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Introduction: External injuries in elasmobranchs are frequent findings, either due
to inter- or intraspecific interactions or as a result of interaction with human
activities. However, the resilience of these species to traumatic injury remains
poorly understood. This work provides an insight into the clinical presentation,
diagnostic imaging, and pathological features of a severe traumatic injury to the
cartilaginous skeleton of a spiny butterfly ray (Gymnura altavela).

Methods: An adult female was found lethargic in the bottomof the coast of Gran
Canaria, with an external incised-contused traumatic lesion of 2 cm diameter in
the scapulocoracoid cartilage. It was captured and transferred to the Poema del
Mar Aquarium for its clinical evaluation and treatment. Despite these e�orts, the
animal eventually died andwas transfer to the Institute of Animal Health and Food
Safety (IUSA) for its pathological diagnosis, including a Computed Tomography
(CT) study and necropsy.

Results: The animal presented a marked reduction in hematocrit and
hepatosomatic index due a chronic debilitation process. The CT scan revealed a
destructive lesion with irregular margins at the level of the right scapulocoracoid
cartilage. Themain pathological findingswere the disorganization of the tesserae
layer, appearing as whitish square to rectangular geometric pieces separated
from the cartilaginous core. Histologically, these pieces of tesserae were
separated from the unmineralized cartilage core and displaced from the adjacent
perichondrium, where inflammatory cells infiltrate. Edema and hemorrhages
were also observed.

Conclusions: This study reports the first comprehensive description of skeleton
trauma in a spiny butterfly ray, including the clinical presentation, diagnostic
imaging and the anatomopathological features.

KEYWORDS
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1 Introduction

The situation of elasmobranchs is critical, being considered as one of the most
endangered groups of animals on the planet (1, 2). Anthropogenic causes, primarily
fishing interactions, stand out as the foremost threats and causes of death in sharks
and rays (1, 3, 4). Located in the Atlantic Ocean, the Canary Islands are an archipelago
of volcanic origin that constitutes a Spanish autonomous community situated off
the northwest coast of Africa. Comprising eight inhabited islands (Gran Canaria,
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Tenerife, Fuerteventura, Lanzarote, La Palma, La Gomera, El
Hierro, and La Graciosa) alongside various uninhabited islets.
The distinctive environmental characteristics of this archipelago
result in a unique biodiversity, with a high number of endemic
species (5–7). This region represents a stronghold for a wide
variety of endangered elasmobranchs species, where they form
stable populations and have nurseries in locations with high human
presence (8–13). The spiny butterfly ray (Gymnura altavela) is
among the most frequently observed elasmobranchs in the Canary
Islands (10). This ray species belongs to the familyGymnuridae and
is distributed throughout the coastal waters of the Atlantic Ocean,
Mediterranean Sea, and Black Sea, where it primarily inhabits sandy
substrates ranging from the seashore to depths of 150 meters (14).
It is classified as Critically Endangered in Europe and Endangered
worldwide in the International Union for Conservation of Nature
(IUCN) Red List due to declining populations mainly because of
fishing pressure and habitat destruction (15). The vast presence of
tourism along the coasts of the Canary Islands, raises significant
interest in studying the potential threats by human actions to the
marine environment.

Particularly, traumatic injuries in wild elasmobranchs often
arise from both intraspecific and interspecific encounters, or
because of interactions with human activity (16–24). The
remarkable capacity and rapidity of external wound healing in
chondrichthyans are widely acknowledged (25–29). For instance,
severe injuries consistent with vessel collisions have been
documented in a great white shark (Carcharodon carcharias)
(30), a reef manta ray (Mobula alfredi) (31), and whale sharks
(Rhincodon typus) (32), cases where the monitorization of these
animals highlighted the astonishing resilience of these species and
the rapid speed of healing. However, the regenerative capacity
of cartilage tissue in elasmobranchs has been a subject of
debate in different studies. Thus, Ashhurst (33) concluded that
chondrichthyans were unable to repair their cartilaginous skeleton
based on an experiment involving the cutting of fin rays in
dogfishes (Scyliorhinus spp.) and the observations made over a 26-
week period. In contrast, recent findings have revealed evidence
of a spontaneous mechanism of cartilage repair in response
to small injuries in rays (34, 35). However, injuries involving
extensive and severe damage to the skeleton of elasmobranchs have
been poorly documented. The aim of this study is to provide a
comprehensive description of the clinical intervention, diagnostic
imaging findings, alongside the macroscopic and histological
characteristics of a traumatic injury of anthropogenic origin in the
scapulocoracoid cartilage of a spiny butterfly ray.

2 Materials and methods

An adult female spiny butterfly ray (Gymnura altavela) was
spotted nearby the Castillo del Romeral wharf in Gran Canaria
(Canary Islands, Spain) laying lethargic in the sandy bottom
with an external circular incised-contused traumatic lesion of 2
cm diameter in the scapulocoracoid cartilage (Figure 1). It was
captured and transferred to the Poema del Mar Aquarium facilities
(Loro Parque Fundación, Gran Canaria) under the appropriate
national and regional legal permissions and authorizations to
evaluate the animals condition and consider treatment and
rehabilitation options. This facility has quarantine tanks suitable

for the housing of this animal, and a veterinary team specialized
in the handling and health care of this elasmobranch specie. The
ray weighed 32 kg, had a disc width of 179 cm and a total length of
114 cm. The animal was placed in a tank of 16.252 m3 with a mean
water temperature of 22◦C and mean values of pH and salinity of
8.1 and 36.3%, respectively.

A radiographic study was conducted to assess the affected
structures and determine the depth of the incision using a
portable direct digital radiography equipment (Portable X-ray
Orange 9020F, Mano Medical, Taden, France) and an imaging
plate measuring 42.1 × 34.4 cm (ClaroX 1417, CVM Diagnstico
Veterinario S.L., Tudela, Spain). The animal was carefully
transferred from the tank by several aquarists using a specialized
stretcher and placed on the imaging plate, which was wrapped
in plastic bags to protect it from exposure to water. Following
image acquisition, the ray was immediately returned to the tank.
A blood sample was collected from the pectoral fin vasculature
for hematological analysis, using a 23G needle attached to a 3 mL
syringe. After extraction, blood was transferred into 1.3 mL lithium
heparin anticoagulant tubes (Sarstedt R© Micro Sample Tube Li-
Heparin LH, Nümbrecht, Germany). Blood smears were made
using the slide-to-slide technique and stained using a Diff-Quick
stain (T.R.H., Maim S.L., Barcelona, Spain).

The initial treatment plan consisted in vitamin C 12.5
mg/kg, ceftazidime 25 mg/kg and dexamethasone 1 mg/kg by
intramuscular injection. Despite these efforts, the animal died four
days later and was transferred to the Institute of Animal Health and
Food Safety (IUSA) of the ULPGC for further analysis.

A Computed Tomography (CT) study was conducted
postmortem before starting the necropsy at the University Hospital
of the Veterinary College. Sequential slices were acquired using
a 16-slice helical CT scanner (Toshiba Astelion, Canon Medical
Systemr, Tokyo, Japan). The animal was symmetrically positioned
in dorsal recumbency on the stretcher, with craniocaudal entry,
and a standard clinical protocol was used (120 kVp, 50 mA, 512
× 512 acquisition matrix, 1,809 × 834 field of view, pitch of
0.94, and a gantry rotation of 1.5 s), to acquire images of a 1 mm
thickness. CT images were acquired in transverse planes from
cranial to caudal during dorsal recumbency. Using these transverse
images, reconstructions were made in the dorsal and sagittal
planes, with the images being displayed using both bone and soft
tissue windows. All these images were uploaded to an image viewer
(OsiriX MD v. 13.0.2, Apple, Cupertino, CA, USA) in DICOM
format to perform data manipulation.

The necropsy was performed at the facilities of the Institute
of Animal Health and Food Safety (IUSA) of the ULPGC,
through a systematic approach and observation of external and
internal organs (36). Samples from the wound and main organs
were fixed in 10% neutral buffered formalin for histopathological
examination. In addition, to make a comparison between
normal and affected cartilage, a sample from the non-affected
scapulocoracoid cartilage was taken. Cartilage tissues were placed
in a histological decalcifier (Decalcifier DC2, Qpathr, Fontenay-
sous-bois, France) for 7 days. Formalin-fixed tissues samples
were placed into cassettes and routinely processed. This included
dehydration through ascending grades of alcohols, clearing in
xylene and finally paraffin wax imbibition. Paraffin blocks were
sectioned at 4 µm and stained with hematoxylin and eosin
(H&E), periodic acid–Schiff (PAS) and Masson’s trichrome (MT).
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FIGURE 1

Dorsal view of the animal with the penetrating wound. The pectoral arch of the skeleton (white arrow) and the severe concavity on the dorsal
coelomic surface (black arrow) are both observed as a result of the animal’s cachectic state. Inset: detail of the incised-contused wound of 2 cm
diameter and a depth of ∼5 cm. It can be appreciated erythema, congestion, and edema at the edges of the lesion. In addition, desquamation and
depigmentation could be observed in the caudal region of the dorsal surface of the pectoral fins (*).

The slides were mounted and examined with a light microscope
(Olympus BX51, Tokyo, Japan) equipped with a camera software
for DP21 (Olympus DP21, Tokyo, Japan).

3 Results

3.1 Clinical examination and hematology

The ray was kept in a quarantine tank since the arrival at
the Poema del Mar Aquarium. External examination revealed
a low body condition score with marked muscle wastage and
severe concavity on the coelomic surfaces (Figure 1). Despite
the administered treatment, the animal presented decreased
responsiveness and refrained from eating during the days it
was kept under human care. A differential leukocyte count was
performed on the blood sample obtained, in which lymphocytes
were the most abundant leukocyte with 63%, followed by 20%
eosinophils or coarse eosinophilic granulocytes, 9% heterophils or
fine eosinophilic granulocytes, 7% monocytes and 1% basophils.
The packed cell volume (PCV) was measured and the obtained
results of 15% revealed a significant decrease of 13.4% compared
to an average value of 28.4% PCV gathered from previous
clinical experiences for this specie (n = 41), working with wildlife
populations in the Canary Islands (CanBio Project).

3.2 Radiographic and computed
tomography examination

One single radiography in dorsoventral projection was shot
with a 0.9 × 70 mm hypodermic needle with its cap (Stericanr

deep intramuscular with long bevel, B. Braun, Melsungen,
Germany), introduced inside the incision to determine the depth
of the wound (Figure 2). Regarding the radiographic findings,
the digital radiograph revealed no affection to any vital organs,
but there was severe destruction of cartilage at the level of the
scapulocoracoid-synarcual joint.

CT findings unveiled a destructive lesion with irregular
margins on the right side, affecting the articular surfaces
that establish the pectoral arch of the synarcual cartilage
with the scapulocoracoid cartilage, specifically the distal and
proximal articular surfaces, as well as cranially the glenoid
surface (Figures 3A–C).

3.3 Necropsy

3.3.1 Gross pathology
In the external examination, at the level of the circular

wound was observed hyperemic and edematous injured
tissue and severe damage of the cartilage at the joint
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FIGURE 2

Dorsoventral radiography of the spiny butterfly ray (Gymnura

altavela). Hypodermic needle with a cap (*) inserted into the
incised-contused wound. Irregular margins with adjacent gas
opacity are observed on the scapulocoracoid-synarcual joint
(arrow).

below (inset Figure 1). The lesion reached a depth of ∼5
cm, affecting the scapular process of the scapulocoracoid
cartilage and the articular surface of the synarcual. Once
opened, this area, showed numerous square and rectangular
geometric structures of hard consistency and whitish color
(Figure 4). The adjacent muscular tissue showed reddened and
edematous zones.

In the internal examination, the liver displayed a marked
reduction in size (727.5 g) with dark gray coloration, rounded edges
of hepatic lobes, readily visible capsule, and a severe distension
of the gallbladder (Figure 5A). Also, an empty digestive tract
and moderate hemorrhage in the colon was observed (Figure 5A,
inset). Body and liver weight, hepatosomatic index and gross
appearance of the liver were compared with necropsy reports of
other spiny butterfly rays studied by our research group. The
hepatosomatic index of this animal was 2.51 representing a 32.89%
decrease compared to the average of measured animals (3.74)
(Supplementary material). Microscopically, the liver showed low
storage of lipid drops in the hepatocytes when it is compared
with those observed from livers of non-cachectic spiny butterfly
rays (Supplementary Figure 1). Large accumulations of pigments
diffusely distributed were also observed in the liver parenchyma,
as well as the presence of aggregates of concentric smooth muscle
fibers in the liver capsule (Figure 5B).

FIGURE 3

CT scan of the lesion. (A, B) Irregular borders are observed in the medial aspect of the scapulocoracoid cartilage with presence of slight gas
attenuation (arrowhead) [bone window, dorsal multiplanar reconstruction (MPR) and dorsal maximum intensity projection 3D (MIP), respectively]. (C)
Bone window, cross-sectional image, displaying discontinuity of the skin on the dorsal aspect of the scapulocoracoid-synarcual joint (white arrow),
featuring irregular margins and gas attenuation presence (arrowhead).
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FIGURE 4

Macroscopic aspect of the lesion in the scapular process of the scapulocoracoid cartilage. Numerous square to rectangular geometric structures of
hard consistency and whitish color were observed (arrows). The adjacent muscular tissue showed reddened and edematous areas (*). Scale bar = 1
cm.

3.3.2 Histopathology
Within this section we report the comparison of the histological

features of the normal cartilage with those of affected tissue. The
Figure 6A show the normal structure of the spiny butterfly ray
scapulocoracoid cartilage. An outer calcified ring of polygonal
tiles (tesserae layer) is observed between the unmineralized
cartilaginous core and the fibrous perichondrium. In Figure 6B a
magnification of the tesserae layer is shown with the detail of thick
Sharpey’s fibers penetrating from the perichondrium into the cap
zone of each tesserae pieces.

In the normal structure using Masson’s Trichrome (MT)
staining, the perichondrium layer (connective tissue), is usually
marked in blue while the muscle layer can be observed stained in
red (Figure 6C). On the peripheral edges of normal tesserae pieces,
clear differentiated areas are stained also in red in contrast with
an intense blue of the fibrous intertesserae zones (ITZ). According
to what have been previously published by other authors, these
changes could be related with different collagen compositions (35,
37) (Figure 6D).

The cartilage affected by the traumatic lesion showed
the disorganization of the pieces of tesserae, separated from
the unmineralized core, and displaced from the adjacent
perichondrium (Figure 6E). In the injured area of cartilage,
fragmentation and fraying of the Sharpey’s fibers were observed
in each piece of tesserae leading to the rupture and damage
of the perichondrium (Figure 6F). The injured area showed the
lack of the normal layers of the different tissues surrounding
the joint (Figures 6G, H). The articular muscles are not evident
anymore and they have been replaced, in the damaged area, by
an abundant fibrous tissue with an intense inflammatory cell
population, mostly composed by granulocytes and mononuclear
cells (insets in Figures 6G, H).

4 Discussion

Anthropogenic causes of death in elasmobranchs are
frequently observed. Overfishing is one of the biggest threats
to these species, that together with climate change and habitat
degradation have caused a worldwide decline in sharks and rays
populations (2, 38, 39). Bycatch is the main cause, particularly
in pelagic longline fisheries (40), but also illegal trading or even
ship collisions are responsible of large numbers of deaths every
year (41, 42). These interactions between human activities and
elasmobranchs can lead to a wide range of injuries. The main
pathologies resulting from these fishing interactions are hypoxia
and trauma, including blunt-force trauma, penetrating trauma
from different fishing instruments and the wounds arising from
hooks to the oral cavity, digestive tract, and gills (43).

This study describes the clinical presentation, diagnostic
imaging evaluation and anatomopathological features of a
traumatic lesion in the scapulocoracoid and synarcual cartilages
in a spiny butterfly ray. The topography of the incised-contused
wound, located dorsally at the level of the right scapulocoracoid
cartilage, coupled with the macroscopic characteristics of the lesion
and the findings from the CT scan, suggested an anthropogenic
origin with some fishing instrument (pike pole, harpoon, or
similar). This penetrating wound impacted the juncture of the
scapulocoracoid and synarcual cartilages, resulting in significant
movement impairment. Other pathological findings included a
decreased liver size, hemorrhagic enteritis, and an empty digestive
tract. These observations suggest a chronic process of debilitation
and a potential compromise of predatory behaviors that could
ultimately lead to the death of the animal.

Due to the animal’s penetrating wound, pharmacological
treatment was immediately initiated to aid recovery upon arrival
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FIGURE 5

(A) Liver and gastrointestinal system from spiny butterfly ray. Inset: Detail of the colon, once opened, with moderate hemorrhage (*). (B) Microscopic
view of the liver parenchyma showing concentric smooth muscle fibers in the liver capsule (arrow). Inset: magnification of the liver showing a low
amount of intracellular lipid drops in the hepatocytes and abundant accumulation of pigments. Scale bar = 5 cm.

at the Poema del Mar Aquarium facilities. There is little data on
pharmacokinetics and pharmacodynamics for most drugs used in
elasmobranch medicine, particularly in some species, so clinicians
use treatments that are often extrapolated from taxonomically close
species or are based on previous clinical experience (44). Since
septicemias are common in batoids with non-healing wounds (45),
ceftazidime was chosen as antibiotic coverage. Dexamethasone
was administered to control inflammation associated with the
wound. Vitamin C was administered due to its role as a cofactor

involved in collagen and cartilage synthesis, which is commonly
employed as nutritional supplementation in elasmobranchs kept
under human care (46). In terms of hematological parameters,
although elasmobranchs can have a low hematocrit in comparison
to other species (47, 48), our result of 15% was lower compared to
unpublished data obtained for the same species.

The marked reduction in liver size suggested that the animal
was undergoing a chronic debilitation process, likely resulting due
to difficulties in moving and feeding (44, 45, 49). The liver in
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FIGURE 6

(A) Normal structure of healthy cartilage displaying four distinct layers, from the outer to the inner: the muscle layer (black arrow), the perichondrium
(*), tesserae layer (white arrow) and the unmineralized cartilage core (**) (H&E). (B) Normal tesserae. Sharpey’s fibers from the perichondrium are
observed penetrating in the cap zone of the tesserae (*) (PAS). (C) Normal structure of the healthy cartilage stained with MT. The muscle layer is
evident in red (**) while the perichondrium (*) and the mineralized tesserae layer (white arrow) are seen in intense blue (MT). (D) A detail of the
fibrous intertesserae zone (ITZ) stained in blue with MT. The edges of each tesserae piece are shown marked in red probably due to di�erent types
and degrees of maturation of collagen fibers (MT). (E) Lesion in the scapulocoracoid cartilage of the a�ected animal. The injured area is characterized
by the disorganization of the tesserae layer (arrows), with the presence of broken tesserae pieces over an abundant fibrous connective tissue (H&E).
(F) Detailed of fractured pieces of tesserae displaced from the adjacent perichondrium (H&E). (Inset) fraying of the Sharpey’s fibers were observed in
each piece of tesserae (*) (PAS). (G) The fibrous tissue below the broken tesserae layer appears increased and infiltrated by an abundant inflammatory
cell population (H&E). (H) The MT stain revealed the absence of the muscle layer while it helps to identify granulocytes as the main cells of the
inflammatory infiltrate (MT).
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elasmobranchs is the primary reservoir of triglycerides and the
principal energy source when affected by periods with absence
of intake; a decrease in its size may be related to prolonged
fasting periods, high energy demand or stressful circumstances
(49). In agreement with Neyrão et al. (50) histopathological analysis
of the liver revealed characteristics consistent with prolonged
fasting, such as diminished lipid content and increased number
of melanomacrophages. Similarly, the gallbladder was severely
distended, which could also be related to a long period of feeding
cessation (51).

The hemorrhages observed in the region of the colon are
associated with an inflammatory process of enteritis. This lesion
can be frequently observed secondary to other many pathologies
in elasmobranchs, such as septicemia or parasitic infections (52–
55) and it could also contribute to the overall poor health status
observed in this butterfly ray.

The radiographic examination of elasmobranchs is limited
due to the lower density of internal structures when compared
to other species of animals, yet they offer remarkable detail
for the assessment of the cartilaginous skeleton (56). In this
work, the utilization of radiography allowed us to inspect the
depth of the incision and the affected structures while the
animal was alive. Due to the significant dorsoventral flattening
of the spiny butterfly ray, alternative radiographic projections
with conventional radiographic techniques were impractical for
obtaining more detailed information of the lesion. However, this
issue was addressed post-mortem by conducting a CT study. The
application of this type of advanced diagnostic imaging techniques,
provides a more accurate and comprehensive evaluation of lesions
in zoological animals (57). The results showed lysis of the right
scapulocoracoid cartilage, affecting the articular surfaces that
form the pectoral arch connection between the synarcual and
scapulocoracoid cartilages. In our best knowledge this is the first CT
description of a traumatic lesion of the skeleton in a butterfly ray.

The skeleton of elasmobranchs is composed of cartilaginous
tissue consisting of a mineralized layer constituted by minute,
polygonal tiles called tesserae that lies in between the cartilage core
and the perichondrium (58). In the present study, multiple whitish,
disordered geometric structures corresponding to disorganized
pieces of tesserae were observed, macroscopically, in the injured
cartilage. Likewise, the disruption of the tesserae pieces was evident
in the microscopic study. To our knowledge, this is the first
complete anatomopathological description of this lesion in the
skeleton of a spiny butterfly ray.

There has been controversy in recent decades about cartilage
regeneration in elasmobranchs. Ashhurst (33), following a 26-week
experiment involving cutting the fin rays cartilages of dogfishes,
concluded that, chondrichthyans, were unable to repair their
cartilaginous skeleton. Although cartilage-like tissue did develop
by 12 weeks, it exhibited poor vascularization and failed to
integrate with the injured tissue. However, a more recent study
by Seidel et al. (34) in sharks and rays described the aberrant
development of mineralized cartilage-like tissue, referred to as
endophytic masses (EPMs), exhibiting ultrastructural and chemical
characteristics distinct from tesserae. While the formation of EPMs
was considered a potential form of attempted cartilage repair,
the authors concluded that the most likely cause was a local
breakdown of CaP mineralization inhibition processes. Marconi

et al. (35) reported, for the first time, the presence of cartilage
progenitor cells and chondrogenesis in adults of the little skate
(Leucoraja erinacea), demonstrating the ability to spontaneously
repair injured cartilage. The repair tissue shared characteristics
with normal tissue, comprising type II collagen and seamlessly
integrating with adjacent tissue to rectify irregularities. Notably,
their study involved surgical incisions of <2 cm and the removal of
cartilage with a 4 mm biopsy punch, followed by wound suturing
and postoperative antibiotherapy. In this study, we observed a
chronic injury characterized by the disorganization of the tesserae
layer of the cartilage, with an inflammatory reaction and extensive
edema and hemorrhage. The severity of the trauma precludes
cartilage regeneration, leading to a chronic process that could
impair the animal’s mobility and complicates feeding. Despite
different traumatic injuries have been studied in sharks and rays
(16–24), there are scarce detailed descriptions of the pathological
features of these lesions on elasmobranchs. To our best knowledge,
this study represents the first comprehensive description of the
diagnostic imaging findings and the macroscopic and histological
characteristics of a traumatic injury of anthropogenic origin in the
skeleton of a spiny butterfly ray.

5 Conclusions

This study reports the first comprehensive description of
skeleton trauma in a spiny butterfly ray, including the clinical
presentation, diagnostic imaging and the anatomopathological
features. These three points of view lead to the conclusion that, the
incised-contused wound had an anthropogenic origin, probably, by
some kind of fishing instrument (pike pole, harpoon, or similar).

Although the animal was found alive and kept in a quarantine
tank, under veterinary healthcare and treatments, unfortunately,
the establishment of a chronic pathological process with a marked
intake reduction, movement reluctancy and the absence or low
regenerative processes, on the affected tissues, produced an overall
debilitation status that, eventually, might cause the death of
the animal.

Together with the clinical signs and administered treatment,
our work provides the assessment of hematological parameters on
the dying animal, resulting on a notable hematocrit reduction of the
13.4%, when compared with the average of healthy wildlife spiny
butterfly ray populations. Furthermore, the clinical evaluation
provides, for the first time, a CT study of a critical traumatic lesion,
of the right scapulocoracoid cartilage and associated articular
surfaces, in this species. The anatomopathological findings also
confirmed that the animal was undergoing a chronic debilitation
process. The specimen showed a marked reduction of the 32.89%
in the hepatosomatic index, when compared to the average
value of non-cachectic female spiny butterfly rays. Histological
findings demonstrated a remarkable reduction of lipid drops in the
cytoplasm of the hepatocytes.

Our work showed, for the first time, the macroscopic and
microscopic description of the non-regenerative disorganization
of the tesserae layer, and adjacent tissues, of the scapulocoracoid
cartilage, due to a traumatic lesion. The main characteristics were
the presence of whitish square to rectangular geometric pieces of
tesserae, separated among them and torn from the cartilaginous
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core. Histologically, some of these pieces kept their connection
of the Sharpey’s fibers with the perichondrium demonstrating
its strong resistance. However, due to the traumatic impact,
the surrounding soft tissues showed edema, hemorrhages, and a
persistent inflammatory process, composed mainly of granulocytes
and fibrous connective tissue. This reaction failed to produce
regeneration of the cartilage and the soft tissues around the open
wound including the epidermis, dermis, and the periarticular
fibrous and muscular tissues.

Finally, there is still an important lack of knowledge on the
clinical and diagnostic approaches to elasmobranch species, many
of which are affected by anthropogenic impacts and in severe risk of
extinction. Our work contributes to reduce this gap and facilitate to
the scientific communities new resources to conduct more specific
clinical and pathological diagnosis and, therefore, path the way to
improve treatments and develop more specific conservation and
preservation management plans.
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