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Abstract: The increasing penetration of solar energy into the grid has led to management difficulties
that require high accuracy forecasting systems. New techniques and approaches are emerging world-
wide every year to improve the accuracy of solar power forecasting models and reduce uncertainty
in predictions. This article aims to evaluate and compare various solar power forecasting methods
based on their characteristics and performance using imagery. To achieve this goal, this article
presents an updated analysis of diverse research, which is classified in terms of the technologies and
methodologies applied. This analysis distinguishes studies that use ground-based sensor measure-
ments, satellite data processing, or all-sky camera images, as well as statistical regression approaches,
artificial intelligence, numerical models, image processing, or a combination of these technologies
and methods. Key findings include the superior accuracy of hybrid models that integrate multiple
data sources and methodologies, and the promising potential of all-sky camera systems for very
short-term forecasting due to their ability to capture rapid changes in cloud cover. Additionally, the
evaluation of different error metrics highlights the importance of selecting appropriate benchmarks,
such as the smart persistence model, to enhance forecast reliability. This review underscores the need
for continued innovation and integration of advanced technologies to meet the challenges of solar
energy forecasting.

Keywords: solar irradiance; nowcasting; all-sky camera; statistical method; regression method;
satellite

1. Introduction

Today, weather forecasting is a crucial factor that must be taken into consideration
when making logistics-related decisions across global, regional, and local scales. Accurate
knowledge of future weather is essential in a wide range of economic activities, such as
logistics, transportation, civil defense, resource management, aviation, agriculture, event
planning, tourism, and industrial operations. As such, reliable weather forecasting is a vital
element in many areas of modern life.

Despite the advancements in solar energy forecasting, several gaps remain in the
current literature. One significant gap is the limited integration of diverse data sources,
such as ground-based sensors, satellite images, and all-sky cameras, within a unified
forecasting framework. Additionally, there is a lack of comprehensive evaluations that
compare the performance of different forecasting methods using consistent metrics and
benchmarks. Furthermore, existing reviews often overlook the potential of emerging
technologies, such as artificial intelligence and advanced image processing techniques, in
enhancing forecast accuracy. This review aims to address these gaps by providing a detailed
comparative analysis of various forecasting methodologies and technologies, highlighting
the benefits of integrated approaches, and offering insights into the latest advancements
and their practical implications.
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The energy sector has various meteorological service requirements to support decision-
making processes, including day-to-day operations and long-term strategic planning. This
makes logical sense given the complexity of the industry.

With the increasing share of solar power in the overall electricity grid, power plants
face a difficult task trying to balance energy generation and consumption. This challenge is
compounded by the ongoing promotion of sustainable and renewable energy sources by
governments and organizations in response to the current energy crisis caused by excessive
and uncontrolled fossil fuel consumption. To mitigate the negative effects of carbon dioxide
emissions into the atmosphere, it is crucial for the energy sector to find innovative solutions
to this problem.

Renewable power generation and usage, unlike fossil fuels, involves lower emissions;
however, one disadvantage of renewable energy sources is their unstable nature [1].

The transient nature of renewable energy sources is exemplified by the supply fluctu-
ations of solar energy caused by variable cloud conditions. To address this issue, recent
research has explored the development of an irradiance-based weather derivative to hedge
against cloud risk [2].

To use solar energy more efficiently, it is important for photovoltaic grid operators to
have successful mechanisms that enable accurate, short-term forecasting of the amount of
power produced by solar panels. Such forecasting is critical for the efficient scheduling and
dispatch of distributed energy resources (DERs).

This report aims to address the issue of solar power forecasting by examining the evolu-
tion of techniques and technologies employed by various researchers. The studies reviewed
are primarily focused on addressing the challenges and motivations previously mentioned.

Section 2 examines various radiation detectors used for forecasting solar irradiance.
These detectors are classified based on the prediction time horizon they can cover. In
Section 3, research developments in this field are presented based on different prediction
methods employed. This includes a diverse range of approaches in detection algorithms
and cloud segmentation and classification, as well as feature extraction and post-processing.
Finally, Sections 4 and 5 provide discussions and conclusions resulting from the study
conducted in the preceding sections.

The main focus of this paper is to discuss the innovation of very short-term spatial-
temporal irradiance forecasting, including forecasting periods that are even shorter than
the satellites’ orbital period. To do so, this study utilizes various forecasting techniques
that implement sky images captured from the Earth’s surface via all-sky cameras.

To provide readers with a concise and visual summary of the progress made in this
field, significant aspects, techniques, and achievements obtained from different studies are
presented in a series of tables. These tables are conveniently summarized in Appendix A.

2. Review and Evaluation of Solar Irradiance Forecasting Sensors

To ensure a comprehensive and relevant review, we established specific inclusion and
exclusion criteria for the selection of studies. The inclusion criteria were as follows:

• Studies published in peer-reviewed journals and conferences from 2000 to 2024.
• Research focusing on solar power forecasting using imagery-based methods, including

ground-based sensors, satellite data, and all-sky cameras.
• Research that provides quantitative performance evaluations using standard error metrics.

The exclusion criteria included the following:

• Studies not available in English or Spanish.
• Papers that did not provide sufficient methodological details or performance metrics.
• Research focused solely on theoretical models without practical implementation or

validation. These criteria ensured that the review covered a wide range of relevant and
high-quality studies, providing a robust basis for the comparative analysis presented.

Solar irradiance forecasting systems can be broadly classified into three categories
based on the technology used. The first category consists of sensor-based systems that
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directly measure solar irradiance using pyranometers and pyrheliometers, or indirectly
using photovoltaic systems, ceilometers, and temperature sensors. The second category
comprises systems that process images taken from space, such as satellites, to make predic-
tions. The third category includes systems that use all-sky cameras on the Earth’s surface
to capture images for prediction purposes.

Forecasting systems that predict solar irradiance are widely used in industries and
plants that involve solar thermal and photovoltaic systems. These systems typically utilize
satellite images and irradiance sensors to obtain data on global horizontal irradiance (GHI),
direct normal irradiance (DNI), and diffuse horizontal irradiance (DHI).

However, the cost of acquiring satellite images and maintaining well-calibrated sen-
sors is high. This is not only due to the required communication networks for data
centralization and storage but also to the installation and maintenance of these sensors.
Furthermore, these systems lack spatial-temporal resolution. Given these economic and
technical limitations, the research and implementation of all-sky camera systems represent
a promising opportunity.

The following sub-sections will review the research conducted and categorized by
the different technologies mentioned above. A particular emphasis will be placed on the
systematic aspect of all-sky cameras. A preceding section is also included to cover the most
commonly used error metrics and persistence models. This will aid in demonstrating how
researchers measure, quantify, and compare the quality of the forecasts performed.

2.1. Persistence Model and Error Metrics

The forecasting field commonly employs a benchmark for comparison based on the
assumption that future conditions will remain unchanged over the forecast horizon. This
assumption is known as the “persistence” model and serves as the basis for evaluating the
performance of other forecasting methods. For instance, in solar irradiance forecasting, the
persistence model assumes consistent future values for irradiance, power output, and the
clear sky index (CSI/clearness index).

To compare two different models, such as the “persistence” model and the one studied,
the forecast skill score, or SS, is calculated. The forecast skill score (SS) is a valuable metric
for comparing the performance of two forecasting methods.

SS =

(
1 −

εprediction

εpersistence

)
× 100% (1)

Therefore, to indicate the improvement or deterioration of their results compared to
persistence or baseline models, many researchers utilize the SS to guide their conclusions.
Nonetheless, caution should be exercised when comparing SS values between studies due
to the large number of baseline models. Comparisons can only be made meaningfully
when the persistence models agree on one of the persistence variables mentioned above.

To this end, it is worth noting a list of commonly used persistence models. One such
model is the “naive persistence” model, which assumes that the future forecast will be
identical to the last measured value. This model is particularly suitable for stationary time
series with minor variations, such as when the expected weather conditions are like those
of the previous day or when the forecast for the next hour is expected to be the same as
the current measured value. Given these characteristics, such models are usually most
appropriate for situations where little variation in observed patterns is anticipated.

For example, the persistence model used in [3], as reported in [4], is calculated using a
clear sky model. On the other hand, the persistence model proposed by [5] predics that
the solar energy will be equal to the last observation corrected by the clear sky index. The
authors of [6], on the other hand, employs a clear sky index model based on extraterrestrial
solar radiation. Meanwhile, Ref. [7] utilizes a two-day persistence model, where the
forecast power output at each hour is the value of the power generated at the same hour
two days earlier.
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Given the non-stationary nature of solar irradiance time series, the naive persistence
approach is often inadequate for intervals longer than one hour. To address this limitation,
a new approach has emerged, which is applicable not only for longer time horizons but also
for hourly intervals. Referred to as the “smart persistence” model, this method is reliable
in situations where there is low variability and for short-term forecasting. It involves
breaking down the solar power output into a stationary and a stochastic component. The
stationary component is usually assigned to the clear sky index. The stochastic component
is attributed to cloud-induced variations.

The method was first introduced by [8], where the stochastic component was incorpo-
rated into the power output. Since then, several authors have modified and implemented
the model in different ways. For instance, Ref. [9] added a solar power index that depends
on cloud cover, while [10] proposed a cloud speed persistence and ramp model to fore-
cast power output and ramp events using endogenous measurements of cloud motion
vectors. Similarly, Ref. [11] applied the smart persistence model, calculating the predicted
photovoltaic (PV) power output as a function of the clear sky GHI irradiance derived
from a Python package for solar power analysis. The method was also used by [12] when
comparing their SolarNet model with the same persistence model based on a cloud cover
index that they used in their previous research [13].

As demonstrated by the skill score (SS) equation, the performance of a forecasting
model can be evaluated using various error metrics regardless of which persistence model
is used for comparison.

Among these error metrics, the most used ones (ε) are Mean Bias Error (MBE), Mean
Absolute Error (MAE), Root Mean Square Error (RMSE), and Standard Deviation (STD).
These metrics were also employed in the studies reviewed above, where pi is the predicted
value, oi is the observed or measured one, and N is the number of measured instants. Rela-
tive values are calculated for individual days and the observed mean daily measurement
om is established as a reference.

• Mean Bias Error (MBE) is a metric appropriate for evaluating forecast bias by reflecting
the difference between the average value and the actual value of measured magnitude.
It is expected to be as small as possible.

MBE =
1
N
·

N

∑
i=1

pi−oi (2)

Relative MBE =
100%

om
·MBE (3)

• Mean Absolute Error (MAE) is a linear score which means that all individual differ-
ences are weighted equally in the average. It is a metric less sensitive to outliers than
the widely used RMSE and is appropriate for estimating uniform prediction errors.

MAE =
1
N
·

N

∑
i=1

|pi − oi| (4)

Relative MAE =
100%

om
·MAE (5)

• Mean Absolute Percentage Error (MAPE) is used to evaluate uniform prediction errors
such as MAE.

MAPE =
100%

N
·

N

∑
i=1

(
pi − oi

oi

)
(6)

• Root Mean Square Error (RMSE) measures the global error over the entire forecast-
ing period.
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RMSE =

√√√√ N

∑
i=1

(pi − oi)
2

N
(7)

Relative RMSE =
100%

om
·RMSE (8)

• Standard Deviation (std or SDE) is a relative measure of average dispersion that gives
an idea of the magnitude outliers mentioned above.

std =

√√√√ 1
N − 1

·
N

∑
i=1

((pi − oi)− MBE)2 (9)

Relative std =
100%

om
·std (10)

• Coefficient of determination (R2) is one of the most common statistical metrics for
characterizing model quality. It compares the error variance to the variance of the
modeled data.

R2 = 1 − var(pi − oi)

var(oi)
(11)

• KSI aims to quantify the model’s ability to reproduce observed statistical distributions.

KSI =
∫ xmax

xmin

Dn·dx (12)

where Dn is the difference between two cumulative distributions.
Regarding the above concepts, when the skill score is applied, such as in the case of

SS-MAE, the performance of a model is compared to that of persistence in terms of Mean
Absolute Error (MAE).

2.2. Measuring Sensors Used in Solar Irradiance Forecasting

As introduced earlier in this section, solar irradiance measuring sensors are often
used in hybrid prediction systems where they serve as backup technology and/or validate
data obtained from satellite, camera, or all-sky camera network images. However, the
sensors used to measure weather variables and solar irradiance have an even greater impact
when utilized as initial data inputs for numerical weather prediction (NWP), alongside
radiosonde and meteorological satellite data. In these models, the system of differential
equations is quite complex and can only be solved through laborious numerical methods.
This is why it is known as numerical prediction. Additionally, the amount of data required
for these models is enormous. These techniques were only developed with the advent of
computers, and they only began to achieve a certain degree of accuracy when computing
power significantly increased.

New studies are published every year with the aim of expanding the possibilities for
predicting solar radiation. One of the most recent studies [14] presents new prediction
models that use the latest available technology. Various studies demonstrate significant
progress in improving the efficiency of solar production through the prediction of irradia-
tion [15]. These results showcase the potential of solar forecasting methods to enhance the
effectiveness of solar energy production. Several noteworthy authors have implemented
direct measurement methods for weather variable forecasting. On one hand, Ref. [16] uses
present values of mean daily solar irradiance and air temperature to predict solar irradiance
for a 24 h horizon. Conversely, Ref. [17] utilizes adaptive linear models of solar power data
from 21 rooftop PV systems to forecast values for every hour up to a horizon of 36 h.
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In contrast, Ref. [18] takes irradiance values every 1 and 10 min from pyranometers
located at different sites to forecast at 2 h resolution. Another study by [19] collects
irradiance values from a weather station every 30 min and compares them to a set of
profiles representing the energy patterns. In another approach, Ref. [20] recommends
optimum locations for an irradiance sensor network to cover an area of 50 km × 50 km
with a prediction frame of 30 s to 6 h. Another recommendation is including the use of an
automated solar panel tracking system [21]. To obtain maximum solar energy, this system
ensures that the solar panel is placed at a 90-degree angle to the sun’s position.

Moreover, historical data from multiple sensor measurements such as irradiance [22–24],
air temperature [24–26], aerosol optical depth (AOD) [27–29], or relative humidity [24,29]
can be processed to predict solar energy output. By analyzing these historical measure-
ments, clear patterns can be identified, leading to more accurate predictions.

As the need for improved solar collection technology becomes increasingly pressing,
new methods for climate prediction are being developed. For example, one study [30]
focuses on developing automated methods to estimate the spectrally resolved normal direct
irradiance for solar energy applications. In another study [31], possible solutions to the
problem of sensors in the shortwave regime (0.2–2.5 µm) are evaluated by simulating the
spectral response to the standard AM 1.5 solar spectrum. These efforts demonstrate the on-
going commitment to advancing solar forecasting technology to improve the performance
of solar energy systems.

The effect of feature selection on solar prediction is also a crucial consideration. In [32],
learning models are applied to determine the significance of features in predicting direct
normal irradiance (DNI) data. Understanding which features are most important can
improve the accuracy and efficiency of solar irradiance forecasting models. To provide more
versatile and efficient systems, the use of backup or validation technology is becoming more
common in hybrid solar irradiance forecasting. In terms of solar irradiance forecasting, two
main systems distinguish themselves: hybrid satellite-sensors and hybrid camera-sensors.

In the field of hybrid satellite-sensors, several publications can be highlighted. First,
Ref. [33] proposes an ultra-short-term system that combines satellite imagery and weather
information to support cloud motion predictions, specifically by means of wind data. How-
ever, Ref. [34] compares GHI forecasts at time horizons of 30, 60, 90, and 120 min, utilizing
satellite imagery with the corresponding values measured by sensors at two different
locations. The authors of [35] demonstrate that combining a forecast using an artificial
neural network (ANN) model of ground-based data with satellite forecasts improves the
global accuracy for few-hour forecasts. Conversely, Ref. [36] evaluated 110 days of satellite
forecasts supported by ground-based measurements, specifically in San Diego, Califor-
nia. Additionally, Ref. [33] suggests an ultra-short-term GHI forecasting method by the
combined use of weather information and cloud cover controlled through the satellite.
The authors of [37] also contributed significantly by demonstrating that including satellite
average albedos in ground-based data forecasting leads to satisfactory improvements.

The use of measuring sensors in all-sky camera systems is also widespread, like in the
satellite case. For instance, one study [38] combines cloud cover forecasts of solar disc using
cameras with real-time ground-based measurements to extract parameters for forecasts.
Another study [39] applies 99 pyranometers distributed over an area from 10 km to 12 km
to validate a 2-month set of images. In contrast, Ref. [40] uses a network of pyrheliometers,
pyranometers, and a ceilometer at the Plataforma Solar de Almería in Spain to validate the
results of DNI maps obtained by all-sky cameras. Recently, this study has been extended by
the University of Oldenburg in Germany [41]. In addition, Ref. [42] uses historical power
values from solar panels combined with sky images as input for their neural network. The
authors of [43] place a pyranometer together with the cameras at each chosen location,
while [44] employs pyranometers, pyrheliometers, and ceilometers, as well as weather
stations at two energy centers in Newcastle and Canberra, Australia.

Sky cameras, along with computational algorithms, offer a promising approach to
predict and mitigate the impact of cloud cover on solar irradiance, as discussed in [45].
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Meanwhile, Ref. [46] provides insights into the factors influencing the performance of
ANN-based prediction models. In [47], all-sky image feature extraction is used to derive
regional and global weights, which are then integrated with a long short-term memory
(LSTM) training model to estimate solar irradiance. Furthermore, Ref. [48] introduces a
machine learning framework that leverages all-sky cameras and satellite observations to
enhance intra-hour irradiance forecasting.

Finally, as mentioned above, NWP models make use of the extensive data volume gath-
ered from various weather sensors and solar irradiance measurements. However, due to
the sheer number of models available, this text focuses only on authors who have reviewed
solar forecasting research based on the most widely used models [49,50]. These mod-
els include global-scale models like GFS (Global Forecast System) [51,52], medium-scale
models such as ECMWF (European Centre for Medium-Range Weather Forecasts) [53,54],
and small-scale models like MM5 (Mesoscale Model version 5) [18,55] and WRF (Weather
Research and Forecasting) [56,57].

2.3. Satellites

In contrast to the NWP models discussed earlier, image processing enables substan-
tially shorter-term horizon forecasts. Specifically, satellite imagery can be used for cloud
detection and characterization to predict GHI with an accuracy of up to 6 h in advance [58].

One of the primary advantages of using satellites for data collection is their ability to
capture large areas simultaneously, providing information on the spatial distribution of
data. This allows for a more accurate representation of the spatial evolution of the data.
With high spatial and temporal resolution, satellite imagery is an excellent data source for
forecasting events that will occur several hours in advance. In addition to the previous
section’s studies, several research projects have utilized satellite weather measurements
because of their higher spatial resolution in comparison to ground-based sensors. These
measurements are used as an initial condition for NWP models [59–61] or are directly
used for forecasting with shorter horizons than the models. For instance, one study [62]
attained a higher resolution than ground-based measurements by using satellite radiation
data, covering an area of 462 × 462 km with an approximate resolution of 11 × 11 km,
represented by 1764 gridded cells, which is equivalent to 1764 GHI sensors.

Several publications have achieved higher spatial resolution for solar forecasting by
utilizing satellite weather measurements, surpassing the resolution obtained with ground-
based measurement stations. For example, one study [63] used MODIS spectroradiometer
data from the TERRA satellite to derive land surface temperature (LST) and design an
accurate predictor for spatial horizons at a regional scale in Queensland, Australia. Another
study [64] utilized GHI measurements based on satellite data to test the predictive accuracy
of long short-term memory (LSTM) models at 21 locations, 16 of which were in Europe and
5 in the USA. Additionally, another publication [65] predicted incident solar radiation (ISR)
through the use of NASA’s satellite spectroradiometer input data, including land surface
temperature, cloud top pressure, cloud height, ozone, and water vapor, among others.

However, for the cloud monitoring provided by the imagery, much solar forecast-
ing research relies on sky captures from high-resolution satellite imagery. For example,
Ref. [66] proposes cloud motion estimations derived from Meteosat-9 cloud map images.
Alternatively, Ref. [67] combines MVIRI (Meteosat Visible and InfraRed Imager) images
with Meteosat satellite imagery (via the Heliosat model) to obtain the albedo calculations
and predict the effect of clouds on insolation. Furthermore, Ref. [66] suggests two methods
for extracting cloud motion vectors of daytime Meteosat-10 satellite imagery. Ref. [58], in
contrast, utilizes the Himawari-7 satellite of the Japan Meteorological Agency (JMA) to
forecast the cloud cover index by means of self-organizing maps (SOMs). Instead, Ref. [68]
provides one of the few high-latitude predictive studies that have been conducted by using
Meteosat Second Generation (MSG) Meteosat-11 imagery for forecasts of up to 4 h. Finally,
for readers interested in using geostationary satellites for cloud analysis, there is a wealth
of research available in this area, including a comprehensive review in one study [69].



Appl. Sci. 2024, 14, 5605 8 of 56

Finally, regarding the geostationary satellite application, there are combinations of
hybrid systems, less commonly used but equally valid as the ones mentioned above. For
example, in Ref. [70], a generalized model for forecasting solar irradiance from 25 locations
is explained by ground-based data extrapolated from a single location by means of satellite
measurements and weather forecasts. Other studies have also investigated the combination
of ground-based measurements, satellite measurements, and numerical models [35,61,71]

2.4. All-Sky Cameras

All-sky cameras have demonstrated high effectiveness in measuring relative sky
radiance, and their potential continues to be revealed each year through new studies. One
noteworthy example is a study that utilized multi-exposure techniques to showcase the
capabilities of these cameras [72].

As previously discussed, solar irradiance forecasting has primarily focused on two
approaches: physical models based on numerical methods for weather prediction (NWP)
and direct prediction utilizing real-time satellite images for cloud cover forecasts. However,
the limited resolution and uncertainty of initial conditions make NWP models invalid for
cloud forecasts at specific locations and times [4,73]. While NWP can provide information
days in advance, there are biases and random errors in irradiance predictions [74]. Various
studies have reported on the limitations of these two approaches [10,75,76].

As mentioned earlier, all-sky cameras and satellites are primarily designed to predict
cloud patterns and dynamics, and their generated images serve as a valuable tool for
solar forecast research. While numerous studies have explored this aspect (as seen in
reference [77]), the prediction resolution in both spatial and temporal domains has been sig-
nificantly improved using a more cost-effective system. This system provides a resolution
of a few kilometers, which is typically used in solar power plants, and a temporal resolution
of a few minutes. Since irradiance variability for short-term horizons has a significant
impact on solar power plants and, in turn, power systems, immediate prediction systems
based on high-resolution sky images can offer direct irradiance forecasts to optimize the
performance of solar power plants or solar farms, particularly in this scenario. These
systems are usually based on high-resolution digital cameras equipped with fisheye lenses
(“US6844991B2—Fisheye lens—Google Patents”, 2005) and a dome for weather protection,
see left part of Figure 1, as shown in the processing conducted in [78]. Hemispherical sky
images are obtained (180◦ field of view to which the distortion produced by the lens is
corrected [79–81] (see Figure 2)). In many cases, this is supported by pyranometers utilized
for validating prediction models and shadow-bands to avoid a direct solar arc view [82–84].

These enhance the average life of the camera sensor but can significantly reduce cloud-
tracking capability close to the sun; see the central part of Figure 2, which is the result of the
segmentation carried out in [85]. Instead, in cameras without these shadow-bands, as direct
sunlight is not blocked, the circumsolar region is influenced by glare effects resulting from
direct focus and for specific angles of incidence, and thus, a scattering may be produced in
the dome; see image of the all-sky camera associated to the left part of Figure 2. Otherwise,
there are advantages to employing non-weather-specific cameras, such as easy installation,
low cost, and no moving parts (solar tracker), with its corresponding apparition of robotic
arms in the images.

A modality that also avoids the lenses is based on images obtained from a reflection
of a convex mirror oriented to the sky [85–87] (see right part of Figure 2), which is also
the result of the segmentation carried out in [83]. The mirror can be designed to correct
lens distortion, which eliminates the need for software correction and corresponding
computational savings [88].
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Figure 2. All-sky camera modalities and associated images. This figure presents various modalities
of all-sky cameras, including examples of the images captured by each type.

Another option to avoid image saturation resulting from direct focus on the sun
(without using a shadow disc or band) but require a more expensive infrastructure and
more complicated maintenance are so-called shadow cameras. These are located on a
mast sufficiently high to record a complete panoramic view of the solar power plant. The
processing is now performed on images of solar irradiance maps, which are the result of
shadows cast by clouds on the solar farm [78,89,90].

Ongoing research aims to optimize these novel predictive methodologies by develop-
ing higher-accuracy data acquisition systems that obtain local information from solar power
plants. Two techniques have emerged in this context: the use of cameras that capture cloud
images for very short-term forecasting, and irradiance sensor networks. However, the latter
has a disadvantage, as it requires a large installation area for all the sensors to be sufficiently
far from the solar farm to obtain accurate cloud cover forecasts with adequate separation
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from each other. This prevents the redundancy of the obtained information. Unfortunately,
locating large areas near a solar power plant for such a system can be unviable in many
cases. Therefore, the use of cameras that capture cloud images provides a more feasible
option for acquiring local data, improving the accuracy of solar power plant forecasts.

In contrast, it is possible to obtain an accurate characterization of the cloud cover at a
given time and place with just a few cameras installed around a solar farm. Although to
obtain three-dimensional estimations it is essential to utilize at least two cameras, despite
this, it is still a lower-cost infrastructure in terms of investment and dimensions compared
to sensor networks.

Regarding the spatial horizon that can be covered by solar forecasts, two types can
be distinguished: Firstly, point forecasts, which predict solar occlusion by clouds and,
therefore, only process forecasts for the camera location. Secondly, forecasts that calculate
the height of the cloud base [91], an aspect that allows the cloud shadow projection on the
ground to be deduced [92].

The total prediction area covered by these systems depends on the configuration in
which the array of cameras is installed, typically ranging several kilometers.

However, a disadvantage of using a single camera is the inability to accurately charac-
terize multi-layer cloudy sky conditions due to its limited 2D view [93,94]. In cases where
the system is equipped with multiple cameras, methods have been developed to model
clouds in three dimensions and account for up to four different heights.

In this regard, geolocation of clouds can be achieved by stereoscopic approaches [95] or
via complementary remote sensors to calculate cloud heights (ceilometers [96,97]) [39,98,99].

Typically, the research that calculates cloud height via multi-camera systems aims
to use this information to perform a cloud projection over a solar farm, i.e., so-called
solar irradiance maps. For example, Ref. [40], spatially distributed four all-sky imagers
to estimate predictions by means of individual 3D models for each cloud, extracting
characteristics such as height, position, surface, volume, transmittance, motion vector, etc.
The same author [98,100], a year later, downscaled the system to two 3 megapixel (MP)
cameras to correlate height measurements with transmittance measurements of the clouds
by employing pyrheliometers.

Alternatively, Ref. [101] separates 4 cameras at 500 m and 900 m distances from each
other in order to produce sets of DNI maps every minute in a 30 km × 30 km region at a
spatial resolution of up to 10 m. Meanwhile, Ref. [102] proposes a network of three cameras
to provide sufficient coverage for a 32 MW photovoltaic solar power plant, which estimates
the height and motion of each cloud layer based on the multiple images obtained. Moreover,
Ref. [90] suggests a 4-camera system (WobaS-4cam, 3 MP and 6 MP) to obtain irradiance
maps in a 50 MW solar field, which are evaluated with a shadow camera reference system.

In relation to single-camera systems, investigations commonly focus on cloud tracking
and/or classification in order to predict the instant when the sun will be covered. For exam-
ple, Ref. [94] utilizes a professional all-sky imager consisting of a camera (640 × 480 pixels)
pointed at a spherical mirror (420 × 420 pixels) that reflects the sky image, by which it esti-
mates future cloud motion. Alternatively, Ref. [44] uses one IP camera per site (Newcastle
and Canberra, Australia) to predict the time period covered and its duration. Similar is the
equipment used in [43] which, by employing two 3.1 MP cameras, one per site (Merced
and Folsom), combines sky images with irradiance measurements to classify three future
sky conditions: clear, cloudy, and partly cloudy.

In addition, Ref. [42] takes images from a 1280 × 1280 pixels camera at 180 m from a
solar panel and with different exposition times (11,88,176,264 ms) to predict the short-term
power output of the solar panel. Meanwhile, between 2016 and 2017, Cheng performed
various studies [103–105] always utilizing a 640 × 480 pixels camera in conjunction with
irradiance readings to forecast fast motion clouds, characteristic of a maritime climate, at the
National Taiwan Central University. Finally, Ref. [42] uses images from a 2592 × 1744 pixels
all-sky imager and 99 pyranometers distributed over 10 km × 12 km to predict different
cloud scenarios. It is also very important to take into account the configuration of the
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cameras. Recent studies have highlighted the importance of certain relevant aspects of all-
sky cameras, such as their angular calibration, and how it impacts the results obtained [106].
Additionally, other studies have demonstrated the wide range of applications of this
technology [107].

In order to analyze how many all-sky cameras have been used in the above-mentioned
studies, Figure 3 has been developed showing the number of all-sky cameras used in each
location. In this way, it will be possible to know in which areas these cameras are most
used to carry out these investigations.
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extent of survey coverage.

To expand upon the investigations cited in this section, Table A1 is included in
Appendix A, which details each of the studies, the objectives set, as well as the type
of data used for it, and the final results obtained, which, in turn, are measured and com-
pared with certain models and specified error metrics. Table A1 includes only the research
that innovates with a solar irradiance predictive model (excluding research that is limited
to evaluating and comparing models), or those studies involving concepts that support the
subject of this article, such as, for example, those concerning the distortion correction of
fisheye, the amount of aerosol in the atmosphere, or cloud profiles.

In order to analyze the location of the solar forecasting studies shown in Table A1,
Figure 4 has been developed. This figure shows a map indicating the number of studies
carried out at each location. In this way, we can know how many studies have been
developed in different locations.
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3. Review and Evaluation of Solar Irradiance Forecasting Methods

This section presents a study of various research studies that have utilized the tech-
nology explained earlier, categorized based on the methodology employed to obtain solar
irradiance forecasting.

To ensure a comprehensive and relevant review, we established specific inclusion and
exclusion criteria for the selection of studies. The inclusion criteria were as follows:

• Studies published in peer-reviewed journals and conferences from 2000 to 2024.
• Studies employing advanced methodologies such as statistical regression, artificial

intelligence, numerical models, and image processing techniques.
• Research that provides quantitative performance evaluations using standard error metrics.

Exclusion criteria included the following:

• Studies not available in English or Spanish.
• Papers that did not provide sufficient methodological details or performance metrics.
• Research focused solely on theoretical models without practical implementation or

validation. These criteria ensured that the review covered a wide range of relevant and
high-quality studies, providing a robust basis for the comparative analysis presented.

The complexity of physical processes involved in atmospheric dynamics and the
interaction of solar radiation with the atmosphere has hindered the development of a
single, universal model for solar irradiance forecasting. The various physical factors that
influence the solar irradiance received, particularly cloud conditions, make it necessary to
differentiate between models. Solar forecasting techniques can be classified into three main
categories based on the input data utilized: NWP-based models, statistical and machine
learning techniques, and image-based methods. Hybrid methods that incorporate elements
from each of these categories and apply various techniques can also be included within
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this classification. The NWP-based methods are well accepted for a spatial resolution of
between 10 and 100 km2 [108] and forecasts 6 h ahead; thereby at six to seven days the real
accuracy is already estimated to be only 60% [109].

On the other hand, statistical and machine learning models use historical data to
perform deep learning of features, particularly atmospheric features. The training model
then provides forecasts based on new values of the input variables, making these models
applicable for a wide range of temporal and spatial horizons, being utilized mostly in
hourly forecasting studies. Meanwhile, image-based methods, as discussed in the previous
section, employ all-sky cameras, shadow cameras, or satellite imagery mainly for cloud
segmentation and tracking. Shadow cameras are suitable for intra-hour forecasting and
a spatial resolution of a few to hundreds of meters, while satellite-based methods are
advantageous for a forecast horizon varying from 30 min to 6 h and a spatial resolution
of about 1 km2 [110]. This classification is summarized in a forecast classification by time
horizon, in which the nowcasting, short-term forecasts, and forecasting techniques are
differentiated and illustrated in Figure 5.
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Figure 5. Forecast method classification by spatio-time horizon. This figure categorizes various
forecast methods according to their spatial and temporal horizons. It provides a clear framework for
understanding the different types of forecasting techniques, ranging from short-term to long-term
forecasts, and their spatial scopes.

In this section, the approaches presented in the literature for each of the aforemen-
tioned techniques will be reviewed, as well as the researchers who have combined them to
create hybrid models. Moreover, the nowcasting technique using ground-based cameras,
specifically all-sky cameras, through image processing will be evaluated in more depth,
building on the previous section.

3.1. Statistical Methods

Statistical methods rely on data to extract associations from historical data and predict
future behaviors. Therefore, the accuracy of the forecast depends on the reliability of the
historical data. Selecting a suitable training dataset is a crucial factor in achieving accuracy
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in the developed model. Additionally, a large historical dataset is typically required because
these methods benefit from the ability to correct errors associated with imprecise input
data measurements [111].

There are two distinct approaches based on historical solar irradiance data. The first
approach involves regression methods that statistically analyze time series data, while the
second approach involves non-linear artificial intelligence (AI) methods.

3.1.1. Regression Methods

This set of techniques tries to find the association between a dependent variable (GHI,
DNI, DHI solar generated power, etc.) and independent variables (predictors), based on
statistical analysis. Depending on a time series treatment, different techniques can be
applied: stationary or non-stationary, linear or non-linear. The most relevant techniques
studied by researchers are the following:

Stationary linear models. Studies based on these models usually propose approaches
using autoregressive models AR (regress the dependent variable on lags of itself in time
period t), or derived more generic models, such as the ARMA autoregressive moving
average model (historical values are considered as errors) [37,112], ARX models (AR with
exogenous inputs) [17] or its adaptation VARX (vector ARX) [113], and the ARMAX model
(ARMA with exogenous variables) [114].

Non-stationary linear models. In the analysis of a non-stationary time series, the main
ones are as follows: the autoregressive integrated moving average model ARIMA (using
data variances and regressions) and SARIMA (Seasonal ARIMA) [115], in which a seasonal
component is introduced [116].

Stationary non-linear models. These can be obtained mainly by means of the Non-
linear Autoregressive Models with Moving Average and Exogenous Input (NARMAX)
model, which achieves unbiased estimates in the presence of non-linear noise [117].

3.1.2. AI Artificial Intelligence Techniques

AI techniques have generated a great deal of interest in solar irradiance forecasting
research due to their breakthroughs in optimization, pattern recognition, and classification.
The most used AI techniques in irradiance forecasting are as follows:

Artificial neural networks (ANNs). These are the most widely used machine learning
techniques in solar power forecasting. The most common are MLPs, multi-layer perceptron
structures, but due to the large number of topologies, it seems appropriate to propose only
publications that review the solar forecasting techniques by the ANN, for example, [118–120].

k-Nearest neighbors (k-NN). It is one of the simplest machine learning methods; thus,
for renewable energy forecasts, the prediction about future outcomes is based on historical
data with a similar time of day and weather conditions.

Deep learning (DL). Compared to traditional machine learning approaches, DL can
perform feature extraction by itself and the improvement of learning performance is
proportional to the dataset increase; therefore, it properly solves situations involving a
large amount of data and hence, it is an effective technique in weather prediction. Various
DL techniques can be highlighted in the field of solar forecasting, such as the restricted
Boltzmann machine (RBM), deep belief network (DBNs), the automatic encoder AE, its
stacked version (SAE), LSTM networks, stacked LSTM networks and convolutional neural
networks (CNNs) and deep convolutional neural networks (DCNNs). For readers interested
in this field, there are studies available that compare deep learning (DL) techniques for
solar irradiance forecasting. Some examples of such investigations are in [121–123].

Mycielski graph-based models are used for prediction. In [124] a Mycielski-based
model is proposed which considers the hourly recorded solar radiation data as a matrix
and, starting from the last recorded value, tries to find the most similar submatrix pattern
in history.
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Support vector machines (SVMs). Compared to the k-NN, SVMs operates effectively
with small sample sizes while the k-NN is more sensitive to the size increase in the training
dataset [125].

Random forest (RF). This has been widely used in many prediction fields due to its
high tolerance to low information and improved fitting ability [126].

Markov chains. Normally utilized in hybrid systems, they has been widely used to
generate sequences of the solar irradiance data, as well as to predict the daily global solar
irradiance data by combining typically with neural networks [127].

Coupled autoregressive and dynamical system (CARDS). This model has been used
in the literature for probabilistic predictions based exclusively on endogenous data. This
model is characterized by decomposing GHI as the sum of a cyclic term and an autoregres-
sive term [128–131].

Numerous studies have investigated the effectiveness of combining or comparing
different techniques in a hybrid system. Research studies such as [131,132] have compared
machine learning models with AR models, demonstrating the potential benefits of hybrid
systems in forecasting and prediction tasks. In addition, Ref. [133] developed a forecasting
model for solar power generation by combining ARMA with ARIMA. These studies
illustrate the diverse range of techniques utilized to forecast solar radiation and highlight
the potential benefits of utilizing a combination of techniques for enhanced accuracy
and reliability.

Different approaches have been proposed for solar irradiance forecasting, including
data-driven methods and Markov switching models. For instance, Ref. [134] applies data-
driven approaches such as the boosted regression tree (BRT), ANNs, and SVM boosted
regression trees, as well as benchmarks with the AR and ARX models.

Meanwhile, Ref. [135] presents the comparison of Adaptive Neuro Fuzzy Inference
System (ANFIS) and Autoregressive Moving Average with eXogenous term (ARMAX) in
forecasting global solar radiation.

Wavelet neural networks (WNNs). WNNs have improved generalization properties
compared to ANNs, making them more suitable for modeling high-frequency signals such
as local transients and intermittency [136–138].

Ref. [139] presents a solar irradiance forecasting method for remote microgrids based
on the Markov switching model to schedule the energy resources in these microgrids.
Moreover, Ref. [140] proposes a robust deep learning approach based on an automatic
encoder-triggered recurrent unit (AE-GRU) for short-term solar energy forecasting. These
various techniques can potentially enhance the accuracy and reliability of solar irradiance
forecasting, highlighting the need to explore and compare different methods to improve
the performance of such systems.

In contrast, several research studies have employed machine learning or deep learning
techniques, either independently or in combination with some of the techniques previously
discussed. This is due to the vast amount of data that needs to be processed. These
approaches demonstrate the versatility and adaptability of these techniques in managing
large and complex datasets for accurate solar radiation forecasting. A prime example
is [141], which suggests a convolutional long short-term memory (CLSTM) system that
combines a deep learning convolutional neural network CNN with an LSTM network.
Following this line, in [142], a spatio-temporally bound deep network based on CNNs and
LSTM is proposed and in [143], a spatio-temporal solar radiation prediction model based
on a convolutional graph network and LSTM is proposed.

For instance, Ref. [144] designs a model in which the deep neural network (DNN)
uses the reconstructed values estimated by four LSTM models with temperature data
and statistical characteristics to predict PV power values. Ref. [145] uses a CNN-assisted
deep echo state network that uses multiple time-scale dynamic learning repositories to
generate short-term solar power forecasts. However, Ref. [146] associates the deep learning
algorithms such as DBN and AE with LSTM to compare forecasts of a standard MLP in
21 solar power plants. Ref. [147] evaluates four scenarios (long window, short window, a
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Principal Component Analysis (PCA), and a clear sky model) with three typical forecast
horizons by means of an irradiance database combined with the information measurements
and an extreme learning machine (ELM).

However, Ref. [148] follows feature extraction with a convolutional autoencoder and a
K-means clustering algorithm compares and analyses the results with CNN, LSTM, and
ANN models. Ref. [42], instead, compares MLP, CNN, and LSTM models using historical
photovoltaic power values and sky images as the input. Ref. [149] proposes a deep CNN
with a hybrid data input composed of sky images and PV panel output data.

In addition, there are studies that propose innovative hybrid approaches to predict
global solar radiation (GSR). For instance, Ref. [150] introduces a new 4-phase hybrid
CXGBRFR framework that combines a deep learning convolutional neural network, ex-
treme gradient boosting with random forest regression, and a Harris Hawks optimization
for initial function selection. Similarly, Ref. [151] compares several AI-based alternatives,
including MLP, Random Forest Regressor, and Gradient Boosted Trees, to predict cloud
shadow locations over solar panels. These studies showcase the continued efforts to de-
velop and improve hybrid approaches that leverage the strengths of different techniques to
enhance solar radiation forecasting.

In general terms, the common methodology of research utilizing machine learning
and deep learning coincides with that illustrated in Figure 6.
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To conclude, publications comparing and evaluating AI techniques for solar forecast-
ing are also provided [152–155].

3.2. Numerical Models

Ground-based pyranometer stations cannot provide full coverage, and traditional
statistical models based on time series have limited applicability, making numerical weather
predictions (NWPs) a viable alternative on a global, regional, and national scale. NWP
involves modeling the temporal development of the atmospheric state using differential
equations that describe the physical laws of climate. Data from radiosondes, meteorological
satellites, and ground-based meteorological observations are utilized for this purpose.
These observations are processed using data assimilation and analysis methods, which
perform quality control to obtain values that can be used by the mathematical algorithms
of numerical models. These algorithms are typically based on a uniform spacing grid. The
resulting data are then used as a starting point for forecasting. The set of equations used in
NWP are known as the primitive equations.

In terms of size and grid spacing, numerical weather prediction models are typically
differentiated by their spatial scale. Additionally, a variety of methodologies are employed
in the development of these models, resulting in a multitude of different models. Some
noteworthy global and regional models include the Global Forecast System (GFS), the
National Oceanic and Atmospheric Administration (NOAA), and the European Centre for
Medium-Range Weather Forecasts (ECMWF). Mesoscale models such as MM5 and WRF
are also widely used.

Irradiance forecasts vary in their models, with differences in data assimilation tech-
niques (such as 3D-Var, 4D-Var, and EnKF), the number of vertical layers of the atmosphere
handled, consideration of concentration values for aerosol, H2O, O2, O3, and CO2, the num-
ber of parameterizations for different physical processes, and the degree of sophistication
of scattering/absorption schemes used, as well as the number of updates per day and loop
time steps. Independently of the spatial resolution that different methods may provide, the
solar forecasting research that is exclusively based on numerical models generally performs
this when searching for forecasts at a time horizon longer than 6 h, whereas, if the aim of
the study is a shorter forecast, the numerical methods are applied as backup systems to
improve accuracy.

There are a number of studies that utilize forecasts provided by various numerical
models to evaluate the effectiveness of different forecasting methods. For instance, Ref. [156]
shows the importance of developing a seasonal and site-specific model output statistics
(MOS) approach to improve forecast accuracy in the evaluation of the GHI forecasts from
the WRF model in southern Nevada. In addition, Ref. [157] evaluates the irradiance forecast
accuracy at time horizons of about 24 h from the ECMWF model and demonstrates that
NWP forecasts can be an essential tool for the operation of solar power generation systems.
The same author of [53] goes on to describe the use of various post-processing methods,
especially multivariate regression models, in numerical ECMWF forecasting for day-ahead
forecasts. Moreover, Ref. [158] analyses performance improvement by incorporating hourly
aerosol estimates into the ECMWF model, while Ref. [159] proposes a method to forecast
the GHI and DNI up to 6 h in advance by inserting the Meteosat Second Generation (MSG)
cloud index estimates into the vertical layer of the WRF model.

On the other hand, there are several studies that use numerical models as a verification
or backup system for other methods. For instance, Ref. [160] supports the use of a stochastic
differential equation model with an NWP for modeling the uncertainty associated with
a GHI forecast. Similarly, Ref. [161] establishes a methodology to shorten the 24 h fore-
casts provided by the WRF model through an ANN technique. Ref. [162] combines three
implementations of the WRF model with multivariate statistical learning techniques.

Alternatively, other studies present an approach for short-term solar irradiance fore-
casting based on the Physical Solar Model (PSM) v3 in combination with machine learning
models. For example, Ref. [49] suggests a hybrid forecast based on gradient-boosting re-
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gression and bootstrap aggregation machine learning models. Similarly, Ref. [163] proposes
a hybrid forecast based on the GB gradient boosting method, but in this case, it utilizes the
GFS model. Additionally, Ref. [121] evaluates their PV forecasting method with processed
historical data using three different mesoscale, global, and regional numerical models
(North American Mesoscale (NAM), GFS, Short Range Ensemble Forecast (SREF)).

In contrast, Ref. [164] proposes a corrective algorithm to improve the GHI forecasts
given by the ECMWF using ANNs. Ref. [165] presents a hybrid forecast model (Hybrid
WT-PSO-SVM) that combines wavelet transform, particle swarm optimization, and the
SVM with the data from numerical models such as COSMO, WRF, RAMS, and MM5.

Several studies compare numerical models with each other to assess their accuracy and
reliability. For example, Ref. [166] analyzes three leading models in Australia, namely GFS,
the Australian Community Climate and Earth-System Simulator (ACCESS), and ECMWF
Reanalysis v5 (ERA5). Ref. [167] evaluates models such as SolarAnywhere, ECMWF, GFS,
high-resolution rapid refresh (HRRR), and the national digital forecast database (NDFD),
as well as satellite-based cloud motion.

3.3. Image-Based Methods

As introduced in the preceding section, the numerical prediction models have the
potential to provide forecasts by simulated clouds at high spatial and temporal resolutions.
However, the forecast performance during the first 12–24 h is influenced significantly
by the cloud analysis accuracy and initial thermodynamic conditions. Due to non-linear
cloud processes and their associated effects on radiation, the numerical models tend to
underestimate low clouds (typically stratus clouds and coastal regions) and, therefore, lose
accuracy in the solar irradiance forecasting at the surface [168].

Accurately predicting the extent, motion, formation, dissipation, and transmittance
of constantly changing clouds is a complex and unrealistic task for solar forecasting ap-
plications on medium time scales. Cloud condition imagery, captured through satellites,
imagers, or all-sky cameras, offers excellent data for short-term forecasting or nowcasting
due to its high spatial and temporal resolution. This type of imagery is particularly useful
for improving the control of the significant impact that clouds have on the solar irradi-
ance reaching the Earth’s surface. When compared to numerical models or time-series
forecasting, cloud condition imagery is a superior source of data for accurately predicting
the immediate effects of clouds on solar irradiance. Solar irradiance forecasting models
based on image processing commonly utilize two techniques: the clear sky index and
cloud motion vectors. The application of motion vector fields directly on the cloud cover
coefficient allows for the accurate prediction of solar irradiance forecasts from images. By
combining these two methods, solar irradiance forecasting models can more accurately
predict changes in solar irradiance caused by cloud movements.

The following sections will present a review of research that utilizes sky imagery,
regardless of whether the traditional method mentioned above is followed. The studies
will be logically differentiated between those that use satellites as an image source and
those that employ cameras to take images from the surface.

3.3.1. Satellite Imagery

From a quantitative perspective, a satellite image is a measurement of the radiance
emitted or reflected by the Earth–atmosphere system, integrated over a specific wavelength
range, time instant, and spatial window. For solar irradiance forecasting, the most com-
monly used satellite imagery includes thermal infrared images, water vapor-based cloud
coverage images, and visible light spectrum images that capture surface albedo and cloud
reflection. These images provide a wide range of analyses, containing valuable information
for predicting solar irradiance.

This includes cloud characterization, as well as other factors that influence the forecast
such as wind direction and the Earth’s surface albedo. In terms of cloud appearance
and shape, geostationary satellite imagery provides information on cloud amount, shape,
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and thickness. Additionally, AMV (Atmospheric Motion Vector) images offer insight into
atmospheric motion, including wind direction and speed in the lower, middle, and upper
wind fields. Furthermore, satellite irradiance imagery is of particular interest in the field of
solar energy; these are based on the amount of reflected light intensity from the ground,
and thus irradiance can be combined with module temperature to forecast photovoltaic
power generation [169].

In this regard, researchers who use satellite imagery as input data typically utilize one
or more of the aforementioned types of imagery. As an example, Ref. [170] developed a
short-term forecasting model for solar irradiance ramps by generating irradiance maps
through the projection of cloud maps obtained from satellite imagery. The model then
estimates the evolution of the moving cloud projection based on wind data from NWP
(numerical weather prediction) models. In contrast, Ref. [68] creates a GHI forecast model
by combining information from the clear sky model of Pvlib Solis with consecutive images
from the geostationary meteorological satellite by applying the Heliosat method. Ref. [171]
develops a GHI and DNI forecast algorithm by deriving cloud motion vectors and utilizing
the clouds’ physical properties through infrared and visible spectrum imagery. Ref. [172]
presents a prediction model based on deep neural networks to predict the amount of solar
energy potential using geostationary satellite image data in units of one hour for more than
7 years. Ref. [34] introduces a GHI forecasting approach based on satellite observations
and ANN networks; thus, the satellite images that are processed via the algorithms for
velocimetry and cloud indexing are utilized as inputs to the ANN model.

In comparison, Ref. [173] estimates the three radiation components using MSG satellite
imagery and the Heliosat-2 model and achieves this by calculating the attenuation for any
sky condition and the present estimated value compared to the value of the previous
15 min. However, Ref. [58] provides a study in which they designed an (ELM) extreme
learning machine model to forecast the incident solar radiation (ISR) by means of extracted
data from the imaging spectroradiometer satellite and applied this to 41 uniformly dis-
tributed locations. Ref. [174] developed a solar irradiance mapping model that utilizes
feature importance analysis to calculate terrestrial solar irradiance using only satellite data.
In a similar vein, Ref. [175] employs satellite imagery in their forecasting algorithm by
testing various variables, such as the clear sky index Kc, the solar zenith angle (SZA), the
surrounding cloud pattern, and North Atlantic weather regimes as predictors.

Moreover, several publications have compared satellite results with those provided
by regional-scale numerical models, as seen in [176] in Korea. Additionally, some studies
have compared satellite results with those obtained from ground station measurements,
such as [70], which compared results at 25 locations in the Netherlands, and [177], which
employed Meteosat East for comparison.

3.3.2. All-Sky Images

To obtain a forecast with higher temporal resolution than that provided by satellites,
statistical techniques such as time series analysis or neural networks can be applied to
radiometric measurements on the surface or motion vector techniques on all-sky camera
measurements. This is necessary as global model information is not available for these
time horizons.

When investigating all-sky cameras, both mirrored and non-mirrored as well as
shadow disc or non-shadow disc configurations often face a common initial challenge:
cloud characterization. Clouds can scatter and absorb radiation, which affects radiation
attenuation. The degree of attenuation depends on cloud micro- and macro-physical
properties, making it difficult to accurately segment and classify clouds for estimating
cloud attenuation when the sun passes over them. Therefore, this task is not a trivial
endeavor [178].

Moreover, investigations can obtain cloud detection and tracking from all-sky imaging
information. In fact, some authors even classify and characterize clouds to improve the
accuracy of predicting the degree of occlusion as they pass through the solar disc.



Appl. Sci. 2024, 14, 5605 20 of 56

Cloud segmentation in all-sky images is a critical task for any forecasting system.
However, it is a complex task due to the variability of color and intensity caused by a
range of factors. These include different cloud types and layers, sun positions, aerosol
interference (e.g., pollution, dust), as well as saturation and glare effects in the circumsolar
region. To characterize aerosols, the Linke turbidity is calculated based on direct normal
irradiance (DNI) or global horizontal irradiance (GHI) measurements using the Linke
turbidity model [179].

To overcome the challenges of cloud characterization, researchers have made efforts
to improve the accuracy of cloud segmentation and classification. Various approaches have
been proposed in the literature, such as using neural networks, correlation between RGB
(Red Green Blue) or RBR (red–blue ratio) channels, and SVM classifiers. These approaches
have been validated and discussed extensively in the literature.

Cloud detection and segmentation algorithms have traditionally relied on fixed thresh-
olds applied to RGB values of images [180–188], the red–blue ratio (RBR) [42,43,46,47,104],
or comparisons with clear sky libraries (CSLs) [108,189,190]. While this approach performs
well in most conditions, difficulties arise in cases of very dark clouds and foggy conditions
near the sun. Accuracy is also limited when the color temperature of the sky changes
significantly, such as near sunrise and sunset [44]. To address these challenges and reduce
reliance on fixed thresholds, machine learning approaches were developed [191–193], as
well as adaptive threshold methods such as MCE (Minimum Cross Entropy) based on
Otsu’s algorithm [194].

The MCE classification algorithm was developed and tested in [187] as part of an HYTA
(hybrid thresholding algorithm). The MCE algorithm selects a threshold by minimizing
cross-entropy between the original and segmented image, generating a robust and unbiased
method for image histograms. Ref. [34] also utilized the MCE method and concluded that
the threshold value must be limited within an estimated interval of the training set. After
determining the threshold, pixels with an RBR higher than this threshold are classified
as cloudy. Building on these studies, Ref. [43] developed a hybrid system that combines
the MCE method with the FTM (fixed threshold method) and the CSL (clear sky library).
The study uses the FTM and MCE method for cloud detection and the CSL to address
image glare.

The CSL method is a database of clear sky images for the different solar zenith angles.
It is widely applied to remove the geometric variation of clear sky RBR values that depend
on the sun pixel angle and zenith angle. This is achieved by subtracting or compensating
the RBR of the input image by the CSL RBR reference corresponding to the same zenith
angle [195]. Very typically, for cloudy images, the pixels in the circumsolar region are
incorrectly identified as sky pixels due to this CSL compensation. In order to account for
this effect, the Haze Correction Factor (HCF) is iteratively used to correct the images before
applying the cloud identification [188,196].

The FTM method is one of the fixed threshold methods for the RGB values introduced
above. It is based on the fact that cloud pixels have higher red intensity (R) values than sky
pixels [43]. In general terms, the segmentation is more manageable for single-layer clouds,
and preferably for optically thick cumulus clouds, low turbidity, and high solar elevations,
due to the high contrast. Instead, optically thin clouds are a considerable challenge for all
the segmentation approaches.

An illustrative example of results from the correction processing, segmentation, and
motion vector generation is presented in Figure 7 by using the results presented [43].

When low solar elevation and a high Linke turbidity factor occur simultaneously,
the blue color of the sky becomes low in saturation and appears as a whitish-grey color.
Segmentation in these conditions becomes challenging even for a human observer, as only
partially illuminated clouds contrast enough with aerosol layers to be distinguishable from
each other [40]. Several studies have discussed the reduced boundary between clouds and
aerosols in such cases [197–199]. Cloud classification is a valuable task for researchers due
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to several reasons. For instance, it can help identify different cloud types, detect vertical
growth, and determine if multiple layers are present within a cloud.
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Figure 7. An example of the segmentation and generation of motion vectors. This figure demonstrates
the process of segmentation and the generation of motion vectors. It illustrates how images are
segmented and how motion vectors are created, which are essential for analyzing dynamic changes
in the observed scene.

On one hand, the vertical cloud profiles contain important information for the different
cloud types [190,191]. Clouds can be classified into different types based on their height in
the atmosphere. The troposphere, the lowest layer of the atmosphere, is typically divided
into three levels: lower, middle, and higher.

Some clouds, such as nimbostratus (Ns) and deep convective clouds, may extend over
multiple layers of the troposphere. The boundary between layers is not static and can vary
depending on the latitude of the planet, as well as where a cloud is located. As such, some
authors divide the planet into three latitude belts: polar, mid-latitude, and tropical. Each
belt has its own associated interlayer boundaries [200].

In [201] the accuracy of the cloud height measurements with two layers, derived from
the Atmospheric Infrared Sounder (AIRS), is investigated and measured over a period of
five days of observations.

Cumulus (Cu), stratus (St), and stratocumulus (Sc) clouds are associated with the
lower level of the troposphere. These clouds are typically low-lying and can cover large
areas. Altocumulus (Ac) and altostratus (As) clouds are associated with the middle level of
the troposphere and are typically found at higher altitudes than lower-level clouds. Cirrus
(Ci), cirrocumulus (Cc), and cirrostratus (Cs) clouds are associated with the higher level of
the troposphere and are typically found at very high altitudes. These clouds are thin and
often appear wispy or feather-like [202].

Conversely, the optical properties of clouds play an essential role in determining their
impact on the atmosphere’s radiation budget. Clouds have distinct optical properties that
can vary depending on factors such as the size and shape of cloud particles, water content,
and vertical extent. These distinct properties describe different attenuation degrees, mainly
due to the absorption and scattering that occurs in the cloud [203].

The attenuation caused by the clouds is described by the cloud optical thickness (COT),
which depends on the micro- and macro-physical properties of a cloud. These properties
include particle size distribution, shape, water path (WP), thermodynamic phase, and
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vertical extent [190]. In [204] modern methods of passive remote sensing of water and ice
clouds are discussed.

The water path (WP) of a cloud is a crucial parameter in determining its COT. The
WP describes the vertically integrated water content (WC) and effective particle size of a
cloud [205]. In particular, low- and mid-layer clouds generally have a considerably larger
global WP than high-layer clouds, making the WP parameter especially significant in
understanding the optical properties of clouds. Furthermore, the effective particle size of a
cloud is also an important factor, as a larger particle size leads to higher absorption, while a
smaller particle size increases scattering [206].

Current cloud detection and classification methodologies vary depending on the
research aim. A review of the current cloud detection and classification methodologies is
provided by [207]. In most cases, researchers can fine-tune the degree of cloud classification
to fit within their parameters. For example, many investigations that aim to predict
occlusion-type or ramp-down-type events in a solar farm generally use a simpler cloud
classification system. This system may only distinguish between cloud and no-cloud
types [103–105] or may use categories such as clear, partly cloudy, and cloudy [49–51].

An occlusion event occurs when the sun is covered or obscured by clouds when they
move into the sun’s location in the sky. In contrast, ramp-down events occur when the
irradiance drops drastically in a short time interval. Both events can be predicted using
cloud tracking and clustering data and are critical in solar power forecast scenarios. If the
predicted solar power is not sufficient to be delivered to the utility, the PV operator may
need to initialize alternative energy sources. As such, it is clear that these events can have a
significant impact on solar power generation and the overall efficiency of solar farms.

In contrast to the simpler cloud classification discussed above, studies that aim to
predict the attenuation levels more accurately focus on a deeper classification of cloud type.
Various research exemplifies these deeper and more complex cloud-type classifications.
Several studies classify clouds and conditions into three distinct classification groups.
Ref. [208], for example, distinguished cirriform, cumuliform, and waveform clouds with a
90.97% accuracy rate via infrared images. A similar classification case can be seen in [209].
This study used an SVM and a BPNN (back propagation neural network) to classify three
cloud conditions per pixel.

Alternatively, clouds may be classified into four groups. For instance, Ref. [82], divided
clouds into four types based on their transmittance index. Likewise, Ref. [191] opted to
unify several cloud types into four groups to avoid incorrect classifications and achieved
satisfactory results with various classifiers, such as using an MLP (multi-layer perceptron)
and an SVM (Support Vector Machine). These several cloud types were based on the cloud
classification published by WMO in 1987 (WMO, 1987). However, it should be noted that
the accuracy in this study was reduced when cirrus clouds appeared. This decrease in
accuracy is due to the cloud’s thin parts, which are easily confused with clear skies, and in
other cases, to the brightening effect of the regions around the solar disc.

There are some studies that divide clouds into even more complex groups. Ref. [210]
utilized five different feature extraction methods in an automatic training classification
system to recognize cumulus, towering cumulus, cumulonimbus, clear sky, and other
clouds. In this study, autocorrelation, cooccurrence matrices, edge frequency, Law’s features,
and primitive length were used. Ref. [181] extends the classification from five groups to
seven cloud types by means of the k-NN (k-nearest neighbor) classification algorithm. This
algorithm is best for recognizing clear sky conditions and cirrus clouds. It is found in
Heinle’s study that the most confusing causes for inaccuracy are low-cloudy conditions
(lower than 30%) and the glare effect of the circumsolar region. To improve the classification
of seven cloud types proposed by Heinle, Ref. [39] applied an SVC support vector classifier.
Moreover, Ref. [184] highlights Heinle’s seven cloud classification model, detecting these
types successfully in 78 to 95% of the cases.

Finally, Ref. [211] references up to eleven cloud types at high resolution. For such
numerous classifications, the main issues arise from three cloud types: stratocumulus
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with altostratus, cirrostratus, and stratus clouds. This complication is due to a mutual
transformation between the three cloud types. Despite this, the same classification is also
proposed by [39]. This study achieved an accuracy of 92% after a ten-fold cross-validation.
However, the accuracy is low for cirrus and cirrostratus clouds as the RBR threshold is not
able to distinguish properly.

After cloud segmentation and classification, the velocity and direction of cloud motion
are typically determined using a cross-correlation method (CCM) applied to two consecu-
tive sky images. This method identifies the movement of a block of pixels between two
images by finding the region in the second image that has the highest correlation with
each block of the first image. The resulting motion vector grid contains information about
the observed motion direction and velocity. However, cloud formation, deformation, and
evaporation can occur during the process. When this occurs, the correlation is reduced
considerably, even though the assumption of spatial homogeneity of cloud velocities is
made. Additionally, the appearance of clouds can change over time due to variations in
white balance settings, cloud illumination, and different viewing geometries [108].

Several approaches have been proposed to monitor cloud formation and deformation
during cloud motion. For instance, Ref. [212] used a non-rigid structure to model the
complex dynamics of cloud motion, achieving a 19% improvement over the rigid technique
presented in [108]. In fact, the study utilized optical flow techniques, specifically the
Thirions Demons algorithm [213] and the variational approach of [214].

In contrast, Ref. [215] showed that common computer vision techniques, such as the
Lucas–Kanade algorithm [216] and optical flow, perform better for cloud tracking in cases
of low pixel displacement between successive images. In Ref. [217], a deep learning-based
cloud detection and classification algorithm was developed for advanced Himawari image
measurements (AHI) from the Himawari-8 geostationary satellite. Additionally, Ref. [218]
incorporated an IPSI-based multi-transform-fusion (MTF) method to improve accuracy in
cloud motion displacement (CMD) calculations and [219] propose a forecasting method
based on a phase correlation algorithm for motion estimation between subsequent cloud
maps derived from Meteosat-9 images.

To conclude, Table A2, found in Appendix A, outlines visually the works discussed in
this section to provide detailed information on the investigations carried out. As in Table A1,
Table A2 excludes those studies that concentrate on evaluating and comparing previous
models or those that focus on additional aspects from the main subject of this article.

4. Discussion

As noted throughout the text, the specific method or technology selected by researchers
depends on the required forecast time. The all-sky cameras and regression methods have
demonstrated a notable performance for the very short forecast time of up to one hour.
In comparison, methods based on weather satellite imagery have been found to be more
optimal for a time scale of up to 6 h. However, for a time scale of several hours, cloud
dissipation and formation start to interfere with the methods’ dynamics and growth. As
such, in these cases, the cloud tracking methods are no longer comparable in accuracy to
the numerical weather prediction models (NWP). The NWP models, in turn, start to decline
at time horizons of several days. A major question that plagues solar forecasting research
is the type of camera used for sky images. As shown, there are many types of cameras
that can be used for solar forecasting. Some of the most common variants are professional
imagers, cameras that record the reflection of a convex mirror oriented to the sky, shadow
cameras, and conventional high-resolution cameras (usually security IP).

As mentioned in Section 2, all-sky imagers are considerably more expensive than
conventional cameras. In fact, all-sky imagers are more prepared for extreme weather
conditions and have heating/ventilation for fog, condensation, and snow. Additionally,
these cameras, as well as the cameras with a convex mirror, often have a solar tracking
device to cover the solar disk. Though at an extra cost, this coverage extends the average
life of the camera sensor and avoids possible image glare. Similarly, in terms of costs,
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shadow cameras require expensive masts. These masts are expensive because they must
be sufficiently high enough to capture the shadows cast by clouds to be monitored on
the surface.

As such, in terms of cost, conventional high-resolution cameras are significantly easier
to acquire. One advantage of using these cameras is that they do not record the robotic
arms of the solar shading system, making it easier to track clouds as they pass through
this area. However, when using this type of camera, the circum-solar regions of the images
will appear saturated by the solar glare effect on the sensor. Furthermore, conventional
high-resolution cameras will not be able to resolve the inclemency of adverse weather or
seasonal conditions.

Despite the drawbacks of using this type of camera, many researchers opt for using
conventional high-resolution cameras to perform predictive studies. This is mainly due to
their relative affordability and accessibility. Indeed, judging from the results analyzed in
this article, the majority have been successful and comparable to the results obtained from
studies applying more technologically sophisticated methods.

Nevertheless, in terms of the sustainable generation of power, the assessment of
hardware costs shows that all-sky cameras are more affordable than other technologies
discussed in Section 2. Figure 1 highlights the effectiveness of combining all-sky cameras,
satellites, and measuring sensors for nowcasting forecasts.

Consequently, all-sky cameras are more appropriate for use in solar farms. Indeed,
a solar farm requires cameras that have good spatio-temporal resolution and a sensor
network of well-calibrated pyranometers and pyrheliometers to cover a typical total area
ranging from hundreds of meters to a few kilometers. Considering the cost of satellite
image acquisition and the implementation of such sensor networks, all-sky cameras are the
most economical choice.

Figure 3 shows the distribution of all-sky camera surveys conducted. All-sky cameras
are mainly deployed in countries with high technological development, such as the United
States and Australia, which lead to investment and the use of this technology. Adoption is
more incipient in regions between the subtropics, such as Uruguay, where the availability
of resources and infrastructure limits their implementation. In Asia, China and Japan are
increasing their camera monitoring capacity, although not at the same level as the United
States and Australia. In Europe, countries such as Spain have also developed numerous
studies using all-sky cameras, indicating greater coverage than initially reported. Coverage
remains uneven globally, with limited representation in Africa and parts of South America,
suggesting the need for international cooperation for a more equitable distribution of this
advanced technology.

Throughout the review of the various techniques and associated measuring instru-
ments, it has been emphasized that characterizing the complexity of the atmosphere as
accurately as possible requires a significant amount of data. Regarding the validation of
results in different studies within this context, it is important to consider the impact that the
validation period. As reported in the literature, the validation period may have an impact
on the methods and outcomes.

For instance, in techniques involving large amounts of data, such as numerical models
or deep learning methods, the results’ validation period is presupposed to be optimal.
Conversely, in the image processing models, for example, those conducted via satellite or
ground-based cameras, the validation must reflect all possible weather scenarios as far out
as possible. This process means that if the validation period is short for any reason, the
value of the conclusions may be unrealistic.

Apart from the spatial-temporal resolution differences previously discussed between
all-sky cameras and satellites, it is worth noting that the resolution of geostationary obser-
vations from satellites decreases at higher latitudes due to the high satellite zenith angle.
This causes the estimation of global horizontal irradiance (GHI) to become increasingly
challenging as the pixel size is stretched by the curvature of the Earth. This limitation is
demonstrated in conjunction with the high variability of sunshine hours at high latitudes
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in research such as that of [61] in Finland. Another remarkable constraint in the satellite
image processing is the albedo of snowy surfaces, which is like certain clouds and can
cause confusion in the irradiance images.

Logically, the image assessment from the Earth’s surface also has associated critical cir-
cumstances that are not present in the satellite space situation. Upon reviewing the studies
that employ all-sky cameras in Section 3, it is apparent that those which integrated cloud
classification in their research faced certain challenges. This is especially true when dealing
with conditions of low or very thin clouds and in skies with a high aerosol concentration.
These types of circumstances induced confusion between the pixels corresponding to the
sky and those corresponding to the clouds.

To provide a clear and concise overview, in Table 1, we present an analysis of the
sensors and methods summarizing their strengths and weaknesses:

Table 1. Critical analysis of solar energy forecasting sensors/methods.

Forecasting Sensors/Method Strengths Weaknesses

Ground-Based Sensor
Measurements

• High temporal resolution.
• Effective for very

short-term forecasting.
• Real-time data.

• Limited spatial coverage.
• High maintenance and

calibration costs.

Satellite Data Processing

• Extensive spatial coverage.
• Suitable for medium to

long-term forecasts.

• Lower temporal resolution.
• Susceptibility to cloud cover and

atmospheric conditions.
• High data processing costs.

All-Sky Camera Images

• High-resolution images.
• Enables very short-term forecasts.
• Real-time detection of cloud cover.

• Limited to camera coverage area.
• High initial setup costs.
• Reduced accuracy in adverse

weather conditions.

Statistical Regression
Approaches

• Simple implementation.
• Effective trend identification with

historical data.

• Heavy reliance on historical
data quality.

• Limited adaptability to sudden
weather changes.

Artificial Intelligence (AI) Methods

• Handles large datasets.
• Identifies complex patterns.
• Accuracy improves over time.

• High computational resource
requirements.

• Need for specialized expertise and
potential opacity in
decision-making process.

Numerical Models

• Detailed atmospheric simulations.
• Robust for medium to

long-term predictions.

• Computationally intensive.
• Accuracy depends on initial

conditions and model resolution.

Hybrid Methods

• Combines multiple data sources.
• Enhances accuracy.
• Reduces uncertainties.

• Complex integration.
• High computational demands.
• Requires multi-disciplinary

expertise.

This review has identified several emerging trends and novel approaches in solar
energy forecasting that hold promise for improving forecast accuracy and reliability. One
significant trend is the increasing use of artificial intelligence and machine learning tech-
niques, which can analyze large datasets and identify complex patterns that traditional
methods might miss, leading to more accurate and adaptive forecasts. Additionally, the
development of hybrid models, which combine various forecasting methods such as
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ground-based sensors, satellite data, and all-sky cameras with AI and numerical models,
shows potential for reducing uncertainties and enhancing forecast robustness. Advanced
image processing techniques, particularly those utilizing deep learning algorithms, are
improving the interpretation of satellite and all-sky camera images, enabling more precise
detection of cloud movements and other atmospheric phenomena affecting solar irradi-
ance. The incorporation of real-time data assimilation techniques, which continuously
update forecasting models with the latest observational data, also enhances short-term
forecast accuracy by capturing sudden changes in weather conditions. Furthermore, the
deployment of Internet of Things (IoT) devices and extensive sensor networks is providing
high-resolution, real-time data across larger spatial areas, facilitating more localized predic-
tions. Lastly, blockchain technology is emerging as a secure and transparent method for
managing and sharing forecasting data, enhancing data integrity, facilitating collaboration
among stakeholders, and ensuring the reliability of data used in forecasting models. These
trends represent significant advancements in the field of solar energy forecasting, and
their continued development and integration into existing systems are expected to address
current limitations and drive further improvements in forecast accuracy and reliability.

Finally, the distribution of studies by country, shown in Figure 4, indicates that research
activity is most intense in the United States and several European nations, with a notable
presence also in China, Japan, and Australia. The distribution of studies is uneven globally,
with lower representation in Africa and parts of South America. This suggests the need
to improve infrastructure and funding in under-represented regions to encourage more
globally balanced research.

5. Conclusions

This article provides an updated review of the techniques and technologies related
to solar forecasting research. More specifically, this article focuses on the very short-
range forecasting method that utilizes sky imagery captured by all-sky cameras from the
Earth’s surface. Indeed, this method offers significant potential for further research in
the field of stabilization and optimization in the photovoltaic solar power sector. The
article compares the different approaches for solar forecasting in terms of the forecasting
method, technologies employed, spatio-temporal horizons to be covered, the measurement
error, and the benchmark model. The various modalities of techniques are classified
according to their methodological and technological fields. Their respective advantages
and disadvantages are also examined.

In order to provide a comprehensive assessment, research methods based on irradiance
measuring sensors are evaluated separately from those employing satellite and all-sky
camera techniques. Additionally, a distinction is made between investigations that employ
statistical and deep learning methods versus those that use numerical models. Another
differentiation is made as well as with those utilizing satellite images or ground-based
cameras. Furthermore, comparisons are drawn between studies that utilize a combination
of these techniques and the instrumentation in hybrid systems.

In terms of equipment, the current high-resolution cameras are low-cost, offer high
temporal and spatial resolution, and are effective for short-range irradiance forecasting
compared to satellite images. They require less infrastructure, making them promising
solutions for addressing the current imbalance in solar power generation by accurately
predicting future PV generation outage events.

While there are many techniques available and the forecasting results are encouraging,
there are still areas for improvement. Difficulties that continue to plague the field of solar
forecasting are mainly due to clouds. Techniques for processing thin clouds such as fog,
handling cloudy skies, dissolution, formation from other clouds, and dealing with cases
of multi-layer clouds still need to be better developed. In such cases, hybrid systems
have shown significant advances. Nonetheless, there is a lack of articles that calculate
cloud height by stereoscopic methods to project cloud shadows on the surface and provide
irradiance maps. Therefore, the future of solar forecasting lies in combined approaches
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that control the non-linearity of cloud processes, refine accuracy by correctly estimating
background errors, and ultimately contribute to optimal solar power generation. In the
end, advancing such approaches will alleviate the current energy crisis.
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ACCESS Australian Community Climate and Earth-System Simulator
AE Automatic Encoder
AI Artificial Intelligence
AMV Atmospheric Motion Vector
ANFIS Adaptive Neuro Fuzzy Inference System
ANN Artificial Neural Network
AOD Aerosol Optical Depth
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average
ARMAX Autoregressive Moving Average with Exogenous Variables
ARX Autoregressive with exogenous inputs
BPNN Back Propagation Neural Network
BRT Boosted Regression Trees
CARDS Coupled Autoregressive and Dynamical System
CCM Cross-Correlation Method
CLSTM Convolutional Long Short-Term Memory
CMD Cloud Motion Displacement
CNN Convolutional Neural Networks
CSL Clear Sky Library
CSM Clear Sky Model
DBN Deep Belief Network
DCNN Deep Convolutional Neural Networks
DHI Diffuse Horizontal Irradiance
DL Deep Learning
DNI Direct Normal Irradiance
DNN Deep Neural Network
ECMWF European Centre for Medium-Range Weather Forecast
ELM Extreme Learning Machine
ERA5 ECMWF Reanalysis v5
FTM Fixed Threshold Method
GB Gradient Boosting
GFS Global Forecast System
GHI Global Horizontal Irradiance
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HCF Haze Correction Factor
HRRR High-Resolution Rapid Refresh
HSR Hourly Solar Radiation
HYTA Hybrid Thresholding Algorithm
ISR Incident Solar Radiation
JMA Japan Meteorological Agency
k-NN k-Nearest Neighbors
LM Levenberg-Marquardt
LST Land Surface Temperature
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MBE Mean Bias Error
MCE Minimum Cross Entropy
MLP Multi-Layer Perceptron
MM5 Mesoscale Model version 5
MOS Model Output Statistics
MP Megapixels
MSG Meteosat Second Generation
MTF Multi Transform Fusion
MVIRI Meteosat Visible and InfraRed Imager
NAM North Americam Mesoscale
NARMAX Non-linear Autoregressive Models with Moving Average and Exogenous Input
NDFD National Digital Forecast Database
NWP Numerical Weather Prediction
PCA Principal Component Analysis
PSM Physical Solar Model Version 3
PSO Particle Swarm Optimization
PV Photovoltaic
RBM Restricted Boltzmann Machine
RBR Red-Blue Ratio
RF Random Forest
RGB Red Green Blue
RMSE Root Mean Square Error
SAE Stacker Automatic Encoder
SARIMA Seasonal Autoregressive Moving Average
SDE Standard Deviation
SOM Self-Organizing Maps
SREF Short Range Ensemble Forecast
SS Skill Score
SVC Support Vector Classifier
SVM Support Vector Machines
SZA Solar Zenith Angle
VARX Vector Autoregressive with Exogenous Input
WC Water Content
WNN Wavelet Neural Network
WP Water Path
WRF Weather Research and Forecasting
WT Wavelet Transform
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Appendix A

Table A1. Summary of solar forecasting method.

Reference Aim Methods
Utilized

Forecast
Horizon Data Period Location Input

Variables
Comparison

Methods Performance Metrics Results and Observations

[191]

Performance comparison
of the ST, NWP, and MOS

models, as well as the
reference persistence

model (PM)

ST
MOS
ANN

MLPNN
STNN

ECMWF-
MOSNN

24–72 h
January

2008–December
2011

Italy GHI and air
temperature

Naive persistence
ECMWF-NWP

nMAE
RMSE
MAE
MBE

The ST model and the NWP model give
similar results. However, the sources of

forecast errors between the ST and NWP
models are identified.

The MOS model gives the best
performance, improving the forecast by

approximately 29% with respect to the PM.

[5]

Non-parametric machine
learning approach used for

multi-site prediction of
power generation

AR
GBRT 6 h

April
2014–February

2015
Japan

Hourly
average of

power
generation

Naive persistence
K-fold

Cross-validation
Recursive AR

Single-site
Multi-site GRBT

RMSE
nRMSE
nMAE
nMBE

SS

A characteristics analysis demonstrates that
variables related to lag observations are
more important at the shorter forecast

horizons. Over longer horizons, the
importance of weather forecasts increases.

[6]

Simplified method for
predicting hourly global

solar radiation using
extraterrestrial radiation

ANN
K-means

SVM
LightGBM

1 h 2022 China Solar
irradiance Naive persistence RMSE

MAE

Weather types were not the main factors
that affected the prediction result of

the model.

[8]
Hybrid solar irradiance
forecasting framework

using a K-means algorithm

TB
K-means
MLPNN

1–24 h 2004 and 2013 EEUU Solar
irradiance Naive persistence

RMSE
nRMSE

Forecast Skill

This technique detects outliers and
irregular patterns providing better

characterization of the collected data.

[9]

Three types of forecast
enhancements are

proposed; in a uniform
forecast when there is no

ramp, ramp forecast
magnitude enhancements,

and ramp forecast
threshold changes

NWP
TSI

KDE
SVR

eFAST

1 h 2006 EEUU Solar energy
index Smart persistence

Correlation Coefficient
RMSE

nRMSE
RMQE

nRMQE
MaxAE

MAE
MAPE
MBE

KSIPer
OVERPer

Std
Skewness
Kurtosis

95th Percentile
Capacity

The distribution of forecast errors indicates
that the relative forecast errors are smaller

for a large geographic area.
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Table A1. Cont.

Reference Aim Methods
Utilized

Forecast
Horizon Data Period Location Input

Variables
Comparison

Methods Performance Metrics Results and Observations

[10]

Physics-based endogenous
persistence method to

forecast power output and
ramps a few

minutes earlier

Cloud speed
persistence

AR
180 s 6 July 2011–11

July 2012 EEUU PV power
outputs

Naive persistence
Ramp persistence

rRMSE
rMBE

R
skill

Excluding clear days and in terms of the
mean square error percentage, the new

method exceeded persistence by 16.2% at
20 s, 10.6% at 60 s, and 4.0% at 120 s

forecast horizon.

[11]

Series of approaches based
on whole-sky deep
imaging learning

architectures for very
short-term solar PV

generation forecasting

PM
SPM

SLNN
SLNN-weather

LSTM
SIO
SIH

CNN-LSTM
CNN-LSTM-H

ConvLSTM
ConvLSTM-H

PredNet
PredNet-H

Not
applied

December
2018–February

2019
China Sky images

Naive persistence
SLNN

SIH
PredNet-H

RMSE
nRMSE
MAE

MAPE

The proposed hybrid static imagery
forecaster provides superior performance
compared to benchmarking methods (i.e.,

those without sky images), with up to 8.3%
improvement overall, and up to 32.8%

improvement in the cases of ramp events.

[12]

Development of a model to
forecast global horizontal

irradiance (GHI) using
only sky images without
numerical measurements

and additional
feature engineering

CNN
ANN
LSTM

1 h 1981–1987 EEUU GHI

ANN1
ANN2
GBM1
GBM2
GBM3

RF

RMSE
MBE
FSS

The model outperforms the benchmarking
persistence of the cloud model and machine
learning models with an nRMSE of 8.85%
and an FSS of 25.14% in such a way that it

shows superiority in various
climatic conditions.

[13]

Development of
classification forecasts

based on pattern
recognition for

GHI forecasting

SVM 1 h
113 days of
which 87

are summer
EEUU

Location
Sky images
Actual GHI

measure-
ments

Smart persistence nMAE
nRMSE

The results show that the developed
short-term forecast framework outperforms
the persistence benchmark by 16% in terms
of the normalized Mean Absolute Error and

by 25% in terms of the normalized mean
square error.

[16]
Solar irradiance forecast

for grid-connected
PV plant

MLP 24 h

1 July 2008–23
May 2009

23 November
2009–

24 January 2010

Denmark

Irradiance G
in the PV

plane and air
temperature

Cross validation
MBE

RMSE
r

98 to 99% for sunny days and 94 to 96% for
cloudy days.
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Table A1. Cont.

Reference Aim Methods
Utilized

Forecast
Horizon Data Period Location Input

Variables
Comparison

Methods Performance Metrics Results and Observations

[17]
Solar irradiance forecast

for grid-connected
PV plant

Clear sky
modeling with

statistical
smoothing
techniques

Up to 36 h 2006 Not in-
dicated

Power gained
from 21 PV

Temperature
from NWP

Naive persistence RMSE
nRMSE

For horizons below 2 h, solar energy is the
most important input, but for horizons the
next day it is appropriate to use NWP as an

input. RMSE 35% on persistence.

[18] Assessment of the skill of
the MM5 model MM5 1–2 days 2012 Greece

Ground mea-
surements of

11 radiometric
stations

Not specified
MBE

RMSE
MAE

The seasonal analysis showed that the
MM5 model tends to overestimate the GHI

for all seasons of the year.

[19]

The methodology applied
to introduce a large-scale,

public, and solar
irradiance dataset

ERA5
LR
RF

SVR

Every 30
min up to

24 h
2002–2019 Spain

Solar current
every half

hour

ERA5
LR
RF

SVR

RMSE
MAE

FS

The forecast error of a model can be
reduced by adding variables from its

neighboring stations.

[20]
PV power production

forecasts under
overcast skies

Clear sky model
Clear sky index

Kt
Kalman filter

30 s–6 h 1 May 2011–30
April 2012 EEUU

PV power
measure-

ments every
15 min of
80 panels

Naive persistence RMS
MBE

Exceeds the persistence model for forecast
horizons ranging from 30 min to 90 min.

RMS = 0.062
MBE = 0.91

[22]

Calculation of incident
radiation in clear skies on

any inclined surface
without the use of

complicated
meteorological

instrumentation

MLP
NARX Next day 2006 Denmark Historical PV

power Clear sky model MAPE

The test results demonstrate that the
forecasting model can be used to accurately
forecast the daily power of the photovoltaic

power system (MAPE = 16.47%).

[23]

Hybrid deep learning
framework integrating
convolutional neural
network for pattern

recognition with
short-term memory

network for global solar
radiation (GSR) forecast

every half hour

CLSTM hybrid
model

1 day–1
week–2
weeks

and
8 months
every half

hour

1 January
2006–31 August

2018
Australia GSR

CNN
LSTM
DNN
MLP

Decision tree

MAE
RMAE
RMSE

RRMSE
MAPE
APB
KGE

r

The hybrid model records superior results
with more than 70% predictive errors below
±10 Wm−2 and outperforms the reference
model for GSR prediction every half hour

of 1 day.

[24]

Short-term prediction of
solar radiation, based on

data collected in the
near past

AR
ARMA
k-NN
ELM
SVR

Not
specified

October
2005–October

2007
Italy

GHI database,
weather

station air
temperature,

and humidity

Naive persistence Std
Err(f)

The use of data collected from remote
stations for short-term forecasts can be a

useful alternative.
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Table A1. Cont.

Reference Aim Methods
Utilized

Forecast
Horizon Data Period Location Input

Variables
Comparison

Methods Performance Metrics Results and Observations

[25]

Application of an analog
set method (AnEn) to

generate probabilistic solar
power forecasts (SPF)

AnEn
QR

Boca
NN

3 days 60 days Italy

PV powers
and

temperature
of three sites

PeEn persistence
set

CRPS
MRE
MAE

The different climatology in the three solar
farms affects the performance of QR and

AnEn particularly in terms of MAE
(20–25%).

[26]

Analog set method
for daily regional
photovoltaic (PV)
forecasting with

resolution per hour

HDC
EDAC
NAM
GFS

SREF

NAM 84 h
GFS 120 h
SREF 87 h

7 January
2015–27

September 2016
EEUU

Historical
temperature

and irradiance
data

Astronomical
data

Current
weather data

Naive persistence
NWP model
SVM model

nMAE
NRMSE

The NRMSE has been reduced by 13.80% to
61.21% compared to the three

baselines tested.

[29]

PV power forecasting
model, considering the

aerosol index data (AI) as
an additional

input parameter

BP-ANN 24 h 2 months EEUU

Historical
data for AI,
PV power,

temperature,
humidity, and

wind speed
Current

weather data

Error gradient
descent algorithm

MAPE
APPV

BP’s neural network method has shown
that the application of AI improves
precision compared to conventional

methods using ANN. MAPE = 7.65%.

[27]

Proposes a GHI, DNI, and
DHI forecast model of

solar irradiance using both
AOD and data observed

from a ground station

MLP
SVR

k-NN
Decision tree

regression

1 h 3 years Saudi
Arabia

KACARE
AERONET

CAMS
Smart persistence RMSE

FS

The MLP model is especially applicable for
desert areas under clear sky conditions,

where dust storms are frequent and AOD in
the air is high. FS = 42%.

[28]
Aerosol-based solar

irradiance forecasting for
power applications system

Combination of
aerosol forecasts

with other
measures

2–3 days 5 months

Germany,
United
King-
dom,
Italy,

France,
Spain,

Netherlands

Aerosol
concentration

Albedo
Ozone

Water steam
Cloud forecast

(EURAD)

ECMWG
MM5

Meteosat-7 data
Ground

measurements

RMSE
rRMSE

Bias
rBias

The AFSOL system significantly improves
global irradiance and especially direct

irradiance forecasts relative to ECMWF
forecasts (bias reduction from 226% to

111%; RMSE reduction from 31% to 19% for
direct irradiance).

[33]

To accurately capture the
effect of the cloud on
irradiance, this article
develops a real-time

mapping model between
the satellite image and

solar irradiance

Image
processing
Deep CNN

(VGG)

1–4 h
January

2017–November
2019

China

Satellite
images

GHI data
Meteorological

data

ANN
MLP

RMSE
MAE

The proposed hybrid method shows better
precision and a smaller error range
compared to other AI models. The

proposed hybrid method could be applied
to the forecast of regional or distributed

photovoltaic energy.
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Table A1. Cont.

Reference Aim Methods
Utilized

Forecast
Horizon Data Period Location Input

Variables
Comparison

Methods Performance Metrics Results and Observations

[34]
GHI estimation using a
combination of satellite

and ANN images
ANN

30 min,
60 min,
90 min,

120 min.

1 January
2011–31 January

2012.
EEUU

Velocimetry
Cloud indices
using satellite

images
Irradiance

data

Naive persistence MBE
RMSE

Combining stochastic learning, image
processing

and terrestrial telemetry provide benefits in
the robustness and accuracy of prediction.

[35,71]

It combines ground
measurements with
exogenous inputs

provided by satellites and
PNT data.

Using satellite data to
improve prediction of solar

radiation with Bayesian
artificial neural networks

AR
ARMA
ANN.

Bayesian
ANN

1 h–6 h.
1 h–6 h

2005
2002
2003
2004
2005

Spain

Terrestrial
data set
Satellite-

derived data:
GHI and

irradiation on
top

of the
atmosphere

ECMWF data
set

Terrestrial
data and

satellite data
(Helioclim-3)

Smart persistence
NN
SAT

ECMWF.
Naive persistence
Smart persistence

CLI
ANN

RMSE
MAE
Skill

RMSE
MAE
Skill

The combination of exogenous satellite
data and ECMWF data provides the best

forecast results.
The different results obtained in the

southern and northern areas and
depending on the set of quarterly seasonal

data seem to be a consequence of
cloud formation.

[36]

GHI’s forecasting
approach that relies on
satellite imagery and

ground measurements
as inputs

Optical flow 1–2–3 h 110 days EEUU

Satellite
images

Ground mea-
surements

K-persistence
model

MAE
MBE

RMSE

The method works reliably for optically
thick clouds that are easily distinguished

from the background, while problems
persist with optically thin clouds (opaque).

SS = 8–19%.

[37]

Analysis of ARMAX solar
forecast models using

ground measurements and
satellite imagery

ARMAX

10 min
20 min
30 min
40 min
50 min
60 min

120 min
180 min
240 min

6 months Argentina

Terrestrial
data GHI
Satellite
albedo
Local

variability
index

Naive persistence MBD
RMSD

All the models tested, whether or not they
include exogenous variables, surpass the

classic persistence procedure for the region.

[38]

Combination of whole sky
images and irradiance

measurements for
irradiance forecasting and

ramp event detection
using the ramp detection

index (RDI)

CSL
FTM
CCM

1–10 min 6 months Uruguay

All-sky
images

GHI ground
measure-

ments

Regular
persistence

Smart persistence

MBD
MAD
RMSD

RM
RDI

The proposed method achieved a
maximum yield of 11.4% in forecast
horizons of 6 and 10 min in partially

cloudy conditions.



Appl. Sci. 2024, 14, 5605 34 of 56

Table A1. Cont.

Reference Aim Methods
Utilized

Forecast
Horizon Data Period Location Input

Variables
Comparison

Methods Performance Metrics Results and Observations

[39]

Results of a very
short-term horizontal
irradiance forecasting

(GHI) experiment based on
images of the hemispheric

sky are presented

RBR
CSL

Cloud and
shadow

mapping
Gridding

SVC
Optical flow

Up to
25 min

2 months (April
and May 2013) Germany

Ground
irradiance
measure-

ments
Cloud heights

using
ceilometer

All-sky
images

Naive persistence

MBE
RMSE

FS
ACC

The study shows that for distances of more
than 1–2 km from the camera in cumulus
cloud conditions, a single pyranometer

outperforms.

[40]

System approach with four
spatially distributed ASIs
that manages to apply an
individual 3D model of
each detected cloud as a

cloud object with
different attributes

CSL
RBR

Voxel carving
method

Kalman filter

15 min 30 days Spain

Ground
irradiance
measure-

ments
Alturas de

nube
mediante

ceilómetro
All-sky
images

Validation of DNI
maps by ground

measurement

MAE
rMAE

Spatially resolved DNI maps with a border
length of 8 km.

[42]

Relationship between the
appearance of the sky and
future photovoltaic energy

production using
deep learning

MLP
CNN
LSTM

1 min 90 days Japan

HDR
hemispheric
sky image

data set and
correspond-

ing PV power

Naive persistence MAE
RMSE

MLP SS-RMSE = 7%
CNN SS-RMSE = 12%
LSTM SS-RMSE = 21%

[43,85]

Intelligent automatic cloud
adaptive identification

system (SACI) for
projection of sky images

and solar irradiance
forecasting.

Intelligent forecasting
model for DNIs that
combine sky image

processing with ANN
optimization schemes

CSL
FTM
MCE
RBR

ANN.
GA

ANN
CVM
RTM

1–5–10–15
min

5 March 2013–5
April 2013.
6 months

EEUU

80 images
captured in
Merced and

30 sky images
captured in

Folsom
DNI data and

sky images

Naive persistence.
Naive persistence
and deterministic

model

MBE
RMSE
MBE

RMSE

Forecast skills above 14%, 18%, and 19%
above persistence forecast for 5, 10, and 15

min forecasts, respectively.
The hybrid forecasting models proposed in

this work achieve statistically robust
forecasting abilities that exceed 20% on
persistence for forecasts 5 and 10 min in

advance, respectively.
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Table A1. Cont.

Reference Aim Methods
Utilized

Forecast
Horizon Data Period Location Input

Variables
Comparison

Methods Performance Metrics Results and Observations

[44]

Very short-term forecast of
GHI and DNI solar

irradiance using sky and
optical flow cameras

covering a variety of cloud
conditions and more than
ten different characteristics

extracted from raw
pixel data

Optical flow
NN 30 min–2 h 24 months Spain All-sky

images
Cross-validation

5 times Bias

The applied method correctly classifies 95%
of the clouds and with good forecasts, from

low false positive rates of 0.08% to high
overall accuracy rates of 96%.

[53]

A multivariate regression
model that uses irradiance

values measured from
previous hours to improve

predictions for the next
hour, which can be used to

refine daily strategies
based on predictions for

the next day

ECMWF
TRNSYS

SAM
1 day

1 July 2017–30
June 2018

1 July 2018–30
June 2019

Portugal
Ground

irradiance
data

Naive persistence

RMSE
MSE
MBE
MAE

r
R2
SS

The proposed regression model
significantly improves hourly predictions

with a skill score of ≈0.84 (that is, an
increase of ≈27.29% over the original

hourly forecasts).
The model shows a skill score of 70.78 (that

is, an increase of ≈6% over the
original forecasts).

[92]

Solar irradiance forecast
from a ground-based sky

imaging system evaluating
its performance on

thirty-one consecutive
days of historical data

collected during winter

CSL
METAR CBH

CCM
30 s–5 min 31 days of

winter EEUU Sky images Naive persistence

rRMSE
rMBE
rMAE

FS

On average, frozen cloud advection
forecasts were found to outperform image

persistence forecasts for all forecast
horizons during the analysis period.

Forecast errors over various periods were
attributed to inaccurate cloud base

height (CBH).

[59]

A high-resolution cloud
assimilation and numerical
weather forecasting model

for forecasting
solar irradiance

WRF-CLDDA 36 h
3 days

(06/19/11–
06/21/11)

EEUU Meteorological
data

Naive persistence.
NAM

rMBE
rMAE
rRMSE

rSTDERR

WRF-CLDDA intraday forecasts had an
rMBE of 0.4% compared to 17.8% for the

NAM. Furthermore, rMAE was 21.3%, 4.1%
lower than NAM. rSTDERR, was 2.4%

higher than NAM, as a large part of the
NAM error was attributed to

systematic bias.

[60]
Short-term solar irradiance
prediction with a hybrid

ensemble model

ML
DL

Every 1
min 2021 Austria Satellite

images
Ground

measurements

R2 Score
nMAE
nRMSE

This method highlights the model’s
competency in capturing extremely high

cloud variability during cloudy and heavily
clouded sky conditions, resulting in a skill

score improvement ranging from
10% to 30%.
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Reference Aim Methods
Utilized

Forecast
Horizon Data Period Location Input

Variables
Comparison

Methods Performance Metrics Results and Observations

[61]

Regional PV power
estimation and forecasting

using numerical and
satellite weather

forecast data

ANNsE
Clustering 1–48 h 2014 and 2015 Italy

Satellite-
derived

irradiance
data and

numerical
weather

prediction
(NWP)

Naive persistence
Smart persistence

RMSE
MAE

SS

The model provided an intraday forecast (1
to 4 h) with an RMSE of 5–7% and a skill

score with respect to intelligent persistence
of -8% to 33.6%. The one and two-day

ahead forecast achieved an RMSE of 7%
and 7.5% and a skill score of 39.2% and

45.7%.

[62]

Examines two
spatio-temporal

approaches to the
short-term forecast of

global horizontal
irradiance using

satellite-derived grid
irradiances as

experimental support

STVAR
CMV 1 h 2 years (2008,

2009)
Montserrat
Island

Satellite-
derived

irradiance
data from the

SUNY
database

Scaled persistence

RMSE
rMAE
rMBE

Skill score

The performance of the model depends
significantly on the orographic influence

and the type of day (clear versus cloudy). It
was found that the errors increased

significantly with the orography of the
location and the variability of the irradiance

of the day

[63]

ANN accuracy is
established along with
satellite-derived Land

Surface Temperature (LST)
as a predictor to forecast

solar radiation for the
Queensland region

ANN Monthly 2 years
(2012–2014) Australia LST data

MLR
ARIMA

Cross-validation

r
RMSE
MAE
WI

RRMSE
MAPE

The results showed that an ANN model
outperformed the MLR and ARIMA
models where analysis showed 39%

cumulative errors in the smallest
magnitude range, while MLR and ARIMA

produced 15% and 25%.

[64]

Comparative study of
LSTM neural networks to

forecast daily global
horizontal irradiance with

satellite data

LSTM 1 day 2005–2014 Australia

Remote
sensing data

from the 2014
AMS Kaggle

database

Smart persistence
GBR

FFNN

RMSE
MAE

SS

ML models understand atmospheric
behavior even in cases of high variability.

SS = 52.2%

[65]

GHI prediction using
universally deployable

extreme learning machines
integrated with MODIS

satellite predictors

ELM 6 h–1 day 2012–2015 Not in-
dicated

Satellite data
from the

Moderate
Resolution

Imaging Spec-
troradiometer

(MODIS)

RF
M5 tree
MARS

RMS

ELM versatility to generate forecasts on
heterogeneous and remote spatial sites,

surpassing all comparison models.
RMS < 6%

SS RMSE = 67.3%
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[66,219]

Forecast method based on
a phase correlation

algorithm for estimating
cloud movement derived
from Meteosat-9 images.

Two methods of extraction
of motion vectors using
correlation and optical

flow methods

Phase
correlation
algorithm
Heliosat-II

method.
Optical flow

4 horas
15 min–4 h

16 June 2012 at
1100 UTC

6 days daytime
images

Meteosat-10

France

Images of
Meteosat-9
Images of

Meteosat-10

Naive persistence RMSE relative

The loss of precision compared to the
existing method is still small, but real
progress in time computing has been

highlighted (25% reduction).
Optical flow-based method outperforms all
methods with satisfactory time calculation.

[112]

Hybrid prediction using
satellite remote sensing

data of surface solar
irradiation coupled to a

double exponential
smoothing time

series model

ARMA
NAR-NN

DES
Interpolation

method
Kriging

1–2–3–4–5
days 2013–2015 Australia EUMETSAT

historical data

NWP-ANN
ANN

DCGSO-LASSO

RMSE
MAPE

r

The developed model provided very
accurate forecasts, especially for the first

four days.

[58]

Analysis of satellite
imagery and an

Exponential Smoothing
State Space (ESSS) hybrid
model along with artificial

neural networks (ANN)
for solar

irradiance prediction

Image análisis
EES

ANN
Hourly 09/2010–

07/2011 Japan

Cloud cover
index

Satellite
images

Irradiance
dataset of the
SERIS station

ARIMA
LES
SES
RW

nRMSE
nMBE

R2

Compared to other popular statistical time
series models such as ARIMA, LES, SES,

and RW, the proposed model has superior
forecasting accuracy.

[68]

Development and
validation of a

satellite-based GHI
forecast for high

latitudes (Finland)

CSM
Up to 4 h

every
15 min

1 May 2016–31
August 2016 Finland

CS models
data and
satellite
images

McClear
SPECMAGIC
Pvlib-python

Solis

rMBE
rRMSE

Good forecasting performance shows that
satellite-based GHI forecasting methods are

a viable option in PV forecasting also for
high latitudes

[70]

Model proposal that can
make short-term forecasts
of solar irradiance at any
general location without

the need for measurements
on the ground

DNN Up to 6 h
1 January
2014–31

December 2017
Netherlands

Satellite mea-
surements
Weather
forecasts

Terrestrial
data

6 ECMWF
predicted values

for 6 forecast
hours

CL irradiance
Satellite images

rRMSE
MBE

The proposed model is equal to or better
than the local models.

Savings in operating costs of installing local
sensors and collecting ground data.

rRMSE general = 31.31%
rRMSE local = 31.01%
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[75]

Method based on
advanced machine

learning algorithms for the
selection and prediction

of variables

NN
RVS 5–60 min

1 January
2013–31

December 2014
Italy

Previous PV
data and
previous

weather data

Baseline B1
Baseline B2

MAE
MRE

PV power production for very short-term
forecast horizons of 5 to 60 min can be

accurately predicted using only past PV
data, without weather information.

[78,89,90]

Solar immediate
prediction system based
on shadow cameras for
short-term forecasts and
generation of DNI maps

The validation of GHI and
DNI maps projected from

an example system
consisting of 4 cameras for
the entire sky WobaS-4cam

is presented
The validation of GHI and
DNI maps projected from

an example system
consisting of 4 cameras for
the entire sky WobaS-4cam

is presented

KCF
CSR-DCF.

CSL.
CSL

1–2 min
0–15 min
0–15 min

8 September
2015–14 January

2016.
30 days between
September 2015

and October
2016.

30 days between
September 2015

and October
2016

Spain

Soil images
and meteoro-
logical data
Sky images

Ground
irradiance
measure-

ments
Terrestrial

images from
shadow
cameras

Sky images
Ground

irradiance
measure-

ments
Terrestrial

images from
shadow
cameras

Wobas-2cam
Ground

measurements
Terrestrial images.

Ground
measurements

Terrestrial images

rRMSD
rMAD
rBias
TDI.

MAE
rMAE
bias
rbias

RMSE
rRMSE

std
rstd

MAE
rMAE
bias
rbias

RMSE
rRMSE

std
rstd

Compared to a whole sky imaging system,
better results are achieved for 1 and 2 min

forecasts.
Spatial aggregations reduce RMSE (GHI)

values from 21.4% to 13.0%.
Time averaging reduces RMSE (GHI)

deviations from 25.3% (mean delivery time
7.5 min, time averaging 1 min) to 19.0%

(mean delivery time 7.5 min, time
averaging 15 min).

Las agregaciones espaciales reducen los
valores de RMSE (GHI) del 21.4% al 13.0%.

El promedio temporal reduce las
desviaciones de RMSE (GHI) del 25.3%

(tiempo de entrega medio 7.5 min,
promedio temporal de 1 min) al 19.0%

(tiempo de entrega medio 7.5 min,
promedio temporal de 15 min).

[91]

Short-term solar
forecasting system using

low-cost ground-based sky
imaging cameras

NN
Optical flow 0–20 min 2 years Australia Sky images Smart persistence Accuracy Metrics

This model can be easily adapted for
conservative or aggressive operation of a

solar power system with a
backup generator.

[94]

Estimation of cloud
movement and stability for

intra-hourly solar
forecasting

VOF
CCM 5–10–15 min

1 month
(November

2012)
EEUU Sky images Smart persistence

CCM
Cloud Index

FS

The VOF forecast with a fixed smoothness
parameter was found to be superior to the
image persistence forecast for all forecast

horizons for almost every day and exceeds
the CCM forecast with an average error

reduction of 39%, 21%, 19%, and 19% for 0,
5, 10, and 15 min forecasts, respectively.
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[102]

3D cloud detection and
tracking system for solar

forecasting using multiple
sky imagers

Image
processing

SVM
Stereographic

calculations for
cloud height
Clustering
Multi-layer
aggregation

1–15 min 13 May 2013–3
June 2013 EEUU

Sky images
GHI measure-

ments
Smart persistence

STI
MAE
RMSE

Compared to the persistent model, the
system achieves at least a 26%

improvement for all irradiance forecasts
between one and fifteen minutes, as well as

robustly tracking layers.

[103–105]

Hybrid solar irradiance
prediction method by

merging the Kalman filter
and a regression predictor.
Prediction of slowdown

events through improved
cloud detection and

tracking
A mechanism for

predicting dimming and
deceleration events based
on tracking and grouping
information is proposed

Filtro de
Kalman

Regresor de
predicción.

RBR
SVM

Random forest
Bayesian
classifier

Kalman filter
Prediction
regressor

Clustering
algorithm
Markov

SVM

10–20 min.
10–15 min.
5–10–15–
20 min

January
2014–September

2014.
January 2014

May 2014
Not specified

EEUU,
Taiwan,
Taiwan

Ground
irradiance
measure-

ments
Sky images

Ground
irradiance
measure-

ments
Sky images

Ground
irradiance
measure-

ments
Sky images

Naive persistence
3 NN fusion
alternatives.

ANN
HYTA

Compared with its
previous models

RMSE
MAE
RMSE
MAE
RMSE
MAE

Experiments have shown that the
time-varying system matrix design is useful

in improving the prediction result of the
Kalman filter and the proposed hybrid

predictor outperforms all other methods
being compared.

Deceleration events are forecast according
to the predicted position of the sun and the

movement of clouds.
The method could help grid operators

make better use and management of solar
energy resources.

Table A2. Summary of solar prediction method.

Reference Aim Methods Used Forecast
Horizon Data Period Input Variables Comparison

Methods
Performance

Metrics Results and Observations

[108] 2D cloud map generation
from sky cover

CSL
RBR
CCM

30 s–5 min
14 September

2009–10 March
2010

Sky images Cloud
persistence TSI Cloud shadows in outer regions are now

correctly cast 70% of the time.

[111]
Deep learning-based

approach to next-day solar
PV forecast task

DL 24 h 1 January 2015–31
December 2016 PV power PSF

NN
RMS
MAE

The proposed deep learning approach is
particularly suitable for solar big data, given
its linear time increment behavior, contrary to
PSF and NN which show an exponential time

increment.
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[112]

Methodology to forecast
the energy production of
photovoltaic solar energy

by using ARMA

ARMA 1 h 1 year PV power

Naive
persistence

Smart
persistence

MAE
RMSE

The proposed model works better than an
intelligent persistence model and is suitable
for use in stochastic or robust optimization

models for the operation and planning of the
electrical system.

[113]

Solar energy forecasting
algorithm based on the
vector autoregression

framework, combining
distributed time series

information collected by
the smart

grid infrastructure

VAR
VARX

AR
Gradient
boosting

1–6 h Not specified PV power Not specified RMSE

Real data results from a test pilot show that
information from distributed PV generation,
when combined into a common forecasting
framework, can improve point forecasting

ability, compared to a univariate model
between 8% and 10%, with 12% on average.

[114]

ARMAX model to forecast
the energy production of a

photovoltaic system
connected to the grid

ARMAX 1 day 1 January 2011–30
June 2012

Historical PV
power

ARIMA
NN

RMSE
MAD
MAPE

The ARMAX model is shown to greatly
improve the output power forecasting

accuracy over the ARIMA model.

[115]

This study aims to develop
a SARIMA model to

predict daily and monthly
solar radiation in Seoul,
South Korea, based on

hourly solar radiation data

SARIMA
ACF
PACF

Daily and
monthly

37 years
(1981–2017) Solar irradiance SARIMA RMSE

The results indicate that (1,1,2) the ARIMA
model can be used to represent daily solar

radiation, while the SARIMA (4,1,1) of 12 lags
for both auto-regressive and moving average

parts can be used to represent monthly
solar radiation.

[116]

SARIMA model for
multi-step forecasting
(20 min resolution) of

photovoltaic
solar generation

SARIMA
ACF Every 20 min April 2017 PV power Naive

persistence Modified MAPE

Although model performance is considered
satisfactory on sunny days (clear skies), it can

degrade on cloudy days when solar PV
generation is more intermittent. Therefore, the
model may not be suitable for very short-term

forecasts in months that have cloudy or
rainy days.

[124]

A model based on
Mycielski is proposed that

considers the hourly
recorded solar radiation

data as a matrix and, from
the last record value, tries

to find the most similar
sub-matrix pattern

in history

Mycielski
Markov 1 h

4 and 2 years for
each of the two
different sites

Solar irradiance Actual
irradiance data

RMSE
R2

MABE

Test results between 2-year and 4-year solar
radiation data show that using more historical
data, for example, more years like 6 or 8, will

increase the accuracy of both models.
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[126]
Solar power forecasting

with random forest based
on ranking optimization

PCA
K means

clustering
Random

Forest

Hourly 1 April 2012–29
June 2012

GEFCom2014
energy forecast

data

SVM
ANN

Decision tree
Gaussian
regression

model

MAE
RMSE

By establishing comparative experiments, the
recommended model is found to have higher

prediction accuracy and robustness.

[129]

CARDS solar forecast,
developed at the

University of South
Australia, for forecasting
solar radiation series at

three sites in Guadeloupe
in the Caribbean

CARDS
ARCH 4 h Each minute Solar irradiance Cross-

correlation

MAPE
MBE

nRMSE

The final noise terms, obtained after the
Fourier series models, the CARDS modeling,

and the cross-correlative models, exhibit
conditional volatility, which is also subject to

cross-correlative effects.

[130]
Forecast of solar radiation

on an hourly time scale
using a CARDS model

CARDS 1 h 1 year (2000) GHI
DRWNN

TDNN-ARMA
Kaplani’s model

MAPE
MBE

nRMSE
KSI

The results of the error analyses show that the
CARDS model has reduced the forecast error
of the combination model by 33.4% for ASM.

[131]

Comparison of models
with delivery times

ranging between 1 and 6 h
and that use only

endogenous inputs to
generate forecasts

ARMA
CARDS

NN
LMQR
WQR

QRNN
GARCHrls

SB
QRF

GBDT

1–6 h 2 years GHI
Clear sky index

Smart
persistence

RMSE
MAE
MBE

FS

The combination of the models leads to a
comparison of 20 probabilistic forecasts.
LMQR, WQR, and GBDT are the most

efficient models to generate probabilistic
forecasts without the use of

exogenous variables.

[132]

Approach to predicting
solar radiation series one

hour in advance using
various multiscale

decomposition techniques
of clear sky index Kc data

EMD
EEMD

Wavelet de-
composition

AR
NN

5 min–6 h
January

2012–December
2013

Solar irradiance
measurements

Naive
persistence

rRMSE
rMBE
rMAE

s

From the multi-scale decomposition, the
accuracy of the solar forecast is significantly
improved. For example, in terms of RMSE
error, the forecast obtained with the classic

NN model is around 25.86%, this error
decreases to 16.91% with the EMD-Hybrid

model, to 14.06% with the EEMD model
hybrid and at 7.86% with the

WD-hybrid model.
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[133]

Method for multi-month
forecast of monthly mean

daily global solar radiation
time series and data-driven

large-scale solar
radiation forecast

ARMA
ARIMA 1–2–3 months November

2018–March 2019

Data collected
from Meteonorm

8 software

Naive
persistence

MBE
RMSE
MAPE

Ts
Sd

ARIMA (0, 2,1) is more suitable for forecasting
the monthly mean daily global solar radiation
for the city of Tetouan and may be so for other

locations with similar climatic conditions.

[134]

A data-driven framework
is proposed for forecasting
solar irradiance based on
the fusion of spatial and

temporal information

BRT
ANN
SVM

LASSO

30–60–90–120
min 2014–2015 GHI

Smart
persistence AR

ARX

nRMSE
R2

S

The computational results of the multi-step
ahead prediction demonstrate that the BRT
model offers the best performance with the

lowest normalized Root Mean Square Error of
18.4%, 24.3%, 27.9%, and 30.6% for prediction

horizons of 30, 60, 90, and 120 -min,
respectively.

[136]

Short-term solar irradiance
forecasting is conducted
using WNN trained with
GD and LM training, and

SNN trained with
LM training

WNN with
LM and GD

training
1–2–4–6 h 3 years (2007–2009) Solar irradiance SNN with

training GD
MAPE
RMSE

The proposed model has better
generalizability and more precision than the
conventional sigmoid neural network (SNN).

[137]

Prediction of solar
radiation per hour using a

wavelet neural network
and using the average
daily solar radiation

WNN Hourly 5 years

Angle of the sun
at sunset and

sunrise
Daily solar
radiation

HSR data MAPE
RMSE

The 96% of R2, demonstrates that the model
can be easily implemented and can increase

the precision of the estimate.

[138]

Mixed wave neural
network (WNN) in for the
forecast of solar irradiance

in the short term, with
initial application in the

tropical zone

WNN 15 min–1 h 1 year (2014) Clear sky index
values Kc

Naive
persistence

ETS
ARIMA

ANN

MBE
nRMSE

The key advantage of using WT methods is
the high signal compression capacity, which

makes them suitable for modeling
non-stationary environmental parameters

with high information content, such as short
time scale solar irradiance. Optimal WNN

architecture varies by season.

[139]

A solar irradiance
forecasting method for

remote microgrids based
on the Markov switching

model is presented

MSM
Fourier basis

expansion
1 day 1998–2013 Historical

irradiance data
Error between

years
MAPE
RMSE

The study resulted in a Mean Absolute
Percentage Error of 31.8% over five years,

from 2001 to 2005, with higher errors during
the summer months.
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[141]

Hybrid deep learning
framework integrating
convolutional neural
network for pattern

recognition with
short-term memory

network for global solar
radiation (GSR) forecast

every half hour

CLSTM hybrid
model

1 day–1 week–2
weeks and 8

months every
half hour

1 January 2006–31
August 2018 GSR

CNN
LSTM
DNN
MLP

Decision tree

MAE
RMAE
RMSE

RRMSE
MAPE
APB
KGE

r

The hybrid model registers superior results
with more than 70% of predictive errors below
±10 Wm−2 and exceeds the reference model
for the prediction of GSR every half hour of

1 day.

[146]

Deep learning for solar
power forecasting using an

approach using an
autoencoder and LSTM

neural networks

Deep Belief
Networks

Autoencoder
LSTM

24–48 h 990 days
PV power from
GermanSolar-

Farm
P-PVFM

RMSE
MAE

AbsDev
Bias

Correlation

The best-performing model is the Auto-LSTM
with an RMSE of 0.0713, closely followed by

the DBN with an RMSE of 0.0714. This shows
the feature extraction capabilities of these
models, allowing for a good solar power

forecast. Both models without this capability,
the MLP and the LSTM without AE,

perform worse.

[147]

Forecast approach for
irradiance time series that

combines mutual
information measurements

and an extreme learning
machine (ELM). The
method is known as

Minimum
Redundancy—Maximum

Relevance (MRMR)

IFS-based
MRMR

ELM
15 min–1 h-24 h

Measurements at
20 sites every

minute for 2 years

Solar irradiance
data

Long window
Short window

PCA
MRMR

R2

MAPE
nMSE
RMSE

FS

The performance criteria indicate that the
MRMR method clearly outperforms the other

dimensionality reduction scenarios in most
cases. Compared to other machine learning

techniques, ELM has the advantage of
achieving good performance in terms of

accuracy in extremely fast
computational time.

[148]
Hybrid mapping based on
applied deep learning for

solar PV forecasting

CNN
LSTM

K-means
clustering

Convolutional
Autoencoder

Not specified 1 July 2017–30
June 2018

25,000 all-sky
images

RMSE
MAE
CORR

CNN
LSTM
ANN

The proposed hybrid mapping model shows
better precision,

and a smaller error range compared to other
deep learning methods.

[149]

Short-term solar power
forecasting with deep

learning: exploration of the
optimal input and output

configuration using hybrid
data, temporal history, and

strong regularization

CNN 15 min 1 March 2017–1
March 2028

Sky images
PV power

Smart
persistence AR

RMSE
FS

It achieves a forecast ability of 15.7% on the
overall test suite and 16.3% on the most

demanding cloudy days, relative to the smart
persistence model.

Careful downsampling can reduce training
time by up to 83% without affecting accuracy.
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[151]

A strategy that uses
artificial intelligence (AI) to
forecast irradiance directly

from an extracted
sub-image that surrounds

the sun

Optical flow
Ray tracing

CNN
GLM
MLP
RFR
GBT

15 min
October 2015–May

2016
(147 días)

Sky images

MLP
Deep Learning

RFR
GBT

MAE
MAPE
nRMSE

R2

Several different AI models are compared,
including deep learning and Gradient

Boosted Trees. (MLP R2 = 0.71, RF R2 = 0.76,
DL R2 = 0.871, GBT R2 = 0.875).

[156]

High-resolution real-time
NWP results based on the
weather forecasting and
research (WRF) model
study the ability of the

model to provide daytime
GHI and clear sky index

predictions

MOS 2–5 days 1 August 2015–31
December 2016

GHI
DRI forecast

data
WRF

MBE
rMBE
MAE
rMAE
RMSE
rRMSE

r

The importance of developing a seasonal and
site-specific climate-dependent model output

statistics (MOS) approach is shown to
improve forecast accuracy, eliminating bias

and reducing the overall relative mean square
error (rRMSE) of GHI. as much as 6%,

compared to the uncorrected model output.

[159]

The method is based on the
advection and diffusion of
estimates of the Meteosat
Second Generation (MSG)

cloud index using the
numerical weather

prediction (NWP) model of
meteorological research
and forecasting (WRF)

WRF
Up to 6 h with

15 min
resolution

25 days

GHI and DNI of
three sites

Cloud height by
ceilometer
Sky images

Satellite images

Smart
persistence
OpenPIV

CMV
WRF-Solar

RMSE
Bias
Skill

The results showed that the model is capable
of providing improved forecasts in areas with

low topographic complexity, where the
advection of clouds by the dynamics of the

atmospheric mesoscale is not disturbed by the
characteristics of the mountains (the model t

outperforms the OpenPIV method (∼5%
rRMSE), smart persistence (∼10–20% from 1

to 5 h of waiting time) and WRF-Solar
(∼10–30% until the fourth forecast hour).

[160]

Proposes a framework of
stochastic differential

equations to model the
uncertainty associated with
the prediction of the solar

irradiance point

SDE
Kalman filter

Lamperti
transform

1 h–24 h 01/01/09–
31/12/11

NWP irradiance
predictions

Solar irradiance
measurements

Naive
persistence

Training and
testing

The combination of the extended Kalman
filter and the Lamperti transform offers a

flexible framework for estimating SDE with a
relatively large number of data points. In

addition, the in-sample and out-of-sample
results indicate that the linearization

introduced by the filter works satisfactorily.

[161]

The purpose of this work is
to establish a methodology
to produce solar irradiance

forecasts using WRF
combined with a

post-processing method

WRF
ANDS
ANNS
BSNR

1 h 2009–2011 Solar irradiance WRF
ANN

RMSE
ME

MSE

The study showed that the precisions derived
from the ANN model had lower deviations in
bias, MSE and RMSE increased the correlation
coefficients in the dry and rainy seasons. In

both seasons, the ANN model provided
forecasts with a significant reduction in
deviations compared to the WRF model.
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[162]

State-of-the-art
implementations of climate

research and forecasting
are combined with

multivariate statistical
learning techniques

RTM
WRF
GFS
MOS
UR

De 5 a 6 h
From 2016 with

data from 9 am to
5 pm

GHI of 25
different SERIS

stations

Naive
persistence

RMSE
MAE
MBE

It is concluded that WRF Solar is a significant
improvement over the WRF standard with

RRTMG. It is shown that, without statistical
processing, WRF is a significant improvement

over the global model. The multivariate
model output statistics routine improves

forecasts on all our models.

[163]

An evaluation of the solar
irradiance forecasts of the
Global Forecast System is

provided

ANN
ARN
BSRN
NWP
BRL

1 day 1 January 2015–31
December 2016

Data from
various weather
stations in China

Naive
persistence

MAE
RMSE
MBE

Statistical indicators show that GHI and DNI
forecasts are generally overestimated by GFS,

seeing that DNI is more complicated to
predict than GHI.

[164]

A corrective algorithm is
proposed to improve the

accuracy of the global
horizontal irradiation

(GHI) forecasts obtained
from the numerical climate

prediction model

ANN
SVM

RRTM
4–24 h

May
2015–November

2016
January

2015–November
2016

Meteorological
variables

Smart
persistence

ECMWF
ARIMA

FFT

MBE
MAE
RMSE
U95
R2

TS
GPI
FS

The GHI forecasts obtained from the IFS were
shown to be more accurate for clear sky

conditions, slightly underestimating the GHI
value with MBE ranging from −6.46 to

−9.14 w/m2.

[165]

A hybrid forecasting model
is proposed that combines
Wavelet transform, swarm
particle optimization and

SVM for short-term
generation power

forecasting

NWP
COSMO

WRF
RAMS
MM5
PSO
SVM
WT

3–24 h May 2014–April
2015

Meteorological
variables

BPNN
HGNN
HPNN
SVM
HGS
HPS

HHPS

MAPE
RMSE
nMAE

SSE
SDE

The daily MAPE and NMAE have average
values of 4.22% and 0.4%, respectively,

surpassing other seven prediction strategies,
while the average calculation time is less than

15 s. Therefore, the effectiveness for the
prediction of photovoltaic solar energy in the

short term is verified.

[168]

Preprocessing of WRF
initial conditions for

coastal stratocumulus
prediction

WEMPP
CLDDA

WRF
5–10–30 min 1 month NAM and RAP

data set

Comparison
with ground

measurements
Naive

persistence

MBE
MAE

It is shown that the combination of both
preprocessors provided improvement in the

prediction of the spatial coverage, the
thickness, and the useful life of Sc in the

coastal regions where stratocumulus of the
marine layer is observed more frequently, but

the cloud cover over the ocean by all
the preprocessors.
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Table A2. Cont.

Reference Aim Methods Used Forecast
Horizon Data Period Input Variables Comparison

Methods
Performance

Metrics Results and Observations

[169]

A solar energy prediction
model based on several
satellite images and a
supporting machine

learning (SVM) scheme is
proposed

SVM
AMV
ANN

ARMA
ARIMA

NAR

Up to 1 h
April

2011–September
2015

Satellite images Smart
persistence GHI

RMSE
MRE

R2

Throughout the experiments, the proposed
SVM-based prediction model shows the

highest prediction precision, compared to
other prediction models, such as conventional

time series and ANN models.

[170]

Satellite-based model
fusion technique designed

for short-term solar
irradiance ramp

forecasting

NWP
CLAVR-x
CIRACast
SASRAB

Up to 3 h
January

2014–December
2016

Images taken
from satellite

SURFRAD
GHI

nMAE
MAPE
RMSE

Typical errors range from 8.5% to 17.2%,
depending on the complexity of the cloud

regimes, and an operational demonstration
exceeded the forecast based on persistence of
global horizontal irradiance (GHI) under all

conditions by ~10 W/m2.

[171]

Surface solar radiation
forecast algorithm using

enhanced visible and
infrared image cloud
physical properties

(SEVIRI)

HARMONIE
KNMI
SICCS
CMVS

Up to 4 h September
2016–April 2017 Satellite images SEVIRI RMSE

The quality of the prediction depends on the
weather conditions.

CMVs using 5 images give better results for
the radar advection algorithm.

[173]

Estimation of solar
irradiance using MSG

images comparing each
radiation component with
the average value of the

previous 15 min

ESRA
Heliosat-2 Hourly 2010–2014 Satellite data

Average
radiation value
of the previous

15 min

RMSE
nRMSE

MBE
nMBE

R

The nRMSE value for global estimates is
approximately 7%, for beam estimates it is

approximately 18%, and for diffuse estimates
it is 16%. Under clear skies, the evaluation

indicators present the best results.

[175]

Identification of
relationships between the

accuracy of an intraday
surface solar irradiance
forecasting method and
meteorological variables

that can be easily observed
or predicted

ARPEGE
CMV Up to 6 h July 2017–June

2020 Satellite images FS

RMSE
MBE
MAE

R

The results can help solar users anticipate the
forecast start time up to several days in

advance. SS positive forecast is achieved
compared to persistence (up to 15%) and

numerical weather predictions (between 20%
and 40%).

[209]

Solar irradiance forecasting
method based on real-time
surface irradiance mapping
model, which is beneficial
to achieve higher accuracy

in solar energy forecast

RGB model
Distortion
correction

CDV
FPC

BPNN
SVM

Every minute
(real time)

De 7.00 a 17.00 del
2 May 2017, 26

August 2016 y 8
June 2018

Sky images
Meteorological

variables

ARIMA
BPNN with

meteorological
variables as

input

MAPE
RMSE
MBE

The average measurements of the proposed
method using MAPE, RMSE, and MBE are

22.66%, 92.72, −1.26% for block clouds;
20.44%, 132.15, −1.06% for thin clouds and

18.82%, 120.78, −0.98% for thick clouds, thus
offering a much higher forecast accuracy than

other points of reference.
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Reference Aim Methods Used Forecast
Horizon Data Period Input Variables Comparison

Methods
Performance

Metrics Results and Observations

[212]
Predicting cloud

movement with an image
registration approach

Thirions
Demons
Fischer

20 s In real time Image
acquisition Chow method Not Specified The proposed method improves the block

combination strategy by 19%.

[215]

Method to track and
predict cloud movement

with ground-based
sky images

Lucas-Kanade 30–40 s In real time
640 × 480 pixels

partial sky
images

With himself UCSD
The presented method has the potential to

track clouds traveling in different directions
and at different speeds.

[220]

Various sky image
processing techniques

relevant to solar prediction
are described, including

velocity field calculations,
spatial transformation of

images, and
cloud classification

MPIV
K-means
algorithm

3–15 min
Every minute for 4

highly variable
days

Sky images Naive
persistence RMSE

RMSE errors demonstrate that sky imagers
are useful for forecast horizons 3 to 15 min in
advance. Compared to a persistent model, it

appears that the most significant forecast
accuracies are for 5 min ahead.
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63. Deo, R.C.; Şahin, M. Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS)
land surface temperature (LST) for regional locations in Queensland. Renew. Sustain. Energy Rev. 2017, 72, 828–848. [CrossRef]

64. Srivastava, S.; Lessmann, S. A comparative study of LSTM neural networks in forecasting day-ahead global horizontal irradiance
with satellite data. Sol. Energy 2018, 162, 232–247. [CrossRef]

65. Deo, R.C.; Şahin, M.; Adamowski, J.F.; Mi, J. Universally deployable extreme learning machines integrated with remotely sensed
MODIS satellite predictors over Australia to forecast global solar radiation: A new approach. Renew. Sustain. Energy Rev. 2019,
104, 235–261. [CrossRef]

66. Cros, S.; Sébastien, N.; Liandrat, O.; Schmutz, N. Cloud pattern prediction from geostationary meteorological satellite images for
solar energy forecasting. Soc. Photo Opt. Instrum. Eng. (SPIE) 2014, 9242, 924202. [CrossRef]

67. Doorga, J.R.S.; Dhurmea, K.R.; Rughooputh, S.; Boojhawon, R. Forecasting mesoscale distribution of surface solar irradiation
using a proposed hybrid approach combining satellite remote sensing and time series models. Renew. Sustain. Energy Rev. 2019,
104, 69–85. [CrossRef]

68. Kallio-Myers, V.; Riihelä, A.; Lahtinen, P.; Lindfors, A. Global horizontal irradiance forecast for Finland based on geostationary
weather satellite data. Sol. Energy 2020, 198, 68–80. [CrossRef]

69. Kurzrock, F.; Cros, S.; Ming, F.C.; Otkin, J.A.; Hutt, A.; Linguet, L.; Lajoie, G.; Potthast, R. A Review of the Use of Geostationary
Satellite Observations in Regional-Scale Models for Short-term Cloud Forecasting. Meteorol. Z. 2018, 27, 277–298. [CrossRef]

70. Lago, J.; De Brabandere, K.; De Ridder, F.; De Schutter, B. Short-term forecasting of solar irradiance without local telemetry: A
generalized model using satellite data. Sol. Energy 2018, 173, 566–577. [CrossRef]

71. Mazorra Aguiar, L.; Pereira, B.; David, M.; Díaz, F.; Lauret, P. Use of satellite data to improve solar radiation forecasting with
Bayesian Artificial Neural Networks. Sol. Energy 2015, 122, 1309–1324. [CrossRef]

72. Antuña-Sánchez, J.C.; Román, R.; Cachorro, V.E.; Toledano, C.; López, C.; González, R.; Mateos, D.; Calle, A.; de Frutos, Á.M.
Relative sky radiance from multi-exposure all-sky camera images. Atmos. Meas. Tech. 2021, 14, 2201–2217. [CrossRef]

73. Schroedter-Homscheidt, M.; Gesell, G. Verification of sectoral cloud motion based direct normal irradiance nowcasting from
satellite imagery. AIP Conf. Proc. 2016, 1734, 150007.

74. Markovics, D.; Mayer, M.J. Comparison of machine learning methods for photovoltaic power forecasting based on numerical
weather prediction. Renew. Sustain. Energy Rev. 2022, 161, 112364. [CrossRef]

75. Rana, M.; Koprinska, I.; Agelidis, V.G. Univariate and multivariate methods for very short-term solar photovoltaic power
forecasting. Energy Convers. Manag. 2016, 121, 380–390. [CrossRef]

76. Russo, M.; Leotta, G.; Pugliatti, P.; Gigliucci, G. Genetic programming for photovoltaic plant output forecasting. Sol. Energy 2014,
105, 264–273. [CrossRef]

77. Wang, Y.; Liu, D.; Xie, W.; Yang, M.; Gao, Z.; Ling, X.; Huang, Y.; Li, C.; Liu, Y.; Xia, Y. Day and Night Clouds Detection Using a
Thermal-Infrared All-Sky-View Camera. Remote Sens. 2021, 13, 1852. [CrossRef]

78. Kuhn, P.; Garsche, D.; Wilbert, S.; Nouri, B.; Hanrieder, N.; Prahl, C.; Zarzarlejo, L.; Fernández, J.; Kazantzidis, A.; Schmidt, T.;
et al. Shadow-camera based solar nowcasting system for shortest-term forecasts. Meteorol. Z. 2019, 28, 255–270. [CrossRef]

79. Wagdy, A.; Garcia-Hansen, V.; Isoardi, G.; Pham, K. A Parametric Method for Remapping and Calibrating Fisheye Images for
Glare Analysis. Buildings 2019, 9, 219. [CrossRef]

80. Wei, J.; Li, C.-F.; Hu, S.-M.; Martin, R.R.; Tai, C.-L. Fisheye Video Correction. IEEE Trans. Vis. Comput. Graph. 2011, 18, 1771–1783.
[CrossRef]

https://doi.org/10.1016/j.atmosres.2020.105026
https://doi.org/10.1029/2002JD002122
https://doi.org/10.1016/j.solener.2011.02.014
https://doi.org/10.1016/j.renene.2019.09.011
https://doi.org/10.1016/j.enconman.2013.11.043
https://doi.org/10.1016/j.solener.2013.02.018
https://doi.org/10.3390/en17020329
https://doi.org/10.1016/j.solener.2017.09.068
https://doi.org/10.1016/j.solener.2018.11.010
https://doi.org/10.1016/j.rser.2017.01.114
https://doi.org/10.1016/j.solener.2018.01.005
https://doi.org/10.1016/j.rser.2019.01.009
https://doi.org/10.1117/12.2066853
https://doi.org/10.1016/j.rser.2018.12.055
https://doi.org/10.1016/j.solener.2020.01.008
https://doi.org/10.1127/metz/2018/0904
https://doi.org/10.1016/j.solener.2018.07.050
https://doi.org/10.1016/j.solener.2015.10.041
https://doi.org/10.5194/amt-14-2201-2021
https://doi.org/10.1016/j.rser.2022.112364
https://doi.org/10.1016/j.enconman.2016.05.025
https://doi.org/10.1016/j.solener.2014.02.021
https://doi.org/10.3390/rs13091852
https://doi.org/10.1127/metz/2019/0954
https://doi.org/10.3390/buildings9100219
https://doi.org/10.1109/TVCG.2011.130


Appl. Sci. 2024, 14, 5605 51 of 56

81. Bellas, N.; Chai, S.M.; Dwyer, M.; Linzmeier, D. Real-Time Fisheye Lens Distortion Correction Using Automatically Generated
Streaming Accelerators. In Proceedings of the 2009 17th IEEE Symposium on Field Programmable Custom Computing Machines,
Napa, CA, USA, 5–7 April 2009. [CrossRef]

82. Martínez-Chico, M.; Batlles, F.; Bosch, J. Cloud classification in a mediterranean location using radiation data and sky images.
Energy 2011, 36, 4055–4062. [CrossRef]

83. Shields, J.E.; Karr, M.E.; Johnson, R.W.; Burden, A.R. Day/night whole sky imagers for 24-h cloud and sky assessment: History
and overview. Appl. Opt. 2013, 52, 1605–1616. [CrossRef] [PubMed]

84. González, Y.; López, C.; Cuevas, E. Cloud nowcasting: Motion analysis of all sky images using velocity fields. In Proceedings of
the 19th IMEKO TC4 Symposium Measurements of Electrical Quantities (Together with 17th TC4 IWADC Workshop on ADC
and DAC Modelling and Testing), Barcelona, Spain, 18–19 July 2013.

85. Chu, Y.; Pedro, H.T.; Coimbra, C.F. Hybrid intra-hour DNI forecasts with sky image processing enhanced by stochastic learning.
Sol. Energy 2013, 98, 592–603. [CrossRef]

86. Niccolai, A.; Nespoli, A. Sun Position Identification in Sky Images for Nowcasting Application. Forecasting 2020, 2, 488–504.
[CrossRef]

87. Reno, M.J.; Hansen, C.W. Identification of periods of clear sky irradiance in time series of GHI measurements. Renew. Energy 2016,
90, 520–531. [CrossRef]

88. Kosch, M.J.; Pedersen, T.; Esposito, R. Wide angle mirror system design for distortionless imaging of the sky. Appl. Opt. 2009, 48,
4703–4708. [CrossRef]

89. Kuhn, P.; Nouri, B.; Wilbert, S.; Prahl, C.; Kozonek, N.; Schmidt, T.; Yasser, Z.; Ramirez, L.; Zarzalejo, L.; Meyer, A.; et al. Validation
of an all-sky imager–based nowcasting system for industrial PV plants. Prog. Photovolt. Res. Appl. 2017, 26, 608–621. [CrossRef]

90. Kuhn, P.; Wilbert, S.; Schüler, D.; Prahl, C.; Haase, T.; Ramirez, L.; Zarzalejo, L.; Meyer, A.; Vuilleumier, L.; Blanc, P.; et al.
Validation of spatially resolved all sky imager derived DNI nowcasts. In Proceedings of the SOLARPACES 2016: International
Conference on Concentrating Solar Power and Chemical Energy Systems, Abu Dhabi, United Arab Emirates, 11–14 October 2016;
AIP Publishing: Melville, NY, USA, 2017; Volume 1850, p. 1. [CrossRef]

91. West, S.R.; Rowe, D.; Sayeef, S.; Berry, A. Short-term irradiance forecasting using skycams: Motivation and development. Sol.
Energy 2014, 110, 188–207. [CrossRef]

92. Yang, H.; Kurtz, B.; Nguyen, D.; Urquhart, B.; Chow, C.W.; Ghonima, M.; Kleissl, J. Solar irradiance forecasting using a
ground-based sky imager developed at UC San Diego. Sol. Energy 2014, 103, 502–524. [CrossRef]

93. Huang, H.; Yoo, S.; Yu, D.; Huang, D.; Qin, H. Correlation and local feature based cloud motion estimation. In Proceedings of the
MDMKDD ‘12: Proceedings of the Twelfth International Workshop on Multimedia Data Mining, Beijing, China, 12 August 2012.
[CrossRef]

94. Chow, C.W.; Belongie, S.; Kleissl, J. Cloud motion and stability estimation for intra-hour solar forecasting. Sol. Energy 2015, 115,
645–655. [CrossRef]

95. Nguyen, D.A.; Kleissl, J. Stereographic methods for cloud base height determination using two sky imagers. Sol. Energy 2014, 107,
495–509. [CrossRef]

96. Costa-Surós, M.; Calbó, J.; González, J.; Martin-Vide, J. Behavior of cloud base height from ceilometer measurements. Atmos. Res.
2013, 127, 64–76. [CrossRef]

97. Kotthaus, S.; Grimmond, C.S.B. Atmospheric boundary-layer characteristics from ceilometer measurements. Part 1: A new
method to track mixed layer height and classify clouds. Q. J. R. Meteorol. Soc. 2018, 144, 1525–1538. [CrossRef]

98. Nouri, B.; Wilbert, S.; Kuhn, P.; Hanrieder, N.; Schroedter-Homscheidt, M.; Kazantzidis, A.; Zarzalejo, L.; Blanc, P.; Kumar, S.;
Goswami, N.; et al. Real-Time Uncertainty Specification of All Sky Imager Derived Irradiance Nowcasts. Remote Sens. 2019, 11,
1059. [CrossRef]

99. Richardson, W.; Krishnaswami, H.; Vega, R.; Cervantes, M. A Low Cost, Edge Computing, All-Sky Imager for Cloud Tracking
and Intra-Hour Irradiance Forecasting. Sustainability 2017, 9, 482. [CrossRef]

100. Nouri, B.; Wilbert, S.; Segura, L.; Kuhn, P.; Hanrieder, N.; Kazantzidis, A.; Schmidt, T.; Zarzalejo, L.; Blanc, P.; Pitz-Paal, R.
Determination of cloud transmittance for all sky imager based solar nowcasting. Sol. Energy 2019, 181, 251–263. [CrossRef]

101. Blanc, P.; Massip, P.; Kazantzidis, A.; Tzoumanikas, P.; Kuhn, P.; Wilbert, S.; Schüler, D.; Prahl, C. Short-term forecasting of high
resolution local DNI maps with multiple fish-eye cameras in stereoscopic mode. AIP Conf. Proc. 2017, 1850, 140004. [CrossRef]

102. Peng, Z.; Yu, D.; Huang, D.; Heiser, J.; Yoo, S.; Kalb, P. 3D cloud detection and tracking system for solar forecast using multiple
sky imagers. Sol. Energy 2015, 118, 496–519. [CrossRef]

103. Cheng, H.-Y. Hybrid solar irradiance now-casting by fusing Kalman filter and regressor. Renew. Energy 2016, 91, 434–441.
[CrossRef]

104. Cheng, H.-Y.; Yu, C.-C. Solar irradiance now-casting with ramp-down event prediction via enhanced cloud detection and tracking.
In Proceedings of the 2016 IEEE International Conference on Multimedia and Expo (ICME), Seattle, WA, USA, 11–15 July 2016.
[CrossRef]

105. Cheng, H.-Y. Cloud tracking using clusters of feature points for accurate solar irradiance nowcasting. Renew. Energy 2017, 104,
281–289. [CrossRef]

106. Xie, W.; Wang, Y.; Xia, Y.; Gao, Z.; Liu, D. Angular Calibration of Visible and Infrared Binocular All-Sky-View Cameras Using Sun
Positions. Remote Sens. 2021, 13, 2455. [CrossRef]

https://doi.org/10.1109/FCCM.2009.16
https://doi.org/10.1016/j.energy.2011.04.043
https://doi.org/10.1364/AO.52.001605
https://www.ncbi.nlm.nih.gov/pubmed/23478763
https://doi.org/10.1016/j.solener.2013.10.020
https://doi.org/10.3390/forecast2040026
https://doi.org/10.1016/j.renene.2015.12.031
https://doi.org/10.1364/AO.48.004703
https://doi.org/10.1002/pip.2968
https://doi.org/10.1063/1.4984522
https://doi.org/10.1016/j.solener.2014.08.038
https://doi.org/10.1016/j.solener.2014.02.044
https://doi.org/10.1145/2343862.2343863
https://doi.org/10.1016/j.solener.2015.03.030
https://doi.org/10.1016/j.solener.2014.05.005
https://doi.org/10.1016/j.atmosres.2013.02.005
https://doi.org/10.1002/qj.3299
https://doi.org/10.3390/rs11091059
https://doi.org/10.3390/su9040482
https://doi.org/10.1016/j.solener.2019.02.004
https://doi.org/10.1063/1.4984512
https://doi.org/10.1016/j.solener.2015.05.037
https://doi.org/10.1016/j.renene.2016.01.077
https://doi.org/10.1109/ICME.2016.7552863
https://doi.org/10.1016/j.renene.2016.12.023
https://doi.org/10.3390/rs13132455


Appl. Sci. 2024, 14, 5605 52 of 56

107. Román, R.; Antuña-Sánchez, J.C.; Cachorro, V.E.; Toledano, C.; Torres, B.; Mateos, D.; Fuertes, D.; López, C.; González, R.;
Lapionok, T.; et al. Retrieval of aerosol properties using relative radiance measurements from an all-sky camera. Atmos. Meas.
Tech. 2022, 15, 407–433. [CrossRef]

108. Chow, C.W.; Urquhart, B.; Lave, M.; Dominguez, A.; Kleissl, J.; Shields, J.; Washom, B. Intra-hour forecasting with a total sky
imager at the UC San Diego solar energy testbed. Sol. Energy 2011, 85, 2881–2893. [CrossRef]

109. Palomares, M.; Bjerknes, V. La meteorología y la predicción del tiempo ¿Cuál es actualmente su nivel de fiabilidad?, ¿por qué
se equivocan los meteorólogos? Available online: https://www.divulgameteo.es/uploads/Fiabilidad-predicci%C3%B3n.pdf
(accessed on 18 May 2024).

110. Yang, D.; Dong, Z.; Reindl, T.; Jirutitijaroen, P.; Walsh, W.M. Solar irradiance forecasting using spatio-temporal empirical kriging
and vector autoregressive models with parameter shrinkage. Sol. Energy 2014, 103, 550–562. [CrossRef]

111. Torres, J.F.; Troncoso, A.; Koprinska, I.; Wang, Z.; Martínez-Álvarez, F. Deep Learning for Big Data Time Series Forecasting
Applied to Solar Power. In Proceedings of the 13th International Conference on Soft Computing Models in Industrial and
Environmental Applications, San Sebastian, Spain, 6–8 June 2018. [CrossRef]

112. Singh, B.; Pozo, D. A Guide to Solar Power Forecasting using ARMA Models. In Proceedings of the 2019 IEEE PES Innovative
Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, 29 September–2 October 2019. [CrossRef]

113. Bessa, R.; Trindade, A.; Silva, C.S.; Miranda, V. Probabilistic solar power forecasting in smart grids using distributed information.
Int. J. Electr. Power Energy Syst. 2015, 72, 16–23. [CrossRef]

114. Li, Y.; Su, Y.; Shu, L. An ARMAX model for forecasting the power output of a grid connected photovoltaic system. Renew. Energy
2014, 66, 78–89. [CrossRef]

115. Alsharif, M.H.; Younes, M.K.; Kim, J. Time Series ARIMA Model for Prediction of Daily and Monthly Average Global Solar
Radiation: The Case Study of Seoul, South Korea. Symmetry 2019, 11, 240. [CrossRef]

116. Kushwaha, V.; Pindoriya, N.M. Very short-term solar PV generation forecast using SARIMA model: A case study. In Proceedings
of the 7th International Conference on Power Systems (ICPS), Pune, India, 21–23 December 2017. [CrossRef]

117. Gu, Y.; Wei, H.-L.; Boynton, R.J.; Walker, S.N.; Balikhin, M.A. Prediction of Kp index using NARMAX models with a robust
model structure selection method. In Proceedings of the 9th International Conference on Electronics, Computers and Artificial
Intelligence (ECAI), Targoviste, Romania, 29 June–1 July 2017. [CrossRef]

118. Pazikadin, A.R.; Rifai, D.; Ali, K.; Malik, M.Z.; Abdalla, A.N.; Faraj, M.A. Solar irradiance measurement instrumentation and
power solar generation forecasting based on Artificial Neural Networks (ANN): A review of five years research trend. Sci. Total.
Environ. 2020, 715, 136848. [CrossRef]

119. Yadav, A.K.; Chandel, S. Solar radiation prediction using Artificial Neural Network techniques: A review. Renew. Sustain. Energy
Rev. 2014, 33, 772–781. [CrossRef]

120. Kamadinata, J.O.; Ken, T.L.; Suwa, T. Sky image-based solar irradiance prediction methodologies using artificial neural networks.
Renew. Energy 2019, 134, 837–845. [CrossRef]

121. Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. A review of deep learning for renewable energy forecasting. Energy Convers.
Manag. 2019, 198, 111799. [CrossRef]

122. Alkhayat, G.; Mehmood, R. A Review and Taxonomy of Wind and Solar Energy Forecasting Methods Based on Deep Learning.
Energy AI 2021, 4, 100060. [CrossRef]

123. Shamshirband, S.; Rabczuk, T.; Chau, K.-W. A Survey of Deep Learning Techniques: Application in Wind and Solar Energy
Resources. IEEE Access 2019, 7, 164650–164666. [CrossRef]

124. Hocaoglu, F.O.; Serttas, F. A novel hybrid (Mycielski-Markov) model for hourly solar radiation forecasting. Renew. Energy 2017,
108, 635–643. [CrossRef]

125. Wang, F.; Zhen, Z.; Wang, B.; Mi, Z. Comparative Study on KNN and SVM Based Weather Classification Models for Day Ahead
Short Term Solar PV Power Forecasting. Appl. Sci. 2018, 8, 28. [CrossRef]

126. Liu, D.; Sun, K. Random forest solar power forecast based on classification optimization. Energy 2019, 187, 115940. [CrossRef]
127. Sobri, S.; Koohi-Kamali, S.; Rahim, N.A. Solar photovoltaic generation forecasting methods: A review. Energy Convers. Manag.

2018, 156, 459–497. [CrossRef]
128. David, M.; Luis, M.A.; Lauret, P. Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data.

Int. J. Forecast. 2018, 34, 529–547. [CrossRef]
129. Boland, J. Spatial-temporal forecasting of solar radiation. Renew. Energy 2015, 75, 607–616. [CrossRef]
130. Huang, J.; Korolkiewicz, M.; Agrawal, M.; Boland, J. Forecasting solar radiation on an hourly time scale using a Coupled

AutoRegressive and Dynamical System (CARDS) model. Sol. Energy 2012, 87, 136–149. [CrossRef]
131. Lauret, P.; Voyant, C.; Soubdhan, T.; David, M.; Poggi, P. A benchmarking of machine learning techniques for solar radiation

forecasting in an insular context. Sol. Energy 2015, 112, 446–457. [CrossRef]
132. Monjoly, S.; André, M.; Calif, R.; Soubdhan, T. Hourly forecasting of global solar radiation based on multiscale decomposition

methods: A hybrid approach. Energy 2017, 119, 288–298. [CrossRef]
133. Belmahdi, B.; Louzazni, M.; El Bouardi, A. One month-ahead forecasting of mean daily global solar radiation using time series

models. Optik 2020, 219, 165207. [CrossRef]
134. Huang, C.; Wang, L.; Lai, L.L. Data-Driven Short-Term Solar Irradiance Forecasting Based on Information of Neighboring Sites.

IEEE Trans. Ind. Electron. 2018, 66, 9918–9927. [CrossRef]

https://doi.org/10.5194/amt-15-407-2022
https://doi.org/10.1016/j.solener.2011.08.025
https://www.divulgameteo.es/uploads/Fiabilidad-predicci%C3%B3n.pdf
https://doi.org/10.1016/j.solener.2014.01.024
https://doi.org/10.1007/978-3-319-94120-2_12
https://doi.org/10.1109/ISGTEurope.2019.8905430
https://doi.org/10.1016/j.ijepes.2015.02.006
https://doi.org/10.1016/j.renene.2013.11.067
https://doi.org/10.3390/sym11020240
https://doi.org/10.1109/ICPES.2017.8387332
https://doi.org/10.1109/ECAI.2017.8166414
https://doi.org/10.1016/j.scitotenv.2020.136848
https://doi.org/10.1016/j.rser.2013.08.055
https://doi.org/10.1016/j.renene.2018.11.056
https://doi.org/10.1016/j.enconman.2019.111799
https://doi.org/10.1016/j.egyai.2021.100060
https://doi.org/10.1109/ACCESS.2019.2951750
https://doi.org/10.1016/j.renene.2016.08.058
https://doi.org/10.3390/app8010028
https://doi.org/10.1016/j.energy.2019.115940
https://doi.org/10.1016/j.enconman.2017.11.019
https://doi.org/10.1016/j.ijforecast.2018.02.003
https://doi.org/10.1016/j.renene.2014.10.035
https://doi.org/10.1016/j.solener.2012.10.012
https://doi.org/10.1016/j.solener.2014.12.014
https://doi.org/10.1016/j.energy.2016.11.061
https://doi.org/10.1016/j.ijleo.2020.165207
https://doi.org/10.1109/TIE.2018.2856199


Appl. Sci. 2024, 14, 5605 53 of 56

135. Muhammad, A.; Gaya, M.S.; Aliyu, R.; Abdulkadir, R.A.; Umar, I.D.; Yusuf, L.A.; Ali, M.U.; Khairi, M. Forecasting of global solar
radiation using anfis and armax techniques. IOP Conf. Ser. Mater. Sci. Eng. 2018, 303, 012016. [CrossRef]

136. Dewangan, C.L.; Singh, S.N.; Chakrabarti, S. Solar irradiance forecasting using wavelet neural network. In Proceedings of
the 2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Bangalore, India, 8–10 November 2017.
[CrossRef]

137. Babu, M.K.; Ray, P. A Wavelet Neural Network Model for Hourly Solar Radiation Forecasting from Daily Solar Radiation. In
Proceedings of the IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, India, 29–31 March 2019.
[CrossRef]

138. Sharma, V.; Yang, D.; Walsh, W.; Reindl, T. Short term solar irradiance forecasting using a mixed wavelet neural network. Renew.
Energy 2016, 90, 481–492. [CrossRef]

139. Shakya, A.; Michael, S.; Saunders, C.; Armstrong, D.; Pandey, P.; Chalise, S.; Tonkoski, R. Solar Irradiance Forecasting in Remote
Microgrids Using Markov Switching Model. IEEE Trans. Sustain. Energy 2017, 8, 895–905. [CrossRef]

140. Rai, A.; Shrivastava, A.; Jana, K.C. A robust auto encoder-gated recurrent unit (AE-GRU) based deep learning approach for short
term solar power forecasting. Optik 2021, 252, 168515. [CrossRef]

141. Ghimire, S.; Deo, R.C.; Raj, N.; Mi, J. Deep solar radiation forecasting with convolutional neural network and long short-term
memory network algorithms. Appl. Energy 2019, 253, 113541. [CrossRef]

142. Qin, J.; Jiang, H.; Lu, N.; Yao, L.; Zhou, C. Enhancing solar PV output forecast by integrating ground and satellite observations
with deep learning. Renew. Sustain. Energy Rev. 2022, 167, 112680. [CrossRef]

143. Gao, Y.; Miyata, S.; Akashi, Y. Interpretable deep learning models for hourly solar radiation prediction based on graph neural
network and attention. Appl. Energy 2022, 321, 119288. [CrossRef]

144. Ospina, J.; Newaz, A.; Faruque, M.O. Forecasting of PV plant output using hybrid wavelet-based LSTM-DNN structure model.
IET Renew. Power Gener. 2019, 13, 1087–1095. [CrossRef]

145. Mustaqeem; Ishaq, M.; Kwon, S. A CNN-Assisted deep echo state network using multiple Time-Scale dynamic learning reservoirs
for generating Short-Term solar energy forecasting. Sustain. Energy Technol. Assess. 2022, 52, 102275. [CrossRef]

146. Gensler, A.; Henze, J.; Sick, B.; Raabe, N. Deep Learning for solar power forecasting—An approach using AutoEncoder and LSTM
Neural Networks. In Proceedings of the 2016 IEEE International Conference, Systems, Man, and Cybernetics (SMC), Budapest,
Hungary, 9 October 2016. [CrossRef]

147. Bouzgou, H.; Gueymard, C.A. Minimum redundancy—Maximum relevance with extreme learning machines for global solar
radiation forecasting: Toward an optimized dimensionality reduction for solar time series. Sol. Energy 2017, 158, 595–609.
[CrossRef]

148. Zhen, Z.; Liu, J.; Zhang, Z.; Wang, F.; Chai, H.; Yu, Y.; Lu, X.; Wang, T.; Lin, Y. Deep Learning Based Surface Irradiance Mapping
Model for Solar PV Power Forecasting Using Sky Image. IEEE Trans. Ind. Appl. 2020, 56, 3385–3396. [CrossRef]

149. Sun, Y.C.; Venugopal, V.; Brandt, A.R. Short-term solar power forecast with deep learning: Exploring optimal input and output
configuration. Sol. Energy 2019, 188, 730–741. [CrossRef]

150. Ghimire, S.; Deo, R.C.; Casillas-Pérez, D.; Salcedo-Sanz, S. Boosting solar radiation predictions with global climate models,
observational predictors and hybrid deep-machine learning algorithms. Appl. Energy 2022, 316, 119063. [CrossRef]

151. Moncada, A.; Richardson, W.; Vega-Avila, R. Deep Learning to Forecast Solar Irradiance Using a Six-Month UTSA SkyImager
Dataset. Energies 2018, 11, 1988. [CrossRef]
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