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Resumen

Desde el siglo pasado, la humanidad ha investigado e intentado alcanzar el difi-
cil objetivo de crear fusién nuclear controlada, para asi, acceder a una fuente
de energia limpia y rentable. Con esta tesis, pretendemos continuar esta tarea,
centrandonos, especificamente, en la fusién nuclear por confinamiento inercial
mediante la técnica llamada ”ignicién rapida por iones” (ion fast ignition). La
ignicién rapida por iones consiste en aplicar un potente haz de iones para ca-
lentar e inflamar una capsula de combustible de deuterio-tritio, precomprimida
y en estado de plasma, creando asi un punto caliente (hot-spot) que inicia la
reacciéon de fusion. Separar las fases de compresion y calentamiento permite
optimizar ambas de forma individual, asi como ganar més control sobre la de-
posicién de energia. Sin embargo, la ignicién rapida con iones se enfrenta a
varios retos que requieren un estudio mas profundo.

Por consiguiente, en el contexto de la ignicién rapida por iones, la contribu-
cién principal de esta tesis consiste en proveer un paquete computacional y un
estudio sistematico de la interaccién entre el haz de iones y el plasma en distintos
escenarios de interés, asi como un andlisis sistemético preliminar de la ganancia
conseguida tras la ignicién. Para llevar a cabo este objetivo, hemos modelado
una simulacién espacio-temporal unidimensional de la deposicién de energia del
haz y del calentamiento del combustible. Con estos célculos, podemos obtener
la distribucién de temperaturas del plasma, y, de ahi, extraer ciertas caracteris-
ticas clave que permiten describir el hot-spot creado y predecir de su evoluciéon
posterior. Presentamos resultados para una amplia gama de valores de interés,
centrandonos en un plasma de deuterio-tritio en concentraciéon equimolar. Es
posible modelar este combustible para distintas temperaturas iniciales, densi-
dades y radios, incluso, incluyendo las impurezas desprendidas de la capsula
a diferentes concentraciones. Asimismo, hemos considerado diferentes tipos
de haces de iones, tanto monoenergéticos como cuasi-monoenergéticos, varias
especies i6nicas, distintos radios de haz, energias de proyectil y flujos.
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En esencia, con este estudio exhaustivo de la ignicién rapida, establecemos
un vinculo entre las caracteristicas del haz aplicado y el estado del plasma
calentado tras la interaccion. Esto es muy practico en dos sentidos: a la hora
de disenar un experimento, podemos predecir el estado del plasma resultante o,
por el contrario, si el objetivo es crear un tipo especifico de hot-spot, podemos
averiguar los parametros de entrada necesarios, tanto para el haz de iones como
para el plasma. Que sepamos, este enfoque no ha sido explorado profundamente
en la literatura existente.



Abstract

Since the last century, humanity has researched and attempted the challenging
goal of creating nuclear fusion in a controlled environment and, thus, access-
ing a clean and cost-effective energy source. In this thesis, we aim to continue
this endeavour, focusing specifically on the scenario of inertial confinement nu-
clear fusion through the ion fast ignition approach. Ion fast ignition scheme
uses a powerful, focused ion beam to rapidly heat and ignite a pre-compressed
deuterium-tritium fuel pellet in a plasma state, creating a hot-spot that initi-
ates the fusion reaction. By decoupling the compression and heating phases,
it is possible to optimize both and keep control over the energy deposition.
However, ion fast ignition encounters several challenges that require further
study.

Therefore, in the context of the ion fast ignition scheme, the main contri-
bution of this thesis is to provide a computational package and a systematic
study of the interaction between the ion beam and the plasma in different sce-
narios, as well as a preliminary systematic analysis of the gain achieved after
the ignition. This is carried out through a spatial-temporal one-dimensional
simulation of the deposition of energy from the beam and the heating of the
fuel. After this calculation, we retrieve the distribution of temperatures of
the plasma, from which we extract key features to characterise the hot-spot
created and the prediction of its posterior evolution. We present results for
a wide range of values of interest, focusing on a deuterium-tritium plasma in
equimolar concentration. This fuel can be modelled for various temperatures,
densities, and radii, including impurities from the pellet at different concen-
trations. Additionally, we incorporate different types of fast ion beams, both
monoenergetic and quasi-monoenergetic, across various ionic species, different
beam radii, projectile energies, and fluxes.

In essence, our systematic and comprehensive study of the fast ignition, es-
tablishes a clear link between the characteristics of the applied beam and the
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resulting plasma state. This is highly useful in two ways: when designing an
experiment, we can predict the resulting plasma state, or conversely, if the goal
is to create a specific type of hot-spot, we can provide the necessary input pa-
rameters, for both the ion beam and the plasma. To the best of our knowledge,
this approach has not been extensively explored in the existing literature.
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Introduction

From the earliest days of philosophy, some of the greatest minds in history con-
templated the concept of matter in an attempt to define it. The ancient cultures
already regarded matter as a vague notion: what remains beneath the changing
appearances of the things of nature. The natural philosophy of atomism is of
the most important ones in this sense, proposing that the physical universe is
composed of fundamentally indivisible components known as atoms. This con-
cept appeared in both ancient Greek and Indian philosophical traditions, such
as Leucippus and Democritus (5th century BC, Destrée, 2003) and Kanada (6th
century BC, Durant, 2011). Other philosophical currents considered the ele-
ments to be the foundations of the material world, namely fire, water, air, and
earth. Empedocles considered that almost all things were composed of these
four elements, while Aristotle claimed that atoms could not build up elements,
as the latter were the prime and continuous material that remains (Aristotle
& Aristotle, 1933). Conversely, Plato believed that elements were composed
of different arrangements of atoms. Even further, he thought elements could
not be the most basic level of reality, but something that were univocally un-
changing, which he considered that should be mathematical. According to this
theory, the properties of each element arose from the unique shapes, sizes, and
movements of the atoms comprising them. For instance, fire was thought to
consist of small, light, and fast-moving atoms, while earth was composed of
large, heavy, and slow-moving atoms (Pohle, 1971; Cornford, 2014).

Later on, atomism was revived by rationalist Mechanicism in the 17th and
18th century, which provided the basic theoretical support for the birth of
modern physical science. In the early 19th century, chemists and other natural
philosophers observed experimental evidence of particles constituting chemical



matter. Initially considered indivisible, these particles were named “atoms”
by Dalton (1817), drawing upon the longstanding concept from atomist phi-
losophy. Consequently, the composition of atoms were discovered: electrons
by Thomson (1897), atomic nucleus and protons by Rutherford (1911) and
Rutherford (1919), as well as neutrons by Chadwick (1932). Despite the thin
connection to ancient atomism, elementary particles have emerged as a con-
temporary counterpart to philosophical atoms. It is curious that, figuratively,
some of the concepts that the ancient Greeks elaborated were not so far from
the idea of primal building blocks that constitute most of observable reality.
Their elements are also analogous to our currently defined states of matter: air
would correspond to gas, water to liquid, earth to solid and fire to plasma.

Consequently, throughout the history of physics, the exploration of the phys-
ical properties of matter has consistently held a central position, serving as a
cornerstone of the discipline. While the gas, liquid, and solid states are the
most commonly encountered forms of matter, significant attention has been
devoted to investigating the plasma state since the latter half of the twenti-
eth century. The interest in this topic grew once this state of matter began
to be identified (Crookes, 1879; Langmuir, 1928; Kamenetskii, 1972) and its
utility for different applications discovered (Committee et al., 1995; Chu & Lu,
2013). Accordingly, contemporary history gathers numerous studies addressing
plasmas, establishing it as the most abundant form of ordinary matter in the
universe (Piel, 2010; Chu & Lu, 2013).

Plasma consists of both neutral components (such as atoms, molecules, neu-
trons, and photons) and charged components (including ions, free electrons, and
protons). In such state, collective effects arise from the interactions between the
particles of the system, leading to behaviours and properties at the macroscopic
scale, that cannot be described by considering each element in isolation. Un-
like gases, liquids, and solids, plasma does not naturally occur under ordinary
conditions on the surface of the Earth; instead, it must be artificially generated
through methods such as heating or the application of strong electromagnetic
fields. In nature, plasma is primarily associated with phenomena such as stellar
interiors and atmospheres, the rarified intracluster medium, and intergalac-
tic regions. Additionally, plasma can be produced in laboratory settings and
nuclear fusion facilities.

Figure 1.1 illustrates the various types of plasma based on temperature and
free electron density, highlighting the extensive range of plasma phenomena
observed in nature and subject to scientific inquiry. The study of plasma physics
includes numerous lines of research, among which we are going to focus on the
interaction between particle beams with high energy density plasma. In the
particular case of this thesis, we work in the mainframe of a plasma thought



for nuclear fusion as an energy source, where densities are in the order of 102
particles per cubic meter and temperatures that reach 10 to more than 1000
million Kelvin.

RANGES OF PLASMAS

Centre of Sun

Fusion

Chromosphere

Solar corona

ELECTRON DENSITY
Electrons per cubic centimetre

10° 10 10° 10* 10° 10° 10* 10°eV
10? 103 104 10° 108 107 108 100 K
TEMPERATURE

FIGURE 1.1— Diagram with the classification of plasmas depending on its temperature and
free electron density. Source: Alam (2013).

The current world is in great need of an energy supply that can meet its
escalating demand for energy. Fossil fuels, which have been relied upon for cen-
turies, are both limited and harmful to the environment. Moreover, new ecolog-
ical regulations further constrain the use of these traditional energy sources, as,
for example, the 2023 United Nations Climate Change Conference. Considering
these conditions, we have various unlimited options available. Among them, we
find the nuclear fusion energy, breeder fission nuclear reactors, solar energy,
wind power, hydropower and bioenergy, among others. While the latter four
have been useful in reducing pollution from sources like fossil fuels and fission,
they are unlikely to fully satisfy the global energy demand. On the other hand,
fission breeder reactors produce extremely dangerous radioactive waste, posing
significant risks if not managed properly. This leaves nuclear fusion as the most
promising candidate for a future source of unlimited and clean energy.

In a fusion reaction, two lighter atomic nuclei combine to form other par-
ticles as byproducts. These byproducts include heavier nuclei and subatomic



particles (neutrons or protons), releasing enormous amounts of energy in the
process. Two common proposed fuels for such reactions are isotopes of hydro-
gen: deuterium and tritium. Deuterium can be found in abundance in seawater,
while tritium is harder to find naturally, although it can be produced artificially
by, for instance, exposing lithium to energetic neutrons.

Luckily for humanity, the path for achieving such process has been already
taken for decades. Since the early 1920s the concept of nuclear fusion was pro-
posed and then associated to the generation of energy from stars (Eddington,
1979). Years after, experiments on Earth began to explore the possibilities of
nuclear power, starting with the experiments associated to the fission atomic
bomb and, later, the first artificial nuclear fusion detonation of the bomb ”Ivy
Mike” in 1952, triggered, in turn, by a fission weapon (established as Ulam-
Teller process). Simultaneously, the civil and controlled used of both nuclear
energies was being investigated. In 1942 the earliest fission reactor was achieved
(Chicago Pile-1), then, a decade later, the first nuclear power plants were cre-
ated. Similarly, the first nuclear fusion reactions were achieved in laboratories
in the decade of the 1950s, along with prototype reactors. Subsequently, these
reactors have significantly improved over the years'. Currently, net positive
reactions have been accomplished, as well as transient or pulsed periods of net
power (e.g. Woodward, 2022; Frank Fleschner, 2023). For the future, the chal-
lenge is to build nuclear plants of sustained nuclear fusion and, afterwards,
demonstrating commercial viability as a cost-effective electricity source for the
metropolis and the industry field.

In the quest for nuclear fusion, extensive research is being conducted to
address the many obstacles that remain unsolved. Different fields contribute
with their knowledge, including theoretical studies that describe accurately the
plasma, computational simulations that predict the processes, experimentation
in real reactors, production of the material to be fused, creation of containers
capable of withstanding such high energies, and the drivers that ignite the
plasma, among others. All these aspects are interconnected, functioning like
gears in a mechanism, so collaboration is crucial to ensure success.

In this context, the current thesis focuses on one particular facet: among
the various proposed methods for generating nuclear fusion in a reactor, one
of them is known as inertial confinement fusion (ICF), where the plasma is
compressed and heated. Within ICF, we explore an alternative technique that
achieves ignition by applying a powerful final beam to the fuel. This approach is

'For a more detailed narration of the history of nuclear power, some recommended lit-
erature could be, for example, Char & Csik (1987); Segre (1989); Bodansky (2007); Stacey
(2010); Rhodes (2012); Stacey (2018) and Barbarino (2020).



generally called fast ignition (FI) or ion fast ignition (IFI) if ion projectiles are
applied. In FI, the compression and heating phases are decoupled, optimising
the energy deposition and the control over fusion reactions. However, FI faces
challenges in achieving efficient energy transfer and compression of the fusion
fuel. Although this scheme is not currently one of the most popular choices,
studying the different pathways that could lead to successful nuclear fusion is
of substantial importance. With this work, we model the interaction between
the ion beam and the plasma, simulating how the fuel is heated, its primary
characteristics, and its initial evolution. Through various scenarios, we present
a systematic analysis of the plasma conditions after applying the beam and
anticipate its progress. Thus, the bottom line objective of this thesis consists in
determining the beam characteristics needed to achieve a heated plasma with
certain properties. Simulating the connection between beam attributes and the
resulting plasma is crucial for advancing FI.

To effectively present all the generated knowledge, this thesis is organized as
follows: in Chapter 2, we provide a general review of the context of this thesis
as described above; in Chapter 3, we then detail our model and study method-
ology; in Chapters 4, 5, 6, and 7, we derive numerous results under varying
conditions utilizing our model, which are presented and discussed; finally, in
Chapter 8, we present the conclusions.






Nuclear fusion overview and state of
the art

This chapter collects the physical foundations necessary to describe the main
processes that take place to obtain energy from nuclear fusion. We present
the nuclear fusion reactions, the different schemes to achieve the nuclear fusion
and, in particular, the ion fast ignition approach, which involves the ion beam,
the plasma, and the interaction of both. Finally, the motivations, objectives
and thesis outline are presented. It is mandatory addressing that this segment
of the thesis synthesizes and builds upon the findings and insights from exist-
ing literature (among others, Atzeni & Meyer-Ter-Vehn, 2004; Fuentes, 2018),
which we recommend consulting for delving further on the subject.

As outlined in the Introduction, a plasma is a compound of both neutral
particles (atoms, molecules, neutrons, photons, etc) and charged components
(ions, electrons, protons, etc), which present collective effects, such as large-
range interactions. In this sense, a comprehensive analysis of the system from a
physical standpoint would require a complete examination of both microscopic
and macroscopic perspectives, as described below.

On one side, the microscopic description implies:

e The investigation of the internal atomic structure, focusing on the en-
ergy levels and wave functions of the ions influenced by the surrounding
plasma. This involves solving the Dirac equation in a quantum relativistic
scenario or the Schrodinger equation in a non-relativistic one.

o Determining the cross-sections (probabilities) and reactivity rates (num-
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ber of processes per time) for each possible process. This allows calcu-
lating the collisional and radiative processes occurring within the plasma,
such as ionizations resulting from electron or ion impacts, as well as the
excitation of ions through photon absorption, among others.

o Examining of the populations of the various components within the plasma.
This involves employing methods such as atomic kinetic transport or
collisional-radiative equations to compute the spatial and temporal distri-
bution of ion and atom populations across each charge state and ground
and excited configurations. Additionally, it also encompasses the utiliza-
tion of radiative transport equations to determine the energy distribution
for photons.

e Describing of the dynamic interaction ions suffer within, this is, with
other charged particles (electrons or ions) or external fields like electro-
magnetic fields. In such processes, the ions transfer energy to the sur-
rounding plasma constituents, losing energy and slowing down, therefore,
it is necessary understanding the types of collisions involved.

On the other side, the macroscopic description implies:

o Investigating the radiative properties of the plasma, based on the param-
eters determined in the microscopic analysis.

o Examining the state equations of the plasma concerning temperature and
density variations, applying statistical physic principles.

o Analysing the spatio-temporal evolution of various fields, including tem-
perature, density, and pressure, considering initial and boundary condi-
tions. This study employs fluid mechanics principles, along with hydro-
dynamic equations interacting with electromagnetic radiation.

e Considering the slowing down of ions in plasma on a macroscopic level,
such that, particle collisions, scattering, and collective plasma phenomena
are described. The rate of ion slowing down depends on factors such as
the ion energy, plasma density, temperature, or any other.

The preceding microscopic and macroscopic descriptions point out the ex-
tensive complexity of this study. Moreover, as the plasma is a compound of
huge amounts of interacting particles, some equations to describe the system
are coupled. As such, simulating plasma properties at high energy densities re-
quires the development of complex theoretical models and their computation to



generate extensive databases under different conditions. These plasma proper-
ties entail the computation of an extensive array of atomic levels (approximately
10%) and atomic processes (approximately 107). Additionally, it is mandatory
to solve the set of coupled rate equations that determine the average ionization
of the plasma and the population of atomic levels. This array of equations
must be resolved for each plasma condition, including density and tempera-
ture, thus, approximately 103 profiles of plasma conditions are required for
a hydrodynamic simulation. Consequently, employing certain approximations
becomes necessary to disentangle these equations. This illustrates a compre-
hensive analysis of the system. However, our work does not necessarily address
all the previous bullet points, as we focus on certain aspects relevant to fusion
plasmas within the context of a fast ignition scheme. In our cases of study, the
density and temperature of the plasma are such that all the particles are fully
ionized. As a consequence, neither atomic structure nor kinetic are required for
the investigation. In the following sections, we will provide a description of the
physics involved.

2.1 Binding energy and nuclear reactions

The first point we should address is the origin of the energy of a nuclear reaction.
In nuclear physics and particle physics, the strong interaction or strong nuclear
force, is responsible for attaching neutrons and protons to create atom nuclei,
by means of the "nuclear binding energy”. This binding energy appears when
finding that the mass of an atomic nucleus is lower than the combined masses
of its constituent individual protons and neutrons. This difference is named
"mass defect”, and, for an atom of atomic number Z, atomic mass number A
and atomic mass m, it is calculated as Am = Zmy + (A — Z)my — m (my,
and m,, are the proton and neutron masses, respectively). As the mass can
be categorised as energy, this discrepancy in mass can be calculated with the
famous Einstein equation, E = Amc?, where E represents the nuclear binding
energy, c is the speed of light, and Am is the difference in mass.

For an exothermic nuclear reaction (either fission or fusion), it is necessary
that the mass of the reactants is larger than the mass of the products, or, in
other words, the binding energy of the products must be larger. In this sense,
the energy released in the reaction is calculated as:

Q=d_mi—> my|c (2.1)
i !

being m; and m; the set of reactants and products, respectively.
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A general description of a fusion reaction involves two reactants X; and Xo
to produce a more massive particle X3 and lighter one X4, as well as energy if
the reaction is exothermic, so:

X1+X2 —>X3—|—X4+Q. (22)

Due to the law of conservation of momentum, the energy released during
the reaction is attributed to products inversely proportional to their masses. It
can be calculated by solving the set of equations Q =1/ 2’m3v§ +1/2myv? and
Q = 1/2m,v2, being the reduced mass m, = msmy/(ms3-+my) and the modulus
of the relative velocity v, = |vg — vy].

In the particular case of the reaction that is considered in this work we have:

D+T—a+n+Qpr. (2.3)

Here, the reactants, deuterium and tritium, are two isotopes of hydrogen
with one proton and two and three neutrons in its nucleus, respectively. In
this fusion process, the components are found in the form of a high tempera-
ture plasma, and, therefore, highly ionized. Consequently, the products are a
neutron and an a-particle, this is, a helium nucleus consisting of two protons
and two neutrons. Thus, taking into account the masses of every component:

mp = 2.01355 amu,
mT = 3.01605 amu,
me = 4.0026 amu,

my = 1.00867 amu,

(2.4)

we find that Qpt = 17.58 MeV. Then, computing the pair of equations above,
we find Q, = 3.52 MeV and @, = 14.06 MeV.

Certain magnitudes are necessary for analysing the nuclear reactions. Among
them, the cross-section, ofys(v), quantifies the likelihood of the reaction occur-
ring for two particles. If the reactants have a distribution of relative velocities,
f(v), as in a thermal distribution, then, averaging over this distribution, with

the cross-section and the velocities, returns the “reactivity” or "reaction rate”!:

(OfusV) = /OOO orus(V)vf(v)dv. (2.5)

iterature does not agree on denoting <0'fus’l]>. For instance, in Atzeni & Meyer-Ter-
Vehn (2004) and 'Nuclear fusion’, Wikipedia contributors (2024), (ofusv) is named “averaged
reactivity” and the reaction rate (fusions per volume per time) is the reactivity times the
product of the reactant number densities ning (omsv). On the contrary, in Gus’kov et al.
(2011), (ofusv) is referred as “reaction rate”.
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This represents the probability of reaction per unit time per unit density of
the target nuclei. In this sense, Deuterium-Tritium (DT) is the most promising
fuel for nuclear fusion in a reactor. It presents favourable cross-sections, while
simultaneously presenting a highly exothermic reaction, releasing a significant
amount of energy. Moreover, the DT reaction has the largest reactivity and
its ignition temperature is relatively low compared to other fusion combina-
tions. Additionally, it yields a large number of neutrons, which can sustain
the fusion process and facilitate the breeding of tritium fuel from lithium. To
illustrate this, we show some common controlled fusion fuel reactions, in Ta-
ble 2.1, along with their respective energy release and their cross-sections at
10 keV and 100 keV. Furthermore, in Fig. 2.1 we show the cross-sections at
the centre-of-mass energy and the reactivity as functions of temperature for
different reactions (Atzeni & Meyer-Ter-Vehn, 2004).

Reaction Q [MeV] | onsaokev) [107%* em?] | gruspookeyy [107%* em?]
D+T —a+n 17.59 2.72.1072 3.43
D+D—=T+p 4.04 2.81.107% 3.3-1072

D+ D —3 He+n 3.27 2.78.1074 3.7-1072

D+ D —* He 23.85 - -
T+T—a+2n 11.33 7.9-107% 3.4.1072

TABLE 2.1— Main controlled fusion fuels with their energy release and their cross-section
at 10 keV and 100 keV (source: Atzeni & Meyer-Ter-Vehn, 2004)

Among the examples provided, it is demonstrated that the DT reaction has
the second-largest energy release, superior cross-section values, and the highest
possible reaction rate. Besides DT, other fuels have been considered, named
advanced (or alternate) fusion fuels, involving reactions between hydrogen iso-
topes and light nuclei (such as Helium, Lithium and Boron). Advanced fusion
fuels offer certain benefits, and their characteristics might be comparable to
those of the DT. However, burning such fuels appears exceedingly difficult, as
they have higher ignition temperatures (Miley, 1982).

In this context, it is necessary to discuss the feasibility of obtaining and
using the DT as a fusion fuel source. Most of the following information can be
retrieved from Kegebag & Kayfeci (2019).

On the one hand, deuterium is stable and abundant in nature. It is found in
water, specifically in the form of heavy water (?Ho0). However, heavy water is
present in ordinary water at very low concentrations, with approximately one
molecule of heavy water for every 6,400 molecules of ordinary water. Hence, the
oceans serve as the largest source of heavy water on Earth. Nevertheless, due
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FIGURE 2.1— Left: Cross-sections (1 barn = 10** cm?) for fusion reactions relevant to
controlled fusion energy as a function of the center-of-mass energy. The DD curve aggregates
the cross-sections of different branches of the reaction. Right: Averaged reaction reactivity
plotted against temperature for different controlled fusion reactions. Source: Atzeni & Meyer-
Ter-Vehn (2004).

to its low concentration, heavy water must undergo extraction and purification
processes to obtain deuterium in significant quantities. Heavy water is sepa-
rated from common water through processes such as the Girdler sulphide pro-
cess?, differential distillation®, or other methods (Waltham, 2002). Then, deu-
terium is isolated via electrolysis?, being the overall reaction 2Hy0 — 2Hy+ 0.
Additionally, deuterium can be separated from ordinary hydrogen through iso-
topic separation techniques. One common method is differential distillation,
which takes advantage of the slight difference in boiling points between deu-
terium and ordinary hydrogen. In this process, liquid hydrogen is repeatedly
evaporated and condensed, with each cycle enriching the concentration of deu-
terium in the remaining liquid.

On the other hand, tritium, being a radioactive isotope with a half-life of

2The Girdler sulphide process is a method for the industrial-scale production of heavy
water by catalytic exchange between hydrogen sulphide and water.

3The differential distillation process is a method for separating isotopes based on their
different boiling points.

4Making an electric current flow through the water. At the cathode (negative electrode),
water molecules gain electrons and are thereby reduced to form hydrogen gas. Conversely, at
the anode (positive electrode), water molecules lose electrons and are oxidized to form oxygen
gas.
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~12.3 years, is not as easily found as deuterium. Tritium is mainly available
in Earth’s atmosphere in small amounts, formed by the interaction of gases
with cosmic rays. Among other techniques, it can be produced artificially by
irradiating lithium or boron plates (Vasaru, 1993). In this sense, it is common
to retrieve tritium from nuclear reactors, where it appears as a low-abundance
byproduct of the fission of lithium in breeder ceramics (Rubel, 2019). An-
other. less common, procedure to acquire tritium involves inducing deuterium
to capture high-energy neutrons (Whitlock, 2010). Finally, the decay product
of tritium, helium-3, can be converted back to tritium if it reacts with a neutron
and expels a proton. The cross-section of this reaction is sufficiently large and
can happen in nuclear reactors (MIT, 2004; Shea & Morgan, 2010). Regard-
less of the approach used, tritium needs to be separated later from the rest of
products of their respective reactions through any necessary chemical process.

2.2 Schemes to achieve nuclear fusion

To achieve nuclear fusion reactions on Earth, aiming for a sustained energy
production, different schemes have been proposed. Here, we present a collection
of these schemes, classified by the method chosen for confining the plasma.
Broadly speaking, there are two major branches in the field of controlled fusion:
magnetic confinement fusion (MCF) and inertial confinement fusion (ICF). It
is worth noting that MCF has a longer tradition in Europe and Asia, while ICF
is typically associated with the United States of America.

2.2.1 Magnetic confinement fusion

The magnetic confinement fusion scheme uses magnetic fields to confine fusion
fuel in the form of a plasma. In this case, sets of coils are distributed in a toroid
shape to create magnetic fields that trap the ions and the stripped electrons in
currents. The components of the fuel are forced to follow the field lines without
touching the walls of the container, reaching temperatures of millions of degrees
and fusing. Two of the most historically relevant schemes within MCF are the
Stellarators and the Tokamaks, which will be explained as follows.

2.2.1.a Stellarators

Stellarators were one of the pilot approaches for MCF, proposed by Spitzer
(1951), based on non-circular bent sections following a helix shape around the
central line of the toroid (see left panel from Fig. 2.2). In theory, this config-
uration should prevent the particles from drifting away in each revolution of
the circuit, keeping the plasma continuously circulating. Some experimental
attempts were carried out during the decade of the 1950s, but the idea was
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progressively abandoned due to its complex shape and a lack of efficiency, in
favour of Tokamaks (see next section). This design has been retaken again in
2015, with, for instance, the innovative use of Wendelstei 7-X reactor from Ger-
many, the Helically Symmetric Experiment (HSX) in the US, and the Large
Helical Device in Japan. The advancements of technology, as the use of super-
conducting magnetic coils, aim to achieve intrinsic stability without relying on
plasma current, making them potentially more stable for long-duration plasma
confinement. In fact, on February of 2023, Wendelstein 7-X achieved a signifi-
cant milestone by generating a plasma that reached for the first time an energy
turnover® in the order of gigajoule units during eight minutes (Frank Fleschner,
2023).

2.2.1.b Tokamaks

Tokamaks and Stellerators both employ a similar concept to keep the plasma
flowing in the circuit. The first designs of Tokamaks date back to the late
1960s in the Soviet Union. The main difference is that Tokamaks typically rely
on the plasma current induced by the toroidal magnetic field to help confine
and stabilize the plasma, instead of being inherently stable as the Stellerators.
Additionally, Tokamaks present a simpler geometry and construction, where
instead of considering spiralled or torsed coils, a non-circular flat cross-section
is used (see right panel from Fig. 2.2).

In the new millennia, Tokamak-type reactors have been the spearhead of
nuclear fusion research, as a leading candidate for a practical fusion reactor
(Freidberg, 2008). Currently, ITER (International Thermonuclear Experimen-
tal Reactor) is one of the most ambitious Tokamak projects, presently under
construction in Cadarache, France. It is supposed to reach unprecedented ther-
mal power, greater than the injected thermal power. The timeline for ITER
consisted on completing its construction and working with its first plasma by
2025, then start the operation of deuterium-tritium by 20355 (ITER, 2023).

Several prototype reactors have been built, such as: JET (Joint European
Torus) at UK, being one of the largest reactors; WEST ("W” Environment in
Steady-state Tokamak, formerly Tore Supra) located at the Cadarache facility
in France, is designed to test and develop technologies for ITER; EAST (Ex-
perimental Advanced Superconducting Tokamak) in China and KSTAR (Korea
Superconducting Tokamak Advanced Research) in Korea are both of the most

5The energy turnover is a result from the coupled heating power multiplied by the duration
of the discharge. The energy turnover achieved, of 1.3 gigajoule, is associated to an average
heating power of 2.7 megawatts, whereby the discharge lasted 480 seconds.

®Delays in this timeline were already warned and are set to be revised (World-Nuclear-
News, 2023).
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advanced Tokamaks reactors in Asia. Looking further into the future, DEMO
is a proposed experimental reactor intended to demonstrate the net production
of electric power from nuclear fusion by 2050 or later.

STELLARATOR TOKAMAK

Helical magnetic field coils Toroidal Transformer Vertical
magnetic coil magnetic
field coil field coil

Plasma

Magnetic
Plasma field lines Plasma current Magnetic field lines
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FIGURE 2.2— Structural representation of two MCF devices: Stellarator (left) and Tokamak
(right). Source: Mitchell (2023).

2.2.2 Inertial confinement fusion

The inertial confinement fusion scheme consists of compressing a target shell or
pellet of DT to a point of enough density and temperature for the fuel to ignite,
then, burn and generate a small nuclear explosion. Generally, the container for
the fuel is a sphere which is compressed by a set of beams (laser or particles)
called driver. The energy from the driver is concentrated on the target outer
layer, creating an explosion outwards. This produces an opposite reaction force
in the form of shock waves that travel through the target. Sufficiently powerful
shock waves compress and heat the fuel to induce fusion. The resulting burning
emulates stellar conditions, briefly resembling the detonation of a thermonuclear
bomb, albeit within a more controlled and less energetically intense environment
compared to its military counterpart. In a nuclear plant, continuous energy
production requires the replacement of each detonated shell with another, like
a four-stroke engine:
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1. Intake (of air and gasoline for a cylinder in an engine; of DT for a reactor).

2. Compression (of the air-gasoline mixture by the piston; of the DT fuel by
laser beams).

3. Combustion of the compressed fuel (by the spark plug in an engine; by
the final part of the implosion or other methods).

4. Exhaust (disposal of the remaining fuel and backwards movement of the
piston; disposal of the reaction remnants, as well as the energy deposition
created by the burning).

Then, the cycle repeats again (see Fig. 2.3). The nuclear energy released by
each explosion should be absorbed by the walls of the reactor, which, with a
cooling system, is used to create a traditional vapour cycle able to activate a
turbine.

Fuel injection Compression Ignition Combustion

Fuel injection Compression Ignition C D

Thermonuclear
burn

FIGURE 2.3— The analogy of a four-stroke sequence of a combustion engine of an automo-
bile (top row) and the one of an inertial confinement fusion reactor (bottom row). Source:
Duderstadt & Moses (1982).

Completing this process is not exempt of problems, most of them shared
with the MFC approach (Guo, 2023). Heating and compressing the fuel up
to temperatures so high that the thermal velocity of the nuclei is enough to
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surpass the electrostatic repulsion is highly difficult and requires large amounts
of input energy. Additionally, the pellet that contains the fuel should keep
the nuclei gathered enough time for the fusion to occur without dismantling
due to the extreme conditions. In the case of ICF, the drivers must be finely
tuned, in order to compress the target symmetrically and avoid instabilities.
Then, the components of the reactor should be resistant enough to withstand
the high temperatures, intense radiation and neutron flux. This imposes strin-
gent requirements on materials and engineering in order to avoid degradation
over time. At last, the fusion process must release more energy than is required
to sustain it, achieving a net energy gain, so there is a positive energy bal-
ance. None of these problems are present in the detonation of a thermonuclear
weapon, where the fusion explosion begins with the detonation of the fission
primary stage and then the energy is openly liberated. Thus, during more than
half a century, effort have been made to confine the fuel, ignite and properly
absorb the energy from the fusion.

In order to differentiate this scheme from others it is commonly named
"standard ICF” and, as it is explained in the following subsections, it can be
carried out in two modes: direct and indirect. In addition, in recent decades,
two other ignition schemes have become relevant in ICF: shock ignition and fast
ignition with electrons or ions. For a deeper understanding of the theoretical
aspects of the ICF, we strongly recommend the book of Atzeni & Meyer-Ter-
Vehn (2004). This thesis is framed within this context, focusing specifically
on the Fast Ignition scheme based on ions (IFI), which is one of the methods
employed to compress and heat fusion fuel for initiating fusion reactions. Some
of these methods are explained as follows.

2.2.2.a Direct drive

Historically, the direct drive approach has been the primary method proposed
within ICF, so it closely aligns with its most fundamental concepts. It originated
in the 1960s but under classified status, only being declassified in the 1970s
(Nuckolls et al., 1972).

In this scheme, the beams radially strike the spherical target to achieve
uniform compression from all sides (see left panel of Fig. 2.4). Initially, lasers
were proposed as the primary beams, with particle beams later suggested as
an alternative driver. The fuel is contained within a thin capsule, absorbing
energy from the driver beams. The vaporization of the capsule leads to an
outward explosion of the shell, generating, in turn, an inward force pressure
reaction. This compression should heat the target centre up to a sufficiently
high temperature for the fuel to ignite. Subsequently, this ignition would initiate
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a reaction that is expected to propagate from the centre to the entire sphere
(Craxton et al., 2015; Campbell et al., 2021; Tao et al., 2023; Hu et al., 2024).
The initial concept of central hot-spot ignition represented a pivotal real-
ization that inertial confinement fusion (ICF) could serve as a feasible path-
way to achieving fusion, specially during the early 1970s, offering a relatively
straightforward approach and a relatively simple arrangement. However, de-
spite its promising potential, the development of this technology faced several
challenges. Firstly, the process must be completed within an incredibly brief
timeframe, typically less than a nanosecond, to avoid natural capsule disrup-
tion. Secondly, it is crucial to keep a uniform implosion, to prevent asymme-
try arising from hydrodynamic diversions, such as Rayleigh—Taylor instability.
Thirdly, the drivers must deliver high amounts of energy within minuscule ar-
eas and timeframes, constraining the size of the beams to an extremely narrow
diameter (Atzeni & Meyer-Ter-Vehn, 2004). Lastly, meeting the demanding
temperature and compression requirements of this approach has been proven
difficult, as the energy input from the beams often exceeds the energy output
from fusion, making it challenging to achieve significant gains. Several at-
tempts have been carried out, as, for instance, the OMEGA experiments at the
Laboratory for Laser Energetics (see Fig. 2.5) of the National Ignition Facility
(Lawrence Livermore National Laboratory, USA; McCrory et al. 2001).

2.2.2.b Indirect drive

The indirect drive scheme appears as an alternative to the direct drive. In this
approach, the fuel is located within a cylindrical container, typically made of
gold and commonly denoted as hohlraum, with its top and bottom open. Instead
of directly targeting the fuel, laser beams are pointed towards the unlatched
top and bottom of the cylinder (see right panel of Fig. 2.4). The energy from
the beams heats the interior walls of the cylinder until it re-emits X-rays that
compress the capsule. These X-rays have a more uniform front, reducing the
asymmetries of the implosion, and the beams can be larger and less precise.
However, one of the main disadvantages of this approach is that much of the
delivered energy is used to heat the cylinder, resulting in a lower end-to-end
energy efficiency compared to direct drive.

Despite numerous attempts over decades, various projects employing this
methodology did not achieve success until two pivotal experiments supervised
by the National Ignition Facility (Lawrence Livermore National Laboratory,
US) demonstrated its viability. These experiments, conducted in the winter of
2022 (Woodward, 2022) and the summer of 2023 (Wilson, Tom and Hancock,
Alice, 2023), recorded the first-ever net energy production through nuclear fu-
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sion. They produced more fusion energy than the energy input from the laser
beams, achieving an efficiency on the order of 1%.

DIRECT DRIVE INDIRECT DRIVE
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FIGURE 2.4— Visual representation of two ICF approaches: direct drive (left) and indirect
drive (right). Source: Mitchell (2023).

2.2.2.c  Shock ignition

Proposed by Betti et al. (2007), the shock ignition scheme resembles the di-
rect drive approach until certain conditions are achieved in the plasma. The
process is divided into two phases: first, a typical ICF early compression, sim-
ilar to that of direct drive, followed by the application of an additional driver
(such as a laser, electron beam, or similar pulse) to create a shock wave or-
ders of magnitude stronger. This separation of the compression process from
the final heating, where ignition is achieved, offers the advantage of reduc-
ing the compression requirements and utilizing more efficient energy deposition
mechanisms. Additionally, some theoretical and experimental findings claim
that these approach enhances ignition conditions (Theobald et al., 2008), as
demonstrated, for instance, at the OMEGA Laser Facility (Rochester, New
York, Ribeyre et al., 2011). An illustrative scheme of this approach is shown in
Fig. 2.7.
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FIGURE 2.5— Photograph of the OMEGA target chamber. The ”cryogenic target posi-
tioner” refers to a deuterium-filled capsule suspended by strands to minimize the mass of
support structure mass and provide a relatively stiff positioning. Source: McCrory et al.
(2001).
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FIGURE 2.6— Visual representation of the shock ignition scheme (Shang et al., 2017).

2.2.2.d Electron or ion fast ignition

Fast ignition (FI) is a promising alternative for achieving nuclear fusion within
the inertial confinement fusion (ICF) scheme (Tabak & Callaham-Miller, 1998;
Roth et al., 2001; Roth, 2009). Given its significance, this work focuses on
studying the ion fast ignition approach in detail. Similar to the shock ignition
scheme, FI divides the fusion process into two distinct steps: compression and
heating, each of which can be optimized independently. The steps of this process
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are illustrated in Fig. 2.7.

First, the FI approach takes advantage of the ICF compression up to an op-
timal point of size and density, without excessively heating it. The compression
pulse typically lasts for 10-15 ps, which is shorter than in direct drive. Following
this phase, commonly referred to as "precompression”, the majority of the fuel
is found in a condensed and stagnated state, noted as the core (Kodama et al.,
2001; Betti & Zhou, 2005). Additionally, the process generates a region of less
dense plasma surrounding the fuel sphere, known as the corona. In this context,
traditional direct drive methods would experience significant losses due to this
surrounding plasma, thereby increasing the driver requirements.

Second, after this precompression phase, a powerful particle beam is used
to provide additional energy directly to the core of the fuel. It is important
to note that, in fast ignition, this relies on a separate and rapid heating pulse,
while shock ignition primarily employs shock waves to achieve ignition. The
beam applied creates a heated volume within the plasma. If any region of such
volume is able to ignite the nuclear fusion process, then, the burning will start
and spread to the rest of the fuel. The region capable of initiating the process
is called ”hot-spot”.

Some approaches consider using a preceding laser pulse to dig the corona
before the last beam shot. Alternatively, others propose using a cone embedded
in the corona, enabling the beam to go directly into the denser core. A variation
of this cone approach incorporates a small pellet of fuel at the apex of the device,
initiating a preliminary pre-explosion that also moves inward towards the larger
fuel mass.

Regarding the power beam, the original proposal for fast ignition (FI) in-
volved an electron-based scheme (Tabak et al., 1994). However, it was lim-
ited by the high electron divergences, kinetic energy constraints and sensitivity
(Robinson et al., 2008; Green et al., 2008; Debayle et al., 2010; Kemp & Divol,
2012). Meanwhile, FI by laser-driven ion beams, known as IFI, offers a much
more localized energy deposition, a stiffer ion transport, with the possibility of
beam focusing, and a better understood and controlled ion-plasma interaction
(Tabak & Callaham-Miller, 1998; Roth et al., 2001; Roth, 2009; Tabak et al.,
2014). At first, the proposed projectiles of the beam were light ions, such as
protons. However, these ions deposit most of their energy at the edge of the
fuel, resulting in an asymmetrical geometry of the heated plasma (Roth et al.,
2001). Later, heavier projectiles were suggested. Their interaction with the
plasma is semi-transparent at the edge, allowing for deposition of most of their
energy in the centre of the fuel, which optimises a symmetrical propagation and
explosion (Gus’kov et al., 2014a).

Initially, the ion beams studied exhibited a Maxwellian energy distribution.
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However, recent advancements have led to the proposal of quasi-monoenergetic
ion beams for IFI (Fernandez et al., 2009). Quasi-monoenergetic ions have
several advantages over ions with Maxwellian energy distributions, such as a
better coupling with compressed fuel (Honrubia et al., 2009) and the possibility
to place the ion source far from the fuel without the need for re-entrant cones
(Fernandez et al., 2009). Ion beams are often generated by irradiating plates of
diverse materials and accelerating the detached ions. The ion beam used for the
final ignition can be optimized, in order to achieve the desired conditions for
the plasma and the burning, and to reduce system requirements. This scheme
and its simulated results will be examined thoroughly from Chapter 3 to 7.

Currently, several research facilities worldwide are actively experimenting
with Fast Ignition nuclear fusion, notably: the High Power Laser Energy Re-
search Facility (HiPER), located across multiple institutions in Europe; GEKKO
XII at the Institute of Laser Engineering (ILE) in Osaka, Japan; or the Labora-
tory for Laser Energetics (LLE) in Rochester, USA. Nonetheless, fast ignition
faces its particular challenges, such as achieving an optimal deposition of en-
ergy in the target, avoiding unnecessary losses and properly transporting the
fast electrons or ions through the plasma without creating divergences or insta-
bilities (Guo, 2023).
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FIGURE 2.7— Visual representation of the steps in the FI approach (Moynihan & Bortz,
2023).

2.3 Detailed description of the ion fast ignition approach

This section offers a physical description of the target-projectile system and
the posterior heated plasma forecast. Initially, we introduce the Hamiltonian
governing the dynamic evolution of its particles. Subsequently, we provide a
description of the system through different approaches of the dynamic model.
We present the expressions governing the interaction between the beam and
the previously discussed plasma, describing its behaviour in both temporal
and spatial domains. Some of these ideas have been taken and revised from
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Rodriguez-Beltran (2018). Finally, we address the preliminary evolution of the
plasma and its capacity to ignite and continue the burning.

2.3.1 IFT approach: the ion beam-plasma interaction
2.3.1.a Hamiltonian and dynamic equations

The fundamental point for modelling the interaction between a plasma and an
ion beam (considering just a single projectile) is the Hamiltonian of the system.
This Hamiltonian consists of a plasma target Hamiltonian term Hr, a non-
relativistic projectile Hamiltonian term Hp, and its target-projectile potential
energy interaction term Vp_1, which is switched at a certain time with a step
function 0(t — ty), where ty is the instant when the interaction begins. The
Hamiltonian is written as:

H=Hr + Hp + 0(t—ty) - Vpo_r (R,{5,5,8}), (2.6)
where:
P2
Hp = T and Ht = HCM + Hbound + Hfree + Hinty
mp

where f{, P and mp are the position, the momentum and the mass of the
projectile, respectively. The plasma coordinates are:

—

{S,S,S} = {Slle 5 8171"'817Nb,i SNivl'“SNi7Nb,i N Sl"'SNe}a

these components can be associated with the coordinates of the ion mass centres
(§), the bound electrons of these ions (8, relative to its mass centre), and the
free electrons (§). Here, N; is the number of ions in the plasma, NV ; is the
number of bound electrons of the j** ion and N, is the number of free electrons.
The Hamiltonian of the target plasma Hrt is divided into four parts: the first
two terms represent each ion system, which is divided into its mass centre
(Hcw, usually approximated as the nucleus) and the bound electrons per each
ion (Hpound), the third term represents the free electrons of the plasma (Hipee)
and the fourth term takes into account the interaction between the other three
Hamiltonians (Hiyt).

Once the Hamiltonian has been introduced, the goal of this section is to
describe the dynamics of the system. Because of the large number of particles
in the plasma, the problem is highly complex, and as a result there are different
possible approximations to solve the Hamiltonian given by Eq. 2.6.

On the one hand, the Hamiltonian could be approached within a molecular
dynamic framework, that is, solving the Newtonian or Hamiltonian equations
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of each component of the plasma and the beam. This should be computed si-
multaneously, as the equations are coupled due to the interactions. In this de-
scription, the dynamic equations for the i** component of the system (whether
the ions of the beam, ions of the plasma or the free electrons) are given in the
Hamiltonian formalism by:

. OH . OH
= ooy D= oo 2.7
Or, in the Newtonian formalism by:
at’ U dt (28)

where 7; and p; are the position and momentum either of the beam or the
plasma particles, and F, represents the force over the " component due to
the interaction with the rest of particles of the system. This detailed descrip-
tion would entail high computational costs due to the large number of coupled
equations that need to be solved.

On the other hand, an alternative approach involves using a statistical de-
scription, which consists of solving the Liouville equation of the system. By
doing so, it becomes possible to derive, from the Hamiltonian of Eq. 2.6, the
probability density p({7,p},t) in the phase space {,p} of the system. Thus,
in a statistical context, the average of a magnitude A({7,p},t) in a volume {2
of the phase space, can be calculated as:

(A) gy = /Q dFy...dPy diy...df, dt p({7, 5, 1) AT, 4, 0); (dF = &)
(2.9)
Expression 2.9 can be expressed in terms of the distribution function in the
phase space of one particle, f(7,p,t), defined as the integral of p({7, p’},t) over
all the coordinates except one. Also, it can be approximated from the kinetic
or Boltzmann equations, where the correlations between three or more particles
are despised. In the last case, the average of a magnitude could be calculated
as:

(A) 5= /Q dF d dt [(7,7,1) A7, 1), (2.10)

Now that we have presented the possible descriptions of the system, we can
select the most suitable one for the purposes of our problem. In this work,
we focus on analysing the dynamic of the ion beam within the plasma. Thus,
we will study the projectile under a classical deterministic dynamic description
in the Newtonian formalism. Additionally, it is assumed that the particles of
the beam do not interact with each other, and therefore, its behaviour is ruled
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by its interaction with the plasma particles. This interaction yields a force
(Fr_p = F,) from the plasma acting on the it" projectile, given by:

Fr_p=F,=-VV;, withV;=Y Vir_p,, (2.11)
j

where Vp_ Ppj;; represents the potential experienced by the particle i*" of the ion
beam due to its interaction with a j** particle of the plasma.

In our model, this force (Fpr_p) is considered as a statistical average over
the plasma coordinates, in the context of Eq. 2.10, but in the phase space
of the plasma. With this description, all the contributions from the plasma
components to the interaction are averaged, avoiding large computational work.
When studying the dynamics of the projectile, we focus on the change in its
kinetic energy as it dives in the plasma. As explained in the next section, the
variation of this energy is related to the averaged force mentioned early.

2.3.1.b Ion beam energy loss and stopping power

In the experiments that explore the interaction between an ion beam and a
plasma, the ion projectiles gradually lose their energy as they penetrate the
target plasma. Considering a point-like projectile (with its internal structure
neglected) described by classical dynamics, a key observable for quantification is
the kinetic energy loss AFE of the projectile. This loss is empirically determined
by comparing the energy of the projectile before and after passing through the
plasma.

A much more detailed magnitude is the stopping power Sp, defined as the
energy loss of the projectile per unit of path-length:

dFE
Sp=——. 2.12
p=—— (2.12)
Assuming a classical dynamic description of the movement of the projectiles
through the plasma, the latter expression can be written as:

Sp = —% . Fr_p, (2.13)

where Fr_p represents the decelerating force experienced by the ion due to its
interaction with the plasma in a ds space region, as explained in the end of the
previous Sect. 2.3.1.a (Eq. 2.11). Also, ¥ is the velocity of the projectile before
entering the ds region. A more detailed way of expressing Eq. 2.13, by using
the theoretical context present in a previous section, includes the dependence
on the coordinates and momenta of both the projectile and the plasma.
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Sp (R,P,{F, ﬁ},t) = Ugg 'FT—P (R,P,{F, ﬁ},t), (214)
where {r} = {§ , 3,8} represents the coordinates of each particle of the plasma,
and {p} its associated momentum. Similarly, R and P are the coordinates and
momenta of the projectile, respectively.

This expression provides the stopping of the projectile at a time ”t”, when
it has a position ﬁ, a velocity ¢ (or momentum 13) and the plasma is in the
state {r,p}.

Our interest now is to express the stopping power as a magnitude where the
plasma variables have been averaged, as discussed in the previous Sect. 2.3.1.a.
Therefore, the stopping power in a t-instant, where the plasma parameters are
averaged over {T,p}, is:

(2.15)

Here, Fr_p can be expressed in terms of the potential suffered by a pro-
jectile of the ion beam interacting with each plasma particle, as in Eq. 2.11.
Then, we solve Eq. 2.15 by applying Eq. 2.10, finding the desired average over
all the plasma:

Sp (R, P, )

it L o s
z()./vdrl...drn/o dpi...dp, F({F, B}, 1) (~VVi(R, B, {F, B}, 1))

v(t)
(2.16)

In this sense, the proposal for a stopping model is reduced to the choice
of how to define the interaction potential between the plasma particles and
the projectile. After averaging over the plasma coordinates, the stopping is
explicitly governed by the position and velocity of the projectiles at each instant
(R(t),P(t)), so it is commonly expressed as Sp(t). Moreover, it will have
a parametric dependence on certain macroscopic parameters such as the free
electron density, the atomic density, and the temperature of the plasma in the
local ds region. This procedure is used to find the expressions of the stopping
of the beam with the free electrons, bound electrons, and ions. In our model,
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bound electrons are not considered, as the plasma is fully ionized. The free
electrons and ion stopping are considered under a classical context.

A great number of stopping power models have been proposed in the last
decades under different approximations, some of them of great utility to ICF
modelling. The pioneering work of Bethe (1930), described the energy loss of
charged particles (either relativistic or not) while travelling within matter. It
accounted for all energy loss processes of the interaction by averaging over them.
Numerous corrections and improvements have been applied to such model, de-
pending on the considered conditions. Later on, the works of Bohm & Pines
(1951); Pines & Bohm (1952) and Bohm & Pines (1953) introduced an approxi-
mation method for describing the dynamic linear electronic response, commonly
known as Random Phase Approximation (RPA). In the RPA, electrons respond
to the total electric potential, comprising both the external perturbing poten-
tial and a screening potential. The RPA model served as a foundation for
subsequent models, such as the one presented by Maynard (1987), where the
RPA approximation was applied to calculate the stopping of a non-relativistic
ions by an electron fluid. More recently, the works of Peter (1991) and Peter
& Meyer-ter Vehn (1991) (denoted PMV) proposed an electronic or nuclear
stopping expression slowed by diverse material, based in the Bethe formula,
within the classical statistic context of kinetic theory of gases. These works
focused on the behaviour of ion projectiles with low velocity, which, as we
show in Chapter 4, slow down drastically at the end of their penetration range.
Afterwards, the stopping power of Li & Petrasso (1993a) and Li & Petrasso
(1993b) (LP) was presented, becoming one of the most commonly used models
in FI (e.g. Cayzac, 2013; Zou et al., 2016; Khatami & Khoshbinfar, 2020; Deng
et al., 2021). The LP stopping power is able to consider the effects of large-
angle scattering, small-angle binary collisions, collective plasma oscillation and
it incorporates quantum effects, although all the previous are then adapted to
classical formalism. The latter will be the model most frequently utilized in
this thesis. At last, the model presented by Brown et al. (2005) (BPS) includes
a rigorous treatment of a highly ionized dense plasma under the quantum me-
chanical theory and calculates the rate of energy loss of non-relativistic particles
moving through it.

2.3.1.c Ion beam generation and characteristics

In the original proposal of FI the hot-spot was generated by ultra-relativistic
electrons produced by the interaction of a powerful laser beam with the corona
of the precompressed target (Tabak et al., 1994). Shortly after, rapid proton
ignition was proposed (Roth et al., 2001), then heavier ions were considered too
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(e.g. Hegelich et al., 2006). It is evident that demonstrating the feasibility of
generating ion beams capable of meeting FI requirements is essential. Some of
the most studied methods in this field are described below.

Maxwellian beams: Target Normal Sheath Acceleration

Discovered in the late 1990s, the ion-acceleration mechanism known as TNSA
(short for Target Normal Sheath Acceleration) is probably the most studied
one, both inside and outside the field of nuclear fusion (Fernandez et al., 2014;
Roth & Schollmeier, 2017). This phenomenon occurs when a laser beam of high
intensity (10! - 102* W/cm?) is applied to a foil of solid matter, with a thickness
of the order of micrometres. When the intense laser pulse interacts with the
target material, it ionizes the atoms and creates a cloud of free electrons and
plasma on the target surface, commonly referred to as the “sheath”. As the
electrons are liberated from the target material, they leave positively charged
ions behind, causing the foil to become charged and preventing the electrons
from dispersing.

The separation of charges within the plasma creates an electric field that ex-
erts a force on the charged particles, causing them to accelerate away from the
target surface. Thus, the sheath reflects part of the incident laser and also the
particles of the foil inward. As a result of this reflection process, some charged
particles inside the target are propelled forward with very high velocities, al-
lowing them to reach higher energies compared to the initial thermal motion
imparted solely by the laser or particle interaction. The high-energy particle
beam generated by TNSA can consist of electrons or ions, and it is directed out-
ward from the rear surface of the target. Moreover, in the area where the laser
impacts the target, the gaps left by the accelerated electrons are occupied by
a return current of cold electrons from the rest of the foil, which are heated by
the laser and continue to replenish the sheath throughout the process duration.
A schematic illustration of this process is shown in Fig. 2.8.

Experimental observations have revealed that the ion beams generated by
TNSA follow an approximately Maxwellian energy distribution, so a temper-
ature characterises them (Atzeni et al., 2002; Fernandez et al., 2014; Roth &
Schollmeier, 2017; Zou et al., 2016). This implies that the kinetic energies of the
ions have a wide variation, which in fast ignition requires the beam source to
be installed close to the compressed fuel and often protected by a conical struc-
ture or other mechanisms. Otherwise, the temporal and spatial scattering that
occurs during beam transport reduces the beam power, making ignition impos-
sible (Atzeni et al., 2002; Fernandez et al., 2014). Other reports from literature
have approximated the energy distributions as Gaussian-like, both experimen-
tally (Afshari et al. (2020) and, according to Temporal (2006): Esirkepov et al.,
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2002; Schwoerer et al., 2006; Hegelich et al., 2006) and in the simulation field
(Tabak et al., 1994; Davis et al., 2011; Honrubia et al., 2009). Regarding ion
beam focusing, the particle trajectory is, in principle, perpendicular to the back
surface of the foil. Thus, using spherical cap-shaped foils enhances ion focusing
the focusing. Any divergence from the beam trajectory could be corrected with
the presence of a conical structure (Fernandez et al., 2014).
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FIGURE 2.8— Tllustrative example of TSNA scheme (Zakova, 2015).

Quasi-monoenergetic ions: Break Out Afterburner

A refinement approach of TSNA is the Breakout Afterburner (BOA), dis-
covered through simulations by Yin et al. (2006). This approach involves two
distinct phases of ion beam creation: an initial TNSA acceleration phase fol-
lowed by an enhanced TNSA phase.

First, the dominant mechanism is the traditional TNSA explained in the
section above. Then, the TNSA is strengthened with a more powerful pulse.
Due to the thinness of the target, a large part of the electron population reach
relativistic conditions for a short time. As a result, the plasma of the heated
foil reaches relativistic induced transparency”’, so there are no cold electrons

"The frequency of a plasma (wp = (nee?/meeo)*/?) plays a role as a cut-off, where waves
with lower frequencies than wp cannot propagate. In this context, a laser beam can penetrate a
plasma up to a depth where the cut-off occurs, this is, where the frequency of the laser radiation
(wr) becomes equal to the frequency of the plasma (in this case, the heated foil). However,
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left in the target. The intense pressure of the laser pushes them in the direction
of their propagation, resulting in a drift between ions and electrons. During
this regime, the target becomes translucent to the radiation, allowing the laser
to continue accelerating the electrons and consequently the ions, which have
already separated from the foil. This mechanism is aptly named the Breakout
Afterburner, as it bears resemblance to the afterburner systems found in some
jet engines.

In Fig. 2.9 we show the phases considered in the BOA scheme, as explained
above. As the projectiles are more directly accelerated by the laser pressure,
the resulting ion beam resembles quasi-monoenergetic conditions. Thus, the
ion-generating sheet can be placed farther away from the fuel, eliminating the
complexity of cone-inserted capsules. Another remarkable feature of this mech-
anism is that, unlike TNSA, most of the laser energy is transmitted to the
heavier ions in the foil.

Experimental generation of quasi-monoenergetic ion beams by BOA has
been achieved at the Trident laser facility at Los Alamos National Laboratory
(New Mexico, USA) (Jung et al., 2012, 2013a,b; Fernandez et al., 2014).
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a) Target Normal Sheath Acceleration (TNSA) phase
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c) Laser Breakout Afterburner (BOA) phase

FIGURE 2.9— TIllustrative example of the phases that take place in the BOA scheme. Image
taken from Roth et al. (2014).

when we consider interactions with intense laser pulses, the electrons can be accelerated to
relativistic velocities, so their apparent mass increases by the Lorentz factor (yeme), and,
consequently, the relativistic frequency of the plasma decreases as wp = (nee” /’yemeeo)l/ 2,
This means that, for a plasma with the same density, if the mean electron energy becomes
relativistic, the plasma frequency is reduced and the medium becomes translucent, allowing
previously cut-off radiation waves to propagate, which is known as transparent overdense
regime (see, e.g. King et al., 2023).
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Other methods of ion-beam generation

Apart from those described previously, there are other approaches that may
allow the generation of ion beams with parameters suitable for fast ignition.
The current status of these mechanisms, as well as those discussed above, can
be found in the literature, for example, the review article by Fernandez et al.
(2014) and the references therein.

o Jon Solitary Wave Acceleration (or ISWA, e.g. Jung et al. (2011)) also
makes use of relativistically induced transparency, accelerating ions to
high velocities by riding on solitary waves propagating through a plasma.
Gaining energy by surfing on the wave crests creates quasi-monoenergetic
ion beams.

o Radiation Pressure Acceleration - Light Sail (or RPA-LS, e.g. Liseikina
& Macchi (2007)) transfers the moment from photons to a thin solid film,
propelling its particles.

o Radiation Pressure Acceleration - Hole Boring (or RPA-HB, e.g. Macchi
et al. (2005)) serves as a complementary mechanism. It uses intense laser
pulses to create a tunnel through a plasma, allowing for efficient energy
transfer and acceleration of ions along the tunnel axis.

o Collisionless Electrostatic Shock Acceleration (or CESA, e.g. Denavit
(1992)) accelerates charged particles to high energies through the forma-
tion of electrostatic shocks in a plasma, without significant particle colli-
sions playing a role in the acceleration mechanism. It has been described
for opaque targets with certain critical densities.

Numerous questions remain unanswered about laser-plasma interaction pro-
cesses at very high energy densities. The physics of the processes involved
must be understood in greater depth to determine whether any of the above-
mentioned mechanisms is possible to generate ion beams useful for fast ignition.

2.3.2 IFT approach: the heated plasma

For a detailed description of the heating process, first, due to an ion beam and
then, and then, due to the posterior evolution of such plasma, acquaintance
of the hydrodynamic and radiative transfer equations is required. This implies
considering the equations that rule the conservation of energy, momentum and
mass (given by Atzeni & Meyer-Ter-Vehn, 2004), and considering two fluids,
electrons and ions. The simulations computed to solve such equations must
be, at least, two-dimensional, to contemplate any possible asymmetry due to
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hydrodynamic instabilities. However, as we detail in the next paragraphs, some
considerations allow relaxing the demands when tackling this problem.

In situations where electromagnetic forces on individual plasma elements
become as significant as hydrodynamic forces, Maxwell equations need to be
incorporated into the equations of fluid mechanics to provide a comprehensive
description of the phenomena under study. Additionally, the plasma must be
treated as a mixture of electrons and ions, each with their corresponding fluid
quantities. However, in many scenarios relevant to inertial confinement fusion
(ICF), there is no significant charge separation, obviating the need to include
the equations of electromagnetism in the modelling process. This condition is
met when the Debye length (A\p), a measure of the distance over which charged
particles influence the electrical behaviour of a plasma, is much smaller than the
free path of the electrons. This condition is generally fulfilled in FI conditions.

On the other hand, describing a plasma with fluid mechanics requires lo-
cal thermodynamic equilibrium (LTE). In LTE conditions, a plasma exhibits
high collisionality, rapid thermalization, homogeneity, and negligible radiative
losses, allowing it to reach local equilibrium on a timescale adequate to the
dynamics of the system. This can be validated by evaluating that the mean
free path and the mean free time are smaller than the size and characteristic
time of the problem being studied. Plasmas with low density or strong mag-
netic fields may not satisfy LTE conditions, such as optically thin plasmas or
cases where the radiation emitted by the plasma can freely escape into vac-
uum. However, ICF plasmas commonly fulfil the LTE conditions due to their
high densities and temperatures. Plasmas can be characterised by two temper-
atures: one for electrons and another for ions. Due to the significant difference
in mass between the two (three orders of magnitude), ions are mainly responsi-
ble for the momentum transport, while electrons are primarily responsible for
energy transport and conduction. In our case, ICF plasmas behave as a single
fluid, with frequent collisions between its components leading to thermalization.
Under this LTE conditions, ions and electrons are assumed to have the same
temperature. The equilibrium between electrons and ions is assured when the
plasma is not disturbed in the characteristic equilibrium time (7.q), such that
there is no net energy exchange between both components. Throughout this
work, the equilibrium time is mostly lower than the characteristic times associ-
ated to the projectiles of the beam, the hydrodynamic processes of the plasma
or others. This allows the plasma to be described with a single temperature,
since the components recover equilibrium faster in respect to the response from
other interferences. This condition is explored further in Sect. 3.9.1.

Furthermore, when the nuclear fuel is compressed, generally by intense laser
beams, for a brief period of time we find the plasma in an ideal confinement
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equilibrium state. This is denoted as stagnated plasma and, moreover, the tem-
perature and density fields can be approximated by uniforms distributions. At
this point, the fuel has achieved a very high density but not enough tempera-
ture to initiate the nuclear fusion reactions. The time for which the stagnated
state is maintained is given by confinement time, which is the ratio of the fuel
sphere and the speed of sound 7cont = Rp/cs, with ¢ = /2kpT /m.., where m,
is the average mass of the fuel ions. This is the time available to generate a
hot-spot in the plasma, with a time-sustained ignition and subsequent propa-
gation throughout the plasma for the nuclear burn-up. In a typical experiment
of a precompressed fuel with radius Rp = 50 pm and initial temperature of
To = 1 keV, the confinement time is Teont = 1.8 - 10710 seconds. This value is
mainly larger than the characteristic time of internal processes of the plasma
and beam interaction, as we present with more detail in Sect. 3.9.1.

Within the IFI scheme, during the stagnation phase the ion beam is applied
to the fuel, creating a heated region after completing the interaction. Within
this heated region, we study a zone of particular interest known as the "hot
spark”. If such spark is capable of beginning the ignition and posterior burn-
ing, we qualify it as "hot-spot”. Ideally, this hot-spot should be as uniform and
symmetric as possible in its temperature field, density distribution and location
within the whole sphere, in order to achieve a burning that propagates sym-
metrically too. In the case of the standard ICF scheme, it is very important
that the compression of the fuel is performed with a high spherical symmetry
to minimise the occurrence of hydrodynamic instabilities. As a consequence,
the hot-spot is mostly generated in the centre of the compressed nuclear fuel.
However, in the IFI scheme, the requirements for compression with high spher-
ical symmetry are relaxed, and situations where hot-spots occur at the edge
or at intermediate points of the compressed nuclear fuel are also of interest.
Nonetheless, a central hot-spot improves the performance, as it serves as an
energy reservoir that can efficiently propagate energy to the surrounding fuel,
minimize transport losses, and induce a symmetric explosion (Duderstadt &
Moses, 1982; Gus’kov et al., 2014a). As we explain in Sect. 3.9, ion beams can
create edge, intermediate and central hot-spots depending on the conditions of
the beam.

In such modelling, we can consider two different scenarios for the core and
the hot-spot (if achieved): an isobaric fuel, where the hot-spot has lower den-
sity, higher temperature and equal pressure than the rest of the sphere, or an
isochoric fuel, where the hot-spot has equal density and higher temperature
and pressure (see Fig. 2.10). In the direct drive ICF scheme, isobaric initial
conditions are regarded as the standard configuration. This is due to their ap-
proximation of the conditions generated at the conclusion of the implosion of
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the hollow shells driven and the shaped laser pulses. Conversely, in the ion fast
ignition approach, the precompression is performed in such a way that both
the density and temperature are uniform, so isochoric conditions are typically
considered. Thus, in the IFI scenario, the heated region creates a higher inner
pressure that continues to expand against the cold fuel.

1 mt

hot spot

cold fuel

FIGURE 2.10— Schematic representation of the distribution of the fuel for a central spark
in isobaric (a) and isochoric (b) scenarios. Source: Atzeni & Meyer-Ter-Vehn (2004).

Previous explanations point out how, for ICF plasmas, instead of perform-
ing highly complex simulations, other straightforward modelling can be applied.
For example, there are zero-dimensional approximated models that allow de-
scribing appropriately some aspects of interest. This includes the generation of
a small hot region by the ion beam (e.g. Gus’kov et al., 2010; Espinosa-Vivas
et al., 2023), the early evolution of such a region, evaluating the nuclear ig-
nition conditions for subsequent fuel burning (e.g. Atzeni & Meyer-Ter-Vehn,
2004; Gus’kov et al., 2011), or both simultaneously (e.g. Zou et al., 2016).

In particular, in this section, we focus on the zero-order criteria with which
we can predict the posterior evolution of the plasma after the precompressed
fuel is heated by the ion beam. These conditions have been well reported in the
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literature, although they are still an important point of discussion (e.g. Fraley
et al., 1974; Kidder, 1976; Atzeni & Meyer-Ter-Vehn, 2004; Tabak et al., 2006;
Gus’kov et al., 2011; Gus’ kov et al., 2017), but the scientific community accepts
some considerations: the heated region can be characterised by the self-heating
condition, the ignition condition and, if achieved, by the subsequent burning
gain. In essence, the concepts presented below can be interpreted for both the
isobaric case typical of the standard ICF and the isochoric case typical of the
FI.

To begin with, let us present the self-heating condition as a simplified zero-
order approach obtained by applying the energy conservation equation. It con-
siders a spherical spark, determined by a temperature, a density and a radius,
inscribed within a larger, cooler sphere of fuel. The rate of change in energy
density of such region can be expressed as:

d&(t)

Cdt
where the W’s terms are the power densities related to the fusion reactions that
deposit energy in the heated volume (Wiys dep), the mechanical work (Wiec),
the conduction (Weonq) and the radiation (Wpaq) processes®. Note that the
total power density released by the fusion reactions is obtained by the product
of the reaction rate ({ogsv)) the energy released in a reaction (Qpr) and the
density of particles of the reactants, Wy,s = npnr (0sv) Qpr, Where Qpr =
Qo+ @Qn. Assuming that all the energy of the a-particles and neutrons remains
within the fuel, we can consider what fraction of the energy associated to the
a-particles (n,) and neutrons (1,) is deposited in the spark region, leading to:
Whis,dep = DT (TfusV) (NaQa + M@n). Conversely, the energy deposited in
the cold plasma is calculated with (1 — 7n,) and (1 — n,). In terms of Wiy,
the expression is recovered taking 7, = 1 and 7, = 1, which is equivalent to
considering just one volume where all the energy is deposited. In that case, if
only a-particles or neutrons are considered, we use the expressions Weys o (with
Na = 1 and ny, = 0) or Weysn (With 17, = 0 and 0, = 1), respectively. Here,
it is worth remaking that Eq. 2.17 describes the evolution of a selected spark
volume, so only the energy deposited within it (Wiys gep) must be considered.

= qus,dep(t) - Wmec(t) - Wcond(t) - Wrad(t)a (217)

Making use of Eq. 2.17, we prove whether the hot spark can be defined as
a viable hot-spot? and will continue the burning. This is done by evaluating

8The radiation power density contain various terms, but in the case of ICF plasmas, the
dominant mechanism is the electron bremsstrahlung, this is, the radiation emitted by charged
particles when they are decelerated or deflected by the electric field of other charged particles.

9In this section we avoid using the ”spark” or "hs” subindex notation for simplicity pur-
poses, but unless noted, the parameters refer to the hot-spot or a candidate spark.
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whether the energy of the spark will increase after the beam interaction (¢t = t),
with the values of p, R and T found at such instant:

qus,dep (P, R7 T) > Wmcc (P; R, T) + Wcond (pa Ra T) + Wrad (p7 R7 T) (218)

This is, the self-heating condition is fulfilled when the power generated by
the fusion reactions is larger than the losses of the hydrodynamic processes
immediately after the beam interaction has finished.

Secondly, we address the ignition condition, which is a less strict criterion
than the self-heating. The ignition evaluates how the spark will evolve instants
after the beam interaction, maybe reaching the hot-spot condition. Here, the
key concept to consider is that the particles escaping from the spark heat the
surrounding material, as well as the thermal conduction. Thereby, the neigh-
bour material increases its temperature and, thus, the spark enlarges its mass
and size through its environment, in respect to the initial hot region. This al-
lows some sparks that initially do not meet the self-heating condition to evolve
into successful hot-spots moments later.

For the purposes of defining the ignition condition, let us assume the prop-
agation of the burning is happening and progressing towards the rest of cold
plasma via conduction and energy liberated from the fusion. If the nuclear re-
actions release enough energy, the process replicates with increasing spherical
waves of nuclear burning. The early stages of this expansion can be studied
with a scalar model (Guskov et al., 1976; Atzeni & Caruso, 1984). This model
estimates the evolution of the mass (M) and the internal energy (here expressed
as the product of the energy density and the volume, £V') of a spherical hot-
spot surrounded by cold plasma. In respect to the self-heating (Eq. 2.18), now
we are considering all the energy exchanged by the hot-spot that is deposited in
the hot-spot itself and its surroundings, in a time such as t+dt. It is considered
that the whole fuel sphere is at rest in the initial instant after the beam heating.

As the burning spreads, more and more fuel becomes part of the hot-spot,
varying its internal energy. The majority of this power comes from a-particles
and electrons from the hot-spot. Thus, the conservation of energy can be ex-
pressed as:

d(EV)

dt
where Wy o is the total power density associated to the a-particles from the
fusion'® created in the hot-spot, Wiaq is the power density associated to the

= qus,av - Wradv - psuy (219)

108¢trictly, the total fusion power density should be considered, including the neutron energy.
However, the literature often neglects them, as the neutrons do not interact with the plasma
and scape the fuel. In Eq. 2.18 its contribution could be neglected, too.
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radiation, p is the pressure of the burning front of the hot-spot, .S is its surface
and wu is the velocity of the burning front (dR/dt). The internal energy grows if
the gain from fused a-particles is higher in respect to the losses due to radiation
and pressure.

Then, as the heated surroundings become part of the burning region, the
evolution of the hot-spot mass considers the energy of the a-particles deposited
in the cold fuel, as well as the conduction losses. As a consequence, the mass
accretion from the heated region is modelled by assuming that the escaping
power must raise the specific energy of the cold material to the same internal
energy of the rest of the hot-spot:

&dM

p dt = (qusﬂ(l - 7704) + Wcond) V. (220)

This is, the energy associated to a-particles and conduction that escapes
the hot-spot is the responsible for increasing the value of the specific internal
energy up to a certain £-value for the increasing accretion rate dM/dt. The
energy of the cold plasma is neglected, as it is significantly lower than &£.

In this context, we can express u as the velocity behind a shock wave, by
using the equation of state for an ideal gas (y = 5/3):

3 p
u = I‘BT> , 2.21
<4 Pc ( )
where I'p = R/ADT is the gas constant, p. is the density of the cold plasma, p
and T are the temperature and density'! of the hot-spot.
We can determine the characteristic hydrodynamic time, associated to the
ignition, as 7* = R/ugy, and making use of definition from Eq. 2.21:

A e

With the hydrodynamic time of the ignition, we can express the terms of
gain and loss in a dimensionless form:

K. — qus,oﬂ—*' WradT*. K _ WeonaT™
a — T? g ’ cond — T

These are a representation of the ratio of the energy density gained or lost
in a 7* time and the energy density of the hot-spot. Making use of these terms,
we can rewrite Eqgs. 2.19 and 2.20 in a dimensionless sort:

Kpna = (2.23)

"1n the case of an isochoric plasma the density is uniform, si p = pe.
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7 dT

= =Ko — Kra - Kcon - 2> 2.24
T dt ¢ ¢ (2:24)
T g (1= na) + Keona — 3 (2.25)
P dt — N Mo cond . .

Here, it is worth highlighting how the K, term provides a measure of the
progress of the ignition. The ratio between the energy produced in the charac-
teristic time (7*) and the energy of the burning region needs to be a growing
function, at least at the earliest stages after the ignition.

Thus, if we time-differentiate K, using Eqs. 2.24, 2.25 and 2.22, as well as
considering m =~ 2 for a temperature range of 7-20 keV (Atzeni & Meyer-Ter-
Vehn, 2004), we find that:

™ dK, 1
% dt" = i(Ka — Kraq — 3). (2.26)
(0%

This indicates that K, will continue to increase if the expression within
the parentheses is positive and the fuel will eventually ignite if the condition
(Ko — Krad)t=0 > 3 is met. The evaluation is performed at the first instant
after the beam interaction, so we denote now 7, calculated as R \/2p/&y, where
&y = 3pI'BT is energy per mass unit, considering the temperature of the initial
spark. This, if expressed making use of Eq. 2.23, is written as:

(qus,a - Wrad) T(T > 3807 (227)

which corresponds to the ignition condition we referred in previous Sect. 2.3.2,
and that we will revisit in Sect. 3.6 of the model chapter.

To illustrate the behaviour of the self-heating and ignition conditions, Fig. 2.11
displays some results in the (pRj, Tgs)-spacelz. Solutions of the self-heating
expression (Eq. 2.18) for ¢t = ¢ are represented as a grey region. A procedure
for calculating this will be explained in detail in Sect. 3.6. Then, the evolution
of sparks with different initial conditions in the (pR}, T} )-space are shown,
superimposed with the self-heating region as a grey zone. For each spark, the
origin point is marked with a dot and a capital letter, accompanied by a line
with arrows that shows the consequent progress. This serves as a graphic dis-
play of those cases that fulfil the ignition condition or do not. The sparks that
evolve into the grey region of self-heating will become hot-spots and sustain the

12This notation includes ”+” to indicate that T}", represents the mass-averaged temperature
of the initial hot region and that pRj, is related to the region such that the temperature is
T > min(4 keV; Ty /2).
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burning, are marked with black dots and solid lines. Notice how, with time,
they increase in size (pRj,) and temperature (7}). Conversely, those dots
representing cases where the evolution cools down and shrink will not achieve
ignition are marked as hollow dots with dotted lines. The evolution of these
sparks or hot-spots has been computed through numerical one-dimensional sim-
ulations under isochoric conditions (Atzeni & Meyer-Ter-Vehn, 2004). We can
define the ignition curve for a given configuration as the boundary separating
the regions of initial conditions that result in target ignition from those leading
to target cooling. In Sect. 3.7 we address both the self-heating and the ignition
threshold solutions using our modelling.

30 -
E 20 |
%
~ B
10 |-
0 Il
0 0.5 1 1.5

(PR),, (g/cm?)

FIGURE 2.11— Representation in the (pR, T') space of the self-heating region (grey area)
and the simulation of the temporal evolution of different hot-spots (denoted with a capital
letter). Hollow dots with dashed lines represent cases where the ignition is never achieved and
black dots with solid lines represent the cases where the evolution leads to ignition. In both
cases, the dots mark the initial instant. Source: Atzeni & Meyer-Ter-Vehn (2004).

If the heated plasma fulfils the conditions to achieve the burning, it is worth
calculating the efficiency or fractional burn-up, which is the ratio between the
total number of fusion reactions and the number of DT pairs initially present in
the volume: ® = Nyys/N{o, with NU: = nprV/2. Then, this ratio is utilized to
calculate the burning gain, which compares the thermonuclear energy released
and the initial target energy Gpum = Frs/Er. The energy of the target is
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calculated according to the energy employed for the target compression and
the energy expended on the ignitor formation.

2.3.3 State of the art of FI simulations

Within the world of fast ignition nuclear fusion, simulations play a crucial role
in predicting the outcomes and estimating the requirements for future reactors.
Our thesis is situated within this context, particularly focusing on computing
the deposition of ion beam energy in the plasma fuel and its preliminary gain
results. Before presenting our model and results, it is essential to discuss other
types of simulations found in the literature.

Simulating the entire FI process as a whole is discouraged, as the spatial
and temporal scales of the different stages (precompression, beam interaction,
burning, etc) are very dissimilar, spanning orders of magnitude. Commonly,
these processes are separated into different stages and simulated separately
using methods suitable for each one (Fernandez et al., 2014).

On the one hand, research on the necessary conditions of the particle beam
for fast ignition has been ongoing for some time. Initially, theoretical stud-
ies predicted the minimum energy necessary for the ignition under isochoric
conditions (Atzeni, 1999; Atzeni & Meyer-Ter-Vehn, 2004):

Lig = r s kJ. (2.28)
(p[100 g/cm?])?

Additionally, one of the first numerical studies investigating these require-
ments was carried out by Atzeni (1999). That work assumes a highly simplified
two-dimensional model (for an illustrative scheme, see Fig. 3.3) where the com-
pressed fuel is a sphere of uniform density in a vacuum. The beam is perfectly
collimated, cylindrical, mono-energetic, with uniform radial and temporal in-
tensity distributions and a uniform energy deposition. Notably, the study does
not specify the type of particles used in the beam, so the conclusions are, in
principle, valid for both electrons and ions. This investigation provided expres-
sions for the minimum values of energy, power and beam intensity to achieve
ignition, as shown by the following equations:

) ~1.85
By =140 — 2 kJ, 2.29
¢ <100 g/cm3> (2.29)

—1
Wie=26-10%(—L ) W, (2.30)
100 g/cm
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0.95
19 P 2
Iig =2.4-10 (100 g/cm3> W/em”. (2.31)

This approach, however, has the disadvantage of omitting the details of
the interaction between the particle beam and the target, which reduces its
accuracy. We also note how the numerical expression does not completely
match the theoretical one.

Shortly after the proposal of the fast ignition with protons (Roth et al.,
2001), a similar model to the previous one was applied to it, including the
transport of the beam particles (Atzeni et al., 2002). In this case, the time
of flight of the beam particles between the source and the fuel was taken into
account by assuming an exponential-type for the particle energy distribution.
A correction to the ignition criterion given by the equations above was obtained
by introducing adjustment factors, functions of the equivalent temperature of
the protons. It is interesting to note that in this analysis the minimum ignition
energy scales as Ejy o< p~ !, in contrast with the previous monoenergetic case
with constant power of the previous model.

Later on, Honrubia et al. (2009), among others, studied the case of rapid
ignition with heavier quasi-monoenergetic beams (of carbon ions), considering
some spread. Here, more realistic configurations of the compressed fuel and ion
energy deposition were performed. The minimum ignition energy was found to
be dependent on the average kinetic energy of the ions (Ep). Under optimal
conditions, ignition could be achieved with beam energies of around 9.5 kJ (for
a DT density of 500 g/cm?).

In subsequent studies, the use of monoenergetic ions of different species was
considered again (Hegelich et al., 2006; Honrubia et al., 2014), and the mini-
mum ignition energy was found to be almost independent of the type of ion.
However, the kinetic energy attained increased with the atomic number of the
species in question, following a scaling given approximately by Ey oc Z2. For
TSNA scenarios, the ignition by ion beams with Maxwellian distributions was
also investigated (Honrubia & Murakami, 2015), where a more detailed energy
deposition model, based on the Fokker-Planck equation, was introduced, and
the effect of ion beam divergence was evaluated. The model of energy depo-
sition slightly increased the ignition energy, but without substantial change.
However, the beam divergence did, triggering the required beam energy well
above acceptable values for angles greater than 10° — 15°, showing the impor-
tance of effective focusing of the ion beams in FI. In Fig. 2.12, we display some
exemplary results from the work of Honrubia et al. (2014), such as the ini-
tial fuel density distribution, the minimum ignition energy for different beam
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species, and the 2D simulation of the energy deposition of the beam.
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FIGURE 2.12— Results from Honrubia et al. (2014). A) Density map of the fuel configura-
tion considered in that work. Perfectly collimated beam along the distance d = 5 mm from
the ion source to the simulation box. B) Minimum ignition energies of the target shown in
panel "A” heated by quasi-monoenergetic lithium, carbon, aluminium and vanadium ions as a
function of the mean kinetic energy per nucleon. The energy spread og = 10% and the beam
diameter is 30 ym in all cases. C) Energy density in units of 10'* J/cm® deposited in the
target of panel ”A” by 8.5 kJ quasi-monoenergetic beams of 140 MeV lithium ions, of 450 MeV
carbon ions and of 5.5 GeV vanadium ions. The dashed curves show the initial position of the
density contour p = 250 g/cm3.

Progressively, different types of simulations have emerged, each tailored to
the specific objectives of the study. Some aim for higher accuracy by incorpo-
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rating multiple physical processes, while others opt for simpler approaches to
reduce computational costs. Various beam and stopping expressions have been
studied, along with plasmas under different conditions.

A well known author in this sense is S. Yu. Gus’kov, who has extensively
studied both beam deposition and subsequent gain processes using the power
density processes of the plasma (see Eq. 2.17 and expressions from Sect. 3.8).
The beams considered in these studies are often monoenergetic, with the heated
plasma parameters varying along with the ion beam characteristics and the
features of its slowing down (e.g. Gus’kov et al., 2010; Gasparyan et al., 2013;
Gus’kov et al., 2014a). The plasma under consideration can be pure DT, doped,
or non-cryogenic, to take into account the ablator impurities or other pellet
configurations (e.g. Gus’kov et al., 2015; Gus’kov & Sherman, 2016). A partic-
ularity of some of these works is that, unlike the works of Atzeni and Honrubia
(e.g. Atzeni, 1999; Atzeni & Meyer-Ter-Vehn, 2004; Honrubia et al., 2009, 2014),
when studying the gain of the already heated plasma, they do not considered
the beam applied to generate such region. Instead, they systematically exam-
ine how different plasma characteristics lead to varying gains (Gus’kov et al.,
2011).

Zou et al. (2016) present a distinct approach, focusing on the evolution of
plasma temperature. Their study incorporates both beam interaction and hy-
drodynamic processes simultaneously, albeit without spatial distribution. They
consider a beam consisting of protons with a Maxwellian energy distribution
and investigate the plasma behaviour in the presence of impurities.

Our approach to IFI takes ideas from some of these works, as detailed in
the following section. We divided our analysis into two main parts: the beam-
plasma interaction process and the subsequent preliminary evolution of the
plasma. The beam-plasma interaction is simulated in one dimension over time,
while the preliminary plasma evolution is studied as a zero-dimensional model
to assess ignition feasibility and predict potential burning gain. Our framework
allows for the consideration of plasma fuels of different size, density, initial
temperature and composition, as well as beams of different charge, energy, flux,
and monoenergetic or quasi-monoenergetic characteristics. Our main objective
is to conduct a systematic analysis in which we connect the beam characteristics
with the conditions offered by the plasma after the interaction, as explained in
the next section.

2.4 Motivation, objectives and thesis outline

Although in Europe and Asia the MCF approach has been taken as the main
path towards achieving nuclear fusion, exploring alternative fusion concepts
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like fast ignition is essential to gather a complete perspective on the future of
possible nuclear reactors, aiming for enhanced performance and feasibility.

In this context, we explore the potential of ion fast ignition scheme by
making a systematic and multiparametric study through simulations of an ion
beam-fuel system, in different scenarios of interest for the IFI approach. Con-
sequently, the main goal of this work is to establish the relationship between
the characteristics of a plasma heated within the IFI context, and the ion beam
used in such experiment. We contemplate a large range of values of interest,
where the fuel is a deuterium-tritium plasma in equimolar concentration, which
can be modelled for different temperatures, densities, radii and include impu-
rities at different concentrations. Then, we consider different types of fast ion
beams, either monoenergetic or quasi-monoenergetic (determined by an energy
spread), for different ionic species, beam radii, energy of the projectiles and
surface particle density (or flux). With the methodology we establish and our
simulations, we provide results of the generated hot-spot and the efficiency of
the subsequent nuclear burning, thus, relating the parameters of the plasma
and the applied beam. Meanwhile, many authors analyse these components
separately or focus on specific cases. Our goal is to comprehensively integrate
these concepts and expand the studied framework. Our approach provides a
more compact and integral vision of the energy deposition due to the beam
and its implications, exploring thoroughly the parameter space and detailing
those outlines of interest. We emphasize how simulations offer significant ad-
vantages by providing insights into beam and plasma dynamics, predicting its
performance, improving its design, as well as the conditions of the target. All
of these, without the considerable economic costs and logistical challenges as-
sociated with experimental testing.

To do so, we have developed a physical and computational one-dimensional
model to simulate the ion beam-plasma interaction and evaluate the preliminar
potential of the heated plasma for achieving the nuclear fusion burning. For
the different scenarios we consider, we calculate the temperature field obtained
during the interaction (7'(z,t)), until the beam has deposited all of its energy.
With this distribution of temperatures, we obtain the resulting properties of the
heated plasma, such as the range, the maximum temperature, and the temper-
ature at the beginning of the plasma across a wide range of conditions, among
others. Then, from this simulation set, we determine the parameter space of
the beam where ignition and self-heating are achieved and a hot-spot is formed.
We present results describing the threshold conditions to achieve such hot-spot
and study its main characteristics, including mean temperature, size and loca-
tion within the sphere. Then, we estimate the potential evolution of the plasma
after the heating, that is, for those cases that achieve the hot-spot condition,
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we calculate the burning gain and the beam-plasma coupling efficiency. Fur-
thermore, we identify the ion beam parameters that create hot-spots at the
edge or the centre of the given plasma, depending on its conditions. Through
this analysis, we aim to achieve a broad representation of the parameter space
of the experiment, both for the initial conditions of the plasma and the beam
characteristics.

Our simulations span a wide range of ion beam and plasma conditions.
Among them, but not limited to, we select certain known parameters of inter-
est in IFI studies, as outlined below. On the one hand, we consider pure DT or
doped (Be, Li, Al or Cu at various concentrations) fuels, with plasma spheres
of radii Rp=40-60 pm, initial temperature of Tp=0.5-5 keV and densities of p
= 300-700 g/cm? (exemplary taken from Gus’kov et al., 2010; Gus’kov et al.,
2014b; Honrubia et al., 2014; Nezam et al., 2020). Our modelling can han-
dle variable density scenarios, including the consideration of the fuel corona if
necessary.

On the other hand, for the ion beams, we select three characteristic IFI
nuclear species: protons (p*), carbon (C%) and vanadium (V*7), with differ-
ent radii of the beam r,=10-20 pm (e.g. Atzeni, 1999; Gasparyan et al., 2013;
Honrubia et al., 2014; Honrubia & Murakami, 2015; Zou et al., 2016). For each
of these cases, we explore the parameter space of the ion projectile energies
and beam surface particle density (or flux), denoted by Ey and o, respectively.
We designed our computational approach to efficiently calculate arrays with
varying values of flux and ion energy. We are also able to study monoenergetic
ion beams and quasi-monoenergetic beams under different configurations. Our
modelling considers the quasi-monoenergetic located at the edge of the plasma
or at a ’d” distance, approximated with a Gaussian energy distribution.

Our primary analysis prioritizes the ideal scenario of a pure DT plasma
without corona, paired with a monoenergetic beam. This experiment is con-
sidered as a reference case, such that, then, we study independently the effect
of considering a corona, including dopants in the fuel or applying a quasi-
monoenergetic beam. By doing so, we are able to evaluate the influence of each
scenario separately and compare them with the ideal case.

We pay special attention to hot-spots with a length similar to twice the
radius of the beam, and positioned at the middle of the plasma sphere. This
configuration assures a hot-spot volume with a geometry as similar to a sphere
as possible, that also optimizes a posterior symmetrical explosion, as already
stated in Sect. 2.3.2. For instance, a typical case addressed in the literature
and in this work considers the radii of the fuel sphere and the beam to be of
15 pm and 50 pm, respectively. This kind of configuration has been previously
examined by (Honrubia & Murakami, 2015), and identified as an optimal setup
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within the framework of the ion fast ignition scheme. Then, our interest focus
on those central hot-spots with maximum temperature located in the middle
of the plasma (50 pum) with a length of 30 pm. By following this approach, we
can provide the beam characteristics that create such hot-spot, along with its
gain and temperature. The values selected in this parameter space are based on
previous literature, although we extend the ranges of the analysis. In this way,
we capture any potentially interesting results or conditions that may become
technologically feasible in the future.

In a few words, the core objective of this work is to present a broad study
of the IFI interaction under different experimental conditions. By doing so, we
establish a clear connection between the characteristics of the beam applied and
the resulting plasma state. This serves of great utility: when formulating an
experiment we return the prediction of the resulting plasma, or, on the contrary,
if targeting for the creation of a particular kind of hot-spot, we provide the
necessary input parameters. To the best of our knowledge, this approach has
not been extensively explored in previous literature.

Henceforth, this thesis is organised as follows. First, as already explained
in above, a general overview of the current status of nuclear fusion has been
performed. Then, in Chapter 3 we present our modelling to perform the sim-
ulations we aim to study. In Chapters 4, 5, 6, and 7 we apply our model to
derive and discuss the results found under a wide range of key conditions. At
last, in Chapter 8, we summarise the manuscript, state the future research lines
and present our conclusions.



Model of the ion beam interaction

with the precompressed plasma (in

the context of the ion fast ignition
scheme)

As explained in the introduction, in a nuclear reactor operated by ion fast igni-
tion (IFI), the configuration involves a chamber that houses a target made up
of a small spherical pellet containing fusion fuel, such as deuterium and tritium.
The nuclear fuel is generally enveloped by an ablator capsule that serves as a
container and also improves the energy absorption process in the heating and
compression processes. An ablator is usually made of plastic (polystyrene or
other hydrocarbons) or metal foams (ranging from very light elements to high-z
elements, for example, from beryllium to gold). Furthermore, the use of light
metal DT hydrides such as LioDT, LisBeDsTs, LisBeoD3T3, NT3BDg as non-
cryogenic solid fuels have been proposed for inertial confinement fusion. In a
similar way to the ICF scheme, in the first phase, high-energy lasers or particle
beams impact the external layers of the target (ablator), causing its implosion.
This consists of a rapid compression of the pellet to an optimal point, where a
plasma is obtained, formed by a very dense and hot region (core) surrounded
by a much less dense layer of plasma (corona). In the case of the IFI, this
optimal point is the core, found in a state of very high density, the one required
for the initiation of ignition and subsequent nuclear burning, and in a state
of stagnation equilibrium, where the dynamic processes of the constituents of
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the plasma are frozen. However, in the precompressed state, the temperature
necessary to initiate an efficient ignition process of nuclear reactions has not
yet been reached. In a second phase, an energetic beam of fast ions will be used
to heat a small region of the core and create a hot-spot. The implosion could
drive some of the ablator material inward of the compressed fuel, introducing
impurities in the plasma. In general, these impurities (or dopants) increase the
beam energy required for the plasma heating and decrease the nuclear gain.
Therefore, we will explore different fractions of Be, Li, C, Al and Au as typical
impurities to the DT plasma.

Following the compression, a separate high-intensity, ultra-short energetic,
and fast particle beam is focused on the already-compressed core during the
ignition phase to achieve the conditions necessary for nuclear fusion reactions.
These ion beams are generally monocomponents made up of fully ionized ions,
ranging from low to high nuclear charge. In this work, our focus is on particle
beams, commonly composed of stripped ions such as protons (p*), carbon
(C%) or vanadium (V23*). As mentioned in the previous chapter, within the
IFI approach, one of the main open problems is the generation of ion beams
appropriated to this scheme. A promising candidate are quasi-monoenergetic
beams, in particular, those generated from a Maxwellian or Gaussian-like energy
distribution, In this context, monoenergetic ion beams are considered as an ideal
scenario. Therefore, and although infeasible in practice, in this work we pay
special attention to understanding the interaction of perfectly monoenergetic
beams. They serve as a benchmark for comparing and contrasting with the
subsequent study of quasi-monoenergetic beams.

3.1 Plasma description

After the precompression phase of the small pellet, the fuel reaches the maxi-
mum condensation before the ion beam interaction. Following spherical sym-
metry for the fuel, its fields for the initial temperature (7'(r,¢ = 0)) and density
(p(r,t = 0)) are often described with two parts: the corona and the core plas-
mas. The corona presents low but increasing density and temperature, while
the core, the highly compressed central region, is in a stagnation phase with ap-
proximately constant temperature and density, both higher than in the corona
plasma. This is illustrated in Fig. 3.1, representing the precompressed plasma
fuel.

Regarding the density, a possible way to describe its profile can be adapted
from Fuentes (2018), as:

— k
p(,,,_) = max (pmaxe ln(pmax/pcorona)(T'/Rcore) pypcorona) g/CmS, (31)
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a) ICF phase b) Precompressed fuel
Drivers
Corona
DT fuel
p(r,t=0)
Ta( n f=0)

FIGURE 3.1— Scheme of the precompressed plasma fuel. We show its two distinctive parts,
the corona and the core, as well as the beams that performed the compression with red arrows.

where ppax is the maximum density (corresponding to the core centre), peorona
is the density of the corona, 7 is the distance from the centre, Rcqre is the radius
at which the density decreases to the corona density, and k, is a coefficient that
adjusts the steepness of the profile.

For instance, Fig. 3.2 represents the density profile of a plasma with pyax =
500 g/cm?®, peorona = 10 g/cm?, Reore = 70 pm, and k, = 14. We can clearly
distinguish three regions: the corona region with a constant low density (70 <
r < 170 pm), an almost isochoric part of the core (0 < r < 50 pm), which
would correspond to Ry, and between both, a transitional part of the core with
variable density (50 < r < 70 pm). In an optimal precompressed scenario,
the surrounding corona should be as thin and transparent as possible. Thus,
the transitional part of the core should be steep and narrow, this is, the larger
possible k,, leaving a virtually isochoric core-target.

In this work, we predominantly focus on studying targets under ideal cir-
cumstances. We simplify the model by disregarding the corona contribution
and assuming a homogeneous spherical core with a radius (Rp), uniform initial
temperature (T'(r,t = 0) = Tj), also referred to as the cold plasma temperature
(), and uniform density, which remains practically constant, this is, as an
isochoric plasma (p(r,t) = p). Thus, the fuel has an associated volume (V) and
mass (M). Additionally, we consider the heat capacity at constant volume (Cy)
as fixed (Gasparyan et al., 2013), due to the process being isochoric. Lastly,
due to the high temperatures of the fuel, we consider a fully ionized plasma.

The base composition of the plasma is a mixture of deuterium and tritium,
which we consider to be in equal proportion (np = nt, np+nt = npr). Then,
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FIGURE 3.2— Density profile of a plasma fuel with pmax = 500 g/cmS, Peorona = 10 g/cm3,
Recore = 70 pm and k, = 14.

the mean values of the DT atomic and mass number are Zpy = 0.5(Zp +
Zr), Apt = 0.5(Ap + A1) and the mean quadratic atomic number is given
by (Zpr)? = O.5(Z123 + Z%) The atomic mass is mpr = Aptmy, and the
matter density is calculated as ppr = nprmpr/Na, where Ny is the Avogadro
constant. Assuming the DT plasma behaves as an ideal gas, we can define
the heat capacity of a pure plasma as Cypr) = 3Kp /mprNa, where Kp
is the Boltzmann constant. Consequently, we can express the energy of the
deuterium-tritium compound as Epr = pprV CypT)T"

As explained before, it is possible to find traces of impurities due to detached
components from the ablator material in the Deuterium-Tritium (DT) plasma
fuel. Hence, it is a primal interest to analyse the influence of the dopants in this
scheme. We describe a doped plasma by considering a fraction of impurities
relative to the pure DT plasma. Thus, the dopant concentration or abundance
with respect to the DT is described as:

_ Ti(dop) _ nC(DOP)ZcIolyg)

e (3.2)
Ni(DT)  Me(DT)ZpT

where n, is the free electron density and n; is the ion density.

In the case of doped DT plasmas, it is useful to define the mean values of the

atomic mass and number (A, Z,, and (Z2)) of a doped DT plasma as follows:
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Ay = (Apr + EAaop) /(14€) (33)
Ly = (ZDT + fzdop) /(1 + 5) (3‘4)
(22) = (Zbe +€23,,) /(1 +9). (35)

where Zqop, Adop and (Zdop)2 are the atomic, mass and mean quadratic atomic
numbers of the dopant, respectively.

Also, we can calculate the atomic weight of the mixture, considering the
presence of free electrons:

my = (mDT + mdop) + (mDT,e + mdop,e) = Aimy + Zime. (36)

So, after some straightforward calculations, now we can write the density,
the heat capacity and the energy of the doped DT plasma as:

Lz
= 1+ , 3.7
p = ppr( f)mDT (3.7)
1+7Z,)m
Cv = CV(DT)(2) WZT, (3.8)
1+ Z.
B = pVOuT = Bpp(1+ 5)“2). (3.9)

Moreover, another way to indicate the quantity of dopants present in a
plasma is as a fraction of the total, a method commonly used by authors such
as Gus’kov et al. (2011); Gus’kov et al. (2015) and Gus’kov & Sherman (2016):

1=Xpr+ Xdop‘ (3.10)

Then, for a mixture of DT in equal proportion (np = nt: Xpr = 2Xp =
2X7) and a single dopant, we can write the relation between §{ and Xgop or
XDT as:

¢ 1
Xgop = —>—; Xpp=—— 11
dop T+¢ DT T (3.11)
Xao 1
g=—290 ~1. (3.12)

11— Xaop XpT
3.2 Beam-plasma interaction description: power balance equa-

tion, slowing down and heating

The power balance equation that governs the change in energy of the plasma
per unit volume (&) is given by:
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0E(7, 1)
ot
where £ is the energy density of the plasma, v is the velocity, Wqpeam is the
power density deposited by the beam, and Wy is the power density of the
internal processes of the plasma, including fusion, mechanical, conduction, and
radiation processes.
As an ideal gas, the energy per volume of the plasma can be expressed as

+ E(Fv t) : ﬁg(ﬁ t) = Wd,beam(f; t) + Wproc(f; t), (313)

E(7, 1) = pOVT(7,t), (3.14)

with isochoric and homogeneous density and heat capacity.

Taking into account that we are interested in fuels at the stagnation state,
the plasma can be considered at rest (¢ = 0) and the convection term neglected.
Consequently, Eq. 3.13 combined with Eq. 3.14, can be expressed as:

dT (7, )

dt = Wd,beam (Fv t) + Wproc (777 t)- (3'15)

pCv

In our plasma heating model, we assume that the duration of the ion beam
(Theam) 18 considered short enough in comparison with the hydrodynamic time
and the characteristic time of each internal plasma process (Theam < Thyd and
Theam < Tproc). This assumption allows us to neglect energy changes due to
conduction, mechanical work, radiation, or fusion during the interaction time
between the plasma and the beam, leading to Wy = 0. In Sect. 3.9.1 we
present a more precise comparison to stablish the safe ranges of our modelling.
Furthermore, we consider that the ion beam enters the plasma sphere in

a radial direction. If the projectile has sufficient kinetic energy or mass, or
both, it can be considered that it travels along a straight line trajectory. On
the contrary, for lower energies, the projectile shows a Brownian motion with
stochastically changing momentum, resulting in transversal and longitudinal
fluctuations known as spreading and straggling, respectively. In this work, the
beam energy is assumed to be high enough to disregard such fluctuations, allow-
ing us to treat the movement of the projectiles across the plasma as straight,
simplifying the problem to one dimension. Thus, from now on, we use the
x-coordinate to study the region of interest heated by the beam, replacing
the 7 coordinates. Hence, the beam-target interaction can be described as one-
dimensional (Beltran et al., 2020). To illustrate this concept, Fig. 3.3 represents

the scheme of the interaction?!.

'The term ”bin” from such image will be defined later on.
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FIGURE 3.3— Scheme of the IFI set-up. We show the precompressed DT fuel sphere and the
ion beam discretised into bins (see Sect. 3.12) for the numerical simulation of the interaction.

According to these considerations, we can rewrite Eq. 3.15 as the tempera-
ture field variation during the interaction:

dT'(z,t) 1
= eam 7t; 7T ,t ) 1
G = =G Wabean(@.15 0. T(@.) (3.16)

where x € [0,2Rp] and t € [0, Theam]. In this scenario, Wy peam denotes the
energy deposited by the ion beam at (z,t), per unit time and length.

3.3 Ion beam description

Consequently, it is necessary to define the characteristics of the ion beam and to
establish how the beam deposits energy in the plasma. In this work, we consider
the ion beams as perfectly collimated, fast, non-dispersive, cylindrical (with a
circular section), axial (respect to the centre of the spherical precompressed
plasma) and with homogeneous ion spatial distribution. The beam is composed
of Ny fully stripped point-like ions with charge Z;, and mass number Ay ((_)r
my, as mass). Fach ion-projectile has an average initial kinetic energy of E
and, therefore, the total energy of the beam can be expressed as E}, = NPEO.
Finally, the beam is characterized by a radius (r},) of its circular cross-section,
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a surface particle density or flux? (), and an ion beam duration time (Theam)-
The flux is defined as o = N, /(7r2), this is, the surface particle density of the
cross-section of our cylindrical beam, calculated as the number of ions NV}, that
go through a surface of Sy, = wr%. Due to the symmetry, the beam creates
a heated cylindrical region T'(z,t), of length Ly and radius 7, with a radial
direction within the fuel sphere.

3.3.1 Monoenergetic ion beams

In monoenergetic ion beams, all ion-projectiles have the same kinetic energy Eo
(so Ey = Ey), and the power density deposited (Wq beam) can be expressed as

Wabeam = 1 - Sp (E(z(")), T(z,1), p) . (3.17)

Here, the intensity (I) of the beam is the number of ion-projectiles that go
through the plasma per transverse area and unit time. For a constant intensity
(time-independent) and homogeneous ion-projectile spatial distribution, it can
be expressed as I = 0/Theam-

Conversely, Sp(E(x(t'), T (z,t), p) denotes the stopping power, which repre-
sents the energy deposited by one projectile in the plasma, per length unit and
at each instant of time. E(x(t')) is the kinetic energy of the particles travelling
in the plasma with temperature T'(z,t), and is determined assuming a classical
dynamic of the particles in the plasma, by means of the following expression:

dE(z(t))
dx

which describes the slowing down of the projectiles due to the particles of the
plasma during the time of fly (7gy) as the ion travels in the fuel until it stops.
Here, t' € [0, may] is used to represent the time in which a projectile travels
through the plasma, while ¢ € [0, Theam| represents the time of the whole beam
interaction. Thus, in this work, a time of flight smaller than the time of the
beam is assumed. Hence, Eq. 3.18 is solved for a selected time ¢, for an ion
travelling along the plasma with 2 = z(¢’), until it stops, where ¢ are the instants
of time during the slowing down of the ion in the interval [¢, ¢+ 7ay]. Implicitly,
this modelling implies that the beams are generated at the edge of the plasma
during this Theam time.

As stated at the beginning of this section, the initial and boundary condi-
tions are given by T'(x,0) = Ty keV for any = € [0,2Rp], and E(x = 0) = Ep
for any t € [0, Theam|- In this work, the energy deposition and heating of the

= —Sp (@ E(x(t'), T(z,t),p) , (3.18)

2We acknowledge that ”flux” is sometimes described as the flow rate per unit area, but
throughout this work, it refers to the number of particles per area unit.
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plasma are calculated in our model by solving Eq. 3.16 and 3.18 in a coupled
way, driven directly by the stopping power. Thus, Equation 3.16 can be ex-
pressed in its integral form as:

I Team
7/ " S (w; E(x), T(x, 1), p) db.  (3.19)
p Cv Jo

It is worth noting that, under the assumption that 7y < Theam < Thyd;proc
and Wq beam > Whproc, the solutions of Eq. 3.19 are explicitly independent of the
beam time and the solutions depend exclusively on (o, Ep). This is addressed
in the next Sect. 3.12, where we describe the numerical procedure followed to
tackle this problem.

T(z, Theam) = T'(x,0) +

3.3.2  Quasi-monoenergetic ion beams

In addition to considering the ideal case of a monoenergetic ion beam, this work
extends the studies by modelling quasi-monoenergetic ion beams. We consider
normalised Gaussian particle energy distribution function (F'), widely used in
the literature (Temporal, 2006; Honrubia et al., 2009; Gus’kov et al., 2014a,
2015), characterized by the energy variance (o) and the initial mean energy

(Eo):
o~ (Eo—Fo)?/20%

Verog
where the variance also allows defining the energy spread of the beam as 0F =
og/Ep.

Note that the remaining conditions for both the beam and the plasma re-
main unchanged. The only difference lies in considering a beam whose energy
is distributed as shown in Eq. 3.20. In this manner, the energy distribution
function provides the number of ions of the beam per energy value. This means
that in any section of this thesis involving a quasi-monoenergetic beam, there
is no single energy as in the monoenergetic case, but rather a range of energies,
which we denote €p, such as Fy € €. We consider the projectiles within an
interval given by €y = [Ey — 30k, Eo + 30g], where "3” is an arbitrary parame-
ter we multiply to og, to extend the studied energy interval to the tails of the
Gaussian distribution?.

F(Ey, Ey, 0p) = (3.20)

In this work, we consider two quasi-monoenergetic Gaussian beams, one
generated at the edge of the precompressed fuel (G1) and one generated at a
distance ”d” of the edge (G2).

3Since the Gaussian function is infinite in extent, this restriction should avoid unreasonable
large values and also assure that there are no negative energy values (Ey > 0).
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3.3.2.a G1: Gaussian beam at the edge of the plasma

For a non-monoenergetic beam situated at the beginning of the plasma, it is
necessary to account for the different energies of the beam when simulating
the interaction. The dependencies of the energy deposited by the beam are
now represented as Wq peam (2, t, p, T'(x, t); Eo,0g). In contrast to Eq. 3.17, the
energy deposited by the beam W peam is now calculated as an integral over the
different initial energies Fy:

W4, beam :I/o F(Ey, Ey, o) Sp (z; E(x(t'); Eo), T(x,t), p) dEy,  (3.21)

where, again, the intensity is constant and is given by I = 0/Theam. In this
case, the slowing down of the projectiles varies depending on their initial energy
FEy € €y, so we explicitly state the dependence.

Following the explanations in Sect. 3.2, simulating the beam-plasma inter-
action requires computing simultaneously not only Eq. 3.16 and Eq. 3.18, but
also Eq. 3.21:

T(I‘, Tbeam) = T($, 0)
+ I/ beam (/ F(Ey, Eo, o) Sp (z; E(x(t"); Eo), T (z,t), p) dEo) dt.

p Cv Jo 0
(3.22)

Note that at each spatial position, the total stopping is calculated as the
sum of the energy deposited by projectiles with different initial energies, which
is then integrated over time to calculate the temperature.

Under the same assumptions for the characteristic times and the power
densities, the solutions of Eq. 3.22 are, again, explicitly independent of the
beam time and depend exclusively on (o, Ey, o).

3.3.2.b G2: Gaussian beam separated from the plasma

When the quasi-monoenergetic beam is separated by a distance ”d” from the
plasma, those ions with higher energy from €y reach the edge of the fuel sphere
carlier, depending on the distribution F(FEy, Eo, o). Now, the intensity has
a time and energy dependency, so it is no longer constant, in contrast to the
monoenergetic or G1 cases.

In this case, a convenient form to express the power density deposited by
the beam in the plasma is given by:

o P(t)Sp (B(x(t'). T(x.t), p)
NpEj

deeam (t) = , (3.23)
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where Eg is the energy of each projectile entering the edge of the plasma at an
instant ¢, and P(t) is the power of the beam at the edge of the fuel, derived
considering the Gaussian energy distribution and the source-plasma distance
(Temporal, 2006; Honrubia et al., 2009), and can be expressed as:

4, 2 [d2my /2624 By 2
_ 1 d myp {7@@ }
V27 2t90g

Here, it is assumed that the projectiles travel at constant velocity from
the source to the edge of the plasma. Therefore, the energy of each pro-
2

jectile entering the plasma at an instant ¢ is calculated as Eg = %mb;’%.

Then, the characteristic time for the beam duration? can be estimated as

Theam = tmax — tmin = 1/ m3d2 (mnl(%)l/2 — maxl(%)l/z). Now, simulating the
beam plasma interaction requires computing Eq. 3.16 and Eq. 3.18, but taking
into account Eq. 3.24. Taking this into account, and after doing some straight-
forward calculations, the temperature field at the end of the interaction can be
expressed as:

P(t) (3.24)

Team P(t) Sp(x; E(x), T(x,t))

o
T(z, Theam) = 1'(z,0 _,_7/
(@ o) =10+ G0N, 0

dt. (3.25)

3.4 Stopping power model

The stopping power used in Eqgs. 3.16 and 3.18 is given by the sum of contribu-
tions from each plasma component (Mehlhorn, 1980, 1981; Khatami & Khosh-
binfar, 2020), taking into account the electron and the stripped ions fields. In
the case of a pure DT plasma, the contributions come from the deuterium and
tritium ions, along with the free electrons they lost. If any impurity is present,
it is necessary to take into account the contributions of the dopant free electrons
as Ne = Ne(DT) T Ne(Dop) and the stripped dopant ions.

Sp =" Spi = SPe(dT.dop) + SPD + ST + D SP(dop)- (3.26)
% dop

9929
1

Here, subscript denotes the plasma field considered, which contributions
can be: the free electrons (e), the deuterium nuclei (D), the tritium nuclei (T)
or any dopant (dop), if present. We denote m;, n; and Z; as the mass, particle

1We note that, in the monoenergetic and the G1 cases, the beam is arranged at the edge
of the fuel, so the beam time reflects the duration of the interaction within the plasma. In
comparison, in the G2 case, the beam time is mostly described by the time required for
the projectiles to travel the distance between the source and the fuel, so, in this case, the
interaction time within the plasma is negligible in comparison.
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9929
1

density and charge of the plasma component (D, T, electrons or dopants).
On the other hand, the projectile particles are represented by atomic number
Zy, and atomic mass my,.

Concerning the stopping power, our analysis incorporates two widely em-
ployed models: the Li & Petrasso (1993a) (referred to as LP) and the Pe-
ter (1991) and Meyer-ter-Vehn (referred to as PMV), already introduced in
Sect. 2.3.1. Both models share some terms, such as follows. The ratio X; =
v/vh; between the velocity of the projectiles (v = 2 - E(x(t'))/m) and the
thermal velocity of the plasma (vih; = /2KBT/m;), being Kp the Boltzmann
constant. The term “erf” is the error function. We remind that e is the elec-
tron charge and g is the vacuum permittivity. At last, the Coulomb logarithm®
(In(A)) term corresponds to the ratio between the Debye length (Ap) and the
impact parameter for a minimum collision distance, both for electrons and
ions, (Pmin;). This logarithm serves as a metric for estimating the importance
of small-angle collisions large-angle scattering:

ln(A)i = 1n<)\Di/pmini); (327)

where,

47T(Zi€)2ni ’

ZiZy,e? )2 ( h >2
min; — 5 X - .
Pin; \l (47T€0mriui2 * 2myuy

Here, X = 1 for the electron field and X = 0 for the ion field. The relative
mass is m, = (m; - myp)/(m; +myp), the relative velocity is u ~ |/v? 4+ v3 ; and
the Fermi energy is ep = 0.3646(nc[cm=>]/(10%1))%/3 V.

In Sect. 4.1 we display some results of both PMV and LP models, as well
as a comparison with the results of other authors.

AregKp\/T? + X - 6%
Ap, = max 2

3.4.1 Li-Petrasso

The Li & Petrasso (1993a) model (referred to as LP) stands as a well-established
approach for assessing the behaviour of charged particles as they traverse a

5We have found certain differences through the literature (e.g. Li & Petrasso, 1993a; Zou
et al., 2016; Deng et al., 2021). On the one hand, the thermal velocity of the plasma is often
described as one dimensional (v¢n,; = /2KgT/m;), instead of three-dimensional. The term
associated with X is also often neglected.



59

fusion plasma environment (Zou et al., 2016; Khatami & Khoshbinfar, 2020;
Deng et al., 2021). The underpinning of the LP stopping formalism is derived
from the Fokker-Planck equation and relies on an expansion of the collision
operator based on the inverse of the Coulomb logarithm (Li & Petrasso, 1993b).
The LP stopping power accounts for large-angle scattering, small-angle binary
collisions, collective plasma oscillations, and the necessary quantum effects.
These factors are subsequently adjusted to fit within a classical formalism. Its
applicability is consistent for Coulomb logarithm values greater than or equal
to 2, a criterion met by the experiments examined within this study. Thereby,
the stopping power of the projectiles travelling through a fully ionized plasma
of DT is given by the widely used expression:

B Z2Z2etn;

 Amedmiu?

Spi (GLP(Xi) . IH(A)I + @(Xl) . ln(1123X1)) (328)

with
i\ 2 _
Grp(Xi) = — (1 + m> XX

+ (1 + :Zbln(lA)> erf (X;).

(3.29)

Here, © is the step function, with a value of 0 for X2 < 1 and a value of 1
for X2 > 1. Throughout this work, we use the LP model in our simulations,
unless specifically noted.

3.4.2 Peter and Meyer-ter-Vehn

The Peter and Meyer-ter-Vehn (Peter, 1991) model was developed in a classical
statistical context, within the framework of kinetic theory. Here, we present the
analytical approximation of the PMV model, which is valid when Zy,/ (ni)\%i) <
1, as shown below:

sp. = ZoZietm (Gpav(X3) - In(A) + H(X;) - In(X;)) (3.30)
P = : i) In i) - In(Aj)), :
P 4redmiv? PMV
with:
9 X2 X;
G (Xi) = — /2. X, e -
i) == 755 F ()
X2
_y3 . -Af 4
H(X;) = X3 . e 3 X;
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3.5 Characteristic parameters of the heated region

After the ion beam interaction, the heated region of the plasma is completely
characterized by its temperature field (T'(z) = T(x, Theam)), obtained from
Eq. 3.19. For example, in Fig. 3.4 we have depicted three temperature dis-
tributions of a heated plasma (Tp=1 keV, p=500 g/cm?3) obtained after the
interaction with an ion beam of C®* (¢=2.9-10'" cm=2) at three different ki-
netic energies: FEy=125, Fy=400 and Ey=675 MeV. In this figure, we also
highlight several relevant characteristic parameters of the heated region, such
as the temperature at the edge of the plasma (Tx—o = T'(z = 0)), the plasma
initial temperature (Tp), the maximum temperature (T,ax) and its associated
position (., ). Additionally, the total heated length or range (Ly) is defined

as follows®: 0 JIE
Ly = / da. 3.31
2= Jp “Sp( B@): T(@) (3.31)

Then, the mean temperature of the heated region is calculated from the
distribution of temperatures:

Ty = Llh /Lh T(z)dz. (3.32)

As the beam is focused symmetrically in the centre of the spherical fuel, the
heated region is a cylinder-alike volume of V}, = FT%Lh with radial symmetry in
the temperature. Note that the energetic variation of the heated region must be
equal to the energy of the beam, AEy = Ey, this is, p Cv(Th — To) Vi, = NpEo.
Therefore, the temperature of the heated region can be expressed in terms of
the initial parameters of the experiment as:

O'Eo

Th=Tp+ 0
LYo NI

(3.33)

This equation is also valid for the quasi-monoenergetic cases by considering
the mean energy, Ey. In addition, this equation includes the length of the

5This expression considers a monoenergetic beam. In the G1 case of a quasi-monoenergetic
beam, the formula also applies, but integrates from the projectile with maximum energy
(maxz(€p)) to zero. In the G2 case, the final length of the heated region depends on the
energy distribution. It is obtained after calculating the energy deposition of the projectiles
according to their initial energy taken from the distribution €y, whilst the heating is taking
place and determining how far they reach. Among the depths obtained for each energy, the
overall maximum range is selected. Regardless of the type of beam, numerically we calculate
the range by evaluating the temperature, starting from the edge where the beam enters and
continuing until the last value such that T'(z) > To, that is, before returning to the cold
plasma.
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heated region, so it can be considered as a constraint on the quantities T}
and Ly. The relationship between the heated region and the experimental
conditions of both the beam and the plasma can described by the quantity
(Th — To)Lh = ATth = O'Eo/(p C\/)

(A) Edged (B) Intermediate (C) Central
14 14 14
(XTmax=0, Tmax=Tx=0) {(XTmax, Tmax) (XTmax, Tmax)
12t g 12 ] 12}
Tx=0
10 Tol 10 Tol 10} To
e Lhs ;T/ B Lhs
S 8 8 gfTx=0
[}
=
- 6 6 6
4 4 4
2t 1, 1 2 Ly T, 2t Ly T
0 20 40 60 0 20 40 60 0 20 20 60
x [um] x [um] x [um]

FIGURE 3.4— Spatial distribution of temperatures achieved after the interaction of a C®%
beam (0=2.9-10'" cm™?) with a DT plasma of To=1 keV and density p=500 g/cm?, (A) for
an edge hot-spot (Eo=125 MeV), (B) an intermediate hot-spot (Eo=400 MeV), and (C) a
central hot-spot (Ep=675 MeV).

3.6 Self-heating and ignition gains

Our interest lies in examining the conditions for attaining self-heating, ignition,
and subsequent combustion of the stagnated fuel. After the interaction with
the beam, the internal processes of the plasma govern the evolution within the
heated zone. In-depth investigations into the ignition process require sophis-
ticated 2D or 3D radiative-hydrodynamic numerical simulations to accurately
depict the spatial and temporal evolution of a heated region. However, many
interesting features of the early evolution of the heated plasma are described
by a zero-dimensional power balance model, as already advanced in Sect. 2.3.2.
Considering the energetic processes of Eq. 3.15 in a zero-dimensional approxi-
mation, after the beam interaction has ended (Wgqpeam = 0), the temperature
variation is written as:

dT'(t) 1
——— = —— (Whus.dep(t) — Whee(t) — Weond(t) — Wiaa(t)) . 3.34
i = 5 o Wasa(®) = Wanee®) = Woona(t) = W) (3.34)
Here, the power density terms are: the electron heat conduction (Weonq),
the electron radiation emission (Wi.q), the mechanical work (Wine.) and the
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fusion reactions deposited in the evaluated volume (Wiys dep). The expressions
for every power density are presented in the following Sect. 3.8.

From Eq. 3.34, analysed after the beam interaction, we obtain the self-
heating condition of any heated region. This condition is fulfilled if there is a
positive variation on the temperature (d7'(t)/dt > 0), that is, if the gain term
Whus,dep is greater than the power density loss terms Wigss = Winee + Weond +
Wiad (Gus’kov et al., 2011; Atzeni & Meyer-Ter-Vehn, 2004). This criterion
can be expressed through the self-heating gain, defined as:

G — qus,dep (07 R’ T)
sh — )
vvloss (P> R> T)

where the condition is fulfilled for a region characterized by (p, R,T) when
Gan(p,R,T) > 1. The minimum of the self-heating curve (Rshmin;Tshmin)
points out the threshold temperature for the ignition criterion (Tyhmin = Tig)-
This ignition temperature is also displayed in Fig. 3.4, to indicate which region
of the heated plasma is above it.

On the other hand, the zero-order approximation can also describe the
early time evolution in temperature and volume of the heated region (Atzeni
& Meyer-Ter-Vehn, 2004). From such modelling, a criterion that assures a
sustained increment of the temperature over time is obtained, guaranteeing a
posterior burning of the precompressed DT fuel. That is, given a region of
interest (or spark), we can evaluate its capacity to accrete mass and eventually
raise its temperature. The reasoning that leads to this criterion is explained in
Sect. 2.3.2. Roughly, it is required that the energy density gained, normalised
by the energy density of the hot-spot, grows over time. This change is governed
by the emission of radiation and a-particles from the heated region, which are
absorbed by the surroundings, enlarging the heated region itself. It can be
expressed through the ignition gain:

(3.35)

(qus,a (P, R, T) — Whraq (pv R, T)) Ték
3&

and the criterion is fulfilled when Gig(p, R,T) > 1. Here, 75 = R\/2p/& is a
characteristic ignition time (lower than compression time), Weys o refers to the
total energy yielded by a-particles (see Sect. 3.8), & = 3pI'gT is energy per
mass unit, which is obtained from the temperature of the hot-spot to evaluate.
We assume the plasma as an ideal gas, with I'p = R/Apr (R is the molar gas
constant).

Both gains allow characterizing a heated region with the (p, R,T) param-
eters. In particular, Gg, = 1 and Gjy = 1 are thresholds for cases where the
condition is achieved or not.

Gig = (3.36)
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We note that the presence of impurities in a DT plasma modifies the density
of the plasma and the power densities of the internal processes, thereby changing
the ignition and self-heating conditions with respect to the pure case. If a
dopant is introduced in the fuel it is necessary to consider the element and
its concentration, so previous Eqgs. 3.35 and 3.36 have an implicit dependence
such as Ggn(p, R, T; Z1,€) and Gig(p, R, T; Z1,§). Thereafter, in next Sect. 3.7
(Figs. 3.5 and 3.6) we illustrate the plasma (pR,T')-space and we determine the
set of parameters that achieve the conditions presented in this section under
different circumstances.

Notably, these criteria (through Eqgs. 3.35 and 3.36) can also be consid-
ered in the parameter space (o, Fy) of the beam, which fulfil the conditions
Gsn(Zy, Eop,0) > 1 and Gig(Zy, Eg, 0) > 1, for a given plasma (p,1p). This type
of relation between the characteristics of the beam and the heated plasma is
one of the main goals of this thesis.

3.7 Solutions of Gy, and G}, in the (pR,T)-space

According to Egs. 3.35 and 3.36 we can retrieve the (p, R,T)-space of the
plasma and identify the parameter set that fulfils these conditions across var-
ious scenarios. After some manipulations, these equations can be retrieved in
the (pR,T,|[p])-space, with a weak dependence on the density of the plasma
([p]). For instance, in Fig. 3.5 we consider a pure DT plasma and display the
solutions of Gg, = 1 (dashed line) and Gj; = 1 (solid line) in this space, con-
sidering a pure DT plasma. The region above each curve fulfils the self-heating
and ignition criteria, respectively.

We mark the minimum of the self-heating curve with a vertical dashed
line. This line matches the threshold temperature (Tgn min = Tig) used for the
ignition criterion. We highlight with a coloured region those cases above the
ignition curve that also fulfil 7" > Ti,. This corresponds to the scenarios where
we find a successful formation of the hot-spot, given a set of (pR,T') plasma
values. In following Sect. 3.9, we explain with more detail our definition for
a hot-spot and, in particular, how we determine it from the distribution of
temperatures generated by the beam. The blank region with T > Tig, but
below the ignition curve, corresponds to those sparks that are not able to reach
burning. The colour gradient represents the burning gains achieved for each
pR-T pair, which we will explain later, in Sect. 3.11.

For this pure DT scenario, the minimum areal density of the self-heating
curve is pRey min ~ 0.4 g/ cm?. For this value, the self-heating curve has semi-
flat behaviour between 8 and 12 keV, which are common values found in the
literature to establish a temperature threshold for the ignition. In our case,
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FIGURE 3.5— Ignition and self-heating diagram (pR, T) of a pure DT plasma at
p=500 g/cmg. The solid line represents the solutions for Gigz = 1, while the dashed line
show the solutions for G, = 1. Ignition temperature Tig is shown as a vertical dashed line.
The coloured area corresponds to those (pR, T') where the hot-spot conditions are fulfilled.
The colour gradient represents the burning gain for such conditions (presented below, in
Sect. 3.11), considering a plasma sphere of Rp=50 um and density of p=500 g/cm?®.

we select the value that matches the exact minimum of Gg, = 1, which is
Tihymin = Tig =~ 10 keV. For temperatures lower than Ti, ~ 10 keV, there are
fulfilling solutions above the self-heating and ignition curves. However, when
the plasma is that cold, the fusion power is not high enough (see Figs. 3.7 and
3.8) and the hot-spots would be unnecessary large and not that efficient. In
fact, the most interesting region is that above the ignition curve but below
the self-heating curve, this is at low values of pR and temperatures above the
threshold, but as close to Ty min as possible. In this zone, the propagation
of the combustion will occur, while the plasma requirements are minimal (the
required hot-spot is small and not very hot), also ensuring maximum values
of the burning gain. It is worth mentioning, the minimum energy associated
to those points, beginning with the self-heating. Although pRgy min and Tin min
remain almost constant with the plasma density, in this case it does influence the
result of the energy, finding Egp min = 2530 J for p = 300 g/ cm?, Eghmin = 955 J
for p = 500 g/cm? and Eghmin = 522 J for p = 700 g/ cm?. Similarly, for the
ignition curve we find the minimum at, approximately, 0.22 g/ cm? and 18 keV,
which corresponds to minimum ignition energies of iz min = 1010, 360 and
180 J, for each respective density.
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As another example, in Fig. 3.6 we have depicted the self-heating curve for a
DT plasma including impurities of Be, C, Al and Cu at different concentrations,
obtained from the condition Gy, (pR, T, Z1,§{) = 1. As explained above, for
a given self-heating curve, the plasma parameters that fulfil the self-heating
criterion are those located above the curve. The figure shows that the shape
of the figure has a minimum (pRgh min(Z1,€), Tig(Z1,€)). As the concentration
of the impurity increases, the value of the minimum is shifted to higher values

of the areal density and temperature, which implies that the set of values of
(pRsn(Z1,€), Tig(Z1,€)) is reduced.

~ 100.
£
S
2
o
Q
£=0.2 £=0.06
£=0.3 £=0.12
DT+Be — £=04 DT+C — £=0.21
107 10° 107 102
T [keV] T [keV]
& 100
£
o
3
o
Q
£=0.006
£=0.009
DT+Al — §=0.05 DT+Cu —— £=0.015
107 102 107 102

T [keV] T [keV]

FIGURE 3.6— Self-heating diagrams (pR, T) of a DT plasma (ppr=500 g/cm?®) doped with
B, C, Al and Cu at different fractions.

For instance, for the pure DT plasma (as in Fig. 3.5) the minimum are
pRshmin(Z1,€) ~ 0.4 g/cm? and Tig(Z1,€) =~ 10 keV. Meanwhile, for a plasma
doped with Be, the values of these parameters for ¢ = 0.3 are 1 g/cm? and
13 keV, and for ¢ = 0.4 are 1.4 g/cm? and 15 keV. The figure also shows that
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the effect of the impurity is more pronounced as its atomic number increases.
For a concentration of about & ~ 0.2 of a beryllium or carbon impurity, the
values of Rgh min(Z1,€) and Tig(Z1,§) are 0.8 g/cm? and 11 keV for Be and
1.2 g/cm? and 14 keV for C. Although not represented, we have found that,
even for a much lower concentration of Cu (£ = 0.015), the values obtained
for the minimum are 0.9 g/cm? and 13 keV, which are of the same order as
those obtained for Be and C at £ = 0.2. In general, we have found that the
ignition curve moves towards regions of higher areal density and temperature
with heavier dopants or higher concentrations.

3.8 Power densities

In order to evaluate the self-heating and ignition gains, in this section we present
the power density terms. Unless noted, expressions use the SI units. Hereafter,
k is the Coulomb constant, h is the Planck constant, ¢ is the speed of light,
and In(A) is the Coulomb logarithm defined in Eq. 3.27, T and R are the
temperature and the radius of the studied plasma region, respectively.

3.8.1 Nuclear fusion energy deposition

In the case of a DT precompressed fuel, the heating associated with the fusion
energy deposition is determined by the rate of the DT reactions and the energy”
transferred by the a-particles and neutrons to the plasmas:

Whus,dep = MDNT (TfusV) (NaFa + 1 En) [MeV/crn?’s]. (3.37)

Here, it is worth noting that after performing some straightforward trans-
formation (see Sect. 3.1) npnr is equivalent to pNa/(2(1 + &)m.), to express
the dependency with the material density (p).

Then, E, = 3.52 MeV and EF,, = 14.06 MeV are the initial energies, while 7,
and 7, are the energy fractions for the a-particles or the neutrons, respectively.
The fusion reaction rate is (og5v), which is calculated using the model proposed
by Bosch & Hale (1992). This model, as expressed in Atzeni & Meyer-Ter-Vehn
(2004), is written as:

(ousv) = C1¢ 75 ¢%exp(—3¢1/3¢)  [em?/s]. (3.38)
Here, the temperature is expressed in keV
2 3
C=1- CoT + CyT7 + CeT (3.39)
1+ CgT =+ C5T2 + C7T3
¢ = Co/T"/? (3.40)

"Previously noted @, in Chapter 2.
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The reaction fit of the DT fusion process (D+71 — a+n) is valid in the range
of temperatures 0.2-100 keV with an error of < 0.25%, with the coefficients:

Cy Cy-101% Cy-10° C3-100 C4-10° C5-10° Cg-100  C7-10°
keV1/3]  [em3/s] [keV™!  [keV!] [keV 2] [keV™?]  [keV73]  [keV 7]

6.6610 643.41 15.136  75.189  4.6064 13.500 -0.10675 0.01366

The energy fraction transferred by the a-particles to the studied volume of
radius R can be calculated approximately using the expression from Gus’kov

et al. (2011):
Na = {

_3(T- Kp)¥2E*miPmuA.
“ 47r1/21n(Aae)mé/26362,0 Z. - k2

[\][9%)

2

R 1 (R

£-3(8) R (3.41)
1 R> )\,

where, in SI units

[m), (3.42)

where m, and m, are the mass of the neutrons and a-particles, respectively.
The Coulomb logarithm considers the interaction between a-particles and the
free electrons.

At last, the energy fraction deposited in the plasma by the neutrons accounts
for only the elastic collisions, because the cross-sections for inelastic scattering of
neutrons by low-Z nuclei is significantly lower than those for elastic interactions
(Atzeni & Meyer-Ter-Vehn, 2004). The energy fraction transferred by neutrons
can be deduced, under certain approximations, as:

Adop-€ | pRg/em?]
(1+Adop)2 A*(1+£) .

In Eq. 3.36, we denote Wiys o (T, R) to denote the total energy carried out
by the a-particles (n, = 1), neglecting the neutron contribution of the fusion

(nn = O)‘

M~ [0.1240.6

(3.43)

3.8.2 Radiation loss

The energy losses for plasma self-radiation, W,,q, described by the emissivity
of a fully ionized plasma (Zel’dovich & Raizer, 2001), are given by

327 [2nKpT  Z.(Z2)e5p 4 3
g = 6,2 Rl Tk . 44
Wrad 3 3me  mem2A2c3h [/m] (3.44)
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Here, 6, represents the fraction of thermal radiation energy lost from the
volume of plasma, accounting for the absorption of the absorption of intrinsic
radiation from the plasma. The value of §, can be obtained with high accuracy
(errors lower than 2%) as Gus’kov & Sherman (2016) described

R[cm]
o= |14 1.56 , 3.45
* Ar[cm] 1 (345)
where At is the range of thermal photons with energy hv = KgT
T7/2 42
Ar =353 5o . A4
T=3 53p2A]23T(Zf)Z* [cm] (3.46)

3.8.3 Conduction loss

The energy losses related to electron heat conduction are given by Spitzer (1962)
r 3
Weond = 31{:0? [J/m°s], (3.47)

where kg is the electron thermal conductivity,

2 )3 Kp(KpT)>/20.472

ko = 9.45 ( :
me/%et In(Ace)(Zs + 4)k?

- [J/K m s]. (3.48)

Again, the previously presented Coulomb logarithm was used, considering
only the free electron interactions in this case.

3.8.4 Mechanical work loss

The specific thermal losses of a spherical ignitor due to the work associated
with the pressure force, Wiye are given by Gus’kov & Sherman (2016):

Winee = 35% (T (v — )Oy)*? [I/m3s], (3.49)

with 3 = [2/(1+7)]'/2, where the adiabatic exponent v = 5/3 for a monoatomic
gas with 3 degrees of freedom.

3.9 Definition and characterization of the hot-spot

Within the heated range, we consider a region of special interest named the
hot-spot (hs), which, if found, assures the posterior burning of the fuel. A hot-
spot necessarily fulfils: Ti,s > Tig and a pair (Rps, Ths) such that the ignition
gain is Gjg > 1 (using Eq. 3.36).

The procedure we follow to detect any hot-spot in our heated plasma, is:
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1. Using the self-heating criterion we calculate the threshold temperature for
the ignition (Tghmin = Tig), which is found associated with the minimum
areal density (pRshmin) Obtained when solving Wiys dep/Wioss = 1 for a
given plasma (Eq. 3.35). This is illustrated below, in Sect. 3.7.

2. From the distribution of temperatures T'(x) calculated with Eq. 3.16 and
3.18, we search for points with temperature over the ignition temperature
T(x) > Tig. If existent, such region is classified as ”spark”, as a candidate
to be a hot-spot. We define a length for the spark (Lgspark) and the mean
temperature of such region as:

1
Tipark = / T(x)dx. (3.50)
Lspark L

spark
3. Then, as the power terms from Eq. 3.34 assume spherical geometry, we
need to calculate a radius Rgpark associated with our spark (or candidate
hot-spot). To do so, we take into account the actual 3D geometry of
the problem. After the beam heating, we find a cylinder with a radius
equal to beam radius ry, and a length of Lepark. Then, we approximate
our cylindrical spark as a homogeneous and spherical one, considering
that both geometries share the same volume (Vipark). Thus, we calculate
the radius Rgpark of the sphere associated with our cylindrical spark as

_ (3 .2 1/3
Rspark - (Z (AN Lspark) / .

4. Once calculated the set (Rspark, Tspark) We evaluate if Gig(Rspark, Tspark) >
1, to confirm that such spark is, or will be, an actual hot-spot capable of
burning the fuel. In affirmative case, we abandon the ”spark” notation
and use "hs” for hot-spot.

Figure 3.4 also exemplifies the hot-spots found within the different spatial
distribution of temperatures. Depending on the characteristics of the beam, we
find three different lengths of the hot-spot (Lys), which are associated with a
mean hot-spot temperature (T}, calculated using Eq. 3.50). Moreover, depend-
ing on the location of the hot-spot, they can be classified as edge, intermediate
and central hot-spots. Intermediate and central hot-spots occur when the pro-
jectiles lose most of their energy immediately before the particles come to rest.
This is due to the cross-section of the interacting projectiles increasing as their
energy decreases. As it shown in Sect. 3.4, the energy lost by the projectiles
decreases inversely with the square of their velocity. In such situation, a max-
imum of the stopping power appears away from the initial position, which is
denoted as the Bragg peak. Conversely, the edge hot-spot (panel A) is found
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when the maximum temperature is reached at the beginning of the plasma;
that is, found when Tx—¢ = Tiax and pmax = 0. The intermediate hot-spot
(panel B) is found when the maximum temperature is reached away from the
beginning of the plasma, but the temperatures in the edge still fulfil the ignition
criterion (Tx—o > Tig and ZTmax # 0). Finally, the central hot-spot (panel C)
is found when all the points with temperatures above the ignition criterion are
away from the edge in a well-localized region, that is, Tx—g < Tiz and xmax # 0.
It is worth noting that the terminology “central” is associated with the idea of
finding the hot-spot away from the edge (Tx—o < Tig), but it is not related to
finding the hot-spot exactly in the centre of the fuel sphere.

We are also interested in the energy variation of the hot-spot with respect to
the cold plasma: AEyns = p Cy(Ths — 7o) Vhs. This quantity is important in order
to measure how much energy from the beam is deposited in the region able to
initiate the burning; in other words, the hot-spot. Thus, the coupling is defined
as the ratio between the hot-spot energy and the beam energy AFEyg/Ey,.

3.9.1 Evaluation of the power densities and the characteristic times

Once the parameters that characterise the hot-spot have been presented, we
can address the significance of the power densities and the characteristic times
associated to the processes of the system. To begin with, we can calculate
the power density values from the previous expressions of Sect. 3.8, given a
temperature (7}s) and a radius (Rps). As an example of the behaviour of such
processes, in Fig. 3.7 we fix the radius of the hot-spot to Rps = 15 pum and
calculate the power density values at different temperatures, considering a pure
DT fuel with density p = 500 g/cm?.

Our simulations consider that the plasma processes are negligible during
the interaction, either because their times are slower than the beam time or
their power densities are lower compared to the power density of the beam
(Wd beam). More precisely, Wq peam should be larger than the addition of the
internal processes of gain and loss (Wys dep — Wioss). As can be seen in the figure,
for temperatures below 5 keV the contribution of the processes is very small and,
moreover, the energy contribution of the fusion processes cancels out with the
rest of the processes. Then, for increasing temperatures, the fusion gain wins
over the power losses. For example, in the case of Fig. 3.8, for a density of p =
500 g/cm?, a hot-spot of temperature Tys = 15 keV and a radius of Rps = 15 ym,
the hot spot has a net power density of Wiysdep — Wioss = 3.1 - 1023 J / cm®s.
In contrast, the associated beam that creates such hot-spot have a power of
Wd beam =~ 3.5 - 1023 J/cm3s for proton projectiles, 8 - 10?3 J/cm3s for carbon
and 1.6-10%* J/cm3s for vanadium. In the typical temperature range in which



71

6823 : : : : . .
— qus,dep
= Wecond

5
m— Wrad
— Wmec

4+ = Wioss

»

m
53|
=

2t

1t

0

25 50 75 100 125 150 175 20.0
T [keV]

FIGURE 3.7— Contribution of the different power density terms as a function of the tem-
perature in a pure DT plasma of density ppt = 500 g/cm3, with radius of 15 pum.

the beam would act, 1-20 keV, we find that the power of our beam is higher than
that of the processes. However, depending on the experimental characteristics,
the processes might become significant for the hot-spot simulation.

We propose another example understand better the behaviour of power den-
sities. In this case, we chose another matter density value (ppr = 300 g/cm?)
and extend the temperature range to see a more general behaviour. We rep-
resent these terms for both a pure and a doped plasma with beryllium at a
concentration of £ = 0.1. The results found are comparable to those of Zou
et al. (2016) (figure 5-c). With this figure we explore higher temperatures,
thus, we can qualitatively identify how, above a certain temperature, the losses
overcome the fusion gain, making self-heating impossible. Besides, with respect
to the pure case, the presence of an impurity increases the fusion power density
but also raises the losses due to radiation and mechanical work more quickly.
As we will show in Chapter 6, when a dopant is introduced in the plasma, to
reach the same hot-spot conditions as in a pure DT case, the requirements of
the beam are higher.

To further assure the validity of our modelling, it is also necessary to inspect

the characteristic times of the system. Besides inspecting the relevance of the
power densities, checking the characteristic times in each moment serves to
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FIGURE 3.8— Contribution of the different power density terms as a function of the tem-
perature in a pure DT plasma (ppt = 300 g/cm?®) and a doped DT plasma (PDT+Be(e=0.1) =
408.2 g/cm?), both with radius of 15 pm.

evaluate the validity of our modelling. To begin with, the characteristic times
associated to the processes inside the hot-spot of the plasma can be calculated
as the quotient between the energy of the studied region and the power density
of the process of interest (Weus deps Wrads Wmees Weond):

5hs

Tproc = 3.51
pro¢ WprOC (Th57 Rhs) ( )

where the energy density can be calculated as & = pCy/Tis. These characteristic
times give us information about the rate of energy change in the hot-spot due
to each corresponding process.

On the other hand, another time worth inspecting is the hydrodynamic time
of the hot-spot, which allows us to estimate the time in which the hot-spot
mass remains confined and, therefore, there are no convective mechanisms, as
our approximation implies. The hydrodynamic characteristic time is obtained
as:

o [Re
205 Rhs

Thyd = (3.52)
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with ¢ = /2kpT /m,, where m, is the average mass of the fuel ions.

In Fig. 3.9 we show the characteristic time of the hydrodynamic and plasma
processes. Again, we select a hot-spot radius of Rys = 15 pm and perform the
study in a typical range of temperatures (Ths = 1 — 20 keV), with a density
of p = 500 g/cm?. The characteristic time associated to conduction presents
the larger values, except for higher temperatures. Meanwhile, the faster time is
the one associated to the deposition of fusion energy in the hot-spot, except for
lower temperatures. The rest of processes falls within these two characteristic
times. It is worth noting that at low temperatures the power density of the
processes is very short, so even if the characteristic time is large the process is
negligible. We take 75 qep as representative of the processes, given that it gives
the lowest time values. Operating with ion beams associated to times shorter
than the fusion time, ensures the confinement of the hot-spot and that there is
no appreciable contribution of the internal processes during the beam-plasma
interaction.

1078
= Tfus, dep
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FIGURE 3.9— Characteristic times associated to the internal and hydrodynamic processes
of the plasma, as a function of the temperature. We consider a pure DT plasma of density
pot = 500 g/cm37 with radius of 15 pm.

After studying the times associated to the characteristic times of the pro-
cesses, it is necessary to inspect its relation with the other mechanisms taking
place in the system. On the one hand, any process happening in the plasma
needs to be shorter time than the confinement time (7eont = }j—f), where the
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precompressed fuel is in the stagnation phase. On the other hand, for our mod-
elling to be correct, the time of the processes needs to be longer than the time
of the beam interaction. In the monoenergetic and G1 case, we take as a refer-
ence the flight time of the projectiles to perform such comparison (7ay € Theam)-
The G2 case will be studied with more detail in Chapter 7. We estimate an
averaged flight time® of a projectile travelling through the plasma as:

2m
Tay = L | /?Ob. (3.53)

At last, the time necessary for achieving thermodynamic equilibrium must
be faster than all of the above. This is a necessary condition to consider a sole
temperature for the components of the plasma. This time can be calculated as
(Atzeni & Meyer-Ter-Vehn, 2004):

o 30

T T T 72 (M)

Ideally, the situation to accomplish would be Tconf > Thyd;proc = Ttus,dep >
Theam > Tfly > Teq- Consequently, in Fig. 3.10, we present a representative
example of this comparison, which can be extended to other simulations in this
work. We chose the same plasma conditions as in Fig. 3.9, with a sphere of
radius Rp = 50 pum, while for 74, we chose a carbon ion beam and select the set
conditions that returned the shortest and longest projectile times, considering
the values of (o, Ep) within the range of our simulations. Again, we represent
the time against the temperature of the hot-spot for a fixed radius. We have
found the variation with Ry to be less relevant when studying the characteristic
times.

As expected, we find the confinement time above the rest, so any activity
taking place in the plasma has enough time to operate. The range of low
temperatures where Ty dep (representative of the rest of processes) is above
Teonf Can be omitted, as the power density at such conditions is negligible.
Any other internal process found above 7.t in this range of low temperatures
can be neglected too, following a similar reasoning regarding the processes not
operating at such low power levels. The hydrodynamic time associated to the
hot-spot is also below the confinement time, assuring its mass keeps confined.
The flight times of the projectiles, from its minimum to its maximum durations,
are in general below the fusion time, fulfilling the condition we imposed in

8This expression has been validated with Atzeni & Meyer-Ter-Vehn (2004) calculation for

the projectile time: Tproj = % [ps].
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FIGURE 3.10— Characteristic times that describe our system as a function of the tem-
perature, namely: fusion deposition in the hot-spot, hydrodynamic time of the hot-spot,
confinement time of the fuel sphere, flight time of the projectiles of the beam (minimum and
maximum) and equilibrium time of the plasma. We consider a pure DT plasma of density
pot = 500 g/cm37 with radius of 15 pm.

Sect 3.2. We find that, after 10 keV, some of the maximum 74, values might
be in the same order of magnitude or slightly above the fusion time. This
result is to be expected, given that the DT fuel is able to fuse in 10-20 keV. In
such conditions, considering the internal processes taking place in the plasma
would improve the quality of the simulations. Alternatively, we can argue that
the beam interaction often dominates over the power density of the internal
process, as we explained above with Wy peam. Nonetheless, it is of our interest
to separate the beam interaction and the rest of mechanisms that take place in
the plasma, so we assume this approximation.

Ultimately, we find the equilibrium time mostly between the minimum and
maximum g, values. For temperatures higher than 10 keV we find 7,4 in the
same order of magnitude or slightly above 7gs dep and the maximum value of
Tay. In these conditions, the equilibrium condition might wave, specially when
sharing the same duration as the flight time of the projectiles. However, in
the literature, considering a sole temperature is still a valid approximation in
the first instants of the ignition (Gauthier et al., 2013; Gasparyan et al., 2013;
Gus’kov et al., 2014b; Zou et al., 2016, e.g.).
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3.10 Analytical model for the temperature field

In this work, we have also developed an analytical approximated model to
determine the temperature field of pure DT plasmas heated by monoenergetic
ion beams, as introduced by Espinosa-Vivas et al. (2023). For this purpose we
have approximately solved the equations of the heating model, this is, Eqgs. 3.16
and 3.18. We make three basic considerations: the dynamic of the ion projectiles
in the plasma is sufficiently well described by the stopping with plasma electrons
(at high projectile energies) and with plasma ions (at low projectile energies);
the ions travel always travel in a plasma with uniform temperature; and the
ion beam heats the plasma very fast. These points require addressing the
relationship between the ion energy and the plasma temperature. If the velocity
of the beam ions is above the thermal velocity of the plasma electrons, then the
stopping power increases as the ion energy decreases when travelling through
the plasma. The opposite behaviour is found in the case of an ion with a
velocity below the electron thermal velocity. The limit in which the energy of
the travelling ions matches the thermal velocity of the plasma electrons can be
calculated as Fyovev)y &~ 1.85 AT kevy, Where T, is the mean temperature of
the plasma after the heating (Gus’kov et al., 2010). This is commonly referred
to as thermal threshold. Then, considering the asymptotic behaviour of the
energy due to the stopping with plasma electrons (Li & Petrasso, 1993a), and
taking as a reference the thermal threshold energy (FEqe ), we have an expression
for the stopping power given as:

EY2 if B < B

3.55
E~l if E> Fgp. (3:55)

Sp(E) {

If we assume that the ions consistently traverse a plasma with a uniform
temperature, after some manipulations, we derive that, for a specific time,

Sp(z,t)a (1 — L}“‘ax) for E < Fg . and (1 — C%) 12 for E > Egee.
Here, X is the length between x7,,x and the position where the heated region
ends (Ly). The value of ¢ is calculated as ¢ = (1 — §2), with § = Feee/Eo. We
need to address how, during the heating process, the temperature of the plasma
is not uniform. To do so, we assume that at any time the ions travel through
a plasma of constant temperature approximated by the average of the heated
region at any given time, (T'(z,t)). Thus, previous Eq. 3.55 is now written as:

(1 _ %)al if £ < Ese,e

Sp(x,t) X (1 — (= )_a2 it > Ese,ea

(3.56)




(e

where a1 and a9 are parameters to fit. The fitting parameters introduced in this
manner are linked to the impact of the real non-uniformity of the temperature
in the plasma, resulting from progressive heating by the ions of the beam.
Substituting Eq. 3.56 into Eq. 3.17 and assuming a very fast deposition
of the energy in the plasma (the intensity has a delta-behaviour I(t) ~ od(t —
Theam) ), then, once the beam-plasma interaction has ended, we find an analytical
expression for the temperature field created (Espinosa-Vivas et al., 2023):

T—x a1
TO + (Tmax - TO) ! (1 - ;\Fmax)
if A+ ZPmax > T > TTmax
T(x) = Ti—o + 5(Tmax - Tx:O)‘ (357)

(1 -(1- CITLX)_@)

if Tpmax > x > 0,

where the boundary conditions are given as T'(x = 0) = Tx—¢ and T(ZTmax +
\) = Ty, with e = —6%92 /(1 — §2%2). The cases in which ay # 0 are associated
with intermediate or central hot-spots, while for edge hot-spots as = 0. The
latter is equivalent to finding T max = 0 and A = Ly,.

The analytical model of Eq. 3.57 presents another way of addressing the final
state of the plasma after the beam interaction. It describes the final tempera-
ture of the plasma with an explicit expression, which might ease understanding
of its behaviour. Additionally, employing Eq. 3.57 saves computational re-
sources instead of performing the entire numerical simulation.

As foreseen in Espinosa-Vivas et al. (2023), from the analytical model of
the temperature field (Eq. 3.57) both the hot-spot temperature and length can
be approximated as:

Tiw = T ! T 1) (L 3.58
hs = 0+<1+a1)(max_ 0) RS R (3.58)

with s = (Eg - TO)/(TmaX - TO)a and

T, —Tp 1V
L s = max ° A1- 5 ) .
e = Pmax S ( Fae=r ) (3.59)

where f equals 0 for edge hot-spots, 1 for intermediate hot-spots and is given
. 1
by with f =1 — (1/¢) <1 — {1 — %] /@) for central hot-spots.

Tmax* x=0
We demonstrate the potential of the model presented in this section with
the test results shown in Fig. 3.11. We consider a pure DT plasma of density
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p = 300 g/cm?® and initial temperature Ty = 1 keV, heated with a vanadium
beam with flux of ¢ = 1.1 - 10" cm™2 and three different kinetic energies
Ey = 2000, 4000 and 7000 MeV. The coloured lines represent the simulation
of our numerical model, while the dashed black lines show our analytic model
after fitting the free parameters a; and as. Moreover, the dotted black lines
show the results of the analytic model of Gus’ kov et al. (2009), which only
estimates the decrease in temperature from Ty, to Tp, considering a value of
a]; = 0.4.

351 Ek=2-10° [MeV]

(a1=0.50,a,=-1.38)
Ek=4-10° [MeV]
(a1=0.56,a,=-1.16)
Ek=7-10° [MeV]
(a1=0.61,a,=-0.83)
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FIGURE 3.11— Comparison of the distribution of temperatures obtained with our numerical
model and those of the analytic model after fitting the free parameters a1 and a2. The plasma
has a density of p = 300 g/cm3 and an initial temperature of Ty = 1 keV, heated by a
monoenergetic vanadium beam with a flux ¢ = 1.1 - 10*® cm ™2, at different initial energies.

It is found that our analytic model properly follows the numerical results
more accurately than the approximation of Gus’ kov et al. (2009). Moreover,
our analytic model is able to reproduce central hot-spot temperature distribu-
tions, while Gus’ kov et al. (2009) only described the temperature distribution
from its maximum to the final range. Thus, depending on the expected distri-
bution of temperatures, we can foresee values for (a1, ag) and avoid simulating
the whole interaction, if it were necessary. In Sect. 4.5, we analyse further
the results obtained with the analytical model and compare them with the
numerical model.
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3.11 Burning gain

When the values of T and Ryg are known, it is possible to obtain the self-
heating or ignition efficiencies for any given hot-spot. Additionally, the last
gain analysed is the burning gain, Gpym, which is related to the subsequent
combustion of the whole precompressed fuel. It measures the efficiency of the
nuclear fusion energy produced by the burning of a spherical DT fuel of radius
Rp. This is defined as:

Efus
(Ehs + Ec) ’

where Ejg is the energy of the hot-spot, E. is the energy of the cold region
and Fgg is the total fusion energy liberated during the burning of the whole
fuel. The fusion energy is calculated as the integral over the burning time of
the sphere volume: Ep, = fthal (Jy Whus dV') dt, with the total power density
being Weys = npnr <Ufusv> Qpr-

As explained in Sect. 2.3.2, a complete evaluation of this gain would require
precise hydrodynamic simulations. Alternatively, in this work, we have used
an analytical expression for the burning gain of a uniformly precompressed fuel
ignited by a small hot-spot immersed in a larger sphere of colder fuel (Fraley
et al., 1974; Kidder, 1976), which is widely used in ion fast ignition theory
(Atzeni & Meyer-Ter-Vehn, 2004; Gus’kov et al., 2011). This is an accurate
approach with respect to hydrodynamic simulations, for pRr 2 1 — 1.5 g/cm?
(Fraley et al., 1974; Atzeni & Tabak, 2005), a criterion that is mostly fulfilled
in the present work: for the reference case of p = 500 g/cm? and Ry = 50 um,
we obtain pRp = 2.5 g/cm?. Then, for a density of p = 300 g/cm? we find
pRr = 1.5 g/ecm? and for p = 700 g/cm?® we find pRp = 3.5 g/cm?. Among
our studied cases, the worst scenario in relation to that condition would be
p =300 g/cm?® and Ry = 40 ym, where we retrieve pRr = 1.2 g/cm?, which is
in the order of threshold value.

At last, the burning gain is expressed as:

Ghurn = (3.60)

Go(pRr)?
(PRns)® + ((pR¥)? — (pRus)?) 1=

The temperature T} refers to the cold fuel temperature T in the case of a
Maxwellian plasma and Ty = 2epZ,/5(1 + Z,) in the case of a degenerate gas,
which is, in general, the case of this work. Then, the gain of a homogeneous
plasma is:

Gourn = (3.61)

_ €rg
Co= s 0201 +8) (3.62)
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while the energy released in one fusion reaction is €, = 17.6 MeV. At last, the
burn-up factor is

A
PRy - A*(]fig)

PRF'ﬁ-FHB'H

g (3.63)

o _ (14 Zaop) (14+Z4) 2.
where k = 1 if £ < 3/(Zqop + 1) and k = (4'(1_Xdop)(1+dzdpop+ZDT(1+Zdop))) if

£>3/(Zaop + 1). At last, Hg = 7.25 /(1 + Z.)/A..

An example of the burning gains achieved in the (pR-T')-space was shown
previously, in Fig. 3.5. As Gpum depends on the radius of the sphere, we take
as an example a plasma of Rp=50 um. The colour gradient represented there,
shows the maximum values of the burning gain close to the bottom of the
ignition curve, meaning that the optimal hot-spots are those that are able to
burn the whole sphere with the minimum size and temperature necessary to
reach ignition. In the chapters with results, this is found again, but in terms of
the parameters of the beam that create these hot-spots.

Previous works, such us Gus’kov et al. (2011); Gus’kov et al. (2014b, 2015)
and Gus’kov & Sherman (2016), have analysed the self-heating, the ignition
and the burning gains in the (p, R,T)-space of a pure and doped plasma.
Nonetheless, in this work, we widen these studies by performing an exten-
sive analysis in the beam parameter space of (o, Ep). This is, we retrieve
the radius and temperature of the hot-spot depending on the beam applied,
Rys(o, Ep) and Tys(o, Ep), and introduce them in the burning gain expression
to obtain Ghum (0, Ey) = Ghum (Rus(o, Eo), Ths(o, Eg)). With this course of ac-
tion, we provide the particular characteristics of the beam that reach certain
plasma temperature, hot-spot length and gain, instead of just addressing the
plasma conditions through R and 7. We extend the analysis by considering
different beam species and radii, as well as different plasma initial conditions
(p, To, Rp, Zx,&). With our simulations, we are able to determine relevant prop-
erties of the heated region, the hot-spot, and its corresponding gains.

3.12 Numerical model

The differential equations 3.16 and 3.18, are solved using numerical methods,
S0 it is necessary to present a discrete form of these expressions.

The stopping power governs the variation of the kinetic energy of the beam
per length unit (Eq. 3.18). Therefore, it depends on the velocity of the pro-
jectile, in each position and instant, as well as the temperature of the plasma.
This one-dimensional problem is discretised into a set of Ny nodes, where the
step is Az = 2Rp/Ny and the mesh is given by z, = n - Az. Eq. 3.18 can be
expressed in the Euler method formalism as:
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Eyy1 = E, — Spy - Ax. (3.64)

Taking into account that the stopping power is defined positive, it reduces
the kinetic energy (E) of the ions in each nt" point of the mesh, expressed in
Sect. 3.2 through z(t'). The calculation is performed for every projectile until
it has lost all its energy (FE, = 0), which coincides with the range.

Equation 3.64 describes the deceleration of a single projectile for an instant
t, in which it suffers the energy loss in a given plasma state. Then, solving
Eq. 3.16 requires the presence of an index that indicates the instant of time ¢,
which we denote m. Following these ideas, Eq. 3.64 is expressed for the m!*
instant (or projectile) that enters the n'” node of the plasma as:

En+1,m = En,m - Spn,m - Ax. (365)

Although this equation is written in the Euler method formalism, it will
be solved using a Runge-Kutta method. Here, it is important to highlight the
dependence of the stopping power on the kinetic energy of the projectile and
the temperature of the plasma: Sppm = Sp (Enm, Thm)-

At each time step, m, Eq. 3.65 is solved for every n, in such a way that
the stopping power determines the heating of the plasma, and thus, the value
of the temperature. Therefore, the temperature field is updated applying the
FEuler method as: /
p Cv

Here, At should be calculated as a partition of the beam duration Theam /N,
where N is a selected number of temporal nodes. However, we assume the
beam duration T,eam to be unknown, so in our numerical calculations, we apply
a change to the integrated variable ¢ to perform the computation. We do so
by redefining I - dt as db, which corresponds to a partition of the flux, (o/Ny,),
where Ny, is an arbitrary number of nodes we choose. This requires the intensity
to be constant?, but allows eliminating the T,eam parameter in solving the set
of equations (Beltran et al., 2020). In a discrete description, this change is
expressed as:

Tpms1 = Tom + —=—Spnm AL (3.66)

o
Ab=TAt=— 3.67
Nb ? ( )
which transforms Eq. 3.66 into:
1
Tn,m+1 = Tn,m + 75’pn,m Ab, (3'68)
p Cv

9This is the procedure applied in most parts of this work. Later we address the modelling
for other cases. Exceptions are mentioned when necessary throughout the document.
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where Ab is a partition of the beam flux, we denote ”bin”. By these means,
the ion beam flux is considered split into Ny, = Tpeam /At uniform bins that
are successively passed through the plasma. Each bin is composed of the same
fraction of ions, which move together through the plasma at the same time,
as Fig. 3.3 shows. This change from time to bin-dependence is very useful,
because it allows tackling the problem without explicitly treating the time and
the particle flux (Gasparyan et al., 2013). Ultimately, Eq. 3.68 governs our
computations, describing the change in the plasma temperature due to mt"
bin in the n'* spatial node. Numerically, the boundary and initial conditions
are such that for every m-time at n = 0, we have the initial energy of the
projectiles as Ep,, = Ey. Then, for every n-node at the first instant m = 0,
the temperature of the plasma is 7}, o = Tp.

The previous numerical description is given for the ideal case of uniform
temperature conditions and a monoenergetic beam. During our work, we have
addressed situations that do not consider these approximations. In the first
case, although not shown in the results of this thesis, implementing a non-
uniform initial temperature mesh is straightforward. It is done by assigning
the proper temperature Ty, = T'(z,t = 0) value for each n-node of the spatial
mesh at m = 0. In the second case, implementing the two quasi-monoenergetic
scenarios we presented in Sect. 3.3, requires further examination. For this
calculation, the energy distribution is discretised in an array with a number of
partitions (Ng), so € = [Eyy...Eo;n,], where Ego = Eo — 30 and Eg.n, =
FEo+30g. As explained in Sect. 3.3.2, ”3” is an arbitrary parameter we choose to
assure reaching outmost energies of the distribution. Consequently, the energy
step is calculated as AE = (Eop,n, — Eo,0)/Ni-

In the case of G1, with a quasi-monoenergetic beam located at the edge
of the plasma, each bin has an internal distribution of energies. To ease the
explanation, let us say that each bin is subdivided into sub-bins of projectiles
with different energy. As the bins travel, the sub-bins with different energy
behave differently; for instance, the slower projectiles stop earlier and the more
energetic reach further. Therefore, it is necessary to study the energy decrease
of each sub-bin, at each position and instant. This implies that Eq. 3.65 is now
written with a new subindex dependence (1), representing the energetic sub-bin
under examination. Thus, now the problem involves three loops that solve:

En+1,m,l = En,m,l — SPn,m,l ° Ax? (369)

where we denote the stopping with lowercase (sp) to remark it is the stopping
of a certain energetic sub-bin. Then, at each instant and position, we sum
the total deposited energy by each energetic sub-bin and calculate the total
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increase in the temperature at each position, according to Eq. 3.68, before the
next bin enters the plasma: Sp, ., = ZIJ\LEO F sppm1 AE, with Fj being the
energy distribution from Eq. 3.20. Aside from the integration over the different
projectile energies, the procedure remains the same as explained in Sect. 3.12.

In the case of G2, with a quasi-monoenergetic beam separated by a distance
”d” from the edge of the fuel, it is not necessary to solve a third loop nor use
an extra subindex. This is because the energy of the projectiles that reach
the edge of the plasma can be ordered according to the distance they must
travel to reach the edge. However, in this context, it is necessary to abandon
the bin notation and work directly with the time of fly of the projectiles from
the source to the edge of the plasma (Theam). This is calculated as the time
difference between the most and less energetic projectiles: Theam = tmax — tmin =

1/ m3d2 (ﬁl/ 2 EolN v 2). Then, we calculate the temporal discretisation as
H SN

At = Theam /Nt and the discretised time as t = tyi, + mAt. Therefore, and

as mentioned above, the initial energy at each instant of time is not the same

and is given by E&m = (mpd?)/(2t?), where we keep the m notation for the

temporal variable. At last, previous Eq. 3.68 is changed to:

P,S
Tn,m+1 = Tn,m + g m Tpm,n At, (370)
pCy Em

where the computational model operates by directly integrating over the beam
time instead of dividing the beam into bins. Here, it is worth noting that we
have found Eq. 3.70 to be independent of the distance. Given the definitions of
all terms, and after some straightforward manipulations, we demonstrated that
”d” is cancelled out during in the calculation.

In our simulations, the number of nodes of the spatial and temporal meshes
(Nx, Np, [Ng]) plays a crucial role in determining the validity of our results. The
results get finer by increasing the number of nodes, but this comes at the cost
of computational resources and time. We have performed various experiments
to determine which number of nodes is appropriate for a trustful calculation.
We calculate the mean relative error of the kinetic energy and temperature
as the difference between the solution values of a given mesh and those of a
mesh with twice the number of nodes, i.e.: (|E[2Ny] — E[Ny]| / E[Ny]) and
([T[2Np] = T[Np]| / T[Ny))-

In Fig. 3.12 the mean relative error of the kinetic energy and the temperature
are shown as a function of the number of nodes, for both spatial and temporal
(bins) discretisations. As expected, the error decreases with the number of
nodes. However, it shows that the kinetic energy error is consistently higher
than the temperature error. In this sense, selecting a Runge-Kutta method for
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solving the kinetic energy equation is a better option, as adopting an Euler
method would result in even greater expected errors. We have found that this
behaviour can be attributed to the fact that changes in kinetic energy exhibit
steeper slopes compared to those in temperature.

Mean Relative Error

0.01
0.008 - ot N
S 0.006 1
i,
& 0.004 |
0.002 - |
0 : : : :
0 500 1000 1500 2000

Nx;Nb

FIGURE 3.12— Mean relative error of the kinetic energy and temperature solutions when
duplicating the number of nodes in both spatial (Ny) and beam (NNy,) discretisations. Exper-
iment with a DT plasma at 1 keV and p = 300 g/cm3, with a proton beam of Fy = 3 MeV
and ¢ = 1.56 - 10! cm™2.

In Fig. 3.13 the spatial distribution of the final temperature is shown, with
different discretisations of the beam (NVy,). This allows observing how the tem-
poral discretisation of the temperature equation affects the outcome. Taking
only one bin is equivalent to considering the beam entering as a whole into the
plasma, in this case, forming one major peak. When three bins are used, the
temperature distribution has three smaller peaks, one for each bin. It is found
that as the number of bins increases, the solution converges, thus simulating
the progressive entrance of the beam into the plasma. However, an insufficient
number of bins leads to oscillations in the solution, resulting in a peak for each
bin. If the refinement of the beam discretisation lacks precision, it fails to simu-
late the beam smoothly, instead resembling separate projectiles. Additionally,
the range and the maximum temperature results of the beam interaction are
different if the number of bins is insufficient.

Our numerical simulations consider a uniform discretisation of the spatial
and temporal grids, where, in most cases, the number of mesh nodes are Ny =
2048 and Ny = 1024. When a quasi-monoenergetic beam is considered, our
simulations indicate that Ng > 32 leads to a convergence in the results. In our
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simulations, we often use a value of Ng = 64 energetic nodes.

We need to highlight here that, throughout this work, the simulation proce-
dure explained above is computed systematically for large arrays with diverse
values of flux (0) and projectile energy (Ep). We recall that our primary aim
is to systematically present results of the heated plasma in the (o, Fy)-space.
In such cases, we calculate 100x 100 arrays with every combination of the se-
lected (o, Ey)-values, and then obtain key features of the heated region and the
hot-spot.
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FIGURE 3.13— Spatial distribution of the temperature of the plasma when the beam has
been discretised in different numbers of bins. Experiment with a DT plasma of p = 300 g/cm?
at 1 keV and a vanadium beam with Eo = 5100 MeV and o = 1.22 - 10*® ¢cm ™2

Another problem we solve in this work consists of determining the values
of pR and T that make Gg, = 1 and Gjg = 1, respectively. As presented in
Sect. 3.6, these criteria assure the self-heating or ignition of the hot-spot, so
it is crucial to calculate the threshold values of each case. For searching the
solution of Gys(pR,T) = 1 and Gig(pR,T) = 1 we apply an iterative method
in which we compute both gains for every temperature of interest and then
find the pR value that solves the equation. This is, given a temperature T; we
calculate Wi,j = qus,dep(Tj’ pR) - (Wmec(Tj) + Weond (Tja pR) + Wrad(T]" pR))
and compare it with its previous step W;_1 ;. If the product of both is lower
than zero (W ;- W;_1; <0), a solution has been found. Then, we move to the
next temperature Tj1. We note that the self-heating and ignition curves shift
towards different regions of the (pR,T)-space depending on the plasma con-
sidered, as we demonstrate in Fig. 3.6 when dopants are included. Therefore,
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properly selecting the range of study for 7; and pR is mandatory. We recom-
mend initially performing a rough exploration of the parameter space to find
the initial and final values ([T, 7] and [pRo, pRy]) for finely tuning the actual
search. We remind that solving Gps(pR,T) = 1 and Gig(pR,T) = 1 is crucial
for determining the hot-spot. The characteristics of the hot-spot, such as Ty,
Lys, Ris or Gy, are only calculated if there is a temperature such that T > Tj,
(obtained after determining the self-heating curve) and Gig(pRns, Ths) > 1.

In the next Chapters 4, 5, 6 and 7 we perform different experiments using
typical values from the literature for both the plasma and the beam (see, for
instance, Atzeni, 1999; Atzeni & Meyer-Ter-Vehn, 2004; Gus’kov et al., 2010;
Gasparyan et al., 2013; Gus’kov et al., 2014b,a; Honrubia et al., 2014; Honrubia
& Murakami, 2015; Zou et al., 2016; Nezam et al., 2020). The plasma is de-
scribed as a compressed sphere of DT fuel with radii of Rp=40, 50 or 60 um at
stagnation state. If impurities are considered, the chosen elements are beryllium
(Be), carbon (C), aluminium (Al), and copper (Cu). Mostly, the distributions
for the initial temperature and density are homogeneous, selecting T,=0.5, 1 or
5 keV and p = 300, 500 or 700 g/cm3, respectively, although for some experi-
ments we examine a plasma of variable density. Then, for the beam we consider
fast ions such as protons (p™), carbon (C%*) and vanadium (V*7), with three
different radii r,=10, 15 or 20 um. The beam can be either monoenergetic
or quasi-monoenergetic (with a Gaussian energy distribution of energy spread:
0E =5, 10 or 15%, according to Hegelich et al. 2011), located at the edge of the
plasma or separated a certain ”"d” distance. Regarding the energy of the beam
(B, = SpoEyp), we focus our study on the cases of interest for the ion fast igni-
tion scheme. Therefore, we perform a parametric search in the (o, Ey)-ranges,
where a hot-spot is generated inside the heated region. We take as a reference
case a pure plasma without corona and a monoenergetic beam. Accordingly,
and unless noted otherwise when performing a different experiment, the initial
and boundary conditions of the plasma are given by (T'(x,0) = Ty, p(x,t) = p),
and for the ion beams are given by (0(0,t) = o, E(0,t) = Ey).



Preliminary results of the
beam-plasma interaction

With the simulations presented in this chapter we aim to describe the most
basic behaviours of the beam plasma interaction and, moreover, to validate our
simulations, both numerical and analytic model. Then, we search for the ranges
of interest in the (o, Ey)-space of the ion fast ignition scheme, where a hot-spot
is generated inside the heated region. A wide variety of conditions are chosen
for this preliminary study, using typical values from the literature for both the
plasma and the beam (see, for instance, Gus’kov et al., 2010; Gasparyan et al.,
2013; Honrubia et al., 2014; Gus’kov et al., 2014a; Zou et al., 2016; Espinosa-
Vivas et al., 2023).

4.1 Stopping power analysis

The core calculation when solving Eqgs. 3.16 and 3.18 is the stopping power
model. The discussion over which stopping model should be used for ion pro-
jectiles travelling in dense and hot plasmas is still open debate. It has been
proven that the different models (as presented in Sect. 2.3.1.b: RPA, PMV,
LP, BPS...) provide distinct results, specially for projectiles with low energy
and in the order of the thermal velocity of the plasma electrons.

Therefore, to begin with, we inspect the implementation of the two stopping
power expressions considered in this work, as presented in Sect. 3.4, the PMV
and LP models. Also, in order to have confidence in our results, we validate
them with previous literature. To do so, we evaluate the stopping power of
free electrons and ions by examining the slowing down of proton projectiles in
a fully ionized DT plasma. The matter density and temperature are set at

87
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p =300 g/cm? and Ty = 1 keV, respectively. Additionally, we consider the DT
plasma mixture with dopant elements such as aluminium and copper, where
the dopant percentage relative to the DT abundance is set at & = 0.005.

Figure 4.1 illustrates the ion stopping (left) and the electron stopping (right)
for the LP model (solid lines), the PMV model (dashed lines), and the one
utilized in Zou et al. (2016) (figure 1) (dotted line). We note that Zou et al.
(2016) also uses the LP stopping model, although with some modifications in
respect to ours.

First, it is evident that the ion and free electron stopping power of protons
increases when the DT mixture contains a dopant, with a higher rate of increase
observed as the atomic number of the dopant rises. The maximum value of ion
stopping occurs at low proton energies, while for free electron stopping, it is
attained at higher energies. In both cases, at energies corresponding to the ther-
mal velocities of the ions (vgn jons) and the free electrons (v ), corresponding
to each thermal threshold energy (Fsejons and Fsce). On the other hand, the
comparison reveals that both models exhibit qualitatively similar behaviour, al-
though the LP model shows better agreement with the reference than the PMV
model. In the case of the electron stopping, the PMV model overestimates the
slowing down, while the LP model almost matches the results of Zou et al.
(2016). In the case of the ion stopping power, the PMV model underestimates
the results, while our LP model tends to overestimate the solutions, especially
at very low energies. As said above, these differences are deemed acceptable
considering that the PMV and both LP stopping power models involve differing
approximations. Moreover, we can despise these differences taking into account
that the electron field is the main responsible for the interaction (see the total
stopping in Fig. 4.2), while the ions just contribute to the final breaking point
of the projectiles, when they have low energy. Considering that throughout this
work we mainly use the LP model, correctly validated with Zou et al. (2016)
for the electron stopping, we can assert safety in our results.

For a further understanding of the behaviour of the stopping model, in
Fig. 4.2 we show the total LP stopping of proton, carbon and vanadium ions in a
range of energies from E ~ 1073 to 10* MeV (102 MeV for protons). We consider
a pure DT plasma with density of p = 500 g/cm? and two temperatures, 1 and 5
keV, represented with solid and dashed lines, respectively. We note how the ion
species operate in different range of energies. For each beam, at low energies,
we find the stopping due to the ion field of the plasma, responsible for the
final break of the projectiles. Meanwhile, at intermediate energies we find the
central peak associated to the electron field, which dominates the slowing down
of the projectiles along their trajectory. In comparison with Fig. 4.1, we find
that a higher density returns larger values of the stopping, due to an increase
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FIGURE 4.1— Stopping Power for ions (left) and electrons (right) when applying proton
projectiles. Both experiments calculated for a DT plasma at 1 keV temperature, p = 300 g/cm®
and with a dopant portion in respect to the DT of £ = 0.005, for different kinds of dopants.
Solid lines correspond to our results with the LP, dashed ones to the PMV model, and dotted
lines to those of Zou et al. (2016) (figure 1).

in the number of free electrons that make the plasma more opaque. Also,
we observe how increasing the temperature displaces the maximum values to
higher energies and diminishes the stopping effect, due to the increased thermal
velocities of the plasma particles and reduced collision cross-sections. This
creates a more transparent medium in which the projectiles can travel further.
When comparing the ion species, we find that heavier projectiles return larger
stopping values. This explains why the flux requirements for high-Z beams are
lower, as shown in Sect. 4.7.

Next, we assess the spatial solutions for the energy loss by solving Eq. 3.18.
Considering a DT plasma at p = 300 g/cm?®, Fig. 4.3 illustrates the stopping
power as a function of spatial position (z) for a fully ionized carbon ion with
an initial energy of Ey = 440 MeV entering the plasma at various tempera-
tures. The plot displays the stopping power calculated by the LP model (solid
line), the PMV model (dashed line), alongside the analytical model computed in
Gus’kov et al. (2010) (figure 1, dotted line). While the results exhibit some nu-
merical disparities, they demonstrate a consistent functional behaviour. These
discrepancies arise from differences in the stopping power expressions utilized
by our model and those employed by the authors of the reference. For instance,
we find the PMV model to return shorter ranges in respect to the other two
models. For low plasma temperatures, such as 1 keV, we find the characteristic
Bragg peak due to the projectiles slowing down in the electron field. Then, for
higher temperatures this peak flattens, as the stopping power decreases. On
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FIGURE 4.2— Stopping Power in respect to the energy of the ion projectiles. We consider
a pure DT plasma with p = 500 g/cm?®, at T = 1 keV (solid lines) and T = 5 keV (dashed

lines).

the other hand, a notable difference is the distinct final peak observed for 5 and
10 keV, which is attributable to the inclusion of ion stopping power in our model
but not in Gus’kov et al. (2010). Furthermore, these peaks manifest towards
the end of each curve due to the higher values of ion stopping power at lower
projectile velocities, as shown in previous Fig. 4.1. In this figure, we can also
observe how increasing the temperature makes the plasma more transparent,
allowing the projectiles to travel further within the fuel.

4.2 Penetration range of a projectile

As another preliminary result of the model proposed in Sect. 3.2, we calculate
the stopping of a sole particle within plasmas of different density and temper-
ature. This way we address the most basic behaviour of particles travelling
through the material, in this case, considering the LP stopping model. Thus,
we show the penetration range in pLj units against a varying plasma temper-
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FIGURE 4.3— Stopping power of a carbon ion as it deepens in the plasma. The projectile
has an energy of Ey = 440 MeV and enters a DT plasma with p = 300 g/cm® and a T of
1, 5, and 10 keV. Solid and dashed lines correspond to our results (LP and PMV models,
respectively) and dotted ones to those of Gus’kov et al. (2010) (figure 1).

ature in Fig. 4.4 and against the plasma density in Fig. 4.5. Both figures are
calculated for different beam species and projectile energies.

In Fig. 4.4 we show the penetration range for three ion species (p*, C%,
V23+) with an increasing plasma temperature at a density of p = 500 g/ cm?.
For each ion charge we show three projectile energies, respectively solid, dashed
and dotted lines: in red Ey=7.5, 27.5 and 47.5 MeV for protons, in blue Ey=450,
600 and 750 MeV for carbon and in green FEy=5500, 6500 and 7500 MeV for
vanadium. As expected, for every beam specie, increasing the projectile energy
allows further penetration range. We find a quasi-constant behaviour for lower
temperatures, where the penetration range does not increase significantly up
to a certain temperature threshold that depends mostly on the beam specie
and ion energy. For protons such temperature is ~ 2 keV, for carbon is about
~ 5 keV and for vanadium is ~ 10 keV. The constant behaviour is more appar-
ent when the beam specie or the energy are increased. For instance, protons at
7.5 MeV do not present a constant behaviour, while at 47.5 MeV they do, with
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FIGURE 4.4— Penetration range of a monoenergetic ion in DT at 500 g/cm® as a func-

tion of the plasma temperature. The projectiles are pt in red (solid Eo=7.5 MeV, dashed
FEo=27.5 MeV, dotted Eo=47.5 MeV), C®F in green (solid Ey=450 MeV, dashed Eo=600 MeV,
dotted Eo=750 MeV) and V3T in blue (solid Ey=5500 MeV, dashed Ey=6500 MeV, dotted
Ey=7500 MeV). The embedded image show the results obtained by Honrubia et al. (2014)
(as dash-dotted lines) for pt at FEo=7.5 MeV, for C°T at Fy=450 MeV and for V23T at
E,=5500 MeV, compared to the same cases calculated in our work with the LP model (as
solid lines) for a plasma at p = 300 g/cm?.

pLy ~ 3.3 g/cm?, up to 3 keV. On the contrary, a vanadium ion with energy of
Ey = 5.5 GeV, returns an approximately constant range of pLy, ~ 1.5 g/cm? up
to 10 keV. For temperatures larger than this threshold the penetration range
increases exponentially, this is, the plasma becomes more transparent to the
projectiles. If during the whole heating process the ions enter into an increas-
ingly hotter plasma, but reach the same range, then the energy deposition will
be localised. This characteristic is a desirable feature for an efficient deposition
of the energy in a particular region. For example, for a monoenergetic beam of
heavy ions, such as vanadium, we see that energy can be deposited during the
whole heating process in a certain region of the plasma. Specifically, during the
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FIGURE 4.5— Penetration range of a monoenergetic ion in DT at Tp = 1 keV as a function
of the plasma density. The projectiles and energies are the same as stated in the Fig. 4.4.

heating process that takes the plasma from 0.1 keV to the ignition temperature
of about 10 keV. On the other hand, in the case of a non-monoenergetic beam
of light ions, the most energetic ions travel through the plasma first, followed by
slower ions. By finely tuning the experiment, it is possible to follow a heating
process in which the plasma interacts first with high-energy ions and, then, as
the plasma warms up, with lower-energy ions, in order to deposit the energy of
all the ions, regardless of their energy, in the same region of the plasma. At last,
it is worth noting that the curves in Fig. 4.4 establish, for a given ion energy,
constraints on the range of the heated region of the plasma. In particular, the
minimum range associated with each energy.

Additionally, within Fig. 4.4 there is an inset image of the results obtained
by Honrubia et al. (2014), which uses a more elaborated stopping power model.
The projectiles selected are p* at Eq=7.5 MeV, C* at Ey=450 MeV and V23+
at Fy=5500 MeV, interacting with a plasma at p = 300 g/cm®. We represent
our results with solid lines and the ones from the literature with dash-dotted
lines. In this range of temperatures, we find a good agreement between both
results for the different energies proposed, finding an average error around 2%
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and maximum error of 10%. This serves as a validation of our calculations,
where the differences come from the stopping model applied.

Then, in Fig. 4.5, we show the penetration range for the same cases as in
Fig. 4.4, but with an increasing plasma density. The penetration range descends
with the density and, again, the higher the projectile energy, the further the
penetration range.

4.3 Temperature field validation

Besides proving the stopping power model, it is necessary to address the evo-
lution of the plasma as the projectiles pass through, which is calculated by
solving Eq. 3.16. After the beam-plasma interaction, the temperature field is
the foundation of the posterior results we present in this thesis. A systematic
description of the heated region and the hot-spot under different conditions is
only possible if we know the distribution of temperatures. Therefore, in this
section, we present a set of experiments that allow us to exhibit and validate
the results of our model.

To do so, in Figs. 4.6 and 4.7 we depict the plasma temperature as a function
of the distance multiplied by the density (px), at the final instant of the beam.
Choosing a DT plasma of p = 300 g/cm® and Ty = 1 keV, we present our
results with the LP and the PMV models (solid and dashed lines, respectively),
juxtaposed with those from figures 1 and 4 of Gus’kov et al. (2014a)! (dotted
lines).

In Fig. 4.6, we consider three carbon ion beams with (Ey = 120 MeV;
o =17.8-10" cm™2?), (Eg = 160 MeV; 0 = 5.9-10' cm™?) and (Ep = 200 MeV;
o = 4.7-10" ecm~2). The heated plasma presents a typical result of an edge
hot-spot case, with higher temperature values in the initial region of the sphere.
Our simulations overestimate the maximum temperature and underestimate the
total range in respect to the solutions of Gus’kov et al. (2014a). We note that
the LP model is closer to the reference than the PMV model.

Similarly, in Fig. 4.7 we show the spatial distribution of temperature when
a carbon ion beam with an initial kinetic energy of Fy = 1800 MeV enters the
plasma at flux values of 3.5 - 10*®, 1.4 - 10" and 2.8 - 10! cm™2. In contrast
to the previous scenario, for the three fluxes, the plasma reaches its maximum
temperature afar from the edge of the plasma, as in a central hot-spot case.
In this case, the maximum temperature is found at pzr ~ 8 g/cm? for the
PMV stopping model and at px ~ 10.5 g/cm? for LP and the reference results
(Gus’kov et al., 2014a). This shows how the most significant deceleration of the
projectiles occurs in the central region, indicating a greater energy loss by the

!This author often uses its own stopping model, presented in Gus’ kov et al. (2009)
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projectile and subsequently a higher plasma temperatures. Here, it is worth
highlighting that the position of the maximum temperature, does not change
with the flux, this is, only depends on the energy of the beam. This behaviour
aligns with our results from Chapter 5. Inspecting further this figure, we find
the ranges resulting of the LP model to agree closely with the reference, while
the PMV model returns shorter depths. Then, in respect to the maximum
temperatures, the LP model is slightly superior compared to the reference,
while the PMV stopping overestimates its value.

Both Figs. 4.6 and 4.7, show some discrepancies between the reference re-
sults and both our models. Again, this is due to the utilization of different
stopping power models, despite, in general, the behaviour is shared overall.
Between the PMV and the LP models, the latter agrees better with all the
literature results we have checked, so it will be selected for most experiments
of this thesis.
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FIGURE 4.6— Temperature distribution of a DT plasma of p = 300 g/cm® and Ty = 1 keV
after heating with carbon ion beams of (Eo = 120 MeV, o = 7.8-10"? cm™2), (Eo = 160 MeV,
o =59-10" cm™?) and (Ey = 200 MeV, 0 = 4.7 - 10" cm™?). Solid and dashed lines
correspond to our results (LP and PMV models, respectively) and dotted ones to Gus’kov
et al. (2014a) (figure 1).

After selecting the stopping LP model, we perform another validation of
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FIGURE 4.7— Temperature distribution of the same plasma of Fig. 4.6 considering a carbon
ion beam of energy Eo = 1800 MeV at various specific flux values o = 3.5 - 10, 1.4 - 10"°
and 2.8 -10'° em~2. Solid and dashed lines correspond to our results (LP and PMV models,
respectively) and dotted ones to Gus’kov et al. (2014a) (figure 4).

our simulations through Fig. 4.8, comparing with the solutions of Gus’kov et al.
(2014a) (figure 5). Once more, the plasma conditions are as in Fig. 4.6, but
with a vanadium beam of 5100 MeV. In this case, we perform the experiment of
heating the plasma considering the whole beam enters instantaneously, this is,
as one bin and without temporal evolution. Such beam has a flux of 0 = 1.2 -
10" ¢m~2. Additionally, we simulate the same beam but discretized into bins
considering the same flux of 1.2-10'® cm~2 and another one of 2.4 - 10" cm™2.
As in Fig. 4.7 we find central hot-spots, which in the case of just one bin, return
a sharper and more localised temperature distribution, with a shorter range.
For one bin, there is a disagreement in the range found with our model and
that of Gus’kov et al. (2014a), while the maximum temperatures are more alike.
On the contrary, after discretising the beam, the results agree more in range,
but our model overestimates the maximum temperatures. As explained before,
it is expected to find such differences due to the different approximations of
each model. As the results follow a similar behaviour within the confidence
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ranges, we are confident to lean on the LP model for most of the calculations of
this work. We remind that the LP is a well established model, accounting for
quantum corrections, large-angle scattering, small-angle binary collisions and
collective plasma oscillations.

I —— 1bin, 0=1.2-108 cm2
200r __ 5=12-10® cm2
| — 0=2.4-10'8 cm™2
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FIGURE 4.8— Temperature distribution of the same plasma of Fig. 4.6 considering a vana-
dium ion beam of energy Ey = 5100 MeV considering the beam as a whole (1 bin) with
1.2 - 10" em™2, then a partitioned beam with 1.2 - 10'® cm~2 and another 2.4 - 10'® em™2.
Solid lines correspond to our results (LP) and dashed ones to the ones of Gus’kov et al. (2014a)
(figure 5).

A final and more complete validation experiment is shown in Fig. 4.9, com-
paring with the solutions of Gus’kov et al. (2015) (figure 4), in this case, con-
sidering a doped plasma and also a quasi-monoenergetic ion beam. The plasma
has a density of ppr = 300 g/cm? with beryllium (¢ = 0.4925) at Ty = 1 keV.
The beam considered has a Gaussian energy distribution starting at the edge
of the sphere with Ey = 11.5 GeV, an energy variance of oy = 0, 1 and 2 GeV,
as well as a flux of 0 = 7.1-10'® em™2. Note how increasing the energy spread,
expands the total range but lower the maximum temperatures. Again, aside
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from some differences in the maximum temperature and the range between
our calculations (solid lines) and the ones from Gus’kov et al. (2015) (dotted),
this test allows us to validate the implementation of both the doped plasma
expressions and the quasi-monoenergetic model.

GeV ]

30} — %e=0
r — 0O =1GeV ]
— 0 =2 GeV

25
20}

15}

T [keV]

10

px [g/cm?]

FIGURE 4.9— Temperature distribution of a plasma doped with beryllium (£ = 0.4925) at
To = 1 keV and ppr = 300 g/cm®. The beam a vanadium ion beam of energy Ey = 5100 MeV
considering the beam as a whole (1 bin) with 1.2 - 10*® ¢cm™2, then a partitioned beam with
1.2 -10'® cm™2 and another 2.4 - 10'® cm™2. The beam considered has a Gaussian energy
distribution with Eo = 11.5 GeV, an energy spread of op = 0, 1 and 2 GeV, and a flux of
o =7.1-10" cm™2. Solid lines correspond to our results (LP) and dotted ones to those of
Gus’kov et al. (2015) (figure 4).

4.4 Spatial-temporal study of the beam-plasma interaction

Depending on the precompression process, the plasma can be found in different
densities and temperatures at the stagnation state. Then, the heating of a
plasma in the fast ignition approach entails nonlinear processes. Hence, both
factors play a significant role in the slowing of the projectiles.
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Thus, with Figs. 4.11 and 4.10 we perform a thorough analysis to complete
the examination of the beam-plasma interaction. In this experiment, we con-
sider a proton beam with a pure DT plasma using typical FI conditions? (e.g.
Gus’kov et al., 2010; Gasparyan et al., 2013): the beam has an initial kinetic
energy of Eg = 3 MeV and a flux of ¢ = 1.6 - 10?! cm?. Both figures are a
compound of subplot panels distributed as three rows and two columns. Row
panels represent, respectively, the kinetic energy of the projectiles, the stopping
power and the heating process. These parameters are shown as a function of
the distance in the first column and as a function of time (by means of the bins
that enter the plasma) in the second column. In the left column, the spatial
distribution is shown for two different ”instants” associated to the first and last
bin (out of Ny, =~ 2048) that passes through the plasma. In the right column,
the evolution of the plasma is studied at two particular points, corresponding
to the edge of the sphere (z = 0) and half of its radius (z = Rp/2). We
remind that the time evolution of the calculation, which involves the slowing
down of projectiles and the heating of the plasma, has been solved according
to Eq. 3.68. In such equation, it was possible to change the time intervals (At)
to particle bins (Ab) as partitions of the flux. This is only possible with the
approximations taken in our model, such as neglecting the internal power den-
sities of the plasma during the interaction. In Fig. 4.11 the results are shown
for different densities (p = 200 and 500 g/cm?) with a fixed initial temperature
(Th = 1 keV), while in Fig. 4.10 the density is fixed (p = 300 g/cm?) for differ-
ent initial temperatures (7p = 0.5 and 1.5 keV). The results presented here are
revisions taken from our previous work Rodriguez-Beltran (2018).

Figures 4.10 and 4.11 offer substantial insights into the general behaviour of
the plasma and the beam. For this analysis, it is important to remind that, as
the temperature of the plasma increases due to the interaction, it becomes more
transparent, reducing the stopping power and increasing the ion penetration
depth. This was already addressed in Sect. 4.1 and demonstrated with Fig. 4.4.

To begin with, we address the general behaviour we find throughout the six
panels of both figures, without taking into account the initial temperature or
density. In panel A, it is shown how the kinetic energy descends for all bins
as the projectile is slowed down. The first bins reach shorter ranges within the
still cold plasma. As a function of time, in panel B, the kinetic energy is almost
constant for the beginning of the plasma, as a proton beam creates an edge
heated region (see panel E) and = 0 will be the most heated and transparent

2For these experiments, we used the PMV model. Although it presents numerical differ-
ences compared to the reference LP model, the functional behaviour is similar, which is the
interest in for this section.
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FIGURE 4.10— Experiments with a DT plasma at p = 300 g/cm® and different initial
temperatures (Tp = 0.5 and 1 keV), using a proton beam partitioned in Ny, & 2048 bins, with
an initial kinetic energy of Eo = 3 MeV and o = 1.6 - 10%' cm? (Rodriguez-Beltran, 2018).

point. Meanwhile, for z = Rp/2 the energy stars ascending (due to the plasma
becoming more transparent), but only after the projectiles have been able to
dig to such range. In panel C, it is shown the stopping power as a function
of the distance. We observe its value quasi-constant up to the final points of
the penetration, where, in general, it augments before finally dropping to zero.
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FIGURE 4.11— Experiments with a deuterium-tritium plasma at 7o = 1 keV and different
densities (p = 200 and 500 g/cm?, using a proton beam partitioned in Ny, = 2048 bins, with
an initial kinetic energy of Ey = 3 MeV and o = 1.6 - 10! cm? (Rodriguez-Beltran, 2018).

These peaks most likely correspond to the moment where the energy of the
projectiles resonates with the field of particles of the plasma. Then, in panel
D, it is shown how the stopping descends with time, as the plasma heats-up.
Panel E shows an edge temperature distribution, typical of proton beams, while
panel F shows its increase of temperature over time.
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Once the general behaviour is described, we can address the dependence
with the initial temperature and density. On the one hand, when considering
a higher and a lower initial temperature, as in Fig. 4.10, we observe certain
interesting behaviours. In panel A, the difference in range is significant for the
first bin, while, after the whole beam interaction, they reach a similar depth
because the plasma has been already heated. This is also observed in panel B,
where for x = 0 and © = Rp/2 the temperature of both Ty cases, converges at
the last bins. In panel C, we find how the coldest (T) = 0.5 keV) plasma has a
larger stopping, although its value also converges at the final instants, as panel
D shows. The stopping decreases over time, due to the plasma heating. At last,
panel E shows an apparently small increment in temperature for the first bin,
being this increase higher in the colder plasma. The colder plasma undergoes
changes more drastically at the beginning of the interaction, but once the whole
beam enters, regardless of the initial temperature, a similar final distribution
of temperatures is obtained, as panel F also shows.

On the other hand, varying the density of the plasma is more influential
than varying the initial temperature, as we demonstrate in Fig. 4.11. A denser
fuel reduces the range of the beam and increases the stopping, thus, creating a
hotter plasma. We can state that changing the density is more significative for
the final temperature distribution.

4.5 Results of the analytic model

Considering the analytical model presented in Sect. 3.10, we illustrate its poten-
tial with the exemplary results of Fig. 4.12. We compare the temperature fields
derived from our numerical simulations and analytical approximations across
various beam parameter values. The analytical results are obtained after fit-
ting the free parameters (a1, a2) in respect to the numerical calculations. The
plasma has a density of p = 300 g/cm?® and initial temperature of Ty = 1 keV,
heated by monoenergetic carbon beams of various energies and fluxes (values
are shown in the images). Additionally, when a central hot-spot is found, we
display those values that are constant (Lyps, Ths and Tinax) within the figures.
After obtaining the temperature distributions from the simulations and the
analytical model, we retrieve the parameters associated to the heated region
and the hot-spot (Ths, Lns, Ln, etc) for both cases, with the intention of com-
paring the quality of the analytic model in respect to the numerical solution.
Throughout the range of beam parameters investigated in this study, the av-
erage relative errors between the analytical fittings and numerical simulations
consistently remain below 1%, specially for the central and intermediate cases.
It is observed that they tend to be higher for edge hot-spots compared to cen-
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tral and intermediate cases, with maximum values generally below 7% and 3%,
respectively. As these average relative errors are small enough, we can confirm
the close resemblance between the properties obtained through the analytical
formula and those from numerical simulations, as shown in Espinosa-Vivas et al.
(2023).
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FIGURE 4.12— Comparison of the spatial temperature distributions in a DT plasma (p =
300 g/cm®, Ty = 1 keV) heated by monoenergetic carbon beams obtained with our numerical
model (solid line) and those provided fitted according to the analytic model of Sect. 3.10
(dotted lines). Espinosa-Vivas et al. (2023).

Table 4.1 presents the fitting parameters for low ion energies across vari-
ous beam fluxes. Edge plasmas typically manifest for particle energies below
200 MeV, as indicated in Fig. 4.12. Consequently, only the first expression of
Eq. 3.57 is utilized in such hot-spots. Edge hot-spots are denoted with ao = 0
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in the table. Conversely, cases associated with as # 0 are indicative of interme-
diate or central hot-spots. In Table 4.2, we provide the fitting parameters for
medium and high energy per ion values, with three fluxes of the beam. From
such table, we find central hot-spots for the energy levels of 400 and 500 MeV if
the flux is lower than o < 2.4-10' cm™2 and o < 2.8-10'? cm ™2, respectively.
The cases with energies of 620, 700, and 800 MeV are central hot-spots, the
rest are intermediate hot-spots.

Eo [MeV] 100 150 200

o [10" cm™?] ay as a1 as ay as
2.00 0.436 | 0 | 0.444 | —1.630 | 0.506 | —1.681
2.59 0.443 | 0 | 0.443 0 0.467 | —1.678
3.16 0.445 | 0 | 0.430 0 0.480 | —1.663
3.47 0442 | 0 | 0.431 0 0.454 | —1.679
5.58 0.441 | 0 | 0.425 0 0.425 0
6.00 0.436 | 0 | 0.424 0 0.423 0

TABLE 4.1— Values for the fitting parameters of the analytical model, a1 and a2, at the
range of low initial energies (Eyp), for different values of the flux (o). Espinosa-Vivas et al.
(2023).

o [10Y em—? 2.45 2.76 3.16
Ey [MeV] ay as ay as a1 as
400 0.570 | —1.190 | 0.569 | —1.338 | 0.553 | —1.464
500 0.644 | —1.095 | 0.616 | —1.100 | 0.581 | —1.114
620 0.640 | —0.924 | 0.636 | —0.969 | 0.641 | —1.028
700 0.643 | —0.828 | 0.629 | —0.874 | 0.634 | —0.900
800 0.623 | —0.745 | 0.629 | —0.790 | 0.639 | —0.825

TABLE 4.2— Values for the fitting parameters of the analytical model, a1 and as, at the
range of high initial energies (Ep), for different values of the flux (o). Espinosa-Vivas et al.
(2023).

Upon examination of the tables, we note that a; variations are not very
drastic in respect to the beam parameters, both for edge and central hot-spots,
with values hovering around 0.4 and 0.64, respectively. Meanwhile, for as, the
fitting parameter ranges from -1.7 to -0.8, moving from intermediate to central
hot-spots, respectively. We find that, at least for the carbon beams presented
here, when the parameter fulfils 0 > as > —1 we find a central hot-spot and,
when as < —1 the temperature distribution corresponds to an intermediate
hot-spot.
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In the central case, the numerical simulations suggest as a reasonable ap-
proximation to assume that the energy deposited by the ion beam in the hot-
spot predominantly distributes around the region where T}, is reached, being
Lyps =~ 2\ approximately constant®, a result that was already highlighted by
Gus’kov et al. (2010).

Consequently, the calculation of Tis and Lyg for both edge and central hot-
spots may rely solely on the part of the analytical expression dependent on aq,
which exhibits a weak dependence on the beam parameters, as discussed ear-
lier. With this understanding, the calculation of the hot-spots characteristics
can be approximated with Eqs. 3.58 and 3.59. However, despite the possibil-
ity of utilizing the same analytical expression for both types of hot-spots, the
behaviour of T,ax, differ between them. As mentioned earlier, a; may almost
remain constant in both cases, albeit it tends to be higher for central hot-spots
compared to edge hot-spots (see Table 4.1 and Table 4.2). As for Tiax and A,
simulations reveal that it increases with o and Fy for edge cases, whereas for
central hot-spots, it increases with o but remains relatively constant with FEj,
as depicted in Fig. 4.12.

In conclusion, if the free parameters are known, we can extract key proper-
ties of the hot-spot without performing the whole numerical simulation. Thus,
we could directly predict the gain of the plasma implementing the solutions of
Tis and Lyg in Egs. 3.35, 3.36 and 3.61, saving computational resources and
time if necessary.

4.6 Validation of the hot-spot gain

After analysing and verifying the temperature distribution by the ion beam
interaction, it is necessary addressing the gains presented in Chapter 3. From
the field of temperatures, we determine the hot-spot, that is, the spark-region
able to ignite. This region is evaluated through the self-heating, the ignition
and the burning gains.

In Fig. 4.13 we compare our results for Gy = 1 and Gg, = 1 with the cal-
culations of Atzeni & Meyer-Ter-Vehn (2004) (figure 4.4) and Gus’kov et al.
(2011) (figure 2), respectively, and we can observe a good agreement with our
calculations. However, some differences can be commented. Above the thresh-
old of 10 keV, we find our results for ignition to be less restrictive with pR than
the reference, while the self-heating is slightly more limiting. Nevertheless, we
find sufficient agreement to validate our established criteria.

Then, in Fig. 4.14 we corroborate our results for the burn-up factor (¢) and

3We remind that )\ is the length between Trmax and the position where the heated region
ends (Ly).
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FIGURE 4.13— Ignition and self-heating results in the (pR,T')-space for a pure DT plasma
at p=500 g/cmg. Solid lines correspond to Giz = 1, while dashed lines show G¢n, = 1. Our

results are displayed in black in comparison to those of Atzeni & Meyer-Ter-Vehn (2004) and
Gus’kov et al. (2011) as red lines.

the gain of a homogeneous plasma (Gp), which are the core ingredients of the
burning gain calculations we present throughout this thesis. We consider a pure
and doped DT plasmas with different impurity fractions (Xgop = 1/(1+¢&)) and
dopants, with a plasma at 7' = 15 keV and pRppT = 3 g/cm?. According to
Eq. 3.63, in the regime of moderate impurity presence, our results match those
of Gus’kov et al. (2011) (figures 4 and 5), then for high impurity percentages,
we overestimate the burning gain. Throughout this work, in most cases, we do
not tackle large impurity levels. Subsequently, the burning gain (Gpym) values
found in this thesis are in the order of various reference results (Gus’kov et al.,
2011; Gus’kov et al., 2014b, 2015). For instance, when comparing with table 2
from Gus’kov et al. (2011) we find that our results are similar, with a relative
error between 1-3%, but slightly overestimated, as shown in Table 4.3.

4.7 Determination of the (o, Ey)-space parameter of the ion beam

A key aspect of this work is the determination of an appropriate space parameter
for the energy of the ions and the beam flux (o, Ey). Thus, for each plasma
condition and ion beam, we have approximated the (o, Ep)-values that provide
hot-spots with insightful potential. That is, a region inside the heated plasma
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FIGURE 4.14— burn-up factor (g) and gain of a homogeneous plasma (Go) as a function of
the impurity fraction for three different dopants (lithium, beryllium and carbon) considering
a plasma at T = 15 keV and pRpr = 3 g/cm?. Solid lines correspond to our results and
dotted ones to those of Gus’kov et al. (2011) (figures 4 and 5).

Gburn
pRp =4 pRr =6 pRr =8

p [g/cm?] || Ours | Ref || Ours | Ref || Ours | Ref
300 284 | 280 || 949 | 940 || 1796 | 1770
500 269 | 260 || 829 | 820 | 1459 | 1430
700 257 | 250 || 74T | 740 || 1254 | 1220
1000 243 | 230 || 659 | 650 || 1056 | 1050

TABLE 4.3— Burning gain results considering a DT plasma doped with beryllium (¢ = 0.5),
a hot-spot at Ths = 20 keV and pRps = 1.5 g/cm?®. For every areal density (in g/cm? units),
we show first our results and then those of Gus’kov et al. (2011) (table 2).

with average temperature higher than the ignition temperature (Tys(o, Eo) >
Tig), length lower than the diameter of the fuel sphere (Ly (o, Ey) < 2Rr) and
such as the ignition gain Gig(Ths, Rus; Fo,0) > 1, where Ry is derived from Ly
as shown in the Sect. 3.9. The parameter space is explored by calculating the
beam-plasma interaction for each pair (o, Fy), in arrays of 100x 100 cases, and
extracting the key features of the heated region and the hot-spot.

As an example, Fig. 4.15 depicts the isolines in the (o, Ey)-space of the
ignition gain Giz = 1 and the length of the heated region L;,=100 pm, corre-
sponding to twice the radius of a fuel sphere of Rp=>50 pym. In that figure, we
also show the isolines for T},s=20 keV. The initial temperature is Tp=1 keV and
carbon ion beams are applied, with a radius of r,=15 ym. As we know that
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the density is more influential in the resulting heated region (see Fig. 4.11), we
represent three cases, 300, 500 and 700 g/cm3. Every (o, Eg) value above the
isoline of Gz = 1 ensures the hot-spot creation. This region is limited by the
points below the contour of Ly=100 pum, corresponding to the largest possible
heated region within such sphere.

Consequently, for any experiment, the limits of our space of interest are
determined as follows. The lower limit, oyin ig, is fixed by the lower flux value
for Gig = 1. The corresponding upper limit, Egmax, is found where the isoline
of Ly = 2Ry intersects the Gjg = 1 line. Then, opax was selected such as
the isoline of Ty ~ 20 keV intersects with the line L;, = 2Rp. Such reference
temperature is selected to assure we are working in an interval of temperatures
where the equilibrium time and the internal processes time are adequate in
respect to the beam interaction (see Fig. 3.9), as well as the power density of
the internal processes against the one for the beam. Moreover, we have found
that for such high temperature the burning gain results are not of interest in
the IFT context, as we will show in the next chapters. In any case, for larger
temperatures the general behaviour is similar and can be predicted following
the results presented in the current work. At last, Fgmin,ig is obtained as the
lowest possible value for the selected omax with Gig > 1.

This procedure was applied to every beam specie and radius, to every plasma
density and initial temperature. Although not explicitly presented in this thesis,
the (o, Ep)-ranges of study for various dopants and concentrations have been
calculated, too. We can advance that for doped plasmas, the space of study
narrows as the impurities are heavier or in higher concentrations. The ignition
conditions are more restrictive, as it is shown in Chapter 6.

As an example, in Tables 4.4 and 4.5 we list the ranges of our study
(Omin, g, Tmaxs> F0 min,ig, Fomax) for a beam of r,=15 pm and a pure DT plasma
of To=1 keV. We show E(max and opax depending on the density, as we found
a significant change. On the other hand, the results keep approximately stable
when changing either the beam radius or the initial temperature. As shown in
Figs. 4.10 and 4.11 the initial temperature does not influence drastically the fi-
nal distribution of temperatures, while the density does. In respect to the beam
radius, it is necessary for calculating Gig, but its effect is minor in comparison
to the value of the density. In these tables, we observe how the values onin ig
decrease with the beam charge, while the Ejy.x values increases. We have
found that, in general, for a pure DT plasma, even though the outcome might
vary depending on the exact characteristics of the experiment, the results we
have presented serve as a representative approximation of the limits of Giz = 1
in the (o, Ep)-space.

When following the isoline of Gz = 1, we find that the hot-spot tempera-
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FIGURE 4.15— Isolines in the (o, Ey) parameter space: ignition gain Giz = 1 (purple line),
length of the heated plasma L,=100 pum (grey lines) and hot-spot temperature of Ths=20 keV.
Plasma densities are p = 300 (solid), p = 500 (dashed) and p=700 g/cm?® (dotted). We use
C®* beam of radius r,=15 pm.

tures range from Tjs = 10 keV at high energies to 12.5 keV if low projectile ener-
gies are considered. Then, the areal density oscillates around pRpg ~ 0.25—0.35
depending on the experiment. We can relate these values with the ignition and
self-heating curves shown in Fig. 3.5. We find that the heated plasmas as-
sociated to the different (o, Ey) through the Gj; = 1 isoline correspond to a
region on the (pR,T)-space found approximately below the minimum of the
self-heating curve and on the right of Tj,. Additionally, this region matches
the highest burning gain values available, indicating that an optimal beam re-
quires finely tuning its (o, Ep)-parameters, in order to get closer to the Giy =1
isoline, as it is shown in the following chapters. Moreover, we provide which
beam energies are required to reach the Gj; = 1 isoline at every (o, Ey)-case.
We have found that beam energy ranges from E}, = 20 kJ for highly energetic
projectiles and low fluxes, to Ey, =~ 1 kJ for high fluxes. Similarly, the specific
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energy density (o FEp) goes from 3 GJ/cm? to 0.15 GJ/ecm?, respectively. These
results agree with previous literature, being in the same order of works such as
Gus’kov et al. (2014b) and Honrubia et al. (2014). For these conditions, the
beam should operate in a characteristic time of Team ~ 10~ — 10712 seconds,
in order to approximately fulfil the conditions of this work in respect to the
internal times of the plasma.

IC || Eominig | Eomax(p300) | Eomax(P500) | Eomax(p700)

pt 0.2 26.1 41.1 52.4
Ccot 7.3 792.9 1.10- 103 1.30- 103
V2T 60.9 7.10 - 103 9.40 - 10° 1.10 - 10*

TABLE 4.4— Energy ranges (MeV) of the parameter space to study, considering a plasma
with initial temperature of To=1 keV and beam radius r,=15 um. IC denotes the charge
of the ions in the beam; FEomin,ig is the minimum projectile energy to achieve the ignition
criterion; Fomax denotes the maximum projectile energy when L,=100 pm, which is plotted
for plasma densities p=300, 500 and 700 g/cm3.

IC Omin,ig Umax(p300> Omax (P500) Umax(ﬂ?OO)
pt [ 5.70-10%° | 4.50-10%" | 3.60-10%' | 3.40-10%!
Cc%+ |l 1.60-10" | 8.10-10" | 8.20-10" | 8.80-10%
V23t |1 1.30-10"% | 6.50-10™ | 7.90-10"® | 9.20-10'®

TABLE 4.5— Flux ranges (1/cm?) of the parameter space to study, considering a plasma
with initial temperature of To=1 keV and beam radius r,=15 um. IC denotes the charge
of the ions in the beam; omin,ig represents the minimum beam flux needed to achieve the
ignition criterion; omax denotes the maximum beam flux when T1,s=20 keV, which is depicted
for plasma densities p=300, 500 and 700 g/cm?®.

In summary, with this chapter we have verified our numerical and analytic
models in respect to previous results from the literature, aside from reason-
able numerical differences. Then, the general behaviour of the interaction was
acknowledged, as well as a procedure for selecting the range of beam character-
istics where a hot-spot is generated inside the heated region. These previous
points are key for continuing our evaluation on a broader variety of scenarios,
as the following chapters gather.



Simulation and analysis of the
beam-plasma interaction of

monoenergetic ion beams with pure
DT fuels

In the previous chapter, we presented preliminary results of our model. This
allowed us to compare and validate our solutions with those obtained by other
authors. Another key result was the determination of the (o, Fp)-range where a
hot-spot is generated. Illustrative, in Sect. 4.7 we presented the ranges of study
for monoenergetic beams (p*, C6*, V23%) interacting with a pure DT plasma.
This allows focusing our simulations and analysis on situations of interest in
the field of inertial fusion and, in particular, on the ion fast ignition scheme.
In the current chapter, we focus on monoenergetic ion beams interacting with
a pure DT fuel. We consider plasmas with different densities (from 300 to
700 g/cm?) and initial temperatures (from 0.5 to 5 keV). Thus, we proceed to
the systematic simulation of the spatial distribution of the temperatures after
the beam interaction. From this temperature field, we extract the fundamental
parameters of the heated plasma and the corresponding hot-spot. The length
and temperature from the latter allow us to evaluate where ignition is achieved,
the burning gain values or the coupling parameters between the beam and the
plasma.

In this chapter, we start our systematic study by considering that the beam
is generated at the edge of the plasma. This is an idealised situation, but
presents the advantage that the corona plasma does not influence the interaction
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process, thus, characterising the heating by exclusively considering the beam
and the precompressed core. Some experimental arrangements were already
predicted to come close to this consideration (e.g. Kodama et al., 2001; Betti &
Zhou, 2005). Also, when considering the scheme where a cone is embedded in
the plasma, the beam can be targeted to reach the uniform density of the core.
Then, towards the end of this chapter, we include the presence of a corona, to
examine its influence and evaluate how necessary is to consider its presence. In
that context, it is important to consider the distance at which the ion beam is
generated from the plasma edge.

The particular cases we chose to show in this chapter are representative of
general behaviours encountered throughout our simulations.

5.1 Length and temperature distributions in the (o, E\)-space

We present key results of the heated plasma and the hot-spot after the beam-
plasma interaction, such as its characteristic lengths and temperatures in the
region of the (o, Ey)-space where the ignition is achieved. Representative simu-
lations were performed for a DT plasma of density p=500 g/cm3, Th=1 keV and
Rp=50 um. The beams selected are pT, C®* and V23*. Thus, in the left column
of Fig. 5.1 we show the isolines associated to the hot-spot lengths Ly, the ranges
Ly, and the positions of the maximum temperatures zpax, for the (o, Ep) beam
parameters. In the right column of Fig. 5.1 we depict the isolines of hot-spot
mean temperatures T}, the maximum temperatures Ti,,x and the temperatures
at the edge of the plasma Ty—o. With this set of parameters, we can charac-
terise the beam-plasma interaction, knowing, for example, what beam energy is
required to generate a hot-spot with a certain length or temperature, depending
on the charge of the projectiles. This is done by retrieving the characteristic
(0, Ep)-values associated to the desired plasma conditions and then calculating
Ey = O‘E()?T?“%. We can also calculate the energy deposited in the hot-spot or
the energy of the whole heated region, as AEns = pCy(Ths — To)LhSm*% and
FEyn = pCvTi thm‘%, respectively. Moreover, from some of these parameters and
the corresponding isoline maps, we can retrieve the burning gain (see Eq. 3.61),
which is a key result in the IFI scheme. Alternatively, we can reconstruct the
temperature field from the analytical model (see Egs. 3.57, 3.58 and 3.59). This
can be useful to start complex radiative-hydrodynamic simulations of the hot-
spot evolution for the nuclear fuel burn-up, by selecting typical hot-spots of
IFI.
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FIGURE 5.1— Results for a pure DT plasma of p=500 g/cm® and To=1 keV, for beams of
p" (A and D panels), C®" (B and E panels) and V*** (C and F panels). Left: Isolines of Ly
(solid black line), Ly (solid grey line) and Zrmax (dotted blue line); units are in um and the
spacing between lines is of 10 pm. Right: Isolines of Ths (solid black line), Tmax (solid grey
line) and Tx—o (dashed grey line); units are in keV and the spacing between lines is of 1 keV for
Ths and in intervals of 2 keV for Tmax and Tk=o. The green solid lines (zTmax = 0) divide the
(0, Eo)-space in edge and intermediate hot-spot regions. The purple solid lines (Tx—o = Tig)
separate the intermediate and central hot-spot regions.
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We can observe the (o, Ey)-regions where we find an edge, intermediate or
central hot-spot, as explained in Sect. 3.9. An edge hot-spot region is created
when rrmax = 0, that is, Thax is equal to Tyx—g. The threshold between the
edge and the intermediate hot-spot regions is marked in both figures with a
green dotted line. The central hot-spot region is found when T,—g < Tj; and
matches those cases where Lyg, Ths and Ty.x are constant with the kinetic
energy for a given flux. The intermediate hot-spot region is in between the
edge and the central hot-spot region, it corresponds to cases where xyax # 0
but Ty—g > Tiz. The threshold between the intermediate and the central hot-
spot region is shown with a purple dashed line. We have included in the figure,
for some cases, a zoom-in within the ranges of study obtained in Sect. 4.7, for
the sake of a clearer representation.

Studying Fig. 5.1, we can detect certain differences for different ion composi-
tions of the beams. The space of parameters where central hot-spot is achieved
increases with the beam charge (Zy,). Thus, the steep of the lines that divide the
edge, intermediate and central hot-spot regions rise with Z;,. Additionally, for
the central hot-spot analysed in this work, the highest temperatures achieved
by the hot-spot (Ths, Tmax) increase with the beam charge.

On the other hand, some common behaviours are observed for all the beams
species considered. First, within the edge hot-spot region, the variables (Ly,
Ly, Ths, Tx—0 = Tmax) present a similar shape. All of them increase with both
flux and energy, even though the variation is more dependant with the energy.

Second, in the intermediate hot-spot region, the variables Ly and Ly present
the same behaviour as in the edge hot-spot region. Conversely, the temperature
parameters behave differently: the isolines of Ty—g and Ty.x separate when
entering the intermediate hot-spot region; Ty—o increases with the flux but
decreases with the energy; Ti,.x presents a trend towards a constant behaviour
with the energy for a given flux; T},5 continues to increase with the energy and
the flux, then, in a certain threshold, starts decreasing with the energy, but less
drastically than Tx—g.

Third, for central hot-spots it is detected that, for a given flux value, the
region is delimited by an array of threshold points (o*, E*(0*)) such that the
hot-spots generated with Ey > E* have the same values for Lyg, Ths and Tinax.
In other words, for a given energy these parameters only increase with o. For
instance, with a vanadium beam, at o* = 2.7-10'® cm ™2, the constant behaviour
occurs at E*(0) ~ 3500 MeV, finding that Lys ~ 21 um, Ty ~ 12.7 keV and
Tmax =~ 15.5 keV. Then, at higher a higher flux (¢ = 3.8 - 10'® cm™2) the
threshold is found at E* = 5500 MeV, and the same parameters ascend to
Lyg =~ 42.6 pm, Tis =~ 13.9 keV and Tax ~ 18.8 keV. In other words, for energies
higher than the threshold, E*, we can also define a o7, value that correspond
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to a length of the hot-spot, independently of the energy. Correspondingly, the
energy threshold can be assigned to a value of Ly, this is E7 . On the contrary,
in the central hot-spot region other magnitudes do not follow this constant
behaviour, such as the position of the maximum temperature (Zrmax), the
range (Ly) and the temperature at the beginning of the plasma (Tx—q), which
do change with energy. We find that Ly and xpmax behaviour is the same as
in edge and intermediate hot-spot regions. In particular, Tpmay increases with
Ey and it is almost independent of o. Therefore, in order to create a hot-spot
in the centre of the fuel sphere, it is necessary to tune accurately the kinetic
energy. For example, achieving xrmax=Rr=50 pm requires Fy=37~38 MeV
for protons, Fy=800~820 MeV for carbon and Fy ~ 6600 MeV for vanadium.

We want to highlight the potential of the behaviour found in the (o, Ey)-
space. When following a particular Lyg isoline it is possible to reach the same
length in different scenarios. For low energies and larger fluxes, the hot-spot
is created at the edge of the plasma. Meanwhile, the same hot-spot length is
obtained as a central hot-spot for low fluxes and higher energies. The isolines
of the temperature of the hot-spot work in a similar way.

As an instance of the behaviour in the central hot-spot region, in Fig. 5.2
we represent the temperature field of a V23 beam for 0=3.1- 10'® cm™2, as-
sociated with values of Lps=30 pm, Ths=13 and T,,x=16.6 keV. If we select
three different kinetic energies, Ey=5865, 6630 and 7300 MeV, we observe how
they correspond to the positions of xmax=40, 50 and 60 pm and the ranges
Ly=50.5, 60.5 and 70 pm. This shows how these lengths increase with their
respective energy values (also, their edge temperature decreases as Ty—o=8, 7.3
and 6.8 keV), while the hot-spot parameters and Ti,ax remain constant.

Then, in Fig. 5.3 we fix the energy at Fy=6630 MeV, where xrmax ~ 50 pm,
for three different fluxes 0=2.6-10'%, 3.1.10'® and 3.5-10'® cm™2, matching
Lps=20, 30 and 40 pum. As expected, the position of the maximum temper-
ature is fixed at xmax &~ 50 um, the temperatures of interest increase with the
flux: Ths=12.3, 13 and 13.3 keV, Tp=6.2, 7.3 and 8.2 keV and Ti,,x=15, 16.6
and 17.9 keV, respectively for every o-value.

5.2 Length and temperature distributions in the (o, Ey)-space
varying plasma p and 7

So far, the study has been performed for a fixed set of plasma initial conditions
(p=500 g/cm? and Tp=1 keV). Now, we address the influence of different initial
plasma temperatures and mass densities. We selected various cases to exemplify
the dependence of the beam-plasma interaction. Hence, in Fig. 5.4 we consider
three mass densities, p=300, 500 and 700 g/cmg, for Ty=1 keV. Then, in Fig. 5.5,
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FIGURE 5.2— Spatial distribution of the plasma temperatures (p=500 g/cm™?%) after the
interaction with a V2** beam for a fixed 0=3.1-10'® cm™?2 and three different kinetic energies
FE,=>5817, 6589 and 7296 MeV.
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FIGURE 5.3— Same conditions as in Fig. 5.2 but considering a fixed Fy=6589 MeV and
three different fluxes 0=2.6-10*%, 3.1-10*® and 3.5-10'® cm™2.

we consider three values of plasma initial temperature, for a mass density of
p=500 g/cm3.

Through the current work, we focus on certain cases of interest related to
typical experimental values. We select experiments with beam radii of r,=10,
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15 and 20 pm, combined with sphere radii of Rp=40, 50 and 60 pum (which are
typical IFI values, as stated in Sect. 2.4). Then, for achieving a hot-spot whose
cylindrical geometry resembles a sphere, we need Lys ~ 2rp, and, in order to
achieve a central explosion, it is required that it is located in the middle of the
plasma Trmax ~ Rp.

Hence, in Figs. 5.4 and 5.5 we show where Lps=20, 30 and 40 pm are
located. Additionally, we show Zrmax=50 pm. Here, zrm.x=40 and 60 um are
not included for the sake of clarity in the figure, but their related Ey values
are shown in Tables 5.1, 5.2 and 5.3. In Figs. 5.4 and 5.5, the values of Tis
corresponding to L,s=20, 30 and 40 pm in the central hot-spot region have been
included. In all figures, Trmax = 0 is plotted, which divides the (o, Ey)-space
between edge and intermediate hot-spot. Furthermore, the lines corresponding
to Tkx—o = Tig are also depicted, which separate the intermediate and central
hot-spots. This analysis is repeated for different beams: p*, C%* and V237.

On the one hand, Fig. 5.4 shows that, in the central hot-spot region, the
denser the plasma, the more flux is necessary to achieve the same Lys. Mean-
while, in the edge and intermediate hot-spot regions, when increasing the den-
sity, more projectile energy is required for achieving a similar hot-spot. For
identical hot-spot lengths, the temperatures are slightly superior when increas-
ing the plasma density. Also, it is found that more ion energy is needed to reach
the same location for the maximum temperature, £max. In the particular case
of the proton beam, zrn.=50 pum is never achieved in our region of study.
Finally, changing the density does not affect significantly the position of the
TTmax = 0 and the Ty—¢ = Tj, lines.

On the other hand, in Fig. 5.5, when increasing the initial temperature
Ty, either less flux for central hot-spots or less projectile energy for edge-
intermediate hot-spots is required for achieving the same lengths. For such Ly,
we find that the hot-spot temperature descends with the initial temperature.
We find that the position of the maximum temperature, £max, does not depend
significantly on the initial temperature. At last, changing the initial tempera-
ture changes the position of the 1. = 0 line and the Tx—o = Tj; line. This is
found more drastically for the Ty=>5 keV case, where the edge hot-spot region
is expanded and central hot-spots are harder to create. Such restriction on the
central hot-spot region is due to the plasma being more transparent from the
beginning. Finally, larger temperatures are obtained for heavier beam species,
as can be seen in Fig. 5.5.

This analysis is completed with the Tables 5.1, 5.2 and 5.3. We select
representative conditions desirable for a central and approximately symmetric
combustion (see Sect. 2.3.2). On the one hand, we show the energy results
at which zpn.x &= Rp, considering typical spheres such that Rp = 40, 50 and
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FIGURE 5.4— Tsoline results for a pure DT plasma (Tp=1 keV) with densities of p=300 g/cm®
(solid), p=500 g/cm?® (dashed) and p=700 g/cm® (dotted). Beams of p™ (panels A and D),
C8* (panels B and E) and V*7* (panels C and F) are considered. Left: Black, grey and
light-grey colours represent the hot-spot lengths for Lys=20, 30 and 40 pum. Dotted blue lines
represent Trmax=50 pm. Right: Black, grey and light-grey colours represent the hot-spot
temperatures (Ths) corresponding to Lns=20, 30 and 40 pm in the central hot-spot region,
with all temperatures in keV. The green solid lines (zTmax = 0) divide the (o, Ep)-space in
edge and intermediate hot-spot regions. The purple solid lines (Tx—o = Tig) separate the
intermediate and central hot-spot regions.
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C%" (panels B and E) and V**T (panels C and F) are considered. Left: Black, grey and
light-grey colours represent the hot-spot lengths for Lys=20, 30 and 40 pm. Dotted blue lines
represent Trmax=50 pum. Right: Black, grey and light-grey colours represent the hot-spot
temperatures (Ths) corresponding to Lns=20, 30 and 40 pm in the central hot-spot region,
with all temperatures in keV. The green solid lines (ZTmax = 0) divide the (o, Ep)-space in
edge and intermediate hot-spot regions. The purple solid lines (Tk—o = Tig) separate the
intermediate and central hot-spot regions.
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60 pum. On the other hand, separately, we show the flux results at which
Lyg =~ 21y, for central hot-spots, selecting r, = 10, 15 and 20 pm, this is, again,
Lys = 20, 30 and 40 pum. For each hot-spot length, we append its temperature
when the hot-spot is central. These solutions are calculated for our considered
beams (pt, COF, V23+), plasma densities (p = 300, 500, 700 g/cm?) and initial
temperatures (Tp = 0.5,1, 5 keV). When the solution is not available within our
(0, Ep)-ranges of study, the correspondent cell of the table is left unfilled.

This serves as a powerful tool to characterise experiments. For example, let
us consider a fuel sphere of 60 xm, initially at Ty = 1 keV and density 500 g/cm?
interacting with a carbon beam of r, = 15 pm. It would be desirable to have
a hot-spot length of Lys = 30 pum with a central hot-spot with its maximum
located at xTmax = 60 pm. Looking at the tables below, we can find the values
of Ey and o at which such hot-spot is formed (in of this case, Ey = 890 MeV
and o = 2.6 - 10" cm™2) and what temperature will it have (Tj,s = 11.4 keV).
We can complement this kind of analysis with the results for the burning gain
shown below in Sect. 5.3, to predict the outcome of the experiment.

Additionally, it is worth addressing other magnitudes associated to the re-
sults of these tables. In respect to the number of particles of the beam, the
results depend on the radius of the beam (N, = 0777"}2)). For each beam specie,
the minimum number of flux corresponds to (r, = 10 um; p = 300 g/cm?;
To = 5 keV; Lyps = 20 ym) and the maximum to (rp, = 20 um; p = 700 g/cm?;
To = 0.5 keV; Lys = 40 pm). In this range, we find that for protons, the
number of particles is in the order of N, ~ 1.25- 101 — 1106, for carbon is
N, = 3.45-101% —4.5-10 and for vanadium is N, =~ 3.45-1012—5.7-10'3. More-
over, we can determine the energy of the beam of the cases presented above,
considering the minimum and maximum energies of the tables, Trnax = 40
and 60 pm, respectively. For protons, we find F}, ~ 5.2 — 80 kJ, for carbon is
Ey =~ 3 — 80 kJ and for vanadium is E}, = 2.5 — 80 kJ. Note how the minimum
beam energy decreases with the charge, while the maximum remains approxi-
mately the same. In comparison, we can calculate the energy deposited in the
hot-spot for each one of the previous experiments, considering Ly = 20 and
40 pum respectively, for the chosen minimum and maximum scenarios. For pro-
tons, we find AFEys ~ 1.04 — 42 kJ, for carbon is AEs ~ 1.1 — 48 kJ and for
vanadium is AFps = 1.2 — 54 kJ. With the previous results, we can evaluate
how much energy of the beam is actually deposited in the hot-spot, by evaluat-
ing the coupling efficiency (AEys/Ey). We find 20%-53% for protons, 37%-60%
for carbon and 48%-68% for vanadium. Therefore, we want to highlight that,
for a given set of plasma initial conditions and a beam radius, when creating
a central hot-spot with the same (Lys, ZTmax)-values, the coupling is higher for
heavier-ions, such as vanadium.
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Beam: p*

p =300 g/cm?; To=0.5 keV p =300 g/cm?; To=1 keV p =300 g/cm?; To=5 keV
TTmax Eo TTmax Eo ZTmax Eo

40 26.3 40 26.2 40 -

50 - 50 - 50 -

60 - 60 - 60 -

Lus | 0 [10°] T Lus | 0 [10°] T Lus | 0 [10°] T

20 6.0 10.0 20 5.8 10.0 20 4.0 9.8

30 6.3 10.3 30 6.0 10.2 30 4.2 9.9

40 6.6 10.8 40 6.3 10.3 40 4.4 10.0
p =500 g/cm?; To=0.5 keV p =500 g/cm?; To=1 keV p =500 g/em?; To=5 keV
TTmax Eo TTmax Eo ZTmax Eo

40 33.1 40 32.7 40 -

50 37.2 50 36.9 50 -

60 41.2 60 40.7 60 -

Lus | 0 [10°] T Lus | 0 [10°] T Lus | 0 [10°] T

20 6.8 10.2 20 6.4 10.1 20 4.2 9.8

30 7.1 10.4 30 6.8 10.3 30 4.3 9.9

40 7.6 10.6 40 7.3 10.5 40 4.4 10.0
p =700 g/cm?; Top=0.5 keV p =700 g/cm?; To=1 keV p =700 g/cm?; To=5 keV
TTmax Eo TTmax Eo TTmax Eo

40 39.2 40 38.7 40 38.6

50 44.5 50 43.7 50 43.6

60 49.3 60 48.3 60 -

Lys | 0 [10°] T Lus | 0 [10%°] T Ly | 0 [10°] T

20 7.2 10.3 20 6.8 10.2 20 4.3 10.1

30 7.8 10.6 30 7.5 10.5 30 4.5 10.3

40 8.5 10.9 40 8.1 10.7 40 4.7 10.4

TABLE 5.1— Numerical results of the heated plasma for a set of cases of interest, considering

a proton beam for the interaction.

The selected cases are the position of the maximum

temperature such as Trmax=40, 50 or 60 ym and the length of the hot-spot such as Lys=20,
30 or 40 ym. We provide results for each density (p=300, 500 and 700 g/cm?®) and initial
temperatures of the plasma (T0=0.5, 1, 5 keV). We present the beam requirements (o, Fo)
necessary for achieving a plasma under these conditions. We add the temperature associated
to such hot-spot (Ths).
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Beam: C6+

p =300 g/cm?; Tp=0.5 keV p =300 g/cm?; To=1 keV p =300 g/cm?; To=5 keV
ZTmax Eo TTmax Eo ZTmax Eo

40 554.2 40 553.2 40 552.3

50 625.9 50 624.3 50 623.3

60 692.2 60 687.7 60 687.6

Lus |0 [109] T Ly | 0109 T Lus | 0 [10°]  Tis

20 2.0 10.6 20 1.9 10.5 20 1.1 10.1

30 2.2 11.0 30 2.1 10.9 30 1.2 10.2

40 2.5 11.3 40 2.3 11.2 40 1.3 10.3
p =500 g/cm?; Tp=0.5 keV p =500 g/em?; To=1 keV p =500 g/cm?; To=5 keV
ZTmax Eo TTmax Eo ZTmax Eo

40 722.3 40 711.5 40 711.2

50 818.4 50 804.7 50 803.0

60 903.8 60 890.0 60 887.1

Ly | 0109 T Lus | 010 T Lns | 0 [10°] T

20 2.4 11.0 20 2.3 10.9 20 1.3 10.2

30 2.7 11.4 30 2.6 11.3 30 14 10.3

40 3.1 11.8 40 2.9 11.7 40 1.6 10.6
p =700 g/cmS; Ty=0.5 keV p =700 g/cn13; To=1 keV p =700 g/cm3; To=5 keV
TTmax Eo TTmax Eo ZTmax Eo

40 859.4 40 844.3 40 840.9

50 968.7 50 956.3 50 949.8

60 1072.5 60 1057.6 60 1049.8

Ly |0 [109] T Ly |0 [10Y] T Lns | 0 [10°] T

20 2.7 11.3 20 2.6 11.1 20 1.4 10.3

30 3.2 11.8 30 3.0 11.7 30 1.6 10.6

40 3.6 12.3 40 3.4 12.1 40 1.8 10.9

TABLE 5.2— Same as Table 5.1, but considering a carbon beam for the interaction.
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Beam: V23+

p =300 g/cm?; To=0.5 keV p =300 g/cm?; To=1 keV p =300 g/cm?; To=5 keV
TTmax Eo TTmax Eo ZTmax Eo

40 4497.6 40 4488.5 40 4481.8

50 5098.7 50 5083.3 50 5080.4

60 5648.4 60 5620.4 60 5618.0

Lus | 0 [10%] T Lus | 0 [10%] T Lus | 0 [10%] T

20 2.1 11.8 20 2.0 11.7 20 1.1 10.6

30 2.5 12.5 30 2.4 12.3 30 1.3 11.0

40 2.9 12.9 40 2.7 12.7 40 1.5 11.4
p =500 g/cm?; To=0.5 keV p =500 g/cm?; To=1 keV p =500 g/em?; To=5 keV
TTmax Eo TTmax Eo ZTmax Eo

40 5884.6 40 5862.6 40 5839.5

50 6657.1 50 6624.0 50 6602.6

60 7364.0 60 7310.6 60 7302.6

Lus | 0 [10%] T Lus | 0 [10%] T Lns | 0 [10%] T

20 2.7 12.4 20 2.6 12.3 20 1.4 11.0

30 3.3 13.0 30 3.1 12.9 30 1.7 11.5

40 3.8 13.5 40 3.6 13.4 40 1.9 11.8
p =700 g/cm?; Top=0.5 keV p =700 g/cm?; To=1 keV p =700 g/cm?; To=5 keV
TTmax Eo TTmax Eo TTmax Eo

40 6988.8 40 6927.4 40 6915.2

50 7900.3 50 7848.3 50 7822.0

60 8739.6 60 8692.0 60 8653.3

Lys | 0 [10%] T Lus | 0 [10%] T Ly | 0 [10%] T

20 3.2 12.9 20 3.0 12.7 20 1.6 11.3

30 3.9 13.6 30 3.7 13.4 30 2.0 11.8

40 4.5 13.9 40 4.2 13.8 40 2.3 12.0

TABLE 5.3— Same as Table 5.1, but considering a vanadium beam for the interaction.
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5.3 Burning gain and coupling results

After studying the characteristics of the resulting heated plasma and its hot-
spot, we study the burning gain (Gpum), as it is a fundamental parameter for
a successful nuclear fusion. To do so, we apply Eq. 3.61, which, adapted for a
pure plasma with homogeneous density, can be written as:

pRp €r R%
pRp + Hp 6Ths 3Lnri/4+ (RY — 3Lneri/4) £

Gburn = (51)

where we have stated clear the dependence with the results of Ly and Tj, that
were presented above.

We present burning gain maps as a function of the energy of the projectiles
and the flux of the beam. Then, we vary the rest of components of our parameter
space: the beam specie and radius (r},), the plasma density (p), its initial
temperature (7p) and the fuel radius (Rp). Burning gain colour maps are
shown in Figs. 5.6, 5.7, 5.8, 5.9 and 5.10. These figures are limited by the
ignition curve (Gigz = 1) and the upper range (L, < 2Rp). To provide a general
perspective of how each parameter affects the burning gain, we have taken as a
reference case a carbon beam C%* of radius r,=15 pm and a plasma of density
p=500 g/cm3, initial temperature of Ty=1 keV and radius of Rp=50 pm. Such
case is represented in all central panels of each figure. On top and bottom of
the reference panel, we alter one of the five parameters, leaving the rest fixed
to the reference case. From Fig. 5.6 to Fig. 5.10, first one changes the species of
the beam, second varies its radius, third the plasma density, fourth the initial
temperature and fifth the radius of the fuel sphere. For a proper comparison
between these five figures, we have fixed the colorbar from Gpym =~ 0 to 5000,
which are the minimum and maximum values found along the experiments.

Studying the dependence of the burning gain respect to the projectile energy
and flux of the beam, we find a similar structure in all gain maps: the higher
burning factors are found close to the ignition curve, where the hot-spot requires
less energy to form, but still is able to return a successful combustion. This is
found in small regions of low projectile energy or low beam flux, or both. For
large projectile energies or beam fluxes, the burning gain descends drastically up
to a blank region where the range is larger than 2Rp. Following the structures
found in Fig. 5.1, we acknowledge regions of edge, intermediate and central
hot-spots. Again, the last ones present constant behaviour with the energy of
the projectiles. Burning gain depends on the radius and temperature of the
hot-spot, so, as both are found to be constant (explained in Sect. 3.11), the
gain is constant too.
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Varying the rest of parameters, aside from the projectile energy and flux of
the beam, allows comparing the burning gain efficiency for different experiment
setups. Row per row, we find:

e For lighter beam species, not only is it difficult to find a central hot-spot,
but the regions with high burning gain are smaller. Heavier beams present
elevated burning gains in larger regions close to the isoline of Gy = 1.

e Smaller beam radii retrieve larger burning gains. For hot-spots of the
same length and temperature, having a lower beam radius means achiev-
ing the burning of the whole sphere with a more compact hot-spot volume,
which means employing less energy.

o Higher plasma densities provide considerable larger gains.

e Lower initial temperatures provide larger regions with higher gains, al-
though is not a dominant parameter for changing the results.

e For hot-spots with same dimensions, reducing the size of the fuel sphere
decreases the burning gain, as less material is burnt, accordingly to Eq. (3.61).
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FIGURE 5.6— Burning gains in the (o, Fp)-space. Central panel serves as reference case,
using a carbon beam C°®" of radius r,=15 ym and a plasma of density p=500 g/cm?, initial
temperature To=1 keV and radius Rr=>50 um. Top and bottom panels vary one parameter

in respect to the reference case, leaving the rest fixed. In this case we change the beam type
(p™, C%F and V3T).
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respect to the central reference case.
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and 5 keV) in respect to the central reference case.
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FIGURE 5.10— Similar to Fig. 5.6, but varying the fuel sphere radii (Rr = 40, 50 and
60 pm) in respect to the central reference case.
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Following the results presented in Tables 5.1, 5.2 and 5.3, we calculate the
burning gain values found at central hot-spots with lengths Ly, = 20, 30 and
40 pm, for a beam and plasma radii of 15 and 50 pm, respectively. For these
experiments, we find the maximum gain values close to 2000 while minimum
above 500. As in the burning figures displayed in this section, larger hot-spot
lengths are located at higher fluxes and return lower gains. Then, these tables
show how the burning gain increases with the density and lowers if the initial
temperature does. When changing the ion charge, for the same hot-spot length,
we find that heavier ions return lower burning gains. This might seem contra-
dictory with the results of Fig. 5.6, in which we find larger regions with high
gain values for high-Z beams. However, we note how interpreting the general
distribution of results in the (o, Ey)-space is not equivalent to checking the ex-
act position of the Ly, which fall at different positions in respect to the gain
maps.

Beam: pt

p =300; Tp=0.5 p =300; To=1 p =300; To=>
Lys Gburn Lys | Goum Lys | Goum
20 1615.3 20 1672.7 20 -

30 1006.4 30 1120.7 30 -

40 802.6 40 867.2 40 -

p =500; Tp=0.5 p =500; To=1 p =500; To=5
Lys Gburn Lys | Goum Lyps | Goum
20 1820.9 20 1823.6 20 2134.2
30 1368.4 30 1387.4 30 1712.2
40 1100.8 40 1103.3 40 1163.9
» =700; To=0.5 | | [ p =700; To=1 | | [ p =700; To=5
Lys Gourn Lys | Goumn Lys | Goum
20 2068.9 20 2123.8 20 2344.9
30 1608.0 30 1618.5 30 1932.6
40 1296.4 40 1299.1 40 1485.7

TABLE 5.4— Numerical results of the burning gain for the same set of cases of interest as
in Table 5.1, this is, considering a proton beam for the interaction. The selected cases are
lengths of the hot-spot such as Lys=20, 30 or 40 pum. We provide results for each density
(p=300, 500 and 700 g/cm®) and initial temperatures of the plasma (To=0.5, 1, 5 keV). Beam
and fuel radii fixed at 15 and 50 pm, respectively
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Beam: C6+
p =300; Tp=0.5 p =300; Tp=1 p =300; To=5
L Gburn Lyps | Goum Lps | Gbum
20 1342.2 20 1355.4 20 1453.4
30 974.1 30 984.9 30 1019.1
40 754.9 40 761.8 40 826.1
1 =500; To=05 | | [ p =500; To=1 | | [ p =500; To=5
L Gburn Lyps | Goum Lps | Gbum
20 1737.5 20 1753.1 20 1852.9
30 1289.6 30 1297.1 30 1384.2
40 1009.0 40 1019.2 40 1102.5
p =700; Tp=0.5 p =700; Top=1 p =700; Tp=5
Lys Ghourn Lys | Goumn Lys | Goum
20 1985.2 20 1989.7 20 2089.0
30 1491.5 30 1497.7 30 1598.0
40 1179.9 40 1189.6 40 1286.3

TABLE 5.5— Same as Table 5.4, but considering a carbon beam for the interaction.

Beam: V23
p =300; To=0.5 | | [ p=300; To=1 | | [ p =300; Ty=5
Ly Gburn Lys | Goum Lys | Gbum
20 1247.3 20 1255.6 20 1352.4
30 880.9 30 889.7 30 968.6
40 673.7 40 682.5 40 750.9
p =500; Tp=0.5 p =500; Tp=1 p =500; To=5
Lys Gburn Lys | Goum Lys | Goum
20 1609.6 20 1610.9 20 1734.5
30 1163.9 30 1173.3 30 1286.6
40 906.2 40 913.4 40 1012.1
» =700; To=05 | | [ p =700; To=1 | | [ p =700; To=5
Lys Ghourn Lys | Goumn Lys | Goum
20 1834.9 20 1837.6 20 1969.9
30 1356.2 30 1362.9 30 1491.7
40 1067.9 40 1078.7 40 1196.9

TABLE 5.6— Same as Table 5.4, but considering a vanadium beam for the interaction.

Besides from the burning gain it is worth quantifying the energy deposited in
the hot-spot in respect to the energy introduced by the beam (A FEys/Ey), this is,
the coupling (see Sect. 3.9). Low coupling values indicate that part of the energy



133

from the beam is lost in regions that do not create ignition. First, we address
the energy of the beam and the energy deposited in the hot-spot independently.
Thus, in Fig. 5.11 we show both magnitudes in separated columns of panels, for
different ion charges. We remind that the energy of the beam is equivalent to
the energy deposited in the whole heated region (in absence of a corona). Close
to the ignition curve we find beam energies between Ep 2 0 and maximum
values of 30, 20 and 10 kJ, for proton, carbon and vanadium ions, respectively.
On the other hand, the hot-spot energies associated to the ignition curve are
found in an interval between AFEy £ 0 and 5 kJ. These results are found within
the interval deduced from Tables 5.1, 5.2 and 5.3'. The region close to the
ignition curve is of great interest, as it represents those cases where minimum
energy is invested to create a hot-spot that will burn the fuel, as was shown
with the previous burning gain results. Then, the maximum values found for
both E}, and AFEyg correspond to 70, 75 and 80 kJ, when increasing the ion
charge. The distribution of results in the (o, Ey)-space is similar between F,
and Fyg for edge and intermediate hot-spots, although it varies when central
hot-spots are created.

We remind the results extracted from Tables 5.1, 5.2 and 5.3 considered a much diverse
span of plasma conditions, therefore finding a wider range of F, and AFEs results in the
ignition curve.
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FIGURE 5.11— Energy of the beam (left column) and energy deposited in the hot-spot
(right column) for different ions, in respect to the (o, Fo)-space.



135

Then, in Fig. 5.12 we show an extended study of the coupling efficiency
results. The central column serves as reference case, using a carbon beam, a
plasma of density p=500 g/cm?® and an initial temperature Ty=1 keV. Left and
right columns are variations in respect to the reference case. Each row varies
one of these three parameters while leaving the rest fixed, as the title of each
panel indicates. The beam and fuel radii are not considered in this case, as the
coupling is independent of them. Consequently, there is no need to limit the
coloured map to Ly < 2Rp either.

The general behaviour of the coupling in the (o, Ep)-space is distinguishable
in two zones. In the edge and intermediate hot-spot regions there is an increase
mainly dominated by the flux and secondarily by the energy of the projectiles.
In the central hot-spot region, we find a palette of increasing coupling efficien-
cies, mostly dependent on the beam flux. This change in the functional shape
depends mainly on the charge of the ion beam. Higher beam species increase
the central hot-spot region and reveal such palette of couplings. When varying
the density or the initial temperature, the colormaps of the coupling does not
change roughly. Although, in cases with same (o, Ey)-values, we find:

e In the edge-intermediate hot-spot region, increasing the density decreases
the coupling. In the central hot-spot region, it happens the opposite.

o When increasing the initial temperature of the plasma (7p) the coupling
increases in all regions.

The key result to address is that, for central hot-spots, the coupling does not
reach the highest coupling values, as some energy of the beam is deposited in
the beginning of the plasma in order to penetrate the fuel up to the centre,
where the hot-spot appears.
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FIGURE 5.12— Coupling between the hot-spot and the beam energy (A FEys/Ey) for different
beam-plasma conditions, in the (o, Ep)-space. The central column serves as reference case
(CF, p=500 g/cm?®, Tp=1 keV). Left and right columns are variations in respect to the
reference case. Each row varies one of these parameters while leaving the rest fixed.



137

The lowest coupling is found near the ignition curve (Gijz = 1), which is
the region where the highest burning gain is located. Creating the spark in
the centre of the fuel is advantageous for the FI, however, for central hot-
spots the coupling efficiency never reaches its optimum value. A compromise
between proper burning gain, the coupling efficiency and finding a central hot-
spot must be taken. To address such problem, in Fig. 5.13 we represent the
product between both parameters, Gpym X (AEys/Eyp), and we display the lines
delimiting the edge and intermediate hot-spot regions (green dotted line) and
the intermediate and central hot-spot regions (purple dashed line). For this
example we take the same reference cases of Fig. 5.6, this is, proton, carbon
and vanadium beams of radius r,=15 ym and a plasma of density p=500 g/cm?,
initial temperature Tp=1 keV and radius Rp=50 pm.

We find the highest values for edge hot-spots (very short and not extremely
hot), at high fluxes and low projectile energies. For central hot-spots, the results
are more concerning, as the burning gain descends when increasing the flux and
the coupling descends when augmenting the projectile energy. Heavier beams
present more favourable results in larger regions of the studied space. Thus,
an optimal trade-off between burning, coupling and finding a central hot-spot
would appear, for example, when selecting a carbon ion beam, at Ey ~ 600 MeV
and o ~ 2.5-10' g/cm? (Gpum X (AELs/Ep) &~ 900). In such point we find a
balanced gain and coupling, with a hot-spot centred at 30 um, with twice the
length of the beam radius Lps ~ 30 pm (i.e. where assuming a sphere shape for
the hot-spot is the better). At Ey ~ 800 MeV we will find a similar hot-spot,
but positioned exactly in the centre of the fuel sphere and with a lower coupling
(Gourn X (AFEyLs/Ey) =~ 700).
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5.4 Results with a fuel corona

In this section we perform a similar study to the one above, but considering
a corona for the fuel sphere, in order to determine the differences with the
only-core case. This implies the beam travels through a region of low density
and its particles have a previous slowing down in the process, reaching the core
with less energy compared to the non-corona scenario. The conditions of the
experiment are the same as in Fig. 5.1, but, to exemplify the impact of the
corona, we chose the spatial and density distribution of Fig. 3.2. That is, we
consider a corona of low density (p. = 10 g/cm?®) covering 100 pm, followed by
a corona-core transition region of 20 pm with variable density, and, at last, the
constant part of the core with a diameter that measures approximately 100 pm,
which corresponds to most of the experiments performed in the sections before,
where Rrp = 50 pm.

First, we want to address the state of the core after being heated. To do so,
in Fig. 5.14 we display the length and temperature results for proton, carbon
and vanadium beams. These results are meant to be compared with those of
Fig. 5.1. They are calculated in the same (o, Ey)-range, for a better comparison
with the non-corona case, and are displayed following the same linestyle to
designate each parameter. The most remarkable result, in respect to the case
without corona, is a displacement of all results to superior values of Ey. In other
words, the general behaviour is the same, but, when considering the corona, the
projectiles require more energy to achieve the same depth, so all the results are
moved to higher energies. For instance, reaching zrmax = 50 pm with a carbon
beam needs about 800 MeV for the non-corona case and 900 MeV. A similar
behaviour is found for Ly, isolines, which move to higher energies. The shape
of Ty—p isolines becomes narrower with the x-axis. This is due to the minimum
energy necessary to reach ignition being higher and the Ty—o = Tj; threshold
(shown in purple) being steeper. On the other hand, once the central hot-spot
region is reached, the results for Lys and Tig are the same with or without
corona (constant in respect to Ep), as in our experiment considering a corona
region does not change the dependency with the flux. Comparably, in the
intermediate and central hot-spot regions, Ti,.x presents a similar behaviour.
In general, these results indicate that the same conditions for the heated plasma
can be reached by finely tuning the proper beam conditions.

Secondly, Fig. 5.15 serves as an example to analyse the changes of Gjy = 1,
the (o, Ep)-space where the ignition can take place, as well as Gy, with
and without corona (left and right columns, respectively). We select the same
reference cases of Fig. 5.6 (i.e. proton, carbon and vanadium beams of r, =
15 pym, p = 500 g/cm3, Ty = 1 keV and Rp = 50 um). As expected, the
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FIGURE 5.14— Results for the experiments of Fig. 5.1, but considering a corona of variable
density. The linestyle of the isolines to designate each parameter is also the same to the one
of that figure.

ignition threshold (as black thick line) has been displaced into higher energies,
so the minimum projectile energy (Eomin,ig) would require greater values. For
example, when comparing with the minimum energy of the non-corona case (see
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Table 4.4), for p = 500 g/cm3, in the corona case we find Egnyinig ~ 2.2 MeV
for protons, 100 MeV for carbon and 1365 MeV for vanadium. This implies the
thresholds increase by a 1000%, 1270% and 21430%, respectively. Moreover, the
vertical left limit we found in Fig. 5.15 is not as straight any more, so Egmin,ig
is not completely representative of the range of study. We want to note that
Epmax increases correspondingly and that omin e is the same as in the non-
corona case. With regard to the burning gain, aside from the displacement of
the results in the x-axis, the possible minimum and maximum values of Gpum
are the same, from 0 to 4000, only more energy is required to reach the same
Gpurn values.

Thirdly, with Fig. 5.16 we exemplary compare the changes in the coupling
(AEys/AEy) with those of Fig. 5.12 (i.e. p = 500 g/cm?, Ty = 1 keV) for
proton, carbon and vanadium beams. This is, the non-corona case (left column
of panels) and the fuel considering a corona (right column of panels). As before,
every result is displaced to high energy regions. However, in this case, the
implications of considering the corona are more significant. In general, the
coupling values are reduced and distributed differently. Lower couplings are
more predominant in the edge hot-spot region and the shape of these contours
is different. Now, each region is less rounded, constrained by an almost straight
vertical line. The central hot-spot region is more similar to the non-corona
shape, showing again the results as a palette of coupling values. These changes
occur because a part of the beam energy is consistently lost in the corona.
Beams that create edge hot-spots lose more energy in the corona, leading to the
vertical palette of values found now for the coupling. Contrarily, for central hot-
spots, the corona is more transparent for the beam, finding more alike results to
those of the non-corona case. We want to highlight that, before, we explained
that it was possible to obtain the same heated plasma conditions in the non-
corona and corona cases by adjusting the beam characteristics (mainly the
energy of the projectiles). However, the coupling does not follow this behaviour,
being not that easily tunable. For example, in the corona case, reaching a
coupling close to one (AFEys/Ey, = 1) is often not possible in the studied ranges
of (0, Ey), in comparison to the non-corona fuel.
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As a bottom line, we can say that results are similar but displaced to higher
energies, except for the coupling values, that might be lower and located differ-
ently. Thus, in order to address the non-corona approximation, it is necessary
to consider the change in projectile energies or to create an experiment where
the beam source is as close to the core as possible.



Simulation and analysis of the
beam-plasma interaction of

monoenergetic ion beams with doped
DT fuels

In this chapter, a huge number of numerical simulations were performed to
study of the interaction between a fast monoenergetic ion beam and doped DT
fuel. To exemplify the behaviour of a fuel that is not pure, we have chosen
various ion beams and a plasma doped with fully ionized impurities (Be, C, Al
and Cu) at different concentrations. As explained at the beginning of Chap-
ter 3, during the compression process, traces of the ablator material get mixed
with the DT fuel. Therefore, analysing the influence of the impurities on the
characteristic parameters of the hot-spots generated in FI is key for a more
realistic study. We present the results of the heated plasma and the hot-spot,
the self-heating, the ignition curves, the burning gain and the coupling of such
doped DT plasma. With the inclusion of different dopants and concentrations,
the number of variables of our study is even larger. Thus, we narrow down
the study by selecting a fast fully ionized monoenergetic proton, carbon and
vanadium ion beams with radius 7, = 15 pm and a representative plasma with
Rr = 50 pm, ppr = 500 g/cm?® and Ty = 1 keV. We left as free parameters
the kind of impurity (Zgop) and its concentration (§), as well as a wide range
of values for the energy of the beam ions (Ep) and its flux (o). As explained
in Sect. 2.4, neither corona nor quasi-monoenergetic beams are considered, in
order to evaluate separately the influence of dopants in respect to the pure DT
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plasma case. We note that, to ease the comparison, in this chapter the limits
(Omin, Omax, Fomin) Of the parameter space are often the same as in previous
Chapter 5. We have extended Egmax to gather the range of Ly = 100 pgm and
sometimes, if necessary, we apply a zoom-in for a clearer representation.

6.1 Length and temperature distributions in the (o, Ey)-space

To fully understand the influence of dopants in the conditions of the plasma
after the interaction, first we show some results associated with changes in
length and temperature of the hot-spot. Following the ideas already presented
in Sect. 2.4, we choose the hot-spot such that Lys = 2r, and Trmax = Rr.
As the beam and sphere radii are of 15 pym and 50 pum, respectively, in the
top four panels of Figs. 6.1, 6.2 and 6.3 (each figure corresponds to a proton,
carbon and vanadium beam) we have depicted the isolines of Lys = 30 ym and
TTmax = D0 pm in the (o, Ey)-space, for a pure DT plasma (£ = 0) and for the
dopants selected at different concentrations. Then, in the bottom four panels,
we show the temperatures associated to such lengths in the central hot-spot
region for the same cases.

In the top four panels of Figs. 6.1, 6.2 and 6.3 we observe how, when the
concentration is increased, both Lys = 30 and &Tmax = 50 pm displace towards
higher energy and flux values, aligned to the pure DT isoline. This is mainly due
to the increase of the slowing down of the ions of the beam exerted by free elec-
trons and nuclei associated with impurities. Moreover, when adding a dopant,
the density of the plasma increases, reducing all lengths, as demonstrated in
Sects. 4.2 and 4.4.

A precise way of determining the change in the isoline positions can be done
by inspecting the energy at which zpax = 50 pum is reached (as in the pure case,
the lines are vertical) or by studying the point (¢*(Zr,§), EG(c*, Z1,£)), when
the central hot-spot region is reached (see Sect. 5.1). For instance, Trmax =
50 um is found in a pure DT fuel at Ey ~ 800 MeV, then, this value increases
up to 1275 MeV for a Be doped fuel (£ = 0.4). On the other hand, we find
that E;(Zr,€) and 0*(Zr,&) increase with both the atomic number and the
concentration of the impurity. As an example, for a pure plasma, we find
E}(Z1,€) ~ 500 MeV and o*(Z,€) ~ 2.5- 10 cm™2. When Be (¢ = 0.2) is
introduced in the plasma, these values are shifted to Ej(Zr,£) ~ 1100 MeV
and o*(Z1,€) ~ 3.4 - 10" cm~2, while if the impurity is carbon at a similar
concentration, Ej(Zr,€) ~ 1225 MeV and o*(Z;,€) ~ 4.4 - 10 ecm~2. For
the case of Cu (£ = 0.015), we obtain Ej(Zr1,£) ~ 625 MeV and o*(Z1,&) ~
3.7-10' cm~2. When a heavier dopant is considered, (¢*(Z1, €), E§(0*, Z1,£))-
values of the same order are found for lower concentrations.
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FIGURE 6.1— Isoline results retrieved after applying a proton beam to a DT plasma in-
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Meanwhile, in the bottom four panels of Figs. 6.1, 6.2 and 6.3 we show the
isolines of the hot-spot temperatures (7js) associated to Lps = 30 pm when
they are in the central hot-spot region. It is found that the hot-spots become
hotter when either the atomic number or the concentration of the impurity
increase. For example, in the pure case, Tis = 11.1 keV, while for beryllium
doped fuel Tys = 13.7 keV for £ = 0.2. For a similar concentration, a carbon
dopant reaches a temperature of Ty,s = 16.5 keV. This increase in temperature
could be anticipated according to the results of Sec. 4.4, as the density of the
plasma increases when a dopant is introduced.

With all these experiments, we are able to provide the beam characteristics
(0, Ep) at which it is possible to generate a hot-spot with a length of 30 ym and
located at the centre of the sphere (zpmax = 50 um), as well as its associated
temperature, for different mixtures of the fuel. Later on, we also provide its
associated burn gain and coupling values for some of these concentrations, by
means of the systematic results of Sect. 6.3. If necessary, our modelling is
capable of calculating this sort of results for any desired input parameters.

6.2 Ignition and self-heating threshold in the (o, Ej)-space

After addressing the characteristics of the hot-spot, we study the threshold
values of o and Fy at which self-heating and ignition can be reached. To do so, in
Figs. 6.4, 6.5 and 6.6 we have plotted the self-heating curves (Gg, (0, Fo, Z1,&) =
1) and ignition curves (Gig(o, Ey, Z1,§) = 1). Values of the (o, Ey)-space above
those curves fulfil their respective conditions. The colour code is the same as
in Sect. 6.1.

As expected, for the ranges of medium and high energies, these curves have
an almost constant value. This is due to Lys and Tjs being constant with energy
when the central hot-spot region is reached. For a DT pure plasma ({ = 0),
the minimum values of ¢ are very similar for self-heating and ignition curves
(Cminsh & Tmin,ig =~ 1.6-10%° cm_z) although some small differences are detected
at low energies (Ey < 150 MeV).

When an impurity is introduced in the DT fuel, the differences between
self-heating and ignition curves becomes more relevant. Moreover, both curves
are shifted to higher values of o and FEy, which implies that the region of beam
parameters in which the criterion are fulfilled is reduced. These behaviours are
more pronounced as the atomic number and the concentration of the impurity
increase. For example, for the case of Be, the value of o7 increases to 1.9 -
10" em™2, 2.1 - 10" em™2 and 3.9 - 10 cm™2 when ¢ = 0.1, 0.2 and 0.3,
respectively. For the carbon doped case, the values are 2.2 - 10 and 3.3 - 101°
em ™2, when € = 0.1 and 0.2, respectively.
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We note that, at low values of £, the values of o e are slightly lower
than ominsh. However, the panels of Figs. 6.4, 6.5 and 6.6 show that, for
every impurity, there is a certain concentration value (§*(Zr)) from which the
self-heating curve is found below the ignition curve. In such cases, the self-
heating criterion is less restrictive than the ignition criterion, in contradiction
to the ideas stated in Sects. 2.3.2, 3.6 and 3.7. This means that the self-heating
criterion does not ensure the ignition and, therefore, the posterior burning of the
heated region. In that situation, the set of beam parameters included between
both curves is not of interest. For Be, C, Al and Cu impurities, we have found
that £*(Zy) is around 0.15, 0.1, 0.035 and 0.01, respectively.

6.3 Burning gain and coupling results in the (o, Ey)-space

Finally, we have analysed the influence of the impurities in the nuclear burn.
Again, it is characterized by the burning gain parameter, Guym, given by
Eq. 3.61. This parameter also depends on the radius of the sphere (Rp =
50 um), so we have restricted our analysis to cases in which the range of the
ion is less than Ly = 100 pm. For higher lengths, the ion beam deposits energy
outside the fuel, so this situation has not been considered in the present study.

In Figs. 6.7, 6.8 and 6.9 we depict the burning gains obtained for a pure
DT plasma in comparison to the same plasma doped with Be, C, Al and Cu
impurities at different concentrations. Each figure considers a different beam:
pt, C" and V?3*. In these figures, the thick black line at low o represents
the ignition curve (Omin,ig(Eo, Z71,§)) which indicates that only above this curve
does nuclear burn take place. The other thick black line showed in the figures
represents the isoline of Ly (o, Fy, Z1,&) = 100 um. As discussed previously,
with Sects. 6.1 and 6.2, both the ignition curve and the Ly = 100 pum isolines
are shifted toward higher values of o0 and Ey when impurities are introduced and
their concentration is increased. As a consequence of the ignition requirements,
the (o, Ey)-space where burning can take place is reduced. More importantly, if
the region where the burning is possible shrinks, the maximum burning gain val-
ues are restricted. When increasing the concentration of each impurity, we find
that the same gains are found in almost the same (o, Ep)-values, slightly dis-
placed towards higher fluxes when the concentration is increased. Thus, when
some of those values are no longer available to create a hot-spot that achieves
ignition, the optimal values for Gy are lost. These deductions are similar for
all the dopants shown, at least for the selected concentrations. For example,
Fig. 6.8 shows that Gpym reaches a maximum value around Gy = 4000 (or,
from Eq. 3.60, Ers ~ 4000 - (Eps + E¢)), while, for example, a carbon doped
fuel this value is reduced to Gpym < 2400 and < 800 when the concentration
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is 0.06 and 0.21, respectively. Furthermore, the maximum values of the gains
are obtained close to the ignition curves, where hot-spots have the lowest val-
ues of the areal density and temperature. This happens when the beams have
either low flux or ion energy. On the other hand, we have observed that the
maximum value of the burning gain is reduced as the atomic number of the im-
purity increases. For instance, for beryllium and carbon impurities at & =~ 0.2,
the maximum value is Gy < 1600 and < 800, respectively.

Finally, in Figs. 6.10, 6.11 and 6.12, we present the results of the coupling
(AEys/Ey) for the same cases selected when presenting the results of the burn-
ing gain. Again, each figure corresponds to a different beam specie. For each
impurity, when increasing the concentration, the same coupling results are dis-
placed towards higher flux values and, again, the region of study is reduced.
However, in this case the lower values of the coupling disappear, in favour of
the energy deposition.

The coupling figures also serve to comment on how the edge and central hot-
spot regions behave in the presence of dopants (see, for instance, Fig. 6.11). We
find that, when introducing an impurity of increasing concentration, the size
of the central hot-spot region grows. Although in our studied parameter space
the available regions are restricted to higher (o, Ey)-values, the impurities might
ease finding central hot-spots.

With all the results of this chapter, we can reason that the presence of
impurities is highly detrimental in the FI context. In comparison to a pure DT
fuel, the requirements for the beam are stricter and the feasible burning gains
are lower.
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FIGURE 6.7— Burning gain of a pure DT plasma (left column) and including different
impurities at different concentrations (central and right columns) when applying a proton
beam.
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FIGURE 6.8— Similar to Fig. 6.7, but applying a carbon beam.
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FIGURE 6.9— Similar to Fig. 6.7, but applying a vanadium beam.
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FIGURE 6.10— Coupling values of a pure DT plasma (left column) and including different
impurities at different concentrations (central and right columns) when applying a proton
beam.
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Simulation and analysis of the
beam-plasma interaction of
quasi-monoenergetic (Gaussian ion
beams with pure DT fuels

This chapter delves into the interaction between quasi-monoenergetic beams
and a pure DT plasma. We compare the results of a monoenergetic beam with
two quasi-monoenergetic Gaussian beams. As explained in Sect. 3.3.2, one
generated at the edge of the precompressed fuel (G1) and one generated at a
distance ”d” of the edge (G2 or time-dependent)!. We determine the ion beam
parameters that fulfilled the self-heating and ignition criteria in each case, that
is, in the (o, Eg,0E)-space. Then, we present the differences in the retrieved
hot-spots and heated regions, as well as the burning gains of the thermonuclear
fuel.

Although our simulations can be performed for a variety of experimental
conditions, in this chapter we will only show exemplary results for a plasma
of density p = 500 g/cm? and initial temperature Ty = 1 keV, with different
vanadium beams. These cases are representative of the general behaviour we
have found through our modelling. The beam considered has a wide range of the
parameters (o, Ey,0F ), as well as being located at the edge of the plasma or not
(G1 or G2 cases). The energy spread values considered in our study corresponds

"We note that, when performing our numerical calculations, the results are ultimately
independent of the distance, as explained in Sect. 3.12.
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to quasi-monoenergetic Gaussian beams, that is, they were selected equal to or
less than 15% (JE < 0.15, Hegelich et al., 2011). No corona or dopants are
considered, to study the effect of considering a quasi-monoenergetic beam alone
and contrast the results with the monoenergetic case.

7.1 Spatial-temporal results

To begin with, we analyse the changes in the stopping power when considering
a Gaussian distribution for the energies of the beam. Thus, in Fig. 7.1, we
show the stopping power of a bin entering the plasma at the end of the heating
process. We consider a flux of o = 2.7-10'® cm ™2 (left) and o = 3.8- 108 cm 2
(right), for mean initial energies given by Ey = 4000 and 7000 MeV. The energy
spreads (6F) considered are 0% (monoenergetic), 5%, 10% and 15%, with no
separation between the source and the target (G1, d = 0).

In the case of quasi-monoenergetic beams (6FE # 0%), the ions at each
instant, ¢, enter the plasma with a variety of initial energies in a proportion
established by the Gaussian energy distribution from Eq. 3.20. As a con-
sequence, each ion? has their own evolution (or slowing down) through the
plasma, suffering a different stopping. The stopping power showed in the fig-
ure (Sp(x; Eo, §E)) corresponds to the accumulated stopping power over all the
projectiles.

In Fig. 7.1 we see how the stopping of monoenergetic beams reaches its
maximum value just before becoming zero, or equivalently, forming the Bragg
peak just before the ions stop. As expected, for a given value of the flux,
the length of the heated region (Ly) increases with the initial energy (Ep).
Meanwhile, for quasi-monoenergetic beams, we see that the main effect of an
energy spread is reducing or making disappear the Bragg peak. This is due to
the ion projectiles not having the same energy, and so, its slowing is different
and do not stop at the exact same range.

Secondly, in Fig. 7.2 we show the spatial temperature field achieved after
heating the plasma with the same conditions of Fig. 7.1. For the selected con-
ditions of the beam, we find central hot-spots for all the experiments. Similarly
to the previous results, having a distribution of energies for the ion projectiles
spreads the energy deposition. For instance, projectiles with energy over Ey
will reach further than in the monoenergetic case. Conversely, as not all the
projectiles deposit their energy at the same time and position, less temperature
is reached. This justifies how, for quasi-monoenergetic beams with increasing
dispersion, the temperatures achieved are lower, the position of the maximum
temperature decreases, but the range of the final heated region is larger. There-

20r ”sub-bin”, according to our computation, as explained in Sect. 3.12
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fore, when the energy spread is higher, the hot-spots are cooler and closer to the
edge of the plasma. This change is crucial when taking into account that reach-
ing temperatures over the ignition threshold (7jz) is a requisite for the burning
of the fuel. This foresees the limitations of Gaussian or Maxwellian beams to
achieve ignition against monoenergetic beams, as we will address later on, with

Fig. 7.5.
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FIGURE 7.1— Stopping power [MeV/m] of the last bin as it deepens in the plasma. A
quasi-monoenergetic Gaussian beam is considered (G1), located at the edge of the plasma,
with vanadium projectiles of two energies (FEo = 4000 and 7000 MeV) and two fluxes (0 =
2.7 - 10" cm™? on the left and o = 3.8 - 10"® cm™? on the right). Plasma conditions are
To =1 keV and p = 500 g/cm® (Gil et al., 2023).
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FIGURE 7.2— Temperature field after heating a plasma with a vanadium beam. The con-
ditions considered are the same of Fig. 7.1 (Gil et al., 2023).
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With Tables 7.1 and 7.2 we complement the information of Fig. 7.2 and
present a more detailed view on the relevant properties of hot-spots generated
by vanadium ion beams, considering various parameter values (o, Eg, dE). Our
discussion revolves around particle densities of o = 2.7 - 10'® ecm=2 (Table 7.1)
and o = 3.8 -10'® cm™2 (Table 7.2), as these values correspond to hot-spot
lengths on the order of 20 and 40 pm, respectively. These values are key,
considering that typical values of the beam radii are in the order of r, =10 to
20 pum (Fernandez et al., 2014; Honrubia & Murakami, 2015), so we select beams
that create hot-spots where Lyg =~ 2r}p, to ensure that the hot-spot volume can
be approximated as a sphere as optimally as possible.

OF = 0% 0F =10% 0F =15%

Ey || Lns | Ths | @Tmax | Tmax || Lns | Ths | @Tmax | Tmax | Lhs | Ths | TTmax | Timax
1000 5.8 | 13.5 0 14.9 5.8 | 13.5 0 14.9 5.8 | 13.4 0 14.9
4000 || 20.8 | 12.7 20.8 15.5 20.8 | 12.5 17.8 14.1 20.6 | 12.1 16.3 13.3
5500 || 20.8 | 12.7 38.2 15.5 20.4 | 11.8 32.4 12.7 18.3 | 11.1 29.5 11.6
7000 || 20.8 | 12.8 | 57.2 15.5 || 18.1 | 11.1 | 48.6 11.5 0 0 43.9 9.9
7500 || 20.8 | 12.8 | 63.4 15.5 || 16.3 | 10.8 | 53.7 11.1 0 0 48.3 9.6

TABLE 7.1— Values for the characteristic parameters of the heated plasma and the hot-
spot for different values of the (Eo,dE), considering a fixed value of ¢ = 2.7-10'® cm™2. The
lengths are in pum, the temperatures in keV and the energies in MeV (Gil et al., 2023).

0FE = 0% 0FE =10% 0F = 15%

Eo || Lus | Ths | ®Tmax | Tmax || Lns | Ths | @Tmax | Tmax | Ibs | Ths | @Tmax | Tmax
1000 7.5 | 15.3 0 17.9 7.5 | 15.3 0 17.9 7.5 | 15.3 0 17.9
4000 || 28.6 | 15.4 20.8 18.6 28.6 | 15.2 17.8 17.5 28.6 | 14.9 16.3 16.8
5500 || 42.6 | 14.1 38.2 18.8 || 42.6 | 13.5 | 32.9 16.3 || 42.5 | 13.1 29.7 15.1
7000 || 42.6 | 14.1 57.2 18.8 || 42.6 | 13.0 48.8 15.0 42.6 | 12.3 44.0 13.5
7500 || 42.6 | 14.1 63.2 18.8 || 42.6 | 12.9 | 53.7 14.6 || 42.5 | 12.0 | 48.5 13.1

TABLE 7.2— Similar to Table 7.1, but considering a beam with ¢ = 3.8 - 10*® em™2 (Gil
et al., 2023).

The numerical simulations reveal that, in both tables, for a given set of
parameters (o, Ep) of the beam, the hot-spot parameters (Lys, Ths, Tinax, £Tmax)
generally decrease with an increase in the energy spread (JF) of the beam.
From the results of Fig. 7.2 we know that the total range increases, as it is
later demonstrated again, in Fig. 7.7. We note that the effect of §F is stronger
with higher energies (Eo), specially for Tiax and Trmax. It is interesting to
compare the maximum temperature and its position for a quasi-monoenergetic
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beam relative to the corresponding quantities of the monoenergetic one. For
example, for o = 2.7-10'® ecm ™2, Ey = 5500 MeV and §E = 10% the changes in
the maximum temperature and in its position are in the order of a 9% and 14%,
respectively. And, when the energy spread increases to §E = 15%, the changes
obtained are the order of 26% and 23%, respectively. For o = 3.8-10'® cm ™2, the
same energy and 0 E = 10%, the changes in the maximum temperature and its
position are in the order of 13% and 15%, respectively. And, for energy spread of
0F = 15%, the changes are of the order of 20% and 23%, respectively. However,
for low enough energies, the changes in parameters of the hot-spot are negligible
or small. This can be observed in both tables, for instance with Ey = 1000 MeV
and both fluxes, where the changes in the maximum temperature are less than
5% and in its positions are at the edge of the plasma.

As it was demonstrated in Chapter 5, for a monoenergetic beam, the char-
acteristics of Lyg, Ths, and Tyax in central hot-spots remain approximately
constant with energy. For instance, in Table 7.1, with ¢ = 2.7 - 10'® cm™2,
this happens at energies of 4000, 5500, 7000, and 7500 MeV. Then, when the
flux increases, this behaviour persists but occurs at higher threshold energies
and with elevated parameter values. This is shown in Table 7.2, in which cen-
tral hot-spots are found only for 5500, 7000, and 7500 MeV, with a flux of
o = 3.8-10"® cm™2. Hence, and as explained in Sect. 5.1, for monoenergetic
beams there is a threshold energy (E*(¢*)) dependent on the flux, such that the
hot-spots generated are central. From numerical simulations we can confirm
that, for 0 = 2.7-10'® cm™2, this occurs for energies higher than a threshold en-
ergy of E*(c*) ~ 3500 MeV, then, at higher a higher flux of ¢ = 3.8-10'8 cm—2
at B* ~ 5500 MeV. As it is seen in Tables 7.1 and 7.2, for values of the ion
energy larger than E*, in each respective case, the parameters Lyg, Ths and
Thax keep constant.

On the contrary, this constant behaviour of central hot-spots tends to van-
ish when quasi-monoenergetic beams are considered. The differences with the
monoenergetic case are more acute as the energy spread increases. For in-
stance, the relative difference of the maximum temperature (Tiax) in the case
(Eo = 5500 MeV,o = 2.7 - 10" cm™2) is an 18% for 6F = 10% and a 25% for
0E = 15%. Then, we observe that these changes are even larger when increas-
ing the energies, as for instance, for (Ey = 7500 MeV,o = 2.7-10'8 ecm 2,6 F =
15%) the relative difference is of 38% in comparison to the previous exam-
ples. At last, the effect is smoothed if the flux is increased, as the case of
(Eo = 7500 MeV,o = 3.8 - 10'® cm™2,6E = 15%), finding a change of 20%, in
respect to the previous cases. When studying the parameters associated to the
hot-spot, we could argue that the results (Lys, T1s) do not change as drastically
with §E. For instance, in the case of (Ey = 5500 MeV,o = 2.7 - 10'8 cm™2),
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when comparing the hot-spot temperature (T},s) with the monoenergetic beam,
we find a 7% of relative difference for §E = 10% and a 12% for 6E = 15%,
which are lower values in comparison to the ones found previously for Tiyax.-
Eventually, the lowering of Ly and Ty leads to the non-formation or disap-
pearance of the hot-spot. This is found in Table 7.1, for §E = 15%, where the
length and mean temperature values of the hot-spot at 7000 and 7500 MeV are
zero, indicating the absence of points in the heated region with a temperature
exceeding the ignition temperature (Tyax =~ 10 keV). At last, with regard to
edge hot-spots, the values of Ly, Ths and Ti,ax increase slightly in respect to
the monoenergetic case.

Furthermore, we note that the position of the maximum temperature in re-
spect to the edge is also reduced when the energy spread is increased. However,
one behaviour is shared with the monoenergetic case: as we found in Sect. 5.1,
TTmax depends mostly on the initial energy of the ions and remains practically
independent of the flux of the beam. This observation holds true for vanadium
quasi-monoenergetic ion beams as well. This is easily noticeable when compar-
ing any case of Table 7.1 (¢ = 2.7 - 10'® cm~2) with its analogue in Table 7.2
(0 =3.8-10'8 cm—2).

Additionally, in Fig. 7.3 we illustrate a more detailed representation of the
evolution of the plasma for different energy distributions of the beam. We show
the time evolution of the temperature field during the heating process of the
plasma by monoenergetic (6E = 0%) and quasi-monoenergetic (6E = 15%).
For this analysis, we assume both beams have the same intensity (/), flux
(0 = 3.8-10'® cm~2) and energy (7000 MeV), and therefore, they have the same
characteristic time (Theam = 0/I). It has been selected in several instants of the
simulation, from ¢; = 0.017peam until 7 = Tpeam. After the whole interaction,
both beams are able to generate a hot-spot, although the monoenergetic reaches
this conditions earlier, at t4 &~ 0.47peam, While the quasi-monoenergetic does at
te ~ 0.8Theam. At such instant (¢), the hot-spot length associated with the
monoenergetic beam is shorter than the one of the quasi-monoenergetic beam.
However, as it can be seen in this figure or in Table 7.2 (for central hot-spot
cases, with high Eo), at the end of the heating process, both hot-spots do reach
similar length values of Ly ~ 43 pm.

After this careful examination of a quasi-monoenergetic Gaussian beam lo-
cated at the edge of the plasma (d = 0), it is also necessary to address the
results found when the source is separated from the fuel. Thus, in Fig. 7.4 we
show the spatial temperature field reached at the end of the heating process
for different conditions of the beams. The plasma considered is the same as in
Fig. 7.2, but in this case the beams have a flux of ¢ ~ 3-10'® cm ™2, with energies
of Ey ~ 5000 and 6500 MeV and energy spreads of §E = 0% (monoenergetic),



169

0=3.8x1018 cm—2

E=7000 MeV
5B=0%
5B=15%

Temperature (keV)

0 20 40 60 380 100
X (um)

FIGURE 7.3— Time evolution of the temperature field of the heating process for seven
instants of time (¢/Tbeam=0.01, 0.1, 0.2, 0.4, 0.6, 0.8 and 1). Two vanadium beams are
considered: monoenergetic and a Gaussian (§E = 15%) located at the edge of the plasma
(G1), both with Ey = 7000 MeV and ¢ = 3.8 - 10'® cm™2. The conditions of the plasma are
the same of Fig. 7.1.

0F = 10% and 6E = 15%. Additionally, we consider the quasi-monoenergetic
beams located at the edge of the plasma (G1) and another one at a distance
"d” (G2).

We find that the resulting distributions of temperatures create central hot-
spots. Again, we can see the main effects of the energy spread on the tempera-
ture field: the maximum temperature decreases, the position of the maximum
temperature is displaced and the length of the heated region Ly increases. To
further address these differences, we have inspected the results in the (o, Eo)—
space and calculated the relative differences. Examples of these results are
displayed in the following sections. Between the G1 and G2 cases, we find some
similarities, as the maximum temperature and range, and a discrepancy in the
position of Trmax, being further from the edge in the G2 case. As we will show
below, when comparing G1 and G2 scenarios in the (o, Ep)-space most of the
results are nearly equivalent, including the hot-spot parameters. This is par-
ticularly relevant because the gains we study are determined by the radius and
mean temperature of the hot-spot, so, between G1 and G2, those results will
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be similar too.

20

Monoenergetic
G1
G2

X pum

FIGURE 7.4— Temperature field after heating a plasma with a vanadium beam. The
scenarios considered are: a monoenergetic beam, a quasi-monoenergetic beam located at the
edge of the plasma (G1) and another one located at a ”d” distance (G2). The conditions of
the beam are Eg ~ 5000 and 6500 MeV and o ~ 3 - 10'® ecm™2. For the quasi-monoenergetic
beams, the energy spreads are 6E = 10% (solid line), 6E = 15% (dashed line). The plasma
conditions are the same of Fig. 7.1.

7.2 Ignition threshold in the (o, E;)-space

Hereafter, we detail the systematic results found in the (o, Ep)-space for a
monoenergetic beam, a quasi-monoenergetic Gaussian beam found at the edge
of the plasma (G1) and another one found at a "d”distance (G2). Both Gaussian
beams have energy dispersions of §E = 5, 10 and 15%. To ease the comparison,
the ranges of the (o, Ep)-space are the same of Chapter 5. If necessary, a zoom-
in is applied to the o-axis for better visibility.

First, we want to address the region within the (o, Eg)-space where the
ignition is achieved. This is shown in Fig. 7.5, where we display the ignition
curve (Giz = 1) for the different type of beams. For each energy spread, the
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two quasi-monoenergetic beams (G1 and G2) are represented together, because
the ignition threshold of both are almost identical. As it is shown in Figs. 7.7
and 7.8, the hot-spot parameters of G1 and G2 are much alike, leading to
similar ignition values. We can address how this parity appears, by taking into
account that the only difference between G1 and G2 is the energy with which
the projectiles enter the plasma. In the G1 case there is a Gaussian distribution
for each bin, while in G2 the projectiles enter in an orderly manner, first the
most energetic ones, that have travelled the separation distance the fastest and
finally the slowest. However, ultimately, the same set of projectiles deposits
energy in the plasma, leading to akin temperature distributions.

We remind that the area above the ignition curve correspond to those cases
where the burning is possible. In comparison to the monoenergetic case, we
find that both Gaussian beams fulfil the ignition conditions in a diminished
(0, Eg)-area. We can see that the ignition curves shift toward higher values
of the parameters o and Ey when the energy spread increases. This is an
indication of how the spark temperature and length are lower when considering
a quasi-monoenergetic case, and thus, do not reach the ignition conditions for
some (o, Eg)-cases, where a monoenergetic beam does.

4.5 T T T T
—— Monoenergetic (6E=0%)

—— Quasi-monenergetic (6E=5%)
| — Quasi-monenergetic (6E=10%)
—— Quasi-monenergetic (6E=15%)

o [1018/cm?]

2000 4000 6000 8000
Eo [MeV]

FIGURE 7.5— Ignition curve (Gig(c, Eo,dE) = 1) in the (o, Fp)-space, considering three
types of vanadium ion beams and different energy spreads.
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7.3 Length and temperature distributions in the (o, EO)-space

After illustrating the space where the burning is possible, we proceed to show
the state of the hot-spot and the heated region in the (o, Ey)-space. Before all
else, in Fig. 7.6 we show the results for a monoenergetic beam. Although this
information is repeated with the bottom panels of Fig. 5.1, we display it here
again to ease the comparison with the rest of cases. Then, in Fig. 7.7 we show
the analogue results for a quasi-monoenergetic beam at the edge of the plasma
(G1) and in Fig. 7.8 we show the results for the same quasi-monoenergetic
beams but separated from the fuel (G2). In both quasi-monoenergetic figures,
three energy spreads are contemplated, 0F = 5%, 10% and 15%.

There, the isolines depicted in the (o, Eo)—space associated to lengths are
displayed in the left panels and the isolines associated to temperatures in the
right ones. In the left panel we show the range (Ly) as grey solid isolines, the
length of the hot-spot (Lys) as solid black lines and the position of the maximum
temperature (TTmax) as blue dotted lines. For the isolines of Ly and Lyg we
indicate the minor value (10 pm) and for .y we indicate the reference value of
half the sphere (50 um). The rest of the isolines are always displayed in intervals
of 10 pm. In the right panel, we show the isolines associated to the temperature
at the edge of the plasma (Tyx—g) as dashed grey lines, the temperature of the
hot-spot (T}s) as black solid lines and the maximum temperature (Tax) as
solid grey lines. The minor value depicted of the isolines is 10 keV, and the
rest of the isolines are displayed in intervals of 2 keV. As explained in Sect. 5.1,
we indicate the threshold (o, Ep)-values where edge, intermediate and central
hot-spots are found as dotted green and dashed purple lines, respectively. Edge
hot-spots are found at very low energies (left of the green line), central is found
in almost the entire range of Ey (at right and below of the purple line), then,
the intermediate hot-spots are found between both regions.

In Sect. 5.1 we explained the general behaviour of the parameters in the
monoenergetic case. In short, the length of the heated plasma (Ly) increases
with both the energy of the projectiles and the flux, this is, increases with the
energy of the beam (Ep = SpoE)p), although the dependence is stronger with
FEy. For Lyg, the behaviour is similar in the edge and intermediate hot-spot
regions, while in the central hot-spot region we find a constant value in respect
to the energy. Similarly to Lys, Ths, the maximum temperatures (Tiax) shows
an almost constant behaviour in respect to the energy for intermediate and
central hot-spots. At last, the solutions for xTmax are displayed with vertical
lines, that is, the position of the maximum temperature mostly depends on Ej.

A general result of the G1 and G2 beams in respect to the monoenergetic
beam is that the constant behaviour of central hot-spots in respect to Ejy is not
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found any more. As before, we note that the effects of the Gaussian beam are
more drastic when the energy spread is enlarged. Additionally, the lines that
separate the edge, intermediate and central hot-spot regions approximately do
not change in respect to the monoenergetic case.

On the one hand, when comparing the results of Fig. 7.7 (G1), with the
monoenergetic case of Fig. 7.6, we find that, when an energy spread is applied,
the same ranges (Ly) require less energy. This was already advanced with
Fig. 7.2 where we showed how the heated regions enlarged. For instance, in the
monoenergetic case Ly, = 100 pm was found approximately at 8250~9500 MeV,
while for an energy spread of 6 E' = 15%, the same isoline is more vertical and
it is found ~6700 MeV. With regard to the hot-spot length (Lys) we do not
find drastic differences in the edge and intermediate hot-spot regions. However,
as advanced before, in the central hot-spot region, we find how the constant
behaviour shown in Fig. 7.6 disappears as the energy spread is increased. This
is specially notable at low fluxes or once high enough energies are considered. In
this sense, Ly isolines are narrowed, moving towards higher fluxes for reaching
the same value as in the monoenergetic scenario. We also find that the position
of the maximum temperature requires higher energies with a Gaussian beam,
for instance, Trmax = 50 pm is found at 6500 MeV in Fig. 7.6, while now
appears at 7500 MeV for an energy spread of 0E = 15%. We have calculated
the relative differences in the (o, Ey)-space of G1 in respect to the monoenergetic
beam. For example, when considering 6 E = 15%, the ranges indicate a contrast
up to a 50% between both, and up to 25% for the position of the maximum
temperature. These differences depend on the parameters of the beam and
depend on the region of the (o, Ey)-space, finding the higher discrepancies for
intermediate and central hot-spots®.

In respect to the temperatures, found in the right panel, we find that Tx—¢
does not change significantly, neither does Ti,.x, but this happens only in the
edge hot-spot region. In the central and intermediate hot-spot regions, the iso-
lines of Tiax and Tis also tend to narrow, tearing down any constant behaviour.
This means that, for the same energy, achieving a central hot-spot with the
same temperature requires now higher fluxes. For instance, at Ey = 9400 MeV,
in the monoenergetic case Tyax = 14 keV and Tys = 14 keV, are found at
o~ 24-10"® cm™2 and ¢ ~ 4.3 - 10'® cm ™2, respectively, while for an en-
ergy dispersion of 6E = 15%, they are found at ¢ ~ 6.3 - 10'® cm™2 and
o~ 5-10"® cm™2. When computing the relative differences between the G1

3We advance that the results of G1 and G2 cases are almost identical, so the relative
differences between the G2 and the monoenergetic beam are equivalent to those presented for
Gl1.
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and the monoenergetic cases, we have found discrepancies up to 25% for the
hot-spot temperature and up to 50% for the maximum temperature, depending
on the selected (o, Ep)-values.

On the other hand, in Fig. 7.8 (G2) we show the solutions when considering
a Gaussian beam separated from the target. As foreseen in Figs. 7.4 and 7.5,
the results of the G2 case do not differ drastically from the G1 case. Still,
minor differences can be found, as for instance: Tmax isolines are less vertical
in the G2 beam, in such a way that, when increasing the flux, for the same E
the position of the maximum temperature is further from the edge in the G2
case; the Ly, isolines of the G1 scenario are mostly vertical and reach shorter
ranges for larger values of Ey, in comparison to the G2 case; at last, the G2
scenario reaches slightly higher hot-spot temperatures. We have also calculated
the relative differences in the (o, Ep)-space of G2 in respect to G1. The most
extreme discrepancy we have found is related to the position of the maximum
temperature, up to 50% for intermediate energies and large fluxes. The range
shows differences up to a 20%, but mostly negligible in all experiments. The
contrast between G1 and G2 for the temperatures (Ths, Tmax and Tx—g), as well
as, for the radius of the hot-spot (Rys), are found to be lower than 10%. The
latter explains why the gain results are almost identical in Sect. 7.2 and in the
following section.
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FIGURE 7.6— Isolines of the characteristic lengths (top panel, Ln, Lns and Zrmax) and
temperatures (bo:ctom panel, Ths, Tmax and Tx—o) generated by monoenergetic vanadium
beams in the (o, Eo)-space.
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FIGURE 7.7— Similar to Fig 7.6, but considering a Gaussian ion beam generated at the
edge of the plasma (G1), with §E = 5%, 10% and 15%.
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FIGURE 7.8— Similar to Fig 7.6, but considering a Gaussian ion beam generated at distance
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7.4 Burning gain and coupling results in the (o, £,)-space

We also have determined the burning gains and coupling in the (o, Ep)-space of
the same vanadium beams, as we show in Figs. 7.9 and 7.10. We consider the
monoenergetic beam (0E = 0%) and the three previous energy spreads. The
DT fuel is assumed with a radius of Rp = 50 pum (for calculating Eq. 3.61) and
the ion beams with a radius of r, = 15 um. The rest of the conditions of the
beam and the plasma match those of Fig. 7.7. In all panels, the thick black line
at low o or low FEj represents the ignition curve (as in Fig. 7.5). In Fig. 7.9,
the other black line represents the isoline of Ly = 100 pym, in order to study
those cases in which the range of the projectiles is less than the beam diameter.
The first result we can address is the lack of significant differences between G1
and G2, either for the burning gain or the coupling. This is a consequence of
finding very similar results for the hot-spot parameters between G1 and G2
(as shown in Fig. 7.7 and 7.8). We can still analyse the differences between a
monoenergetic and a Gaussian beam.

In Fig. 7.9 we see that the maximum value of Gy is in the order of 4500.
The monoenergetic beam (0E = 0%) is the one with easier access to the highest
gains, which are found for (o, Eg)-parameters close to the ignition curve, this
is either low projectile energy or flux. In comparison, for quasi-monoenergetic
beams, some areas of favourable gain disappear or require larger fluxes to be
achieved. As shown in Fig. 7.5, for larger energy spreads, the ignition curve
becomes more confining, restricting the maximum gains to low projectile energy
values. For instance, for any of the quasi-monoenergetic beams presented, it is
impossible to reach a burning gain of 3500-4000 at Ey = 5000 MeV, while the
monoenergetic case does have access to such gains. Additionally, the isoline of
Ly = 100 pm shifts towards lower energies, reducing more the region where the
study is possible. If still available, same gain values are displaced to elevated
fluxes when the energy spread increases. For example, at 5000 MeV, a burning
gain of 2000-2500 is found at o ~ 2-10'® cm™2 for the monoenergetic case and
at 0~ 2.3-10'® ecm~2 for E = 15%. In this case, similar gains can be obtained
if the flux is tuned to a higher value.

At last, in Fig. 7.10 we show the coupling results (AFEys/Ey). Again, for
larger energy spreads, we find that the restriction of the ignition conditions
makes the palette of couplings of the central hot-spot region to become more
compact, with a minor displacement to higher fluxes. Aside from this, we
do not find drastic changes in the results with respect to the monoenergetic
beam. We could argue that the G2 case offers slightly more (o, Ep)-area with
AFEys/Ey, =~ 1, in respect to G1. This is found, for instance, when comparing the
coupling of both cases at o ~ 2-10"® cm™2 and Ey = 2000 MeV, for §E = 15%.
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FIGURE 7.9— Burning gains in the (o, Eo)—space7 considering a Gaussian ion beam generated
at the edge of the plasma (G1) and another generated at distance ”d” from the edge of the
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7.5 Implications of the distance between the beam source and
the fuel

A particular detail that needs to be addressed is how the results of G2 are
independent of the separation distance (d), as explained in Sect. 3.12. In the
presence of a corona, the effect of the distance would be substantial: the farther
the source is, the larger the energy losses before entering the core, even more
if an energy distribution is considered. On the other hand, if the beam source
is too distant from the fuel, the beam time might increase until our condition
of Tproc > Theam and Thyd > Theam is not fulfilled. In such situation would be
necessary to compute the internal process taking place in the plasma simulta-
neously with the beam interaction. This raises the question of the maximum
distance at which the beam can be colocated before our criteria is broken. To
address this, we study when the beam time is equivalent to the characteristic
time of the processes (as explained in Sect. 3.9.1, we take Tg;s dep tO represent
the rest). To exemplify when the distance needs to be taken into account, in
Fig. 7.11, we display the threshold "d” at which Theam = Tfus,dep, for the same
experiments as in Fig. 7.8. It is found that the maximum distance corresponds
to higher energies and lower fluxes, which are associated to larger beam and
fusion times. As in previous experiments, increasing the energy spread mag-
nifies the results, thus finding the shorter threshold distances for the energy
spread of 6 F = 15%. Note how the results range from d ~ 0.25 to 3 mm, which
are typical values considered in the literature (e.g. Honrubia et al., 2009, 2014;
Khatami & Khoshbinfar, 2020). In additional simulations we have performed,
it is also found that lighter beams (p* or C%T) requires shorter ”d” values for

our approximation to be valid.
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FIGURE 7.11— Threshold distance such that Theam = Tius,dep fOr the same experiments as
in Fig. 7.8.
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The deductions from this chapter imply that a quasi-monoenergetic beam
in general complicates the creation of a suitable hot-spot. In the (o, Ey)-space
the region where the ignition is possible is reduced. This is due to a decrease
in the maximum temperatures achieved by quasi-monoenergetic beams. Also,
we find that for similar projectile energies, when a quasi-monoenergetic beam
is considered, the ranges become larger and the position of the maximum tem-
perature is found closer to the edge of the plasma. Between the G1 and G2
cases, we find similar results for all parameters. As an exception, for the same
Ej, the position of the maximum temperature is closer to the edge in the
G1 case. When inspecting the central hot-spots in (o, Eg)-space, the constant
behaviour of the hot-spot parameters we find with monoenergetic beams, dis-
appears when a Gaussian energy distribution is considered for the projectiles,
such that larger flux is needed for achieving the similar conditions. At last,
with a quasi-monoenergetic beam, the optimal burning gains are restricted, in
comparison to the monoenergetic case. In the G2 case, it is necessary to check
the distance at which the source is located, in order to fulfil the conditions of
Tproc > Theam aNd Thyd > Theam. All the discrepancies with the monoenergetic
case are accentuated when the energy spread is increased.






Conclusions and future research

The ion fast ignition (IFI) scheme is one of the possible candidates to achieve
nuclear fusion, within the inertial confinement approach. This implies applying
a high energy particle beam to heat a precompressed fuel of DT. Several numer-
ical studies have been carried out to advance the capabilities and limitations
of this scheme, however, previous literature may lack a complete perspective of
the process. In this context, the current research aimed to provide a systematic
study of the beam-plasma interaction, considering a wide range of scenarios.
Our extensive results should expand the knowledge on this topic, tackling new
regimes not previously explored in a systematic way. To do so, we have de-
veloped a computational application capable of performing a massive number
of simulations and an analysis of the ion beam-plasma interaction in different
scenarios of interest in the IFI context. Thus, we model the state of the plasma
during and just after the heating due to the beam. From this information,
we foresee its capacity to achieve fuel burning. Given a specific fuel set-up,
our particular approach delves into determining what beam characteristics are
required to retrieve a heated plasma with certain properties. Describing the
connection between the beam attributes and the resulting plasma via simula-
tions is key for the advancement of FI. On a practical level, this allows to tune
the experiment configuration in such a way that the desired outline is achieved
or, conversely, given some experimental constrains, we predict the result to be
found. Once the space of parameters is explored, we analyse typical experimen-
tal conditions and search for those values that optimize the outcome. To the
best of our knowledge, there are no previous works that perform an analysis of
this magnitude and characteristics.

The tools we have created to perform the desired systematic study include
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several scenarios and free parameters. The simpler case consists of a monoen-
ergetic ion beam interacting with a pure DT plasma without corona. Then, we
can consider a plasma with corona, a plasma with impurities at different con-
centrations or a quasi-monoenergetic ion beam. In any of these cases, we can
select the parameters of the beam and the plasma. The plasma is determined
by the radius of the fuel sphere, its composition, its initial temperature and
its density, the latter being not necessarily constant. The beam can have any
charge, radius, flux and projectile energy, as well as energy dispersion and dis-
tance from the fuel, if considered. The modelling of the interaction includes a
spatial-temporal simulation of the stopping of the beam and the heating of the
plasma, returning the final field of temperatures. With this result, we perform
a posterior analysis of the possibility of ignition and a preliminary estimation
of the burning gain. Our computational approach is thought to massively cal-
culate arrays with different values of the flux and the projectile energy. Hence,
in order to perform the systematic study, we need to extract key characteristics
from the temperature field recovered for each set of parameters. From the dis-
tribution of temperatures of the heated region we extract the range of the beam
within the plasma, the mean temperature of the heated region, the maximum
temperature and its position. Then, we analyse if within the heated region
there is a hot-spot able to achieve ignition. If existent, such hot-spot is char-
acterised by a length and a temperature. At last, we calculate the self-heating,
ignition and burning gains, as well as the coupling between the hot-spot and
the beam.

Among other results, our primal investigation considers the simplest case of
a monoenergetic ion beam interacting with a pure DT plasma without corona.
The rest of cases presented before (plasma with corona, doped plasma and
quasi-monoenergetic beam) are studied independently, that is, only one of the
three is considered, while the rest of characteristics match the simplest case.
With this approach, we can study each scenario separately and differentiate
the effect in the solutions. Hence, the first results to tackle are those for the
reference case of a monoenergetic ion beam interacting with a pure DT plasma
without corona, representing the most ideal case. We proceed to summarise
the most interesting behaviours found in function of the particle flux of the
beam and the energy of the projectiles. The utmost outcome we evaluate is the
parameter space where it is worth performing the study, that is, mostly, the
beam characteristics that achieve ignition. With our simulations, we can also
determine what kind of beam will produce an edge, intermediate or central hot-
spot, which can be addressed as regions of study in the flux-energy space. As
previous literature already stated, we find that finding central hot-spots is easier
if the charge of the beam is increased. We remind that the central hot-spots
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are of special interest, as the consequent burning is more symmetric. In respect
to the characteristics of the heated region, we show how the temperature and
the length increase as the flux-energy parameters do. In the case of central hot-
spots we find a particular scenario: the position of the maximum temperature
is almost independent of the flux, so its value is tunable by the energy of the
projectile. On the other hand, in the central hot-spot cases, we find that the
length and temperature of the hot-spot are independent of the energy and only
increase with the flux. Then, when studying the burning gain, we find that
the maximum values are located close to the ignition threshold, this is, either
for low fluxes or energies. In general, the burning gain increases for heavier
ions of the beam and shorter radius, while for the fuel, the results improve for
denser and initially colder plasmas and bigger radius of the sphere. Al last, the
coupling between the hot-spot and the beam energies is found to be better as
the flux and energy increase, at least for the edge and intermediate hot-spots.
For the central hot-spots, the coupling worsens for high energies and low fluxes.
Hence, there is a compromise between the burning gain and the coupling, if a
central hot-spot is to be created.

At this point, we can evaluate the rest of scenarios in respect to the refer-
ence case we have just described. First, we analyse the implications of including
a corona surrounding the core of the fuel. As expected, the projectiles suffer
stopping in this preliminar plasma, so, the most remarkable result is a displace-
ment of all results to higher energies. The general behaviour is the same as in
the reference case, but the projectiles require more energy to achieve the same
depth, temperature and gain. Additionally, the coupling worsens for all cases.
Second, we consider the inclusion of dopants in the fuel. Among other things,
this means increasing the density in respect to the pure DT plasma. When
either the atomic number or the concentration of the impurity increase, the
general behaviour of all magnitudes is the same, but displaced towards higher
energies and fluxes, as well as reaching higher temperatures. More importantly,
the inclusion of dopants makes the ignition more restrictive and limits the max-
imum values of the burning gain achievable, which is highly detrimental in the
IFT context. Third, we simulate quasi-monoenergetic beams with a Gaussian
distribution of energies, we considered two cases, one where the beam is located
at the edge of the plasma (G1) and another located at a certain distance (G2).
In either case, the ignition threshold becomes more restrictive, this is, beams of
high projectile energy require more flux for the condition to be fulfilled. This is
due to the distribution of temperatures becoming with colder and flatter, this
is, with larger ranges. We find that the G1 and G2 cases do not differ dras-
tically, returning very similar solutions. When observing the characteristics
of the heated region, the values corresponding to edge and intermediate hot-
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spot, are very similar between the monoenergetic and the quasi-monoenergetic
beam. However, for central hot-spots, we find drastic differences in respect
to the monoenergetic beam. For both G1 and G2, central hot-spot constant
behaviour with energy is lost. Reaching the same conditions for the plasma
requires more flux for the same projectile energy. Additionally, considering a
quasi-monoenergetic beam complicates achieving the same burning gains as in
the monoenergetic case: either the maximum values are not reached or the val-
ues require higher fluxes. Overall, larger energy spreads in quasi-monoenergetic
beams return worsened results.

Descriptions of the behaviour extracted from the results found for each
scenario, such as explained in the previous paragraph, yield a greater view on
the performance of IFI depending on the conditions selected. In respect to the
systematic study, we have filled some blank spaces of knowledge by widening the
space of parameters studied, using various approximations. More interestingly,
our focus on connecting the initial conditions and the characteristics of the
beam with the state of the resulting heated plasma provides a great advantage:
our work provides the capability to formulate a conceptual experiment, with
some input parameters, and predict the resulting plasma state; alternatively, if
the objective is to create a specific hot-spot for the fusion, we offer the needed
input characteristics. These are some of the main contributions provided by
the current thesis to the field.

Nevertheless, further research is badly needed in all directions to meet the
requirements of a future IFI experiment, such us optimizing the production of
fusion materials, the development of containers resistant to high energies and
the mechanisms responsible for initiating plasma ignition. In our framework,
a better theoretical examination of the beam, the plasma and their interaction
would be of great use, as well as computational simulations that forecast the
process with precision.

In this sense, even if this work serves as a solid foundation, we could expand
even further the IFI studies and perform more realistic simulations. Future
works should simulate, if necessary, more realistic experiments, considering all
our computed scenarios together, this is, a doped plasma with corona and a
quasi-monoenergetic beam. Another factor to improve would be the posterior
evolution of the hot-spot. Currently, we preliminarily approximate the fusion
success with the burning gain (which could improve with a more accurate revi-
sion), however, we could compute a more realistic simulation of the explosion.
On the one hand, we could consider a zero dimensional heating model to study
the interaction of ion beams with durations longer than the times character-
istic of the internal plasma processes. This comes as a natural extension of
the mainframe proposed in this thesis, and inspired by the works of Zou et al.
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(2016); Mehrangiz (2017) and Fetsch & Fisch (2023). Thus, we combine the
beam interaction with the temporal evolution of the temperature and volume
of the hot-spot, as it absorbs the surrounding cold material and expands during
the ignition and burning process. On the other hand, we could perform a com-
plete 3D-temporal simulation in which we study the deposition of energy of the
alpha particles within the cold plasma, thus providing a realistic description of
the evolution of the sphere. The latter could be easily implementable, as we
already have a code that calculates the stopping of particles, however, the com-

putational cost would increase significantly. Another significant improvement
could be:

e Considering ion beams with lifetimes on the order or shorter than the
equilibrium time of the plasma. This is inspired by the articles of Badziak
& Domarniski (2019) and Badziak & Domanski (2021), in which they treat
ion beam pulses of picoseconds and femtoseconds, following the line of
study about the characteristic times carried out in the current thesis.

e Modelling a two-temperature plasma for its ions and electrons. This
would improve the approximation in the case of a plasma without ther-
modynamic equilibrium.

e Tackling the scenario of hybrid ion charge beams, such as Mehrangiz &
Khoshbinfar (2020) and Deng et al. (2021) propose.

o If necessary, an extension of the model to partially ionised ion beams
could be implemented, allowing for a more rigorous study in the range of
possibilities that this change introduces. For this purpose, it is required
to develop a stopping model that takes into account the influence of the
bound electrons present in the beam ions. This is, a collisional-radiative
model that takes into account the time evolution of the electronic states
and the number of bound electrons of the beam ions.

Furthermore, our interaction model will also benefit from plenty of potential re-
finements, among them, we consider: implementing non-collimated, dispersive
and non-homogeneous beams; using more realistic energy distributions for the
quasi-monoenergetic beams; including other configurations, such as multi-beam
interaction or the presence of a re-entrant cone; computing 2D-simulations of
the process and incorporating the hydrodynamic processes of the system. Al-
though not mentioned in this thesis, our computational package is able to calcu-
late the stopping over a plasma where the ions have bound electrons (Rodriguez-
Beltran, 2018). This would serve to study other plasmas, besides the fusion
ones. In this sense, we need to estimate the atomic structure and the atomic
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kinetic of the ions in the plasma by solving the set of rate equations in the
collisional-radiative formalism. This calculation is performed by the MIXKIP
computational package, created by our team (Espinosa et al., 2017). At last,
besides to improving our physical model, in the computational sense, our code
could benefit from polishing and optimization. Currently, the systematic anal-
ysis is mostly based on large arrays of projectile energy and flux. It would be
of great use to enable other parameters to be calculated similarly. An endgame
goal would be to release an open-source version for the public to use.

The bottom line is, through a systematic study, we offer a more general
perspective on what kind of experimental conditions and beam characteristics
are necessary to bring the plasma to a desired state of fusion. Currently, Fast
Ignition is not the most popular approach in the path for achieving nuclear
fusion. However, it is absolutely necessary to explore any viable option, in order
to learn enough and assure the better alternative is found. In this context, we
hope the contents of this thesis serve as a spark for the community, to continue
future investigations towards the noble purpose of finding a clean energy source
for this planet.
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