

Key factors influencing the guest loyalty towards green hotels in an island sun and beach destination

Journal:	<i>Journal of Hospitality and Tourism Insights</i>
Manuscript ID	JHTI-07-2024-0674
Manuscript Type:	Research Paper
Keywords:	Circular practices, Green hotel, Hotel Environmental Policy, Guest loyalty, PLS-SEM, Multigroup Analysis (MGA).

2© [2025] This manuscript version is made available under the CC-BY-NC-ND 4.0 license
<http://creativecommons.org/licenses/by-nc-nd/4.0/>

This document is the Accepted Manuscript version of a Published Work that appeared in final form in [Journal of Hospitality and Tourism Insights]. To access the final edited and published work see [10.1108/JHTI-07-2024-0674](https://doi.org/10.1108/JHTI-07-2024-0674)

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 Key factors influencing the guest loyalty towards green hotels in an island sun and 2 beach destination

4 ABSTRACT

5 Purpose - A study has been conducted in Gran Canaria to analyze the drivers and factors that influence
6 guest loyalty to green hotels, and to identify the hotel guests with circular preferences.

7 Design/methodology/approach - We propose a conceptual to assess if guest circular preferences and
8 behaviour and hotel environmental policy affect guest loyalty towards green hotels. A survey was conducted
9 with tourists accommodated in hotel establishments in Gran Canaria, and 211 questionnaires were obtained.

10 Findings - This model identifies main predictors of accomplishment and connects them to different measures
11 that help to achieve better performance in terms of circular hotel practices. This paper identifies those tourist
12 segments with a more pro-circular behaviour and uses a multi-group analysis by partial least squares to assess
13 the moderation of control variables of the theoretical model proposed.

14 Originality/value - The value added to the research on tourists' circular and eco-friendly behaviour is
15 threefold: First, it analyzes the tourists' intention and behaviour in an island destination, while most empirical
16 research was carried out in continental areas. Second, we assess the moderation effect of several control
17 variables (gender, age or booking system), identifying different tourist segments and finding the ones with a
18 more pro-circular behaviour. Third, results offer insights for destination management organizations and hotel
19 marketers to develop an appropriate strategy to promote circular practices among tourists and to identify
20 those willing to pay more for a green hotel or room.

21 **Keywords:** Circular practices; Green hotel; Hotel Environmental Policy; Guest loyalty; PLS-SEM;
22 Multigroup Analysis (MGA).

23 **Article Classification:** Research Paper.

24 1. INTRODUCTION

49
50 25 In recent times, Western industrialized nations have placed growing emphasis on environmental
51
52 26 consciousness and the advancement of sustainable development. This has catalyzed a push towards adopting
53 27 a circular economy (CE) framework aimed at guaranteeing long-term sustainability.
54
55

56 28 Tourism fast growth has raised the visibility of its environmental effects and increased tourists' concerns
57 29 about how to deal with them (Hall, 2016). However, the tourism sector is characterized by a linear
58

1
2
3
4
5 30 consumption-production model based on high consumption of resources, and it is a highly waste-generating
6 31 industry (Rodríguez et al., 2020). In Europe, tourism activity produces 6.8% of total waste generated (EEA,
7 32 2019). Additionally, the tourism industry emits 8% of the global carbon dioxide, and the hotel industry
8 33 produces 1% of worldwide greenhouse gas emissions (UNWTO, 2018). Tourism also generates other
9 34 negative externalities like biodiversity loss, road congestion, and noise pollution and has contributed to
10 35 climate change effects like sea level rise (UNWTO, 2018).

11
12
13
14
15 36 The transition to a CE in a destination, in addition to reducing or eliminating the negative environmental
16 37 externalities, will contribute to the achievement of the Sustainable Development Goals in the 2030 Agenda
17 (UNWTO, 2018), especially to sustainable use of oceans and marine resources (goal 14), responsible
18 38 consumption and production (goal 12), sustainable cities and communities (goal 9), and, inclusive and
19 39 sustained economic growth (goal 8).

20
21
22
23 41 The negative environmental externalities of tourism activities have recently led policymakers to stress the
24 42 need to promote the evolution to a CE in tourism in many countries or regions (e.g. UNWTO, 2021;
25 43 MITECO, 2020), and it has also become a popular topic in the literature in the past five years. The scarce
26 44 literature on CE and tourism has mainly focused on the supply side (Rodríguez et al., 2020), especially on
27 45 the hotel sector, while tourists are a critical factor in the transition to a CE in a destination.

28
29
30
31 46 GfK Panel Services Deutschland (2009) considers that hotel customers do not perceive environmental
32 47 aspects as essential benefits, overlooking the interconnection between the quality of the environment nature
33 48 and the hotel's sustainability policy. They show that tourists' knowledge of the green hotel practices generates
34 49 confidence in the hotel quality, which indicates that they are willing to pay more for a green hotel. However,
35 50 the willingness to pay a premium varies significantly depending on the type of tourist. This study concludes
36 51 that adopting eco-friendly management strategies enhances customers' perception of quality. Furthermore,
37 52 environmental awareness also plays a key role in the booking process, leading to a significant opportunity
38 53 for the hotel to create a competitive advantage through the sustainability strategies outlined in its
39 54 environmental policy.

40
41
42
43
44
45 55 In this scenario, examining tourists' attitudes and behaviours regarding circular and sustainable practices
46 56 while visiting a tourism destination is crucial for implementing a sustainable and circular management
47 57 approach that prioritizes environmental conservation. However, the recent literature only measures the
48 58 reaction of tourists visiting ecolabel-certified hotels, not all types of hotels (Merli et al., 2019; Preziosi et al.,
49 59 2019). Other papers focus on the general environmental behaviour of tourists in a destination, and the
50 60 literature needs to consider the different demand segments with possible different behaviours. Additionally,
51 61 the research available needs to go more in-depth into the circular or eco-friendly behaviour of tourists at
52 62 home, as this might have some influence on the circular behaviour while travelling (Acampora et al., 2022;
53 63 Patwary et al., 2023).

1
2
3
4
5 64 This paper tries to contribute to the knowledge of the role of tourist loyalty towards green hotels in this
6 65 transition towards a CE in an island sun and beach destination by analyzing the key drivers that influence
7
8 66 their decision-making process, assessing if the attitude of adopting circular practices when travelling and at
9 67 home and the hotel's circular practices influence their environmental awareness. The paper does not only
10
11 68 focus on tourists' behaviour at the destination; we also consider their home circular behaviour and practices,
12 69 while we implement a multi-group analysis to detect different behaviours across different tourism segments,
13
14 70 such as gender, age, booking channel, type of board and type of traveller. It is essential to know how
15 71 customers behave regarding circular practices, as well as to rank their preferences toward the CE practices
16 72 in hotels so that we can identify the type of customer that prefers greener practices. This can allow us to
17
18 73 focus on demand segments that present higher levels of environmental commitment.
19

20
21 74 The paper contributes to the research on tourists' circular and eco-friendly behaviour in several ways. First,
22 75 it focuses on analyzing the intention and behaviour of the tourists in an island mature destination, while most
23 76 empirical research has been carried out in continental areas. Second, we assess the moderation effect of
24
25 77 several control variables such as gender, age or the booking system used. This leads to identifying different
26 78 tourist segments and finding the ones with more pro-circular behaviour. Third, results will offer insights for
27
28 79 destination management organizations and hotel marketers to develop a more appropriate strategy to promote
29 80 CE practices among tourists and to identify those with pro-circular behaviour who might be willing to pay
30 81 more for a green or circular hotel or room.
31
32 82

33 34 83 2. THEORETICAL FRAMEWORK 35

36
37 84 Many studies show that tourists evoke concern for the environment as a critical aspect of their vacation
38 85 experience quality (e.g. Acampora et al., 2022; Preziosi et al., 2019). The study of how consumers' awareness
40
41 86 and attitudes toward environmental issues affect environmental/green consumption and behaviour is a
42 87 popular topic in the literature. Santos-Corrada et al. (2023) show that in the context of CE, environmental
43
44 88 awareness is the most relevant variable influencing sustainable consumption practices, and the level of
45 89 awareness affects environmental attitude.
46

47
48 90 Some literature analyses the relationship among tourists' values, attitudes, and environmental behaviours.
49 91 Results detect a positive relationship between attitudes, values and ecological behavioural intentions or
50
51 92 between environmental concern and environmentally related behaviour (e.g. Hedlund, 2011). Patwary et al.
52 93 (2023) identified a positive relationship between the tourists' attitude towards visiting hotels implementing
53
54 94 green practices and their green price sensitivity. However, Preziosi et al. (2019) highlight first that the hotel
55
56 95 communication of the hotel's green practices represents a critical issue between the guests' environmental
57 96 awareness and their perception of the hotel's sustainable practices and second, that there is no direct
58

relationship between the guest loyalty and the hotel green practices, as they need the mediation of the guest satisfaction with the hotel. Thus, the eco-friendly practices increase guest satisfaction.

One stream of literature analyses how hotel green practices or environmental policy affect guest loyalty and/or intention to revisit (e.g. Acampora et al., 2022; Merli et al., 2019; Lee et al., 2018; Moise et al., 2018). Acampora et al. (2022) demonstrate that hotel environmental policies positively affect customer satisfaction but not guest loyalty; however, customer satisfaction is a mediator between hotel environmental policy and guest loyalty. The results of Merli et al. (2019) demonstrate that hotel green practices or policy positively influence guest loyalty. Moise et al. (2018) show that hotel's environmentally friendly practices positively influence the intention to revisit the hotel and the willingness to spread positive word-of-mouth. Similarly, Lee et al. (2018) show a positive effect of green labels/certificates on guests' perceived value. Labels play a crucial role in guests' eco-friendly intentions, especially in the intention to return to the hotel and pay a premium price.

Other tourism literature stream focuses on analyzing socio-demographic characteristics' effects in shaping tourists' environmentally friendly attitudes and behaviour (e.g. Dolnicar, 2010; Kim, 2012; Leonidou et al., 2015). Women and older tourists have a friendlier attitude towards the environment (Kim, 2012). For Dolnicar (2010) age is a good predictor of tourists' pro-environmental behaviour. Kang et al. (2012) found that men are more willing to pay higher prices for sustainable initiatives. But few studies considered age, gender or income as control variables in the model (Arun et al., 2021).

On the other hand, customers can be grouped according to their preferences, which face similar behaviours to different marketing variables, i.e., what they buy or value. However, just a few studies cover hotel sustainability across different demand segments according to their booking choices or characteristics, such as the type of tourists segment, i.e., families, couples..., or the choice of board or booking channel. Ali et al. (2023) highlight that business and family customers are the most critical segments of Norwegian green hotels. Other papers focus on the different board types to estimate the waste generation of the different food service choices (e.g. Diaz-Farina et al., 2023; Kasavan et al., 2022), while they do not explore the different green hotel preferences of the different customer segments.

Finally, another research stream analyses how the hotel booking system chosen to book an accommodation influences the guests' eco-friendly attitudes and behaviour (e.g. Yildiz et al., 2023). Tourists can book a hotel through traditional intermediaries that sell hotel rooms offline, like travel agencies and tour operators, or online, through the internet, through hotels' websites or platforms, online travel agencies OTAs (e.g. Booking) or metasearch engines such as TripAdvisor or similar. Booking (2019) conducted a study in 12 international markets, revealing that 68% of the platform's user respondents would consider sustainable accommodation if the platform presented the possibility and would even be willing to pay a premium price. Yildiz et al. (2023) studied the effect of a green hotel label on online hotel booking intentions, showing that

1
2
3
4
5 131 an eco-label/certification indicated on the hotel's website positively affects booking behaviour and the
6 132 intention to book online.
7
8

9 133 The literature review has identified several gaps. First, few studies considered age, gender or income as
10 134 control variables in the model, when analyzing tourists' environmentally friendly or circular attitudes and
11 135 behaviours (Arun et al., 2021). Second, another characteristic that has yet to be considered as a control
12 136 variable is the type of traveller (single, couple, family, friends and others), even though that information is
13 137 present in many kinds of research (Acampora et al., 2022). Considering the socio-demographic
14 138 characteristics of the sample (gender, age, booking channel, type of traveller, etc.) can lead to identifying
15 139 different segments of tourists with different circular behaviours and investigating how these characteristics
16 140 impact the various customer segments. Third, most studies used non-probability sampling techniques and
17 141 used email and internet-based surveys (Arun et al., 2021), while we used face-to-face interviews that allowed
18 142 the creation of a comfortable and welcoming environment for participants, building a holistic picture and
19 143 validating and corroborating information. Different studies have demonstrated the invariance of paper and
20 144 online surveys (Martínez-Gómez et al., 2017). Fourth, most literature focuses on intentions rather than their
21 145 actual behaviour (Arun et al., 2021), while we collect information on circular practices and behaviour.
22
23
24
25
26
27
28

29 146 **3. CONCEPTUAL ANALYSIS**

30 147 **3.1. Conceptual Model**

31 148 We used a version of the validated theoretical models proposed by Preziosi et al. (2019), Patwary et al. (2023)
32 149 and Acampora et al. (2022) to identify significant dimensions that significantly impact the Loyalty of Guests
33 150 towards Green Hotels (LTGH). These dimensions include Guest sustainable consumption and waste
34 151 management culture (GSCWMC) -which considers the sustainable consumption and waste sorting and
35 152 recycling habits of tourists-, Guest circular behaviour at home (energy & water) (GCBH_EW) -which
36 153 considers the measures carried out at home for saving and reusing energy and water-, Guest preferences of
37 154 hotel circular practices (GPHCP) -which includes the tourist's assessment of the most common hotels'
38 155 circular measures-, Guest circular behaviour in hotel (GCBH) -which considers circular practices
39 156 implemented by tourists in hotels- and Hotel Environmental Policy (HEP) -which includes the hotel'
40 157 environmental and energy and water policies-.

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
158
159
160
161
162
Figure 1

160 The description of constructs and indicators used to represent them, supported by the literature review,
161 are found in the Appendix.

163 **3.2. Research Hypotheses**

164 The following hypotheses concerning this research were established based on the previous theoretical
165 foundations.

166 *3.2.1. Guest circular behaviour at home (energy & water)*

167 In recent decades, environmental protection has acquired a universal focus and is a crucial aspect of guests'
168 decision-making process (Huang et al., 2014). Environmental behaviour is the action taken to change the
169 environment positively. Yarimoglu and Gunay (2019) use a construct in an extended model of the TPB that
170 describes the sustainable management and waste sorting and recycling behaviour at the guests' homes in
171 Turkish hotels, which is the best predictor of green hotels' visit intentions and loyalty. We use a similar
172 variable called Guest sustainable consumption and waste management culture GSCWMC). So, proactive
173 GSCWMC customers affect the intention to visit and Loyalty to green hotels.

174 In the hotel industry guests show their environmental behaviour mostly indirectly by booking their stay in
175 tourist accommodations that implement green measures (Yusof et al., 2015). A literature review on the
176 hotel industry has also demonstrated that guests who are more predisposed to adopt pro-environmental
177 behaviour are more inclined to present a future positive behavioural intention toward eco-friendly hotels
178 (Baker et al., 2014; Millar et al., 2012; Moise et al., 2018). Based on the aforementioned premises, this study
179 postulates:

180 *H1a-1: GCBH_EW influences GCBH.*

181 *H1a-2: GCBH_EW influences GSCWMC.*

182 *H1a-3: GCBH_EW influences LTGH.*

183 *H1a-4: GCBH_EW influences GPHCP.*

184 *3.2.2. Hotel Environmental Policy*

185 Positive environmental performance corresponds to a higher inclination to acknowledge and value hotels'
186 practices to reduce their ecological impact (Han et al., 2011). Green practices can be defined as all business
187 activities in the hotel sector that aspire to reduce negative environmental impacts (Kim et al., 2017). This
188 classification includes a wide diversity of measures that the hospitality sector can implement. Some
189 initiatives are directly related to customer behaviour (e.g. switching off air-conditioning and lights when
190 leaving the room). Others are associated with the sustainable management of the hotel's operations (water
191 or energy-saving policy) and can directly impact their experience (Rodriguez et al., 2020). Recent research
192 has noticed that guests' environmental culture has a positive impact on the evaluation of hotels'
193 environmental initiatives (Yusof et al., 2015), which is also affected by the hotel's initiative to communicate
194 its eco-friendly policies and practices, leading to enhanced confidence and increased positive attitude of
195 guest towards green hotels (Preziosi et al., 2019; Han et al., 2011). So this research postulates:

1
2
3
4
5 196 *H2a-1 HEP will positively affect GPHCP.*

6
7 197 *H2a-2 HEP will positively affect Guest LTGH.*

8
9 198 *3.2.3. Guest circular behavior in hotel (GCBH)*

10
11 199 Mohd Suki and Mohd Suki (2015) study the relationship between revisiting consumers' environmental
12 behaviour, the propensity of repetition to stay in an eco-friendly hotel and the moderating effect of green
13 hotel knowledge. Their results confirm that green hotel knowledge can moderate the relationship between
14 revisiting consumers' attitudes and perceived behavioural control with the tendency to revisit an eco-
15 friendly accommodation. Based on this study, the following hypothesis was formulated:

16
17 204 *H3a-1 GCBH will influence HEP.*

18
19 206 *3.2.4. Moderating variables: age, gender, booking system, type of traveller, type of board.*

20
21 207 Age, gender and booking system are moderating variables to be considered by researchers in different
22 fields. Tsao et al. (2009) stated that gender apparently has a moderating effect on the impact of expected
23 yield on behavioural intention. Similarly, Venkatesh et al. (2012) indicated that age moderated behavioural
24 intention, and the effect was more substantial in younger men (Chang et al., 2019). However, when
25 analyzing tourists' environmentally friendly or circular attitudes and behaviours, few studies considered age
26 or gender as moderating variables in the model (Arun et al., 2021). Finally, the moderating effect of how
27 tourists travelled and the type of board (only room, room with breakfast, half board or full board) was also
28 analyzed. The type of traveller (single, couple, family, friends and others) is another characteristic that has
29 yet to be considered a control variable when analyzing tourists' eco-friendly or circular attitudes and
30 behaviour (Acampora et al., 2022). Nevertheless, some previous research have used the type of traveller or
31 the type of board to confirm the direct influence of such factors (Moise et al., 2018; White and White,
32 2008).

33
34 219 Therefore, we propose including a moderating effect of these variables in the previous relationship. Thus,
35 the following hypotheses were created:

36
37 221 *H 4: Gender moderated the relationship between GCBH and HEP, GCBH_EW and GPHCP, GCBH_EW and*
38 *LTGH and tHEP and LTGH*

39
40 223 *H 5: Age moderated the relationship between GCBH and HEP, GCBH_EW and GPHCP, GCBH_EW and*
41 *LTGH and HEP and LTGH*

42
43 225 *H6: The booking system moderated the relationship between GCBH and HEP, GCBH_EW and GPHCP,*
44 *GCBH_EW and LTGH and tHEP and LTGH*

45
46 227 *H7: The type of traveller moderated the relationship between GCBH and HEP, GCBH_EW and GPHCP,*
47 *GCBH_EW and LTGH and tHEP and LTGH*

48
49 229 *H 8: The type of board moderated the relationship between GCBH and HEP, GCBH_EW and GPHCP,*
50 *GCBH_EW and LTGH and HEP and LTGH*

4. RESEARCH METHOD

4.1. Statistical Analysis

This research performs a two-step analysis. First, we use Partial Least Squares SEM (PLS-SEM) to validate both the measurement and structural model. The first one deals with the relationship between each construct and their indicators, while it is testing the reliability and validity of the measures. To assess the measurement model we use these criteria (Hair et al., 2010):

-Indicator Reliability: Outer Loading for the indicator must be ≥ 0.70

-Internal Consistency Reliability (ICR): Cronbach's alpha (α) and Composite reliability (CR). The threshold value is ≥ 0.70 for both.

- Validity:

- Convergent Validity: Average Variance Extracted (AVE) should be ≥ 0.50 (Fornell and Larcker, 1981; Henseler. et al., 2015).

- Discriminant Validity (DV): through three tests:

a. Fornell-Larcker criterion (Fornell and Larcker, 1981);

b. Cross-loadings (Urbach and Ahlemann, 2010);

c. The Heterotrait-Monotrait ratio (HTMT) (Henseler et al., 2015).

The structural model assesses the relationship among constructs and is analyzed using the Hair et al. (2010) approach: collinearity ($VIF < 5$); the structural model relationships significance ($p < 0.05$); the level of R^2 (threshold levels take the following values: 0.190 weak; 0.333 moderate; and 0.670 substantial); the predictive relevance (Q^2) (threshold value >0); the model's fit ($SRMR \leq 0.08$; $RMS_{\text{theta}} \leq 0.12$).

A multigroup analysis (MGA) was developed in the second step to explore moderating variables. A moderating variable is a variable that "influences the nature of the effect of an antecedent on an outcome" (Aguinis et al., 2017), as shown in Figure 2.

Figure 2

MGA evaluates differences across groups. If heterogeneity across groups is found; potential moderating variables can be sought to explain this variability.

As all factors are composite models, the three-step MICOM procedure was developed based on a non-parametric test, as shown in Figure 3. Configural invariance is a prerequisite for compositional invariance, and for significantly determining the equality of composite mean values and variance. Once the configural and compositional invariance are established, the partial measurement invariance can be validated and compare the standardized path coefficients of structural relationships between the constructs over the groups.

Figure 3

5. RESULTS

5.1. Aim and participants

A sample of 211 tourists staying in hotels in Gran Canaria was collected using face-to-face surveys, with a structured questionnaire, an appropriate sample size with a power of 0.95 and effect size of 0.15. The fieldwork was carried out during January and February of 2020, before the COVID-19 pandemic. The questionnaire was divided into five sections containing 29 questions. The first section requested information on trip characteristics to Gran Canaria. The second section gathered information on the hotel's environmental policy and guest loyalty to green hotels. The third section collected information on circular practices carried out during their stay in several areas (water, energy, waste, etc) and GPHCP. The fourth section gathers information on circular practices carried out by tourists at home and differences when travelling to obtain a measure for GSCWMC and another one for GCBH_EW. In the final section, basic information was requested on the socio-economic profile of the respondent. Tourists rated their opinion on several items using a 5-point Likert scale ranging from completely disagree to totally agree. GPHCP is measured using 5 items, GCBH_EW is measured using 4 items, GCBH is measured using 4 items, LTGH uses 2 items, HEP uses 4 items, and GSCWMC 4 items. All items are adapted from previous studies after an accurate literature review. The profile respondent is a retired man older than 55 years old, as almost 60% of tourists in Gran Canaria were 45 years old or older in January-February 2020 (ISTAC, 2024), mainly Spanish or from a Nordic country, with upper secondary education or a university degree, and with a monthly net income between 2,000 and 5,000 euros (Table 1).

Table 1

5.2. Measurement Model

5.2.1. Internal consistency reliability tests

All constructs were formulated as composite type A, so outer loadings were analyzed (Hair et al., 2017). All outer loadings were higher than 0.7 in almost all items. Internal consistency and reliability (ICR) were assessed using CR and AVE (Table 2).

Table 2

5.2.2. Discriminant validity

To assess DV, we used the correlation matrix for the Fornell-Lacher criterion, the cross-loadings matrix and the HTMT criterion. Table 3 shows the correlation matrix for the Fornell-Lacher criterion. This method

1
2
3
4
5 297 uses AVE to compare the squared correlation with other constructs in the model. With our data, the diagonal
6 298 values are higher than those in the same column.
7
8
9
10
11
12
13
14 303 We also analyzed the results of the assessment of discriminant validity with the matrix of cross-loadings.
15 304 Each indicator loads higher on the construct related to it.
16
17 305 Finally, we assessed discriminant validity using the Heterotrait Monotrait (HTMT) matrix. Heterotrait
18 306 assesses correlations between different constructs, while monotrait correlations measure correlations in the
19 307 same construct. Threshold values ≤ 0.9 are accepted. Results indicate that values differ significantly from
20
21
22 308 1.
23
24
25
26 310
27 311
28 312

Table 3

29 313 5.2.3 Significance of Outer Loading

30 314 The bootstrapping algorithm was used to assess the significance of outer loadings. We used 5000 bootstrap
31 315 samples to estimate the t and p values, which are used for testing the outer loadings' significance at a 5%
32
33 316 level. Results of bootstrapping indicate that outer loadings are significant and p-values lower than 0.05.

34 317 5.3. Structural Model

35 318 The assessment of structural model includes five steps (Hair et al., 2010). We initially started evaluating
36 319 collinearity by means of the variance inflation factor (VIF). VIF values ≥ 5 show a possible collinearity
37 320 problem (Hair et al., 2010). As the obtained VIF values are all less than 5, there are no collinearity problems.
38 321 Figure 4 exhibits the β values, i.e. the path coefficients of the relationships between constructs.

Figure 4

39 322
40 323
41 324 As shown in Table 5, all hypotheses were accepted at the 5% significance level given the p-value estimated
42 325 for each relationship.
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Table 5

1
2
3
4
5 329 Next, the coefficient of determination (R^2). According to Hair et al. (2010), values of this coefficient of
6 330 determinant of 0.75 are substantial, 0.5 moderate and 0.25 weak. Two factors (GCBH_EW and HEP)
7
8 331 moderately explained 60.1% of the variance of construct LTGH (Figure 4).
9

10 332 The fourth step is to assess the predictive relevance, i.e. Q^2 , using the blindfolding. When Q^2 takes a value
11 333 of 0.02, it indicates a minor predictive relevance, values of 0.15 show a medium relevance and values of
12 334 0.35 present a considerable predictive relevance (Hair et al., 2019). Table 6 shows the Q^2 of the latent
13 335 variables.
14

15 336 Table 6
16
17

18 337 Finally, to assess the model fit, we use a set of fit measures proposed by Lohmöller (1989):
19

- 20 338 1. Standardized Root Mean Square Residual (SRMR). The SRMR for this research is 0.09, lower than the
21 339 threshold value of 0.10 suggested by Hu and Bentler (1999).
22 340 2. The Normed Fit Index (NFI) (Bentler and Bonett, 1980). Values close to 1, better fit. NFI values above
23 341 0.9 represent an acceptable fit (Hair et al., 2017). In this paper the value of NFI is 0.719.
24 342 3. In the end, we assess the Goodness-of-Fit (GoF) of the model, that is specified as “how well the specified
25 343 model reproduces the observed covariance matrix among the indicator items” (Hair et al., 2017). The model's
26 344 Goodness-of-Fit is 0.45 greater than 0.36, the threshold value proposed by Wetzels et al. (2009), so meaning
3 345 sizeable overall performance, large fit.
31
32

33 346 **5.4. Multigroup Analysis (MGA)**
34

35 347 In order to assess the moderating effect of gender, age, booking system, type of traveller and type of board,
36 348 the sample was partitioned into two groups in each case: female and male, aged 55 years old or younger and
37 349 older than 55 years old, booking system -traditional offline booking channels vs. online booking channels,
38
39 350 couple and family vs alone, with friends and workmates and only room and bed&breakfast vs half and full
40 351 board. A multigroup analysis is performed to evaluate the hypotheses H4, 5, 6, 7 and 8.
41

42 352 The results of MICOM analysis for gender, age and booking system are shown in Tables 7, 8 and 9. The
43 353 partial invariance can be established with gender, age and booking system, hence the moderating role is
44 354 confirmed. Figures 5 and 6 show the results of the path coefficients for gender and age.
45
46

47 355 Figure 5
48
49

50 356 Figure 6
51
52

53 357 358 The bootstrapping test indicates significant differences between the two age groups, two gender groups, and
54 359 booking system groups. In particular, the intensity of the relationship between Hotel environmental policy
55
56

1
2
3
4
5 361 and Guest preferences of hotel circular practices and Hotel environmental policy and Loyalty towards green
6 362 hotels is stronger for tourists 55 years old or younger in the case of age and for women in the case of gender.
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Tables 7, 8 and 9

363
364
365 Finally, the moderating effect of how tourists travelled, i.e. type of traveller (single, couple, family, friends
366 or work colleagues or others) and type of board was also analyzed. In both variables, a moderating effect
367 was found on the direct effects of GCBH, GCBH_EW, and HEP on LTGH.
368

6. DISCUSSION

369 This research contributes significantly to the literature on circular hotel practices and policies and customers'
370 green behaviour and intentions. Practical and theoretical implications might be learned from the paper's
371 findings. The dimension of Loyalty towards green hotels has been assessed, helping to build a new
372 connection between hotel environmental policy and this factor. All the hypotheses about the structural model
373 were accepted. The variable that had the highest impact on loyalty to green hotels is hotel environmental
374 policy, inferring that H2-a2 is persistent based on guest circular behaviour in the hotel and guest circular
375 behaviour at home (energy & water). This result is comparable to previous research (Chen and Peng, 2012;
376 Chen et al., 2011; Choi et al., 2009; Han et al., 2011) according to which hotel guests' environmental attitudes
377 positively influence their intention to stay in an eco-friendly hotel, to share their experience and their
378 willingness to pay more for accommodations that implement circular initiatives and activities..
379

380 Few studies investigate the differences in eco-friendly or circular behaviours of tourists at home and in a
381 hotel (Baker et al., 2014; Millar et al., 2012; Moise et al., 2018; Nicolau, 2011). Our study demonstrates that
382 both variables are crucial factors for raising the level of tourist loyalty. Baker et al. (2014) showed that
383 tourists are eco-friendlier at home than when they stay at a hotel. Nicolau (2011) suggests that guests'
384 environmental behaviour on holidays is a function of guest environmental culture. Moise et al. (2018)
385 showed that hotel green practices at home are positively related to guest loyalty and to the intention to revisit
386 the hotel. Similarly, Millar et al. (2012) demonstrated that the more environmentally friendly behaviour they
387 have at home, "the greater importance they place on green attributes", and they will be more committed to
388 having pro-environmental behaviour in a hotel. All this evidence supports our result.

389 The current study also assessed the moderating effect of age, gender, booking system, type of traveller and
390 type of board. Previous research has established that individual differences influence the relationship
391 between the company and the customer, as not all customers are equally loyal. In our case, partial invariance
392 has been fulfilled with all the variables analyzed in the proposed relationships. The variables gender and age
393 moderate the relationships between several constructs. The intensity of the relationship between Hotel
394 environmental policy and Guest preferences for hotel circular practices and Hotel environmental policy and
395 Loyalty towards green hotels is stronger. Moise et al. (2020) support this result because they found that

1
2
3
4
5 396 Generation X and Baby Boomers present a stronger link between trust and Loyalty and between satisfaction
6 397 and Loyalty than other generational cohorts, and 35% of our first-age segment (18-55 years old) belong to
7
8 398 these cohorts. Similarly, Rodríguez et al. (2020) showed that older tourists present a greater circular attitude
9 399 and behaviour. In the case of gender, women showed a stronger relationship between those variables than
10
11 400 men, a result similar to the one of Leonidou et al. (2015) or Kim (2012). Leonidou et al. (2015) demonstrated
12 401 that the role of gender in developing positive environmental attitudes is evident; women have a greater
13 402 attitude.
14
15

1 403 There is a literature gap on investigating the moderating effect of the booking system, the type of traveller,
17 404 and the type of board. This study contributes to the body of literature and particularly in the green hotel
18 405 industry by proving that the three variables present an important moderating role in the relationships
19
20 406 between Loyalty towards green hotels and Hotel environmental policy, Guest circular behaviour at home,
21 407 Guest preferences of hotel circular practices and Guest circular behaviour in the hotel. Tourists travelling
22
23 408 with family or as a couple show a higher circular behaviour in the hotel and, therefore, a higher loyalty
24 409 towards green hotels. In previous research, the role of a fellow traveller has frequently focused on the travel
25
26 410 experience (Choo and Petrick, 2014; Tung and Ritchie, 2011) or considering it a descriptive variable
27 411 influencing behaviour (e.g. Jang et al., 2004; Liang et al., 2017). The findings also show that guests who
28 412 travel with a partner or with family value Hotel environmental policy and Guest circular behaviour in the
29
30 413 hotel more than those who travel with friends or with work colleagues, similar to the results obtained by
31 414 Su et al. (2020). Furthermore, results show an important influence of the type of board chosen; those tourists
32
33 415 who book only a room or a room with breakfast show greater circular behaviour and Loyalty towards green
34 416 hotels than those who book half-board or full-board. Ramazanova et al. (2021) demonstrate that the board
35
36 417 type is one of the main determinants of guest behaviour in terms of water consumption, so full board
37 418 formulas lead to a less water-efficient behaviour of guests. Additionally, results indicate a moderating effect
38
39 419 of the booking system that influences the relationship between Guest circular behaviour at home, Guest
40 420 circular behaviour at hotels and customers' Loyalty to green hotels; people who have booked through an
41 421 agency are the ones who have the stronger relationship. In fact, in Western countries, the users of online
42
43 422 booking channels focus on the opinions of their friends who have used online channels before (Li and Zhu,
44 423 2023). Assaker and O'Connor (2023) showed that eco-labels/certifications influence consumers' online
45
46 424 hotel booking decisions, but they play a minor role compared to cancellation policy, hotel price, hotel rating,
47 425 and hotel location.
48
49 426
50
51 427 **7. CONCLUSIONS**
52
53
54 428 The paper studies the impact of guest circular initiatives and behaviours on guest loyalty in hotels in Gran
55
56 429 Canaria by proposing a PLS-SEM model. The research hypotheses were developed based on a literature
57 430 review and then tested the relationships between Guest circular behaviour at home, Guest circular behaviour
58 431 in hotel, Hotel environmental policy, Guest preferences of hotel circular practices and Loyalty towards

1
2
3
4
5 432 green hotels. Findings indicate that Guest loyalty towards green hotels is influenced either by Guest circular
6 433 behaviour at home and by Hotel environmental policy.
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

434 The results offer new insights into the findings of previous research that could be interesting for the academia
435 and practitioners for a better comprehension of the factors that influence guests' loyalty to green hotels,
436 especially in an insular context. Furthermore, empirical analysis of MICON and MGA confirm that age,
437 gender, booking system, type of traveler and type of board moderate the relationship between consumers'
438 loyalty with Hotel environmental policy, Guest circular behaviour in hotel and Guest circular behaviour at
439 home.

440 In fact, the empirical results of this research provide scientific contributions to the existing literature on
441 consumer loyalty towards green hotels, especially in an insular context, by providing supplementary data to
442 reduce the research gap on the existing knowledge about revisiting guests' intention to accommodate in green
443 hotels.

444 In terms of managerial implications, the findings can assist the hotel sector implicated in eco-friendly
445 initiatives and green actions in designing successful marketing plans to attract revisiting guests to stay in
446 eco-friendly hotels and to assess the acceptance level of revisiting consumers towards circular behaviour.

447 Finally, there are some study limitations. First, a limitation arises from the sample and sample size, as data
448 were collected from tourists of a specific area, and the questionnaire arose from a sample of 211 hotel
449 customers. This limitation can be used for further analysis to include as a control variable in the model the
450 hotel customer's nationality to study how this variable influences guest circular behaviour and hotel circular
451 practices and it can also provide action guidelines to practitioners.

454 REFERENCES

- 455 Acampora, A., Preziosi, M., Luchetti, M.C. and Merli, R. (2022). The role of environmental communication
456 and guests' environmental concern in determining guests' environmental behavioral intentions.
457 *Sustainability* 14, 11638.
- 458 Aguinis, H., Edwards, J. R. and Bradley, K. J. (2017). Improving our understanding of moderation and
459 mediation in strategic management research. *Organizational Research Methods* 20(4), 665-685.
- 460 Ali, U., Arasli, H.; Arasli, F., Saydam, M.B., Capkiner, E., Aksøy, E. and Atai, G. (2023). Determinants and
461 Impacts of Quality Attributes on Guest Perceptions in Norwegian Green Hotels. *Sustainability* 15(6),
462 5512. <https://doi.org/10.3390/su15065512>
- 463 Arun T. M., Kaur, P., Bresciani, S. and Dhir, A. (2021). What drives the adoption and consumption of green
464 hotel products and services? A systematic literature review of past achievement and future
465 promises. *Business Strategy and the Environment* 30(5), 2637-2655.

- 1
2
3
4
5 466 Assaker, G. and O'Connor, P. (2023). The importance of green certification labels/badges in online hotel
6 467 booking choice: A conjoint investigation of consumers' preferences pre- and post-COVID-19. *Cornell*
7
8 468 *Hospitality Quarterly* 64 (4), 401-414.
9
10 469 Baker, M.A., Davis, E.A. and Weaver, P.A. (2014). Eco-friendly attitudes barriers to participation and
11 470 differences in behavior at green hotels. *Cornell Hospitality Quarterly* 55 (1), 89-99.
12
13 471 Becker, J. M., Rai, A., Ringle, C. M. and Völckner, F. (2013). Discovering unobserved heterogeneity in
14 472 structural equation models to avert validity threats. *MIS Quarterly*, 665-694.
15
16 473 Bentler, P. M. and Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance
1 474 structure. *Psychological Bulletin* 88, 588 – 606.
18
19
20 475 Booking (2019). Booking.com reveals key findings from its 2019 sustainable travel report. Accessed
21 476 February 19th, 2024: <https://news.booking.com/reveals-key-findings-from-its-2019-sustainable-travel-report>
22
23
24
25 477 Chang C-M, Liu L-W, Huang H-C. and Hsieh H-H. (2019). Factors Influencing Online Hotel Booking:
26 478 Extending UTAUT2 with Age, Gender, and Experience as Moderators. *Information* 10 (9): 281.
27
28 479 <https://doi.org/10.3390/info10090281>
29
30 480 Chen, A. and Peng, N. (2012). Green hotel knowledge and tourists' staying behaviour. *Annals of Tourism*
31
32 481 *Research* 39(4), 2211-2216.
33
34 482 Chen, A.H., Hung, K.P. and Peng, N. (2011). Planned leisure behaviour and pet attachment. *Annals of*
35 483 *Tourism Research* 38(4), 1657-1662.
36
37 484 Choi, G., Parsa, H.G., Sigala, M. and Putrevu, S. (2009). Consumers' environmental concerns and
38 485 behaviours in the lodging industry: a comparison between Greece and the United States. *Journal of*
39 486 *Quality Assurance in Hospitality & Tourism* 10(2), 93-112.
40
41 487 Choo, H. and Petrick, J. F. (2014). Social interactions and intentions to revisit for agritourism service
42 488 encounters. *Tourism Management* 40, 372-381.
43
44
45 489 Diaz-Farina, E.; Díaz-Hernández, J.J. and Padrón-Fumero, N. (2023). Analysis of hospitality waste
46 490 generation: Impacts of services and mitigation strategies. *Annals of Tourism Research Empirical*
47 491 *Insights* 4(1), 100083. <https://doi.org/10.1016/j.annale.2022.100083>
48
49 492 Dolnicar, S. (2010). Identifying tourists with smaller environmental footprints. *Journal of Sustainable*
50 493 *Tourism* 18, 717–734.
51
52
53 494 EEA (2019). Preventing plastic waste in Europe, EEA Report No 2/2019. Accessed January 3rd, 2024:
54 495 <https://www.eea.europa.eu/publications/preventing-plastic-waste-in-Europe>

- 1
2
3
4
5 498 Fornell, C. and Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables
6 499 and measurement error. *Journal of Marketing Research* 18(1), 39–50. <https://doi.org/10.2307/3151312>
- 7
8 500 Geissdoerfer, M., Savaget, P., Bocken, N.M.P. and Hultink, E.J. (2017). The Circular Economy- A New
9
10 Sustainability Paradigm? *Journal of Cleaner Production* 143, 757-768.
- 11
12 502 GfK Panel Service Germany (2009). Corporate Social Responsibility. Consumer expectations and behaviour
13 503 in the tourism sector.
14 504 http://www.gfkps.com/imperia/md/content/ps_de/consumerscope/aktuellestudien/2009/csr_touristik.pdf (07/22/2010)
- 15
16 505
17
18 506 Hair, J.F., Black, W.C., Babin, B.J. and Anderson, R.E. (2010). *Multivariate Data Analysis*. 7th Edition,
19 Pearson, New York.
- 20
21 508 Hair, J. F., Sarstedt, M., Ringle, C. M. and Gudergan, S. P. (2017). *Advanced issues in partial least squares*
22
23 *structural equation modeling (PLS-SEM)*. Thousand Oaks: Sage.
- 24
25 510 Hair, J.F., Risher, J.J., Sarstedt, M. and Ringle, C.M. (2019). When to use and how to report the results of
26 PLS-SEM. *European Business Review* 31(1), 2-24. <https://doi.org/10.1108/EBR-11-2018-0203>
- 27
28 512 Hall, C. M. (2016). Heritage, heritage tourism and climate change. *Journal of Heritage Tourism* 11(1), 1-
29 513 9.
- 30
31 514 Han, H., Hsu, L.T., Lee, J.S. and Sheu, C. (2011). Are lodging customers ready to go green? An examination
32
33 of attitudes, demographics, and eco-friendly intentions. *International Journal of Contemporary*
34
35 *Hospitality Management* 30(2), 345-355.
- 36
37 517 Hedlund, T. (2011). The impact of values, environmental concern, and willingness to accept economic
38
39 sacrifices to protect the environment on tourists' intentions to buy ecologically sustainable tourism
40
41 alternatives. *Tourism and Hospitality Research* 11(4), 278-288
- 42
43 520 Henseler, J. and Sarstedt, M. (2013). Goodness-of-Fit Indices for Partial Least Squares Path Modeling.
44
45 *Computational Statistics* 28, 565-580. 10.1007/s00180-012-0317-1.
- 46
47 522 Henseler, J., Ringle, C. and Sarstedt, M. (2015). A New Criterion for Assessing Discriminant Validity in
48
49 Variance-based Structural Equation Modeling. *Journal of the Academy of Marketing Science* 43, 115-
50
51 135. 10.1007/s11747-014-0403-8.
- 52
53 525 Hu, L.-T. and Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis:
54
55 Conventional criteria versus new alternatives. *Structural Equation Modeling* 6(1), 1–55.
56
57 527 <https://doi.org/10.1080/10705519909540118>
- 58
59 528 Huang, H.-C., Lin, T.-H., Lai, M.-C. and Lin, T.-L. (2014). Environmental consciousness and green customer
60
61 behavior: An examination of motivation crowding effect. *International Journal of Hospitality*
62
63 *Management* 40, 139–149. DOI: 10.1016/j.ijhm.2014.04.006

- 1
2
3
4
5 531 ISTAC (2024). Turistas según lugares de residencia, sexos y grupos de edad. Canarias por meses.
6 532 https://www3.gobiernodecanarias.org/istac/statistical-visualizer/visualizer/data.html?resourceType=dataset&agencyId=ISTAC&resourceId=E16028B_000004&version=~latest#visualization/table. (Accessed March 9th, 2024).
- 7
8
9
10
11 535 Jang, S., B. Bai; B., Hong, G. and O'Leary, J. (2004). Understanding travel expenditure patterns: A study of
12 Japanese pleasure travelers to the United States by income level. *Tourism Management* 25 (3), 331-
13 537 341. [https://doi.org/10.1016/S0261-5177\(03\)00141-9](https://doi.org/10.1016/S0261-5177(03)00141-9).
- 14
15
16 538 Kang, K.H., Stei, L., Heo, C.Y. and Lee, S. (2012). Consumers' willingness to pay for green initiatives of
17 the hotel industry. *International Journal of Hospitality Management* 31 (2), 564-572.
- 18
19
20 540 Kasavan, S., Siron, R., Yusoff, S. and Fakri, M.F.R. (2022). Drivers of food waste generation and best
21 practice towards sustainable food waste management in the hotel sector: a systematic review.
22 541 *Environmental Science and Pollution Research* 29, 48152-48167. <https://doi.org/10.1007/s11356-022-19984-4>
- 23
24
25
26 544 Kim, A.K.J. (2012). Determinants of tourist behaviour in coastal environmental protection. *Tourism
27 Geographies* 14, 26-49.
- 28
29
30 546 Kim, S.-H., Lee, K. and Fairhurst, A. (2017). The review of "green" research in hospitality, 2000-2014:
31 Current trends and future research directions. *International Journal of Contemporary Hospitality
32 Management* 29(1), 226-247. <https://doi.org/10.1108/IJCHM-11-2014-0562>
- 33
34 549 Lee, K.-H., Lee, M. and Guarathne, N. (2018). Do green awards and certifications matter? Consumers'
35 perceptions, green behavioral intention, and economic implications for the hotel industry: A Sri-Lankan
36 551 perspective. *Tourism Economics* 25 (4), 593-612.
- 37
38
39 552 Leonidou, L.C., Coudounaris, D.N., Kvasova, O. and Christodoulides, P. (2015). Drivers and outcomes of
40 green tourist attitudes and behaviour: Sociodemographic moderating effects. *Psychology & Marketing*
41 553 32 (6), 635-650.
- 42
43 555 Li, T. and Zhu, Z. (2023). A meta-analysis of online travel booking services adoption: the moderating effect
44 of national or regional economic development level and culture differences. *Aslib Journal of
45 Information Management* 75(6), 1209-1234.
- 46
47
48 558 Liang, S., Schuckert, M. and Law, R. (2017). Multilevel Analysis of the Relationship Between Type of
49 Travel, Online Ratings, and Management Response: Empirical Evidence from International Upscale
50 Hotels. *Journal of Travel & Tourism Marketing* 34(2), 239-256.
51 560 561 <https://doi.org/10.1080/10548408.2016.1156613>
- 52
53
54 562 Lohmöller, J. B. (1989). Predictive vs. structural modeling: Pls vs. ml. In *Latent variable path modeling with
55 partial least squares* (pp. 199-226). Physica, Heidelberg
- 56
57
58
59
60

- 564 Martínez.-Gómez, M, Marin-Garcia, J. A. and Giraldo-O'Meara, M. (2017). Testing invariance between web
565 and paper students satisfaction surveys: A case study. *Intangible Capital* 13. 879. 10.3926/ic.1049.
- 566 Merli, R., Preziosi, M., Acampora, A. and Ali, F. (2019). Why should hotels go green? Insights from guest
567 experience in green hotels. *International Journal of Hospitality Management* 81, 169-179.
- 568 Millar, M., Mayer, K.J. and Baloglu, S. (2012). Importance of Green Hotel Attributes to Business and
569 Leisure Travelers. *Journal of Hospitality Marketing & Management* 21(4), 395-413. DOI:
570 10.1080/19368623.2012.624294
- 571 MITECO (2020). España Circular 2030. Circular Economy Spanish Strategy. Executive Summary.
572 Accessed February 13th 2024: [https://www.miteco.gob.es/es/calidad-y-evaluacion-
573 ambiental/temas/economia-circular/estrategia.html](https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/economia-circular/estrategia.html)
- 574 Mohd Suki, N. and Mohd Suki, N. (2015). Consumers' environmental behaviour towards staying at a green
575 hotel: Moderation of green hotel knowledge. *Management of Environmental Quality: An International
576 Journal* 26(1), 103-117.
- 577 Moise, M. S., Gil-Saura, I. and Ruiz-Molina, M. E. (2018). Effects of green practices on guest satisfaction
578 and Loyalty. *European Journal of Tourism Research* 20(20), 92-104.
- 579 Nicolau, J. (2011). Monetary and non-monetary efforts for leisure activities. *Annals of Tourism Research*
580 38(3), 801-819. DOI: 10.1016/j.annals.2010.12.002
- 581 Patwary, A.K., Aziz, R.C. and Hashim, N.A.A.N. (2023). Investigating tourists' intention toward green
582 hotels in Malaysia: a direction on tourist sustainable consumption. *Environmental Science and
583 Pollution Research* 30, 38500-38511.
- 584 Preziosi, M., Tourais, P.; Acampora, A., Videira, N. and Merli, R. (2019). The role of environmental
585 practices and communication on guest loyalty: Examining EU-Ecolabel in Portuguese hotels. *Journal
586 of Cleaner Production* 237, 117659.
- 587 Ramazanova, M., Deyà Tortella, B., Tirado, D. and Kakabayev, A. (2021). Determinants of water
588 consumption in tourism lodging sector. The case of Kazakhstan. *Tourism Hospitality Management* 27
589 (1), 83-98.
- 590 Rodríguez, C., Florido, C. and Jacob, M. (2020). Circular economy contributions to the tourism sector: A
591 critical literature review. *Sustainability* 12(11), 4338.
- 592 Santos-Corrada, M., Méndez-Tejada, R. and Flecha-Ortiz, J.A. (2023). An analysis of sustainable
593 consumption practices through the role of the consumer behavior in the circular economy. *Journal of
594 Consumer Behavior* 23 (1), 229-242.
- 595 Su, L., Cheng, J. and Swanson, S. R. (2020). The impact of tourism activity type on emotion and storytelling:
596 The moderating roles of travel companion presence and relative ability. *Tourism Management* 81,
597 Article 104138. <https://doi.org/10.1016/j.tourman.2020.104138> Tsao, C.C., Shieh, J.T., Jan, Y.L.

- 1
2
3
4
5 598 (2009). The study on usage intentions of property service providers for property management system:
6 599 Application of UTAUT model. *Journal of Business Administration* 80, 33–66.
7
8 600 Tung, V. and Ritchie, J.R. (2011). Exploring the essence of memorable tourism experiences. *Annals of
9 Tourism Research* 38, 1367-1386. 10.1016/j.annals.2011.03.009.
10
11 602 UNWTO (2018). *Tourism and the Sustainable Development Goals*. Accessed January 13th, 2024 :
12 603 https://www.unwto.org/
13
14 604 UNWTO (2021). *Recommendations for the transition to a green travel and tourism economy*. Accessed
15 605 February 13th, 2024: <https://www.e-unwto.org/doi/epdf/10.18111/9789284422814>
16
17 606 Urbach, N. and Ahlemann, F. (2010). Structural equation modeling in information systems research using
18 607 partial least squares. *Journal of Information Technology Theory and Application (JITTA)* 11(2), 2.
19
20 608 Venkatesh, V., Thong, J. and Xu, X. (2012). Consumer acceptance and use of information technology:
21 609 Extending the unified theory of acceptance and use of technology. *MIS Quarterly* 36, 157–178.
22
23 610 Wetzels, M., Odekerken-Schroder, G. and Van Oppen, C. (2009). Using PLS path modeling for assessing
24 611 hierarchical construct models: Guidelines and empirical illustration. *MIS Quarterly* 33 (1), 177–195.
25
26 612 White, N. R. and White, P. B. (2008). Travel as interaction: Encountering place and others. *Journal of
27 Hospitality and Tourism Management* 15(1), 42–48.
28
29 614 Yarimoglu, E. and Gunay, T. (2019). The extended theory of planned behavior in Turkish customers'
30 615 intentions to visit green hotels. *Business Strategy and the Environment* 29, 1097-1108.
31
32 616 Yildiz, H., Tahali; S. and Trichina, E. (2023). The adoption of the green label by SMEs in the hotel sector: a
33 617 leverage for reassuring their customers. *Journal of Enterprise Information Management* 10.1108.
34
35 618 Yusof, N., Rahman, S. and Iranmanesh, M. (2015). The environmental practice of resorts and tourist loyalty:
36 619 the role of environmental knowledge, concern and behaviour. *Anatolia* 27, 214-226.
37
38 620
39
40 621
41
42 622
43
44 623
45
46 624
47
48 625
49
50 626
51
52 627
53
54 628

629 **Appendix**630 **Constructs and items of conceptual model.**

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	<p>Guest sustainable consumption and waste management culture (GSCWMC)</p> <p>Guest circular behavior at home (energy & water) (GCH_E_W)</p> <p>Guest preferences of hotel circular practices (GPHCP)</p> <p>Guest circular behavior in hotel (GCBH)</p> <p>Hotel environmental policy (HEP)</p> <p>Loyalty towards green hotels (LTGH)</p>	<p>When I buy clothes, I make sure they are environmentally sustainable. I buy local and/or seasonal products. I buy organic products. I buy products with less packaging. I use reusable bags when shopping. I avoid use of aluminum foil.</p> <p>I try to save water and energy. I use renewable energy sources. Thermostat with time scheduling I consider the level of energy efficiency in the house.</p> <p>It is important to me that tourist accommodations manage the way water is used in the hotel to reduce consumption and/or maximize water reuse. It is important to me that tourist accommodations make use of renewable energies. It is important to me that tourist accommodations manage the use and Consumption of energy to minimize energy consumption. I am willing for hotels to offer closed menus in restaurants to reduce food waste. It is important to me that tourist accommodations reduce the volume of waste through recycling, reusing waste, or selling waste to a third-party company.</p> <p>I turn off air conditioning and lights when I leave the room I do not lower the air conditioning thermostat below 22°C. I recycle if the hotel has recycling containers. I try to reduce food waste in restaurants. I ask for a change of sheets or towels only when necessary.</p> <p>It is important to me that tourist accommodations have an environmentally responsible policy. It is important to me that a hotel has a water-saving and efficiency policy. It is important to me that a hotel has an energy-saving and efficiency policy. It is important to me that hotel staff are trained in environmental issues (recycling, etc.).</p> <p>When I choose a tourist accommodation it is important to me that it has an environmental quality certification. I am willing to pay a little more for a hotel with better environmental quality.</p>
--	---	--

Tables

Table 1. Profile of respondent.

		N	Percent (%)
AGE	18-55 years old	80	37.91
	56 or older	131	62.09
GENDER	Male	114	53.80
	Female	97	46.20
NATIONALITY	Other	0	0.00
	Spanish	43	20.38
EDUCATIONAL BACKGROUND	German	32	15.17
	British	33	15.64
CURRENT OCCUPATION	Nordic	52	24.64
	Other	51	24.17
MONTHLY NET INCOME	Early Childhood Education	6	2.84
	Primary Education	27	12.80
BOOKING SYSTEM	Lower Secondary Education	24	11.37
	Upper Secondary Education	53	25.12
TYPE OF BOARD	Bachelor level or higher	91	43.13
	NR	10	4.74
TYPE OF TRAVELER	Self-employed worker	21	9.95
	Upper management employee	15	7.11
TOTAL	Middle or Junior management employee	50	23.70
	Unskilled employee	7	3.32
TYPE OF BOARD	Student	6	2.84
	Retired	106	50.24
TYPE OF TRAVELER	Unemployed	1	0.47
	Other	5	2.37
TOTAL	Equal or less than 2000€	29	13.74
	2001-5000€	109	51.66
BOOKING SYSTEM	More than 5000€	36	17.06
	NR/DK	37	17.54
TYPE OF BOARD	Travel Agency & Tour Operator	69	32.70
	Online channels	142	67.30
TYPE OF TRAVELER	Only room and Bed&breakfast	163	77.25
	Half and Full board	48	22.75
TOTAL	Couple	117	55.45
	Family	17	8.06
BOOKING SYSTEM	Single	35	16.59
	With friends/workmates	42	19.91
TOTAL		211	100.00

NR- No response; DK- Don't know.

Table 2. Measures of internal consistency reliability test

	Cronbach's Alpha	Composite reliability (rho_a)	Average variance extracted (AVE)
GPHCP	0.877	0.879	0.673
GCBH	0.690	0.703	0.520
GSCW			
MC	0.794	0.802	0.620
HELP	0.926	0.930	0.819
LTGH	0.870	0.872	0.885
GCBH_EW	0.805	0.832	0.561

Table 3. Fornell-Lacker discriminant validity correlation matrix

	GPHCP	GCBH_EW	GCBH	HEP	LTGH	GSCWMC
GPHCP	0.820					
GCBH_EW	0.337	0.721				
GCBH	0.546	0.416	0.787			
HELP	0.489	-0.055	0.262	0.905		
LTGH	0.443	0.142	0.269	0.753	0.941	
GSCWMC	0.387	0.576	0.351	0.052	0.163	0.749

Table 4. Heterotrait-Monotrait ratio (HTMT) correlation matrix

	GPHCP	GCBH	GSCWMC	HEP	LTGH	GCBH_EW
GPHCP						
GCBH	0.650					
GSCWMC	0.469	0.442				
HELP	0.541	0.302	0.159			
LTGH	0.506	0.317	0.212	0.839		
GCBH_EW	0.430	0.559	0.741	0.188	0.230	

Table 5. Results of hypotheses testing and path analysis

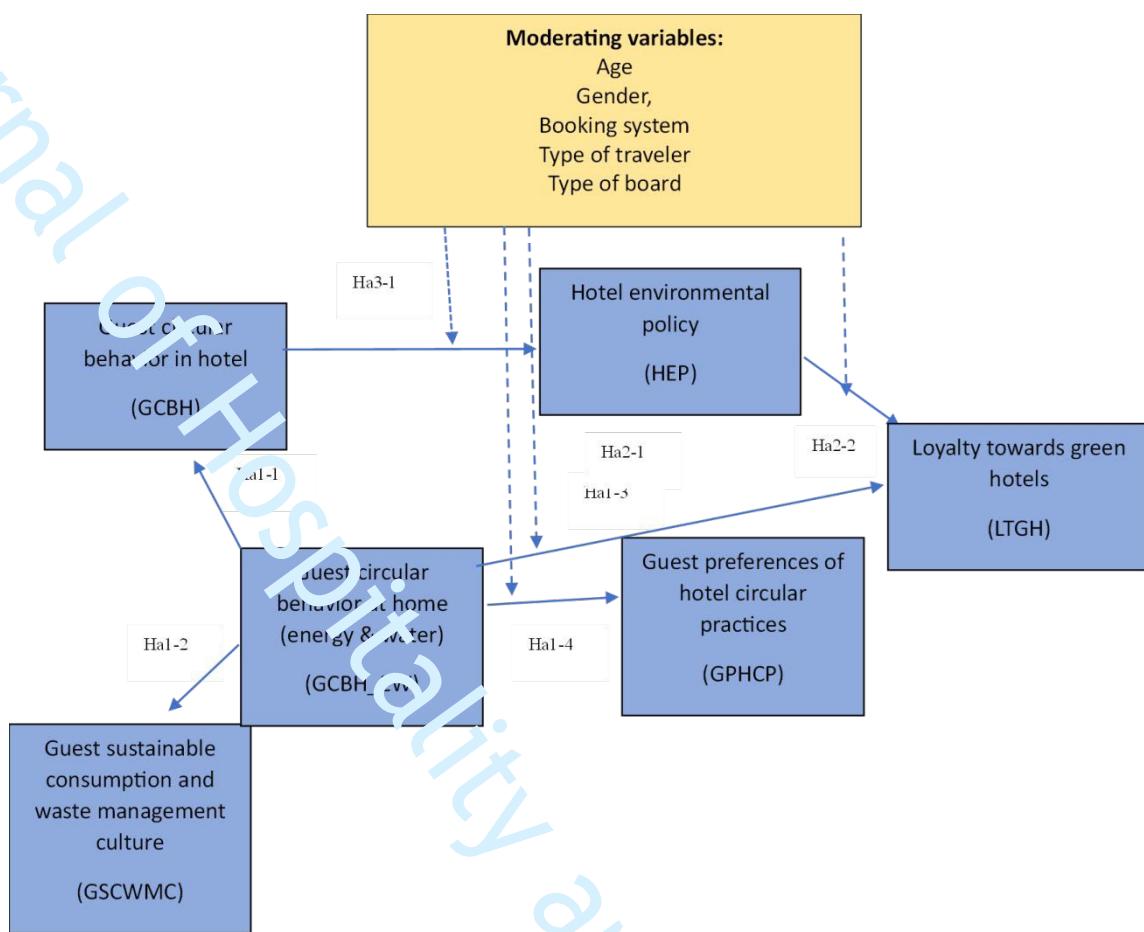
	Original sample (O)	Sample mean (M)	Standard deviation (STDEV)	T statistics (O/STDEV)	P values
GCBH -> HEP	0.262	0.254	0.108	2.433	0.015
HEP -> GPHCP	0.509	0.506	0.082	6.232	0.000
HEP -> LTGH	0.763	0.759	0.042	18.291	0.000
GCBH_EW -> GPHCP	0.365	0.371	0.065	5.617	0.000
GCBH_EW -> GCBH	0.416	0.426	0.065	6.370	0.000
GCBH_EW -> GSCWMC	0.576	0.583	0.044	13.206	0.000
GCBH_EW -> LTGH	0.185	0.187	0.048	3.842	0.000

Table 6. Results of Q^2 , predictive relevance

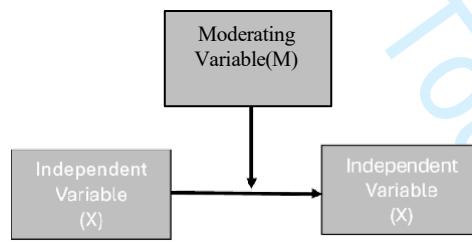
	Q^2 predict
GPHCP	0.092
GCBH	0.153
GSCWMC	0.315
HELP	-0.026
LTGH	-0.003

Table 7. Results of gender invariance measurement testing using permutation

Constructs	Configural invariance (Same algorithms)	Compositional invariance (Correlation =1) <i>C=I</i>	Confidence interval	Partial measurement invariance established	Differences	Equal mean (Confidence Interval)	Equal	Differences	Equal variances (Confidence Interval)	Equal	Full measurement invariance established
GPHCP	Yes	0,999	[0.993;1]	Yes	-0,027	[-0.275;0.273]	Yes	-0.402	[-0.705;0.718]	Yes	Yes
GCBH	Yes	0.996	[0.987;1]	Yes	-0,382	[-0.273;0.266]	No	-0.151	[-0.609;0.593]	Yes	No
GSCWMC	Yes	0.998	[0.988;1]	Yes	0,386	[-0.269;0.271]	No	-0.192	[-0.344;0.357]	Yes	No
HELP	Yes	1.000	[0.999;1]	Yes	0,013	[-0.270;0.276]	Yes	-0.382	[-0.717;0.761]	Yes	Yes
LTGH	Yes	1.000	[0.999;1]	Yes	0,128	[-0.267;0.272]	Yes	-0.136	[-0.441;0.444]	Yes	Yes
GCBH_EW	Yes	0.993	[0.964;1]	Yes	-0,267	[-0.274;0.275]	Yes	0.055	[-0.318;0.323]	Yes	Yes


Table 8. Results of age invariance measurement testing using permutation

Constructs	Configural invariance (Same algorithms)	Compositional invariance (Correlation =1) <i>C=I</i>	Confidence interval	Partial measurement invariance established	Differences	Equal mean (Confidence Interval)	Equal	Differences	Equal variances (Confidence Interval)	Equal	Full measurement invariance established
GPHCP	Yes	0.999	[0.993;1]	Yes	-0,362	[-0.276;0.273]	No	0,379	[-0.732;0.709]	Yes	No
GCBH	Yes	0.997	[0.985;1]	Yes	-0,183	[-0.283;0.270]	Yes	0,159	[-0.604;0.645]	Yes	Yes
GSCWMC	Yes	0.999	[0.987;1]	Yes	-0,400	[-0.275;0.277]	No	-0,052	[-0.387;0.341]	Yes	No
HELP	Yes	1.000	[0.999;1]	Yes	-0,351	[-0.280;0.273]	No	0,090	[-0.820;0.694]	Yes	No
LTGH	Yes	1.000	[0.999;1]	Yes	-0,461	[-0.279;0.278]	No	-0,077	[-0.482;0.434]	Yes	No
GCBH_EW	Yes	0.986	[0.963;1]	Yes	-0,074	[-0.277;0.274]	Yes	0,111	[-0.344;0.324]	Yes	Yes


Table 9. Results of booking system invariance measurement testing using permutation

Constructs	Configural invariance (Same algorithms)	Compositional invariance (Correlation $C=I$)	Confidence interval	Partial measurement invariance established	Differences (Confidence interval)	Equal mean (Confidence interval)	Differences	Equal variances (Confidence interval)	Equal	Full measurement invariance established	
GPHCP	Yes	0.993	[0.985;1]	Yes	0.192	[-0.252;0.253]	Yes	-0.217	[-0.524;0.559]	Yes	Yes
GCBH	Yes	0.995	[0.960;1]	Yes	0.178	[-0.257;0.253]	Yes	-0.112	[-0.291;0.281]	Yes	Yes
GSCWMC	Yes	0.999	[0.992;1]	No	0.123	[-0.254;0.249]	Yes	-0.009	[-0.647;0.646]	Yes	Yes
HELP	Yes	0.996	[0.986;1]	Yes	0.256	[-0.254;0.256]	No	-0.093	[-0.354;0.337]	Yes	No
LTGH	Yes	0.999	[0.999;1]	Yes	0.149	[-0.253;0.247]	Yes	-0.418	[-0.707;0.657]	Yes	Yes
GCBH_EW	Yes	1.000	[0.999;1]	Yes	0.306	[-0.251;0.248]	No	-0.183	[-0.409;0.389]	Yes	No

Figures

Figure 1. Conceptual model and hypotheses.

Figure 2. Conceptual Framework of Moderation Analysis

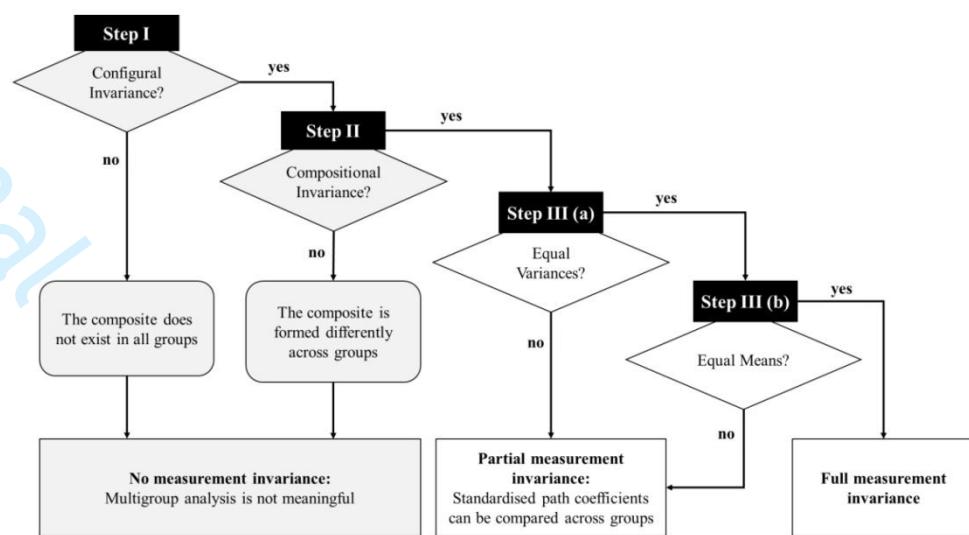


Figure 3: Steps of MICOM Procedure

Source: Cheah et al. (2020).

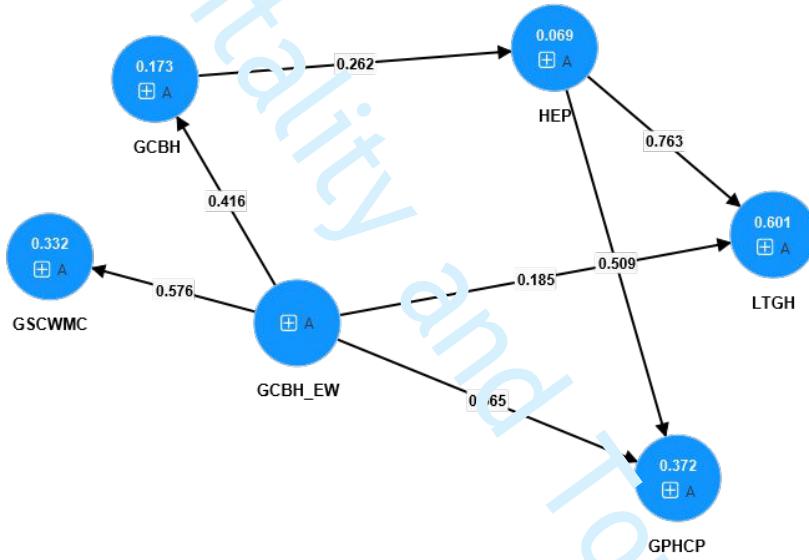
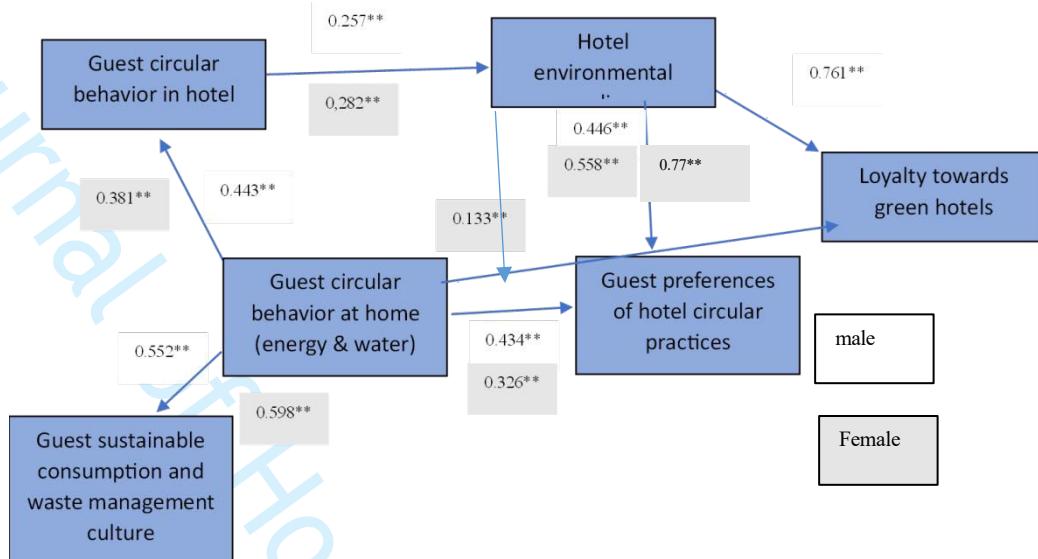
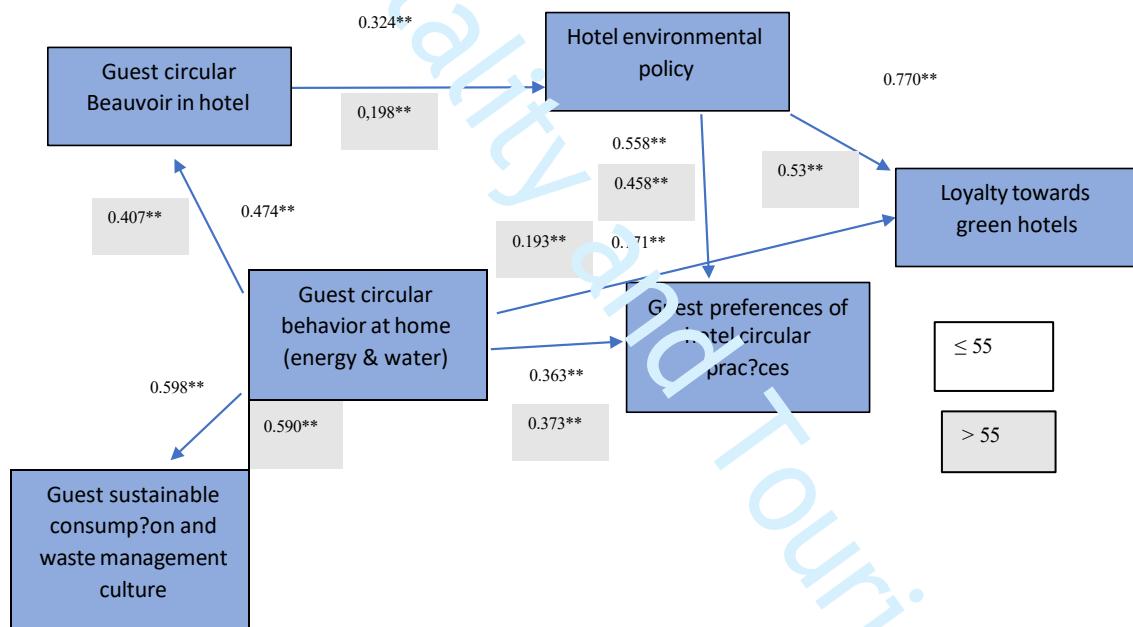




Figure 4. Structural Model Path Coefficients

Figure 5. Results of the path coefficients for gender.

Note: ** Significant at the 0.05 level

Figure 6. Results of the path coefficients for age

Note: ** Significant at the 0.05 level