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maximum colony sizes. We found a 3.4-fold increase (from 
1 to 3.4 individuals m−2) in coral abundance at one heavily 
disturbed location, where canopy-forming seaweeds were 
replaced by turfing algae, a pattern that was partly driven 
by an increase in the relative contribution of warm affin-
ity taxa, such as Acropora spp. We predicted these changes 
would be reflected in different components of functional 
diversity; yet, despite a localised signal of tropicalisation, 
we only observed subtle changes in the functional identity, 
richness, evenness, and divergence. The spatially invariant 
trait structure of coral assemblages suggests that the nature 
of ecosystem functions will likely remain unchanged during 
early stages of tropicalisation, and hence their contribution 
to temperate reef-scale ecological processes will depend on 
dominance over other benthic foundational species.

Keywords  Tropicalisation · Marginal reefs · Temperate 
reefs · High-latitude corals

Introduction

The composition of contemporary ecological communi-
ties is shaped by the complex interplay between ecological, 
evolutionary, and biogeographical factors (Vellend 2010). 
Disentangling the mechanistic link between changes in the 
abiotic and biotic environment and species range shifts has 
become a fundamental aspect of ecological research, as spe-
cies from many taxonomic groups are rapidly shifting their 
geographic distributions (Chen et al. 2011; Pinsky et al. 
2020; Poloczanska et al. 2013; Wernberg et al. 2011). Trait-
based approaches (i.e. classifications based on morphologi-
cal, behavioural and/or physiological characters) offers a 
promising framework to forecast the response of species 
to environmental changes under future climatic scenarios 
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(Mouillot et al. 2013; Harvey et al. 2021), as well as pro-
viding a link between changes in the taxonomic composi-
tion of assemblages and ecological processes that underpin 
the movement and/or storage of energy and materials (i.e. 
ecosystem functions, Tilman 2001; Gagic et al. 2015; Bell-
wood et al. 2018). Over biogeographical scales, regions with 
similar environmental history often pose similar trait com-
positions (Lamanna et al. 2014; McLean et al. 2021), a pat-
tern associated with environmental filtering of traits that are 
adapted to maximise fitness in those environments (Violle 
et al. 2007; Bosch et al. 2021). As climate change rapidly 
shifts environmental conditions, fundamental reshuffles in 
the trait composition and structure of local assemblages are 
being extensively reported across many taxonomic groups 
(McLean et al. 2018; McWilliam et al. 2020), with often 
unknown consequences for ecosystem functioning (Pecl 
et al. 2017). Despite this increasing knowledge, we still lack 
a thorough understanding across many regions of the world, 
particularly for marginalised high-latitude regions.

The composition of high-latitude (i.e. marginal) coral 
assemblages is governed by a combination of physical (i.e. 
optimum temperature, light availability, aragonite saturation) 
and biological (i.e. competition, larval dispersal, settlement 
cues) factors (Abrego et al. 2021; Kleypas et al. 1999; Som-
mer et al. 2014). Corals that thrive in high-latitude regions 
are typically characterised by traits related to environmen-
tal tolerance (i.e. light, turbidity, wave exposure) (Mizerek 
et al. 2016). However, some of these biophysical limitations 
may be alleviated as a consequence of climate change, thus 
enabling increased abundance, diversity and reef-build-
ing capacity of corals at higher latitudes (Wernberg et al. 
2016; Ribeiro et al. 2022; Yamano et al. 2011; Kumagai 
et al. 2018). Indeed, further range expansions of corals into 
higher latitudes are predicted to occur under climate change 
projections (García Molinos et al. 2016), as these reefs may 
provide suitable habitat areas for the recruitment and per-
sistence of corals (Adam et al. 2021; Cacciapaglia and van 
Woesik 2015; Landry Yuan et al. 2023). Understanding how 
changes in the abundance and composition of coral assem-
blages affect their underlying trait structure is thus a key 
research gap with fundamental implications for reef-scale 
ecological processes (Denis et al. 2017; Gómez-Gras et al. 
2021; McWilliam et al. 2020; Sommer et al. 2021; Zawada 
et al. 2019).

In tropical-temperate biogeographical transition zones, 
poleward range expansions and an increasing abundance 
of reef-building (Scleractinian) corals (hereafter, corals) 
at higher latitudes have been reported in multiple regions; 
including the Caribbean (Precht and Aronson 2004), the 
Mediterranean (Serrano et al. 2013; Serrano and Coma 
2012), Korea (Denis et al. 2013, 2015), Japan (Kumagai 
et al. 2018; Yamano et al. 2011), the East Coast of Australia 
(Baird et al. 2012; Booth and Sear 2018; Schmidt-Roach 

et al. 2013 but see Mizerek et al. 2021) and the West Coast 
of Australia (Ribeiro et al. 2022; Thomson 2010; Tuckett 
et al. 2017). The increasing abundance of more tropically 
affiliated habitat-forming foundation species as temperate 
species recede can result in novel ecosystem configurations 
(i.e. species compositions and relative abundances that have 
not occurred previously, sensu Hobbs et al. 2006) with sig-
nificant ecological consequences (Vergés et al. 2019; Zar-
zyczny et al. 2023)—a phenomenon known as “tropicalisa-
tion” (Verges et al. 2014). Regime shifts to novel benthic 
foundational habitats can have large-scale ecological impacts 
(Filbee-Dexter et al. 2016; Maliao et al. 2008; Norström 
et al. 2009), as habitat-forming foundation species support 
numerous key ecosystem processes and services (Barbier 
et al. 2011; Filbee-Dexter and Wernberg 2018).

The Leeuwin Current (LC) is a major driver of patterns 
of biodiversity in Western Australia (WA) and changes in its 
intensity and/or timing have large implications for marine 
communities (Cresswell and Golding 1980; Pearce et al. 
2011). The LC intensifies during the Austral autumn; how-
ever, during the 2010–2011 Pacific La Niña this intensifica-
tion was abnormally strong and led to an influx of unusually 
warm water to higher latitude reefs (Benthuysen et al. 2014; 
Pearce and Feng 2013). This resulted in an extreme marine 
heatwave (MHW), where sea surface temperatures (SSTs) 
reached up to > 3 °C above the average summer maxima 
(Pearce et al. 2011; Pearce and Feng 2013). The MHW 
caused a regime shift in the benthic community at the north-
ernmost distribution of kelps, with severe loss of golden 
kelp (Ecklonia radiata) across ~ 100 km of coastline, and a 
substantial increase in turf algae (Pessarrodona et al. 2021; 
Wernberg et al. 2016). At the same time there was a four-
fold increase in the abundance of the subtropical-temperate 
specialist, Plesiastrea versipora (Juszkiewicz et al. 2022), 
possibly due to a combination of increased physiological 
performance due to higher temperatures and competitive 
release from the loss of kelp (Ribeiro et al. 2022; Tuckett 
et al. 2017). This biogeographical setting, and the subse-
quent regiment shift in the dominant benthic foundational 
species, offers a unique opportunity to assess how environ-
mental and biotic factors shape spatial signatures in the trait 
structure of coral assemblages at higher latitude reefs.

Here, we surveyed coral assemblages across subtropi-
cal and temperate reefs in WA (27.7°S–34.2°S) in two time 
points, 6 years apart. This time period coincides with a year 
(2015) immediately after an extreme marine heatwave event 
(2011) and subsequent warm summers (2012, 2013) that 
caused a fundamental re-structuring of shallow-water coastal 
assemblages in the region (Wernberg et al. 2016), as well 
as a year (2021) following a cooling phase (2016–2020) 
and a severe winter cold-spell (2016) that has been linked 
to declining persistence and activity levels of mobile ecto-
thermic animals of tropical affinity (Bosch et al. 2022; 
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Stuart-Smith et al. 2022). We hypothesised that the taxo-
nomic structure of coral assemblages would change over the 
6-year period, and these changes would be more pronounced 
in the northernmost sampling locations where the kelp had 
disappeared. We additionally used a trait-based approach to 
assess spatial and temporal changes in the functional identity 
and diversity of the coral assemblages and hypothesised that 
different components of functional diversity would reflect 
the changes in taxonomic structure of the assemblage, with 
coral functional traits in tropicalised areas becoming more 
similar to tropical corals (i.e. faster growth rates, capacity 
to build three-dimensional structures).

Materials and methods

Study sites

Benthic communities on reefs in subtropical and temperate 
WA are typically characterised by diverse assemblages of 
macroalgae, including the dominant habitat-forming golden 
kelp (E. radiata) (Wernberg et al. 2003), whilst coral cover 
is low (< 5%) (Ross et al. 2021). We surveyed 17 wave 
exposed, shallow (6–10 m depth), nearshore (0.5–1.5 km 
from the coast) sites across ca. 7° of latitude within five 
locations in 2015 and 2021: Kalbarri (27.7°S, n = 2 sites), 
Port Gregory (28.1°S, n = 4 sites), Jurien Bay (30.3°S, n = 3 
sites), Perth (Marmion Marine Park, hereafter Marmion) 
(31.8°S, n = 5 sites), and Hamelin Bay (34.2°S, n = 3 sites) 
(Fig. 1). There are clear transitions in geomorphological and 
ecological patterns across this subtropical-temperate transi-
tion zone, with northern locations characterised by lime-
stone reefs dominated by turf algae and Sargassum (Fig. 1b, 
c), whilst southern locations are characterised by a mixed 
of limestone and granite reefs with dominance (> 80% in 

the southernmost locations) of Ecklonia radiata (Fig. 1d–f) 
(Wernberg et al. 2003; Wernberg et al. 2012).

Coral community data

At each sampling site, we photographed all corals greater 
than 1 cm in diameter within five 15 m2 (1 m width × 15 m 
length) transects, and later identified them to genus level 
using taxonomic guides for the region (Richards 2018). 
Additionally, we visually estimated the dominant benthic 
group (i.e. E. radiata, Sargassum spp., turf algae) within 
each transect. Principal component analysis (PCA) was 
used to visually assess the differences in coral assemblage 
structure among sampling locations and years (2015 vs. 
2021). The PCA was based on a Bray–Curtis dissimilarity 
matrix, with species abundances log10 (x + 1) transformed 
to downweight the contribution of very abundant species. 
Due to small sample sizes in many coral genera, we pooled 
transect-level abundances at the family-level and tested for 
both differences in total coral abundance and differences in 
the abundance of each coral family. We used generalised 
linear mixed effect models (GLMMs) to test for differences 
in observed abundance between 2015 and 2021. All mod-
els were built using the ‘glmmTMB’ package in R (Brooks 
et al. 2017), using a negative binomial distribution. Sites, 
nested within each location, were used as a random error 
term to account for the hierarchical spatial structure of the 
sampling design. All models were inspected for violations 
of statistical assumptions using the ‘DHARMa’ package in 
R (Hartig 2021).

Coral trait space

Spatiotemporal patterns in the functional structure of sub-
tropical and temperate coral assemblages were examined 

Fig. 1   a Map of the southwest 
coast of Australia showing the 
five study locations. Col-
oured contours reflect mean 
annual sea surface temperature 
isotherms along the Western 
Australian coastline. Rep-
resentative photographs of 
benthic community structures 
at b Kalbarri (27.7°S), c Port 
Gregory (28.1°S), d Jurien Bay 
(30.3°S), e Marmion (31.8°S), 
and f Hamelin Bay (34.2°S). 
Photographs: Albert Pessar-
rodona (b), Chenae Tuckett (e), 
Defne Sahin (c, d, f)
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using a trait-based approach. Seven traits were selected 
based on their ability to capture coral-related ecosystem 
processes, as per McWilliam et al. 2018, 2020 (Table S1). 
Specifically, we used: growth rate (GR), skeletal density 
(SD), corallite width (CW), interstitial branch spacing (IB), 
colony height (CH), surface area to volume ratio (SV), and 
maximum colony size (CS) (Table S1). For each genus, trait 
scores were calculated from the mean trait values of species 
recorded within each region (Marsh and Veron 1998). Spe-
cies level trait values were obtained from the Coral Trait 
Database (Madin et al. 2016) (Table S2). Acropora corals 
were further classified into growth forms (branching, plat-
ing, digitate, and corymbose) to allow for morphological 
trait score variability. We then generated a multidimen-
sional coral trait space based on the seven traits selected to 
represent the functional structure and diversity of the coral 
communities. To visualise differences in trait space across 
sites, locations and sampling times, we computed a Princi-
pal Coordinate analysis (PCoA) on a Gower dissimilarity 
matrix, as it allows for a mixed type of traits (Gower 1971), 
using the ‘mFD’ R package (Magneville et al. 2022). We 
retained the first four PCoA axes to provide the most par-
simonious choice that minimised the differences between 
original trait-based distances and Euclidean distances 
in the PCoA (MAD = 0.319, Fig. S1 and Fig. S2) (Maire 
et al. 2015). These axes explained 80% of the variation in 
the original trait dissimilarities. A Kruskal–Wallis test was 
performed to calculate the correlation between individual 
traits and PCoA axes (Table S3).

Shifts in the functional trait structure

Temporal changes in the trait structure of coral assemblages 
were visualised by computing their abundance-weighted 
position in the multi-dimensional functional space (Func-
tional identity, Fide). We then tested for temporal changes in 
the functional diversity of coral assemblages by computing 
three complementary indices: functional richness (Frich), 
functional evenness (Feve), and functional divergence (Fdiv) 
(Mouillot et al. 2013; Villéger et al. 2008). Functional rich-
ness describes the volume occupied by all assemblages in 
the multidimensional space and was calculated as the 4D 
convex hull that connects all the points comprising that 
assemblage. Functional evenness describes the uniformity 
in the distribution of species in the trait space, weighted by 
their relative abundances, and was calculated as the mini-
mum spanning tree linking all the genera in the assemblage. 
Functional divergence describes the portion of abundance 
that is related to the most extreme trait values (i.e. taxonomic 
groups that are placed on the edge of the convex hull). We 
omitted our southernmost location, Hamelin Bay, from this 
part of the analysis as the number of coral genera present 
was lower than the number of trait dimensions (i.e. PCoA 

axes) included. All analyses were performed in R4.0.3 (R 
Core Team 2020).

Results

Temporal changes in the coral assemblages

Over the two sampling periods we recorded corals from a 
total of 18 genera from 8 families (Table S2). Port Gregory 
had the most diverse assemblage with 18 genera from 8 fam-
ilies, whilst Hamelin Bay had the least diverse assemblage 
with 4 genera from 2 families. Multivariate analysis showed 
little change in coral assemblage structure among sampling 
locations between 2015 and 2021, with the exception of Port 
Gregory (Fig. 2d).

Total coral abundance increased between 2015 and 2021 
across subtropical and temperate reefs in Western Australia, 
doubling from 3 individuals m−2 to 6 individuals m−2. How-
ever, this increase was solely driven by one mid-latitude 
location, Port Gregory, where a significant 3.4-fold increase 
in the abundance of corals was observed (Fig. 2c, Tables S4 
and S5).

Dendrophylliidae and Merulinidae were the most abun-
dant coral families in Port Gregory in 2015, accounting for 
39% and 27% of the coral assemblage, respectively (Fig. 2d, 
Table S4). In 2021, Dendrophylliidae (Turbinaria spp.) and 
Merulinidae were still the most abundant families (34% 
and 30%, respectively); however, the relative abundance of 
Acroporidae (largely plating Acropora spp. and Montipora 
spp.) increased from 7% in 2015 to 24% in 2021 (Fig. 2d, 
Table S4). In other locations, such as Marmion and Kalbarri, 
the relative abundance of Merulinidae (mostly Coelastrea 
spp. and Paragoniastrea spp.) increased from 2015 to 2021 
(Fig. 2b and e, Table S4). This was primarily due to the 
increases in the genera Coelastrea in Kalbarri, and Coe-
lastrea and Paragoniastrea in Marmion (Table S4). The 
coral assemblage structure in Jurien Bay remained largely 
unchanged (Fig. 2c, Table S4). In Hamelin Bay, coral assem-
blage mainly consisted of the genera Plesiastrea, and their 
contribution to the overall benthic structure was negligible 
(0.1 individuals m−2, Table S4).

Changes in functional diversity

Most taxa were characterised by slow-growth rates, larger 
corallites, small surface areas, and simpler-dome shaped 
morphologies (Fig. 3a). A few taxa characterised by unique 
trait combinations (i.e. Pocillopora, Psammocora, and dif-
ferent growth forms of Acropora) clustered in the extremes 
of the trait space (Fig. 3a).

We observed some similarities in combination of 
coral functional traits along the subtropical-temperate 



Coral Reefs	

transition zone: assemblages were characterised by flat 
taxa with larger corallites, low surface areas and simple 

dome-shaped morphologies across our sampling locations. 
Geographical variation in the functional structure was 

Fig. 2   a PCA of coral assemblage structure at sampling locations 
in 2015 and 2021. The coloured ellipses (2015 represented with dot-
ted outlines, 2021 represented with solid outlines) represent the 95% 
confidence intervals around the weighted average within each sam-
pling site and time point. Confidence ellipses couldn’t be drawn for 
Kalbarri due to the low (n = 2) number of sites. Abundance of dif-

ferent coral families within b Marmion, c Jurien Bay, d Port Greg-
ory, and e Kalbarri in 2015 (yellow) and 2021 (red). Locations are 
arranged from high to low latitude, left to right. Diamonds indicate 
the mean abundance for each family. Please note different x-axis 
scales for the family level abundances

Fig. 3   a Coral trait space showing the positions of 22 different taxo-
nomic groups/growth forms (blue points) pooled across all sampling 
locations. Contour lines indicate the presence of distinct clusters of 
taxa. Acronyms identify the trait space: GR = Growth rate, SD = Skel-
etal density, CW = Corallite width, IB = Interstitial branching space, 

CH = Colony height, SV = Surface area to volume ratio, CS = Maxi-
mum colony size. b Multidimensional trait space of survey location 
between the two sampling years. Each sampling location is positioned 
depending on the mean values of the seven functional traits weighted 
by the relative abundance of different coral groups
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associated with slower growth rates and smaller colony 
sizes with increasing latitude. We also observed a clear 
separation between the coral assemblages in Port Gregory 
and Marmion (Fig. 3b). Coral assemblages in Port Gregory 
were characterised by large, fast-growing taxa with high 
skeletal densities, whereas coral assemblages in Marmion 
were characterised by small, slow-growing colonies with 
low skeletal densities.

We observed subtle temporal changes in the functional 
identity (Fide) of coral assemblages in some locations. For 
instance, in Port Gregory (Fig. 4c), Fide shifted along the 
PCoA2 towards coral assemblages with smaller corallite 
widths, faster growth rates, and taller colonies. In contrast, 
coral assemblages in Jurien Bay (Fig. 4a) and Kalbarri 
(Fig. 4d) shifted along the PCoA1 toward larger corallite 
widths, slower growth rates, and smaller surface volume to 
area ratios.

Functional richness (Fric) differed across locations, with 
the highest Fric observed in Port Gregory and the lowest in 
Jurien Bay (Fig. 4e–h). Fric remained stable through time 
across all locations; apart from an expansion observed in 
the trait space occupied by the coral assemblages at Port 
Gregory (Fig. 4g). The variance and regularity of assem-
blage structure were not responsive to change, indicated by 
stable values of functional evenness (FEve) (Fig. 5a–d) and 
functional divergence (Fdiv) (Fig. 5e–h) between the sam-
pling years.

Discussion

Our study captured spatiotemporal patterns in the taxonomic 
and functional trait structure of coral assemblages across a 
subtropical-temperate transition zone. Overall, we found a 

Fig. 4   a–d Functional identity 
of Marmion, Jurien Bay, Port 
Gregory and Kalbarri show-
ing relative weights shown by 
red (2015) and yellow (2021) 
circles. e–h) Functional rich-
ness in Marmion, Jurien Bay, 
Port Gregory and Kalbarri, 
represented by the red convex 
hull from 2015 survey and yel-
low convex hull from the 2021 
survey. Locations are arranged 
from high to low latitude, left 
to right

Fig. 5   a–d Functional evenness 
of Marmion, Jurien Bay, Port 
Gregory, and Kalbarri showing 
relative weight of the groups 
in red and yellow for 2015 and 
2021 surveys, respectively. e–g) 
Functional divergence of Mar-
mion, Jurien Bay, Port Gregory, 
and Kalbarri showing relative 
weights shown by red (2015) 
and yellow (2021) circles 
and gravity centres shown by 
diamond and triangle for 2015 
and 2021 surveys, respectively. 
Locations are arranged from 
high to low latitude, left to right
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spatial signal in the functional characteristics of the surveyed 
coral assemblages which was connected to their latitudinal 
position. Across time, this fundamental spatial structuring 
of coral traits across this subtropical-temperate transition 
zone was maintained, with only subtle transitions in the 
trait structure observed at a mid-latitude location where 
drastic shifts from kelp to turf had occurred after the 2011 
MHW (Wernberg et al. 2016; Pessarrodona et al. 2021). 
Changes in this mid-latitude region were associated with a 
significant increase in the abundance of corals and a signal 
of tropicalisation, with a nuanced shift from traits charac-
teristic of temperate assemblages to traits characteristic of 
tropical counterparts. In particular, we found a shift from 
corals with large corallite widths, slow growth rates and 
simple morphologies towards corals with smaller corallite 
widths, faster growth rates and complex morphologies. This 
functional reshuffling at the warm range edge of temperate 
macroalgal forests could entail important shifts in the eco-
system processes supported by benthic foundational species 
if a shift from macroalgal dominance to coral dominance 
occurs in the region in response to global change scenarios 
(Verges et al. 2019). However, uncertainty remains on the 
direction to which these assemblages will continue changing 
given potential competition with other foundational species 
(Ribeiro et al. 2022), and resilience under future distur-
bances and environmental conditions.

Coral assemblages in Western Australia exhibited simi-
larities in their trait structure across the latitudinal gradient, 
mainly dominated by dome shaped or flat taxa with large 
corallites and small surface areas. These traits are likely 
maximising energy acquisition as seen in other high-lati-
tude coral assemblages (Sommer et al. 2014). For instance, 
flat or dome shaped morphologies optimise photosynthetic 
energy acquisition under light limited conditions (Hoogen-
boom et al. 2008). Lower three dimensionality also promotes 
physical stability in environments with high wave energy 
(Cresswell et al. 2020; Gove et al. 2015) and low reef rugo-
sity (Alvarez-Filip et al. 2011; Gouezo et al. 2019). While 
these common traits highlight adaptations to marginal envi-
ronments, subtle differences in the trait composition of coral 
assemblages were also observed across regions according 
to their latitudinal position. For instance, we found corals 
with higher growth rates and more complex morphologies 
at lower latitudes, which may be due to increased influence 
of tropically affiliated corals, which typically have higher 
growth rates (Andersen et al. 2017). Together, these patterns 
along the latitudinal gradients may be mediated by environ-
mental filtering, which is known to be strong in regions char-
acterised by high environmental stress (Sommer et al. 2014). 
A drawback of our study is that we used mean trait scores 
from an online database which is mainly dominated by stud-
ies from tropical coral reef ecosystems (Madin et al. 2016), 
and therefore did not account for intra-specific variation in 

traits in response to environmental variation (Shipley 2013). 
This is particularly pertinent for those traits that are strongly 
shaped by environmental gradients such as temperature, for 
instance individual colony size variation across latitudinal 
gradients in coral assemblages (Chong et al. 2023). Under-
standing the contribution of intra-specific trait variance 
to species responses to environmental variation and their 
effects on ecosystem functioning is a hot topic of research 
in ecology and evolutionary biology (Albert 2015), and 
future studies in the region should account for this to test 
the robustness of the results presented here.

Despite the spatial structuring of coral traits along the 
latitudinal gradient being mostly maintained across time, we 
observed considerable changes in their taxonomic structure 
at some locations (Marmion, Kalbarri and Port Gregory), 
with the most significant change observed at Port Gregory 
(28.1°S). Port Gregory was also the only location where 
we found a significant increase in overall coral abundance 
and relative contribution of more tropically affiliated corals 
(i.e. plating and corymbose Acropora) to the overall assem-
blage. The alleviation of competitive interactions between 
corals and receding canopy-forming seaweeds is likely to be 
one of the main drivers of the increase in coral abundance 
at Port Gregory (Ribeiro et al. 2022), which has also been 
observed in other parts of the world (Japan; Kumagai et al. 
2018). Port Gregory was heavily impacted by an extreme 
marine heatwave in 2011, which resulted in the loss of over 
90% of canopy-forming seaweeds (i.e. Ecklonia radiata and 
Sargassum spp.). While the Sargassum cover has returned to 
pre-heatwave conditions, kelp cover has not and the system 
has since been dominated by low-lying foliose and turfing 
algae (Wernberg et al. 2016; Bosch et al. 2022). Low-lying 
foliose and turfing algae are known to be associated with 
larger and more abundant hard corals on subtropical reefs 
of Western Australia (Thomson et al. 2012) and could have 
mediated the observed changes in Port Gregory.

In addition to competitive release from canopy-form-
ing seaweeds, multiple other factors may have led to the 
observed spatial and temporal changes in coral assemblages, 
which may also influence the future distributions of suit-
able coral habitats in tropical–temperate transition zones 
(Abrego et al. 2021; Beger et al. 2014; Sommer et al. 2017). 
For instance, gradual increases in SSTs may have played a 
role as observed in other parts of the world (Japan; Kuma-
gai et al. 2018); however, in Port Gregory this is likely to 
be minor since SSTs have returned to pre-heatwave condi-
tions (Bosch et al. 2022). The differences observed between 
Port Gregory and Kalbarri may have been influenced by the 
topographic features of these two locations. Port Gregory 
has higher rugosity (reef complexity), which is known to 
enhance coral settlement and survivorship (Alvarez-Filip 
et al. 2011; Carlson et al. 2024; Gouezo et al. 2019). Com-
plex reefs also tend to have greater variation in a range of 
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physical parameters such as light, sediment cover and water 
motion (Toohey 2007), which can all influence rates of coral 
settlement and survival (Mundy and Babcock 1998; Birrell 
et al. 2005; Koehl and Hadfield 2010). Similarly, the sur-
vivorship of fragile species (i.e. taxa with fine branching 
growth forms) could be negatively affected by physical dis-
turbance in exposed reefs (Edmunds et al. 2010; Gouezo 
et al. 2019; Madin and Connolly 2006; Williams et al. 2013). 
Other important factors such as larval supply and settlement 
could be contributing to the observed differences; however, 
these were not investigated as a part of this study.

We predicted that the temporal changes in the taxonomic 
structure of corals would be reflected in several indices of 
functional diversity. However, our results do not support 
this hypothesis because most dimensions (i.e. functional 
richness, functional evenness, and functional divergence) 
were not responsive to changes in the relative contributions 
of different taxonomic groups. It is possible that the time 
between our two sampling periods (i.e. six years) may not 
have been long enough for significant changes in functional 
diversity to manifest, especially considering the life history 
strategies of taxa that were highly abundant at the mid (i.e. 
Jurien Bay) and southern (i.e. Marmion) locations (i.e. stress 
tolerant taxa with slow growth rates) (Darling et al. 2012). 
The lack of strong temporal patterns in the trait structure 
of coral assemblages is also likely linked to their generally 
low abundance and cover (< 5%) across the study region, 
with changes at the functional level often requiring abrupt 
changes in the abundance of dominant taxonomic groups 
with distinct traits (McLean et al. 2018). Nevertheless, the 
functional identity of coral assemblages in Port Gregory 
shifted slightly from slower-growing massive corals, which 
typically define subtropical coral assemblages, towards more 
tropically affiliated species, characterised by faster-growing 
colonies and structurally more complex morphologies such 
as corymbose and tabular growth forms of Acropora spp. 
These groups of corals, particularly tabular Acropora play a 
key role in reef recovery and reassembly (Johns et al. 2014; 
Ortiz et al. 2021). Given their ‘competitive’ life-history 
strategies (i.e. capable of dominating assemblages through 
efficient use of resources) (Darling et al. 2012; Gold and 
Palumbi 2018; Madin et al. 2016; Pratchett et al. 2015), it is 
possible that the relative abundance of corymbose, plating 
and tabular Acropora may further increase over the coming 
years and promote higher structural complexity (e.g. habitat 
provisioning) (Angelini et al. 2011; Denis et al. 2017; Gra-
ham and Nash 2013; Kerry and Belwood 2015; Khan et al. 
2017) and carbonate accretion (Perry et al. 2013; Vecsei 
2001).

The abundance and diversity of coral assemblages at 
higher latitudes are governed by multiple abiotic and biotic 
factors (Abrego et al. 2021; Mizerek et al. 2016; Sommer 
et al. 2014). While some of these factors (e.g. competitive 

release from other foundational species, Ribeiro et al. 2022; 
and, optimal thermal conditions, Landry Yuan et al. 2023) 
may favour the establishment of novel coral assemblages, 
other factors (e.g. light restrictions, declining aragonite satu-
ration, genetic isolation) may limit their potential establish-
ment at higher latitudes. Additionally, some of the factors 
that are expected to favour more tropically affiliated corals 
(i.e. optimal thermal conditions) could result in the loss of 
cooler-affinity taxa in high-latitude reefs as these corals can 
be more susceptible to bleaching (Bridge et al. 2014; Kim 
et al. 2019; Moriarty et al. 2023; Sommer et al. 2024; Thom-
son et al. 2011). The persistence of the subtropical assem-
blages supported by more tropically affiliated corals will 
also depend on the capacity of these species to persist under 
future disturbances and environmental conditions, includ-
ing predicted habitat simplification under ocean acidification 
and warming (Agostini et al. 2021). Corals with ‘competi-
tive’ life-history strategies are known for their vulnerability 
to bleaching events (Darling et al. 2013; Marshall and Baird 
2000; Mcclanahan 2004; Wooldridge 2014), particularly 
compared to corals with ‘stress-tolerant’ life-history strate-
gies (i.e. taxa with massive growth forms) (Loya et al. 2001; 
Van Woesik et al. 2011). Despite their higher susceptibil-
ity to bleaching events, however, Acropora corals have also 
been shown to recover in short periods (Morais et al. 2021) 
and may be the dominant species when the periods between 
disturbances are longer than two years (Pratchett et al. 2020). 
Further, expanding coral assemblages are predicted to be 
prone to seasonal temperature variations and cold-spells in 
higher latitude reefs, with likely species-specific susceptibil-
ity (Abrego et al. 2021; Tuckett and Wernberg 2018; Bring-
loe et al. 2022; Mcilroy et al. 2019). In fact, a tropicalised 
coral assemblage mainly dominated by multiple Acropora 
spp. in subtropical Japan experienced mass mortality follow-
ing an extreme cold-spell event (Leriorato and Nakamura 
2019), while coral assemblages that are more temperate 
affiliated, dominated by Plesiastrea versipora, are shown to 
tolerate extreme cold spells (Tuckett and Wernberg 2018).

The overall abundance, composition, and persistence 
of coral assemblages play a crucial role in their ability to 
function as habitats. In our study, our surveyed reefs had 
< 5% coral cover, while a 5–10% coral cover was reported 
overall for the subtropical and temperate coast of Western 
Australia (Ross et al. 2021). Although these coral com-
munities do not provide the full range of ecosystem func-
tions seen in tropical coral reefs, the anticipated increase 
in habitat suitability and species richness (Adam et al. 
2021) suggests that these assemblages hold the potential 
to contribute more significantly to reef-scale ecological 
processes. To date, much of the work on novel reef func-
tion has largely focused on transitions from coral to sea-
weed dominance in tropical zones (Bellwood et al. 2004; 
Hughes et al. 2017; Tebbett et al. 2023; Woodhead et al. 
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2019) here, we show the potential of tropicalised coral 
assemblages in temperate-tropical transition zones to pro-
vide important ecological functions beyond the historical 
distribution of coral reefs and emphasise the need to focus 
on these less marginal reefs.
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