climate prediction systems are partly corrected before skill
assessment, it is preferable to minimize them as much as possible to better distinguish the predictable signals
(Meehl et al., 2022). For the initialization methodology, we built open the work of Sanchez‐Gomez et al. (2016)
which developed initial conditions for decadal predictions in CMIP5. This study provides a detailed analysis of
the initial drifts and shocks experienced by a climate model when initialized for climate predictions. They also
introduced an initialization methodology that involves nudging the ocean component of the coupled model toward
reference data (see below). This approach was shown to reduce initial shocks and drifts and has been successfully
applied in subsequent studies, including the decadal forecasting system based on the EC‐Earth model in CMIP6
(Bilbao et al., 2021).

In order to overcome the three main challenges mentioned above, in the development of C3PS we have imple-
mented an experimental protocol which is carried out in three main steps (Figure 1).

• Step 1: The initial idea was to use ORAS5 reanalysis (C3S 2021) as reference data for the ocean; however, a
problem was identified in the first version of ORAS5 related to the non‐stationarity of the Atlantic Meridional
Overturning Circulation (AMOC), which degraded the predictive skill of the seasonal forecasts (Tietsche
et al., 2020). Although a new version of ORAS5 is now available, it was not feasible to rerun all the simu-
lations within the project's timeline. For this reasons, pseudo‐observations are obtained through an ocean
forced simulation in which the NEMO‐PISCESv2gas model is forced by atmospheric fields from the JRA55do
reanalysis (Tsujino et al., 2020) over the period 1960–2021 (Figure 1). This simulation (referred to as
FORCED hereinafter) has been performed under the framework of the Global Carbon Project (GCP)
(Friedlingstein et al., 2022; Hauck et al., 2020). A sea surface salinity relaxation is applied only beneath the sea
ice, targeting the JRA55do climatology for the period 1955–2012. This relaxation uses a restoring coefficient
of − 166.67 mmd− 1, which is a standard value in the NEMO namelist for the forced configuration. The
FORCED experiment was launched after a spin‐up of 300 years in which the NEMO‐PISCESv2gas model
was forced by repeated cycles of 5 years corresponding to the 1958–1962 period. The analysis of this spin‐up
reveals that surface physical fields such as SST and salinity (SSS), and integrated fields such as ocean heat
content (OHC) and AMOC are almost stabilized after the spin‐up.

Figure 1. Schematics of the initialization procedure of the C3PS platform. The “spring” connecting the two NEMO‐PISCES
boxes indicates that the coupled simulation is relaxed to potential temperature and salinity in the forced simulation.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004193

SANCHEZ‐GOMEZ ET AL. 5 of 27

 19422466, 2024, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004193 by U
niversidad D

e L
as Palm

as D
e G

ran C
anaria, W

iley O
nline L

ibrary on [11/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



• Step 2: the 3D potential temperature and salinity fields issued from the FORCED simulation were used to
constrain the ocean component of CNRM‐ESM2.1 through a Newtonian damping procedure (Figure 1). This
nudging simulation is performed over the period 1960–2021, and serves to generate the so‐called dcppA‐assim
experiment according to the DCPP/CMIP6 experiment‐id (Boer et al., 2016). The dcppA‐assim (referred to
ASSIM hereafter) can be considered as an in‐house zero‐order reanalysis product from which the initial
conditions for all the components of CNRM‐ESM2.1 are issued. As mentioned above, the methodology of the
nudging was previously implemented and used in Sanchez‐Gomez et al. (2016). It was shown to be beneficial
to produce initial states physically consistent amongst all the components of CNRM‐CM5, (b) to get initial
states for the components with non‐available observations and (c) to minimize the initial shock and drift in the
prediction experiments. Here we use the same nudging strategy which consists in (a) a sea surface restoring of
temperature and salinity of the NEMO component toward SST and SSS from the FORCED simulation; (b) a
3D Newtonian damping in temperature and salinity below the mixed layer to constraint the ocean subsurface
toward FORCED. The sea surface restoring is applied globally in terms of heat and freshwater fluxes. The
values of the restoring coefficients are − 40 Wm− 2 K− 1 and − 864 mmd− 1 for the heat and freshwater fluxes
respectively. Note that the value of the coefficient for freshwater flux significantly differs for those used in
previous studies (Bilbao et al., 2021; Servonnat et al., 2015; Sanchez‐Gomez et al., 2016). The rationale of this
is to have the same restoring time scale for SST and SSS, that is 60 days for a mixed layer of 50 m (Barnier
et al., 1995). The 3D Newtonian damping is applied as follows: On the vertical, there is no damping above the
mixed layer to allow for physical coherence between the mixed layer and the surface processes. Below the
mixed layer down to 800 m depth, the damping term is set to 10 days and for the deep ocean below, a weak
damping is used (∼1 year). Horizontally, subsurface nudging is only applied outside the 15°S–15°N latitudinal
band and from 300 km off the coast to avoid spurious vertical currents at the equator and coastal effects
respectively (Sanchez‐Gomez et al., 2016). A buffer zone of 5°, which decreases linearly, is applied between
the nudged areas and the rest of the ocean. Similar nudging methodologies are also adopted in Bilbao
et al. (2021) in order to obtain initial states for seasonal and decadal predictions. The ASSIM simulation has
been duplicated with a set of perturbed parameters in order to obtain an ensemble of three members. For this,
the ocean and atmosphere diffusivity have been slightly perturbed separately to produce additional ASSIM
members (see Figure 1).

• Step 3: the ASSIM ensemble will be used as initial conditions for all the CNRM‐ESM2.1 components for both
seasonal and multiannual predictions. Only the atmospheric restarts provided by ASSIM are modified in order
to adapt C3PS to seasonal forecasting. For this purpose, the dynamical fields contained in the restarts of
ARPEGE in the ASSIM ensemble are replaced by the dynamical fields provided by the ERA5 reanalysis
(Hersbach et al., 2020). Finally, the prediction procedure is performed as follows: For the seasonal timescale,
two initializations per year are considered, that is, 1st May and 1st November. For each start date, an ensemble
of 30 members is generated. The atmosphere is perturbed by using a small increment of the atmospheric
dynamical fields provided by ERA5. This increment, introduced only at the initialization time, is drawn
randomly from a set of increments computed during a previous historical atmospheric nudging simulation
where the ARPEGE model is weakly constrained toward the ERA5 reanalysis (Batté & Déqué, 2012). Ten
increments were used for each ASSIM member, thus building a 30‐member ensemble. Seasonal predictions
starting 1st May are run for 6 months. For the multiannual timescale, the perturbation procedure is identical to
that of the seasonal scale, except that only the forecast starting on 1st November is continued up to 5 years, and
with only 15 members. Hereinafter the set of seasonal to multiannual predictions will be referred to as PRED.

The most significant differences from the previous work by Sanchez‐Gomez et al. (2016) in terms of the
initialization methodology are: (a) The use of a forced ocean simulation with biogeochemistry instead of an ocean
reanalysis, and (b) the initialization of the atmosphere, by incorporating ERA5 dynamical fields into the e at-
mospheric component restart.

3. Data Sets and Methods to Assess C3PS Performances
3.1. Reference Data Sets for Verification

Several observational and pseudo‐observational products have been used to evaluate the ASSIM reconstruction
(Section 4) and to compute the forecast skill scores for PRED (Section 5).
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The physical variables we have considered are: air temperature at 2 m (SAT), ocean temperature and salinity,
OHC, Arctic sea ice concentration (SIC) and extent (SIE) and AMOC. To evaluate ASSIM sea surface tem-
perature, we use a blended product consisting of an average of the Hadley Center Sea Ice and SST version 1
(HadISST1, Rayner et al., 2003) and ERSST v5 (Huang et al., 2017) over ice‐free sea water. Over land and over
sea‐ice we average BEST (Muller, Curry, et al., 2013; Rohde et al., 2013), CRU‐TS4‐00 (Harris et al., 2014), and
GHCN‐CAMS (Fan and van den Dool, 2008).

The latest EN4 (version 4.2.2) objective analysis product is used as a reference for 3D ocean temperature and
salinity (Good et al., 2013) and for OHC computation. This is a 1° × 1° gridded data set derived from ocean and
temperature profiles with quality checks, which runs from 1900 to present. Here we have considered the EN4
analyses with the Gouretski and Reseghetti (2010) bias correction. SST and SIC reference data are also issued
from HADISST1. We use the RAPID time series of the AMOC measured at 26°N as reference data (Moat
et al., 2022), which are available from 2004 to 2020.

To analyze biogeochemistry, we focus on surface chlorophyll, integrated net primary production and global
(land and ocean) carbon fluxes. Monthly means of chlorophyll‐a concentration with a spatial resolution of 1°
were issued from the ESA Ocean Color Climate Change Initiative (ESA‐OC‐CCIv3.1) project (Valente
et al., 2022, https://climate.esa.int/en/projects/ocean‐colour/). Net primary production (NPP) was obtained
using a spectrally resolved model to simulate changes in photosynthesis as a function of irradiance (Kulk
et al., 2020). This model incorporates vertical structure in chlorophyll‐a concentration from OC‐CCIv4.1. NPP
data are 1° gridded and are available for the period 1998–2021. Carbon fluxes are evaluated by using the GCP
reconstruction between 1959 and 2021 (Friedlingstein et al., 2022). This reconstruction currently represents
the best estimates of the global carbon sink over the industrial era since 1959. For the ocean carbon sink
( fCO2) we use the Surface Ocean CO2 Atlas version 2022 (SOCATv2022; Bakker et al., 2022) for the period
1990–2021.

To evaluate ASSIM reconstruction, besides the observational and analysis products described above, we consider
the FORCED simulation, and the historical experiment performed with CNRM‐ESM2.1 for CMIP6/DECK
(Séférian et al., 2019) and referred here as FREE, which represents the free model (no data assimilation) run. The
FREE ensemble consists of 10 members.

3.2. Metrics for Skill Assessment

The full‐field initialization strategy used in C3PS requires to remove the forecast drift that inevitably occurs in any
climate prediction system before performing the verification with observations and the skill estimate. We use the
standard approach of transforming the raw model data into anomalies relative to the climatological forecast for
each lead time,

X’j,l = Xj,l − Xl (1)

where Xj,l represents the ensemble‐mean forecast from starting date j at lead time l and Xl is the average over these
forecasts over all starting dates for a given lead time. This is the so‐called mean drift correction method, which
assumes that forecast drift does not depend on the background climate state, that is, the drift is not considered to
change between two different climate states from the point of view of global warming (Garcia Serrano & Doblas‐
Reyes, 2012; Meehl et al., 2014). Note that for the forecast period 1960–2021, the number of starting dates is
62 × 2 for the seasonal, and 62 for the multiannual timescales. In the case of multiannual forecasts, starting on 1st
November each year, we focus our analysis on the following 5 years beginning in January (2 months after the
initialization).

For both seasonal and multiannual timescales we use the standard verification framework as outlined in Goddard
et al. (2013). We rely on the anomaly correlation coefficient (ACC), root mean square error (RMSE) and theMean
Square Skill Score (MSSS). The MSSS is especially used to assess the added value of the initialization and it is
computed following equations 4–6 from Goddard et al. (2013). A MSSS score greater than 0 means that PRED is
more accurate than FREE. For the seasonal forecast, persistence scores are used as a benchmark of C3PS scores
and a t‐test is used for assessing the statistical significance of the correlation.
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According to Goddard et al. (2013), for the skill maps and in order to remove small‐scale unpredictable noise, all
model and observational data are interpolated to a common 5‐degree regular grid using the ESMF patch inter-
polation included in The Ncar Command Language (2019) –NCL.

We assess the added value of the initialization in C3PS by comparing the hindcasts PRED and the non‐initialized
historical ensemble (FREE) against FORCED or JRA55do for atmospheric variables. To properly evaluate skill
differences between PRED and FREE, either through ACC or MSSS, a non‐parametric bootstrap technique is
used to assess the statistical significance of the skill scores (Goddard et al., 2013; Yeager et al., 2018). A block‐
bootstrap distribution of the scores is constructed at each location (grid point or time series) by resampling (with
replacement) pairs of observations and hindcasts across the time dimension, and in addition, the PRED and FREE
ensembles across the ensemble member dimension. Following these previous papers, we use a block size of
6 years as a trade‐off between autocorrelation of the physical variables and the number of blocks (results are very
similar to those based on 5 or 7‐year blocks). The derived p‐values are estimated as in Yeager et al. (2018).

Finally, the hindcast performance is evaluated by considering the so‐called “potential predictability,” which as
defined here consists of using as reference data set the FORCED and ASSIM experiments (Yeager et al., 2022).
The skill calculated with respect to ASSIM represents the ability of the model to predict its own future data‐
constrained behavior. The notion of “potential predictability” is also interesting to assess forecast performance
for biogeochemistry, since observations are available over a short period of time. Here, we will compare “po-
tential predictability” versus the predictability with respect to FORCED for ocean and biogeochemistry, and with
respect to JRA55do reanalysis for atmospheric variables (i.e., SAT).

4. Basic Evaluation of the C3PS Initialization Procedure
The assessment of the C3PS initialization strategy aims to determine how the nudging of the ocean physics has
affected the performance of CNRM‐ESM2.1 at simulating relevant physical and biogeochemistry fields.

Figure 2 shows that FREE exhibits common coupled model biases in the North Atlantic Ocean (the so‐called
“blue spot”), the southeastern Tropical Atlantic along the Benguela coast, and the equatorial Pacific cold
tongue. Biases over the eastern ocean basins and Southern Ocean are reduced in ASSIM, as expected. Over land,
ASSIM and FREE do not differ much in terms of biases, though over some regions like North America, Northern
Africa temperature biases are slightly reduced. This fact indicates that ocean nudging does not have much impact
over the continental areas.

Ocean temperature and salinity fields were used to nudge the ocean component of CNRM‐ESM2.1 in order to
generate ASSIM as explained above. Therefore, it is essential to evaluate both the performance of FORCED to
simulate the mean state of the subsurface ocean as informed by observations, and then to evaluate the bias
reduction of the ASSIM simulation with respect to the FREE simulation. Figure 3 displays thus the departure in
ocean temperature and salinity at 100 m depth of FORCEDwith respect to observations, and of FREE and ASSIM
with respect to FORCED. The FORCED simulation captures the main distribution of ocean temperature at the

Figure 2. Departure in blended surface temperature of FREE (a) and ASSIM (b) simulations from observations over 1960–
2014. Blended surface temperature combines surface‐air temperature over land and sea ice and sea surface temperature over
ice‐free sea water. Observations average several data sets: HadISST1 (Rayner, 2003) and ERSST v5 (Huang et al., 2017)
over ice‐free sea water; BEST (Muller, Curry, et al., 2013; Rohde et al., 2013), CRU‐TS4‐00 (Harris et al., 2014), and
GHCN‐CAMS (Fan & van den Dool, 2008) over land and sea ice. Units are in degrees Celsius.
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subsurface as depicted from observations. Nonetheless, FORCED overestimates temperature in the tropical
Atlantic and across the North Pacific and the Southern Oceans, while it underestimates it southeast of New‐
Zealand and in the tropical Pacific. In addition, the FORCED simulation strongly underestimates temperature
in the North Atlantic where a well‐documented “warming hole” has been related to a persistent slowdown of the
AMOC (Drijfhout et al., 2012; Menary et al., 2018; Swingedow et al., 2021). By contrast, salinity is under-
estimated in this region, over the polar region and most regions of the Pacific Ocean, as reported in Voldoire
et al. (2019).

As mentioned above, the nudging in subsurface waters is only applied in latitudes higher than±15°. Accordingly,
as seen in Figure 3, main differences of the ASSIM simulation with respect to the FORCED simulation occur in
tropical regions, where the ASSIM tends to underestimate both temperature and salinity. In contrast, the un-
derestimation of temperature expands to the Atlantic and South Pacific Oceans in the FREE simulation, while it
overestimates temperature in the Southern Ocean and the California Current. The FREE simulation also un-
derestimates salinity across most of the Atlantic and Pacific oceans, while it overestimates it across the North
Pacific and the Indian oceans.

In conclusion, as expected, in both FORCED and ASSIM, the biases in surface and subsurface are strongly
reduced compared to the FREE run, which confirms the validity of the methodology to generate oceanic initial
conditions.

4.1. Drivers of Seasonal Climate Variability

In order to evaluate the realism of ASSIM in accounting for ENSO variability, we focus on how the nudging
procedure impacts the ENSO diversity considering that this is a fundamental ENSO property that determines its
seasonal evolution and teleconnections (Capotondi et al., 2020). The ENSO diversity or complexity (Timmerman
et al., 2018) refers to the existence of warm and cold events with different SST patterns and amplitudes, with the
extreme warm events being of Eastern Pacific type, while moderate warm and cold events being of Central Pacific
type. Although the CNRM‐ESM2.1 model (FREE) has some skill in simulating ENSO feedback strength (Lee
et al., 2021), it has difficulty in simulating ENSO amplitude diversity, which manifests as a negative skewness of
SST anomaly in the eastern equatorial Pacific.

Here as a compact measure of ENSO diversity (or nonlinearity), we use the value of the first coefficient of a
quadratic fit in the phase plane of the first and second principal components (PCs) of SST anomalies in the tropical

Figure 3. (a, d) Difference of ocean temperature and salinity at 100 m depth between FORCED with respect to EN4 observations over 1960–2014. Differences between
FREE (b, e) and ASSIM (c, f) with respect to FORCED over the same period. Spatial correlations and root mean square error (RMSE) of the time average over the whole
period are shown on the top of each figure. Correlations and RMSE are computed against EN4 for (a, d) and against FORCED simulation for (b, c, e, and f).
Observations are extracted from the quality‐controlled EN4 data set (Good et al., 2013). Units are in degrees Celsius for temperature and psu for salinity. pCorr and
pRMSE indicate that both correlations and RMSE are computed against the FREE simulation, rather than against observations, which is the case for Corr and RMSE.
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Pacific (Cai et al., 2018; Karamperidou et al., 2017), hereafter referred to as α.
For HadISST1 data, the two branches of this quadratic fit tend to align along
axis that correspond to the PC1 and PC2 axes rotated by 45° (Figure 4). The
rotation of the PC time series defines the E and C indices, with
E = (PC1 − PC2)/

̅̅̅
2

√
and C = (PC1 + PC2)/

̅̅̅
2

√
, that account for the vari-

ability of Eastern Pacific events and Central Pacific events (Figure 5, top),
respectively (Takahashi et al., 2011). While α = − 0.33 for observations,
α = 0.10 ± 0.06 for FREE (the error corresponds to the standard deviation
amongst the 10 members), which results from the negative ENSO asymmetry
of the CNRM‐ESM2.1 model (Lee et al., 2021). ASSIM has a more realistic
ENSO non‐linearity (α = − 0.29), almost identical to FORCED (α = − 0.28),
indicating that the nudging procedure succeeds in restoring positive ENSO
asymmetry to the observed value, along with improving ENSO diversity (see
the blue curve paralleling the red curve in Figure 4). Still, ASSIM tends to
have a larger ENSO variability than in the observations as evidenced by the
larger amplitude of the E and C mode patterns compared to observations
(Figure 5 middle), which is due to FORCED overestimating ENSO
variability.

4.2. Drivers of Interannual to Decadal Climate Variability

To examine the drivers of interannual to decadal Pacific variability simulated
by ASSIM, we focus on the Tripole Pacific Index (TPI) as defined by Henley
et al. (2015). The TPI is a proxy of the Interdecadal Pacific Variability (IPV)
and it is based on the difference between the SST anomalies averaged over the
central equatorial Pacific minus the average of the SST anomalies in the

Northwest and Southwest Pacific (see Bilbao et al., 2021; Henley et al., 2015 for more details). Here, we do not
consider SST anomalies as we are interested not only in the phase of the low frequency variability, but also in the
model mean state. ASSIM and FORCED are coherent with HadISST1 SSTs evolution (Figure 6a), which is
expected due to the sea surface restoring. The ensemble mean of the temporal correlation between each ASSIM
member and FORCED with HadISST1 is 0.92 (see Table 1). Interannual variability of TPI is underestimated by
the FREE ensemble as shown by Figure 6a and the variance ratio in Table 1. The smaller amplitude of Pacific
decadal variability in the CNRM‐Cerfacs models was also reported in Voldoire et al. (2019), which suggests a
lack of the ENSO teleconnection at decadal timescales. In terms of RMSE, ASSIM presents an improvement with
respect to FREE (Table 1). Interannual variability of OHC integrated over the first 300 m (OHC300) indicates that
ASSIM is quite in phase with EN4, with a correlation value of 0.79 (Figure 6b and Table 1). ASSIM also improves
the amplitude of the interannual variability with respect to FREE (see Table 1).

Regarding the OHC300 mean state, ASSIM and FORCED exhibit a cold bias which is weaker than in FREE
(Table 1, RMSE). This cold bias of CNRM‐ESM2.1 is also present in the coupled ocean‐atmosphere climate
model CNRM‐CM6.1 (Voldoire et al., 2019). In general, like most coupled models, CNRM‐Cerfacs models show
a cold temperature bias in the Pacific Ocean from the surface to around 300 m depth. This cold bias is suggested to
be caused by too strong surface winds curl exerting a pronounced wind stress curl into the surface ocean (see also
Figure 3c). From Figure 6b, ASSIM mean state lies in between the reference data EN4 and FREE, indicating that
initializing the ocean component of CNRM‐ESM2.1 from ASSIM could potentially reduce the model drift in the
predictions, which is actually the scope of our initialization procedure.

Another driver of interannual to decadal ocean variability is the Atlantic Multidecadal Variability (AMV). It was
shown that CNRM‐Cerfacs models simulate quite well the AMV spatial pattern in comparison to observations
(Voldoire et al., 2019). Here we analyze the Subpolar Gyre in the North Atlantic (SPNA), which is closely
correlated to the AMV. The SPNA SST time series (Figure 6c) exhibits a high temporal correlation with
HadISST1 in both ASSIM and FORCED, with correlations of 0.90 and 0.93, respectively (see Table 1).
Moreover, observations lie within the FREE multi‐member spread, indicating that in terms of mean state, the free
model performs quite well for this area. Note that the members of FREE show a pronounced variability, as also
indicated in the variance ratio in Table 1. Indeed, the models CNRM‐CM6.1 and CNRM‐ESM2.1 are

Figure 4. Phase space of the first and second principal components (PCs)
(PC) of monthly Sea Surface Temperature anomalies in the tropical Pacific
(120°E‐80°W; 11°S–11°N) for observations (blue dots, from HadISST
1960–2020) and the ASSIM runs (orange and red dots). Nonlinearity is
measured by fitted quadratic curves between PC values (blue: observations,
red: ASSIM, black: FORCED, green: FREE). The PC axes have been rotated
by 45° to infer the Eastern (E) and Central (C) Pacific indices. Three
different types of observed El Niño events are highlighted with light blue
circles (December): 1997 extreme Eastern Pacific El Niño, 2009 Central
Pacific El Niño and 2015 mixed‐type.
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characterized by a large SST variance over the SPNA at decadal timescales, which is strongly correlated to
AMOC variations, Arctic freshwater flux balance and northward salt transports from the tropical area (Voldoire
et al., 2019). The marked decadal variability in FREE is also visible in the OHC integrated over the first 700 m
(Figure 6d and Table 1). Once again, the correlation of ASSIM with regards to EN4 (0.91) indicates a good
temporal coherency in the ocean subsurface.

As mentioned above, AMOC variations simulated by CNRM‐ESM2.1 are highly correlated to decadal variability
over the SPNA and Northern Seas (Voldoire et al., 2019). Time series of maximum AMOC at 26°N show a large
low frequency variability in the members of FREE (Figure 7a), previously documented in Séférian et al. (2019)
and Waldman et al. (2021). The mean AMOC value at 26°N of FREE is 16.4 ± 2.3 Sv for the period 1960–2014.
The uncertainty in the latter value is estimated by considering one standard deviation amongst the members of the
ensemble. The FREE ensemble AMOC is in good agreement with the RAPID mean value of 16.8 Sv for the
observed period. Moreover, the depth of maximum observed AMOC is well simulated by FREE (Figure 7b).
FORCED and ASSIM show a weaker AMOC (Figures 7a and 7b), with mean values of 12.2± 0.7 and 12.6 ± 0.8
respectively. The GCP experimental protocol used to perform FORCED is quite similar to that proposed in
OMIP2/CMIP6 (Tsujino et al., 2020). The latter study documents that, in general, the forced ocean simulations
show a lower AMOC intensity compared to RAPID. This underestimation of the AMOC is even more pro-
nounced in the NEMO3.6/GELATO forced model configurations, suggesting that coupling with the atmosphere
plays an important role in this high variability and intensity of the AMOC in the CNRM‐Cerfacs models. The

Figure 5. C (left) and E (right) mode patterns for observations (top), FORCED and ASSIM (middle panels) and FREE
(bottom). Dispersion (rms amongst the ensemble) is indicated for FREE in white contours.
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nudging of temperature and salinity impacts the AMOC in ASSIM by altering density‐driven deep water for-
mation, leading to a correlation of 0.60 compared to FORCED.

The reason of the AMOC underestimation of ASSIM and FORCED can be partially explained by less dense
subsurface waters of ASSIM and FORCED compared with FREE over the deep convection areas, that is, Lab-
rador and GIN seas (Figure 7cd). These differences of density are mainly explained by warmer and less salty
waters in FORCED and ASSIM, which are less realistic than those of FREE. The impact of the T/S nudging of
CNRM‐ESM2.1 toward FORCED seems to affect freshwater fluxes over the Labrador and GIN‐Sea regions,
since ASSIM is less salty than FORCED. The AMOC and related ocean deep convection characteristics in the
ASSIM simulations are consistent with regional features of the Arctic SIC climatology (not shown). Indeed,
FREE has a more extended sea ice area than ASSIM over the marginal seas in winter, which is consistent with
colder and saltier waters over the Labrador and GIN Seas.

Figure 6. (a) Tripole Pacific Index (TPI) annual time series from 1960 to 2021 for the Sea Surface Temperature (SST) and
(b) ocean heat content (OHC) integrated over the first 300 m for the FREE ensemble (green), ASSIM ensemble (red),
FORCED (black) and HadISST1/EN4 (blue). (c) Subpolar North Atlantic (SPNA) index annual time series from 1960 to
2021 for the SST and (d) OHC integrated over the first 700 m for the same experiments. For the OHC the observational
reference is EN4. The TPI index is computed from raw data according to Henley et al. (2015). The SPNA index from raw
data is obtained according to Bilbao et al. (2021) (SPNA: 50–65°N, 60–10°W). For FREE and ASSIM the ensemble means
(thick line) and plus/minus one standard inter‐members deviation is shown (red and green shading).

Table 1
Performance Metrics (Correlation, Variance Ratio and Root Mean Square Error) Computed With Respect to the Observational References and the Different
Experiments: FORCED, ASSIM and FREE

TPI (SST)
FORCED ASSIM FREE

TPI(OHC300)
FORCED ASSIM FREE

SPNA(SST)
FORCED ASSIM FREE

SPNA(OHC700)
FORCED ASSIM FREE

Correlation 0.92 0.92 0.01 0.95 0.79 0.14 0.93 0.90 0.16 0.93 0.91 0.16

Variance ratio 1.17 1.06 0.83 0.96 0.83 0.71 0.91 0.84 1.30 0.95 0.90 1.57

RMSE 0.39 0.25 0.79 0.37 0.37 0.57 0.58 0.52 0.99 0.001 0.001 0.002

Note. The time series used to compute the metrics are displayed in Figure 6. The values shown for ASSIM and FREE are the ensemble mean of the values computed for
each individual member.
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The annual cycle of SIE and SIV shows that ASSIM is comparable to the FREE ensemble (Figure 8ab), except
from October to December where ASSIM performs better than FREE. In general, FORCED, ASSIM and FREE
overestimate the maximum Arctic SIE which is connected to a too cold mean state with respect to HadISST1
(Figure 8a). The SIV simulated by ASSIM overlaps the FREE climatology, indicating a weak control of the

Figure 7. (a) Time series of the maximum Atlantic Meridional Overturning Circulation (AMOC) at 26°N for the FREE ensemble (green), ASSIM ensemble (red),
FORCED (black) and RAPID data (blue). Units in Sv. (b) Vertical profile of AMOC at 26°N for the FREE ensemble (green), ASSIM ensemble (red), FORCED (black)
and RAPID data (blue). Units in Sv. For (a and b) the FREE and ASSIM the ensemble means are shown (thick line) together with plus/minus one standard inter‐
members deviation (shading). (c) Temperature‐Salinity diagram over the Labrador Sea area (70°W–45°W, 50°N–68°N) at 700 m depth for the FREE ensemble (green),
ASSIM ensemble (red), FORCED (black) and EN4 data (blue). Panel (d) The same as panel (c) but for the GIN‐Sea area (25°W–10°E, 65°N–80°N). Only ensemble
means are shown for FREE and ASSIM. Potential density is computed from the NCL function “rho_mwjf.”

Figure 8. Seasonal cycles of the Arctic Sea Ice Extent (SIE) (a) and Volume (b) computed in the period 1960 to 2021 for the
FREE (green), ASSIM (red), FORCED (black) and HadISST1 (blue). For FREE and ASSIM the ensemble means (thick line)
and plus/minus one standard inter‐members deviation is shown (shading).

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004193

SANCHEZ‐GOMEZ ET AL. 13 of 27

 19422466, 2024, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004193 by U
niversidad D

e L
as Palm

as D
e G

ran C
anaria, W

iley O
nline L

ibrary on [11/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



nudging on the volume. The correlations between ASSIM and FORCED interannual time‐series of SIE are 0.82
and 0.36 for March and September respectively (not shown). The strong correlation in March suggests that
nudging significantly constrains SIE in the ASSIM ensemble during the winter freeze‐up. In contrast, the weaker
correlation in September indicates that this constraint is less effective during the melt season, which aligns with
the greater influence of ocean conditions on sea ice during winter. Our results indicate that CNRM‐ESM2.1 will
be initialized from sea ice climatological conditions similar to those in the FREE experiment. This could be
advantageous for modeling sea ice drift, which may otherwise negatively impact predictability in the SPNA
region (Bilbao et al., 2021; Huang et al., 2015).

4.3. Biogeochemistry

The biases of both ocean surface chlorophyll maximum and minimum show that the FORCED simulation has
difficulties in representing surface chlorophyll patterns (Figures 9a–9d). In general, the FORCED simulation
underestimates the maximum chlorophyll values in the North Atlantic and North Pacific Oceans, while it
overestimates both maximum and minimum chlorophyll observations in both the Pacific and Southern Oceans.
The FORCED simulation also overestimates observations in the North Atlantic. The FREE biases with respect to
the FORCED simulation are stronger over the western boundaries in the northern oceans and over the Southern
Ocean for chlorophyll minimum (Figures 9b–9e). The difficulties of CNRM‐ESM2.1 to represent surface
chlorophyll over the Southern Ocean were documented in Séférian et al. (2019), and related to erroneous
phytoplankton growth representation over the high‐nutrients areas. Coastal chlorophyll biases were explained by
deficiencies in remote‐sensing products to represent coastal concentrations of surface chlorophyll (e.g., Gregg &
Casey, 2004).

ASSIM biases with respect to the FORCED simulation are still similar to those shown for the FREE simulation
(Figures 9c–9f). A lower RMSE and higher pattern correlation quantitatively indicate that ASSIM deviations
from FORCED are smaller, pointing at a marginal impact of the sea surface restoring and 3D nudging. However,
the nudging applied to temperature and salinity does not improve chlorophyll concentrations because it fails at
improving distribution of nutrients in most regions. Indeed, an analysis on the biases of both surface nitrate (NO3)
concentrations and mixed layer depth (MLD) between FREE and ASSIM with respect to WOA2018 climatology
(Figure S1 in Supporting Information S1), suggests that the biases in NO3 are too strong to be compensated by the
nudging on ocean physics. Moreover, in both the Southern Ocean and the North Atlantic, an underestimation of

Figure 9. (a, d) Difference of ocean surface chlorophyll maximum (top panels) and minimum (bottom panels) between FORCED with respect to ESA‐OC‐CCIv3.1
observations over the period 1998 to 2017. Differences between FREE (b, e) and ASSIM (c, f) with respect to FORCED over the same period. Global average spatial
correlations and root mean square error (RMSE) are shown on the top of each figure. Correlations and RMSE are computed against WOA2018 for (a, d) and against
FORCED simulation for (b, c, e, and f). Surface chlorophyll maximum corresponds to the average over the months March, April, and May. Surface chlorophyll
minimum corresponds to the average over the months August, September, and October. Observations correspond to monthly climatological data extracted from the
quality‐controlled 1° resolution ESA‐OC‐CCIv3.1 data set (Valente et al., 2022).
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the MLD together with an overestimation of NO3 may explain the consistent overestimation of surface chlo-
rophyll minimum in those regions. Nutrient‐rich waters that concentrate within a shallow MLD will strengthen
the excessive development of phytoplankton. Phytoplankton growth in these regions will become limited by light
availability, which explains why the overestimation of surface chlorophyll maximum is not as high as for surface
chlorophyll minimum, especially over the North Atlantic.

The impact of the nudging on NPP is diagnosed over the tropical oceans in terms of interannual variability and
temporal coherence with respect to observational estimates. Figure 10a shows that the nudging leads to an
improvement of simulated interannual variance and temporal coherence with observations for ASSIM with
respect to FREE in the tropical band. This improvement comes from the Tropical Pacific (Figure 10b), for which
the correlation between ASSIM and observations is high (around 0.6). The fact that the sea surface restoring
improves the phasing of the NPP interannual variability of CNRM‐ESM2.1 with respect to NPP observational
estimates over the Pacific Ocean was also documented by Séférian et al. (2014). The SST restoring induces an
improvement of SST gradients and short‐term dynamical adjustment of winds, which combined with a good
representation of nutrients over the area by CNRM‐ESM2.1 can lead to a better simulated NPP. Contrary to the
Pacific, oceanic nudging does not induce a clear impact in the NPP representation in the other tropical basins. In
the Atlantic and the Indian oceans, ASSIM and FREE results are very similar.

At this point, the quality of FORCED and ASSIM for the biogeochemistry against observations may be ques-
tionable. Further evaluation of these reconstructions could be considered, but validation would be challenging due
to the uncertainties and limitations of the observational biogeochemical data. While studying the variability of
these marine biogeochemical variables is scientifically relevant, we believe it is beyond the scope of this paper,
which focuses on introducing a novel prediction platform and documenting its performance. The performance of
global biogeochemical models in ocean‐forced configurations has been examined in several other publications
stemming from the GCP/RECCAP2 initiative (Doney et al., 2024; Terhars et al., 2024). Although not without
imperfections, the ocean and biogeochemical forced configurations used as surrogates for observations are
considered state‐of‐the‐art and are well‐documented and assessed in the scientific literature.

Figure 10. Scatterplot of the variance ratio experiment/observation versus temporal correlation (experiment/observations)
for the integrated primary productivity averaged over the (a) whole tropical regions (30S‐30°N), (b) the tropical Pacific,
(c) the tropical Atlantic and (d) the Indian Ocean for the FREE ensemble (green), ASSIM ensemble (red), FORCED (black).
Blue dashed line indicates a perfect match (=1) for the variance ratio. The observational reference is issued from Kulk
et al. (2020) data set for the available period 1998–2018.
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The impact of the nudging on the ocean carbon sink is assessed in terms of trends and variability in Figure 11.
Figure 11a shows that FREE and ASSIM simulations capture the long‐term increase of the global carbon sink as
shown by the GCP reconstruction between 1990 and 2021 (Friedlingstein et al., 2022). Interestingly, both FREE
and ASSIM capture the strengthening of the ocean carbon sink over the recent years, whereas GCPmodels do not.
Nonetheless, it is difficult to identify an impact of the nudging on the simulated trends in ocean carbon sink in
ASSIMwith respect to FREE. In particular, the nudging does not improve the representation of the decadal swing
of the ocean carbon sink observed before and after the 2000s. Indeed, all models' configurations fail at capturing
the slowdown of the ocean carbon sink in the 2000s, including ASSIM. However, the GCP models are closer to
those data‐products displaying a weaker variability.

Figure 11b helps to identify the added value of the nudging by scrutinizing its impact on the simulated variability
in terms of magnitude and chronology. The nudging improves the consistency between modelled and observed
chronology in ocean fugacity, and slightly reinforces the magnitude of the ocean carbon sink variability. This
improvement is due to the fact that fCO2 is driven by changes in temperature and salinity in the ocean, which are
directly impacted by the nudging approach. Although small, the improvement in the modelled chronology of the
ocean carbon sink variability has the potential to improve the capability of the model to predict year‐to‐year
variation in ocean carbon sink.

5. Skill Assessment of Key Climate and Biogeochemical Fields
5.1. Seasonal Timescale

ENSO diversity is considered to assess forecast performance of C3PS considering that central and eastern
equatorial Pacific variability modes convey different tropical teleconnections outside the tropical Pacific
(Taschetto et al., 2016; Yeh et al., 2009). For that, the forecast members are projected on the spatial patterns of the
two ENSO modes shown in Figure 5 to obtain the E and C indices. As a reminder the E and C indices are un-
correlated by construction. ACC values for the start date of 1st November show very high and significant scores
for all lead times (Figures 12a and 12b). C3PS performs better than persistence for lead times greater than
6 months (i.e., summer after the initialization) for the E‐mode and for all lead times for the C‐mode. C3PS is more
skillful at predicting central Pacific ENSO variability than eastern Pacific ENSO variability, which results from

Figure 11. (a) Annual time‐series of the ocean carbon sink from 1990 to 2021 for FREE and ASSIM ensembles and Global
Carbon Project (GCP) data product (Friedlingstein et al., 2022). The ocean carbon sink is represented in anomaly with
respect to the long‐term mean over the 1990–2021 period. The ensemble mean of available GCP ocean biogeochemical
models and observational data products are given in gray and dark blue. For the sake of discussion, the ensemble of the eight
available data‐products is split in two sub‐ensemble characterized by either a stronger (GCP data Strong Var, +) and lower
(GCP data Low Var, ∼) variability than the ensemble mean. (b) Scatter plot comparing model properties in terms of
variability of the ocean carbon sink (y‐axis) and the chronology of the ocean CO2 fugacity (fCO2) over the 1990–2021
period is provided for individual realization of FREE (green), ASSIM (red) and GCPmodels (gray). The ensemble average is
given by the green, red and black crosses for FREE, ASSIM and GCP models. The dimensions of the vertical and horizontal
bars on the crosses represent the magnitude of the spread of the GPC, ASSIM, and FREE ensembles for each axis.
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difficulty in predicting strong El Nino events that are of E type, a common feature of seasonal prediction systems
(L’Heureux et al., 2020). In general, the central equatorial Pacific is more predictable than the eastern edge, where
ENSO‐related phenomena involve a sharp change in convective regime and non‐linear oceanic processes,
resulting in a strong positive skewness of the E index (Takahashi et al., 2011). La Niña events that are of C type
tend also to be more easily predictable, in particular due to the fact that they usually take place after a strong EP El
Niño that have a strong discharge of heat content making the subsequent La Niña lingered over a few years (Liu
et al., 2023; Sharmila et al., 2023). At last, most coupled models, like CNRM‐ESM2.1, also have a warm bias in
the far eastern Pacific that is influential on the forecasts (L’Heureux et al., 2022).

C3PS is effective at predicting both types of ENSO since ACC remains significant for 12 months after initiali-
zation for the E‐mode, and at least 13 months for the C‐mode. Potential predictability is slightly higher, the
difference with ACC computed from observations increases at longer lead times. We have checked that the C3PS
performances at predicting ENSO during the period 1960–2021 are comparable to the current seasonal pre-
dictions systems such as SEAS5‐20C (Sharmila et al., 2023; Weisheimer et al., 2021) (not shown). RMSE scores,
which take into account the prediction of the ENSO amplitude, beat persistence scores for longer lead times
(Figure 12cd). Again, potential predictability is higher, in particular for ENSO‐C.

ENSO skill for the 1st May starting date presents ACC values above persistence from 2 months onwards lead
times (Figure 13). Again C3PS achieves better performance for the ENSO‐C mode. Since boreal spring (the
season of initialization) corresponds to that of the ENSO onset and the usually enhanced Madden‐Julian oscil-
lation variance, we may expect that the system has also good performance in predicting the tropical Pacific
teleconnection at that season. Potential predictability exceeds that of FORCED by an average of 0.1 correlation
across all lead times.

Figure 12. ENSO seasonal forecast skill: (a, b) anomaly correlation coefficient skill and (c, d) rms error for the ensemble‐
mean (30 members) as a function of lead time for the E and C indices over the period 1960–2021 for the initialization in 1st
November and compared to persistence forecasts (dotted line). Red is for ASSIM as the benchmark data (i.e., potential
predictability) and the blue is for HadISST1 data as the reference. Dots indicate where the correlation is significant at the 95%
level based on a t test. Persistence score (or persistence forecast) refers to the autocorrelation of the referenced data set (either
HadISST1 or ASSIM).
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5.2. Multiannual Timescale

Skill maps of ACC computed between PRED and FORCED for surface temperature show high and significant
skill over large portions of the globe for forecast years Y1, Y2 and Y1‐5 (Figure 14, left column). ACC scores are
usually higher in the tropics than in the extra‐tropics. For Y2, the skill rapidly decreases over the Eastern Pacific
and the Southern Ocean but remains high and significant over the North Atlantic and Indian Oceans, Europe,
Northern Asia, Northern Africa, North America and some areas in South America. Considering Y1‐5, the
temporal average over the five forecast years, the ACC skill is high and significant over a great portion of the
Northern Hemisphere and the Indian Ocean. Potential predictability, measured by the ACC between PRED and
ASSIM, is clearly higher (middle column) in many regions of the globe, including most of the continental areas,
except India.

When we compare PRED and FREE skills in terms of potential predictability (Figure 14, right column), results
show that some regions exhibit larger skill scores in PRED at Y1, indicating that initialization largely improves
ACC scores in most of the Pacific Ocean, SPNA, western tropical Atlantic and northern South‐America, central
Indian Ocean and eastern Australia. In general, from Y2 onwards much of the skill is provided by the large
externally‐forced trend as shown by the similarity between PRED and FREE skill scores. The regions where
initialization still plays an important role are the SPNA, Equatorial Pacific, Southern Pacific and Indian Oceans,
as well as over North America and Brazil. For Y1‐5, the added value of initialization remains over the SPNA and
Southern Pacific. The fact that one of the areas of clear benefits of the ocean initialization is the SPNA is
consistent with the results reported by current decadal prediction systems (IPCC, 2023).

As indicated by MSSS scores of TPI, PRED is more accurate than FREE at Y1 (Figure 15a), skill computed from
both references FORCED and ASSIM showing similar scores. Comparison with observational estimates are also
shown in Figure 15. After Y1, PRED and FREE performances both become statistically insignificant (Figures 14
and 15a). Similarly, focusing on the SST skill over the SPNA area, MSSS indicates that PRED performs better
than FREE (Figure 15b) for lead times up to 3 years. If we focus on potential predictability, PRED is always more
accurate than FREE up to Y4 over the SPNA (Figures 14 and 15c).

Figure 13. Same as Figure 12 but for the initialization in May.
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The impact of atmospheric initialization is also briefly addressed (see Figure S2 in Supporting Information S1). It
is important to note that the atmosphere is initialized from the ERA5 reanalysis for the dynamical atmospheric
variables and from ASSIM for the others. We analyzed a second set of forecasts (initialized solely on November

Figure 14. Left column: anomaly correlation coefficient (ACC) skill scores for Sea Surface Temperature (SST) and surface air temperature (SAT) over land computed
between PRED and FORCED for SST and between PRED and JRA55do reanalysis for SAT for forecast year 1 (top), forecast year 2 (middle) and average of forecast
years (bottom). Middle column: the same but the ACC is computed between PRED and ASSIM (potential predictability). Right column: Differences between the ACC
of PRED versus FREE when ASSIM is used as reference. All the data were interpolated to a regular 5‐degree grid before the analysis. Stippling with gray dots indicates
skill scores that are not significant at the 10% level based on block‐bootstrapping as explained in the text. Stippling with light brown dots indicates ACC differences that
are not significant at the 10% level based on block‐bootstrapping as explained in the text.

Figure 15. (a) Mean Square Skill Score (MSSS) skill scores for the SSTs for the Tripole Pacific Index (TPI). To compute
MSSS, mean‐square errors of PRED and FREE are compared with respect to the same reference: observations (HadISST1,
blue line), FORCED (black line) and ASSIM (red line). Positive MSSS indicates that PRED performs better than FREE. The
dots indicate where MSSS is statistically significant at the 10% level based on block‐bootstrapping as explained in the text.
(b) The same as (a) but for SSTs over the SPNA box. The TPI index is computed from raw data according to Henley
et al. (2015). The SPNA index from raw data is obtained according to Bilbao et al. (2021) (SPNA: 50–65 N, 60–10 W).
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1st) using raw atmospheric initial conditions from ASSIM, without replacing the ERA5 dynamical fields in the
ARPEGE restarts. Ten ensemble members were generated with this configuration. Our findings indicate that
using ERA5 data for atmospheric initialization results in a slight increase in initial shock over the tropical Pacific.
However, this initial shock does not significantly affect forecast skill on multi‐year timescales. Additionally,
atmospheric initialization moderately improves skill at seasonal timescales over the Equatorial Pacific, though we
remain cautious about these results due to the relatively small ensemble size.

The forecasting skills of C3PS for biogeochemical variables such as NPP and ocean carbon fluxes are also
assessed using the concept of potential predictability and compared with the skill calculated using FORCED. NPP
skill scores show in general a high level of predictability over midlatitudes at Y1, Y2 and the average Y1‐5
(Figure 16, left column). In contrast, the predictability of NPP in most of the tropics is very low and even the
skill can be even negative when the variability of the NPP is opposite in phase with that of the target (FORCED or
ASSIM). Such global features of the C3PS predictive skill for NPP contrast with the results of Séférian
et al. (2014) using the IPSL‐CM5A‐LR model and SST anomaly initialization scheme but are in line with the
findings of Frölicher et al. (2020) using GFDL‐ESM2‐M.

Potential predictability of NPP shows good skill scores worldwide for Y1 (Figure 16, middle column). At Y2 NPP
skill decreases over some areas in the Equatorial Pacific, western Atlantic, Northern Indian and Southern Oceans,
but in general it remains high and statistically significant over most of the ocean for Y1‐5. Most importantly, NPP
skill is high in the areas of highest marine productivity, such as the equatorial and eastern boundary upwelling
systems, in particular the Canary Upwelling System. The impact of model initialization is more important on the
NPP than on the SST beyond the second year of forecasting, indicating that the initialization of the BGC un-
doubtedly leads to benefits in predictive ability. PRED performs better than FREE practically everywhere at Y1
(Figure 16, right column). At longer horizons, ACC differences show that PRED is more accurate than FREE over

Figure 16. Left column: anomaly correlation coefficient (ACC) skill scores for Net primary production computed between PRED and FORCED for forecast year 1 (top),
forecast year 2 (middle) and average of forecast years (bottom). Middle column: the same but the ACC is computed between PRED and ASSIM (potential
predictability). Right column: Differences between the ACC of PRED versus FREE when ASSIM is used as reference. All the data were interpolated to a regular 5‐
degree grid before the analysis. Stippling with gray dots indicates skill scores that are not significant at the 10% level based on block‐bootstrapping as explained in the
text. Stippling with light brown dots indicates ACC differences that are not significant at the 10% level based on block‐bootstrapping as explained in the text.
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the Eastern North Atlantic, including the Canary Upwelling area, Tropical Atlantic, North Pacific and Central
Equatorial Pacific and most of the Indian Ocean.

ACC skill of ocean carbon fluxes with FORCED as the reference is relatively high and significant over the
tropical band and Southern Oceans during the first 2 years after the initialization (Figure 17, first and second
column). This result is consistent with the first multi‐model assessment of the ocean carbon sink prediction skills
(Ilyina et al., 2021).

C3PS provides skillful predictions of ocean carbon uptake at multiannual scale over the high latitude oceans and
the tropics. Potential predictability is even higher and indicates the important fact that ocean carbon fluxes can be
predictable several years in advance over the areas of large carbon uptake variability such as North Atlantic and
North Pacific oceans and Southern Ocean. These results support previous predictability studies based on perfect
model frameworks or decadal predictions with ESMs (Lovenduski et al., 2019; Séférian et al., 2019). More
importantly, this potential predictability exceeds that inferred by the knowledge of the external forcing for the first
2 years after the initialization (Figure 17, right column). After that time horizon most of the predictive skill comes
from the increase of atmospheric CO2 as the primary driver of the ocean carbon sink. Within the lead years 1, 2
and 1–5, the predictable fraction of the ocean carbon sink is 37%, 19%, 16%. The fractions indicate the proportion
of ocean grid points where the skill of PRED is both greater than that of FREE and statistically significant, relative
to the total number of grid points in the ocean. At Y1, predictable regions include the North Atlantic and the
Southern Ocean, the two major ocean carbon sink locations, as well as the Equatorial Pacific and northern Indian
ocean. After Y2, only the Southern ocean carbon sink remains predictable as well as a smaller fraction of the
Equatorial Pacific and Indian oceans. This result is in line with previous work made with other modeling pre-
diction platforms (Lovenduski et al., 2019; Séférian et al., 2019).

Figure 17. Left column: Anomaly correlation coefficient (ACC) skill scores for ocean carbon fluxes computed between PRED and FORCED for forecast year 1 (top),
forecast year 2 (middle) and average of forecast years (bottom). Middle column: the same but the ACC is computed between PRED and ASSIM (potential
predictability). Right column: Differences between the ACC of PRED versus FREE when ASSIM is used as reference. All the data were interpolated to a regular 5‐
degree grid before the analysis. Stippling with red dots indicates skill scores that are not significant at the 10% level based on block‐bootstrapping as explained in the
text. Stippling with gray dots indicates skill scores that are not significant at the 10% level based on block‐bootstrapping as explained in the text. Stippling with light
brown dots indicates ACC differences that are not significant at the 10% level based on block‐bootstrapping as explained in the text.
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6. Conclusions
In this study, the new climate prediction prototype of the CNRM‐Cerfacs modeling group, C3PS is presented and
evaluated. The two main novelties are that C3PS is based on an ESM, CNRM‐ESM2.1, and has been designed to
produce predictions from seasonal to multiannual scales. C3PS is the result of the joint work of experts in seasonal
and decadal forecasting and modellers of ocean physics and biogeochemistry within the CNRM‐Cerfacs research
group. In addition, for multiannual predictions, C3PS has participated in the international DCPP‐A exercise, and a
subset of the variables produced are published in the ESGF.

The initialization procedure of C3PS consists of a full‐field initialization in which all the model components are
initialized from an in‐house reanalysis product obtained in two steps. The first step is a forced experiment in
which ocean and biogeochemistry models are driven by JRA55do reanalysis following the GCP protocol. In the
second step, the T and S of this forced experiment are used to constrain only the ocean physics of CNRM‐ESM2.1
through sea surface restoring and a Newtonian damping in the ocean subsurface, as described in Sanchez‐Gomez
et al. (2016). This method has been implemented in other climate prediction systems as in Bilbao et al. (2021). The
reconstruction obtained is called dcppA‐assim according to the nomenclature used in the DCPP protocol.

In this paper we have performed a basic validation of the dcppA‐assim (ASSIM) experiment, which is not often
done in other studies presenting forecasting systems. For us it is important to evaluate and to document the quality
of our initial conditions and to investigate how the nudging of T and S affects the behavior of other variables, such
as AMOC and biogeochemistry. We believe that the study of the reconstructions created to initialize the climate
prediction systems is relevant, and even more so in the context of the new applications offered in the prediction of
marine biogeochemistry and carbon fluxes.

ASSIM shows improvements with respect to the historical ensemble FREE in the modes of variability at the
seasonal and decadal scales. The improvements are notable in the Pacific, with better representation of ENSO
diversity by ASSIM and of Pacific decadal variability associated with the IPV. For other variables and other
regions such as in the SPNA, ASSIM shows consistency with the temporal phase of observations in both ocean
surface and heat content.

Regarding the initialization of biogeochemistry, we found the interesting result that the nudging of T and S is not
sufficient to constrain the biogeochemistry, as seen in the biases presented by ASSIM in chlorophyll. We suggest
that biases in nutrients, such as NO3, and an underestimation of MLD can consistently explain the misrepre-
sentation of chlorophyll in ASSIM. This result offers perspectives for improving the reconstruction of biogeo-
chemical variables, indicating that we should pay special attention to nutrients, which leads us to think of a
nutrient nudging complementary to the nudging of physical variables.

Nevertheless we show that the T/S nudging leads to a significant improvement in the amplitude of the variability
and temporal chronology of the NPP in the Tropical Pacific, coherent with previous studies (Séférian et al., 2014).
Moreover, our results also show an added value of nudging in representing carbon sink variability in terms of
magnitude and timing. This improvement is due to the fact that the fugacity is controlled by changes in T and S in
the ocean, which are directly affected by the nudging.

In terms of skill at seasonal scale, C3PS shows a very similar ENSO prediction skill to other seasonal forecasting
systems. Considering the diversity of ENSO, the C‐ENSO mode exhibits higher and significant skill levels
compared to the E‐ENSO mode. This is somewhat expected since the E‐ENSO mode is associated with the
variability of extreme El Niño events whose onsets are difficult to predict due to their nonlinear dynamics.
Seasonal prediction systems also exhibit a persistent mean temperature bias in the far eastern Pacific, which alters
key ENSO processes (e.g., thermocline feedback and atmospheric convection) in this region explaining the lower
skill in terms of the E‐ENSO mode. However the C3PS skill at seasonal timescales in the tropical Pacific is
encouraging for addressing seasonal forecast skill over other regions assuming a realistic simulation of ENSO
atmospheric teleconnections. Such an estimation may however suffer from the limitation of using only 30
members for the first prototype of C3PS. We have considered extending the ensemble size for future applications
and evaluation.

On an multiannual scale, the C3PS results are consistent with those found in other decadal forecasting systems
(IPCC, 2023), that is, C3PS shows a clear added value of ocean initialization in the prediction of SST and SAT in
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the first 2 years. The novelty is a significant prediction skill of SSTs in the equatorial Pacific at Y1. On longer time
scales, the added value of initialization is only detectable in the SPNA area.

The most innovative aspect of the C3PS results is the potential predictive skill displayed for NPP and carbon
fluxes at different lead times. The high levels of NPP potential predictability at multiannual timescales were
already reported in Séférian et al. (2014) and recently addressed in Yeager et al. (2022). These results corroborate
previous findings and confirm the potential benefits for marine ecosystem prediction based on integrated
physical‐biogeochemical forecasting platforms such as C3PS (Tommasi et al., 2017). The fact that the evolution
of carbon fluxes is potentially predictable over the regions of major carbon sink locations is also promising for
improving our estimations of the future global carbon budget in the climate system.

We might consider whether running the CNRM‐ESM2.1 in emission mode could affect the CO2 predictability.
As demonstrated by Hajima et al. (2024, in discussion), switching from a concentration‐driven to an emission‐
driven configuration can have direct implications for the ocean carbon sink. Testing C3PS performance in
emission‐driven mode is a very obvious perspective, especially since this approach is already used for natural
aerosols.

To finish, although C3PS is designed with an improved initialization scheme, the C3PS multiannual predictions
still suffer from initial shocks and drifts after the initialization. In particular the ENSO drift documented in
Sanchez‐Gomez et al. (2016) is still present in the C3PS predictions. As shown in this study, the first year after the
initialization is characterized by a quasi‐systematic excitation of ENSO warm events that trigger teleconnection
patterns over the midlatitudes, potentially polluting the signals to be predicted. The drift problem is one of the
major challenges in decadal prediction. Although some progress has been achieved since the early 2000s, drifts
are still present in decadal prediction systems. In addition to improving climate models to reduce errors, another
essential aspect is the improvement of the data assimilation technique to obtain initial states compatible with the
climate model that will be used to make the prediction. On this line, some decadal forecasting centers are opting
for “in‐house reanalysis” built from the coupled models used to make the forecasts to maintain physical con-
sistency amongst all model components. This idea involves using more complex data assimilation methods, such
as the Ensemble Kalman Filter or the particle filter approaches (Counillon et al., 2014; Dai et al., 2020; Zunz
et al., 2015) which have been successfully applied in the context of decadal prediction. This offers interesting
pathways for improving initialization and for these reasons the implementation of a particle filter in C3PS is one
of the perspectives to improve the initialization procedure.

Data Availability Statement
The HadISST (Rayner et al., 2003) data set for SSTs and corresponding documentation are available on https://
www.metoffice.gov.uk/hadobs/hadisst/data/download.html. The EN4 ocean temperature data (Good et al., 2013)
are available on https://www.metoffice.gov.uk/hadobs/en4/download.html. The RAPID array data (Moat
et al., 2022) are available on https://rapid.ac.uk/challenge/data_download.php. The ESA‐OC‐CC data are
available on https://climate.esa.int/en/projects/ocean‐colour/. The simulations used in this study are performed by
the CNRM‐ESM2.1 ESM (Séférian, 2019) https://doi.org/10.22033/ESGF/CMIP6.1395. The model outputs
(Séférian et al., 2019) are available for download on ESGF under CMIP6 projects (https://esgf‐metagrid.cloud.
dkrz.de/search/cmip6‐dkrz/?mip_era=CMIP6&activity_id=ScenarioMIP&institution_id=CNRMCERFACS&-
source_id=CNRM‐ESM2‐1). The SURFEX‐CTRIP code (Decharme et al., 2019) is available at (http://www.
umr‐cnrm.fr/surfex/spip.php?article387) at the SURFEX website (http://www.umr‐cnrm.fr/surfex). NEMO‐
GELATO‐PISCESv2‐gas (Madec et al., 2023) is also available at https://www.nemo‐ocean.eu/. The access to the
Git repository is granted upon request to the corresponding author. OASIS3‐MCT software (Craig et al., 2017)
can be downloaded at this website (https://oasis.cerfacs.fr/en/download‐oasis3‐mct‐sources/). XIOS (Meurde-
soif, 2018; Meurdesoif, 2018) can be downloaded at the XIOSV2.0 website (https://zenodo.org/records/4905653)
and documentation can be found at (https://forge.ipsl.jussieu.fr/ioserver). For the ARPEGE‐Climat_v6.3 code
(Roehrig et al., 2020) and exact version applied to each component, please contact the authors. Most of the
computations performed in this study have been done by using NCL free software version 6 (NCL 2019; https://
www.ncl.ucar.edu/). Finally, a number of analyzing tools developed at CNRM, or in collaboration with CNRM
scientists, is available on as Open Source code (see https://opensource.cnrm‐game‐meteo.fr/).
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