
Onset of three dimensional flow instabilities in lid-driven circular cavities
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Three-dimensional instabilities for two circular lid-driven cavities are investigated by linear
stability analysis and Direct Numerical Simulations using high order spectral techniques. Two
circular geometries have been analysed and compared: a circular cavity with an horizontal top
boundary and a circular cavity with circular lid. Compared to more classic results for squared and
rectangular lid driven cavities, the corners of these rounded geometries have been partially or totally
removed. Critical Reynolds numbers, neutral curves and three dimensional structures associated
to the least stable modes have been identified by linear stability analysis and then confirmed by
spectral Direct Numerical Simulations.
We show that the geometries that present fewer sharp corners have enhanced stability: the circular
cavity with a flat lid presents the first bifurcation at (Rec, kc) ≈ (1362, 25) whilst the circular
lid bifurcates at (Rec, kc) ≈ (1438, 18), where Rec is the critical Reynolds number based on the
cavity diameter and lid tangential velocity, and kc is the spanwise wavenumber. Neutral curves
and properties of the leading three dimensional flow structures are documented and analogies to
instabilities in other lid-driven cavities discussed. Additionally, we include results for the adjoint
problem and structural sensitivity 3D iso-maps (i.e. wavemaker regions), to show that the cavity
corners play a relevant role in the generation of 3D instabilities.

I. INTRODUCTION

Flows in lid-driven cavities have occupied fluid me-
chanics research for decades, from a theoretical, numeri-
cal and experimental point of view. Unlike flow instabil-
ities in simply squared shape and rectangular containers,
which are by now fairly well understood, relatively less
work is available for three-dimensional lid-driven cavities
that present rounded boundaries. The present contribu-
tion addresses, from a computational point of view, three-
dimensional flow instabilities in lid-driven cavities of dif-
ferent cross-sections that are totally or partially rounded.
The reader interested in a review of internal re-circulating
flows in square and rectangular cavities generated by the
motion of one or more of the container walls is referred
to the classic text of Shankar and Deshpande [45], who
discussed aspects such as corner eddies, longitudinal vor-
tices, laminar-turbulent transition and turbulence flows
in cavities. Since the year 2000, when the review was
published, many efforts have contributed to provide new
results on such flows. Here, we provide a short review of
relevant results to situate the present work in the appro-
priate context.

By far the most quoted two-dimensional numerical
simulations of square lid-driven cavity flow are from Ghia
[22] and Schreiber and Keller [44], who obtained a range
of solutions for Re ≤ 10000. These results have served
as benchmark for numerical simulations of incompress-
ible solvers during that decade and beyond. Two and
three dimensional instabilities observed in numerical and
experimental flows in rectangular cavities are fairly well
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understood in the context of linear global flow insta-
bility [15, 48]. It is accepted that centrifugal instabili-
ties arise from two dimensional steady flows to generate
three dimensional structures in lid-driven square cavities
[1, 3, 24] and open cavities [6, 11, 37]. However, elliptical
instabilities have been reported for lid-driven rectangu-
lar or doubly lid-driven cavities[1, 3, 24]. Additionally,
it is important to mention that in cavity flows, the first
bifurcation is associated to a three dimensional instabil-
ity. Note that this is not the case for wake flows, such as
cylinders, where the first instability is two dimensional
and leads to a von Karman Street.
Regarding bifurcations in the square cavity restricted to
two-dimensional flow, the interested reader is referred to
[5, 7, 40]. To date, the range of critical Reynolds num-
bers predicted for two-dimensional (spanwise wavenum-
ber parameter k = 0) global flow instability, Re2d,crit ∈
[7400, 8375], is wide enough to warrant further work.
Three-dimensional global instabilities of spanwise homo-
geneous square lid-driven cavity flows have been analysed
in [14] and (independently) in [46] and [3]. In contrast to
the wide range of critical conditions of two-dimensional
flow instability, substantially better agreement exists in
the literature regarding the critical Reynolds number as-
sociated to the three-dimensional modes in the square
lid-driven cavity [1, 3, 49].

Turning away from regular rectangular domains,
a number of theoretical predictions exist in (two-
dimensional) cavities of complex two-dimensional pro-
files. Most researchers have studied cavities with polygo-
nal cross sections. Two-dimensional flow in a trapezoidal
cavity, permitting lid motion of the unequal trapezium
sides and documenting the respective steady flow pat-
terns in the Reynolds number rangeRe ∈ [100, 1000] have
been reported [12]. The same trapezoidal lid-driven cav-
ity flow, as well as flow in an equilateral triangular cavity,
was solved in the range Re ∈ [1, 500][36], while [42] ad-
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dressed the equilateral triangular lid-driven cavity flow
in the same Reynolds number range. Three-dimensional
biglobal instability of a lid-driven cavity of equilateral tri-
angular shape was analysed by the finite-element method
on unstructured grids to predict the leading part of
the eigenspectrum and the critical Reynolds number for
the three-dimensional instability at (Rec ≈ 1870, kc ≈
6.73)[28]. An interesting extension is the study of lid-
driven cavities of isosceles triangular shape is performed
in [26], where both flow directions were studied and the
agreement between the numerical results and the exper-
iments was remarkable. Several lid-driven cavity geome-
tries of complex two-dimensional cross sectional profile
may be built by superposition of rectangular domains.
The two most representative cases discussed in the liter-
ature are the L-shaped cavity, introduced in [17, 38, 39],
and the two-box-cavity proposed in [29]. It is inter-
esting to note that linear stability analysis have shown
that three-dimensional instabilities (and their onset) are
highly dependent on the two-dimensional shape of the
cavity. Biglobal instability of the L-shaped, two-box and
cross-shaped versions have been addressed in [17] and
[13]. In the former, the enhanced stability obtained when
rounding the corner of the L-shaped cavity was demon-
strated and analysed through sensitivity analyses.
The cited work defines biglobal analysis when: the base-
flow velocity field has two or three components that only
depend on two spatial coordinates, and perturbations
with three velocity-components that depend on three
spatial coordinates. Additionally, the biglobal analysis
assumes a harmonic dependence on one homogeneous
direction. For flows with a homogeneous direction,
three-dimensional stability analysis can be decomposed
using normal modes (Fourier components), reducing sig-
nificantly the computational cost.
This assumption, does not allow the study of end-wall
effects. However, as summarised by Kuhlmann and Al-
bensoeder [32], walls are only important for short span-
wise lengths, since end-wall effects driven by Bödewadt
flow decay exponentially from walls. Consequently, the
flow at the centre of the cavity, even if end effects are
considered, is identical to periodic spanwise cavities of
infinite span.

Very little work has been done when part of the
perimeter of the cross sections of the cavity is rounded. In
[41], the flow in an elliptic region with a moving boundary
is described. The stability analysis of lid-driven cavity
flow in a two-dimensional domain using a stream
function-vorticity formulation of a quarter-circular cross-
section was presented in [50], who reported steady flow
patterns for Re ∈ [0, 1000]. Some issues encountered
in the last work, related with the singularities in the
boundary conditions at the moving-lid endpoints, were
overcome in [31] and [21]. The latter made use of
triangular grids in which corners do not require special
treatment.

In the present work, we explore two lid-driven cavity
flows developing in three-dimensional containers having

circular or partially circular cross sectional profiles and
one homogeneous spatial direction. The flow is driven
by the motion of part of the perimeter. To the
authors’s knowledge this work is novel and presents
linear stability analysis of geometries that have not been
studied in the past. Furthermore, the text explores the
destabilising effect of geometrical corners in the onset
of three dimensional instabilities. In order to provide
a deeper description of the role of the cavity perimeter
in the physics that control the stability, we extend the
linear global stability analysis to provide adjoint modes.
The combination of direct and adjoint modes enables
the detection of the regions with maximum structural
sensitivity, i.e. the wavemaker region [23, 34] and relates
to the origin of absolute instabilities. The sensitivity
analysis is provided for both circular cavities and may
be compared to published results for rectangular shapes
[24].
The rest of the paper is organised as follows. In
the formulation section II, the geometry and boundary
conditions for the circular cavities are introduced. In
the mathematical models section III, the numerical
methodologies are described, whilst the results section IV
describes and discusses results of base flow calculations
and subsequent linear stability analysis. Additionally,
the linear stability results are compared with Direct
Numerical Simulations. Finally, the main findings are
summarised in the conclusion section V.

II. PROBLEM SETUP

The primary objective of the paper is to evaluate the
impact on the flow stability when the perimeter of a
square cavity is transformed by removing corners. The
critical stability parameters of two rounded cavities have
been analysed and compared to the classic square lid-
driven cavity. In these new designs, the moving part
of the boundary driving the flow will be referred as Γ1

and the no slip boundary as Γ2, such that the complete
boundary is Γ = Γ1

⋃
Γ2.

The first cavity (i.e. with a horizontal flat lid), referred
henceforth as PCavity, is the result of intersecting a
circle of radius R = 1/2 (and diameter d = 1) centred
at (x, y) = (0, 0) with an horizontal plane placed (the
lid) at y = R sin(π/4) above the centre of the circle.
The flow is generated as the lid moves parallel to the
positive x-axis, see figure 1. Compared to the square lid-
driven cavity, the two bottom corners have been removed,
the bottom and vertical boundaries have been rounded,
but the lid driving top plane remains. The intersection
between the circle and the top boundary creates two
points (±

√
2/4,
√

2/4) that define the moving boundary
plane, where a regularised boundary condition is applied:

u(Γ) =

{
1− ( 4x√

2
)18 in Γ1,

0 in Γ2,
(1)
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FIG. 1: Geometries of the circular cavities using
dimensionless coordinates. The centre of the cavities is
at x = 0 and y = 0 and the lid moves as indicated in

red. a) PCavity, circular cavity with flat top horizontal
lid that moves parallel to the x-axis and b) CCavity,

circular cavity with a top 90◦ arc lid that moves
clockwise in the azimuthal direction.

being the vertical velocity component v zero at Γ.
A second circular cavity (i.e. with a circular lid),

referred henceforth as CCavity, is also analysed. The
upper quarter arc of the cavity drives the flow tangen-
tially clockwise, see figure 1. To study the influence of
the corners in the flow stability, when compared to the
square lid-driven cavity and the PCavity, all walls have
been rounded and corners removed. The CCavity has a
constant tangential velocity at the moving boundary Γ1,
where the regularised expression used for the lid bound-
ary is:

u(Γ) =

{(
1− ( 4x√

2
)18
)
ut in Γ1,

0 in Γ2,
(2)

where ut = (y/R,−x/R) is the unitary tangential
velocity vector.

III. MATHEMATICAL MODELS

A. Stability analysis

Linear stability analysis is presented in this section.
The geometry and the coordinate system are shown in
figure 1. The geometry and the boundary conditions
enable two-dimensional steady flow in the (x,y)-plane.
We are interested in the development of three dimen-
sional flow structures upon the steady two-dimensional
flow. This study requires two steps. First, we compute a
two-dimensional steady flow and second we analyse the
evolution of the perturbations upon the flow computed
in the first step.

The flow is governed by the incompressible Newtonian
Navier-Stokes equations in a domain Ω bounded by Γ.
The non-dimensional version of this set of equations
reads:

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u, (3a)

∇ · u = 0. (3b)

Here, we non-dimensionalised using d, d/U , U , and
ρU2 for length, time, velocity and pressure, respectively,
where d = 2R is the cavity diameter and U the lid
velocity. The fluid has density ρ and kinematic viscosity
ν. The Reynolds number is defined as Re = Ud

ν .

1. Steady laminar base flows

The problem allows a steady two-dimensional base
state (u0, p0)(x) ≡ (u0, v0, w0, p0)(x, y) with w0 = 0,
∂/∂t = 0. This steady flow must satisfy the base-state
equations

u0 · ∇u0 = −∇p0 +
1

Re
∇2u0, (4a)

∇ · u0 = 0, (4b)

subject to boundary conditions u0 = v0 = 0 on the
stationary walls. The flow is driven by the motion of
the lid as explained in the previous section II.

To compute the base flows for stability analysis, two
independent methods have been used. On the one hand,
we use the high order spectral element code Nektar
[9], which is known for its exponential (or spectral)
convergence. On the other hand, and for validation
purposes, we compute the base flow by time-integration
of (4), using the semi-Lagrangian finite element solver
ADFC [27] developed by the first author. In both
solvers, the time integration is started from a state of rest
[(u0, p0)(t = 0) = 0] and terminated when the criterion

max
j
{|gj(t+ ∆t)− gj(t)|} < 10−12 (5)

is satisfied, gj being the local value of any flow quantity at
any node j and ∆t the step size for the time integration.

The classical lid-driven cavity when the lid moves with
constant velocity can be considered as a singular mathe-
matical problem as the velocity boundary conditions are
discontinuous on both ends of the moving lid. Depending
on the cavity studied, we numerically employ the regu-
larised boundary conditions given by the equations 1 and
2, in which the lid-velocity is filtered as in [33] as an al-
ternative to the constant velocity formulation. To clarify
the negligible effect of the numerical regularisation of the
boundary conditions on the global flow and its stability
some comparison were presented in [26] for a isosceles
triangular cavity.

2. Linear stability: eigenvalue-problem formulation and
solution methodology

Since we are interested in the linear stability of the two-
dimensional steady base flow, we consider perturbations
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(ũ, p̃) such that the total flow fields are

u = u0 + ũ, (6a)

p = p0 + p̃. (6b)

Substituting (6) into (3) and linearising with respect to
ũ, the perturbation equations are obtained:

∂ũ

∂t
+ u0 · ∇ũ + ũ · ∇u0 = −∇p̃+

1

Re
∇2ũ, (7a)

∇ · ũ = 0, (7b)

The perturbation flow must satisfy the no-slip boundary
conditions ũ = 0 on Γ. Since the coefficients of (7) do
not depend on z and t the perturbations quantities can
be written as normal modes

ũ = û(x, y)eγt+ikz + c.c., (8a)

p̃ = p̂(x, y)eγt+ikz + c.c., (8b)

where the complex conjugate (c.c.) is required to render
the perturbations real. We are interested in the temporal
stability analysis where the spanwise periodic length (i.e.
homogeneous direction) Lz is defined through the real
wave number k = 2π

Lz
∈ R. Consequently, the analysis is

performed on a 2D shape that represents a 3D periodic
domain with finite span Lz and harmonic variations in
the z-direction. This framework does not contain any
explicit z-coordinate and periodic boundary conditions
are required in the spanwise direction. Additionally,
γ = σ + iω ∈ C is the complex growth/decay rate σ
and oscillation frequency ω.

Substitution of the ansatz (8) into the perturbation
equations (7) yields(

L+
∂u0
∂x

)
û+ v̂

∂u0
∂y

+
∂p̂

∂x
= −γû, (9a)(

L+
∂v0
∂x

)
v̂ + û

∂v0
∂x

+
∂p̂

∂y
= −γv̂, (9b)

Lŵ + ikp̂ = −γŵ, (9c)

∂û

∂x
+
∂v̂

∂y
+ ikŵ = 0, (9d)

where L is the linear advection-diffusion operator:

L = u0
∂

∂x
+ v0

∂

∂y
− 1

Re

(
∂2

∂x2
+

∂2

∂y2
− k2

)
. (10)

For the present case of a base flow velocity vector
(u0, v0, 0)T normal to the wave vector ke3 it is possible
to define a real eigenvalue problem (thus halving the
memory requirements for its solution) by re-defining the
out-of-plane velocity component [47] such that ŵ → −iŵ.
Note that for simplicity, we do not change the symbol for
ŵ in what follows. This converts system (9) into a real
generalised eigenvalue problem:

A ·X = −γB ·X, (11)

where X = (û, v̂, ŵ, p̂)T with real linear operators A and
B. The eigenvalues γ of such a real eigenvalue problem
are either real or they arise as pairs of complex conjugate
eigenvalues. Adopting the existing nomenclature from
the literature, see e.g. Theofilis et al. [49], the
corresponding eigenvectors describe either stationary
modes (γ = 0) or travelling waves (γ = ±iω 6= 0).

To discretise the equations, we use a triangular-
element-based unstructured mesh, since it is ideally
suited for our geometries, further details as well as the
entries of all matrices are presented in the appendix
of [28]. The eigenvalue problem is solved using a
Krylov-subspace iteration, originally proposed by [43]
and discussed in detail in [30, 47]. The typical
leading dimension of the matrix A is DIM(A) ≡
3Nu + Np = O(7 × 104), where Nu and Np are the
numbers of quadratic velocity- and linear pressure-nodes,
respectively. Sparse linear-algebra algorithms have been
used in order to obtain the LU-decomposition necessary
within the Arnoldi method, which permits storing only
the O(9×106) non-zero elements of this matrix. The total
time needed for a complete Arnoldi analysis depends,
on the one hand, on the efficiency of the linear solver,
and on the other hand, on the Krylov space dimension
m used to approximate the leading eigenvalues. In this
case the size of the Krylov space dimension used and
consequently the number of eigenvalues computed by
the Arnoldi algorithm is m = 100. We should also
remark that no shift parameter has been used for these
calculations. In order to check the accuracy of the results
during the stability analysis, the polynomial order of the
approximation P was increased until three significant
digits of the most unstable eigenvalue were converged.

A similar approach can be extended to calculate
the adjoint counterparts but solving the adjoint system
of equations [4]. A comparison of the direct and
discrete approaches to compute direct and adjoint modes
can be found in recent work [25]. Regarding adjoint
methods for hydrodynamic stability, an overview of
recent developments has been compiled in [34]. The
regions where the direct and adjoint modes overlap
define the structural sensitivity to localised feedback
or wavemaker regions[23]. These sensitivity maps
provide information on the flow regions where a generic
force-velocity coupling causes the largest drift in the
eigenvalues and hence provides useful information on
control strategies to attenuate these instabilities [8,
23, 34]. Other flow sensitivities, e.g. to base flow
modification or steady forcing [35], have been defined in
the literature but are not considered here.

B. Spectral Direct Numerical Simulations

Direct Numerical Simulation (DNS) do not require
modeling and hence can be used for validation of lin-
ear stability results. This code is based on primitive
variables, where (u, v, w) will be the velocity components
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and p the pressure. Here, the non-linear 3D incompress-
ible Navier-Stokes equations are solved using an unsteady
high order (order ≥ 3) H/P discontinuous Galerkin -
Fourier solver developed by the second author and de-
tailed in [16, 18–20]. This high order solver provides
highly accurate solutions on static and moving meshes
composed of mixed triangular-quadrilateral meshes and
can cope with curved boundary elements as required to
compute flows in circular cavities.
A second order stiffly stable method is used to discre-
tise the NS equations in time whilst spatial discretisation
is provided by the discontinuous Galerkin - Symmetric
Interior Penalty Galerkin formulation with modal basis
functions in the x-y plane. Spatial discretisation in the
z-direction is provided by a purely spectral method that
uses Fourier series and allows computation of spanwise
periodic three-dimensional flows. The solver has been
widely validated for a variety of flows, including bluff
body flows, airfoil and blade aerodynamics under static
and rotating conditions [16, 19, 20] and global instability
analysis [17].
High order (≥ 3) numerical methods (e.g. Spectral,
discontinuous Galerkin) have seen an increased popu-
larity over the last decade. They are characterised
by low numerical errors (i.e. dispersion and diffusion)
and their ability to use mesh refinement (H-refinement)
and/or polynomial enrichment (P -refinement) in order to
achieve accurate solutions. Polynomial enrichment pro-
vides exponential decay of the error for smooth solutions
as opposed to the typical constant decay provided by the
H-refinement strategy. This enables the P -refinement
strategy to reach the same level of accuracy with fewer
degrees of freedom. Reviews of the main advantages of
high order Discontinuous Galerkin methods in the con-
text of aeronautical applications can be found in [51].

All Direct Numerical Simulations use a non-
dimensional time step 4t = 0.002 and with the regu-
larised boundary conditions for the lid described previ-
ously, (1) for the PCavity and (2) for the CCavity .
We initialise all flow components to zero and allow the
flow to develop. Once the 2D flow is converged, we intro-
duce random white noise (with small amplitudes) to all
flow components. For unstable flows, we can observe ex-
ponential growth of third velocity component with same
growth and frequency predicted by linear stability anal-
ysis. If the flow is stable, we see exponential decay of the
introduced disturbances. Although our DNS simulations
include non-linear terms, the analysis is limited to small
three dimensional perturbations such that it is almost
equivalent to an analysis performed using a linearised
solver. Note that we never allow saturation of the three
dimensional flow. In our experience, non-linear simula-
tions agree very well with instability analysis when per-
turbations are small and before non-linear saturation ap-
pears. Additional comparisons between linearised, non-
linear DNS and global stability analysis may be found in
previous work [17].

C. Computational Meshes

This section describes the final meshes (after prelimi-
nary convergence tests) retained for the stability analysis
and DNS computations. Convergence tests are included
in an Annex of this work, section VI.
PCavity for stability analysis: The first mesh cre-
ated to study the PCavity, mesh M1, is a typical fi-
nite element mesh conformed by 7509 P2 − P1 Taylor-
Hood triangular elements and 15730 quadratic velocity
nodes. This mesh is used for computation with the semi-
Lagrangian finite element, and has a number of degrees
of freedom per velocity component equivalent to the num-
ber of nodes dof2d = 15730.
A second mesh M2, was used to confirm the mesh inde-
pendence of the results. The mesh M2 was a conformed
by 824 triangular spectral elements with polynomial or-
der P = 3. The resulting number of degree of freedom for

M2 per velocity component are dof2d = 824 (P+1)(P+2)
2 =

8240, where we have taken into account the number of
mesh elements and polynomial order inside each trian-
gular element. This is necessary when using high order
spectral methods.

CCavity for stability analysis: The unstructured
spectral element mesh created to study the CCavity
is an constituted of 576 quadrilateral elements with
polynomial order P = 3. The polynomial order of the
computations has been increased in both cavities until
base flow and stability results were converged. The
resulting number of degree of freedom per flow variable
(velocity-component or pressure) for this mesh is dof2d =
576× (P + 1)2 = 9216.

PCavity for DNS simulations: The x-y plane for
the PCavity uses 211 tri-quad elements of which 24 are
quadrilateral elements with curved boundaries that fit
exactly (through the numerical mapping [20]) the circular
geometry. In all elements the numerical solution is
spanned using a polynomial order P=7, such that the
number of degrees of freedom per flow variable and x-

y plane is dof2D = 24 × (P + 1)2 + 186 (P+1)(P+2)
2 =

8268. To discretise the homogeneous dimension, we use
8 Fourier planes (5 Fourier modes) such that the overall
number of degrees of freedom is dof3D = 66144.

CCavity for DNS simulations: The x-y plane for
the CCavity uses 228 tri-quad elements of which 32
are quadrilateral elements to fit the circular boundary
condition. Again, we select a polynomial order P=7, such
that the number of degrees of freedom per flow variable

and x-y plane is dof2D = 32×(P+1)2+196 (P+1)(P+2)
2 =

9104. Using 8 Fourier planes, the overall number of
degrees of freedom is dof3D = 72832.

Let us note that the number of degrees of freedom
of the DNS computations in the x-y plane agree with
the meshes used for stability analysis (see section 5).
However, DNS computations require 3D meshes, which
increase considerably the cost of the simulations. This
shows the advantage of performing biglobal stability



6

analysis, where all computations are two-dimensional
avoiding the high computational cost of performing three
dimensional computations.

IV. RESULTS

In this section the results obtained using the direct
and adjoint formulations of the linear global stability
analysis are presented and compared with spectral DNS
computations. For the two circular cavities, both the
baseflow and the stability analysis will be presented.
Steady two-dimensional flows are stable at sufficiently
small Reynolds numbers. Note that the existence of a 2D
steady state implies stability for spanwise wavenumber
k = 0 or for infinite axial length Lz =∞.
The solutions of these eigenvalue problems provide a
general framework for the prediction of the onset of flow
instability and the detection of the structural sensitivity
for both cavities.
To provide context to this study, we summarise the
critical values found in the literature for other cavities.
Namely, the square cavity becomes unstable to 3D
perturbations, consequently showing exponential growth
in the spanwise velocity component at Rec = 782.61
and kc = 15.37, the L-shaped cavity at Rec = 650 and
kc = 9.7 and the isosceles triangular at Rec = 540.2 and
kc = 2.86 or Rec = 780 and kc = 10.5 depending on the
flow direction. Additionally, we remind the reader that
when the geometries present sharp corners (e.g. squares,
rectangles or triangles) and sufficiently large Reynolds
numbers are considered, then the flow streamlines show
small recirculating regions near the corners that shape
the large centred recirculating region inside the cavity
(see [26, 28, 45] for illustrations).

A. Flat Lid Cavity: PCavity

Figures 2 and 3 show the velocity and vorticity
contours for the baseflow at supercritical conditions for
Re = 1400 for the PCavity. In contrast to what occurs in
square or triangular cavities (that have corners, narrow
angles and associated small recirculating regions [26, 28]),
no presence of secondary vortices in the top corners are
identified in this new geometry and only the presence of
a centred dominant vortex and centred near the cavity
centre can be observed.

In table I, the baseflow computed by the two different
computational methods (described in section 2) are
compared. The tabulated data have been obtained using
a low order finite element method and a high order H/P-
spectral method both using a time marching method
until the convergence criteria is satisfied. The table
shows good agreement between the two solvers. Minor
discrepancies are attributed to the different nodal points
used by each numerical method that locate maxima
and minima at slightly different places. The maximum

FIG. 2: PCavity baseflow velocity components at
Re = 1400. Top: Horizontal component u0. Bottom:

Vertical component v0.

FIG. 3: PCavity baseflow vorticity and 7 streaklines at
Re = 1400. The red dot indicates the cavity centre.
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TABLE I: Extrema of the base flow velocity field for
Re = 1400 and the respective (x, y)-coordinates for the

regularised PCavity.

Low order FEM High order spectral h-p
minu0 -0.3741 -0.3730
xminu0 0.0693 0.0686
yminu0 -0.3763 -0.3750
max v0 0.3224 0.3197
xmax v0 -0.3247 -0.3225
ymax v0 -0.0397 -0.0396
min v0 -0.5505 -0.5500
xmin v0 0.3936 0.3899
ymin v0 0.2677 0.2674

difference is about 1% which occurs for the x coordinate
of maximum of the u0 in table I, showing that our results
are mesh converged and independent of the numerical
method selected.

For base flow calculations, a time-step ∆t = 0.01, was
used. This value yields moderate total run times. As
an example, we show in figure 4, the base flow velocity
components along lines y = 0 and x = 0 for both
methods employed. It can be seen that the results for
both methods are in excellent agreement.

For numerical efficiency, the stability analysis has been
carried out varying the wave number k = 2π

Lz
in discrete

steps of 0.5. As an example, we show the growth rate
σ(k) in figure 5 of the least stable mode for three different
Reynolds numbers Re = 1300, 1400, 1500. Since the
resulting imaginary part corresponding to these least
stable modes is zero, we conclude that the critical modes
for the PCavity have zero frequency (curve not included)
and are consequently stationary. Following the classical
notation in lid driven cavity analysis, e.g. [49], the most
unstable stationary mode (with zero-frequency) will be
noted as S1. We also represent the second most unstable
mode for the same Reynolds numbers, see figure6, that
in this case is not stationary but travelling and denoted
T1.

The supercritical mode S1 for Re = 1400 and k = 23 is
shown in figure 7. In contrast to what happens in square,
rectangular or triangular cavities, the perturbation flow
field for the spanwise direction ŵ is not located near the
cavity centre where the main eddy is centred. In this
case, the left side and top left corner show the dominant
parts of the perturbation.

Figure 10 shows the neutral stability curves for
the stationary instability, where the stability limits of
the modes S1 and T1 are represented. From these
calculations, we conclude that the local minimum of the
neutral curve Re(k) corresponds to the critical point
with associated critical mode or eigenvector. The critical
Reynolds and wavenumber for regularised boundary
conditions are Rec = 1362.8 and kc = 22.8. In
order to ensure that the local minimum of the neutral
stability curve, is indeed the critical Reynolds number,
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FIG. 4: Velocity components of the PCavity base flow
at y = 0 (top) and x = 0 (bottom) for Re = 1400 for

the low order FEM code and the spectral H/P element
code.

we compute the maximum growth rate σ within the
wider range k ∈ [1, 30] for a Reynolds number fixed to
Re = 1360. Within this extended range of wavenumbers,
all modes are stable (with growth rates σ < 0). As shown
in [26], the regularisation of the lid velocity has only a
small effect on the critical Reynolds and wavenumbers,
consequently quantitatively small changes would be
expected if non-regularised boundary conditions are
used.

The results obtained for the PCavity are in line with
the predictions of [2, 46, 49] when analysing the square lid
driven cavity. The critical mode is also stationary (and
would consequently be impossible to detect using power-
series analysis of experimental data), whilst the second
is a travelling mode. It is important to underline, that
similarly to what occurs in the square cavity, the critical
point is detected at a large wavenumber, consequently
it is important to analyse a wide range of wavenumbers
to detect this point. Some previous works such as [14]
missed this critical mode in the square cavity because of
their limited range of wavenumbers tested.

Figure 7 depicts the shape of most untable mode for
Re=1400 and k = 23. Similarly to what happens in
the square cavity, see [49], most activity takes place
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FIG. 5: Growth rates of the most unstable mode S1
versus k for different Reynolds numbers in the PCavity.

This mode has zero angular frequency ω = 0.

in the neighbourhood of the left rounded wall of the
cavity (or cavity leading edge), which can be identified
with the x = 0 wall of the square cavity. Another
important similarity with the square cavity is that, when
the spatial structure of the eigenfunctions of the three
most unstable PCavity modes are compared, very few
qualitative differences were found, see figure 8

According to these results, we can define the limits for
two or three-dimensional simulations. It is now clear that
three dimensionality will manifest itself at supercritical
conditions. Two-dimensional DNS will predict a steady-
state when Re < Rec whilst a three-dimensional
simulation is necessary to accurately simulate the flow
above Rec, for a given Lz = 2π/k.

Observing these results, we can state that S1 is the
only amplified eigenmode in the region Re ∈ [1364, 1446];
since this is a stationary mode its amplification is
expected to be observed as a spanwise modulation of
the steady flow, having a periodicity length related to
the most unstable wavenumber by Lz = 2π/k = 0.27
cavity length/depth units. If the Reynolds number is
taken in the range Re > 1446 the travelling mode T1
also becomes unstable. In that situation, the mode is
three dimensional, consequently the complex conjugate
of the T1 eigenmode is also a solution of the perturb
equations (9) and the two complex-conjugate modes form
a standing wave pattern which grows at the rate of T1,
linearly superimposed upon the growing S1 mode [49].
The most amplified wavenumbers of S1 and T1 lie quite
close to each other and the best way to differentiate those
modes in the Reynolds interval [1364, 1446] is measuring
the frequency of the travelling mode T1.

In order to provide a deeper insight of the role that the

FIG. 6: Growth rates (top) and angular frequency
(bottom) of the second most unstable mode T1 versus k

for different Reynolds numbers in the PCavity.

corners are playing in the PCavity, an adjoint analysis
has been performed and the structural sensitivity is also
presented here. The real parts of the direct and adjoint
most unstable eigenmode, corresponding to the axial
components, and the structural sensitivity are shown
in figure 7 and9. It can be observed that the adjoint
mode presents an almost symmetric structure compared
to the direct, that can be explained by the upstreaming
advective nature of the adjoint equations [34]. In
addition, the adjoint mode provides information about
the flow receptivity to external forcing. The upstream
nature of the mode is not surprising since it indicates the
regions were an external force (i.e. momentum source)
would be more influential. Comparing the adjoint mode
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FIG. 7: Velocity perturbation amplitudes (real parts) of
the most unstable mode S1 for the PCavity at Re=1400

and k = 23. Top: û, middle: v̂ and bottom: ŵ.

to the direct mode, figures 8.a and 9.a, it can be seen that
the axial component presents minimum overlap. To
quantify this overlap, the structural sensitivity [23, 25]
is computed and depicted in figure 9.b, thus locating
the most sensitive regions of the eigenvalue problem
to localised feedback (self-sustained flow oscillation or

FIG. 8: Spatial distribution of the axial velocity
perturbation of the three most unstable eigenmodes in
the PCavity at Re = 1500 and k = 23. The eigenvalues

are (σ, ω) = (5.4167× 10−2, 0.0), (2.0768×
10−2, 1.4344× 10−1), (−6.0897× 10−2, 2.2003× 10−2)

FIG. 9: PCavity at Re = 1500 and k = 23: a) Spatial
distribution of the axial velocity perturbation of the
adjoint most unstable eigenmode (associated to the

direct mode S1) and b) corresponding structural
sensitivity (wavemaker region).

wavemaker region). The structural sensitivity maps
can be calculated using the expression S = ‖ŵAdj‖‖ŵ‖
with < ŵAdj, ŵ >= 1 , where ŵ and ŵAdj are the
direct and adjoint modes, where < ·, · > denotes the
inner product, with its associated norm ‖ ·‖ =< ·, · >1/2.
The resulting sensitivity map for the PCavity is shown
in figure 9. The localised region of sensitivity denotes
the wide spatial separation between direct and adjoint
modes, which is related to the non-normality [10] of
the Navier-Stokes equations. Finally, the sensitivity
region shows that flow modifications leading to a more
stable system (i.e., flow control strategies) should be
introduced in the proximities of the cavity corners, and
where the moving wall modifies the flow direction leading
to increased gradients. An interesting comparison with
the product of the direct and adjoint modes of the square
lid driven cavity performed by [24] could be made. We
can observe that in the square lid driven cavity due to
the presence of the bottom straight corners, the product
of the direct and adjoint eigenmodes extends to the
bottom part of the cavity. In the PCavity, when these
corners are removed, the structural sensitivity shows
minimum values at the lower part of the cavity and is
only significant in the upper part of the cavity.
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To confirm the results obtained by the global analy-
sis, full 3D DNS simulations have been performed at dif-
ferent Reynolds numbers and different spanwise lengths.
Initially, the spanwise component of the flow W is zero,
but as the flow evolves, an exponential growth (some-
times referred to as linear growth since can be modelled
using linearised equations) for the W-velocity can be de-
tected and measured. When perturbations grow suffi-
ciently, non-linear interactions (arising from the convec-
tive term in the Navier-Stokes equations) take over lead-
ing to the saturated non-linear regime. Then, no linear
growth can be appreciated but a saturated non-linear
regime. We concentrate here in the exponential part and
do not show results for 3D saturated regimes. During the
linear growth, the shape of the spanwise velocity compo-
nent of the DNS solution can be qualitatively compared
to the spanwise velocity component of the perturbation,
see figure 11. When compare the DNS solution on cutting
planes to the combined flow resulting from the combina-
tion of the base flow state and the scaled critical mode.
Views of this combination are shown in figure 12 for two
orthogonal planes at constant x=-0.35 and y=0.25. The
spanwise cell formation leaves a very similar footprint on
the selected planes. It is clear that both linear stability
results and DNS simulations are in good agreement.
In addition, growth rates for the DNS results can be
obtained by monitoring the temporal evolution of the
absolute value of the W-velocity component at a point,
here we select (x/d, y/d, z/d) = (0.1, 0.1, 0.0). Figure 13,
show clear exponential growth for both rounded cavities
when monitoring the W-velocity at Re=1500 and k = 23.
Comparing the growth rates, for the PCavity, issued from
linear stability to the DNS results, we find similar results:
σ = 0.06 for the DNS and σ = 0.0542 for the stability
analysis.

Minor discrepancies are attributed to the DNS calcula-
tion, since these simulations are initialised with random
white noise, allowing the Navier-Stokes system to select
or filter growing/decaying perturbations. In this context,
the monitored velocity even if governed by a particular
flows structure, is generally polluted by slowly decaying
modes. This can be seen in figure 13 for the PCavity,
where at initial times a mode with non-zero frequency
perturbs the slope (the growth) of the leading unstable
mode. As time progresses, the mode with non-zero fre-
quency decays (it is stable) such that the the slope (as-
sociated to the leading unstable mode) growths without
frequency. The resulting final curve shows no clear fre-
quency and a growth rate of 0.06. Note that if we allow
longer computations, then non-linear interactions lead to
a saturated regime, where linear modes have no-longer
meaning. On the contrary, stability analysis discerns be-
tween flow structures and avoids overlapping effects.
Finally, let us note that we have selected a Reynolds
number above the critical value, for comparison to DNS.
This is related to the fact that in the limit of instability,
three-dimensional perturbation grow very slowly and it
would take very long to observe such flow structures. The

FIG. 10: Neutral stability curves for thePCavity using
regularised boundary conditions.

computational time shortens considerably when selecting
larger growths rates (or larger Reynolds). Additional re-
sults showing convergence of the DNS simulations when
varying the spanwise length are included in an Annex of
this text, section VI.

B. Circular Lid Cavity: CCavity

As the results from the low order finite element
method and the high order spectral H/P method in the
PCavity were very similar, in this second cavity, the
baseflow computation and the subsequent analysis has
been performed only using the spectral H/P element
method. Figure 14 shows the contour levels of both
baseflow velocity components at Re = 1450. The
time step used during the baseflow evolution towards
the stationary state is again ∆t = 0.01. Figure 15
shows visualisations of the base flow state vorticity
and streak lines for a supercritical Reynolds number
Re = 1450. As the geometry is smoother than in
the PCavity case, and presents a complete absence of
corners, no presence of secondary vortices are identified
in the baseflow calculation and only the presence of
a centred dominant vortex near the cavity centre is
visualised. The location of the centre of the primary
vortex in the CCavity is placed near the cavity centre and
only minor deformations of the circular trajectories are
appreciated near the points where the moving boundary
begins (cavity leading edge).

Table II presents characteristic values once the sta-
tionary criteria is satisfied. The value max v0 is not rep-
resented because its maximum is found in the moving
boundary. As an example, we show in figure 16, the base
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FIG. 11: Comparison between the W-velocity axial
velocity perturbation of the PCavity at Re = 1400
k = 23: a) the linear stability analysis and b) DNS
simulation. Contour maps (top) and iso-surfaces

(bottom).

FIG. 12: Superposition of the base flow and the
arbitrarily scaled supercritical mode at Re = 1400 and
k = 23 for one wavelength of the flow in the PCavity : a)

linear stability analysis and b) DNS simulation. The
cross-sections shown are taken at x = −0.35 and

y = 0.25.

TABLE II: Extrema of the base flow velocity field for
Re = 1450 and the respective (x, y)-coordinates for the

regularised CCavity.

High order spectral h-p
minu0 xminu0 yminu0 min v0 xmin v0 ymin v0

-0.4134 0.0646 -0.3587 -0.6309 0.3454 0.3302

FIG. 13: Direct Numerical Simulation of the temporal
evolution for the absolute value of the spanwise velocity

component (W-velocity) monitored at
(x/d, y/d, z/d) = (0.1, 0.1, 0.0). PCavity (red) at

Re = 1500 and k = 23 and CCavity (blue) at Re = 1500
and k = 19.

flow velocity components along the lines y = 0 and x = 0.
When comparing the velocity distributions for the CCav-
ity, figure 16, and for the PCavity, figure 4, is remarkable
the similarity.

The growth rate σ(k) and the angular frequency of
the least stable mode are presented in figure 17. As in
the previous PCavity, we identify the local minimum of
Re(k) and the associated eigenvector that represents the
critical mode.

The range of selected wavelengths is k ∈ [1, 30]. Figure
19 shows the neutral stability curve for the stationary
instability of the CCavity ; the PCavity neutral curve
is included for comparison. The critical Reynolds and
wavenumber for regularised boundary conditions are
Rec ≈ 1438 and k ≈ 18. It is worth mentioning that
when the critical Reynolds number of the square cavity
is compared to either the PCavity or the CCavity, see
table III, this value doubles for the new geometries where
some or all corners have been removed. When the critical
wavelengths of the three cavities are compared, the
CCavity presents a similar value compared to the square,
while the PCavity shows a higher value. According
to these results, we can confirm that when removing
geometrical corners the stability of the flow inside the
cavity is enhanced noticeably.

The supercritical mode at Re = 1500 and k = 19
is shown in figure 20. In contrast to what happens
in rectangular and triangular cavities, the perturbation
field is not significant in the centre of the cavity where
main eddy is centred. Similarly, to what was observed
for the PCavity, left side or leading edge, where the lid
movement starts, concentrate the most dominant part of
the spanwise perturbation component ŵ perturbation.
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FIG. 14: CCavity baseflow velocity components at
Re = 1450. Top: horizontal component. Bottom:

vertical component.

FIG. 15: CCavity baseflow vorticity and 8 streaklines at
Re = 1450. The red dot indicates the cavity centre.

FIG. 16: Velocity components of the CCavity base flow
at y = 0 (top) and x = 0 (bottom) at Re = 1450 for the

spectral H/P element code. u0 continuous and v0
dotted line

TABLE III: Comparison of the critical Reynolds
numbers and wavelengths for the circular cavities and

the square cavity [49].

Mode S1 (Recrit, kcrit) Mode T1 (Recrit, kcrit)
Square [49] (782.61 , 15.37) (844.57 , 15.77)

PCavity (1362.80 , 22.80) (1446.12 , 23.57)
CCavity (- , -) (1438.00 , 18.00)

A fundamental difference governs the stability of
both rounded cavities. In the PCavity the leading
most unstable mode was found to be a stationary
mode (without frequency), similarly to what happens
in the square cavity. However, the most unstable mode
governing the instability in the CCavity is a travelling
mode (with temporal frequency). Let us note that a
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FIG. 17: Growth rates (top) and angular frequency
(bottom) of the most unstable mode T1 versus k for

different Reynolds numbers in the CCavity.

mode with zero-frequency exists in the CCavity, but is
stable at the considered Reynolds number. For example,
for the case: at Re = 1500 and k = 21, the stationary
mode (without frequency) shows a decay rate of σ =
−0.154. In this cavity, a travelling mode dominates the
instability and the critical Reynolds and wavenumber
values. One may conclude that rounding the corner
provides stabilisation for the stationary mode, which was
the most unstable in the PCavity. The stabilisation of
the stationary mode enables larger Reynolds before the
travelling mode T1 for the CCavity becomes unstable.

According to these results, the parameter that con-
trols the change from two to three-dimensionality for
the CCavity are well defined. Above Rec, a three-
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FIG. 18: Growth rates (top) and angular frequency
(bottom) of the second less stable mode T2 versus k for

different Reynolds numbers in the CCavity.

dimensional simulation, in which Lz = 2π/kc is chosen
according to the present theoretical results, will initially
show exponential amplification of mode T1, leading to
departure from the two-dimensional steady-state solu-
tion.

Similarly to what happens in the square cavity and
the PCavity, see [49], most activity takes place in the
neighbourhood of the left rounded wall of the cavity,
which can be identified with the x = 0 wall of the
square cavity (the lid leading edge). Another important
similarity with the square cavity is that, when the spatial
structure of the eigenfunctions of the three most unstable
CCavity modes are compared, very few qualitative
differences are found, see figure 21.
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boundary conditions.

The real parts of the direct and adjoint most unstable
eigenmode, corresponding to the axial components, and
the structural sensitivity of the CCavity are shown
in figure 22. The adjoint mode presents again an
almost symmetric structure compared to the direct
and minimum overlap can be observed in the axial
component. However, the overlap can be accurately
computed using the structural sensitivity (wavemaker
region), see figure 22. According to figure 22 the most
sensitive region is located in the upper moving wall
and cannot be separated in two blocks corresponding
to the corners, as observed in the PCavity. This is a
remarkable difference that shows that the most sensitive
region changes its structure when corners are removed.
Making the same comparison with the product of the
direct and adjoint modes of the square lid driven cavity
performed by [24], we confirm significant changes in the
structural sensitivity that is now confined to the lid
centre region and not to the left corner (leading edge
of the cavity).

As in the previous PCavity, the results obtained by
the global analysis are confirmed using DNS. For this
cavity, we again observe very good agreement, as shown
in figures 23 and 24. During the linear growth, we again
compare the DNS solution on plane to the combined flow
resulting when the base flow state is superposed by the
scaled unstable mode. Views of this superposition are
shown in figure 23 for two orthogonal planes at constant
x=-0.35 and y=0.25 (as before), and located near the w̃
perturbation. Stability analysis and DNS results agree
very well. Figure 13 shows the temporal evolution of
the W-velocity. The growth rate measured in the DNS

FIG. 20: Velocity perturbation amplitudes (real parts)
of the most unstable mode T1 for the CCavity at

Re=1500 and k = 19. Top: û, middle: v̂ and bottom: ŵ.

computation σ ≈ 0.03 compares well with the stability
results σ = 0.0203 at Re = 1500 and k = 19 and a
dominant frequency observed in the DNS ω ≈ 0.3 for the
unstable mode present in this cavity is not far from the
corresponding stability analysis result ω = 0.248.

The main hypothesis of this work is confirmed by
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FIG. 21: Spatial distribution of the axial velocity
perturbation of the three most unstable eigenmodes

(T1, T2, T3) in the CCavity at Re = 1500 and k = 19.
The eigenvalues are

(σ, ω) = (2.0257× 10−2, 6.5999× 10−2), (−4.4892×
10−2, 1.1836× 10−1), (−2.7664× 10−2, 8.3931× 10−2),

FIG. 22: CCavity at Re = 1450 and k = 18: a) Spatial
distribution of the axial velocity perturbation of the
adjoint most unstable eigenmode (associated to the

direct mode S1) and b) corresponding structural
sensitivity (wavemaker region).

the DNS computations, and the presence of corners
reduces the critical stability of the cavity or that rounded
geometries present enhanced stability.

V. CONCLUSIONS

The critical stability of the incompressible flow in two
different lid-driven circular cavities has been increased
once the corners have been partially or totally removed
when compared to the classical square cavity. A first
geometry, where only two corners are removed provide a
critical mode at Recrit = 1362 and kcrit = 25, which
shows a critical Reynolds that doubles the Recrit of
the square lid driven cavity. In a second cavity, where
all corners were removed and the external movement
is applied tangentially along the curved boundary, the
critical Reynolds number is even higher when compared
to the first case.
Structural sensitivity iso-maps (i.e. wavemaker regions)
confirm that the cavity corners play a relevant role in the
generation of 3D instabilities.

To validate these results a spectral element DNS

FIG. 23: Superposition of the base flow and the
arbitrarily scaled critical mode for Rec = 1500 and

kc = 19 for one wavelength of the flow in the CCavity :
a) linear stability analysis and b) DNS simulation. The

cross-sections shown are taken at x = −0.35 and
y = 0.25.

FIG. 24: Comparison between the W-velocity axial
velocity perturbation of the CCavity at Re = 1500 and
k = 19: a) the linear stability analysis and b) DNS
simulation. Contour maps (top) and iso-surfaces

(bottom).

computation has been used. The numerical results are
in good agreement with the DNS observations of the
supercritical flow. The critical wavenumber and the
DNS supercritical flow pattern of the less stable mode
of the PCavity are consistent with the wavenumber and
structure of the critical mode obtained from the linear
stability analysis. Regarding the CCavity, all critical
parameters are also in good agreement. The critical
modes discovered in these circular cavities as well as the
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critical parameters are noticeably different to the critical
modes observed in the classical square lid-driven-cavity
problem.

VI. ANNEX

In this annex, we include convergence studies for the
stability analysis and Direct Numerical Simulations.

First, we summarise in table IV a polynomial order
P-convergence test for both cavities at supercritical
Reynolds numbers. As the final eigenvalue is the result of
two relevant computations, first the base flow calculation
and then the eigenvalue calculation, the convergence is
not completely monotonic, but the results are reasonably
converged.

TABLE IV: Convergence table for different polynomial
orders P direct analysis for the two cavities analysed.

PCavity Re = 1400 k = 23 CCavity Re = 1500 k = 19
P Mode S1 (σ, ω) Mode T1 (σ, ω)
3 (0.016019 , 0.00000) (0.020257 , 0.24816)
6 (0.015879 , 0.00000) (0.020163 , 0.24828)
8 (0.015914 , 0.00000) (0.020107 , 0.24825)
10 (0.015903 , 0.00000) (0.020095 , 0.24823)

Second, the DNS resolution is tested by doubling the
maximum spanwise length (or halving the minimum
wavenumber k that may be captured by the DNS)
whilst maintaining the spatial discretisation in the axial
direction: we use eight Fourier planes. Figure 25 shows
minor differences between resolutions, which indicate
convergence for DNS simulations and both cavities.
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