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Abstract: At present, energy demands are mainly covered by the use of fossil fuels. The process
of fossil fuel production increases pollution from oil extraction, transport to processing centers,
treatment to obtain lighter fractions, and delivery and use by the final consumers. Such polluting
circumstances are aggravated in the case of accidents involving fossil fuels. They are also linked to
speculative markets. As a result, the trend is towards the decarbonization of lifestyles in advanced
societies. The present paper addresses the problem of the optimal sizing of a hybrid renewable energy
system for scheduling green hydrogen production. A local system fully powered by renewable
energies is designed to obtain hydrogen from seawater. In order to monetize excess energy, the grid
connection of the system is considered under realistic energy market constraints, designing an hourly
purchasing strategy. This crucial problem, which has not been taken into account in the literature,
is solved by the specific dispatch strategy designed. Several optimization methods have been used
to solve this problem; however, the scatter search method has not previously been employed. In
this paper, the problem is faced with a novel implementation of this method. The implementation
is competitive in terms of performance when compared to, on the one hand, the genetic algorithm
and differential evolution methods, which are well-known state-of-the-art evolutionary algorithms,
and, on the other hand, the optimal foraging algorithm (OFA), a more recent algorithm. Furthermore,
scatter search outperformed all other methods in terms of computational cost. This is promising for
real-world applications that require quick responses.

Keywords: green hydrogen; optimization; scatter search; evolutionary algorithms; dispatch strategy

MSC: 90C59; 68W50

1. Introduction

The more developed societies become, the greater the increase in energy demand.
Currently, this demand is mainly met by the use of fossil fuels. Fossil fuels are limited
resources linked to both economic and availability uncertainties. They also have undesirable
climatic effects. These factors bring to light the vulnerability of energy markets and the non-
sustainability of energy systems. In order to manage such circumstances, the governments
of many countries are promoting the transition to clean energy. For decades, around 80%
of the global energy mix has been supplied by fossil fuels. This percentage will drop below
75% by 2030 and will be slightly above 60% by 2050 [1].

In order to meet this demand, various renewable energy sources are currently being
employed to support traditional energy sources such as solar photovoltaic, wind, geother-
mal, and marine energy. The technologies to obtain energy from the sun and wind are
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particularly mature [2,3]. However, unpredictable changes in nature have an impact on
energy production. Therefore, energy storage systems are necessary to overcome this issue.

Hydrogen is considered an energy carrier, because of its ability to store energy, which
can be retrieved when needed. The energy contained in hydrogen can be more than twice
that contained in petroleum derivatives. Hence, many countries are turning their attention
to hydrogen as an alternative to fossil fuels. However, hydrogen is not naturally present
in our environment. It is present as a mixture with other elements, such as oxygen in the
case of water or carbon in the case of hydrocarbons. It takes a lot of energy to dissociate
hydrogen and oxygen from water. When such energy is obtained from renewable energy
sources, the term green hydrogen is used because of the lack of carbon emissions into
the atmosphere.

The motivations of this research were twofold. On the one hand, we aimed to demon-
strate that the Canary Islands have the ideal conditions to produce green hydrogen and,
therefore, to collaborate in the decarbonization of an isolated energy system and, on the
other hand, to test a novel implementation of the scatter search method, which provides a
novel procedure to combine solutions. In the present paper, several scenarios are considered
for designing the main components of a grid-connected plant to schedule the production of
hydrogen from renewable energy sources. A dispatch strategy is designed and explored to
evaluate these scenarios. This dispatch strategy takes into account the connection to the
grid to deliver excess energy under the constraints of the energy market. The evolutionary
approach provided by scatter search is used to solve this problem. The main contributions
of this paper are described below:

• The optimal sizing of a grid-connected hybrid renewable system with hydrogen tech-
nologies is addressed, while several optimization techniques are applied. A novel
implementation of scatter search is applied in the present study and its performance
is compared with methods obtained from the literature. In addition, scatter search
has not previously been used to solve this kind of problems. Both the novel im-
plementation and its use in an unexplored field permit a broader understanding of
the method.

• Renewable system alternatives are designed using climatological data, which are
obtained from Copernicus [4]. Copernicus is the Earth observation component of the
European Union’s Space Programme. It offers information services that draw from
satellite Earth Observation and in situ (non-space) data.

• The optimal sizing is addressed to meet the scheduled hydrogen demand. The dis-
patch strategy designed allows excess energy to be delivered to the grid according
to market constraints. Considering such realistic constraints avoids oversizing the
energy system.

This paper is organized as follows: Section 2 explores the related literature. Section 3
introduces the materials and methods. It includes the proposed system layout, the mathe-
matical modeling of the main devices, the problem formulation, the optimization process,
and the scope of the experiment. Section 4 displays the results. Section 5 provides a
discussion. Finally, Section 6 gives the conclusions.

2. Literature Review

This is followed by a review of the literature, in order to expose some of the identified
gaps that this study addresses.

2.1. Optimal Sizing of Hybrid Renewable Energy Systems

Many authors have studied the optimal sizing of hybrid renewable energy systems.
The main objective consists of determining the dimensions of system devices, while eco-
nomic and technical indicators are taken into account. Katsigiannis and Georgilakis [5] used
simulated annealing and Tabu search to optimize a small autonomous power system with
minimal energy cost. The system contained wind turbines, photovoltaic panels, a diesel
generator, a biodiesel generator, fuel cells, and batteries. Alshammari and Asumadu [6]
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studied the optimal design of a hybrid renewable energy system considering wind, pho-
tovoltaic, biomass, and battery technologies. Harmony search, Jaya, and particle swarm
optimization algorithms were used to meet the electricity demand in a cost-effective, effi-
cient, and reliable manner. Maleki et al. [7] applied an improved harmony search algorithm
for optimal sizing of a hybrid system based on solar photovoltaic and battery storage
units. Fares et al. [8] solved the optimal sizing of a hybrid energy system based on pho-
tovoltaic installations, wind turbines and battery storage. The performance of several
metaheuristics was compared. He et al. [9] proposed a hybrid electrical-thermal energy
storage system for optimal sizing of a renewable hybrid system based on photovoltaic
panels and wind turbines. They employed particle swarm optimization as an optimization
method. Saha et al. [10] optimized the size of a photovoltaic-, biomass-, and battery-based
hybrid system to electrify an isolated village. They employed the discrete gray wolf opti-
mization algorithm to minimize the net present cost under technical, social, and economic
constraints. These references considered the use of batteries as energy storage systems,
which are widely employed to this end [11]. However, they are not recommended for
long-term operations [12].

2.2. Optimal Sizing of Hybrid Renewable Energy Systems with Hydrogen Technologies

Focusing on promising alternatives for energy storage, many efforts have been cen-
tered on optimizing the size of energy systems based on renewable sources and hydrogen
technologies. For this purpose, several optimization techniques have been used, which
can be classified as classical, software simulation tools, and modern techniques. Classical
optimization includes methods such as mixed integer programming [13] or iterative meth-
ods [14]. The complexity of the problem to be solved influences the classical techniques.

In terms of software simulation tools for the design of renewable systems, HOMER, (Hy-
brid Optimization Model for Electric Renewables) is the most widely used. Lacko et al. [15]
considered a system based on solar photovoltaic arrays and wind turbines that included
hydrogen technologies to achieve the lowest total net present cost. Das et al. [16] analyzed
the feasibility of systems based on photovoltaic, battery, and fuel cells to minimize the
total net present cost and cost of energy. Duman and Güler [17] studied the energy cost of
systems based on solar photovoltaic arrays and wind turbines, including hydrogen tech-
nologies. Such tools are very useful when designers do not require exhaustive control of the
optimization process. Numerous studies have been conducted in which modern techniques
were applied and a customized optimization process was developed. Mohseni et al. [18]
optimized the size and typology of the components of an isolated microgrid system with hy-
drogen technologies. They proposed a metaheuristic-based approach, which was compared
with several metaheuristics to reduce the total net present cost. Siddiqui and Dincer [19]
optimized a renewable energy system to produce electricity, hydrogen, and ammonia
based on solar photovoltaic panels and wind turbines. A genetic algorithm was used to
obtain minimum cost rates and the maximum energy efficiency. Sun et al. [20] used the
whale optimization algorithm for the optimal design of a hybrid photovoltaic, biowaste,
and fuel cell system based on hydrogen energy storage. They minimized the total net
present cost under reliability constraints. El-Sattar et al. [21] addressed the optimal size of
an isolated hybrid system to meet electricity demand with a cost improvement. The main
configuration of the system included biomass, photovoltaic modules, electrolyzer units,
hydrogen tank units, and a fuel cell system. They used the mayfly optimization algorithm
(MOA) to meet the demand with the lowest energy cost and greenhouse gas emissions.
Elnozahy et al. [22] proposed an electrical/green hydrogen generation system based on
photovoltaic, battery, and hydrogen technologies. They employed particle swan optimiza-
tion, taking into account the levelized cost of energy, the net present cost, and the capability
to meet the demand. Hou et al. used various modified harmony search algorithms for the
sizing of a standalone solar–hydrogen system in green buildings. The objective function
was based on the probability of loss of power supply and the annual cost of the system.
Güven and Mengi [23] developed a comparison of several metaheuristic algorithms for the
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sizing of an isolated hybrid energy system. They proposed an atom search optimization
algorithm, which outperformed all other algorithms. They considered the annual cost
of the system as the main criterion during the optimization process. Phan-Van et al. [24]
designed a microgrid based on photovoltaic, electrolyte, fuel-cell, battery, and hydrogen
technologies. Several metaheuristic optimization algorithms were employed. The particle
swarm optimization algorithm outperformed the other methods. In these cases, isolated
systems were designed to meet the demand.

The most commonly studied hybrid renewable systems are those separated from the
grid (off-grid). In these cases, the excess energy flux is wasted once the energy storage
systems are full. Moreover, isolated systems cannot import energy when needed. When
hybrid renewable systems are connected to the grid (on-grid), excess energy flux can be
leveraged and energy shortages covered. An extensive review on hydrogen and grid
connection was developed by Irham et al. [25]. Several studies have considered the opti-
mal sizing of grid-connected renewable hybrid systems with hydrogen technologies. In
this sense, Garcia-Trivino et al. [26] sized a grid-connected hybrid system including solar
photovoltaic arrays, wind turbines, batteries, and hydrogen technologies. Gharibi and
Askarzadeh [27] studied the optimization of a hybrid system connected to the grid based
on solar photovoltaic arrays, wind turbines, a diesel generator, and hydrogen technologies.
They introduced a grid factor as a decision variable to optimize the amount of electricity
sold. Okundamiya [28] demonstrated the size optimization of a grid-connected hybrid
system based on photovoltaic and fuel cells. The system was designed to avoid power loss
at certain times due to the connection to an unreliable grid. Le et al. [29] presented the
optimization of the design and operation of a grid-connected hybrid energy system based
on photovoltaic, battery, and hydrogen technologies. The connection to the grid allowed
energy to be imported when needed. Not taking energy from the grid is a requirement for
the production of green hydrogen. Therefore, in the present study, the grid connection was
considered exclusively to provide energy. The reality of complex energy systems does not
allow the full excess flux to be leveraged from on-grid renewable systems. Hour by hour,
energy companies declare the energy that they can accept from each renewable energy
source, which is an aspect that is normally underestimated.

2.3. Scatter Search to Solve Engineering Optimization Problems

Scatter search (SS) [30] is an evolutionary algorithm for optimization, in which a
moderately sized set of solutions evolves due to intelligent mechanisms of combination
and selection. Unlike the usual strategies in evolutionary optimization, the search for a
local optimal solution is a guided task. The basic concepts and principles of SS arose in the
1970s, based on strategies combining decision rules and constraints [31]. However, scatter
search remains an object of research. Like any other metaheuristic, scatter search can have
a good performance for some problems or instances, and not such a good performance
for others. Advances in its application can be achieved in two main directions. On the
one hand, by exploring its application to types of problems where it has not been tested,
thus broadening the field of successful applications. On the other hand, by making the
necessary adjustments so that the performance improves and can be competitive with the
state-of-the-art procedures in a specific field of application.

Scatter search is an evolutionary metaheuristic that, unlike most evolutionary meta-
heuristics such as differential evolution, does not work with a large population of solutions
that evolve in the search space, but with a moderately sized set of solutions called the
“Reference Set”. Here, we are talking about a reference set of no more than 10, 15, or 20 solu-
tions, instead of a population of hundreds, or even thousands. Another distinctive feature
of scatter search is that the role of randomness is reduced in the combination of evolving
solutions to obtain new solutions that improve the exploration and exploitation capacity of
the metaheuristic. Thus, instead of making many combinations to take advantage of only
the most promising combinations, the aim is to select and combine those solutions that
can lead to significant improvements in the quality and diversity of the reference set itself.
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In addition, the combination of solutions also tries to reduce the role of randomness by
allowing the combinations to take advantage of the good characteristics of the combined
solutions. Finally, in order to maintain a reference set that is composed of both high-quality
solutions and essentially different solutions, the resulting combinations or their improve-
ments through local searches are incorporated into the reference set for two reasons. On
the one hand, because they consist of higher-quality solutions than those already included
in the reference set, or because, without neglecting quality, they give a greater degree of
dispersion to the reference set, while keeping its size limited.

The metaheuristic SS works as follows. In order to create a population of solutions, a
reference set of moderate size is generated. This set evolves to intensify and diversify the
search based on its solutions. Some solutions of the reference set are combined, and a local
search procedure is applied to the resulting solutions. Then, the reference set is updated by
including both the good and dispersed solutions obtained. These steps are repeated until no
improvement is obtained or another stopping condition is met [30]. Scatter search (SS ) has
been successfully applied to solve complex optimization problems [32]. In Silva et al. [33],
the simultaneous optimization of fuel emission and cost objectives was explored by devel-
oping an improved SS Tan et al. [34] applied SS to address a scheduling problem to opti-
mize an energy-efficient continuous steelmaking casting process. Pérez Posada et al. [35]
used the SS heuristic for the optimal location, sizing, and contract pricing of distributed
generation in electric distribution systems. Stojiljkovic et al. [36] employed SS to solve a
multi-objective bi-level optimization problem regarding the design and operation of an
energy supply system. However,SS has never been used for the optimal sizing of energy
systems based on renewable sources and hydrogen technologies. In addition, the scatter
search implementations used by the authors of the present research combine two solu-
tions to achieve a new one. The novel implementation in the present research consists of
combining a scaled difference of two solutions with a third solution, which provides good
performance, as demonstrated.

In the present paper, this method is explored and its results are compared with those
obtained from the use of differential evolution [37], the genetic algorithm proposed by
Holland [38], and the optimal foraging algorithm (AFO). Both differential evolution and
the genetic algorithm are well-known and well-regarded among the state-of-the-art of
evolutionary methods. Differential evolution was designed as a stochastic direct search
method that uses a vector population. Information from the vector population is employed
to alter the search space. Differential evolution has been used to solve the optimal sizing of
energy systems based on renewable sources. Ramli et al. [39] applied a multiobjective dif-
ferential evolution algorithm for the sizing optimization of a solar, wind, and diesel hybrid
microgrid system with battery storage. Yang and Le [40] developed a techno-economic
optimization of a standalone system based on solar, wind, and battery. To solve the problem,
they proposed a multi-objective differential evolution algorithm. In addition to considering
hydrogen technologies, Abedi et al. [41] employed differential evolution to solve mixed
integer non-linear optimization problems by considering a hybrid photovoltaic/wind/fuel
cell energy system. In their research, the differential evolution outperformed another
well-known evolutionary method (particle swarm optimization). The genetic algorithm
proposed by Holland was the first population-based method. Mimicking the natural pro-
cesses of genetic variation and inheritance, the population evolves through a series of
operators, such as selection, reproduction, and mutation [42]. Nagapurkar and Smith [43]
developed a techo-economic optimization of a microgrid using genetic algorithm to mini-
mize the levelized cost of energy. The optimal foraging algorithm [44] was tested by the
authors on a benchmark and compared to several methods. The algorithm proved to be
very competitive; however, it has not been used to solve the problem addressed in this
research. Optimization with evolutionary algorithms can be an unfeasible approach for
solving real-world engineering problems, due to the high computational cost. In this sense,
SS can be a less costly method.
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Therefore, some gaps in the state of the art concerning the optimal sizing of energy
systems based on renewable sources and hydrogen technologies have been identified.
These are dealt with in this paper.

3. Materials and Methods

This section presents the proposed energy system, as well as the mathematical model-
ing of its constituent devices and the formulation of the optimization problem. Then, the
optimization process is detailed, including the dispatch strategy developed and the scatter
search implementation proposed. In addition, the scope of the experimentation is given.

3.1. System Layout

This study proposes an energy system based on renewable sources and hydrogen
technologies. The system basically consists of solar photovoltaic panels (PV), wind turbines
(WT), a battery bank, an electrolyzer, and a hydrogen tank (H2 TANK). An inverter (INV)
is used to transform the energy coming from the photovoltaic solar panels, and a converter
(CON) is used to transform the energy related to the battery bank. The main components
of the system are shown in Figure 1.

Figure 1. Hybrid system configuration layout.

Basically, energy from renewable sources powers the system. Since alternating current
(AC) is needed, an inverter is used to transform power from the solar photovoltaic panels.
Therefore, power is transformed from direct current (DC) to alternating current (AC).
The power from wind turbines does not need to be transformed. This power feeds an
electrolyzer, which produces hydrogen from water. The hydrogen produced is stored in a
tank. A battery bank is used to store excess power or to supply power to the electrolyzer
when the energy from renewable sources is not sufficient. The power going to the battery
bank must be transformed to direct current (DC) by the converter. In Figure 1, the grid
connection of the system can be seen. When the battery bank is full of charge, excess power
can be delivered to the grid. In order to ensure the green production of hydrogen, power is
not taken from the grid. The mathematical models used are detailed below.

3.2. Mathematical Modeling of System Units

This subsection describes the mathematical modeling of the main units of the system.
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3.2.1. Photovoltaic Modules

Light energy is converted into electrical energy by photovoltaic modules. Before
calculating the generated power, the temperature of the cell must be evaluated. In the
present study, Equations (1) and (2) are employed to determine the cell temperature at
time (TC(t)) and to compute the expected power output of a photovoltaic module at time
(PVp(t)), respectively [7].

TC(t) = I(t)
(

TNOCT − 20
800

)
+ TA(t) (1)

PVp(t) = PR,PV

(
I(t)

RREF

)
(1 + δT(TC(t)− TREF)) (2)

where I(t) is the irradiance at time, TNOCT is the cell temperature at normal operating
conditions (45 ◦C), TA(t) is the ambient temperature at time, PR,PV is the rated power of
the panel (500 W), RREF is the reference solar radiance, δT is the temperature coefficient
of the maximum power of the photovoltaic modules (−0.0037), and TREF is the reference
temperature of the solar cell (45 ◦C). In order to transform solar power, an inverter is used
(inverter efficiency ηinv = 0.965).

3.2.2. Wind Turbines

Wind energy is converted into electrical energy by employing wind turbines. Follow-
ing the power law in Equation [45], the wind speed captured at the height of the measuring
device must be converted to the height of the hub (see Equation (3)).

vh
vr

=

(
hh
hr

)α1

(3)

where vr is the wind speed at the reference height hr, vh is the wind speed at the height
of the hub hh (55 m), and α1 is the friction coefficient (0.14 m). The power output of the
wind turbine considered for the study (PWT = 660 kW) follows the power curve provided
in Figure 2. It can be seen that the wind turbine does not operate at wind speeds below
4 m/s or above 25 m/s.

Figure 2. Wind turbine power curve.

3.2.3. Battery Bank

The non-constant nature of renewable sources implies that energy is not guaranteed.
Therefore, it is necessary to use a battery bank to supply power to the electrolyzer. In
addition, excess energy from renewable sources can be stored in a battery bank. The bank’s
capacity (CBAT) is designed to satisfy the electrolyzer for a determined number of hours
(NH). This is calculated using Equation (4) [46].
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CBAT =
CELE · NH

DOD · ηBAT · ηCONV
(4)

where CELE is the electrolyzer’s capacity, NH is the number of hours of autonomy of the bat-
tery bank, DOD is the depth of discharge (80%), ηBAT is the battery bank’s efficiency (96%),
and ηCONV is the converter’s efficiency (95%).

On the one hand, the battery bank can supply power to the electrolyzer when the
renewable energy is insufficient. However, the battery bank can store excess energy when
the renewable energy exceeds the capacity of the electrolyzer. In order to verify that the
capacity of the battery bank is not exceeded, the virtual state of charge (VSOC) must be
calculated as shown in Equation (5).

VSOC = PBAT0(1− α2) +

(
PREN −

(
PELE
ηELE

))
ηCONV (5)

where PBAT0 is the state of charge of the battery bank at the previous time step, α2 is the
hourly self-discharge rate (0.0001), PREN is the available renewable power, PELE is the power
consumption of the electrolyzer, and ηELE is the electrolyzer’s efficiency. On the other hand,
in order to check that the capacity of the battery bank is not below the minimum state of
charge, the virtual state of discharge (VSOD) must be calculated as shown in Equation (6).

VSOD = PBAT0(1− α2)−
(

PNEEDED
ηBAT · ηCONV

)
(6)

where PNEEDED is the power needed to meet the energy demand of the electrolyzer, which
is explained in detail in Section 3.4.2.

3.2.4. Electrolyzer and Hydrogen Storage Tank

An electrolyzer is a device whose function consists in dissociating hydrogen and
oxygen from water. An electrolyte separates an anode and a cathode. When the electric
current passes through the electrolyte, a chemical reaction takes place. In the present study,
a proton-conducting exchange membrane electrolyzer (PEM) is considered. The hydrogen
produced is stored in the hydrogen tank. The energy consumed by the electrolyzer (PELE)
during the process is expressed by Equation (7).

PELE = (PREN + PBAT · ηBAT · ηCONV)ηELE (7)

where PBAT is the current state of charge of the battery bank. The mass of hydrogen obtained
during the process depends on the energy available in the electrolyzer. Furthermore, the
production of hydrogen at time H2(t) is limited by the capacity of the electrolyzer, as
explained in Equation (8).

H2(t) =
PELE
ECK

≤ HTmax (8)

where ECK is the consumption energy per kilogram of hydrogen produced (55 kWh/kg [47])
and HTmax is the maximum capacity of the hydrogen storage tank.

3.3. Problem Formulation

The problem formulation takes into account economic, production, efficiency, and
reliability indicators. The main objective of this study consists of proposing the optimal com-
bination of system devices to minimize the energy cost (EC) and the wasted energy (WE),
while maximizing the energy delivered to the grid (PSOLD). The daily demand of hydrogen
must be met, which is guaranteed by a penalty. The objective function of the problem is
shown in Equation (9).

minx(OF) = β1EC− β2PSOLD + β3WE + Penalty (9)
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where βi are the normalization factors used to balance the objectives of the objective func-
tion. They must guarantee the normalization of the objectives to values between 0 and 1.
The values that guarantee such a condition are 1, 10−7, and 10−6 to β1, β2, and β3, respec-
tively. Furthermore, X depicts the decision variables of the problem, which are shown in
Equation (10).

X = (PVN WTN PELE NH) (10)

where PVN is the number of solar photovoltaic modules, WTN is the number of wind
turbines, PELE is the dimension of the electrolyzer (kWh), and NH is the number of hours
of autonomy of the battery bank, as explained above.

The economic indicator is represented by the energy cost. In order to compute this
indicator, the total net present cost (TNPC) must be calculated as shown in Equation (11) [16].
The TNPC depicts the main investment and operating expenditures over the project lifetime.

TNPC =
ACS
CRF

(11)

where ACS is the annualized cost of the system (e/year) and CRF denotes the capital
recovery factor, which is computed using Equation (12).

CRF =
ir(1 + ir)n

(1 + ir)n − 1
(12)

where ir is the annual rate of interest, and n is the system’s lifetime (25 years). Furthermore,
ir is computed using Equation (13), which considers the interest rate (int) (6%) and the
inflation rate (4%).

ir =
int− in f lation rate
1 + in f lation rate

(13)

Regarding ACS, it is composed using the annualized cost of the system’s devices
(ACDi), as shown in Equation (14).

ACS = ACDPV + ACDINV + ACDWT+

+ ACDBAT + ACDCONV + ACDELE + ACDHT
(14)

Furthermore, the annualized cost of each device is composed of its annual capital
cost (ACC), annual replacement cost (ARC), and annual operation and maintenance cost
(AOMC) (see Equation (15)).

ACDi = ACCi + ARCi + AOMCi (15)

Therefore, it is necessary to compute these terms in relation to the number of pho-
tovoltaic modules; the number of wind turbines; and the dimensions of the inverter,
the battery bank, the converter, the electrolyzer, and the hydrogen tank. For each de-
vice i, its lifetime must be used to compute both its ACCi (see Equation (16)) and its
ARCi (see Equation (17) [48]).

ACCi = CRFi × CCi (16)

ARCi = RCi ×
(

LTsys − LTi
)

LTi
(17)

where CCi is the capital cost of the device i, RCi is the replacement cost of the device i, LTsys
is the lifetime of the system, and LTi is the lifetime of the device i. Finally, the energy cost
EC can be computed using Equation (18).
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EC(e/kWh) =
TNPC(e)× CRF

∑8760
1 PREN(kWh)

(18)

The production indicator is depicted by the energy delivered to the grid (PSOLD). When
the renewable energy produced exceeds the maximum capacity of both the electrolyzer
and the battery bank, a portion of this energy can be delivered to the grid, which is an
objective to maximize. However, the company that manages the energy market plans on a
day-to-day basis how much renewable energy it will receive from the producers. Therefore,
not all excess energy will be absorbed by the grid. Excess energy that is not absorbed is
wasted energy (WE). This is the efficiency indicator considered in the objective function,
which is an objective to minimize (see Equation (19)).

WE =
8760

∑
1

(
PREN −

PELE
ηELE

− PSOLD

)
(19)

Finally, the reliability indicator is included in the objective function as a penalty
function. Its function consists of penalizing solutions where the daily hydrogen demand
is not met. Such a circumstance is controlled by computing the daily loss of hydrogen
production probability (LHPP), as explained in Equation (20).

LHPP =
365

∑
1

(
1−

(
DH2 −UH2

DH2

))
(20)

where DH2 is the daily hydrogen demand and UH2 is the daily unmet hydrogen demand.
The problem is subject to some limit values and constraints, as shown in Equation (21):

PVNmin ≤ PVN ≤ PVNmax

WTNmin ≤WTN ≤WTNmax

PELEmin ≤ PELE ≤ PELEmax

NHmin ≤ NH ≤ NHmax
LHPP = 0

(21)

3.4. The Optimization Process

Next, the simulation process and the dispatch strategy are shown in detail. Moreover,
the scatter search implementation is exposed.

3.4.1. The Simulation Process

The simulation process is depicted in Algorithm 1.
It can be seen that the algorithm starts by reading the configuration file, in which the

limit values of the decision variables and the stopping criterion are set. Next, the ambient
temperature, wind speed, and solar irradiance are extracted from the meteorological data
source. Finally, the renewable energy demand is achieved from the energy market.

Once these data are available, the optimization process starts. For the daily demand
of hydrogen and the configuration of the optimization method a population must be
generated. Each individual in the population must be evaluated. Therefore, once the
energy generated from renewable sources has been computed, the dispatch strategy is
simulated, the objective function is evaluated, and the population is updated. The optimizer
evolves the population until reaching the stopping criterion.
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Algorithm 1 Algorithm of the simulation process.

1: parameters← config.txt
2: TA(t), vh(t), I(t)← meteo()
3: DEOLIC, DSOLAR ← market()
4: for <Hydrogen demands> do
5: for <method conditions> do
6: Generate Population
7: Compute Renewable Power
8: Simulate Dispatch Strategy
9: Evaluate Objective Function

10: Update population
11: while <Stopping criterion> do
12: Evolve Population
13: Compute Renewable Power
14: Simulate Dispatch Strategy
15: Evaluate Objective Function
16: Update population
17: end while
18: end for
19: end for

3.4.2. The Dispatch Strategy

The dispatch strategy shown in Figure 3 explains the process of managing energy in
the system. Depending on the capacity of the electrolyzer (X3) and the number of hours of
autonomy (X4), the maximum capacity of the battery bank can be computed (CBAT). The
process starts with a state of charge of the battery bank (PBAT0) of 80%. The daily demand
of hydrogen must be met over a time horizon of one year. At the end of every day, the
hydrogen tank is emptied.

Every hour, the available renewable energy (PREN) feeds the electrolyzer. The daily
hydrogen demand (dH2 ) must not be exceeded; therefore, the state of charge of the hydrogen
tank (HT) must be monitored. When the available renewable energy (PREN) is less than
the energy required by the electrolyzer (X3), the energy needed is computed (PNEEDED),
which must be provided by the battery bank (FROMBAT). The state of discharge of the
battery bank (VSOD) cannot be less than 20% of CBAT . Therefore, energy can be provided
from the battery bank to the electrolyzer under this condition. On the other hand, when
the available renewable energy exceeds the energy required by the electrolyzer, the battery
bank is supplied with energy (TOBAT). The state of charge of the battery bank (VSOC)
cannot exceed its maximum capacity CBAT .

When the available renewable energy is not needed to feed the electrolyzer and the
battery bank, it can be delivered to the grid (PEXCESS). However, the energy market sets
hourly limits regarding the purchase of renewable energy. These limits are established in
relation to each energy source. Therefore, the energy excess must be computed for both
solar (PEXCESS_PV) and wind (PEXCESS_WT) energy. In addition, these hourly limits should
be shared by all energy producers. The present study considers that the system cannot
supply more than 5% of the hourly limits set by the energy market, (SWT) and (SPV).

The available renewable energy that is not employed for the electrolyzer or the battery
bank, or that is not delivered to the grid, is considered wasted energy (DUMP). At the
end of the day, the unmet demand for hydrogen must be computed, in a process that is
repeated every day of the year.
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Figure 3. Dispatch strategy.
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3.4.3. The Scatter Search Implementation

The scatter search (SS) implementation developed in the present paper is shown by
Figure 4. It is explained as follows:

1. A population of individuals (candidate solutions) is randomly created.
2. A reference set of solutions is generated using the best adapted individuals in the

population and the most diverse with respect to the best. The best adapted individuals
are those with the best value for the objective function. The most diverse individuals
are obtained from the remaining individuals through a iterative selection of the
most diverse solutions in the population with respect to the solutions already in the
reference set.

3. The best individuals in the reference set are combined. The way in which these
individuals are combined follows Equation (22). When the value of the objective
function of a new individual is better than any of the previous best individuals in the
reference set, this new individual replaces the previous best individual.

newind = abs(ind1 + M · (ind2 − ind3)) (22)

In this Equation, newind is the created individual, ind1 to ind3 are the individuals
combined to create the new individual, and M is a scaling factor between 0.1 and 0.9.

4. The best individuals from the reference set are also combined with the most diverse
ones using Equation (22). Now, the most diverse individuals are selected for the
reference set. When a new individual is more diverse than that of any of the previous
diverse individuals in the reference set, this new individual replaces the previous
best individual.

5. These two steps are repeated until the stopping criterion is reached.

Next, the procedure is illustrated using an example. In this case, the aim is to generate
a reference set of 5 individuals (the 3 best adapted and the 2 most diverse regarding the
previous individuals). A population of 8 individuals (ind. 1 to ind. 8), which is shown
in Table 1, is randomly generated. In the example, each individual has 4 characteristics
(ch. 1 to ch. 4) that take integer values between 1 and 10. The value of the objective func-
tion (OF) is shown in column 6 of Table 1. In the example, it consists of the sum of the
characteristics of each individual. Next, the population is ordered according to the value of
the objective function, as shown in Table 2. Therefore, the first three individuals in Table 2
are the best adapted, so they are selected for the reference set (individuals 6, 2, and 1).

Table 1. Population of the example.

Individual Ch. 1 Ch. 2 Ch. 3 Ch. 4 OF

ind. 1 4 4 4 9 21
ind. 2 7 5 6 9 27
ind. 3 6 5 2 1 14
ind. 4 3 7 2 0 12
ind. 5 1 2 8 2 13
ind. 6 1 9 10 9 29
ind. 7 2 3 3 1 9
ind. 8 3 7 5 4 19
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Table 2. Ordered population of the example.

Individual Ch. 1 Ch. 2 Ch. 3 Ch. 4 OF

ind. 6 1 9 10 9 29
ind. 2 7 5 6 9 27
ind. 1 4 4 4 9 21

ind. 8 3 7 5 4 19
ind. 3 6 5 2 1 14
ind. 5 1 2 8 2 13
ind. 4 3 7 2 0 12
ind. 7 2 3 3 1 9

Figure 4. Flow chart of the scatter search implementation.

In order to select the most diverse individuals, each best individual is subtracted as an
absolute value with respect to the individuals not selected. As an example, the subtraction
of the best individual (ind. 6) and the first from the remainder (ind. 8) gives a value
of |1− 3|+ |9− 7|+ |10− 5|+ |9− 4| = 14. Once all subtractions have been computed,
Table 3 is generated. Each column relates to each best individual (individuals 6, 2, and
1), and each row relates to each subtraction in absolute value regarding the individual
indicated. Next, the minimum value for each row in Table 3 is chosen, and finally, the
maximum value of the minimum values previously identified (marked in bold) is the most
diverse individual. In the example, the most diverse individual is the individual identified
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as ind. 5. The procedure of identifying the most diverse individuals is repeated using the
best and most diverse individuals previously identified. The result is shown in Table 4,
where the 3 best individuals and the 2 most diverse individuals are displayed. These are
the reference set.

Table 3. Distance between the best and the remaining individuals.

Individuals Ind. 6 Ind. 2 Ind. 1

ind. 8 14 12 10
ind. 3 25 13 13
ind. 5 16 18 16
ind. 4 21 19 15
ind. 7 22 18 12

Table 4. Reference set: the best adapted and most diverse individuals.

Individuals Ch. 1 Ch. 2 Ch. 3 Ch. 4

Best1—ind. 6 1 9 10 9
Best2—ind. 2 7 5 6 9
Best3—ind. 1 4 4 4 9

Diverse1—ind. 5 1 2 8 2
Diverse2—ind. 3 6 5 2 1

The procedure for updating the reference set continues by combining the best in-
dividuals as shown in Equation (22). As an example, the combination of an individual
(ind. 6) and the remaining individuals (ind. 2 and ind. 1) provides a new individual,
characteristic by characteristic. As an example, the value of the M parameter is set to 0.6.
The value of ch. 1 when ind. 2 minus ind. 1 is considered in Equation (22) and calculated
as |1 + 0.6× (7− 4)| = 2.8 . Both alternatives are taken into account; therefore, the value of
ch.1 when ind. 1 minus ind. 2 considered in Equation (22) is |1 + 0.6× (4− 7)| = 0.8. The
set of individuals obtained after these combinations are shown in Table 5. They have been
reordered according to their fitness function and selected by the number considered (the
first 3 for the example case). All other individuals have been discarded.

Table 5. The result of combining and ordering the best individuals.

Ch. 1 Ch. 2 Ch. 3 Ch. 4 OF

2.8 9.6 11.2 9 32.6
5.2 8 9.6 9 31.8
1 9 10 9 29

7 5 6 9 27
0.8 8.4 8.8 9 27
8.8 2 2.4 9 22.2
0.4 6.4 6.4 9 22.2
4 4 4 9 21

7.6 1.6 1.6 9 19.8

The three best adapted individuals should then be combined with the two most diverse
individuals previously identified by following Equation (22). As an example, the combination
of the first characteristic of the new best individual and the most diverse individuals from the
reference set (ind. 5 and ind. 3) provides a value of |2.8+ 0.6× (1− 6)| = 5.8. The individuals
generated are shown in Table 6.
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Table 6. The result of combining the best and the most diverse individuals.

Ch. 1 Ch. 2 Ch. 3 Ch. 4

5.8 11.4 7.6 8.4
0.2 7.8 14.8 9.6
8.2 9.8 6 8.4
2.2 6.2 13.2 9.6
4 10.8 6.4 8.4
2 7.2 13.6 9.6

After repeating the procedure to select the most diverse individuals, a reference set
will be formed again by the three best adapted and the two most diverse individuals. The
reference set obtained after the first iteration of the example is shown in Table 7. This is
updated iteratively following the above rules.

Table 7. The reference set.

Individual Ch. 1 Ch. 2 Ch. 3 Ch. 4

Best1 2.8 9.6 11.2 9
Best2 5.2 8 9.6 9
Best3 1 9 10 9

Diverse1 6 5 2 1
Diverse2 1 2 8 2

3.5. Scope of the Experiment

This paper explored differential evolution, a genetic algorithm, the optimal foraging
algorithm, and scatter search to achieve the optimal sizing of a hybrid renewable system
with hydrogen technologies. The differential evolution, genetic algorithm, and optimal
foraging algorithm implementations were taken from PlatEMO [49]. The aim of the ex-
periment was to explore the performance of the methods and compare their performance.
These algorithms include certain configuration parameters, as shown in Table 8. The main
parameters used to configure these methods are described as follows:

• Mutation Probability (PrM): This parameter depicts the probability of the number of
genes that will mutate. The value of PrM considered was equivalent to 1/decision
variables when differential evolution was used. When the genetic algorithm was
employed, two more probabilities were used, one above and the other one below this
central value (1.5/decision variables and 0.5/decision variables, respectively).

• Mutation Distribution (disM): This parameter is the distribution index of polynomial
mutation. After checking that it had little effect on the optimization process, it was set
to the typical value of 20. This parameter was used for both the differential evolution
and the genetic algorithm.

• Crossover Probability (PrC): This is the probability of performing a crossover when
the genetic algorithm is used. The crossover operator has an impact on the creation of
new individuals. It was set to 1 in this case.

• Crossover Distribution (disC): This is the crossover distribution index when the genetic
algorithm is used. After checking that it had little effect on the optimization process,
this was set to the typical value of 20.

• Crossover Rate (CR): This differential evolution operator favors the mixing of ge-
netic information between individuals to create new individuals. Depending on the
crossover rate, each gene is crossed (or not). The crossover rate was set at 0.9 (its
typical value ranges between 0.1 and 1 [50]) given that a high value tends to speed up
convergence [37].

• Scale Factor (F): This differential evolution parameter is used to scale the difference
vector that is employed by the mutation operator. This operator adds a scaled differ-
ence vector from two chosen chromosomes to a third chromosome, in order to alter



Mathematics 2024, 12, 3848 17 of 34

the genes of the chromosome. Typical values range from 0.4 to 0.9 [50]. In the present
study, values of 0.5, 0.7 and 0.9 were tested.

A parameter exclusively used by the optimal foraging algorithm (λ) is randomly
generated in the implementation of the method. This parameter, which takes values
between 0 and 1, is used to replace solutions. Regarding the scatter search method, the
main parameters considered to generate the reference set are the number of best adapted
individuals and the number of most diverse individuals. In scatter search, the reference
set is about one order of magnitude smaller than in genetic algorithms [32]. In the present
research, with an overall number of 20 individuals, several options were tested, as can be
seen in Table 8. Regarding the factor used to create new individuals (M), after testing a
range of values between 0.1 and 0.9 (including random generation), the most promising
value was 0.6.

Populations of 50, 100, and 150 individuals were tested for the differential evolution,
the genetic algorithm, and the optimal foraging algorithm methods. Similar values were
considered to generate the initial population for the scatter search method, although
only 20 were selected for the reference set. This decision was taken with the idea of
starting the simulations from identical conditions. The stopping criterion consisted of
15,000 evaluations of the objective function. However, the number of evaluations needed to
reach the best value of the objective function was used to reveal the computational cost. The
number of simulations per configuration was thirty-one (for statistical purposes). Three
green hydrogen production scenarios were analyzed in order to schedule 100, 200, and
300 kg per day.

Table 8. Set of parameters for the optimization process.

Method PrC disC PrM disM CR F Best Diverse M

0.5
DE - - 1 20 0.9 0.7 - - -

0.9

0.5
GA 1 20 1.0 20 - - - - -

1.5

OFA - - - - - - - - -

5 15
SS - - - - - - 10 10 0.6

15 5

Data Background

The area considered for the study is located in Arinaga, on the island of Gran Canaria,
Spain. As mentioned above, meteorological data were extracted from Copernicus for
all hours of the year 2022. Figure 5 shows the data regarding the ambient temperature
(Figure 5a) and solar irradiance (Figure 5b) in the area. Figure 6 shows the wind speed at
the height of interest.

As explained above, the grid connection of the hybrid renewable system with hy-
drogen technologies allowed excess energy to be supplied according to energy market
constraints. The energy market sets hourly solar and wind power purchase limits. In order
to create a demand profile to use in the study, such limits were observed on various days
over several weeks. These values were extrapolated and a profile was generated for all
hours of the year. The demand profiles regarding solar and wind purchase limits are shown
in Figure 7a,b, respectively.

Parameters regarding the devices considered in the design are shown in Table 9.
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(a) (b)

Figure 5. Meteorological data used to compute renewable solar energy. (a) Ambient temperature;
(b) solar irradiance.

Figure 6. Wind speed at the height of interest.

(a) (b)

Figure 7. Hourly energy demand. (a) Hourly solar energy demand; (b) hourly wind energy demand.
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Table 9. List of system parameters.

Parameter Value

PVNmin : Minimum number of solar photovoltaic modules 0
PVNmax : Maximum number of solar photovoltaic modules 15,000
WTNmin : Minimum number of wind turbines 0
WTNmax : Maximum number of wind turbines 15
PELEmin : Minimum power of the electrolyzer (kWh) 200
PELEmax : Maximum power of the electrolyzer (kWh) 3000
NHmin: Minimum autonomy of the battery bank (h) 1
NHmax: Maximum autonomy of the battery bank (h) 2
CCPV : Solar module capital cost (e/module) 2.5× PR,PV
CCINV : Inverter capital cost (e/kW) 800
CCWT : Wind turbine capital cost (e/unit) 120,000
CCBAT : Battery capital cost (e/kW) 1000
CCCONV : Converter capital cost (e/kW) 800
CCELE: Electrolyzer capital cost (e/kW) 2000
CCHT : Hydrogen tank capital cost (e/kW) 1300
RCPV : Solar module replacement cost (e/module) 2.5× PR,PV
RCINV : Inverter replacement cost (e/kW) 750
RCWT : Wind turbine replacement cost (e/unit) 120,000
RCBAT : Battery replacement cost (e/kW) 1000
RCCONV : Converter replacement cost (e/kW) 750
RCELE: Electrolyzer replacement cost (e/kW) 1500
RCHT : Hydrogen tank replacement cost (e/kW) 1200
AOMCPV : Solar module annual operation and maintenance cost (e/module) 0.02× CCPV
AOMCINV : Inverter annual operation and maintenance cost (e/kW year) 8
AOMCWT : Wind turbine annual operation and maintenance cost (e/unit) 500
AOMCBAT : Battery annual operation and maintenance cost (e/kW year) 5
AOMCCONV : Converter annual operation and maintenance cost (e/kW) 8
AOMCELE: Electrolyzer annual operation and maintenance cost (e/kW) 25
AOMCHT : Hydrogen tank annual operation and maintenance cost (e/kW) 15
LTPV : Solar module lifetime (year) 25
LTINV : Inverter lifetime (year) 15
LTWT : Wind turbine lifetime (year) 20
LTBAT : Battery lifetime (year) 5
LTCONV : Converter lifetime (year) 15
LTELE: Electrolyzer lifetime (year) 20
LTHT : Hydrogen tank lifetime (year) 20

4. Results of the Optimization

The results obtained are shown below. First, the results obtained by applying the
differential evolution method are shown. Second, the results from the genetic algorithm
are displayed. Third, the results from the optimal foraging algorithm are given. Fourth,
the results obtained by applying the proposed scatter search method are shown. Finally,
a comparative study of scatter search with the other three methods is developed and a
discussion is provided.

4.1. Differential Evolution

Figure 8a–c show box plots of the experiments in which the differential evolution
method was used for the optimal sizing of a hybrid renewable energy system for green hy-
drogen production. These figures refer to the scheduled production of 100, 200, and 300 kg
of green hydrogen per day, respectively. For each scenario, nine cases can be observed.
They are described in the first five columns of Table 10, detailing the case identification,
the green hydrogen demand satisfied per day, and the method parameters. Each box plot
summarizes the statistical results of running 31 simulations for each simulated case.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8. Box plot simulations. (a) Box plot to produce 100 kg/day (DE); (b) box plot to produce
200 kg/day (DE); (c) box plot to produce 300 kg/day (DE); (d) box plot to produce 100 kg/day (GA);
(e) box plot to produce 200 kg/day (GA); (f) box plot to produce 300 kg/day (GA); (g) box plot
to produce 100 kg/day (OFA); (h) box plot to produce 200 kg/day (OFA); (i) box plot to produce
300 kg/day (OFA); (j) box plot to produce 100 kg/day (SS); (k) box plot to produce 200 kg/day (SS);
(l) box plot to produce 300 kg/day (SS).

Graphically, it can be seen that Cases 1 to 3 performed better than Cases 4 to 9 in all
scenarios. However, this needs to be confirmed by hypothesis testing. Columns 6 to 10
of Table 10 show the summary statistics for each test case associated with the results
obtained with each configuration. From left to right, the minimum, median, pseudo-
median, and mean values for the objective function and the p-value obtained after using a
Saphiro–Wilk test [51] can be seen. The Saphiro–Wilk test is a test of normality which tests
whether a sample is from a normally distributed population (the null hypothesis). When
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the p-value obtained is less than 0.05, the null hypothesis is rejected and the non-normality
of the sample is assumed. In contrast, when the p-value obtained is greater than or equal
to 0.05, the null hypothesis is accepted and the normality of the sample is assumed. It
can be seen that the configurations DE100C1 to DE100C3 present identical values; that
is, in all 31 simulations, the same value for the minimum of the objective function was
obtained, the configurations DE100C8, DE200C6 to DE200C9 and DE300C5 to DE300C9
were normally distributed, and the rest were not. Hereafter, for simplicity of notation, for
each of the scenarios (production of green hydrogen in quantities of 100, 200, and 300 kg),
the configurations using differential evolution are denoted as DE1 to DE9.

Table 10. Differential evolution statistics and Shapiro–Wilk test results.

Case ID H2 Demand Population CR F Minimum Median Pseudo-Median Mean S-W Test

DE100C1 100 50 0.9 0.5 −1.95736 −1.95736 - −1.95736 Identical values
DE100C2 100 50 0.9 0.7 −1.95736 −1.95736 - −1.95736 Identical values
DE100C3 100 50 0.9 0.9 −1.95736 −1.95736 - −1.95736 Identical values
DE100C4 100 100 0.9 0.5 −1.95736 −1.95735 −1.95736 −1.95736 0.00015
DE100C5 100 100 0.9 0.7 −1.95736 −1.95735 −1.95736 −1.95736 0.00010
DE100C6 100 100 0.9 0.9 −1.95736 −1.95734 −1.95736 −1.95734 0.01421
DE100C7 100 150 0.9 0.5 −1.95735 −1.95729 −1.95727 −1.95729 0.0338
DE100C8 100 150 0.9 0.7 −1.95736 −1.95729 - −1.95728 0.3384
DE100C9 100 150 0.9 0.9 −1.95735 −1.95729 −1.95726 −1.95725 0.00059

DE200C1 200 50 0.9 0.5 −1.26552 −1.26552 −1.26552 −1.26547 6.9 × 10−9

DE200C2 200 50 0.9 0.7 −1.26552 −1.26552 −1.26552 −1.26551 2.5 × 10−11

DE200C3 200 50 0.9 0.9 −1.26552 −1.26552 −1.26552 −1.26551 2.5 × 10−11

DE200C4 200 100 0.9 0.5 −1.26552 −1.26423 −1.26416 −1.26407 0.00954
DE200C5 200 100 0.9 0.7 −1.26541 −1.26445 −1.26451 −1.26444 0.00254
DE200C6 200 100 0.9 0.9 −1.26552 −1.26461 - −1.26454 0.2869
DE200C7 200 150 0.9 0.5 −1.26541 −1.26224 - −1.26235 0.381
DE200C8 200 150 0.9 0.7 −1.26537 −1.26225 - −1.26248 0.06822
DE200C9 200 150 0.9 0.9 −1.26498 −1.26241 - −1.26197 0.07769

DE300C1 300 50 0.9 0.5 0.961812 0.964822 0.96505 0.96612 6.4 × 10−5

DE300C2 300 50 0.9 0.7 0.961812 0.962799 0.96281 0.96299 0.00186
DE300C3 300 50 0.9 0.9 0.961812 0.962135 0.96211 0.96224 4.6 × 10−7

DE300C4 300 100 0.9 0.5 0.963468 0.969837 0.97063 0.97140 0.00481
DE300C5 300 100 0.9 0.7 0.962624 0.967444 - 0.96747 0.1693
DE300C6 300 100 0.9 0.9 0.962291 0.965811 - 0.96636 0.2897
DE300C7 300 150 0.9 0.5 0.965843 0.976158 - 0.97622 0.4135
DE300C8 300 150 0.9 0.7 0.963978 0.971676 - 0.97154 0.4501
DE300C9 300 150 0.9 0.9 0.964517 0.970076 - 0.96995 0.4763

Since most of the samples were not normally distributed, a Kruskal–Wallis rank sum
test [52] was performed using the kruskal.test() function of the R package stats [53]. This test
allowed determining whether there were significant differences between configurations.
For each scenario, the results obtained with differential evolution (DE1 to DE9) were com-
pared. In all three scenarios, p-values of less than 0.05 were obtained. Therefore, significant
differences were found between at least one pair of configurations for all green hydrogen
production scenarios. Then, a multiple comparison test after Kruskal–Wallis [54] between
samples was performed using the kruskalmc() function of the R package pgirmess [55], to
identify which configurations were different with pairwise comparisons adjusted appropri-
ately for multiple comparisons. The upper triangular part of Table 11 shows the results of
the multiple comparison test for the configurations using the differential evolution method.
In each cell, three letters can be seen that vary between T (true) and F (false). These refer
to the green hydrogen demand scenarios of 100, 200, and 300 kg per day, respectively. It
can be seen that the multiple comparison test provided nonsignificant differences among
the performances of the configurations DE1 and DE2 in all scenarios (FFF). The same
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circumstance can be observed for the configurations DE2 and DE3. However, significant
differences were observed between configurations DE1 and DE3 in the third scenario (FFT)
(demand of 300 kg of green hydrogen per day).

Table 11. Multiple pairwise comparisons (DE).

DE2 DE3 DE4 DE5 DE6 DE7 DE8 DE9

DE2 =↑↑ FFF FFT FTT FTF TTF TTT TTT TTT DE1
DE3 =↑↑ ==↑ FFF FTT FTT TTT TTT TTT TTT DE2
DE4 ↓↓↓ ↓↓↓ ↓↓↓ FTT FTT TTT TTT TTT TTT DE3
DE5 ↓↓↓ ↓↓↓ ↓↓↓ ==↑ FFF FFF TFF TFF TFF DE4
DE6 ↓↓= ↓↓↓ ↓↓↓ ↓=↑ ↓== FFF TFT TFF TTF DE5
DE7 ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓ FTT FFT TTF DE6
DE8 ↓↓↓ ↓↓↓ ↓↓↓ ↓↓= ↓↓↓ ↓↓↓ ==↑ FFF FFF DE7
DE9 ↓↓↓ ↓↓↓ ↓↓↓ ↓↓= ↓↓↓ ↓↓↓ ==↑ === FFF DE8

DE1 DE2 DE3 DE4 DE5 DE6 DE7 DE8

Once significant differences had been verified regarding the multiple comparisons
test, the appropriate test for pairwise comparisons was used. When samples came from a
normally distributed population, a Student test was used. Conversely, when samples did
not come from a normally distributed population, the Wilkonson rank sum test (equivalent
to the Mann–Whitney test) was used. The lower triangular part of Table 11 shows the result
of pairwise comparisons (columns vs. rows) between the configurations of the differential
evolution (DE) method. The Student test or the Mann–Whitney test were appropriately
used. In each cell, three symbols can be seen. They refer to demands of 100, 200, and 300 kg
of hydrogen per day, respectively. The symbol = means that no significant differences
were found between the compared samples, the symbol ↑ means that the column sample is
shifted to the right of the row sample (i.e., the column sample has higher objective function
values than the row sample) and the symbol ↓ indicates that the column sample is shifted to
the left of the row sample (i.e., the column sample has lower objective function values than
the row sample). As an example, focusing on configurations DE1 and DE2 it can be seen
that non-significant differences were found for the scenario of 100 kg of green hydrogen
per day. However, significant differences were found for the scenarios of 200 and 300 kg of
green hydrogen per day, in which the configuration DE1 obtained higher objective function
values than the configuration DE2. Nevertheless, the multiple comparisons test showed
that non-significant differences were found between the performance of the DE1 and DE2
configurations in the three scenarios. A similar behavior can be observed when comparing
the DE1 and DE3 configurations. Regarding the configurations DE2 and DE3 it can be seen
that DE2 provided equal performance in the scenarios of 100 and 200 kg, and was lower in
the scenario of 300 kg. The configurations DE1 DE2 and DE3 matched or outperformed the
other configurations in all scenarios, and the configuration DE2 provided a slight advantage
over configurations DE1 and DE2.

4.2. Genetic Algorithm

Figure 8d–f show box plots of experiments in which the genetic algorithm was used
for the optimal sizing of a hybrid renewable energy system for green hydrogen production.
These figures refer to the scheduled production of 100, 200, and 300 kg of green hydrogen
per day, respectively. For each scenario, nine cases can be observed. They are described
in the first five columns of Table 12, detailing the case identification, the green hydrogen
demand satisfied per day, and the parameters of the method. Each box plot summarizes
the statistical result of running 31 simulations for each simulated case.

Graphically, it can be seen that Cases 6 and 9 performed better than the others in all
scenarios. However, this needs to be confirmed by hypothesis testing. Columns 6 to 10 of
Table 12 show the summary statistics for each test case associated with the results obtained
with each configuration. From left to right, the minimum, median, pseudo-median, and
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mean for the objective function value and the p-value obtained after using the Saphiro–Wilk
test can be seen. It can be seen that all configurations were not normally distributed. For
simplicity of notation, for each of the scenarios (production of green hydrogen in quantities
of 100, 200, and 300 kg), configurations using the genetic algorithm are denoted as GA1
to GA9.

Table 12. Genetic algorithm statistics and Shapiro–Wilk test results.

Case ID H2
Demand Population PrC disC Minimum Median Pseudo-Median Mean S-W Test

GA100C1 100 50 0.5 20 −1.95731 −1.95721 −1.95718 −1.95716 3.5 × 10−5

GA100C2 100 50 1.0 20 −1.95736 −1.95721 −1.95723 −1.95724 0.00010
GA100C3 100 50 1.5 20 −1.95736 −1.95731 −1.95729 −1.95728 3.1 × 10−5

GA100C4 100 100 0.5 20 −1.95736 −1.95721 −1.95723 −1.95725 0.00026
GA100C5 100 100 1.0 20 −1.95736 −1.95731 −1.95727 −1.95727 0.00037
GA100C6 100 100 1.5 20 −1.95736 −1.95731 −1.95729 −1.95730 4.1 × 10−5

GA100C7 100 150 0.5 20 −1.95736 −1.95721 −1.95723 −1.95724 5.7 × 10−5

GA100C8 100 150 1.0 20 −1.95736 −1.95731 −1.95729 −1.95730 3.2 × 10−5

GA100C9 100 150 1.5 20 −1.95736 −1.95732 −1.95729 −1.95731 1.6 × 10−5

GA200C1 200 50 0.5 20 −1.26537 −1.26140 −1.25875 −1.24990 2.9 × 10−8

GA200C2 200 50 1.0 20 −1.26552 −1.26423 −1.26366 −1.26342 0.00117
GA200C3 200 50 1.5 20 −1.26552 −1.26426 −1.26407 −1.26152 1.7 × 10−11

GA200C4 200 100 0.5 20 −1.26552 −1.26402 −1.26393 −1.25999 1.5 × 10−10

GA200C5 200 100 1.0 20 −1.26552 −1.26477 −1.26467 −1.26412 1.2 × 10−6

GA200C6 200 100 1.5 20 −1.26552 −1.26537 −1.26507 −1.26482 4.0 × 10−7

GA200C7 200 150 0.5 20 −1.26552 −1.26402 −1.26393 −1.26292 1.7 × 10−7

GA200C8 200 150 1.0 20 −1.26552 −1.26504 −1.26470 −1.26427 1.2 × 10−7

GA200C9 200 150 1.5 20 −1.26552 −1.26504 −1.26508 −1.26492 5.8 × 10−6

GA300C1 300 50 0.5 20 0.963296 0.989643 1.01927 1.00986 9.2 × 10−6

GA300C2 300 50 1.0 20 0.961967 0.969716 0.97913 0.99584 4.5 × 10−7

GA300C3 300 50 1.5 20 0.961812 0.966092 0.96968 0.97844 3.2 × 10−8

GA300C4 300 100 0.5 20 0.962799 0.972806 0.97908 0.98611 4.3 × 10−7

GA300C5 300 100 1.0 20 0.961967 0.967619 0.96947 0.98069 9.3 × 10−9

GA300C6 300 100 1.5 20 0.961967 0.964723 0.96479 0.97012 2.1 × 10−10

GA300C7 300 150 0.5 20 0.963296 0.971911 0.97499 0.97839 1.0 × 10−7

GA300C8 300 150 1.0 20 0.961967 0.966092 0.96748 0.97191 1.3 × 10−6

GA300C9 300 150 1.5 20 0.961812 0.964784 0.96698 0.97015 1.0 × 10−6

Since the samples were not normally distributed, a Kruskal–Wallis rank sum test was
performed. For each scenario, the results obtained with the genetic algorithm (GA1 to
GA9 ) were compared. In all scenarios, p-values of less than 0.05 were obtained. Therefore,
significant differences were found between at least one pair of configurations for each green
hydrogen production scenario. Then, after Kruskal–Wallis, a multiple comparison test
between samples was performed to identify which configurations were different, with pair-
wise comparisons adjusted appropriately for multiple comparisons. The upper triangular
part of Table 13 shows the results of the multiple comparison test for the configurations
employing the genetic algorithm. Again, in each cell, three letters can be seen that vary
between T (true) and F (false). These refer to the green hydrogen demand scenarios of 100,
200, and 300 kg per day, respectively. It can be seen that the multiple comparisons test
provided non-significant differences among the performances of the configurations GA3,
GA5, GA6, GA8, and GA9 in all scenarios.
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Table 13. Multiple and pairwise comparisons (GA).

GA2 GA3 GA4 GA5 GA6 GA7 GA8 GA9

GA2 ↑↑↑ FFF TTT TFF TTF TTT TTF TTT TTT GA1
GA3 ↑↑↑ ↑== FFF FFF FFF FTT FFF FFF FFF GA2
GA4 ↑↑↑ === === FFF FFF FFF FFF FFF FFF GA3
GA5 ↑↑↑ === === =↑= FFF FTT FFF FFF FFF GA4
GA6 ↑↑↑ ↑↑↑ =↑= ↑↑↑ =↑= FFF FFF FFF FFF GA5
GA7 ↑↑↑ === === === === ↓↓↓ FFT FFF FFF GA6
GA8 ↑↑↑ ↑↑= === ↑↑↑ === === ↑=↑ FFF FFF GA7
GA9 ↑↑↑ ↑↑↑ =↑= ↑↑↑ ==↑ === ↑=↑ === FFF GA8

GA1 GA2 GA3 GA4 GA5 GA6 GA7 GA8

Once significant differences were found from the multiple comparisons test, the Mann-
Whitney test was performed for pairwise comparisons. The lower triangular part of Table 13
shows the result of pairwise comparisons (columns vs. rows) between the configurations
of the genetic algorithm (GA ). Again, in each cell, three symbols can be seen. They refer to
demands of 100, 200, and 300 kg of green hydrogen per day, respectively.

As an example, pairwise comparisons between the GA6 configuration and the others
can be seen. In general, the GA6 configuration outperformed configurations GA1 to GA7
in all scenarios, except in the first and third scenarios of the configurations GA3 and GA5
where non-significant differences were obtained. Due to the fact that the problem to be
solved was to minimize, configurations GA6, GA8 and GA9 provided a clear advantage.

4.3. Optimal Foraging Algorithm

Figure 8g–i show box plots of experiments in which the optimal foraging algorithm
was used for the optimal sizing of a hybrid renewable energy system for green hydrogen
production. These figures refer to the scheduled production of 100, 200, and 300 kg of green
hydrogen per day, respectively. For each scenario, three cases can be observed. They are
described in the first three columns of Table 14, detailing the case identification, the green
hydrogen demand satisfied per day, and the population size. Each box plot summarizes
the statistical result of running 31 simulations for each simulated case.

Graphically, it can be seen that Case 3 performed better than the others in all scenarios.
However, this needs to be confirmed by hypothesis testing. Columns 4 to 8 of Table 14
show the summary statistics for each test case associated with the results obtained with
each configuration. From left to right, the minimum, median, pseudo-median, and mean
for the objective function value and the p-value obtained after using the Saphiro–Wilk
test can be seen. It can be seen that there are both normally and not normally distributed
configurations. For simplicity of notation, for each of the scenarios (production of green
hydrogen in quantities of 100, 200, and 300 kg), configurations using the optimal foraging
algorithm are denoted as OFA1 to OFA3.

Table 14. Optimal foraging algorithm statistics and Shapiro–Wilk test results.

Case ID H2 Demand Population Minimum Median Pseudo-Median Mean S-W Test

OFA100C1 100 50 −1.95447 −1.74259 - −1.11557 0.1445
OFA100C2 100 100 −1.94740 −1.86275 −1.84438 −1.12004 0.00078
OFA100C3 100 150 −1.94762 −1.87725 −1.86474 −1.12828 0.00154

OFA200C1 200 50 −1.24826 −1.13037 - −1.11557 0.07316
OFA200C2 200 100 −1.25485 −1.14289 - −1.12004 0.2336
OFA200C3 200 150 −1.19837 −1.12888 - −1.12828 0.1303

OFA300C1 300 50 0.983423 1.092488 1.08905 1.10481 2.9 × 10−5

OFA300C2 300 100 0.976409 1.062644 1.07206 1.08354 3.4 × 10−6

OFA300C3 300 150 0.987381 1.08935 1.07811 1.07676 0.05847
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Next, a Kruskal–Wallis rank sum test was performed. For each scenario, the results
obtained with the optimal foraging algorithm (OFA1 to OFA3) were compared. Only in the
first scenario was the p-value less than 0.05 and significant differences were found between
at least one pair of configurations for this green hydrogen production scenario. The upper
triangular part of Table 15 shows the results of the multiple comparisons test after Kruskal–
Wallis for the configurations employing the optimal foraging algorithm. Again, in each
cell, three letters can be seen that vary between T (true) and F (false). These refer to the
green hydrogen demand scenarios of 100, 200, and 300 kg per day, respectively. It can be
seen that the multiple comparisons test provided non-significant differences among the
performances of, on the one hand, the configurations OFA1 and OFA2, and, on the other
hand, the configurations OFA2 and OFA3. However, there was a significant difference in
the first scenario when OFA1 and OFA3 were compared.

Table 15. Multiple and pairwise comparisons (OFA).

OFA2 OFA3

OFA2 === FFF TFF OFA1
OFA3 ↑== === FFF OFA2

OFA1 OA2

The lower triangular part of Table 15 shows the results of the Mann–Whitney test
of pairwise comparisons (columns vs. rows) between the configurations of the optimal
foraging algorithm (OFA). Again, in each cell, three symbols can be seen. They refer to
demands of 100, 200, and 300 kg of green hydrogen per day, respectively. It can be seen
that the OFA3 configuration outperformed configuration OFA1 only in the first scenario.
Non-significant differences were obtained regarding the other configurations.

4.4. Scatter Search

Figure 8j–l show box plots of experiments in which the scatter search method was used
for the optimal sizing of a hybrid renewable energy system for green hydrogen production.
These figures refer to the scheduled production of 100, 200, and 300 kg of green hydrogen
per day, respectively. For each scenario, nine cases can be observed. They are described
in the first five columns of Table 16, detailing the case identification, the green hydrogen
demand satisfied per day, and the parameters of the method. Each box plot summarizes
the statistical results of running 31 simulations for each simulated case.

Graphically, it can be seen that Cases 6 and 9 performed better than the others in all
scenarios. However, this needs to be confirmed by hypothesis testing. Columns 6 to 10 of
Table 16 show the summary statistics for each test case associated with the results obtained
with each configuration. From left to right, the minimum, median, pseudo-median, and
mean for the objective function value and the p-value obtained after using the Saphiro–Wilk
test can be seen. It can be seen that all configurations were not normally distributed. For
simplicity of notation, for each of the scenarios (production of green hydrogen in quantities
of 100, 200, and 300 kg), configurations using scatter search are denoted as SS1 to SS9.

Table 16. Scatter search statistics and Shapiro–Wilk test results.

Case ID H2 Demand Population Best Diverse Minimum Median Pseudo-Median Mean S-W Test

SS100C1 100 50 5 15 −1.95736 −1.93686 −1.87748 −1.87685 1.9 × 10−5

SS100C2 100 100 5 15 −1.95736 −1.95735 −1.95724 −1.95288 1.0 × 10−10

SS100C3 100 150 5 15 −1.95736 −1.95736 −1.95736 −1.95585 5.4 × 10−12

SS100C4 100 50 10 10 −1.95736 −1.91125 −1.89356 −1.89131 0.0091
SS100C5 100 100 10 10 −1.95736 −1.95736 −1.95728 −1.94571 1.3 × 10−11

SS100C6 100 150 10 10 −1.95736 −1.95736 −1.95736 −1.95571 7.1 × 10−12

SS100C7 100 50 15 5 −1.95736 −1.93638 −1.93486 −1.91337 5.5 × 10−7
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Table 16. Cont.

Case ID H2 Demand Population Best Diverse Minimum Median Pseudo-Median Mean S-W Test

SS100C8 100 100 15 5 −1.95736 −1.95736 −1.95690 −1.95454 1.1 × 10−10

SS100C9 100 150 15 5 −1.95736 −1.95736 −1.95736 −1.95709 7.0 × 10−12

SS200C1 200 50 0.9 0.5 −1.26008 −1.14601 −1.10363 −1.04129 1.9 × 10−6

SS200C2 200 50 0.9 0.7 −1.26552 −1.25678 −1.25172 −1.21861 1.5 × 10−7

SS200C3 200 50 0.9 0.9 −1.26552 −1.26552 −1.26495 −1.24985 4.0 × 10−10

SS200C4 200 100 0.9 0.5 −1.26552 −1.14450 −1.14120 −1.13520 0.0185
SS200C5 200 100 0.9 0.7 −1.26552 −1.25959 −1.25746 −1.25341 1.3 × 10−6

SS200C6 200 100 0.9 0.9 −1.26552 −1.26552 −1.26462 −1.26369 2.6 × 10−9

SS200C7 200 150 0.9 0.5 −1.26451 −1.16851 −1.14522 −1.11779 0.00037
SS200C8 200 150 0.9 0.7 −1.26552 −1.26143 −1.25909 −1.23934 2.3 × 10−9

SS200C9 200 150 0.9 0.9 −1.26552 −1.26552 −1.26440 −1.26263 3.1 × 10−8

SS300C1 300 50 0.9 0.5 0.961812 1.073780 1.08554 1.21597 8.2 × 10−8

SS300C2 300 50 0.9 0.7 0.961812 0.983307 1.02239 1.13211 2.0 × 10−9

SS300C3 300 50 0.9 0.9 0.961812 0.989372 1.00298 1.09959 3.4 × 10−10

SS300C4 300 100 0.9 0.5 0.961812 1.062328 1.05640 1.07924 0.00016
SS300C5 300 100 0.9 0.7 0.961812 0.962480 0.96377 0.97239 1.5 × 10−9

SS300C6 300 100 0.9 0.9 0.961812 0.961812 0.96190 0.96699 1.5 × 10−11

SS300C7 300 150 0.9 0.5 0.961967 1.059164 1.05078 1.07863 1.9 × 10−5

SS300C8 300 150 0.9 0.7 0.961812 0.962291 0.96507 0.98152 2.1 × 10−8

SS300C9 300 150 0.9 0.9 0.961812 0.961812 0.96211 0.96940 3.0 × 10−10

Since the samples were not normally distributed, a Kruskal–Wallis rank sum test
was performed. For each scenario, the results obtained with scatter search (SS1 to SS9)
were compared. In all scenarios, p-values of less than 0.05 were obtained. Therefore,
significant differences were found between at least one pair of configurations for each
green hydrogen production scenario. Then, a multiple comparison test after Kruskal–
Wallis between samples was performed to identify which configurations were different,
with pairwise comparisons adjusted appropriately for multiple comparisons. The upper
triangular part of Table 17 shows the results of the multiple comparisons test for the
configurations employing the scatter search method. Again, in each cell, three letters
can be seen that vary between T (true) and F (false). These refer to the green hydrogen
demand scenarios of 100, 200, and 300 kg per day, respectively. It can be seen that the
multiple comparisons test provided non-significant differences among the performances of
configurations SS5, SS6, SS8 and SS9 in all scenarios. Furthermore, the SS3 configuration
only differed from the SS6 configuration in the third scenario.

Table 17. Multiple and pairwise comparisons (SS).

SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9

SS2 ↑↑↑ TTF TTT FFF TTT TTT FFF TTT TTT SS1
SS3 ↑↑↑ ↑↑= FTF TFF FFF FTT TFF FFF FFT SS2
SS4 === ↓↓↓ ↓↓↓ TTF FFF FFT TTF FFF FFF SS3
SS5 ↑↑↑ ==↑ ↓↓= ↑↑↑ TTT TTT FFF TTT TTT SS4
SS6 ↑↑↑ ↑↑↑ ==↑ ↑↑↑ ↑↑↑ FFF TTT FFF FFF SS5
SS7 === ↓↓↑ ↓↓↓ ↑== ↓↓↑ ↓↓↓ TTT FFF FFF SS6
SS8 ↑↑↑ ==↑ ↓↓= ↑↑↑ === ↓↓↓ ↑↑↑ TTT TTT SS7
SS9 ↑↑↑ =↑↑ ↓↓↑ ↑↑↑ =↑↑ ↓↓= ↑↑↑ ==↑ FFF SS8

SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8

Once significant differences had been found from the multiple comparisons test, the
appropriate test for pairwise comparisons was used. The lower triangular part of Table 17
shows the results of pairwise comparisons (columns vs. rows) between the configurations
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of the scatter search (SS) method. Again, in each cell, three symbols can be seen. They refer
to demands of 100, 200, and 300 kg of green hydrogen per day, respectively.

As an example, pairwise comparisons between the SS6 configuration and the others
can be seen. In general, the SS6 configuration outperformed the other configurations
in all scenarios, except in the first and second scenarios of configuration SS3 and in the
third scenario of configuration SS9, where non-significant differences were obtained. Due
to the fact that the problem to be solved was to minimize, configuration SS6 provided a
clear advantage, followed closely by configurations SS3 and SS9.

5. Discussion

Once the performances of the methods had been analyzed individually, a global study
of comparisons between the scatter search and the other methods was developed. The
complete results of this analysis are shown in Tables 18 and 19. The procedure carried out
followed the steps described above.

Table 18. Multiple comparison of SS and DE (upper triangular matrix) and SS and GA (lower
triangular matrix).

SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9 DE1 DE2 DE3 DE4 DE5 DE6 DE7 DE8 DE9

SS1 TFF TTF FFF TTT TTT FFF TTT TTT TTT TTT TTT TTF TTT TTT FTF FTF FTF SS1
SS2 TFF FTF TFF FFF FTT TFF FFF FFT TTF TTT TTT FFF FFF FFF FFF FFF FFF SS2
SS3 TTT FTF TTT FFF FFT TTT FFF FFT FFF FFF FFT FFF FFF TFF TFF TFF TFF SS3
SS4 FFF TFF TTT TTT TTT FFF TTT TTT TTT TTT TTT TTF TTT TTT FTF FTF FFF SS4
SS5 TTT FFF FFF TTT FTF TTT FFF FFF FTF FTF FTF FFF FFF FFF FFT FFF FFF SS5
SS6 TTT FTT FFT TTT FTF TTT FFF FFF FFF FFF FFF FFT FFT TFT TFT TFT TTT SS6
SS7 FFF TFF TTT FFF TTT TTT TTT TTT TTT TTT TTT TTF TTT TTT FTF FTF FTF SS7
SS8 TTT FFF FFF TTT FFF FFF TTT FFF FTF FTF FTF FFF FFF FFF FFT FFF FFF SS8
SS9 TTT FTT FFT TTT FFF FFF TTT FFF TFF TTF TTF FFT FFF FFF FFT FFT FFT SS9
GA1 FTF FFF TTF FFF TFT TTT FFF FFT TFT FFF FFF FTF FFF TFF TTF TTF TTF DE1
GA2 TTF FFF TFF TTF FFF TFT FTF FFF FFT FFF FFF FTT FTF TTF TTT TTT TTT DE2
GA3 TTT FFF FFF TTT FFF FFT TTT FFF FFT FFF FFF FTT FTT TTF TTT TTT TTT DE3
GA4 TTF FFF TFF TTF FFF TFT FTF FFF FFT FFF FFF FFF FFF FFF FFF FFF TFF DE4
GA5 TTF FTF TFF TTT FFF TFT TTF FFF FFT FFF FFF FFF FFF FFF FFF FFF TFF DE5
GA6 TTT FTF FFF TTT FFF FFF TTT FFF FFF TTT FFF FFF FFF FFF FFF FFF FFF DE6
GA7 TTF FFF TFF TTF FFF TFT FTF FFF FFT FFF FFF FFF FFF FFF FFF FFF FFF DE7
GA8 TTT FTF FFF TTT FFF FFT TTT FFF FFF FTF FFF FFF FFF FFF FFF FFF FFF DE8
GA9 TTT FTF FFF TTT FFF TFF TTT FFF FFF FTF FFF FFF FFF FFF FFF FFF FFF

SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9 GA1 GA2 GA3 GA4 GA5 GA6 GA7 GA8

Table 19. Multiple comparisons of SS and OFA.

SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9 OFA1 OFA2 OFA3

TTF TTF FFF TTT TTT FFF TTT TTT FFF FFF FFF SS1
FFF TFF FFF FTT FTF FFF FFT TTF TTF TTF SS2

TTF FFF FFF TTF FFF FFF TTT TTT TTT SS3
TTT TTT FFF TTT TTT FFF FFF FFF SS4

FFF TTT FFF FFF TTT TTT TTT SS5
TTT FFF FFF TTT TTT TTT SS6

TTT FTT TFF FFF FFF SS7
FFF TTT TTT TTT SS8

TTT TTT TTT SS9
FFF FFF OFA1

FFF OFA2

The upper triangular part of Table 18 shows the results of the multiple comparisons
test after Kruskal–Wallis for the configurations employing both the differential evolution
(DE1 to DE9) and scatter search (SS1 to SS9) methods. It can be seen that non-significant
differences were found between configurations DE1-SS3, DE1-SS6, DE2-SS3, DE2-SS6 and
DE3-SS6 in all scenarios. The lower triangular part of Table 18 shows the results of the
multiple comparisons test after Kruskal–Wallis for the configurations employing both the
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genetic algorithm (GA1 to GA9) and scatter search (SS1 to SS9) methods. It can be seen
that non-significant differences were found between the pairs of configurations GA6-SS6
and GAi-SSj, with i ∈ {6, 8, 9} and j ∈ {3, 5, 8, 9}, in all scenarios. However, significant
differences were found between configurations GA8-SS6 in the third scenario and GA9-SS6
in the first scenario. Table 19 shows the results of the multiple comparisons test after
Kruskal–Wallis for the configurations employing both the optimal foraging algorithm
(OFA1 to OFA3) and scatter search (SS1 to SS9) methods. It can be seen that significant
differences were found between the pairs of configurations involving SS3, SS6, and SS9,
and the three cases of OFA.

Table 20 shows the result of the Mann–Whitney test for pairwise comparisons. In
general, the configuration SS3 outperformed the configurations DE4 toDE9 in the first
and second scenarios, and non-significant differences were found in the third scenario.
Furthermore, the configuration SS6 outperformed configurations DE4 to DE9 in almost
all scenarios (only in one case were non-significant differences found). Configuration SS6
behaved similarly to DE1 to DE3 in the first scenario, in which a demand of 100 kg of green
hydrogen per day was scheduled. Regarding the second scenario, in which a demand
of 200 kg of green hydrogen per day was scheduled, it can be seen that configurations
DE1 to DE3 outperformed configuration SS6. Finally, it can be seen that configuration
SS6 outperformed configurations DE1 to DE3 in the third scenario, in which a demand of
300 kg of green hydrogen per day was scheduled.

Regarding the genetic algorithm, configuration SS6 outperformed configurations GA1
to GA4 in all scenarios and GA5 to GA9 in the first and second scenario. Non-significant
differences were found in the second scenario in relation to configurations GA5 to GA9.
In addition, configurations SS3 and SS9 showed good performance. Finally, scatter search
outperformed the optimal foraging algorithm in general terms. Such a circumstance brings
to the light the no-free-lunch theorem [56], which states that any elevated performance for
one class of problems is offset by the performance for another class for any algorithm.

Table 20. Global pairwise comparisons.

SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9

DE1 ↑↑↑ ↑↑↑ =↑= ↑↑↑ ↑↑= =↑↓ ↑↑↑ ↑↑= ↑↑↓
DE2 ↑↑↑ ↑↑↑ =↑= ↑↑↑ ↑↑= =↑↓ ↑↑↑ ↑↑= ↑↑↓
DE3 ↑↑↑ ↑↑↑ =↑↑ ↑↑↑ ↑↑↑ =↑↓ ↑↑↑ ↑↑= ↑↑=
DE4 ↑↑↑ =↑= ↓↓= ↑↑↑ =↑↓ ↓↓↓ ↑↑↑ ==↓ =↓↓
DE5 ↑↑↑ =↑= ↓↓= ↑↑↑ =↑↓ ↓↓↓ ↑↑↑ ==↓ ==↓
DE6 ↑↑↑ =↑= ↓↓= ↑↑↑ =↑↓ ↓=↓ ↑↑↑ ==↓ ↓=↓
DE7 ↑↑↑ =↑= ↓↓= ↑↑↑ ↓=↓ ↓↓↓ ↑↑↑ ==↓ ↓↓↓
DE8 ↑↑↑ =↑= ↓↓= ↑↑↑ ↓=↓ ↓↓↓ ↑↑↑ ==↓ ↓↓↓
DE7 ↑↑↑ ↓↑= ↓↓= ↑↑↑ ↓=↓ ↓↓↓ ↑↑↑ ==↓ ↓↓↓

GA1 ↑↑↑ ↓↑= ↓↓= ↑↑↑ ↓=↓ ↓↓↓ ↑↑↑ ==↓ ↓↓↓
GA2 ↑↑↑ =↑= ↓↓= ↑↑↑ =↑↓ ↓↓↓ ↑↑↑ ==↓ ↓=↓
GA3 ↑↑↑ =↑= ↓↓= ↑↑↑ =↑↓ ↓↓↓ ↑↑↑ ==↓ ↓=↓
GA4 ↑↑↑ =↑= ↓↓= ↑↑↑ ==↓ ↓↓↓ ↑↑↑ ==↓ ↓=↓
GA5 ↑↑↑ =↑= ↓↓= ↑↑↑ =↑↓ ↓=↓ ↑↑↑ ==↓ ↓=↓
GA6 ↑↑↑ =↑↑ ↓== ↑↑↑ =↑↓ ↓=↓ ↑↑↑ =↑= ↓=↓
GA7 ↑↑↑ =↑= ↓== ↑↑↑ =↑↓ ↓=↓ ↑↑↑ ==↓ ↓=↓
GA8 ↑↑↑ =↑= ↓== ↑↑↑ =↑↓ ↓=↓ ↑↑↑ =↑↓ ↓=↓
GA9 ↑↑↑ =↑= ↓== ↑↑↑ =↑↓ ↓=↓ ↑↑↑ =↑= ↓=↓

OFA1 ↓== ↓↓↓ ↓↓↓ ↓== ↓↓↓ ↓↓↓ ↓== ↓↓↓ ↓↓↓
OFA2 ↓== ↓↓↓ ↓↓↓ ↓== ↓↓↓ ↓↓↓ ↓== ↓↓↓ ↓↓↓
OFA3 ↓== ↓↓↓ ↓↓↓ ↓== ↓↓↓ ↓↓↓ ↓== ↓↓↓ ↓↓↓

Having established that the most favorable configurations were DE3 for the differential
evolution method, and GA6, GA8, and GA9 for the genetic algorithm, and that non-
significant differences were found for the optimal foraging algorithm and SS6 for the
proposed version of the scatter search method, a thorough analysis must be carried out.
Tables 21–24 provide some details about the best solutions provided by the configurations
for each scenario, respectively.
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Table 21. Best design when DE was employed.

Conf. H2 Pop. CR F Eval. OF EC Sales (MWh) Dump (kWh) Solution

DE3 100 50 0.9 0.9 9440 −1.9573 0.2689 27.4 510.1 4641 7 690 1
DE3 200 50 0.9 0.9 7111 −1.2655 0.4981 27.1 951.5 7244 7 1529 1
DE3 300 50 0.9 0.9 7777 0.96181 0.9383 26.2 2641.1 10,358 7 2066 2

Table 22. Best design when GA was employed.

Conf. H2 Pop. PrC disC Eval. OF EC Sales (MWh) Dump (kWh) Solution

GA6 100 100 1.5 20 5651 −1.9573 0.2689 27.4 510.1 4641 7 690 1
GA6 200 100 1.5 20 12,251 −1.2655 0.4981 27.1 951.5 7244 7 1529 1
GA6 300 100 1.5 20 5601 0.96196 0.9380 26.2 2641.5 10,359 7 2065 2

Table 23. Best design when OFA was employed.

Conf. H2 Pop. Eval. OF EC Sales (MWh) Dump (kWh) Solution

OFA1 100 50 14,301 −1.9544 0.2725 27.2 492.6 4456 7 707 1
OFA2 200 100 12,401 −1.2548 0.5041 27.1 955.6 7242 7 1555 1
OFA2 300 100 13,351 0.97640 0.9588 26.1 2633.4 10,334 7 2099 2

Table 24. Best design when SS was employed.

Conf. H2 Pop. Best Diverse Eval. OF EC Sales (MWh) Dump (kWh) Solution

SS6 100 100 15 5 272 −1.9573 0.2689 27.4 510.1 4641 7 690 1
SS6 200 100 15 5 188 −1.2655 0.4981 27.1 951.5 7244 7 1529 1
SS6 300 100 15 5 104 0.96181 0.9383 26.2 2641.1 10,358 7 2066 2

The first columns give information regarding the method configuration and scenario
solved. Next, the average number of evaluations (Eval.) of the objective function until
obtaining its best value (minimum objective function value in 31 simulations) is shown.
Furthermore, detailed information about the best solution provided by the configurations
is displayed. This consists of the value of the objective function (OF), the energy cost (EC),
the energy delivered to the grid (Sales), and the energy dumped due to the fact that the grid
could not absorb it. Finally, the design for the best solution is provided. It can be seen that
the average number of evaluations needed to solve the problem was 9440, 7111, and 7777
for demands of 100, 200, and 300 kg of green hydrogen per day, respectively. As an example,
for a demand of 100 kg per day, the best value of the objective function in 31 simulations
was −1.9573, with a energy cost of 0.2689 e/kWh. The energy supplied to the grid was
around 27 MWh and the wasted energy was around 510 kWh. The design consisted of
4641 solar photovoltaic modules, seven wind turbines, a 690 kW electrolyzer, and a battery
with one hour of autonomy.

With respect to SS6, it can be seen that identical solutions were obtained in each
scenario regarding DE3. Nevertheless, it can be seen that the average number of evaluations
needed to solve the problem was 272, 188, and 104 for demands of 100, 200, and 300 kg of
green hydrogen per day, respectively. This brings to light a notable advantage over the use
of many evolutionary algorithms, which require costly computing times. In particular, the
use of scatter search improved the computational cost in relation to differential evolution
by percentages of around 97% in all scenarios. This aspect may be very relevant, depending
on the scope of the real-world problem to be solved.

In relation to the value of the objective function, it can be seen that the solution
provided by DE and SS was slightly better than the solution provided by GA in the third
scenario. In addition, OFA provided values of the objective function close to those provided
by DE and SS but slightly larger.
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6. Conclusions

This paper addressed the problem of the optimal sizing of a hybrid renewable energy
system for scheduling daily green hydrogen production. Several hydrogen demand sce-
narios were taken into account to provide the appropriate sizing of the system. External
factors related to the location of the project were considered, such as the weather conditions
and the grid connection under constraints set by the energy market. As an optimization
method, this paper proposed the use of scatter search, which had not previously been used
to solve this problem. The results of the optimization were compared with the well-know
differential evolution and genetic algorithm methods, which are a state-of-the-art evolu-
tionary algorithms. Furthermore, the optimal foraging algorithm, which is a more recent
method, was considered in the comparative study. Some configurations of the proposed
modification of the scatter search method were very competitive in terms of performance.
In addition, the use of scatter search outperformed the other methods in terms of com-
putational cost, because fewer evaluations of the objective function were needed. In the
case of differential evolution, the improvement was around 97%. This is promising for
real-world applications that require quick responses, so the scope of analysis of the method
can be extended.

From an asset management point of view, this research highlights the importance
of knowing the local energy market when planning an economic investment in order to
introduce a new energy system. Ignorance of the grid’s limitations can lead to oversizing
the installation and, therefore, to an economic investment that does not yield a return.

Some limitations of this study can be addressed in future research. From a real-world-
problem point of view, larger quantities of hydrogen could be considered for production.
This would allow supplying to a larger number of end-users or recovering energy for
sale when the market is more favorable. This consideration requires further study of
hydrogen supply to end-users and energy recovery using fuel cells. In addition, energy
purchase prices were not taken into account due to their variability. This study could be
extended in this respect. From an optimization point of view, a multi-objective problem
has been formulated and solved as a single-objective problem. Under this approach, the
objectives were aggregated into a single objective function. Therefore, a single solution was
provided, which depended on the balance of the objectives in the objective function. A set
of balanced solutions could be provided in case of considering a multi-objective approach.
Decision-makers would have more information to make better decisions according to
various limitations, such as economic or spatial constraints. In the future, the authors
of the present paper will tackle the problem under a multi-objective approach by using
multi-objective algorithms. Thus, each evaluation would take into account several objective
functions, which is a powerful aspect of multi-objective optimization. Therefore, the current
version of the single-objective scatter search method will be modified for applications within
the multi-objective spectrum.
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Nomenclature

α1 Friction coefficient
α2 Battery bank hourly self-discharge rate
βi Normalization factors for the objective function
δT PV maximum power temperature coefficient
ηBAT Battery bank efficiency
ηCON Converter efficiency
ηELE Electrolyzer efficiency
ηINV Inverter efficiency
AC Alternating current
ACCi Annual capital cost of the device i
ACDi Annualized cost of the device i
ACS Annualized cost of the system
AOMCi Annual operation and maintenance cost of the device i
ARCi Annual replacement cost of the device i
CBAT Capacity of the battery bank
CELE Capacity of the electrolyzer
CCi Capital cost of the device i
CON Converter
CR Crossover rate
CRF Capital recovery factor
CRFi Capital recovery factor of the device i
DH2 Daily H2 demand
DC Direct current
DE Differential Evolution
disC Distribution index of crossover
disM Distribution index of polynomial mutation
EC Energy cost
ECK Energy consumption per kilogram of hydrogen produced
F Scale factor
H2(t) Hydrogen production at time
H2 Hydrogen
hh Height of the WT hub
hr Height of wind speed reference
HTmax Maximum capacity of the H2 storage tank
I(t) Solar irradiance at time
ir Annual rate of interest
int Interest rate
INV Inverter
LHHP Lost of H2 production probability
LTi Life time of the device i
LTsys Life time of the system
M Scaling factor of scatter search
n Lifetime of the system
NH Hours of battery bank autonomy
OF Objective function
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PBAT0 State of charge of the battery bank at the previous time step
PELE Power consumption of the electrolyzer
PNEEDED Power needed to meet the energy demand of the electrolyzer
PR,PV PV rated power
PREN Renewable power
PSOLD Energy delivered to the grid (SALES)
PWT Wind turbine power output
PEM Proton exchange membrane electrolyzer
PrC Crossover probability
PrM Mutation probability
PV Solar photovoltaic panel
PVN Number of solar photovoltaic panels
PVp(t) PV expected power output
RREF Reference solar radiance
RCi Replacement cost of the device i
SS Scatter Search
TA(t) Ambient temperature at time
TC(t) PV cell temperature at time
TNOCT PV cell temperature at normal operating conditions
TNPC Total net present cost
UH2 Daily unmet H2 demand
vh Wind speed at the height of the WT hub
vr Wind speed at the height of reference
VSOC Virtual state of charge of the battery bank
VSOD Virtual state of discharge of the battery bank
WE Wasted energy (DUMP)
WT Wind turbine
WTN Number of solar wind turbines
X Decision variables of the problem
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36. Stojiljković, M.M. Bi-level multi-objective fuzzy design optimization of energy supply systems aided by problem-specific

heuristics. Energy 2017, 137, 1231–1251. [CrossRef]
37. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces.

J. Glob. Optim. 1997, 11, 341–359. [CrossRef]
38. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial

Intelligence; MIT Press: Cambridge, MA, USA, 1992.
39. Ramli, M.A.; Bouchekara, H.; Alghamdi, A.S. Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective

self-adaptive differential evolution algorithm. Renew. Energy 2018, 121, 400–411. [CrossRef]
40. Yang, Y.; Li, R. Techno-Economic Optimization of an Off-Grid Solar/Wind/Battery Hybrid System with a Novel Multi-Objective

Differential Evolution Algorithm. Energies 2020, 13, 1585. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2015.09.046
http://dx.doi.org/10.1016/j.enbuild.2014.04.009
http://dx.doi.org/10.1016/j.rser.2017.01.174
http://dx.doi.org/10.1016/j.scs.2018.06.029
http://dx.doi.org/10.1016/j.apenergy.2019.114224
http://dx.doi.org/10.1016/j.seta.2021.101023
http://dx.doi.org/10.1016/j.energy.2021.121555
http://dx.doi.org/10.1016/j.egyr.2022.07.060
http://dx.doi.org/10.1109/MEPCON55441.2022.10021775
http://dx.doi.org/10.1016/j.jclepro.2023.139339
http://dx.doi.org/10.1016/j.egyr.2023.05.152
http://dx.doi.org/10.1016/j.ijhydene.2024.03.235
http://dx.doi.org/10.1016/j.ijhydene.2016.09.140
http://dx.doi.org/10.1016/j.scs.2019.101575
http://dx.doi.org/10.1016/j.ijhydene.2020.11.185
http://dx.doi.org/10.1016/j.apenergy.2023.120817
http://dx.doi.org/10.1007/978-3-319-07124-4_20
http://dx.doi.org/10.1111/j.1540-5915.1977.tb01074.x
http://dx.doi.org/10.1007/978-1-4615-0337-8
http://dx.doi.org/10.1016/j.energy.2013.02.045
http://dx.doi.org/10.1109/TASE.2020.2979079
http://dx.doi.org/10.3390/en10101449
http://dx.doi.org/10.1016/j.energy.2017.06.037
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1016/j.renene.2018.01.058
http://dx.doi.org/10.3390/en13071585


Mathematics 2024, 12, 3848 34 of 34

41. Abedi, S.; Ahangar, H.G.; Nick, M.; Hosseinian, S.H. Economic and reliable design of a hybrid PV-wind-fuel cell energy system
using differential evolutionary algorithm. In Proceedings of the 19th Iranian Conference on Electrical Engineering, Tehran, Iran,
17–19 May 2011; pp. 1–6.

42. Martí, R.; Sevaux, M.; Sörensen, K. Fifty years of metaheuristics. Eur. J. Oper. Res. 2025, 321, 345–362. [CrossRef]
43. Nagapurkar, P.; Smith, J.D. Techno-economic optimization and environmental Life Cycle Assessment (LCA) of microgrids located

in the US using genetic algorithm. Energy Convers. Manag. 2019, 181, 272–291. [CrossRef]
44. Zhu, G.Y.; Zhang, W.B. Optimal foraging algorithm for global optimization. Appl. Soft Comput. 2017, 51, 294–313. [CrossRef]
45. Patel, M.R. Wind and Solar Power Systems; CRC Press: Boca Raton, FL, USA, 1999; ISBN 0-8493-1605-7.
46. Anoune, K.; Ghazi, M.; Bouya, M.; Laknizi, A.; Ghazouani, M.; Abdellah, A.B.; Astito, A. Optimization and techno-economic

analysis of photovoltaic-wind-battery based hybrid system. J. Energy Storage 2020, 32, 101878. [CrossRef]
47. Morante, J.R.; Andreu, T.; García, G.; Guilera, J.; Tarancón, A.; Torrell, M. Hidrógeno: Vector Energético de Una Economía

Descarbonizada, 2nd ed.; Fundación Naturgy: Madrid, Spain, 2020; ISBN 978-84-09-22546-0.
48. Sultan, H.M.; Menesy, A.S.; Kamel, S.; Korashy, A.; Almohaimeed, S.; Abdel-Akher, M. An improved artificial ecosystem

optimization algorithm for optimal configuration of a hybrid PV/WT/FC energy system. Alex. Eng. J. 2021, 60, 1001–1025.
[CrossRef]

49. Tian, Y.; Cheng, R.; Zhang, X.; Jin, Y. PlatEMO: A MATLAB platform for evolutionary multi-objective optimization. IEEE Comput.
Intell. Mag. 2017, 12, 73–87. [CrossRef]

50. Simon, D. Evolutionary Optimization Algorithms; John Wiley: Hoboken, NJ, USA, 2013.
51. Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [CrossRef]
52. Hollander, M.; Wolfe, D. Nonparametric Statistical Methods; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1973.
53. R Core Team. R: A Language and Environment for Statistical Computing. 2022. Available online: https://www.R-project.org/

(accessed on 24 November 2024).
54. Siegel, S.; Castellan, N. Non Parametric Statistics for the Behavioural Sciences; MacGraw Hill: New York, NY, USA, 1988.
55. Giraudoux, P.; Antonietti, J.; Beale, C.; Groemping, U.; Lancelot, R.; Pleydell, D.; Treglia, M. pgirmess: Spatial Analysis and

Data Mining for Field Ecologists. R Package Version 2.0.3. Available online: https://CRAN.R-project.org/package=pgirmess
(accessed on 24 November 2024).

56. Wolpert, D.; Macready, W. No free lunch theorems for optimization. IEEE Trans. Evol. Comput 1997, 1, 67–82. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ejor.2024.04.004
http://dx.doi.org/10.1016/j.enconman.2018.11.072
http://dx.doi.org/10.1016/j.asoc.2016.11.047
http://dx.doi.org/10.1016/j.est.2020.101878
http://dx.doi.org/10.1016/j.aej.2020.10.027
http://dx.doi.org/10.1109/MCI.2017.2742868
http://dx.doi.org/10.1093/biomet/52.3-4.591
https://www.R-project.org/
https://CRAN.R-project.org/package=pgirmess
http://dx.doi.org/10.1109/4235.585893

	Introduction
	Literature Review
	Optimal Sizing of Hybrid Renewable Energy Systems
	Optimal Sizing of Hybrid Renewable Energy Systems with Hydrogen Technologies
	Scatter Search to Solve Engineering Optimization Problems

	Materials and Methods
	System Layout
	Mathematical Modeling of System Units
	Photovoltaic Modules
	Wind Turbines
	Battery Bank
	Electrolyzer and Hydrogen Storage Tank

	Problem Formulation
	The Optimization Process
	The Simulation Process
	The Dispatch Strategy
	The Scatter Search Implementation

	Scope of the Experiment

	Results of the Optimization
	Differential Evolution
	Genetic Algorithm
	Optimal Foraging Algorithm
	Scatter Search

	Discussion
	Conclusions
	References

