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Quantum chaotic features of the spin-orbit coupled excitons in disordered
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We study the synergy between disorder (phenomenologically modeled by the introduction of Riesz fractional
derivative in the corresponding Schrodinger equation) and spin-orbit coupling (SOC) on the exciton spectra in
two-dimensional (2D) semiconductor structures. We demonstrate that the joint impact of “fractionality” and SOC
considerably modifies the spectrum of corresponding “ordinary” (i.e., without fractional derivatives) hydrogenic
problem, leading to the non-Poissonian statistics of the adjacent level distance distribution. The latter fact is
strong evidence of the possible emergence of quantum chaotic features in the system. Using analytical and
numerical arguments, we discuss the possibilities to control the above chaotic features using the synergy of
SOC, Coulomb interaction, and “fractionality,” characterized by the Lévy index u.
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I. INTRODUCTION

The advancement of ultrathin semiconducting materials
technology in the last decade has spurred extensive experi-
mental and theoretical research on amorphous and disordered
structures that exhibit the physical properties required for
spintronics and nanoelectronics [1-8]. The above materials
can be used to fabricate low-cost photovoltaic cells, light-
emitting diodes, and other electronic devices [9,10]. Even
though a lot has been learned about the various aspects of
exciton diffusion and dissociation in them, there are still many
unanswered questions about the fundamental physics that un-
derpin the operation of these devices, particularly concerning
low-dimensional structures like surfaces and/or interfaces.
For instance, it is necessary to discuss the role of the disorder
in two-dimensional (2D) systems [11]. This is because the
disordered semiconductors used in photovoltaics, are primar-
ily polymers [2,6,12—14] with many kinds of conformational
and other kinds of disorder. To name a few, these are different
unavoidable imperfections like structural disorder, presence of
chemical impurities, etc. [15], which adversely influence the
functionality of a corresponding electronic device.

As the disorder is usually associated with non-Gaussian
probability distributions [16-18] it is therefore natural to
model it by the introduction of fractional derivatives [16,19].
In the case of quantum-mechanical problems like hydrogenic
ones, the disorder can be accounted for by substitution of
the ordinary Laplacian in the Scrodinger equation by the
fractional one of order p [20]. The latter equation is called
the fractional Scrodinger equation [20] and at = 2 it gives
the standard one with ordinary Laplacian. Note that although
weak disorder can be well treated, for strong disorder it is
not the case. Under strong disorder we understand the consid-
erable substance amorphization, leading to the disruption of
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its crystalline structure so that the distances between different
lattice sites become random. In such a case we also can barely
speak of the energy band structure, which makes the excitonic
problem in a disordered substance much less trivial [21]. In
this case, the charge transfer would consist of random electron
or hole hopping, very similar to the seminal Sher-Montroll
model [22]. The quantization of this model leads to the path
integrals over all possible quantum trajectories, however, with
Lévy (rather than Gaussian, as in “ordinary” quantum me-
chanics) measure, containing Lévy index u, see Ref. [20]. As
we have mentioned above, Lévy index y = 2 corresponds to
an ordered substance [20] while ;& < 2 describes the deviation
from the ordered case, i.e., the degree of disorder.

Another factor, that can strongly influence the exciton
properties of 2D systems, is a spin-orbit coupling (SOC).
The synergy of SOC and excitons are especially notable in
monolayers of transition metal dichalcogenides (TMD) like
MoS,, WSe,, and WS, [23]. This synergy enhances the bind-
ing energy and the oscillator strength of the excitons, which
permits to use SOC to manipulate their physical properties.
This can be used, for instance, in photovoltaics, light-emitting
diodes as well as in quantum gates [23]. At the same time,
it has been shown [24,25] that adding the SOC in Rashba
form [26] generates chaotic motion in the above excitons,
which can degrade the performance of the above exciton-
based devices. As the disorder can also adversely influence
such device functionality, it is necessary to study the joint
action of the above two factors on the exciton properties of
the 2D structures.

In the common perception, simple quantum mechanical
problems (like hydrogenic or oscillator one) have simple ex-
act solutions. However, the possibility to solve the above
problems is based exactly on the existence of underlying
symmetries, reducing the number of degrees of freedom. This,
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in turn, permits us to solve the problem exactly but leads
to energy level degeneracies. The hydrogen problem, both in
three and in two dimensions, is invariant with respect to time
reversal, which is an antiunitary symmetry. When applying
the above SOC and fractional derivatives, the correspond-
ing quantum-mechanical problem loses the above antiunitary
symmetry and can no longer be solved exactly. In this case,
so-called quantum chaotic behavior may appear. Quantum
chaos (QC) refers to the properties of quantum systems
whose classical counterparts exhibit irregular, random behav-
ior due to extreme sensitivity to their initial conditions [27].
One of the peculiarities of QC is the statistical properties of
the energy levels of a quantum system. Namely, if a regular
(say, “nonchaotic”) quantum system exhibits a Poissonian
distribution

pp = exp(—s) 1

of distances s between adjacent energy levels, then the chaotic
system exhibits strong repulsion between energy levels, which
is reflected in the non-Poissonian distribution of the above
distances [28]. The peculiar feature of all non-Poissonian dis-
tributions is the maximum at the intermediate range of s > 0.
Here we shall use the Brody distribution [29]

pp = a(q + 1)s? exp[—as?™], 2)

which interpolates between Poisson (g = 0) and Wigner
(g = 1) distribution. Here, parameter g represents the degree
of chaoticity in the system. It is taken (along with parameter
o) from the best fit to the corresponding energy levels his-
togram. It had been shown by Wigner long ago (see Ref. [28]
and references therein) that the statistical properties of a large
number of above adjacent levels can be described by a suitable
Gaussian ensemble of Hermitian random matrices. In this
case, the Wigner distribution has the name of that of Gaussian
orthogonal ensemble (GOE),

PGoE(s) = 2As exp(—As?). 3)

The other popular distribution is the Gaussian unitary ensem-
ble (GUE) one,
B2, )
s) = s~ exp(—Bs~). 4
PGUE(S) N p( ) “)

The constants A and B in Egs. (3) and (4) are also taken from
the best fit to the corresponding energy levels histogram. The
distributions (2)—(4) are normalized to unity fOOO pi(s) =1,
where index i stands for B, GOE, or GUE. Below we will
show that our system demonstrates highly non-Poissonian
statistics of its adjacent energy levels. Moreover, as we deal
with fractional Laplacian with Lévy index u, the above dis-
tribution (2) will be the best choice. We speculate that the
parameter g of Brody distribution should be related to the
Lévy index .

In the present paper, we study the joint influence of “frac-
tionality” (i.e., the substitution of the ordinary Laplacian with
its fractional counterpart in the Schrodinger equation) and
SOC on the 2D exciton properties. We show that at suffi-
ciently strong SOC and p < 2 (fractional case), the system
demonstrates the QC features like qualitative changes in its
level statistics, which are well described by the Brody dis-
tribution (2). By varying the Lévy index and SOC constant,

we can manipulate the energy level statistics. The paper is
organized as follows. In Sec. II, we discuss the relationship
between fractional derivatives and disorder. In Sec. III, we
give the theoretical details of our approach. Here, the approxi-
mate expressions for radial wave functions of 2D “fractional”
hydrogenic problem are suggested. On their base, the states
of the problem with SOC will be constructed. The numerical
results are discussed in Sec. IV, where our main outcome is
presented. Namely, we have shown that the spin-orbit coupled
“fractional” 2D exciton demonstrates clear quantum chaotic
feature, that is non-Poissonian statistics of its energy levels.
Conclusions will be given in Sec. V.

II. DISORDER AND NON-GAUSSIAN DISTRIBUTIONS

The central question of our consideration is the relation-
ship between fractional derivatives and disorder. The common
wisdom is that disorder is a lack of regularity. In this case, the
physical quantities are not under precise control so that the
properties of such disordered systems are best described in
terms of distribution functions. It is firmly established, that to
describe the effects, related to the disorder, sufficiently broad
probability distributions (like a square of the wave function of
a quantum particle) should be utilized; see, e.g., the seminal
Anderson’s paper [30]. As the fractional derivatives gener-
ate the non-Gaussian (e.g., Lévy) probability distributions,
this gives a rough picture of the above relationship. More
precisely, in the realm of statistical and condensed-matter
physics [31], they are particularly useful for modeling anoma-
lous diffusion and other processes that exhibit nonlocality and
memory effects. They describe systems where the probability
of extreme events is higher than what would be predicted
by Gaussian (normal) distributions. The above heavy-tailed
distributions are characterized by “tails” that are not exponen-
tially bounded, meaning they have a slower decay.

The objective now is to predict global properties shared
by almost all such systems, i.e., to acquire knowledge of
universal features independent of the precise realization of
the disorder. If a crystal has a small number of noninteracting
defects and/or impurities, signifying weak disorder, then its
properties are accurately described by the Gaussian distribu-
tion function. As the latter function decays rapidly, its width
is usually modest so that uncommon, “highly disordered”
configurations (the so-called extreme events, see above) have
(very) small statistical weights and do not contribute to the
observable properties of such systems. In contrast, atoms in
a highly disordered material occur in random positions rather
than in crystalline periodic patterns. As a result, the actual sta-
tistical weight of the above ‘highly disordered’ configurations
increases, often dramatically. This large statistical weight is
indeed described by the above non-Gaussian, heavy-tailed
distributions. As we discussed above, a significant breach of
translation symmetry in an amorphous material results in its
electronic states no longer being Bloch functions. The sim-
plest model that describes the electronic states in the highly
disordered matter was introduced by Anderson [30] and leads
to the famous Anderson localization phenomenon.

Specifically, Anderson’s main theorem [30] states that
transport in a system stops if the condition W ~ V is fulfilled.
Here, W is the width of an energy distribution and V is
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the mean value of the interaction potential between disorder
constituents (like impurity atoms in a semiconductor) situated
at the sites of a host lattice. We emphasize here that the above
energy distribution is not specified, the only requirement is
that it should be sufficiently wide. Put differently, all states
are strongly localized in a system with the above significant
disorder. In our approach, the term “disordered lattice” refers
to a high degree of disorder, which occurs in the case of large
impurity concentrations, where they strongly interact with
each other. Contrary to the well-studied case of weak disorder
with almost noninteracting impurities [32], our case cannot be
studied by traditional techniques [33]; see also Ref. [21]. For
such a strongly disordered system, the distribution function
of its physical characteristics is barely Gaussian, rather it has
long tails, inherent in Lévy distributions.

It can be shown that the substitution ¢+ — it (i is an imag-
inary unit) converts the Eq. (1) of the original Anderson
paper [30] to Langevin equation, which describes the random
particle motion

r=—-AVV(r)+s@), (5)

where A is a dimensional factor, r = dr/dt, V is an ordinary
gradient operator, acting on the potential function V, which
depends on the two-dimensional (in our case) position vector
r = (x, y). The stochastic motion is described by the random
force s(t) with predefined statistical properties. As here we
are dealing with non-Gaussian probability distributions, it is
reasonable to assume, that s(t) obeys Lévy statistics. It is
well-known [19] that for latter statistics, the probability den-
sity function (pdf) is best defined through its characteristic
function (Fourier image)

[t
F(k) = exp (—" ) ©6)
%

where k = |k| and Lévy index 0 < u < 2. For u =2 we
obtain the Gaussian pdf with variance o. In other words, the
pdf (6) serves as the (one of possible) quantitative definition
of the above Anderson’s distribution so that its width W can
be regarded as a degree of localization in a system.

As both Eq. (1) of the paper [30] and Langevin equation (5)
are stochastic differential equations, the usual approach is
to extract the pdf ¢(r,r), which completely defines the
corresponding stochastic dynamics. This is done using the
(fractional in our case) Fokker-Planck equation

g(r,t) = AV[g(r, ) VV ()] — Q. |AI*?q(x, 1),  (T)

where Q,, is a generalized diffusion coefficient, which de-
pends on Lévy index w. Also, |A|*/? is a two-dimensional
fractional Laplacian

A2 f(r) = —A, —ﬁf,“)_;ﬁ?dzu, (8)
21 ()
" EI a2 v

where I'(x) is I' function [34]. Below we shall see that
in our case 1 < u < 2 rather than 0 < u < 2 in the above
free problem. This is related to the joint action of Coulomb
and spin-orbit interactions on the free (i.e., without exter-
nal potential) Lévy distribution. The integral operator (8) is

Width, W

Ground state wave function
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FIG. 1. The left panel shows the radial part of the ground-state
wave function of the pure (without SOC) 2D fractional hydrogenic
problem. The function is shown for three distinct values of Lévy in-
dex u, coded by colors and shown in the legend. As u decreases from
= 2 (the ordered case of the ordinary Laplacian in the Schrédinger
equation) down to u = 1.1, the wave function localizes, tending to
8 function at u — 1. The right panel reports the width of the initial
Lévy distribution (6).

spatially nonlocal with a slowly decaying power-law kernel
(determined by the Lévy index) typical for memory effects in
complex disordered systems.

The derivation of fractional Fokker-Planck equation (7)
reduces to the obtaining of the pdf from the statistics of a
random force; see, e.g., Ref. [35]. The same idea has also
been utilized in the derivation of the fractional Schrédinger
equation in Ref. [20], based on the Feynman path integral for-
malism [36] but with Lévy measure. Furthermore, by applying
the obvious transformations t — it and Q- = 1?/(2m) the
free versions (at zero potential) of fractional Fokker-Planck
and Schrodinger equations can be reduced to each other. This
indicates that we can safely assume that the replacement of
the underlying Gaussian distribution with a heavy-tailed one
is tantamount to a phenomenological description of strong
disorder in a Schrodinger equation. In this context, the Lévy
index p plays the role of a phenomenological descriptor (say,
measure) of the degree of disorder. It should be noted that
the above assumptions were established in Ref. [37] regard-
ing the spectral narrowing of the nuclear magnetic resonance
lineshape. The key study of Sher and Montroll [22] addresses
the identical scenario.

To further demonstrate the above picture, in Fig. 1 we
plot the radial part of the pure (i.e., without spin-orbit in-
teraction) 2D hydrogenic ground-state wave function [see
expression (24) below], calculated numerically by the Eq. (18)
below. The left panel of Fig. 1 shows the progressive local-
ization of the ground-state wave function as the degree of
disorder (characterized by the Lévy index p in our model)
grows. The right panel reports the width of the initial Lévy
distribution (6) in coordinate space. It is seen that as the width
of the initial pdf (6) grows (meaning that the disorder in the
system increases), the wave function becomes more and more
localized, tending to Dirac delta function as u — 1. This
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shows that the conditions of Anderson theorem [30] apply to
our system. This, in turn, supports our assumption that the
substitution of the ordinary Laplacian by the fractional one in
the Schrodinger equation effectively describes disorder.

III. THEORETICAL APPROACH

A. General formalism

We represent the Hamiltonian for our 2D “fractional” ex-
citons with spin-orbit coupling in the form H = Hy + Hso.
Here H, is the Hamiltonian of 2D “fractional” spinless hy-
drogenic problem

Ho = —D,|A|M? — g, (10)

where D), is a mass term [20] (see also below) and 8 = &2 /K
(e is the electronic charge and « is the dielectric constant of a
host crystal). Also, here | A|*/? is a two-dimensional fractional
Laplacian (8).

The second term represents SOC in the Rashba form [26]

_prx)v (11)

where «( is dimensional spin-orbit coupling constant and o;
(i =x,y, z) are corresponding Pauli matrices. Here p; (i =
X, y) are the components of momentum operator p = —iiiV.
We note here, that while in the fractional quantum mechanics,
the momentum operator has the above ordinary form [20], the
kinetic energy in momentum space reads |p|* rather than p> as
in ordinary quantum mechanics. This feature can be checked
with the help of Lévy path integral [20] and is in accord
with fractional Laplacian (8) properties, which at u = 2 gives
ordinary one.

We note also, that our problem realizes some kind of
competition between kinetic energy (possibly fractional at
u < 2) and Rashba SOC. This means that here we have two
limiting cases. The first one is the large exciton where the
Rashba SOC plays a major role (even at p < 2 the Rashba
term dominates at low momenta) and small excitons where
kinetic energy (also at 4 < 2) dominates. In the intermediate
regime, which corresponds to our case, both contributions are
equally important. This implies that the best strategy for our
problem solution is to use nonperturbative approaches like
variational or purely numerical ones. Below we will realize
this scenario, utilizing the variational ansdtze, whose accuracy
will be checked subsequently by direct numerical solution of
the corresponding integral equations.

Subsequently we shall use modified (for the fractional case
® < 2) Rydberg units [20]. In these units, we measure the
energy E and coordinates r in the units

1 20D =

respectively. The standard Rydberg units are recovered from
Eq. (12) at uw =2, when D, = ;- (m is a real physical
mass). Note that at ;# = 1 both quantities Ey ,—; and rp ,—; in
Eq. (12) are divergent. Below we will see that this is consistent
with our problem, where a discrete spectrum only exists for
u > 1[20,38]. In the units (12), the spinless Hamiltonian (10)

Hso = Qo (pny

renders as
/2 2
Ho = —|AJM — —, (13)
r

while in the spin-orbital part (11) we have «p — o and p —
k = —iV, where now « is a dimensionless SOC constant.

In the presence of SOC (11), the quantum number j cor-
responding to the total angular momentum [ (actually its
z component in 2D case) becomes j = [ + o0,/2, which is
related to the fact that in fractional quantum mechanics the
momentum operator is similar to that in ordinary one [20].

With respect to the conservation of the total angular mo-
mentum j =/ + 0,/2, in our problem, we can also separate
the angular and radial variables. This means that here we can
look for the wave function of the above 2D “fractional” exci-
tons with SOC in the form of an infinite series (cf. Ref. [39])
over a complete set of discrete eigenstates of spinless “frac-
tional” Hamiltonian H (13) [40],

wl[m](r 9) = ezlgo Z (C[[n;J¢Rnl(r)>

n=I[+1

i(l+1)p 14
te Z <Cl ,anl-&-l(r)) (14)

n=I[+2

Here the wave function is the spinor, where index m =
1,2, 3, ... enumerates the eigenstates for a given / in as-
cending energy order. In other words, here index m plays a
role of the principal quantum number in our “mixed” (in the
sense that the state (14) is obtained by “mixing” the initial
hydrogenic states R,; by SOC) problem with fixed j. As we
understand that the states (14) are different for different Lévy
indices p [by virtue of R, ;(r) = Ry, (r)], we suppress this
index for a moment without limitation of generality. Also,
the radial functions R, ;(r) correspond to the radial part of
eigenfunctions of the Hamiltonian (13). The expansion coef-
ficients ¢ (i =1, |) are the eigenvectors of the following

1 ni.
block-matrix

[m] [m]
HM HW\ [t Cy
(HM A I = En | (15)
where we suppress indices n and / for a moment. The blocks

H' and H* are the eigenvalues of the spinless Hamiltonian
Ho (13),

o0 2
HTT = Hil =E, = _/ Rnl(r)(|A|M/2 + ;)Rnl(r)l’dl’,
0
(16)

and hence are diagonal in spin subspace. Here we pay at-
tention to the fact, that in fractional case u < 2, the orbital
degeneracy of a hydrogen problem is lifted by “fractionality”
so that the eigenenergy E,; starts to depend on the orbital
index [ [40-42]. This is because for u < 2, the Runge-Lentz
vector [43] is no more conserved quantity. In this case, the
specific Coulomb degeneracy [43] is lifted and the energy
acquires the dependence on the orbital index [. At u =2
we recover the conservation of the Runge-Lentz vector and
usual eigenenergy of 2D quantum hydrogenic problem E, =
—1/2(n—1/2*,n=1,2,3, ... [44].
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The blocks H ¥ and H*" are due to SOC and hence couple
spin-up and spin-down states

o0 d I+1
HZT:;’LH,VLZ = aA R”ll(r)<5 + T)anl-f-l(r)rdr’

0 d /
Imny — Ol/ Rnll(r) d_ - anH_l(}")}’d}’. (17)
0 r r

The practical calculations are accomplished by the trunca-
tion of the infinite series (14) [and hence the blocks in
the eigenproblem (15)] on some n = nn. In this case,
the resulting matrix (to be diagonalized) dimensions are
2(Mmax — J) X 2(Nmax — ), Where (for [ =0,1,2,3,...) j =
I+<o0,>/2=m+1/2=1/2, 3/2, 5/2,.... Our analysis
shows that good accuracy is achieved at npy,x > 50, which
makes the problem quite computer intensive. Note that the
above procedure for j <0=—1/2, —3/2, —5/2,... com-
pletes the basis. But at zero magnetic field, the time-reversal
symmetry yields E(—j) = E(j), where E is the eigenen-
ergy. This fact will be taken into account in our numerical
calculations.

B. Approximate expressions for the 2D fractional
hydrogen eigenfunctions

To accomplish the above calculations, we need the explicit
form of the radial wave functions R, ;(r) for an arbitrary value
of the Lévy index w. The most profitable way to accomplish
this is to pass to the momentum space in the corresponding
fractional Schrodinger equation Hoy = Evr, where Hy is
given by Eq. (13); see Ref. [40] for details. As in momentum
space, the fractional Laplacian converts simply to k* (k = |k]|,
see above), this (after separation of the angular and radial
parts of the wave function [40]), renders the above fractional
Schrodinger equation also to integral one but with much more
plausible kernel

1 o0
(k" + kg )Ry (k) + ;/ I (k, k)R (KK dK' = 0, (18)
0

where we made Lévy index u explicit. Here the eigenenergy
E = —kif (19)
and the kernel
2w ilt
dt
Ik, k') = / ‘ :
0 k*+k? —2kk'cost

It turns out that while it is impossible to evaluate the inte-
gral (20) analytically for arbitrary /, it is possible to do so for
each/ =0, 1, 2, ... [40]. For instance,

(20)

N )
Io(k, k') = P (21)
AN 2 2 _ /\2
Li(k, k') = —kk,(k+k,)[(k +k)K(q) — (k+ k') E(q)],
— Lk, (22)
1= Gk

Here K (m) and E (m) are the complete elliptic integrals of the
first and second kinds respectively [34].

The integral equation (18) defines the radial eigenfunctions
and corresponding eigenenergies [expressed through &y (19)]

of our initial (i.e., without SOC) fractional hydrogenic prob-
lem for each particular / and n > [. In other words, the
equation for / = 0 [that with kernel (21)] gives the eigen-
functions Rgo,, (ground state), Ry, Roo,, etc. In its turn, the
equation for [ =1 [that with kernel (22)] determines Ry,
Ra1,, R31y, etc. These functions, being converted back to
r space, can be used as “building blocks” for our desired
states (14). The analytical expressions for the kernels 7;(k, k)
render the integral equation (18) to the effective 1D form,
which not only permits to solve it numerically relatively eas-
ily (as compared to that in more space dimensions), but to
construct variationally the approximate basis in k space [45].
It turns out, however, that despite the relative simplicity of
the numerical solution of the integral equation (18) for each
specific /, it is extremely difficult to use it in our resulting
problem with SOC. This is because we need to construct
numerically the wave functions Ry, (r) (by also numerically
doing the corresponding Fourier transformation to pass to
the r space), which should be further substituted into the
states (14). The numerical complexity of such a problem turns
out to be higher than that for the direct numerical solution
of the spectral problem for Hy + Hs,. That is why we shall
use the numerical procedure only sporadically to check the
accuracy of our approximate analytical approach, based on
variational method [45].

It had been shown in Ref. [45], that the approximate or-
thogonal basis of the integral equation (18) can be constructed
as a product of the factor (k> + a®)~#“+1/2 (where a is a vari-
ational parameter and p is the Lévy index) and a polynomial
with unknown coefficients. The order of polynomial corre-
sponds to each / value and its coefficients are determined from
the mutual orthogonality conditions; see Ref. [45] for details.
For example, the simplest ground-state variational function
has the form (here we recover the index )

J a"
Roou (k) = \/;m (23)

The function R, (k) (as well as those for excited states)
is normalized by the condition 27 fooo R%oﬂ (k)kdk = 1. The
variational parameter a can be obtained by the minimization
of the energy functional, derived from the integral equa-
tion (18) [45]. This parameter is a function of Lévy index .
The variational procedure [45] gives that this function delivers
a pretty good approximation to the corresponding numerical
one with the error not exceeding 2%. Paradoxically, the error
is smaller in coordinate space [45], where it is around 1%.
Transition to the latter space employing the inverse Fourier
transform yields the following analytical expression for the
ground-state wave function

a«/2u

uet ar
Roopu(r) = W(W) 2 Kqul (7>7 (24)

where K, (z) is a MacDonald (modified Bessel) function [34].

The function Ry, () as well as all other functions R,;, () are
normalized by the condition

/ ” Ry, (rrdr = 1. (25)
0
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At u = 2, we recover the exact ground-state wave function of
the 2D hydrogen atom [44]

Roop=a(r) = de™". (26)

In this case, the variational parameter a = 4. To derive
Eq. (26) from Eq. (24), we use the following relation for the
MacDonald function [34]:

Kip(z) = \/zzze_z. 27

It turns out that the variational parameter a can be well
approximated by the dependence

_ 42 — 32

2
iGN fw) = T an (28)

I )
This yields the accuracy of the states (24) around 1%. It also
turns out that in r space, the polynomials for higher excited
states can be well approximated by the “ordinary” (i.e., that
from the “normal” 2D hydrogenic problem [44]) confluent hy-
pergeometric function | Fi(...) [34]. This permits to construct
the complete basis of the radial functions in the coordinate
space in the following form:

I+471 Ty
Ry (r) = Anl/LQlll/Lrll’llll.+ . KMT4 (TM)
X 1B (=n 4 [I]| + 1,2l + 1, ryp), (29)

. (n+ 1] = 1)! 12
<2|1|>![<2n—1)(n—|l|—1>!] ’

where —(n — 1) < < n —1, ay, is defined by Eq. (28) and
Ay, 1s normalization constant, which is calculated from the
condition (25). Note that A,;,, can be evaluated analytically
by reducing the MacDonald function K(,_1y/, to the hyper-
geometric one. But the resulting integral turns out to be so
cumbersome that it is much more profitable to calculate this
constant numerically every time we call the function (29). At
= 2 the constant A,,;, = 1 and we arrive [with respect to the
relation (27)] at the known wave functions of the 2D hydrogen
atom [44].

The quantitative comparison of the behavior of the wave
functions (29) with numerical ones, obtained from the integral
equation (18), shows the same tendency as that from our pre-
vious work, devoted to 3D fractional harmonic oscillator [46].
Namely, for the ground-state energy, the relative error does
not exceed 0.9% in our case, see the inset in Fig. 2(c) of the
paper [46] for comparison. Note that contrary to the case of
the fractional harmonic oscillator, here we have the domain
of admissible u values 1 < u < 2 so that the above maximal
error occurs at pu ~ 1.3, i.e., (similar to Ref. [46]) closer
to the lower © domain boundary. For higher excited states
(here we checked the energies up to n = 4 for all possible [
values) the error is even smaller, giving in worst cases 0.7%.
The detailed comparison of the wave functions (cf. Fig. 2(d)
of Ref. [46]) shows that the best approximation occurs near
the maximum of the corresponding curve, while at the tails

Tnp = Aput, inu =

it is worse, giving maximum error around 3% in our case.
But this does not influence the corresponding energies and
other observable characteristics (including those involved in
SOC calculations, see below) of our system. This shows that
the approximation (29) delivers good approximation to the
numerical values.

IV. NUMERICAL RESULTS

A. Spectrum for problem with SOC: Energy levels
crossing and anticrossing

In a quantum system, whose classical analog demonstrates
chaotic behavior, quantum levels anticrossing (or so-called
avoided crossing) is a precursor of QC onset; see, e.g.,
Refs. [27,47]. Latter onset shows up in the non-Poissonian
distribution of distances between adjacent energy levels (2)—
(4). So, the first step to obtain the above non-Poissonian
statistics is to get the system spectrum and see if there are level
anticrossings in it. To be specific, here we solve the spectral
problem (15) for several values of spin-orbit constant o and
Lévy index u. In this case, levels anticrossing (or crossing)
might appear in the energy levels as functions of parameters
 and «. A spectrum of the problem with SOC is displayed in
Fig. 2.

Figure 2(a) shows the ground-state energy Eq (j = 1/2,
m = 1) as a function of SOC constant « at three representative
values of the Lévy index w. It is seen that E, as a function of
o decays monotonically with o growth. Moreover, the lines
Eg () at different p’s go parallel to each other, i.e., neither
level crossing nor anticrossing occurs. This means that in its
ground state the system does not demonstrate energy levels
repulsion at any u (roughly down to u = 1.1) and & (roughly
up to o = 2), achievable for our numerical calculations. The
dependence of E,s (1) at three fixed o’s is reported in the
inset in Fig. 2(a). It is seen that the curves for o # 0 are
qualitatively similar to that for a 2D fractional hydrogenic
problem with o = 0, considered by us previously [40]. Also,
at 4 = 2 and o = 0 we have Eg; = 4 (Rydberg units), which is
exactly the same as that for ordinary 2D hydrogen atom [44].

Three other panels of Fig. 2 report the behavior of the
excited states. Figure 2(b) portrays the excited state with the
lowest possible j = 1/2 and higher m = 2 and 3. Two level
crossing points occur at the intersections of lines, correspond-
ingtom=3and pu =15andtom =2 and x =2 and 1.8.
The points lie close to each other (at small o around 0.04)
and, as our analysis shows, are related to some accidental
degeneracy. The same crossings occur at lower w values.
So far no avoided level crossings (anticrossings) occur in
the system. The latter appears for higher (so-called Rydberg)
excited states, which is demonstrated in Figs. 2(c) and 2(d).
Figure 2(c) shows that there are two anticrossing points for
@ < 2. It can be shown, that the anticrossing points in this
case occur also for 4 =2 and o ~ 1 and m > 10. As such
large SOC constants do not correspond to the physical sit-
uation in real substances [25], we do not report them here.
As j and m increase, the number of anticrossing points also
grows. This situation is shown in Fig. 2(d). Our analysis shows
that at j > 5/2 and m > 5, the number of anticrossing points
fluctuates randomly at 0.05 <o <2 and 1.1 < 4 < 1.9, i.e.,
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FIG. 2. (a) Shows the ground-state energy of the system for
j=1/2 (I =0) and m = 1. Values of Lévy index u are coded by
colors and are shown in the legend in panel (b). This coding is the
same on all four panels. Inset in panel (a) reports the dependence of
ground-state energy on Lévy index p at three fixed values of SOC
constant o, shown in the legend. The black curve, corresponding
to o = 0 is exactly similar to that in “pure” (i.e., without SOC)
2D fractional hydrogen problem [40]. The dashed line shows the
“ordinary” (at u = 2 and without SOC) ground-state energy of 2D
hydrogen [44], which equals —4 Rydberg units. Neither level cross-
ing nor anticrossing is present. (b) Portrays low-lying excited states
m = 2 and 3 for the same j = 1/2. Level crossings are indicated by
the arrows, but anticrossings are absent. Panels (c) and (d) report
highly excited (so-called Rydberg) states in SOC coupled “frac-
tional” excitons for j =5/2 (c¢) and j = 11/2 (d). Multiple level
anticrossings [especially for the states with m = 9 and 10 in panel
(d)] are clearly seen. Levels with different m’s are coded by line
patterns and are shown in the legends.

can be even more than in Fig. 2(d). This feature is actually
responsible for non-Poisonian spectral statistics, which we
consider next.

B. Non-Poissonian spectral statistics

We are now in a position to study the spectral statistics of
our problem. This statistics is reported in Fig. 3 for u = 2 (left
panel) and p < 2 (middle and right panels). To obtain this
statistics, we took the eigenvalues up to m = 200 for 1/2 <

) L L e I T
u=2 7 u=1.8 | [ pu=L5 |
M =015 | | [ 20 | n o
il | =
I i 10— ’- I I Brody_
i =T Y1 S
> i 1
= il W .
3 ol
5- 1 m
3,,
4 5 7
00 00 1 2 00 1 2

FIG. 3. Histogram for energy levels statistics for « = 0.15 and
three representative values of w, shown in the panels. In the left
panel, the red curve shows the best fit of the histogram by the
(unnormalized) Poisson distribution (1). The middle and right panels
report the case ;1 < 2. In these panels, we show the best fits by the
(also unnormalized) GUE (4), GOE (3), and Brody (2) distributions,
coded by colors.

Jj < 17/2. This comprises around 2000 eigenvalues for each
1, which is quite a representative statistical sample. Also, to
emphasize the effect of spin-orbit coupling, we took our spec-
tral points in the interval (—3a?, —0.55a:%) for representative
value o = 0.15. The qualitative features of the histogram are
the same for other « values at @ > 0.02, when SOC becomes
pronounced. The choice of the value —0.55a> for the upper
bound is related to the fact that for & = 2 (nonfractional case),
the continuous spectrum boundary is —a?/2. For u < 2 the
determination of the latter boundary is a laborious problem as
it requires the direct solution of the corresponding fractional
differential equation. So, for our spectral statistics, we take
the above “safe value” (still belonging to discrete spectra for
1.3 < pu < 2) for the upper bound. Also, as levels anticross-
ings occur primarily for the levels with the same u, here we
show the histograms for each p separately. The qualitative
shape of the “cumulative” histogram for 1.1 < u < 1.9 is
similar to those shown in the middle and right panels of
Fig. 3.

However, the histograms for separate (’s permit to observe
an interesting feature. Namely, at u decrease, the number
and height of histogram bars for small s decrease. In other
words, while at © =2 we have the highest bars at s = 0,
which comprises the Poissonian statistics, at u < 2 this is not
the case. Rather, the highest bars shift towards the center of the
histogram (around s = 1), signifying the strengthening of the
levels repulsion. Really, as s is a difference between adjacent
energy levels, s — 0 means that the levels go infinitely close
to each other. If we have level repulsion, then the situation
when s = 0 becomes impossible so that p(s = 0) = 0, where
p(s) is any distribution, including the histogram. The ten-
dency, shown in the middle and right panels of Fig. 3, shows
that the larger the degree of disorder, modeled by the Lévy
index u, the more pronounced the levels repulsion or quantum
chaos manifestations.
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To get more insights into the properties of the histograms,
in Fig. 3 we present their approximations by the GUE (4),
GOE (3), and Brody (2) distributions. We use unnormalized
distributions as this does not influence the qualitative con-
clusion about the “quantum chaotization” of the spin-orbit
coupled exciton with fractional derivatives. While for u = 2
we have only Poisson distribution (Fig. 3, left panel) with
a maximum at s = 0, for u < 2, we have different choices.
Namely, we can choose among the GOE (3) (linear asymp-
totics at s — 0, red curves on middle and right panels of
Fig. 3), GUE (4) (~s% at s — 0, black curves), and Brody (2)
(~s? at s — 0, green curves) distributions. It is seen that the
best approximations are delivered by the GUE and Brody dis-
tributions. It turns out, that for u = 1.8, the best-fit parameter
of the Brody distribution ¢ = 1.05, i.e., it goes very close
to GOE one. The same tendency occurs at u = 1.5, where
this parameter is a little more ¢ = 1.11. Our analysis shows
that g grows with p decrease down to p & 1.1. This permits
us to speculate that the parameter of Brody distribution is
related to o and thus reflects the degree of disorder in a
system. We note that the Brody distribution is non-Gaussian
(so-called stretched exponential) so that it may be better suited
to describe the histogram, obtained in a system with underly-
ing Lévy distribution. To emphasize the stretched exponential
character of Brody distribution (2), it can be well expressed
through stretched-exponential parameter r = 1 4 ¢. Our in-
dependent evaluation of parameters r and g for the different
regions of the energy level spacings in our problem lead for
the above values of u lead to essentially the same values.
Namely, for © = 1.8 we obtained r = 2.08 so that ¢ = 1.08,
which comprises the 3% error with the previous case g =
1.05. At the same time, at © = 1.5, we obtain r = 2.10, which
gives ¢ = 1.10. The error in this case is smaller, giving 0.9%,
but the tendency is opposite. Namely, while for 4 = 1.8, the
parameter g turns out to be slightly higher, than its previous
value, for u = 1.5 it is lower. However, the above qualitative
relation between ¢ and u is preserved.

With regard to the above, we note the paper [48], where one
more category of the energy level statistics has been consid-
ered. Namely, they examine the disordered two-dimensional
topological insulator, which incorporates SOC naturally. It
had been shown by Dyson long ago [49] that the energy-
level statistics of the systems with broken rotational symmetry
(which is the case for SOC) is described by the so-called
symplectic random matrix ensemble with the strongest (as
compared to above GOE and GUE) repulsion between neigh-
boring energy levels. The strength of the repulsion may
be mapped on Brody parameter g = 4; see, e.g., Eq. (79)
of Ref. [49]. The reason that in our case Brody parame-
ters are smaller (¢ ~ 1) may lie in the electrostatic analog
of energy level repulsion, used in Ref. [49]. To be more
specific, Dyson considered the 2D system with a pure 2D
solution of the Poisson equation in logarithmic form. At the
same time, our exciton-forming interaction is ‘“2D sections”
of ordinary 3D Coulomb interaction ~1/r [50]. Note that
both logarithmic asymptotics of the electron-hole interaction
and our “2D sections” are the asymptotics of the same 2D
screened (Rytova-Keldysh [51]) Coulomb interaction at large
(logarithmic) and small (1/r) screening radii, see Ref. [52]
for details. This shows, that the exact approximation of the

histograms raises many questions and controversies. We spec-
ulate here, that in our problem, the histograms can be best
approximated by some kind of Lévy distribution. We postpone
the detailed studies of these interesting questions for future
publications.

V. DISCUSSION AND CONCLUSIONS

The main message of present consideration is that the
synergy of SOC and “fractionalization” (i.e., the substitution
of the ordinary Laplacian by its fractional counterpart in the
Schrodinger equation) of the 2D exciton generates the quan-
tum chaotic features in it. This becomes especially true if
we recollect that the classical counterpart of the fractional
Laplacian is |#|*/®“~D where dot means time derivative. This
generates highly nonlinear term in corresponding classical
equations of motion, which alone makes the system prone
to chaos. The addition od SOC only enhances these effects.
Namely, our previous studies of chaos in “ordinary” (i.e.,
at u = 2) spin-orbit coupled 2D hydrogenic problem show
that while its classical version with a kinetic energy of the
form |i|> has distinct chaotic behavior with irregular sys-
tem trajectories [24,53] and positive Lyapunov exponents, its
quantum counterpart [25] demonstrates only weak (quantum)
chaotic features. Most probably, the reason is that while (in the
model with ¢ = 2) the equations of motion are nonlinear due
to the (classical version of) SOC presence, the Schrédinger
equation in its quantum version is linear which may suppress
the (quantum) chaotic features in the model. On the contrary,
in our “fractional” case, the classical equations of motion
become nonlinear due to above expression for kinetic energy.
This shows that while in classical case, the “fractionality”
plays secondary role (as compared to the SOC), in quantum
case it plays a decisive role, generating non-Poissonian distri-
bution of the system energy levels, as shown in Fig. 3. In other
words, the introduction of fractional derivatives (i.e., Lévy un-
derlying elementary trajectories in the sense of Feynman path
integral representation [20]) highlights the quantum chaotic
features in the model.

As our approximate wave functions (29) give sufficiently
good accuracy to avoid much more computer-intensive direct
numerical calculations, they can be readily used to calculate
many observable characteristics of the excitons based on our
model of spin-orbit coupled fractional Schrodinger equation.
To name o few, it can be charge and spin densities, oscil-
lator strength of the optical transitions between levels with
different j (or I), spectra of light absorption, and radiative
exciton lifetimes. This can be important for the above TMD
monolayers [23], where disorder in the layers (“fractionality”
with u < 2 in our model) can trigger the effects, which may
disrupt or even destroy the functionality of corresponding
electronic and spintronic devices. For instance, it can alter
the exciton-exciton and exciton-phonon interactions, which
can play an important role in the energy relaxation of elec-
trons and holes, bound in an exciton. In this case, instead
of a process with well-defined time dependence, the energy
relaxation from a highly excited to the ground state may
become chaotic. As in our model, the Lévy index p can
be used to measure the degree of disorder, we can predict
(and mitigate) the detrimental influence of chaotic (and other
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disorder-related features) on the physical properties of TMDs.
Namely, if we fit the above experimentally observed prop-
erties in the samples with different degrees of disorder to
those calculated theoretically for different w’s, then we can
extract the phenomenological dependence of 1 on the degree
of disorder. This, in turn, may permit to use the degree of
disorder as one more control parameter to adjust the phys-
ical properties of the sample to its possible technological
applications.

In this context, an interesting generalization of our problem
can be suggested. Namely, we can consider possible chaos
(both classical and quantum) influence on the so-called ex-
citonic polarons, which are the exciton-phonon bound states.
This problem is also important for TMD multilayer structures
(where the electron can be from one layer and the hole from
the other) [54], where the influence of SOC is substantial. Our
preliminary analysis shows that the effects of chaos can influ-
ence drastically the optical absorption and emission spectra of
the structures. To obtain the chaotic features, we should sub-
stitute the ordinary Laplacians (both in electron and phonon
parts) with their fractional counterparts. Here one more ques-
tion arises, namely the behavior of phonons (so-called flexural

modes [54,55]) is the disordered layer. Because of their flex-
ural nature, such phonons would not simply localize as it
was in the ordinary 2D cuts of 3D crystals (see Ref. [56])
but rather behave differently depending on their propagation
direction. Moreover, our analysis shows that the nonlinear-
ity, related to the interaction between the out- and in-plane
atomic displacements (i.e., flexural phonon modes) [55] may
be recast to the equivalent linear problem, but with fractional
Laplacian. In other words, the flexural nature of phonons in
perfectly ordered multilayer TMD structures, considered in
Refs. [54,55], may be well rendered to a problem with some
kind of effective disorder, which, in turn, may generate both
classical (irregular electron and hole trajectories in an exciton)
and quantum chaotic features. Such studies (which we defer
for future publications) could help to reduce or eliminate the
unwanted chaotic behavior in 2D semiconductor structures.
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