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ABSTRACT
Aim: Brazil harbours the largest known extent of rhodolith beds (RBs) in the world, a habitat whose ecological and economic 
importance have been widely overlooked. This creates a dire situation that is likely to worsen with the rapidly expanding human 
activities, considering that less than 5% of Brazil's ocean area is fully protected. We assessed the importance of Brazilian RBs 
for supporting biodiversity, at a country-wide level, and identified multi-criteria hotspots that, in face of lack of protection and 
presence of anthropogenic threats, could safeguard conservation seascapes across Southwestern Atlantic waters.
Location: Southwestern Atlantic Ocean.
Methods: We performed a systematic review of studies on Brazilian RBs to retrieve information regarding their spatial distribu-
tion and associated biodiversity. Multi-criteria hotspots were identified based on the areas where high species diversity co-occurs 
with a high presence of endemic, threatened and commercially important species. Furthermore, we assessed how well RBs are 
covered by marine protected areas (MPAs), as well as their spatial overlap with multiple threats.
Results: Existing records for Brazilian RBs indicate > 1000 different species, mostly fish and algae, including significant num-
bers of endemic, threatened and commercially important species. Most of the RBs are either unprotected or only partially pro-
tected, including the majority of the biodiversity hotspots identified by our analysis. Among the main potential threats to RBs, 
bottom trawling ranks highest, while the expansion of seabed mining and oil and gas activities may sharply increase the risk of 
cumulative impacts on RBs in the near future.
Main Conclusions: Our large-scale quantitative assessment confirms the significant role of RBs as biodiversity hotspots. This 
information could be leveraged to help meet the twin goals of RB conservation, through the establishment of highly-protected 
MPAs in hotspot areas, and their sustainable use through an ecosystem-based approach that accounts for vulnerabilities of RBs 
to multiple threats.

1   |   Introduction

Rhodolith beds (RBs) are built by free-living non-geniculate cor-
alline algae and recognised globally as ecologically and socio-
economic important yet threatened marine benthic habitats 
(Riosmena-Rodríguez, Nelson, and Aguirre 2017). Their impor-
tance for supporting biodiversity and facilitating other habitat-
formers and foundation species, such as kelp, sponges, bivalves, 
is widely acknowledged (Tuya et al. 2023; Bulleri et al. 2024). 
Despite the large global extent of RBs, their ecological function-
ing and biota have been disproportionately less studied, ham-
pering existing conservation efforts (Tuya et al. 2023). Society 
and decision-makers are also largely unaware of the existence 
of RBs. However, given the growing global and local threats to 
these habitats, primarily from human activity, it is crucial to 
recognise their value and implement effective conservation ef-
forts globally (Tuya et al. 2023). In this context, marine biodi-
versity has been recognised worldwide to play an essential role 
in supporting a healthy planet and social well-being. Although 
accurately quantifying this biodiversity is complex, it is urgently 
needed to implement conservation and restoration measures 
during the United Nations Decade of the Ocean and the Decade 
of Ecosystem Restoration (2021–2030).

Currently, information about biodiversity associated with 
RBs, including threatened and endemic species, is available 
only on a case-by-case basis and at limited spatial scales (e.g., 
Moura et al. 2016; Stelzer et al. 2021; Maggio et al. 2022; Tabone 
et  al.  2024). So far, no attempts have been made to compile a 
comprehensive multi-taxa biodiversity inventory at a larger spa-
tial scale, despite its importance for emphasising the need for 
protective measures. In this context, Brazil offers an ideal oppor-
tunity, as RBs are one of the most prevalent megahabitats of the 
seascapes of the continental and insular shelves and the tops of 
seamounts (Pereira-Filho et al. 2012; Amado-Filho et al. 2017). 

In fact, Brazil has long been known to harbour the most exten-
sive RBs in the world (Foster  2001; Amado-Filho et  al.  2017). 
Here, suitable habitat modelling approaches estimate a total area 
between 167,000 and 230,000 km2 (Carvalho et al. 2020; Santos 
et al. 2023), within a depth range of 2 to ~250 m depth, corre-
sponding to 4%–6% of the global area estimate (Fragkopoulou 
et al. 2021). Due to this ubiquitous presence of RBs in Brazil, the 
associated biodiversity and other aspects of their ecology and bi-
ology are well studied in some sites within the country, including 
numerous reports demonstrating their ecological importance 
for biodiversity (e.g., Brasileiro et  al.  2016; Stelzer et  al.  2021; 
Anderson et  al.  2023). Moreover, available evidence indicates 
that these habitats share many common species with adjacent 
habitats, such as coral reefs, seagrass beds and sandy bottoms 
(Pinheiro et al. 2015; Moura et al. 2021; Stelzer et al. 2021). They 
are potentially important for the ecological connectivity of fish 
by serving as nursery grounds for juveniles, foraging grounds 
for many adult species and migrations corridors between shal-
low and deep reefs (Moura et al. 2021; Anderson et al. 2023).

As in many other coastal marine environments, RBs are exposed 
to increasing pressures by multiple threats associated with an-
thropogenic activities. For example, bottom trawling has been 
identified as a major threat to RBs globally (e.g., Fragkopoulou 
et al. 2021; Tuya et al. 2023). Moreover, areas containing RBs 
are of great interest for mining companies, as they represent an 
important source of limestone, with Brazil being one of the top 
producers (Paiva et al. 2023a). However, mining activities cause 
habitat destruction by the removal of rhodoliths that are built by 
slow-growing calcareous algae (~1 mm/year) and are thus clas-
sified as non-renewable resources (Barbera et al. 2003). Mining 
also promotes sediment dislodgement, leading to the burial and 
subsequent death of rhodoliths in adjacent areas (Villas-Boas 
et al. 2014; Figueiredo et al. 2015; Osterloff et al. 2016). Similar 
to other marine benthic habitats worldwide, RBs are currently 
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threatened by the ongoing climate change (Horta et  al.  2016; 
Fragkopoulou et al. 2021). Although, in Brazil, there is little in-
formation on the effects of anomalous temperatures and ocean 
acidification on rhodolith health and diversity, only few existing 
studies suggest negative effects on the physiological performance 
of rhodoliths in face of marine heatwaves and ocean acidifica-
tion conditions (Schubert et al. 2019; Koerich et al. 2021).

To address growing threats, marine protected areas (MPAs) have 
become a key management tool to protect diverse marine hab-
itats and their biodiversity (IPBES 2019; United Nations 2017). 
This conservation approach, encompassing varying levels 
of restrictions, from multiple-use to no-take areas, has been 
widely implemented for coral reefs and mangrove habitats (Ban 
et al. 2011; Liao et al. 2019; Gill et al. 2024). Only a few exam-
ples of MPAs have been designated to explicitly protect RBs and 
their associated biodiversity (reviewed in Tuya et al. 2023). Yet, 
as the newly adopted Kunming-Montreal Global Biodiversity 
Framework calls for an urgent protection of 30% of the planet by 
2030, through an ecologically representative and well-connected 
system of protected areas (Obura et al. 2023), the effective imple-
mentation of MPAs on RBs provides new opportunities to sup-
port the full achievement of international goals.

Previous reviews on Brazilian RBs (Amado-Filho and Pereira-
Filho  2012; Horta et  al.  2016; Amado-Filho et  al.  2017; Paiva 
et al. 2023a) have addressed the qualitative importance of biodi-
versity associated with these habitats. However, such studies have 
not used quantitative spatial information to formally analyse the 
biodiversity associated with RBs in different ecoregions and sites 
(but see Lino et al. 2024) and to estimate the current coverage of 
RBs by MPAs. In this paper, we performed a systematic review 
of studies on Brazilian RBs to describe and evaluate their con-
servation value. We specifically aimed to (i) provide quantitative 
evidence for the ecological roles played by RBs in supporting biodi-
versity (termed hotspot) at a large spatial scale, particularly based 
on the co-occurrence of species of conservation/management in-
terests (i.e., red-listed, endemic and commercially important); (ii) 
quantify the current coverage of RBs by MPAs across the studied 
region and (iii) assess the extent of anthropogenic threats to RBs 
in Brazil. Our results provide useful information and insights to 
improve conservation and management of RBs in Brazil and a first 
step for the implementation of a country-wide conservation plan-
ning to reconcile conservation and development needs.

2   |   Methods

2.1   |   Literature Search and Selection of Studies

A systematic literature search was carried out (including papers 
until November 2023) in the Web of Science, complemented by 
a search in Google Scholar (search string—‘Brazil’ and ‘rhodo-
lith’), to compile all the available information regarding Brazilian 
RBs. Following the PRISMA guidelines (O'Dea et al. 2021), only 
original peer-reviewed research papers were considered, while 
nonpeer-reviewed articles, reviews, policy papers, duplicates and 
those written in languages other than English were excluded. 
First, a systematic literature review was performed to summarise 
existing knowledge on Brazilian RBs, regarding the number of 
studies, study sites (including their geographical coordinates, 

when available) and topics (n = 128 studies). Second, from the stud-
ies, those reporting species inventory lists of associated fauna and/
or flora were selected for a detailed analysis of the number of re-
corded rhodolith-bed associated species (n = 54 studies, see refer-
ence list in Supporting Information) and among those, species that 
are considered endemic, threatened species and/or of commercial 
importance were identified. Brazilian endemic species were iden-
tified, using a list provided by Correia and Sovierzoski (2012) for 
macrobenthic species, and the websites of Southwestern Atlantic 
Reef Fishes (https://​swatl​antic​reeff​ishes.​wordp​ress.​com/​), 
FishBase (https://​www.​fishb​ase.​se), with updates on the Living 
National Treasures website (http://​lntre​asures.​com/​brazi​lmf.​
html) for marine fishes. Threatened species (vulnerable, endan-
gered, critically endangered) were identified through the IUCN 
red list (IUCN 2024) and the national Brazilian red list issued by 
the Chico Mendes Institute for the Conservation of Biodiversity 
(ICMBio) (ICMBio 2022). Moreover, fish species, considered tar-
gets for fisheries, were identified as commercially important, ac-
cording to Quimbayo et al. (2021).

2.2   |   Rarefaction Curves

To evaluate the completeness of species inventories and to per-
form meaningful comparisons of species richness associated 
with RBs in general and with different RBs across Brazilian 
ecoregions, rarefaction curves (with confidence intervals) were 
obtained to represent how the total number of species recorded 
for all Brazil and in each ecoregion varied as a function of the 
number of sampling sites. Rarefaction was implemented in the 
EstimateS program (Colwell 2019).

2.3   |   Conservation and Threat Assessment

We extracted spatial information on the occurrence of RBs from 
the compiled database, based on the literature search outlined 
above. The study sites (n = 1330) at which RBs have been re-
ported were evaluated against the boundaries of MPAs, consid-
ering both no-take (i.e., considered fully protected, which refers 
to the IUCN categories Ia and b, II and III) and multiple-use 
MPAs (i.e., considered partially protected, which refers to the 
IUCN categories IV). Information on MPAs in Brazil was gath-
ered and compiled from datasets held by the Brazilian Ministry 
of Environment (e.g., http://​www.​mma.​gov.​br/​areas​-​prote​
gidas/​​cadas​tro-​nacio​nal-​de-​ucs). When performing this over-
lap, RBs were first classified into two classes, based upon their 
depth zones: shallow-water, for sites shallower than 30 m, and 
mesophotic RBs, for sites deeper than 30 m. We also assessed 
the RBs coverage by MPAs for each of the marine ecoregions 
occurring in Brazilian waters, following Spalding et al. (2007). 
Information on depth was extracted from the original papers, 
when available, or extracted from the database provided by 
Magris et al. (2021) otherwise.

Furthermore, a summation approach was developed to identify 
RB areas that could be candidates for conservation priorities, 
because they host a significant proportion of associated spe-
cies. The approach used records for specific sites, considering 
the total number of species, in conjunction with the numbers of 
threatened species, endemic species and species of commercial 
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interest for each site. For this step, we bound the number of 
species of a given RB sites to the reference range zero to one 
for each category and considered their respective total species 
number of species. This was done for 38 sites representing dif-
ferent sites, for which associated species occurrence records are 
available. Then, we ranked each site from 1 to 38, meaning that 
the lowest rank was assigned to the site containing the highest 
number of species for each category. To identify multi-criteria 
hotspots, i.e. sites that collectively maximised the occurrence of 
various aspects of biodiversity, the ranks for each category were 
summed and the top 10% rank values (the lowest four values) 
were identified. While hotspot analyses have long been con-
sidered as a starting point of the MPA planning process (e.g., 
Roberts et  al.  2002), those would need to be combined with 
more refined biological information on RB ecosystems to be 
fully informative. Ideally, using conservation planning tools, 
such as Marxan or Zonation might have provided a more ac-
curate approach to identify conservation priorities. However, 
this was not realistic due to the lack of standardised field data 
on RBs over a large spatial scale. All spatial analysis was con-
ducted in the Geographic Information System QGIS (version 
3.16.14).

We generated heatmaps, using kernel density estimation in 
QGIS, which indicated the density of RB sites (1330 points ex-
tracted from the reviewed papers) within a 1-km radius. The 
radius was set to be a good compromise between the available 
data and the extent of the study area. We used the heatmaps to 
evaluate their overlap with areas subjected to the anthropogenic 
threats RBs are facing. To represent human pressures on RBs, 
we used data for four threat categories, all known to have sig-
nificant impacts on this habitat (Tuya et al. 2023): (i) destructive 
fisheries (fishing intensity related to vessels operating bottom 
trawls); (ii) land-based pollution (focusing on sediment plume 
delivered by rivers to the coastal waters); (iii) existing and 
planned oil and gas operations and (vi) existing and planned 
seabed mining. Based on an overlap between the RB density 
layer and the intensity of each threat layer, we summarised the 
total amount of RBs exposed to each group of threats at each 
marine ecoregion in Brazil. Critical RB areas in terms of threat 
exposure were identified by quantifying the percentage of RB 
heatmap at all ecoregions falling within each category of threat 
exposure according to tercile of values (low, medium and high). 
Fishing intensity was estimated based on satellite detections of 
Vessel Monitoring System transmission from commercial fish-
eries associated with bottom trawling spanning 3 years (2019–
2021). Data were processed as in Magris et al. (2021). Data on 
oil and gas operations included both fields leased for prospect-
ing (e.g., seismic surveys and well drilling licensed for areas 
planned to be explored in the near future or promising sites 
of potential oil fields) and leased for production, where the oil 
and gas industry is already extracting resources. Data were ob-
tained from Brazil's National Agency of Petroleum, Natural Gas 
and Biofuels (http://​app.​anp.​gov.​br/​webma​ps/​). Data on seabed 
mining were obtained from the Brazil National Department 
of Mineral Production (http://​www.​dnpm.​gov.​br/​assun​tos/​ao-​
miner​ador/​sigmine) and include those areas being licensed for 
(for further development of the activity) or already under ex-
ploration. Lastly, for land-based pollution, we used data from 
Magris et al. (2021).

3   |   Results

3.1   |   Rhodolith Beds and Their Associated 
Biodiversity

Our compiled database shows that biodiversity associated with 
Brazilian RBs was assessed in more than 50% of the compiled 
relevant research papers (Figure  S1), demonstrating the high 
species richness associated with those habitats (Figure 1).

The inventory revealed a total of 1053 species records (Table S1). 
Among the records, macroalgae are the most representative, with 
308 species (61 Chlorophyta, 42 Ochrophyta, 205 Rhodophyta), 
followed by macrofaunal and meiofaunal invertebrates, with 
469 species, fishes (252 species) and foraminifera (24 species; 
Figure 2a). Noteworthy, rarefaction analysis shows that an as-
ymptote is far from reached, indicating that the expected spe-
cies richness is higher than currently known (Figure 2a inlet). 
Moreover, general composition of communities associated with 
shallow (< 30 m depth) and mesophotic RBs (> 30 m depth) does 
not show large differences, as most of the organism groups have 
been recorded in both depth strata (Figure 2b). Although, avail-
able records for zoanthid, ascidian and Sipuncula species are 
only available for shallow RBs, whereas nematode and bryozoan 
species have so far only been recorded in mesophotic beds.

The biodiversity associated with RBs varies strongly among 
Brazilian marine ecoregions, with the highest number of spe-
cies records for Eastern Brazil (n = 718 species) and records 
for the other ecoregions varying between 116 and 201 species 
(Figure  3a). Even taking into account the large differences in 
research efforts (i.e., number of sampling sites) among ecore-
gions, the rarefaction curves indicate that asymptotes are far 
from reached in all ecoregions (Figure  3b). Furthermore, the 
curves suggest that RBs in some ecoregions, such as Fernando 
de Noronha and Rocas Atoll and Southeastern Brazil, harbour 
a similar species richness as Eastern Brazil, while Trindade-
Martim Vaz (TMV) Islands and Northeastern Brazil exhibit 
higher and lower richness relative to Eastern Brazil, respectively 
(Figure 3b).

Among the species recorded in RBs, 4% (n = 38) are included in 
international and national red lists, categorised as endangered 
or vulnerable, encompassing 31 fish and 7 invertebrate species 
(Table  S1). Similarly, 4% of all recorded species (n = 46) have 
been identified as endemic, including mostly fishes (n = 32), 
but also some invertebrates (n = 13) and one macroalgal species 
(Table S1). Across the marine ecoregions, the highest numbers 
of red-listed species have been recorded in Eastern Brazil, fol-
lowed by TMV Islands and Amazonia, while the former two 
ecoregions also harbour the highest numbers of endemic species 
(Figure 3c). Moreover, as expected, fishes, which represent one 
of the most diverse groups recorded in RBs, include a large pro-
portion of species that are of commercial interest (~15%; n = 160 
species). The highest numbers of commercially important fishes 
are found in the Eastern Brazil, TMV Islands and the Amazonia 
ecoregions, ranging between 54 and 120 species (Figure 3c).

On a local scale, species records vary greatly among sites across 
ecoregions. Highest richness is reported for RBs at the Abrolhos 
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Bank, encompassing 28% of the total species recorded for Brazil. 
Other five sites located at the Espirito Santo and Paraíba coasts, 
at Trindade Island and in the Amazonia shelf, stand out with 
14%–18% of the total records (Figure  4a and Table  S2). When 
considering the local biodiversity together with the occurrence 
of threatened, endemic and commercial species, this ranking 
changes, with four sites standing out as the highest-ranking 
hotspots: Abrolhos Bank, Trindade Island, the Great Amazon 
Reef System (GARS) on the Amazon shelf and Davis seamount 
within the Vitória-Trindade chain (Figure  4b and Table  S2). 
Among the two highest ranking sites, the Abrolhos Bank not 
only exhibits the highest total species richness but also the high-
est number of commercially important fish species, while RBs at 

Trindade Island rank #2 because of their relatively high number 
of endemic and threatened species (Table S2 and Figure S2b,c). 
The GARS, which ranks #3, matches Trindade Island regarding 
the total species richness (15% of total records), while also host-
ing a large proportion of threatened and commercially valuable 
species (32% and 33% of total records, respectively). The Davis 
seamount, occupying rank #4, exhibits a lower total richness (8% 
of total records), but a similar number of commercial fish species 
as reported for the GARS, while also containing a high number 
of species endemic to Brazil (30% of total records). Altogether, 
these four hotspots collectively harbour 44% of the total number 
of species recorded in Brazilian RBs, as well as 87% and 83% of 
the threatened and endemic species, respectively.

FIGURE 1    |    Biodiversity associated with Brazilian rhodolith beds. Photos show (a) the brown alga Padina gymnospora (photo by Anonymized), 
(b) the ascidian Didemnum sp. (photo by Anonymized), (c) the purplemouth moray eel Gymnothorax vicinus (photo by Anonymized) and (d) the 
spotted goatfish Pseudupeneus maculatus (photo by Anonymized) in Arvoredo, SE Brazil.

FIGURE 2    |    Biodiversity associated with Brazilian rhodolith beds. (a) Recorded total species diversity (numbers in brackets indicate the number 
of studies for the specific taxon, *identification to the genus level only) and rarefaction curve (inlet graph), showing changes in species richness with 
research effort, that is, number of sampling sites, and (b) species records in shallow (< 30 m) and mesophotic depths (> 30 m). Colour coding for or-
ganism groups in panel (b) is the same as in panel (a).
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6 of 14 Diversity and Distributions, 2025

3.2   |   Current Conservation Status and Threats

In Brazil, RBs cover a wide latitudinal gradient (5° N–27° S) 
and encompass most of the marine Brazilian Province (sensu 
Briggs  1974) and biogeographic ecoregions (sensu Spalding 
et al. 2007), except for the Rio Grande ecoregion (south Brazil) 
(Figure  5a). They are especially abundant in the Amazonia, 
Northeastern and Eastern Brazilian ecoregions. Yet, despite 
their predominance in coastal and insular shelf areas, our anal-
ysis shows that currently only 15.7% of sites containing RBs fall 
within the boundaries of MPAs (22 of 307 encompassing the 
coastal and oceanic zones). Among those, only one MPA, the 
Costa das Algas at the Espirito Santo coast, considers RBs as 
a formal conservation target (‘bioclastic and lithoclastic sedi-
mentary formations’; Costa Gastão et al. 2020). The presence of 

RBs within the other MPAs is coincidental and opportunistic, 
as those are focused on protecting other habitats, such as coral 
and rocky reefs.

The coverage of RBs by MPAs is disproportional across 
Brazilian marine ecoregions. For example, our analysis shows 
that RBs in the FN-Rocas Atoll region have the highest cov-
erage among ecoregions, while RBs in the Amazonia region 
are completely unprotected (Figure  5b). Moreover, of the 22 
MPAs that include RBs, only eight are designated as no-take 
and should offer full protection (i.e., 2.4% of sites containing 
RBs and 15% of all RB sites within MPAs). In the Southeastern 
ecoregion, most RB sites (70%) are located within no-take 
MPAs. On the other hand, the vast majority of RBs covered by 
MPAs in the Northeastern and Eastern ecoregions are within 

FIGURE 3    |    Biodiversity associated with rhodolith beds in the different Brazilian ecoregions (sensu Spalding et  al.  2007; FN—Fernando de 
Noronha, NE—Northeast, TMV—Trindade and Martim Vaz, SE—Southeast). (a) Comparison of species richness recorded in rhodolith beds across 
marine ecoregions, (b) rarefaction curves for each ecoregion, denoting changes in species richness with research effort, that is, number of sampling 
sites and (c) occurrence of threatened (vulnerable/endangered/critically endangered) and endemic species, as well as commercially important fish 
species across the different ecoregions. Colour coding for organism groups in panel (a) is the same as in Figure 2a.
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multiple-use MPAs (Figure 5b). The RBs under this multiple-
use regime of protection can be subjected to relatively high 
human disturbances, such as extractive uses of biodiversity, 
unless they occur within more restricted zones within the 
MPAs. Bathymetrically, 57% of RBs located within MPAs are 
shallow (< 30 m depth) and 43% are mesophotic. Also, nearly 
all RBs covered by no-take MPAs were classified as shallow 
(~93%), while RBs covered by multiple-use MPAs include a 
similar number of shallow and mesophotic beds, except for a 
predominance of multiple-use MPAs for the Southeastern re-
gion (Figure 5b).

Our results highlight a clear spatial overlap between anthro-
pogenic threats (bottom trawling, land-based pollution, oil and 
gas exploration, seabed mining) and RB distribution (Figures 6 
and 7). Bottom trawling revealed the largest superimposition 
(almost 52%) with RBs, especially in the Southeastern, Eastern, 
Northeastern and Amazonia ecoregions, but not with RBs lo-
cated in the Fernando de Noronha and Rocas Atoll insular 
shelves (Figure  6a and Figure  S3). Similarly, land-based pol-
lution is recorded along almost the entire Brazilian coast and 
hence, RBs located at the coastal shelves, but not those at oce-
anic islands, are exposed to this threat (Figure 6b and Figure S3). 
However, the overlap with the pollution threat was 12% lower 
than the overlap for bottom trawling.

Although there is currently little spatial overlap between RBs 
and oil and gas fields and seabed mining (0.6% and 0.1%, respec-
tively), they are often located in close vicinity from each other 
(Figure  7a,c and Figure  S3). Moreover, activities associated 
with oil and gas exploration and seabed mining are predicted 
to increase onshore and offshore on the Brazilian EEZ, with 
spatial overlap of 0.7% and 3.5%, respectively (Figure 7b,d and 
Figure S3).

Lastly, we ascertained the potential cumulative threats to RBs 
by examining the overlap of more than one threat to the areas 
containing RBs (Figure 8). While there were reasonable cumu-
lative threats in the Amazonia, Northeastern and Eastern ecore-
gions, RBs in the Southeastern coast were mostly affected by 
more than a single threat.

4   |   Discussion

Our unprecedented large-scale quantitative analysis of bio-
diversity associated with RBs, an extensive benthic habitat in 
Brazil, highlights their role as hotspots and key habitats for a 
number of species that are endemic, threatened and of commer-
cial importance and hence, corroborates their importance as a 
natural heritage (sensu UNESCO Institute for Statistics 2009). 

FIGURE 4    |    Comparison of site-specific species richness associated with rhodolith beds. (a) Total species richness in different rhodolith beds and 
(b) site ranking according to our summation approach, (see Table S2 and Figure S2 for the individual ranks). Gradient of colours indicates the over-
all ranking for species richness (a) and considering all categories (b). The highest-ranking sites are highlighted by uppercase letters (GARS—Great 
Amazon Reef System, PC—Paraiba coast, AB—Abrolhos bank, ES—Espirito Santo coast, TI—Trindade Island, DS—Davis seamount). Dots with a 
black outline highlight the sites within MPAs.
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8 of 14 Diversity and Distributions, 2025

This is particularly important considering the illustrated lack 
of conservation efforts to adequately protect these habitats. In 
this context, our analysis might contribute to the implementa-
tion of improved spatial management tools focused on RBs, by 
identifying specific biodiversity hotspots and areas potentially 
heavily impacted, representing an important first step towards 
the incorporation of those habitats as priorities for conservation 
in Brazil.

4.1   |   Rhodolith Beds—Hotspots for Biodiversity

Our study shows that RBs are important biodiversity hotspots 
in the SW Atlantic and comparison with available informa-
tion, regarding species richness for the Brazilian continental/
insular shelves (Miloslavich et  al.  2011), indicates that RBs 
harbour 12% of the recorded richness. For example, for mac-
roalgae and fishes, the most studied groups, these numbers 
correspond to 39% and 19% of the total number of species 
known for Brazil, respectively (Miloslavich et al. 2011). This is 
consistent with other regions, for example, New Zealand and 
the NE Atlantic, where the recorded number of macroalgal 
species associated with RBs corresponded to ~30% of the local 

flora (Nelson et al. 2014; Peña et al. 2014). However, our study 
also strongly suggests that the current species records for RBs 
are plausibly underestimated (see rarefaction curves). This is 
unsurprising, considering the extensive areas and bathymet-
ric range covered by RBs, but also due to the fact that available 
biodiversity studies often only focus on specific taxa, instead 
of a multi-taxa inventory.

Our study further confirms that RBs are important hotspots 
for threatened and vulnerable species, as recently highlighted 
by Tuya et al. (2023), harbouring 22% of the marine inverte-
brate and fish species included in the national Brazilian red 
list (ICMBio 2022). Moreover, Brazilian RBs harbour numer-
ous endemic species, ~70% of those being fishes. Our results 
indicate that 18% of the 174 endemic fish species known for 
Brazil (Pinheiro et  al.  2018) are associated with RBs. The 
highest numbers of endemic species were recorded for the 
geographically isolated RBs of the TMV Islands and the sea-
mounts of the Vitoria-Trindade chain in Eastern Brazil. This 
was expected considering that isolated oceanic islands and 
seamounts in the Atlantic are characterised by poor connec-
tivity and high endemism (Pinheiro et al. 2018). Furthermore, 
our data demonstrate the potential importance of RBs for 

FIGURE 5    |    Distribution of Brazilian rhodolith beds and their presence in marine protected areas (MPAs). (a) Rhodolith bed distribution along 
the Brazilian coast, based on published records (orange circles—RBs within no—take MPAs, red circles—RBs within multiple—use MPAs, grey 
circles—RBs not included in MPAs) and (b) the proportion (%) of shallow and mesophotic rhodolith beds covered by MPAs in the different marine 
ecoregions within Brazil.
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9 of 14

fisheries, as the records show that 15% of the fish species as-
sociated with RBs are of commercial importance (Quimbayo 
et  al.  2021). The high fish biodiversity in RBs is unsurpris-
ing, as along the Brazilian coast, these habitats can often be 
found physically interconnected with coral and rocky reefs 
(Figure  S4a,b). In this regard, previous studies highlighted 
not only the relevance of RBs as nursery and foraging grounds 
for many juvenile and adult fish species, respectively, but also 
their importance for increasing the total abundance and pro-
vide corridors for the migration of reef fishes towards possi-
ble spawning grounds (Costa et  al.  2020; Moura et  al.  2021; 
Anderson et al. 2023). The common physical interconnection 

FIGURE 6    |    Exposure of Brazilian marine regions to anthropogenic activities, such as (a) fishing intensity due to bottom trawling and (b) land-
based pollution, highlighting the overlap with known rhodolith beds (shades of green).

FIGURE 7    |    Exposure of Brazilian marine regions to current (left) 
and future (right) anthropogenic activities, such as (a, b) seabed mining 
and (c, d) oil and gas fields, highlighting the overlap and close proximity 
of threats to rhodolith beds (shades of green).

FIGURE 8    |    Individual and combined threats to rhodolith beds for 
each marine ecoregion in Brazil.
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of RBs with coral and rocky reefs, which represent the three 
major marine hard-bottom habitats in Brazil, and the high 
proportion of shared species indicates that ecological con-
nectivity exists between these habitats (Pinheiro et al. 2015; 
Reis-Filho et  al.  2019; Moura et  al.  2021). This is evidenced 
by studies on fish diversity at the Abrolhos Bank and the 
Vitoria-Trindade chain, showing that a significant number of 
fish species in the RBs (> 60%) are shared with adjacent coral 
reefs (Figure S4c; Pinheiro et al. 2015; Moura et al. 2021). In 
addition, another study provided evidence of the connectiv-
ity of RBs with seagrass habitats, showing that the two habi-
tats shared 57% of fish larval species (Costa et al. 2020). At a 
larger scale, a recent analysis of the biogeographical patterns 
of fish species associated with RBs indicated that they might 
function as stepping stones that connect fish populations 
from the Brazilian tropical and subtropical regions (Anderson 
et  al.  2023). Furthermore, the Brazilian Province and the 
Caribbean have historical connection via mesophotic habitats 
across the Amazon shelf through large and complex biogenic 
reefs, sponge bottoms and extensive RBs, which together com-
prise the Great Amazon Reef System (GARS) (Francini-Filho 
et  al.  2018; Banha et  al.  2022). Such a connecting corridor 
shapes the evolution and history of several taxa in the Western 
Atlantic (Araujo et al. 2022).

4.2   |   Current Protection and Threats

In the past decades, Brazil has made important progress in the 
establishment of MPA networks to conserve different habitats, 
such as coral reefs, mangroves and oceanic islands. RBs, as well 
as mesophotic reefs, in contrast, have mostly been neglected, 
even though they cover extensive seafloor areas of Brazilian seas 
and support high biodiversity (Almada and Bernardino  2017). 
RBs are especially abundant in the Amazonia, Northeastern 
and Eastern marine ecoregions (Figure 5a), which together are 
assumed to represent ~95% of the total RB area in Brazil (Santos 
et al. 2023). Still, modelling predictions suggest that they might 
be also more prevalent in the Southeastern ecoregion than pre-
viously anticipated (i.e., along the São Paulo and Paraná coast; 
Carvalho et  al.  2020). Despite their widespread distribution 
and their ecological and socio-economic value (Amado-Filho 
et  al.  2017), the conservation efforts to protect RBs are lag-
ging behind the initiatives for other habitats and are poorly 
implemented.

Our country-level assessment of the protection status of RBs, 
as well as their spatial overlap with major anthropogenic pres-
sures highlights the current lack and urgent need for conser-
vation planning efforts tailored specifically for RBs. Only one 
of the biodiversity hotspots identified here (Trindade Island) 
is currently protected by a no-take MPA (Figure 4b; see Giglio 
et al. 2018), and only a small fraction of shallow-water and me-
sophotic RBs are within any type of MPAs (about 15.2% and 
12.7%, respectively). The MPA coverage is reduced to 3.4% 
and 0.4% for shallow-water and mesophotic RBs, respectively, 
when only no-take MPAs are considered. Moreover, there is a 
clear bathymetric bias in the protection of RBs, with most RBs 
covered by no-take MPAs occurring in depths < 30 m (~93%). 
This consideration is especially relevant in view of the recent 

findings indicating an increase in RB beta-diversity with depth. 
This suggests that deeper RBs may act as long-term depth refu-
gia (Voerman et al. 2022), while RBs in shallow, euphotic zones 
usually support a higher abundance of organisms and species 
richness (Veras et al. 2020; Voerman et al. 2022). In this con-
text, large protection gaps exist in the Amazonia and Eastern 
ecoregions (for both shallow and mesophotic RBs) and in the 
Southeastern ecoregion (for mesophotic RBs). Specifically, the 
Amazonia ecoregion harbours one of the most important me-
sophotic reef ecosystems of the South Atlantic (GARS; Soares, 
Tavares, and Carneiro 2019), which also includes large extents 
of RBs (Moura et  al.  2016; Francini-Filho et  al.  2018; Araújo 
et al. 2021) that are not protected by any MPA. Increasing efforts 
over the last years have been made to delimit the occurrence 
and map the extension of RBs and other habitats in the GARS 
region (e.g., Moura et al. 2016; Francini-Filho et al. 2018; Vale 
et  al.  2018). The available information indicates that benthic 
megahabitats in the GARS, which include RBs, cover an area of 
> 22,000 km2 (Araújo et al. 2021), while suitable habitat model-
based estimations suggest an even larger area in this region 
(~63,000 km2; Carvalho et al. 2020; Santos et al. 2023).

In Brazil, increasing the conservation efforts for RBs is a press-
ing issue, as they are exposed to multiple and escalating human 
threats (Table 1). Bottom trawling activities and land-sea pollu-
tion have been identified here as the potential threats with the 
largest spatial overlap with RBs. Live rhodoliths are composed 
of slow-growing fragile organisms that are easily damaged 
by trawling nets, and the algal breakage and removal (as by-
catch) leads to decreased habitat complexity (Hall-Spencer and 
Moore 2000; Kamenos, Moore, and Hall-Spencer 2003; Bernard 
et al. 2019). Bottom trawling may also impact RBs through sed-
iment resuspension and deposition over rhodoliths, leading to 
their death (Paiva et  al.  2023b). Furthermore, the presence of 
RBs in areas experiencing increasing coastal urbanisation and 
pollution (e.g., untreated sewage and agricultural run-off lead-
ing to eutrophication) represents yet another threat to RBs, 
which has been shown to negatively affect rhodolith physiologi-
cal performance (Schubert et al. 2019; Koerich et al. 2021).

Other anthropogenic activities, such as seabed mining and oil 
and gas exploitation have been identified as potential threats 
to coastal benthic habitats, including RBs (Table  1; Araújo 
et  al.  2021; Santos et  al.  2023). These activities cause massive 
sediment dislodgement that can expand over considerable dis-
tances, which in conjunction with the discharges of drill cut-
tings from onshore oil and gas exploration activities, can cause 
a significant increase in sediment deposition over rhodoliths, 
as well as the release of pollutants that leads to the burial and 
subsequent death of rhodoliths (Table  1). Furthermore, the 
Brazilian coastline is highly vulnerable to accidental oil spills 
(within estuaries and offshore) associated to these activities, 
which can cause significant impacts on coastal ecosystems 
and marine biodiversity (Magris and Giarrizzo 2020; Zacharias 
et al. 2024). Unfortunately, evidence for the impacts of oil spills 
on Brazilian RBs are very limited, but studies on the impact of 
the 2010 BP Deepwater Horizon oil spill in the Gulf of Mexico in-
dicate a significant decrease in the biodiversity associated with 
RBs (Fredericq et al. 2014). This potential threat due to activ-
ities related to oil and gas exploitation is especially imminent 
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in the GARS region, as some proposed blocks spatially overlap 
with RBs, leading to legal disputes between oil companies and 
the Brazilian Environmental Agency (IBAMA) over the licens-
ing of those exploitations (Araújo et al. 2021; Banha et al. 2022; 
Rodrigues  2023). The GARS region is also an important fish-
ing ground (Moura et  al.  2016; Araújo et  al.  2021; Eggertsen 
et al. 2024). Thus, in view of the increasing pressure from fisher-
ies and the oil and gas industry to exploit the Amazonian shelf, 
actions to identify and protect priority areas for the establish-
ment of MPAs using an ecosystem-based approach are urgently 
needed to safeguard the biodiversity and ecosystem services 
provided by RBs and other habitats in the region (Francini-Filho 
et al. 2018; Banha et al. 2022).

5   |   Conclusions and Future Perspectives for 
Effective Conservation of RB

Our study provides the first insights into how biodiversity in-
ventories could be used to identify potential priority areas for 
RB conservation and represents an important step towards the 
development of an ecosystem-based network of MPAs. Such a 
conservation planning approach should be based on the princi-
ples of complementarity and demographic/genetic connectivity 
with other major coastal (e.g., mangroves) and benthic marine 
habitats (e.g., coral and rocky reefs, seagrass meadows), as these 
megahabitats may work as a functional and interconnect sea-
scape mosaic for several species (e.g., ontogenetic fish migra-
tions; Moura et al. 2011; Reis-Filho et al. 2019; Costa et al. 2020). 
However, it is important to note that our ‘multi-criteria’ hotspot 
delimitation approach is limited by major knowledge gaps re-
garding several geographical areas and taxa, and future stud-
ies focused on RB biodiversity and ecological functioning are 
warranted. Moreover, regarding potential threats, we used 
only a subset of threats deemed important for impacting RBs, 
while others, such as global warming, ocean acidification, non-
indigenous species and plastic pollution could not be included 
due to the unavailability of spatially explicit data and a lack of 
understanding about the mechanisms associated with some of 
these impacts. In addition, the relationship between the pres-
ence of human activities and the actual condition of RBs (and 
other marine ecosystems) is also driven by several other aspects, 
such as the effects of interactions between multiple stressors 
(Tekin et  al.  2020), the temporal variation in the intensity of 
impacts (Volery et al. 2023), and the nonlinear relationships be-
tween ecosystem condition and the intensity of both individual 
stressors and multiple stressors (Korpinen and Andersen 2016). 
A detailed understanding of the associated vulnerabilities is 
important to enable cutting-edge risk assessments and conser-
vation planning strategies. Incorporating this new knowledge 
(when such information becomes available) may yield a more 
accurate and comprehensive assessment of priority sites for pro-
tecting RBs.

The nuances in prescriptive actions that we have discussed 
here reiterate the importance of spatially explicit prioritisation 
assessments, incorporating both detailed information on biodi-
versity patterns and threats (Magris et al. 2021). This is particu-
larly relevant in the context of resolving the inherent trade-off in 
choosing sites for protection that are of high conservation value 
and relatively secure (avoiding regions subjected to increasing T
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threats) or those that are vulnerable (prioritising areas facing 
increasing threats). In this time of increasing competition be-
tween developing industries, fisheries and other sea uses, and 
the scenario of accelerated ocean warming, acidification and 
sea level rise, the importance of our analyses lies in the abil-
ity to identify biodiversity hotspots that are lacking protection, 
facing high vulnerability to additive and synergistic impacts 
(e.g., RBs along the Southeastern ecoregion) and are projected 
to face increased vulnerability in the future (Villa, Cimatti, and 
Di Marco 2024). Hence, it is imperative that the fine-scale maps 
of RBs, the biodiversity supported by these habitats and the po-
tential interaction between stressors are considered in Brazil's 
marine spatial planning actions. If Brazil manages to diversify 
and rapidly expand MPAs and ecosystem-based marine spatial 
planning to effectively protect RBs, it will not only contribute 
to achieve the target of protecting 30% of the planet by 2030 but 
also take the lead in the conservation of the largest known ex-
tension of RBs worldwide.
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