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A B S T R A C T

The interaction factor superposition method in the determination of the vertical and rocking impedances of
pile groups for jacket-supported Offshore Wind Turbines is studied. The vertical and rocking group dynamic
impedances obtained by this method are compared with those computed by a previously developed continuum
model. The influence of the main parameters that define the problem is also studied. In order to propose an
alternative calculation solution, some expressions dependent of these parameters are fitted from an extensive
selection of jacket pile group configurations. These expressions allow to estimate the vertical flexibility of the
source pile and the interaction factor between a pair of piles. Subsequently, applying elastic superposition,
the group impedance functions are determined. Results show that the interaction factor superposition method
correctly reproduces the vertical and rocking group dynamic impedances. Therefore, for these regular pile
groups with large spacing ratios, the assumption of only considering the direct interaction between pile pairs
leads to accurate results. Results obtained with the proposed fitted expressions generally conduct to a good
estimation, properly reproducing the variation produced by the influence of the different parameters. Thus,
this superposition method and the proposed expressions can be employed to quickly and simply reproduce the
vertical soil–structure interaction of this type of structures.
. Introduction

Pile groups are commonly used in a large variety of structural foun-
ations, such as buildings, bridges and offshore platforms. Within this
ast group, piles were originally used in oil extraction platforms, but,
n recent years, with the search of a sustainable and low-carbon future,
hey are also employed as Offshore Wind Turbine (OWT) foundations.
ccording to the recent 2023 Global Offshore Wind Report [1], 2021
nd 2022 have been the highest years in offshore wind history instal-
ation, with 21.1 GW and 8.8 GW of new power installed projects in
oth years, respectively, representing the 23% and 11% of the total new
nstallations in the last 16 years. The predictions show that this growth
ill continue and will also be overcome throughout the next ten years.
mong all existing offshore wind energy installed projects, monopiles
re the most common substructure typology (60.2%) followed by jack-
ts (10.4%) [2]. Although monopiles are expected to keep heading the
WT substructures, it is predicted that jacket substructures will grow

o represent 15% of the future market. This increase is assumed by
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the need of installing OWTs in deeper waters and further from the
coast. These jacket substructures are founded on suction caissons or on
slender piles. Both suction caissons and piles are located at vertices of
a regular polygon, depending on the number of jacket legs. The choice
between these two solutions depends on multiple factors such as soil
conditions and project-specific requirements. Although suction caissons
are faster, cheaper and quieter than piles in terms of installation and
removal, pile foundations are more suitable in terms of soil conditions
versatility, high load-bearing capacity and settlement control, due to
their larger length and vertical and rotational stiffnesses [3].

In this sense, the study of the dynamic response of pile groups
is a key problem in the structural design of these devices and the
development of this technology. Thus, with other applications, it has
already been a widely studied problem over the years. This is a complex
problem that involves pile–soil and pile–pile phenomena. The dynamic
response of pile groups can be addressed by directly modelling the
complete system or by superimposing simple interaction problems. On
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the one hand, direct models can be carried out with several mod-
elling approaches, such as, the finite element method (FEM), boundary
lement method (BEM), coupling of these two, or other procedures [4–

9]. These direct models exhaustively reproduce pile–pile and pile–soil
interactions, but they require a high computational cost. On the other
hand, the superposition method is based on estimating the pile group
response by superimposing interaction factors [10–15]. The simple
nature of this superposition procedure makes it an interesting approach
o be used in the design stages and for carrying out parametric studies.

The elastic superposition method (also known as the interaction
factor superposition method) was firstly introduced by Poulos [10]. In
this work he demonstrated that the static settlement of pile groups can
be calculated from simple pile pair configurations, superimposing the
source and receiver pile displacements. He also introduced the inter-
action factor concept as the relation between the receiver (unloaded)
nd source (loaded) pile displacements. Thereafter, Kaynia [4] studied

the dynamic response of pile groups by introducing soil flexibility
matrices and pile dynamic stiffness and compared his method with the
superposition one, concluding that the Poulos’s elastic superposition

ethodology gives reasonable results either statically and dynamically.
ubsequently, Dobry and Gazetas [11] extended Poulos’s superposition
ethod to the dynamic analysis of pile groups. This work proposed

ome frequency dependent expressions to compute the vertical and
orizontal displacement of one pile under its own load, as well as the in-
eraction factor. With these expressions pile group dynamic impedances
re obtained applying elastic principle of superposition effects. Inter-
ction factors are also employed to simulate pile–soil–pile effects by
inkler models [13,14,16,17], in which Poulos’s superposition pro-

cedure is then applied. These Winkler approaches can reproduce the
interplay between the receiver pile and the soil subjected to the dis-
placement field. Recent works, such as Zheng et al. [18], analysed
the scattering and wave diffraction, proposing interaction factors that
account these effects.

A large part of the performed works in this area [4,11,15,16,19,
20] compared the superposition method with rigorous direct models.

evertheless, all of them were focused on the analysis of standard
ile configurations (square and rectangular arrangements), and not
n pile configurations for jacket-supported OWTs, which are charac-
erised by being formed by hollow cylindrical steel piles arranged
n N-sided polygonal groups. For this reason, the main scope of this
ork is to study the interaction factor superposition method in the
ertical dynamic response of pile groups for jacket-supported OWTs,
onsidering a wide range of pile group configurations. Three different
olygonal pile arrangements are studied, composed of 3, 4 and 5 hollow
ylindrical piles embedded in an homogeneous halfspace. The influence
f the main variables that intervene in the problem (frequency and
ile and soil parameters) is studied. These parameters are considered
n order to fit and propose some expressions that allow directly esti-
ating the vertical flexibility of the source pile and the interaction

actor of a pair of piles. Then, the dynamic vertical group response
s computed applying elastic superposition. In order to carry out the
uperposition method and fitted expressions, the vertical flexibilities
nd interaction factors are obtained through a previously developed
ontinuum model [8], which will also be used to verify the final
esult obtained from the proposed procedure. The proposed expressions
llow to reproduce the vertical flexibility of the source pile and the
nteraction factor of a pair of piles, capturing the influence of the
ain pile and soil parameters that participate in the problem. These

xpressions together with the interaction factor superposition method
ould be useful to compute the vertical and rocking impedances for

a wide range of pile groups for jacket-supported OWTs with different
ile and soil characteristics. Thus, the overall methodology proposed in
his work allows to obtain the vertical and rocking impedance functions
n a fast and straightforward way, without the requirement to execute
 complex model, with a good level of precision and accounting the
nfluence of all relevant properties of the system. These impedances
 n

2 
can be later used in substructuring models or in the design stages of
these jacket-supported OWTs, in order to reproduce the soil–structure
interaction (SSI). The relevance of considering this interaction has been
highlighted in many works [21–25], in which it is emphasised that
SSI inclusion plays an important role in the dynamic characteristics of
jacket-supported OWTs, mainly in the determination of their natural
frequencies, a critical factor in the design of this type of structures.

The present paper is organised in five sections. After the introduc-
ion presented in this Section 1, Section 2 describes the methodology

followed to perform the work. Section 3 presents the problem defi-
nition, exposing the parameters studied and used to obtain the fitted
expressions. Section 4 shows the main results and the proposed fitted
xpressions. Finally, the main conclusions drawn from this work are

presented in Section 5.

2. Methodology

This section describes the methodology followed to compute the
vertical and rocking group impedances and the procedure to obtain the
fitted expressions. First, the interaction factor superposition method (or
lastic superposition method) is explained (Section 2.1), then, the curve

fitting procedure is described (Section 2.2).

2.1. The interaction factor superposition method

The vertical and rocking group impedances are obtained by super-
imposing the vertical interaction effects between all possible pile pairs
of the group. Thus, it is possible to determine the dynamic stiffness of
a pile group composed of 𝑁 identical piles by knowing the dynamic
tiffness or flexibility of a single and pair of piles at each frequency 𝜔.
his simplified method implies that the rest of piles are not influencing
he interplay between pile pairs, a simplification very close to reality

taking into account that jacket pile group configurations are composed
of few piles with large separations.

Applying superposition of effects based on elastic theory, the flexi-
bility and stiffness of a pile group (with identical piles) can be obtained
through the sum of two simple submodels, as it is shown in Fig. 1.
Submodel (a) corresponds to a single isolated pile subjected to a
dynamic vertical load at its head (𝑄); whereas submodel (b) presents
 pile pair separated by a distance 𝑆, in which the pile 𝑖 is the active,

source or loaded pile, while pile 𝑗 is the passive, receiver or unloaded
pile. From submodel (a) the vertical displacement of the isolated source
pile subjected to its own axial load is calculated (𝑤𝑖𝑖). From submodel
(b) the vertical displacement of the receiver pile due to the load acting
over the active pile is obtained (𝑤𝑗 𝑖). Thus, the vertical flexibility of the
source pile (𝐹𝑖𝑖, subproblem (a)) and the flexibility of the receiver pile
(𝐹𝑗 𝑖, subproblem (b)) can be determined as the relation between the
vertical displacement of the source and receiver piles and the axial load
espectively (see Eqs. (1) and (2)). These displacements and flexibilities
re frequency dependent and complex-valued terms.

𝐹𝑖𝑖(𝜔) =
𝑤𝑖𝑖(𝜔)
𝑄(𝜔)

(1)

𝐹𝑗 𝑖(𝜔) =
𝑤𝑗 𝑖(𝜔)
𝑄(𝜔)

(2)

The displacements of the source and receiver piles at their heads
re computed through a previously developed continuum numerical
odel [8], particularly developed to efficiently analyse the harmonic

ehaviour of pile foundations in soils which can be stratified. The
odel is based on the integral expression of the reciprocity theorem

n elastodynamics and the use of effective fundamental solutions to
imulate the layered soil behaviour, which already satisfy the inter-
ayer and free-field boundary conditions. This formulation allows to
irectly consider the radiation damping in the soil region without the
eed of including any artificial boundary condition. Piles are modelled
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Fig. 1. Vertical modelling approach based on elastic superposition.
(

m

as load lines in the soil formulation and as beam finite elements to
eproduce their stiffness and inertial contribution. Pile–soil coupling is

made by imposing compatibility and equilibrium conditions in terms of
displacements and soil–pile interaction forces. Linear-elastic behaviour
of soil and piles is assumed. The capacity of this model to correctly
reproduce the dynamic behaviour of OWT’s foundation elements has
been shown in [26].

Once the flexibilities of the source and receiver piles are obtained,
he vertical dynamic interaction factor (𝛼𝑗 𝑖) can be computed from:

𝛼𝑗 𝑖(𝜔) =
𝐹𝑗 𝑖(𝜔)
𝐹𝑖𝑖(𝜔)

=
𝑤𝑗 𝑖(𝜔)
𝑤𝑖𝑖(𝜔)

(3)

therefore, knowing this vertical dynamic interaction factor and the
flexibility of the source pile, the flexibility of the receiver pile can be
expressed in terms of this interaction factor (𝐹𝑗 𝑖 = 𝐹𝑖𝑖𝛼𝑗 𝑖).

2.1.1. Vertical group impedances calculation
Once the flexibilities of the source pile and the interaction factors

are obtained, the vertical flexibility of any pile 𝑖 of the group (𝐹𝑖) can
be estimated by superimposing the vertical flexibility of the source pile
(𝐹𝑖𝑖) with the interaction factors due to its all surrounding piles:

𝐹𝑖 = 𝐹𝑖𝑖(1 +
𝑗=𝑁
∑

𝑗≠𝑖
𝛼𝑗 𝑖) (4)

where 𝑁 is the number of piles of the group, and 𝛼𝑗 𝑖 is the interaction
factor between pile 𝑗 and 𝑖. In this case, as the pile groups are 𝑁-
sided polygonal configurations, each pile of the group have the same
3 
vertical flexibility, so it is enough to determine the vertical flexibility of
a unique pile. With this pile vertical flexibility, the pile vertical stiffness
(𝐾𝑖) can be calculated as its inverse:

𝐾𝑖 = 𝐹−1
𝑖 (5)

and the vertical group stiffness (𝐾𝐺) is determined by multiplying it by
the number of piles of the group:

𝐾𝐺 = 𝑁 𝐾𝑖 (6)

2.1.2. Rocking group impedances calculation due to the vertical component
If a group of piles is subjected at its centre of gravity to a rotation

𝜃) on the 𝑥-axis (as it is described in Fig. 2), it is possible to calculate
the vertical displacement that each pile experiences due to this rocking

otion as:

𝑤𝜃 𝑖 = 𝜃 𝑑𝑖 (7)

being 𝑑𝑖 the distance between the centre of the pile and the centre of
gravity of the group, measured in the 𝑦-axis (see Fig. 2). Thus, by using
the flexibility definition, it is possible to determine the vertical force
that appears at each pile head due to the rocking:

𝑄𝜃 𝑖 =
𝑤𝜃 𝑖
𝐹𝜃 𝑖

(8)

where 𝐹𝜃 𝑖 is the rocking flexibility due to the vertical component of
pile 𝑖 of the group. This flexibility can be computed with the vertical
flexibility of the source pile and the vertical interaction factor:

𝐹𝜃 𝑖 = 𝐹𝑖𝑖(1 +
𝑗=𝑁
∑

𝛼𝑗 𝑖
𝑑𝑗
𝑑

) (9)

𝑗≠𝑖 𝑖
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Fig. 2. Rocking problem definition.
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being 𝑑𝑗 the distance (either positive or negative) between the centre
f the adjacent pile (𝑗) and the centre of gravity of the group measured
n the 𝑦-axis. Thus, for a unitary rotation, replacing Eq. (7) in Eq. (8),

and multiplying this by the distance between the pile and the centre
of gravity, the contribution of pile 𝑖 to the group rocking stiffness is
determined. In this way, by superimposing the contribution of each
pile, the rocking impedance of the group is obtained as:

𝐾𝜃 𝐺 =
𝑖=𝑁
∑

𝑖=1

𝑑2𝑖
𝐹𝜃 𝑖

(10)

This procedure is illustrated assuming a rotation around the 𝑥-axis.
However, this type of regular polygonal pile arrangements presents
an axisymmetric behaviour. Thus, the expressions can be applied to
rotations around any axis contained in the xy-plane.

2.2. Proposed expressions for the estimation of the vertical flexibilities of
the source pile and interaction factors

The dynamic problem under study depends on many parameters,
such as the frequency and pile and soil properties. In this work the vari-
ables are defined in dimensionless form. These are: the dimensionless
frequency (𝑎𝑜), which is obtained from:

𝑎𝑜 =
𝜔𝐷
𝑉𝑠

(11)

where 𝜔 is the frequency, 𝑉𝑠 the shear wave velocity of the soil and
𝐷 the pile diameter; the ratio between the separation among two piles
(𝑆) and the diameter (pile spacing ratio: 𝑆∕𝐷); the relation between
the pile length (𝐿) and the pile diameter (pile slenderness ratio: 𝐿∕𝐷);
the ratio between the pile and soil Young’s Modulus (Young’s Modulus
pile–soil ratio: 𝐸𝑝∕𝐸𝑠); the relation between the pile and soil density
(density pile–soil ratio: 𝜌𝑝∕𝜌𝑠); the pile and soil Poisson’s ratios (𝜈𝑝
and 𝜈𝑠); and the soil hysteretic damping (𝜉𝑠). Among these parameters,
the dependency of the dimensionless frequency, pile spacing ratio,
pile slenderness relationship, Young’s Modulus pile–soil ratio, and soil
hysteretic damping is studied on the vertical flexibilities of the source
pile, interaction factors and the dynamic group impedances. From
these parameters and for a wide and realistic range of them, simple
expressions for the estimation of the flexibility of the source pile and
 d

4 
interaction factor are fitted through the results computed with the
continuum model [8].

In order to obtain expressions that collect the dependency of the
main parameters studied, the fits are addressed in two steps. First,
the flexibilities of the source pile and interaction factors are fitted
for a reference case (𝐹𝑖𝑖 and 𝛼̂𝑗 𝑖) with the same pile geometry and
soil characteristics. For this case, the flexibility of the source pile is
fitted as a function of the dimensionless frequency (𝐹𝑖𝑖(𝑎𝑜)), while the
interaction factor is fitted as a function of the dimensionless frequency
and pile spacing ratio (𝛼̂𝑗 𝑖(𝑎𝑜, 𝑆∕𝐷)).

Then, with the aim of introducing the dependency of the pile and
soil characteristics in the expressions, different correction factors (𝛽)
re computed and fitted to adjust the reference case expressions. The
orrection factors for the flexibility of the source pile and interaction
actor (𝛽𝑃𝐹 and 𝛽𝑃𝛼 ) are defined as a ratio between the flexibility of
he source pile or interaction factor due to the change of the generic

parameter 𝑃 (𝐹 𝑃
𝑖𝑖 and 𝛼𝑃𝑗 𝑖) and the reference flexibility of the source pile

r interaction factor:

𝛽𝑃𝐹 (𝑎𝑜, 𝑃 ) =
𝐹 𝑃
𝑖𝑖 (𝑎𝑜, 𝑃 )
𝐹𝑖𝑖(𝑎𝑜)

(12)

𝛽𝑃𝛼 (𝑎𝑜, 𝑃 ) =
𝛼𝑃𝑗 𝑖(𝑎𝑜, 𝑆

𝐷 )

𝛼̂𝑗 𝑖(𝑎𝑜, 𝑆
𝐷 )

(13)

These correction factors are fitted as a function of the dimensionless
requency, or the product of this one and the pile spacing ratio, and

the parameter that they rectify. Therefore, the complete expressions of
the flexibility of the source pile and interaction factor, are made up of
as many correction factors as parameters are going to be rectified:

𝐹𝑖𝑖(𝑎𝑜,
𝐿
𝐷
,
𝐸𝑝

𝐸𝑠
, 𝜉𝑠) = 𝛽

𝐿
𝐷
𝐹 (𝑎𝑜,

𝐿
𝐷
)𝛽

𝐸𝑝
𝐸𝑠
𝐹 (𝑎𝑜,

𝐸𝑝

𝐸𝑠
)𝛽𝜉𝑠𝐹 (𝑎𝑜, 𝜉𝑠)𝐹𝑖𝑖(𝑎𝑜) (14)

𝛼𝑗 𝑖(𝑎𝑜, 𝑆𝐷 , 𝐿
𝐷
,
𝐸𝑝

𝐸𝑠
, 𝜉𝑠) = 𝛽

𝐿
𝐷
𝛼 (𝑎𝑜,

𝐿
𝐷
)𝛽

𝐸𝑝
𝐸𝑠
𝛼 (𝑎𝑜,

𝐸𝑝

𝐸𝑠
)𝛽𝜉𝑠𝛼 (𝑎𝑜

𝑆
𝐷
, 𝜉𝑠)𝛼̂𝑗 𝑖(𝑎𝑜, 𝑆𝐷 )

(15)

In this study, three correction factors are fitted to introduce in the ex-
pressions the pile slenderness, Young’s Modulus ratios and soil damping
ependency. Although the flexibility of the source pile can be easily
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Table 1
Parameters studied in this work.

Parameter Notation Range/Value Step

Pile spacing ratio 𝑆
𝐷

[3 20] 0.5

[3 20]
1, in (3 6)
2, in (6 12)
4, in (12 20)

Pile slenderness ratio 𝐿
𝐷

[10 20] 1

Young’s Modulus pile–soil ratio 𝐸𝑝

𝐸𝑠
[50 500] 50

Soil hysteretic damping [%] 𝜉𝑠 [1 10] 0.25, in (1 1.25)
1.25, in (1.25 10)

Dimensionless frequency 𝑎𝑜 [0.03 0.25] 0.001

Density pile–soil ratio 𝜌𝑝
𝜌𝑠

1.2
Pile Poisson’s ratio 𝜈𝑝 0.25
Soil Poisson’s ratio 𝜈𝑠 0.40

computed with a simple model (such as the formulation of a Winkler
ne), in this work, the correction factor expressions for the flexibility
f the source pile are also proposed.

As the flexibilities and interaction factors are complex valued, two
fits are performed: one for the absolute value and another one for
the argument. This option is chosen over directly fitting the real and
imaginary components as it leads to simpler expressions. With these
expressions it is pursued to be able to estimate the flexibility of the
source pile and interaction factors without the need of executing a
meticulous model.

All fits are obtained through a classical least squares regression,
onsidering polynomial of a single or multiple variables (up to a max-

imum degree of 3) and exponential expressions. The goodness of each
fit is evaluated with three commonly used goodness metrics: the sum of
squares due to error (𝑆 𝑆 𝐸), the root mean squared error (𝑅𝑀 𝑆 𝐸) and
R-squared (𝑅2). 𝑆 𝑆 𝐸 and 𝑅𝑀 𝑆 𝐸 focus on the error magnitude, while
𝑅2 provides insight into the explanatory power of the model. To obtain
simple expressions, if two types of fits have similar goodness statistics,
the one with fewer parameters is selected.

3. Problem definition

Piles are treated as solid hollow cylindrical foundations embedded
n an isotropic homogeneous elastic soil halfspace. This study employs
imensionless variables to enhance the generality of the results. Thus,
he vertical flexibility of the source pile and the impedance functions
re expressed dimensionlessly based on the pile diameter and the pile’s
oung’s Modulus:

𝐹𝑖𝑖𝐷 𝐸𝑠 (16)

𝐾𝐺
𝐷 𝐸𝑠

(17)

𝐾𝜃 𝐺
𝐷3𝐸𝑠

(18)

The dimensionless pile and soil parameters studied in this work as well
as their corresponding values are presented in Table 1. The first (upper)
part of this table shows the different parameters used to carry out the
fitting expressions, being the values in bold text those that are used for
the reference case, whereas the others for the correction factor (𝛽) fits.
The second (bottom) part of the table lists the dimensionless frequency
range and the identical parameters adopted for both the reference case
and correction factor fits.

Regarding the parameters considered in Table 1, typical geometric
values of jacket pile groups are adopted, covering a large range of pile
pacing ratios (from 3 to 20) and pile slenderness ratios (from 10 and
0), representing flexible piles which are typical of this type of pile
roups. The Young’s Modulus ratio interval is chosen from 50 to 500,
orresponding to hollow steel piles in medium-to-soft seabeds. This
 a

5 
ratio interval is established considering that the pile Young’s Modulus
is the equivalent of a cylindrical hollow steel pile with soil mass in its
inside. For that purpose, a pile thickness (𝑡𝑝) of 1.30% of the diameter is
selected. This value has been obtained following the pile thickness API’s
recommendation [27] (see Eq. (19)), where a pile thickness of 1.6% and
1.2% is obtained for a pile diameter of 1 m and 3 m respectively. Soil
hysteretic damping spans from 1 to 10%, covering the interval between
2 and 5% that is the commonly employed for seabed profiles.

𝑡𝑝 ≥ 6.35 + 𝐷
100

[mm] (19)

Concerning the same parameters that are adopted in all fits (both in
the reference case and in the interaction correction factor fits, presented
in the second part of Table 1), the dimensionless frequency (𝑎𝑜) interval
onsidered ranges from 0.03 to 0.25. The upper value corresponds to
 diameter equal to a quarter of the wave length, being within the
ange of application of the beam-soil continuum model. The density
ile–soil ratio adopted is the equivalent density of a cylindrical hollow
teel pile with soil mass in its inside, considering a pile thickness of
.30% of the diameter, in coherence with the Young’s Modulus ratio
nterval. Poisson’s ratios of 0.40 and 0.25 are selected for the soil and
ile accordingly, usual values of sandy and clays seabed profiles and
tructural steel. A null hysteretic damping coefficient is assumed for
he structural steel of the pile.

With respect to the values adopted to obtain the reference fits
(indicated in bold text in Table 1), a pile slenderness ratio of 20,

oung’s Modulus ratio of 500 and soil damping of 1% are chosen. The
lexibilities of the source pile and interaction factors for this reference
ase (𝐹𝑖𝑖 and 𝛼̂𝑗 𝑖) are fitted by employing a wide range of pile spacing
atios, from 3 to 20 with steps of 0.5. The other values shown are used
o obtain the fitting curves of the correction factors for the flexibility
f the source pile and interaction factors (𝛽𝑃𝐹 and 𝛽𝑃𝛼 ). As it can be
bserved, the reference values are the upper (for the pile slenderness
nd Young’s Modulus ratios) or lower limit (for the soil damping)

of the considered intervals. In this way, the reference case is a limit
onfiguration from which the others are obtained.

To validate the proposed procedure in terms of group impedances,
three pile regular configurations (of 3, 4 and 5 piles) are studied, where
each pile is located at each vertex of the polygon (see Fig. 3). All pile
groups are assumed to be rigidly connected between them, a properly
assumption for pile groups of jacket-supported OWTs. This rigid con-
nection could be a unique structural element or several elements, such
as a cap mass or beam framing joining the piles.

4. Results and discussion

With the aim of addressing the proposed objectives, the results
resented in this section are organised into two parts: analysis of the

reference case and analysis of correction factors.
In Section 4.1 the reference case is studied. First, the proposed fitted

reference expressions to compute the vertical flexibilities of the source
pile and interaction factors are shown. The vertical flexibility of the
source pile and some interaction factors for different pile spacings are
represented, comparing the results obtained with the fitted expressions
with those directly computed with the continuum model. Then, the
dynamic vertical and rocking impedances are analysed for this ref-
erence scenario. The impedances directly determined by the rigorous

odel are compared with those obtained by the interaction factor
uperposition method. The superposition is applied for the flexibilities
nd interaction factors directly obtained with the continuum model and
ith the proposed fitted expressions. In this way, the validity of both

he superposition method and the fitted expressions is tested up.
In Section 4.2, the correction factors used to complete and include

he dependency of the other parameters within the overall flexibility
nd interaction factor expressions are presented. First, the dependency
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Fig. 3. Polygonal configurations of pile groups for jacket-supported OWTs studied in this work.
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of these correction factors is analysed and their proposed fitted expres-
ions are shown. Next, the effect of each correction factor is individu-
lly studied, by comparing the vertical and rocking group impedances
btained through the superposition of the fitted expressions, with the

superposition of the direct model flexibilities and interaction factors.
Afterwards, at the end of this Section 4.2, three cases with different
configuration of parameters are studied comparing the model and
fitting superposition results in order to analyse the correction as a
whole.

4.1. Reference case

4.1.1. Proposed and fitted expressions
The fits obtained for the vertical flexibility of the source pile and

nteraction factor of the reference case (𝐿∕𝐷 = 20, 𝐸𝑝∕𝐸𝑠 = 500 and
𝑠 = 1%) are exposed in Table 2. For the absolute value and argument
f the flexibility of the source pile an exponential and polynomial
xpression of degree 1 are proposed, whereas for the interaction fac-
or fits a multidegree polynomial expression of degrees 1 and 2 are
uggested. The goodness statistics of each fit are also presented in

Table 2, being 𝑆 𝑆 𝐸 the sum of squares due to error, 𝑅2 the R-squared
tatistic and 𝑅𝑀 𝑆 𝐸 the root mean squared error. As it is exposed, all
eference expressions have excellent goodness statistics, since all 𝑆 𝑆 𝐸

and 𝑅𝑀 𝑆 𝐸 take low values, as well as all 𝑅2 are close to unity. All
fits are chosen as a compromise between evaluating their simplicity
and the accuracy of their results. For this reference case it is important
to obtain expressions with acceptable goodness characteristics, because
the complete expressions are based on these reference fits (see Eqs. (14)
nd (15)).

Fig. 4 shows the dimensionless flexibility of the source pile and the
nteraction factors for different pile spacing ratios (𝑆∕𝐷 = 4, 6 and
0) against the dimensionless frequency. The dimensionless flexibilities
f the source pile are depicted in the first row and the interaction
actors in the other ones. The real and imaginary parts are presented
n the first and second column respectively. With different colours the
esults obtained through the fitting expressions (red curves), the model
blue curves) and with the Dobry and Gazetas [11] interaction factor

expression (see Eq. (20), green curve) are distinguished. In Eq. (20)
he term i refers to the imaginary unit (

√

−1). As it is shown in
this equation, the interaction factor proposed by Dobry and Gazetas
6 
depends on the pile spacing ratio, the dimensionless frequency and
the soil damping. In Fig. 4 it can be seen that the flexibilities of the
ource pile and interaction factors computed with the proposed fitted
xpressions align with those directly determined with the continuum

model. The interaction factors obtained also matches well with the
expression proposed by Dobry and Gazetas, especially for big pile
spacing ratios. The flexibility of the source pile shows a slight curved
variation over the frequency range, while the interaction factor presents
the expected oscillatory behaviour. For the interaction factor, as pile
spacing increases the oscillation amplitude and frequency (both in the
real and imaginary parts) diminishes. The increase of the pile spacing
produces a less interference among piles, as well as soil has more time
to deform and dissipate the wave energy, leading to a lower resonant
frequency.

𝛼𝐷 𝐺
𝑗 𝑖 =

(

2𝑆
𝐷

)− 1
2 e2𝜋 𝑎𝑜 𝑆

𝐷 (i−𝜉𝑠) (20)

4.1.2. Vertical and rocking dynamic impedances
In Fig. 5 the dimensionless vertical group impedances (y-axis) for

the three, four and five pile groups are shown against the dimensionless
frequency (x-axis) for the reference case. Results for each pile configu-
ration are depicted in two columns: the real (stiffness component) and
imaginary (damping component) part in the first and second column
respectively. Group impedances for different pile spacing ratios (𝑆∕𝐷 =
4, 6, 8 and 10) are arranged by rows. With different colours the results
directly obtained through the model (Direct-Model, black curves) are
distinguished from those computed applying the superposition method.
With a blue and red curve the impedances obtained by superimposing
he flexibilities and interaction factors determined through the model
F̂, ̂𝛼-Model) and the fitted expressions (F̂, ̂𝛼-Fitting) are shown, while

with a green curve the results computed by elastic superposition using
the model flexibilities of the source pile and Dobry and Gazetas interac-
ion factors (Eq. (20)) are represented. Following the same distribution,

Fig. 6 shows the dimensionless rocking group impedances.
It can be observed that the impedances obtained through the in-

eraction factor superposition method are generally similar to those
irectly computed through the model, both in the vertical and rocking
mpedances. For the vertical group impedances (Fig. 5) and the lowest
ile separation ratio (𝑆∕𝐷 = 4), it can be appreciated a phase difference

between the direct model maximum results and the maximum obtained
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Table 2
Fitted expressions of the reference case.
Fitted expression/Type Fitting parameters Fitting characteristics

Abs(𝐹𝑖𝑖(𝑎𝑜)) = aeb𝑎𝑜 1
𝐷 𝐸𝑠

a 7.96 ⋅ 10−2 𝑆 𝑆 𝐸 4.86 ⋅ 10−4

b −3.35 𝑅2 9.81 ⋅ 10−1

Exponential of 1 degree 𝑅𝑀 𝑆 𝐸 1.50 ⋅ 10−3

Ar g(𝐹𝑖𝑖(𝑎𝑜)) = p1𝑎𝑜 + p2 p1 −2.71 𝑆 𝑆 𝐸 4.42 ⋅ 10−2

p2 −4.01 ⋅ 10−1 𝑅2 9.93 ⋅ 10−1

Linear regression 𝑅𝑀 𝑆 𝐸 1.42 ⋅ 10−2

Abs(𝛼̂𝑗 𝑖(𝑎𝑜 , 𝑆
𝐷
)) = p00 + p10𝑎𝑜 + p01 𝑆

𝐷
+ p11𝑎𝑜 𝑆

𝐷
+ p02

(

𝑆
𝐷

)2

p00 4.20 ⋅ 10−1 𝑆 𝑆 𝐸 6.13 ⋅ 10−1

p10 −1.96 ⋅ 10−1 𝑅2 9.79 ⋅ 10−1

p01 −2.89 ⋅ 10−2 𝑅𝑀 𝑆 𝐸 8.90 ⋅ 10−3

p11 −1.40 ⋅ 10−3

Multivariate polynomial of 1 and 2 degrees p02 7.72 ⋅ 10−4

Ar g(𝛼̂𝑗 𝑖(𝑎𝑜 , 𝑆
𝐷
)) = p00 + p10𝑎𝑜 + p01 𝑆

𝐷
+ p11𝑎𝑜 𝑆

𝐷
+ p02

(

𝑆
𝐷

)2

p00 −1.02 ⋅ 10−1 𝑆 𝑆 𝐸 1.39
p10 1.34 𝑅2 1
p01 −2.51 ⋅ 10−2 𝑅𝑀 𝑆 𝐸 1.34 ⋅ 10−2

p11 −6.29

Multivariate polynomial of 1 and 2 degrees p02 1.14 ⋅ 10−4
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Fig. 4. Flexibility of the source pile and interaction factor for the reference case. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

through the superposition method of the model and fitted flexibilities of
he source pile and interaction factor. This maximum occurs at lightly
igher frequencies when the interaction between all piles of the group
s considered (Direct-Model results). This effect is due to the scattering
f waves produced by the presence of all piles, which is only considered

in the direct-model results (black curve). This occurs to a greater extent

for the smallest pile spacing (𝑆∕𝐷 = 4), while for larger pile spacings

7 
this phase difference tends to decrease (note that for the 𝑆∕𝐷 = 6
this phase difference practically does not exist). In this way, it is
erified that the adjacent piles to the pile pair do not significantly affect
he interplay between the pair for wavelengths larger than six times
he pile diameter, assumption that was already established in [11].

Despite this difference between the vertical dynamic impedances ob-
ained through the direct model and those of the interaction factor
uperposition method given for the 𝑆∕𝐷 = 4, results computed by
uperposition reproduce quite well the impedance functions over the
ntire frequency range. Thus, for this type foundations, with large pile
pacing ratios (𝑆∕𝐷 ≥ 4), the interaction factor superposition can
e employed to compute accurately enough the vertical and rocking
mpedance functions. The vertical impedances got with the superpo-

sition of the Dobry and Gazetas interaction factors show differences
with respect to the fitting and model impedances. These differences
are mainly appreciated at the impedance peaks, in which a phase
and a magnitude difference are produced, conducting to greater peaks.
Such peak differences are reduced as the number of piles of the group
decreases and the pile spacing ratio increases. Regarding the rocking
group stiffnesses and dampings (Fig. 6), the impedances determined
hrough the fitted interaction factors and flexibilities of the source pile

match well with the ones obtained through the continuum model. Only
some discrepancies can be found at very low or high frequencies. In
this case, the differences of the rocking impedances computed with the

obry and Gazetas interaction factors with respect to the fitting and
model results are lower than those given in the vertical impedances.
As it was expected, both in the vertical and rocking impedances,
a more pronounced group behaviour is observed with the increase
of the number of piles. Increasing pile separation ratio produces a
reduction in the vertical impedances and a growth of the rocking ones.
Furthermore, with the increase of the pile spacing, more number of
peaks appears in both the vertical and rocking impedances. Note that
for a same frequency range more multiples of the wavelength fit within
a greater pile separation. A similar trend is observed when the number
of piles increases for the rocking impedances, producing more number
of peaks. All these last comments agree well with the conclusions of the
classical works (such as [4]). It is worth noting that, for comparison
purposes, the rocking impedance functions obtained through the direct
continuum model are computed assuming a pile group with hinged
heads. This assumption is made to completely remove any contribution
of the lateral mode of the piles. However, for the studied configurations,
he rocking impedance of the group is mainly governed by the axial
tiffness of the piles and, therefore, the results can be extended to

groups with rotationally fixed pile heads.
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Fig. 5. Vertical group impedances for the reference case. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
rticle.)
Fig. 6. Rocking group impedances for the reference case. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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4.2. Inclusion of correction factors

As previously mentioned in Section 2.2, with the aim of including
he dependency of more parameters in the expressions, some correction
actors are also fitted to adjust the reference case expressions. To fulfil

this objective, firstly, the influence of the pile slenderness, Young’s
Modulus ratios and the soil damping is studied for each correction
factor. Once this influence is analysed, it is studied how well this
correction factor reproduces the variation due to each parameter.
8 
4.2.1. Correction factors for the vertical flexibilities of the source pile
To analyse the flexibilities of the source pile variation with respect

to the reference case when some of the system parameters change,
Fig. 7 represents the correction factor for the flexibility of the source
ile (𝛽𝐹 ) against the dimensionless frequency. Each row shows these
orrection factors for each analysed parameter: the pile slenderness

ratio, the Young’s Modulus pile–soil ratio and the soil damping. The real
nd imaginary components of these correction factors are presented in

columns. Different colours are used to show the correction factors for
diverse values of each parameter. In Fig. 7 it can be observed that the
pile slenderness and the Young’s Modulus ratios, have a remarkable
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Fig. 7. Correction factors for the flexibility of the source pile against dimensionless
requency. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

influence on the flexibility of the source pile as the results differ
from those obtained for the reference case (𝐿∕𝐷 = 20 and 𝐸𝑝∕𝐸𝑠 =
500). In terms of the soil damping there are no significant differences
with respect to the reference case, both in the real and imaginary
components. As regards the pile slenderness ratio influence, it can be
seen that lower pile slenderness increases the flexibility, as the pile–
soil interaction surface decreases. This is because the influence of the
pile length on the dimensionless vertical dynamic flexibility of the pile
is larger than that of the pile diameter. Besides, a phase difference is
produced for low pile lengths as the frequency increases. Respecting
the Young’s Modulus ratio, low values (less pile stiffness with respect
to the soil one) imply higher flexibilities and phase differences in the
entire frequency range.

In Table 3 the correction factor fits for the flexibilities of the source
ile are presented. The expressions are fitted in terms of the dimension-
ess frequency and the parameter that each correction factor adjusts. All
its are multivariate polynomial expressions of degrees 1 and 2 (for the
ile slenderness ratio and soil damping correction factors) and 1 and 3
for the Young’s Modulus pile–soil correction factor). According to the
etrics presented in Table 3, all fitted expressions present a high level

f accuracy for reproducing the model’s results. Although the variation
f the correction factor for the flexibility of the source pile in terms
f the soil damping is very small (see Fig. 7), this correction factor is

also fitted, since the assumption of not rectifying the flexibility of the
source pile with the variation of this parameter affects in a significantly
way the results when the soil damping is greater than 5% (this fact will
be shown and commented in Section 4.2). All expressions are obtained
valuating their simplicity and accuracy of the fits.

4.2.2. Interaction correction factors
In Fig. 8 the interaction correction factor for each parameter 𝑃 is

presented versus the dimensionless frequency. The interaction correc-
tion factors for the pile slenderness ratio are depicted in the firsts two
columns (real and imaginary part), in which the results corresponding
9 
to a ratio of 10, 15 and 18 are arranged in the first, second and
hird rows respectively. In the following two columns the interaction

correction factors for the Young’s Modulus ratio are shown, for values
of 100, 250 and 400 in each row. Finally, the interaction correction
factors corresponding to the soil damping are represented in the last
two columns, for soil dampings of 2.5, 5 and 7.5%. Different colours
are used to distinguish the correction factors for different pile spacing
ratios. In Fig. 8 it can be observed that the interaction correction factors
for the pile slenderness, Young’s Modulus ratios and soil dampings,
show a considerable dependency of the dimensionless frequency and
pile spacing ratio, except for large pile slenderness and Young’s Mod-
lus ratios and the imaginary component of pile damping correction
actor. Furthermore, the variation of the soil damping interaction cor-
ection factor with the dimensionless frequency and the pile separation
s uniform, however, for the pile slenderness and Young’s Modulus
atios it is not. This fact can be seen for the smaller values of the pile
lenderness and Young’s Modulus ratios, where the variation of the
nteraction correction factor is not uniform with the frequency, above
ll for larger pile spacing ratios.

In Table 4 the fitted expressions obtained for the interaction cor-
rection factor of each parameter are shown. On the one hand, the
orrection factors for the pile slenderness and Young’s Modulus ratios
re fitted in terms of the dimensionless frequency and the parameter
hat is rectified. The pile spacing dependency is not directly included as
 variable in theses expressions, but it is implicitly within them, because
he results corresponding to each pile spacing are used to obtain the
xpressions. On the other hand, the soil damping correction factor is

fitted in terms of the product of the dimensionless frequency and pile
spacing ratio, and the soil damping. Thus, the dimensionless frequency,
pile spacing ratio and soil damping dependency is explicitly reproduced
within the soil damping interaction correction factor. The expressions
of the pile slenderness and Young’s Modulus correction factors were
also attempted to be fitted in terms of this product, but they led to
worse results. All fits are multivariate polynomial functions of up 2
degrees. However, the arguments of the interaction correction factor for
the Young’s Modulus ratio and soil damping are not considered, since
their fittings turned out to give superficial functions very close to zero,
so this assumption allows to simplify the expressions leading to similar
results. The characteristics of these fits are inferior to those described
previously (reference case and correction factor fits for the flexibilities
of the source pile, Tables 2 and 3), especially for the pile slenderness
and Young’s Modulus ratios, because the pile spacing dependency is not
directly reproduced in these expressions.

4.2.3. Vertical and rocking impedances
In order to analyse how these correction factors (both for the

flexibility of the source pile and interaction factor) allow to adjust
he reference case, this section is organised as follows: Firstly, it is
tudied how each correction factor fixes the variation of its respective
arameter, this is done by only varying the parameter that is analysed
aintaining the others with the reference case values; finally, some

ases in which all parameters are modified at the same time are
nalysed. For simplification purpose, only the results corresponding
o the 4-pile group are shown, for the 3 and 5-pile groups, similar
onclusions are obtained.

− Influence of pile slenderness ratio
Fig. 9 shows the dimensionless vertical impedances of a 4-pile group

for different pile spacing (𝑆∕𝐷 = 4, 6, 8 and 10) and pile slenderness
ratios (𝐿∕𝐷 = 10, 15 and 18) against the dimensionless frequency. In
these results only the pile slenderness and pile spacing ratios are varied,
all other parameters are kept invariant adopting the values of the
reference case (𝐸𝑝∕𝐸𝑠 = 500 and 𝜉𝑠 = 1%). Results for each pile spacing
and pile slenderness ratio are arranged by rows and pair of columns
respectively. At the first column of each pair the real component is

presented while in the second one the imaginary part. With different
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Table 3
Fitted expressions of the correction factors for the flexibilities of the source pile.
Fitted expression Fitting parameters Fitting characteristics

Abs(𝛽
𝐿
𝐷
𝐹 (𝑎𝑜 ,

𝐿
𝐷
)) = p00 + p10𝑎𝑜 + p01 𝐿

𝐷
+ p11𝑎𝑜 𝐿

𝐷
+ p02

(

𝐿
𝐷

)2

p00 3.05 𝑆 𝑆 𝐸 1.98 ⋅ 10−1

p10 −1.91 ⋅ 10−1 𝑅2 9.98 ⋅ 10−1

p01 −1.93 ⋅ 10−1 𝑅𝑀 𝑆 𝐸 9.00 ⋅ 10−3

p11 6.55 ⋅ 10−3

Multivariate polynomial of 1 and 2 degrees p02 4.55 ⋅ 10−3

Ar g(𝛽 𝐿
𝐷
𝐹 (𝑎𝑜 ,

𝐿
𝐷
)) = p00 + p10𝑎𝑜 + p01 𝐿

𝐷
+ p11𝑎𝑜 𝐿

𝐷
+ p02

(

𝐿
𝐷

)2

p00 5.48 ⋅ 10−2 𝑆 𝑆 𝐸 1.89 ⋅ 10−2

p10 −2.54 𝑅2 9.99 ⋅ 10−1

p01 −7.26 ⋅ 10−3 𝑅𝑀 𝑆 𝐸 2.80 ⋅ 10−3

p11 1.27 ⋅ 10−1

Multivariate polynomial of 1 and 2 degrees p02 2.26 ⋅ 10−4

Abs(𝛽
𝐸𝑝
𝐸𝑠
𝐹 (𝑎𝑜 ,

𝐸𝑝

𝐸𝑠
)) = p00 + p10𝑎𝑜 + p01

𝐸𝑝

𝐸𝑠
+ p11𝑎𝑜

𝐸𝑝

𝐸𝑠

+p02

(𝐸𝑝

𝐸𝑠

)2

+ p12𝑎𝑜
(𝐸𝑝

𝐸𝑠

)2

+ p03
(𝐸𝑝

𝐸𝑠

)3

p00 2.98 𝑆 𝑆 𝐸 7.49
p10 5.50 𝑅2 9.90 ⋅ 10−1

p01 −1.75 ⋅ 10−2 𝑅𝑀 𝑆 𝐸 5.83 ⋅ 10−2

p11 −2.76 ⋅ 10−2

p02 5.39 ⋅ 10−5

p12 3.42 ⋅ 10−5

Multivariate polynomial of 1 and 3 degrees p03 −5.42 ⋅ 10−8

Ar g(𝛽
𝐸𝑝
𝐸𝑠
𝐹 (𝑎𝑜 ,

𝐸𝑝

𝐸𝑠
)) = p00 + p10𝑎𝑜 + p01

𝐸𝑝

𝐸𝑠
+ p11𝑎𝑜

𝐸𝑝

𝐸𝑠

+p02

(𝐸𝑝

𝐸𝑠

)2

+ p12𝑎𝑜
(𝐸𝑝

𝐸𝑠

)2

+ p03
(𝐸𝑝

𝐸𝑠

)3

p00 1.82 ⋅ 10−1 𝑆 𝑆 𝐸 1.05 ⋅ 10−1

p10 3.21 ⋅ 10−1 𝑅2 9.93 ⋅ 10−1

p01 −4.78 ⋅ 10−4 𝑅𝑀 𝑆 𝐸 6.90 ⋅ 10−3

p11 3.41 ⋅ 10−3

p02 −1.07 ⋅ 10−6

p12 −8.52 ⋅ 10−6

Multivariate polynomial of 1 and 3 degrees p03 2.73 ⋅ 10−9

Abs(𝛽𝜉𝑠𝐹 (𝑎𝑜 , 𝜉𝑠)) = p00 + p10𝑎𝑜 + p01𝜉𝑠 + p11𝑎𝑜𝜉𝑠 + p02𝜉2𝑠
p00 1.00 𝑆 𝑆 𝐸 9.87 ⋅ 10−4

p10 2.48 ⋅ 10−2 𝑅2 9.99 ⋅ 10−1

p01 −3.02 ⋅ 10−3 𝑅𝑀 𝑆 𝐸 7.05 ⋅ 10−4

p11 −3.22 ⋅ 10−2

Multivariate polynomial of 1 and 2 degrees p02 −4.85 ⋅ 10−5

Ar g(𝛽𝜉𝑠𝐹 (𝑎𝑜 , 𝜉𝑠)) = p00 + p10𝑎𝑜 + p01𝜉𝑠 + p11𝑎𝑜𝜉𝑠 + p02𝜉2𝑠
p00 1.61 ⋅ 10−2 𝑆 𝑆 𝐸 2.40 ⋅ 10−3

p10 −4.14 ⋅ 10−2 𝑅2 9.99 ⋅ 10−1

p01 −1.54 ⋅ 10−2 𝑅𝑀 𝑆 𝐸 1.10 ⋅ 10−3

p11 3.56 ⋅ 10−2

Multivariate polynomial of 1 and 2 degrees p02 1.33 ⋅ 10−4
Fig. 8. Interaction correction factors against dimensionless frequency. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
colours the following curves are presented: the impedances obtained
through superposition of the flexibilities and interaction factors of
the fitted expressions (red curve, F, 𝛼-Fitting); those computed by us-
ing the flexibilities and interaction factors of the model (blue curve,
F, 𝛼-Model); the reference case impedances determined with their cor-
responding fits (green dashed curve, F̂, ̂𝛼-Fitting); and the impedances

got by superimposing the fitted flexibilities of the source pile (adjusted

10 
through their correction factors) with the fitted interaction factors of
the reference case (cyan dashed curve, F, ̂𝛼-Fitting). In Fig. 9 it can be
observed that the impedances computed through the fitted interaction
factors and flexibilities of the source pile agree well with the model
ones. The biggest differences between these occur at the first peak
of the impedances (both in the real and imaginary parts), in which
the fitting peak is above of the model one (except the case with the
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Table 4
Fitted expressions of the interaction correction factors.
Fitted expression Fitting parameters Fitting characteristics

Abs(𝛽
𝐿
𝐷
𝛼 (𝑎𝑜 ,

𝐿
𝐷
)) = p00 + p10𝑎𝑜 + p01 𝐿𝐷+

p11𝑎𝑜
𝐿
𝐷

+ p02
( 𝐿
𝐷

)2

p00 9.21 ⋅ 10−1 𝑆 𝑆 𝐸 5.06 ⋅ 10
p10 9.45 ⋅ 10−2 𝑅2 2.75 ⋅ 10−1

p01 2.64 ⋅ 10−2 𝑅𝑀 𝑆 𝐸 4.81 ⋅ 10−2

p11 1.37 ⋅ 10−3

Multivariate polynomial of 1 and 2 degrees p02 −1.17 ⋅ 10−3

Ar g(𝛽 𝐿
𝐷
𝛼 (𝑎𝑜 ,

𝐿
𝐷
)) = p00 + p10𝑎𝑜 + p01 𝐿𝐷

+p20𝑎2𝑜 + p11𝑎𝑜 𝐿𝐷

p00 2.23 ⋅ 10−3 𝑆 𝑆 𝐸 1.95 ⋅ 10
p10 1.01 𝑅2 7.15 ⋅ 10−1

p01 1.85 ⋅ 10−3 𝑅𝑀 𝑆 𝐸 2.98 ⋅ 10−2

p20 2.54

Multivariate polynomial of 2 and 1 degrees p11 −8.35 ⋅ 10−2

Abs(𝛽
𝐸𝑝
𝐸𝑠
𝛼 (𝑎𝑜 ,

𝐸𝑝

𝐸𝑠
)) = p00 + p10𝑎𝑜 + p01

𝐸𝑝

𝐸𝑠

+p11𝑎𝑜
𝐸𝑝

𝐸𝑠
+ p02

(𝐸𝑝

𝐸𝑠

)2

p00 6.11 ⋅ 10−1 𝑆 𝑆 𝐸 3.08 ⋅ 10
p10 −1.23 ⋅ 10−2 𝑅2 8.93 ⋅ 10−1

p01 1.03 ⋅ 10−3 𝑅𝑀 𝑆 𝐸 3.94 ⋅ 10−2

p11 −5.04 ⋅ 10−4

Multivariate polynomial of 1 and 2 degrees p02 −3.12 ⋅ 10−7

Ar g(𝛽
𝐸𝑝
𝐸𝑠
𝛼 (𝑎𝑜 ,

𝐸𝑝

𝐸𝑠
)) = 0

Abs(𝛽𝜉𝑠𝛼 (𝑎𝑜
𝑆
𝐷
, 𝜉𝑠)) = p00 + p10𝑎𝑜 𝑆𝐷 + p01𝜉𝑠

+p20(𝑎𝑜
𝑆
𝐷
)2 + p11𝑎𝑜 𝑆𝐷 𝜉𝑠

p00 1.08 𝑆 𝑆 𝐸 2.71 ⋅ 10
p10 −8.54 ⋅ 10−2 𝑅2 9.68 ⋅ 10−1

p01 −1.66 ⋅ 10−2 𝑅𝑀 𝑆 𝐸 3.89 ⋅ 10−2

p20 1.98 ⋅ 10−2

Multivariate polynomial of 2 and 1 degrees p11 −2.41 ⋅ 10−2

Ar g(𝛽𝜉𝑠𝛼 (𝑎𝑜
𝑆
𝐷
, 𝜉𝑠)) = 0
Fig. 9. Vertical 4-pile group impedances for different pile slenderness ratios. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
f

lowest pile separation and slenderness ratios, 𝑆∕𝐷 = 4 and 𝐿∕𝐷 =
10). This difference tends to decrease when the pile slenderness and
pacing ratios increase. Furthermore, the variations that are produced
ith the change of the pile slenderness ratio are correctly reproduced
ith the fits. This fact can be observed when the reference case curve

green dashed lines) is compared with the results corresponding to the
pile slenderness variation (continuous lines), especially for the lowest
pile slenderness ratio. Note that if the interaction factor expression
proposed by Dobry and Gazetas [11] (see Eq. (20)) were used, similar
esults would be computed for the different pile slenderness ratios, as

the expression does not depend on this ratio. Although the pile spacing
ratio has not been included as a variable in the fitted expressions of the
correction factor, the variation in the results produced by the alteration
11 
of the pile spacing ratio is properly reproduced by adjusting the fitted
expression of the reference case. Despite the interaction correction
factor fits of the pile slenderness ratio have low goodness characteristics
(see Table 4), the fitting results match well with the model ones. This
is because the flexibility of the source pile (that it is better fitted
(see Table 3) has a greater impact on the total dynamic response
than the interaction factor). This fact can also be seen when only the
lexibility of the source pile is rectified with its correction factors (cyan

dashed line), where for separations larger than four times the pile
diameter, similar results between this assumption and the superposition
of the model flexibilities and interaction factors are obtained. Thus,
the contribution of the adjustment of the flexibility of the source pile
is quite bigger than the interaction factor one. For the lowest value
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Fig. 10. Rocking 4-pile group impedances for different pile slenderness ratios. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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of the pile spacing ratio it can be observed a phase difference and a
considerable difference between this assumption and the model results
at the peak impedances, this is due to the greater relevance of pile–pile
interaction as the pile spacing ratio decreases.

Fig. 10 shows the dimensionless rocking impedances versus the
dimensionless frequency, for different pile slenderness and pile spacing
atios and for the 4-pile group. Results are arranged in the same way as
sed for the vertical impedances (Fig. 9). The rocking impedances ob-

tained with the superposition of the flexibilities and interaction factors
of the proposed expressions match very well with those superimposed
with the model flexibilities and interaction factors. In this case, the
main differences between the fitting and model results occur at the
larger frequencies (𝑎𝑜 ≥ 0.20) and in the imaginary component, giving
slightly greater results the impedances obtained with the fitted expres-
sions. Moreover, the rocking impedances show a greater dependency of
the pile slenderness and pile spacing ratios. Note how the differences
observed with respect to the reference case are greater than those
obtained in the vertical impedances. For these rocking impedances, the
assumption of only rectifying the flexibility of the source pile leads to
good results, even for the smallest pile spacing ratio. Both in the vertical
and rocking impedances, the dynamic vertical group response rises with
the increase of the pile slenderness ratio.

− Influence of Young’s Modulus ratio
In the same way as previously made for analysing the pile slen-

erness variation (Figs. 9 and 10), Figs. 11 and 12 show the dimen-
sionless vertical and rocking impedances for different Young’s Modulus
(𝐸𝑝∕𝐸𝑠 = 100, 250 and 500) and pile spacing ratios (𝑆∕𝐷 = 4, 6, 8
and 10), maintaining all other parameters invariant with the values
of the reference case (𝐿∕𝐷 = 20 and 𝜉𝑠 = 1%). The results are
presented in the same way that it was exposed for the pile slenderness
ratio, showing the impedances for several Young’s Modulus ratios in
pairs of columns. The vertical impedances obtained through the fitted
interaction factors and flexibilities of the source pile align well with
the results obtained from the model (see Fig. 11). Only at intermediate
Young’s Modulus ratios (𝐸𝑝∕𝐸𝑠 = 100 and 250) some differences at
the first peak and high dimensionless frequencies appear. As it can
be observed, the assumption of not considering a correction factor for
the argument of the interaction factor in the Young’s Modulus ratio
 s

12 
practically does not affect the results. As in the previous case (variation
f pile slenderness ratio), the alteration due to the Young’s Modulus

ratio is well captured without adding the pile spacing ratio as a variable
in the interaction correction factor fit. Besides, it can be seen that
there is a considerable influence of the Young’s Modulus ratio in the
final results, above all for the lower values of this ratio, in which
significant differences can be appreciated comparing the reference case
(green dashed line) with the continuous lines. This variation could
not be reproduced with the interaction factor expression suggested
by Dobry and Gazetas [11] (see Eq. (20)), since this one does not
epend on the Young’s Modulus ratio. In this case, more differences

appear when only the flexibility of the source pile is adjusted with the
orrection factors (cyan dashed line). These differences can be seen
or the lower pile spacing and Young’s Modulus ratios, especially, at
he first peak, in which a magnitude and phase difference with respect

to the continuous lines can be observed. For the rocking impedances
(Fig. 12) more differences between the fitting and model curves can
e observed, particularly for the higher values of the pile spacing and

Young’s Modulus ratios, even so the impedances obtained with the fits
are quite close to the model ones. When only the adjustment of the
flexibility is considered through its correction factors, good results are
obtained, although some discrepancies can be seen for the lowest pile
spacing and Young’s Modulus ratios. What is more, for both the vertical
and rocking impedances, larger values of impedances are obtained as
the Young’s Modulus pile–soil ratio increases.

− Influence of soil damping
The dimensionless vertical and rocking impedances of the 4-pile

group for different soil dampings (𝜉𝑠 = 2.5, 5 and 7.5%) and pile
spacing ratios (𝑆∕𝐷 = 4, 6, 8 and 10) are depicted in Figs. 13 and 14
respectively, the other parameters are kept invariant with the values
of the reference case (𝐿∕𝐷 = 20 and 𝐸𝑝∕𝐸𝑠 = 500). Results are shown
n the same disposal than the previously used for the pile slenderness
nd Young’s Modulus ratios, but now each pair of columns presents
he impedances for each soil damping. Similar conclusions than the
reviously commented for the pile slenderness and Young’s Modulus
atios are also drawn for the soil damping variation: the impedances
omputed with the fitted interaction factors and flexibilities of the
ource pile match very well with those of the model in both the vertical
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Fig. 11. Vertical 4-pile group impedances for different Young’s Modulus ratios. (For interpretation of the references to colour in this figure legend, the reader is referred to the
eb version of this article.)
Fig. 12. Rocking 4-pile group impedances for different Young’s Modulus ratios. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
and rocking impedances. The larger differences between these two are
produced at the first vertical impedance peak and at the highest fre-
quencies in the imaginary component of the rocking impedances. As it
can be observed the variation of the soil damping does not significantly
ffect the vertical and rocking impedances for soil dampings lower

than 5%. Nonetheless, for damping values higher than 5%, there are
significant differences between the peaks of the reference curve and
the peaks of the other curves. The assumption of only considering
the correction factors for the flexibility of the source pile allows to
13 
obtain good impedances, except for the smallest pile spacing ratio and
the soil dampings larger or equal to 5%. For these cases, the contri-
bution of the interaction factor rectification is considerable in order
to correctly reproduce the impedance peaks and the frequencies at
they occur. Moreover, greater vertical and rocking dynamic impedances
are obtained as the soil damping drops off. This fact is due to the
attenuation of the pile–pile interaction produced by the increase of the
soil damping.
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Fig. 13. Vertical 4-pile group impedances for different soil dampings. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
Fig. 14. Rocking 4-pile group impedances for different soil dampings. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
f this article.)
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− Variation of the three parameters
Figs. 15 and 16 show the dimensionless vertical and rocking

impedances of the 4-pile group against the dimensionless frequency
for three different parameter configurations, where the pile slender-
ness, Young’s Modulus ratios and soil dampings are modified at the
same time. Specifically, the three studied configurations are: 𝐿∕𝐷 =
14, 𝐸𝑝∕𝐸𝑠 = 100, and 𝜉𝑠 = 2%; 𝐿∕𝐷 = 16, 𝐸𝑝∕𝐸𝑠 = 200, and 𝜉𝑠 = 4%; and
𝐿∕𝐷 = 18, 𝐸𝑝∕𝐸𝑠 = 400, and 𝜉𝑠 = 5%. The results for each configuration
are disposed by pair of columns, where the real and imaginary compo-
nents are represented in the first and second column respectively. The
impedances for three different pile spacing ratios (𝑆∕𝐷 = 6, 8 and 10)
14 
are arranged by rows. The same curve colours and line traces than those
reviously used are employed to distinguish the results of the fits and
he model. As it is shown, in the first configuration (firsts two columns
f Figs. 15 and 16), the fitting and model continuous curves are a little

separated from each other, especially for the rocking stiffness (real
component) and for the larger pile spacing ratios. Nevertheless, the
curve shape is correctly reproduced by using the fitted expressions of
the flexibilities of the source pile and interaction factors. Note that this
first set of parameters is the furthest from the reference case in terms of
pile slenderness and Young’s Modulus ratios. However, for the second
and third parameter configurations, in which the pile slenderness and

Young’s Moudulus ratios are nearer to the reference case, the fitting
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Fig. 15. Vertical 4-pile group impedances for different parameter configurations. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
Fig. 16. Rocking 4-pile group impedances for different parameter configurations. (For interpretation of the references to colour in this figure legend, the reader is referred to the
eb version of this article.)
e
t

and model impedances give similar results, both in the vertical and
ocking impedances. The impedances computed through the fitted

interaction factors and flexibilities of the source pile are commonly
lower than those of the model at the entire dimensionless frequency
range. For large pile spacing ratios and in the rocking impedances, more
differences can be appreciated. Nonetheless, fits generally reproduce

ell the variation of the group impedances of the reference case. When
nly the flexibility of the source pile is rectified with the correction

factors, it can be seen relevant discrepancies in the peaks of the vertical
impedances. These differences are lower in the rocking impedances, but
they are noticeable in the two last configurations, which are those that
have a greater soil damping.
15 
5. Conclusions

This paper studies the interaction factor superposition method for
pile groups of jacket-supported OWTs. The results obtained from this
method are compared with those computed by a previously devel-
oped continuum model [8]. Ready-to-use expressions are proposed by
performing curve fittings for the flexibilities of the source pile and
interaction factors directly determined with the continuum model for
a wide variety of jacket pile groups parameters. The influence of the
dimensionless frequency, pile separation ratio, pile slenderness ratio,
Young’s Modulus ratios and soil damping is studied and included in the
xpressions. The validity of these expressions are analysed throughout
he work. The following conclusions are drawn:
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• The interaction factor superposition method correctly reproduces
the vertical and rocking group impedances for the regular pile
configurations characteristic of jacket foundations. Thus, for this
type of pile groups with large pile spacing ratios, the assumption
of only considering the interaction between pile pairs and neglect-
ing the interplay of the other surrounding piles allow to reproduce
in a accurately and easily way the dynamic group response. This
last consideration is totally fulfilled for pile spacings equal or
higher than six times the pile diameter. For lower pile spacings,
the rest of piles starts to affect the interaction among the pair of
piles, producing differences between the rigorous model and the
superposition method.

• Apart from the influence of the dimensionless frequency and
separation ratio, the effect of the pile slenderness, Young’s Mod-
ulus ratios and soil hysteretic damping can be significant in the
determination of the impedance functions. The influence of these
parameters can be reproduced with the use of correction factors
that adapt the flexibilities of the source pile and interaction
factors of a reference case. Results obtained with the proposed
fitted expressions and correction factors generally reproduce well
the dynamic behaviour of pile groups for jacket-supported OWTs.
When only one parameter is modified from the reference case,
the impedances computed by superimposing the fitted interaction
factors and flexibilities of the source pile match quite well with
those obtained through the flexibilities and interaction factors
of the continuum model. When all parameters are changed at
once, greater differences between the results determined with the
model and those calculated with the fitted expressions are ob-
tained. Especially when the pile slenderness and Young’s Modulus
ratios are far from the reference case values (𝐿∕𝐷 = 20 and
𝐸𝑝∕𝐸𝑠 = 500). However, these differences are acceptable and the
curve shape is properly reproduced.

• The assumption of only adjusting the flexibility of the source pile
with the proposed correction factors can lead to admissible ver-
tical and rocking impedances. The rocking impedances obtained
with this simplification are generally acceptable. Nevertheless, for
low values of pile spacing and Young’s Modulus ratios, as well
as for large values of soil dampings, omitting the influence of
these parameters on the interaction factors can lead to significant
differences in the vertical impedances, especially in their peak
values.

Thus, the dynamic vertical response of jacket pile groups can be
estimated applying the interaction factor superposition method and
the proposed expressions. The use of this method and the proposed
expressions are useful since they can be employed without the need to
execute a rigorous model, allowing to obtain the vertical and rocking
impedances in a faster and simpler way. These impedances could
subsequently be used to reproduce the soil–structure interaction of
these type of structures. As future developments it is proposed to carry
out a similar work but analysing the horizontal and rocking-horizontal
dynamic behaviour of jacket pile groups. Additionally, this study can
be extended to more complex soils, such as stratified or saturated
soils. Furthermore, it could be interesting to evaluate the superposition
method by employing more complex techniques, such as machine
learning, that could improve the proposed expressions. For instance,
artificial neural networks combined with the proposed superposition
procedure could result in more accurate impedance functions. Artificial
networks could be used to predict the own vertical flexibilities and
interaction factors, considering all relevant soil and pile variables at
once. Then, the impedance functions would be computed applying
lastic superposition.
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