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ABSTRACT

Rhodolith beds are diverse and globally distributed habitats. Nonetheless, the role of rhodoliths in structuring the asso-
ciated species community through a hierarchy of positive interactions is yet to be recognised. In this review, we provide
evidence that rhodoliths can function as foundation species of multi-level facilitation cascades and, hence, are fundamen-
tal for the persistence of hierarchically structured communities within coastal oceans. Rhodoliths generate facilitation
cascades by buffering physical stress, reducing consumer pressure and enhancing resource availability. Due to large var-
iations in their shape, size and density, a single rhodolith bed can support multiple taxonomically distant and architec-
turally distinct habitat-forming species, such as primary producers, sponges or bivalves, thus encompassing a broad
range of functional traits and providing a wealth of secondary microhabitat and food resources. In addition, rhodoliths
are often mobile, and thus can redistribute associated species, potentially expanding the distribution of species with
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short-distance dispersal abilities. Key knowledge gaps we have identified include: the experimental assessment of the role
of rhodoliths as basal facilitators; the length and temporal stability of facilitation cascades; variations in species interac-
tions within cascades across environmental gradients; and the role of rhodolith beds as climate refugia. Addressing these
research priorities will allow the development of evidence-based policy decisions and elevate rhodolith beds within
marine conservation strategies.

Key words: rhodoliths, encrusting coralline algae, foundation species, maerl beds, benthic habitats, facilitation cascades,
marine biodiversity.
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I. INTRODUCTION

Advances in our understanding of the mechanisms that
underpin patterns of species distribution and abundance
show that positive species interactions are a driving force
in the organisation of natural communities (Bertness &
Callaway, 1994; Stachowicz, 2001; Bruno, Stachowicz &
Bertness, 2003; Michalet et al., 2006; Brooker et al., 2008;
Gross, 2008; Bulleri et al., 2016). Foundation species, defined
as those often making up most of the biomass in an ecosystem
and located at or near the base of directional networks of
mutualistic or non-trophic interactions (sensu Ellison, 2019),
including trees, corals, seagrasses, oysters, mussels, salt-
marsh plants and seaweeds, can sustain highly biodiverse
habitats (Altieri, Silliman & Bertness, 2007; Silliman
et al., 2011). The physical structure of these foundation spe-
cies enhances the establishment and persistence of other
species via three mechanisms: (i) amelioration of environmen-
tal stress; (ii) reduction of consumer or competition pressure;
and (iii) increased resource availability. These mechanisms
support the more generic notion of foundation species as
habitat-formers (Gribben et al., 2019).

Many marine communities are structured by a hierarchy
of positive interactions triggered by the presence of

foundation species (Bruno & Bertness, 2001). For example,
on intertidal cobble beaches, shading and substratum stabili-
sation by the cordgrass, Spartina alterniflora, promotes the pres-
ence of other species, such as mussels, snails and seaweeds
(Altieri et al., 2007). Likewise, cockles can expand seaweed
distribution onto sandy or muddy bottoms by providing hard
substrata for attachment (Gribben et al., 2009). Species
directly sustained by foundation species can, in turn, act as
secondary facilitators, generating a facilitation cascade
(sensuAltieri et al., 2007). The presence of the basal or primary
facilitator is a prerequisite for the presence of further habitat-
formers (secondary or upper-level facilitators). This estab-
lishes the hierarchical structure of the whole community, ulti-
mately enhancing the availability of microenvironments
and/or resources (Thomsen et al., 2010, 2018). Facilitation
cascades are often size-structured (sensu Thomsen
et al., 2016), whereby body size decreases progressively when
moving from the basal to upper-level facilitators. For exam-
ple, mangrove trees, seagrass or salt-marsh plants are gener-
ally larger than the bivalves or macroalgae they support and
that function as secondary facilitators for other invertebrates
(Edgar & Robertson, 1992; Altieri et al., 2007; Bishop
et al., 2012). However, in marine environments, facilitation
cascades in which relatively small-bodied foundation species,
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such as mussels, cockles or tubeworms, support larger
secondary facilitators, often macroalgae, have been broadly
documented (Witman 1987; Bulleri & Airoldi, 2005; Thomsen
et al., 2016, 2022; Bracken, 2018; Ape et al., 2018). Indepen-
dently from the size-structure of the cascade, this chain or web
of positive interactions often culminates with species that do
not form habitat, but may be relevant as key elements for eco-
system functioning.

Facilitation cascades have been documented in a variety of
terrestrial and marine systems globally, including coral reefs,
temperate and tropical forests, salt marshes, soft-bottoms,
seagrass meadows, mangroves and kelp forests (Crain &
Bertness, 2006; Thomsen et al., 2010, 2018, 2022; Gribben
et al., 2019). For instance, on tidal mudflats, aerial mangrove
roots provide substrata for oyster recruitment and entangle
drifting algae, which, in turn, generate suitable habitat for a
variety of gastropods (Bishop et al., 2012). Similarly, epi-
phytes growing on trees, seagrasses or freshwater plants can
host diverse assemblages of invertebrates (Angelini &
Silliman, 2014; Thomsen et al., 2022). So far, cascades of
up to five levels of co-occurring habitat-formers have been
documented (Thomsen et al., 2016).

Several aspects of marine facilitation cascades, including
underlying mechanisms, spatial configuration (embedded
versus adjacent), trait- and density-mediated effects, variation
across environmental gradients and the relationship between
cascade length and temporal stability, have been reviewed
recently (Gribben et al., 2019). However, out of 100 papers
reviewed, none dealt with habitats formed by free-living red
coralline algae (Gribben et al., 2019). These so-called rhodo-
lith or maerl beds are globally distributed and can be highly
biodiverse (Fig. 1). This would indicate that the role of

rhodoliths as basal habitat-formers has been overlooked by
the ecological facilitation scientific community (but see
Otero-Ferrer et al., 2019). Despite rhodolith beds being
2.5–30 times more extensive than habitats formed by widely
recognised coastal foundation species (e.g. mangroves, sea-
grasses and kelps), the number of studies on rhodolith beds
is disproportionately small (Rendina et al., 2022; Tuya
et al., 2023), leaving a significant gap in our understanding
of their ecological structure, community assembly rules and
ecosystem functioning.

Herein, we aim to (i) summarise patterns of species and
functional diversity of rhodolith beds and their associated
communities, (ii) identify the mechanisms underpinning rho-
dolith modification of biotic and abiotic conditions and
resource availability, (iii) review evidence for the role of rho-
doliths as basal species and, hence, as promoters of hierarchi-
cal organisation of associated communities, (iv) identify their
role in sustaining biodiversity and ecosystem functioning,
and (v) highlight priority research needs and future directions
to assess facilitation cascades in rhodolith beds.

II. RHODOLITH AND MAERL BEDS

The term rhodolith (rhodo = red + lith = stone) was formally
coined by Bosellini & Ginsburg (1971) as “rhodolite”, later
corrected to the current spelling to avoid confusion with a
garnet. In their original definition, the name referred to unat-
tached nodules formed by calcareous red algae and their
branched growths, as part of a continuous spectrum of forms
and structures, with size spanning from 2 to 250 mm mean

Fig. 1. (A) Rhodolith beds from the Fernando de Noronha Archipelago, Brazil, � 20 m depth (photograph credit: Ronaldo
Francini-Filho). (B) Rhodolith beds from the Madeira Archipelago, Portugal (photograph credit: Pedro Neves). Bottom images
illustrate maerl and rhodolith nodules of different shapes (photograph credits: Eli Rinde and João Silva).
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diameter. The term rhodolith parallels the names of other
types of unattached nodules composed by different organ-
isms – such as bryolith for unattached bryozoan nodules
(James, Foster & O’Sullivan, 2006), corallith for unattached
coral nodules (Glynn, 1974) – using nomenclature based on
the nodule builder – and includes both nucleated and non-
nucleated nodules of calcareous red algae.

The term “maerl” comes from a Breton word, referring to
an area of calcareous land or marine deposits of calcified
algae (Grall & Hall-Spencer, 2003). In northeastern Atlantic
countries, the term maerl has been used for centuries to indi-
cate mostly twig-like, frequently intertwined, unattached cor-
alline algae forming thick accumulations on the shallow
seabed. Based on these definitions, the term “rhodolith beds”
includes beds made of nucleated and non-nucleated nodules
(i.e. maerl beds) and calcareous Peyssonnelia beds (Steller
et al., 2003; Steller & Foster, 1995; Foster et al., 2013). Herein,
we will use “rhodoliths” to include both rhodolith and maerl
forms. It is worth noting that there is no clear definition of a
rhodolith bed in terms of coverage and proportion of live ver-
sus dead nodules. Rhodolith beds have been variously
defined as areas with a cover of living coralline thalli >10%
(Steller et al., 2003) or >30% (OSPAR, 2008), within an area
of at least 100 m2 according to Rinde et al. (2022).

III. VARIATION IN DIVERSITY AND LIFE TRAITS
OF RHODOLITHS ACROSS ENVIRONMENTAL
GRADIENTS

The potential of rhodoliths to act as foundation species and
to enable facilitation is regulated by their size, shape
and abundance – attributes that can vary within and among
species. The spatial extent and degree of patchiness of rhodo-
lith beds also influence their ability to initiate a facilitation
cascade, as well as the number of levels in a cascade, due to
different habitat requirements of the associated species
(Gribben et al., 2019). Thus, understanding the factors shap-
ing variations in the structure of rhodolith beds is crucial for
assessing their role as basal species in facilitation cascades.

Variability in rhodolith distribution, shape and morpho-
type has long been observed (Bosellini & Ginsburg, 1971;
Bosence, 1983; Basso, 1998). Rhodolith nodules can be com-
posed of one single morphotype (e.g. maerl beds composed of
variably shaped unattached branches; Bosence, 1983; Basso
et al., 2016), by mixtures of coralline morphotypes (Bracchi
et al., 2022; Vale et al., 2022) or by coralline and Peyssonnelia

nodules. There are examples of highly diverse rhodolith
beds, such as that around Punta de la Mona (western Medi-
terranean), which is formed by 25 morphospecies belonging
to six genera (Lithophyllum, Spongites, Neogoniolithon, Lithotham-
nion, Mesophyllum and Phymatolithon) (Del Rio et al., 2022).

The heterogeneity of the physical structure of rhodolith
beds can be described with a ternary diagram that
considers the three main morphotypes of nodules [pralines,
unattached branches or boxwork (Basso, 1998; Basso,

Nalin & Nelson, 2009)], allowing a visual description of the
rhodolith bed (Basso et al., 2016; Bracchi et al., 2022; Caronni
et al., 2023). The shape of rhodoliths is often measured fol-
lowing the criteria of Sneed & Folk (1958), which requires
measuring the longest, intermediate, and shortest (axial)
diameters (Sciberras et al., 2009) and using these measures
to classify nodules into four classes – spheroidal, discoidal,
ellipsoidal or bladed (Bosence, 1976; Gagnon, Matheson &
Stapleton, 2012; Carro et al., 2014; Villas-Bôas et al., 2014;
Otero-Ferrer et al., 2020; Neves et al., 2021) – as well as to cal-
culate sphericity (Voerman et al., 2022).
Light, temperature, hydrodynamics and sedimentation

are among the main factors regulating the characteristics of
rhodolith assemblages (Basso, 1998; Carvalho et al., 2020;
Otero-Ferrer et al., 2020; Sissini et al., 2022). Rhodolith size
and shape are mostly regulated by hydrodynamics, whilst
light limitation or burial under sediments can stunt growth
(Villas-Bôas et al., 2014; Bracchi et al. 2019; Omachi
et al., 2019). Features of coastlines (e.g. presence of sheltered
bays or inlets) and the extension of the continental shelf influ-
ence these physical factors and, hence, may play a role in reg-
ulating the size, shape and density of rhodolith nodules. For
example, along bathymetric gradients, the largest rhodoliths
have been found in the shallowest areas at some sites (Bahia
et al., 2010; Voerman et al., 2022), while they are located
more often in intermediate or deepest areas sampled at other
sites (Sañe et al., 2016; Del Rio et al., 2022; Perez-Peris
et al., 2023). This suggests that location-specific environmental
conditions can be more important than factors covarying with
depth (e.g. light, temperature, sedimentation and hydrody-
namic forces) in determining rhodolith size and/or abundance.
However, in the northeast Atlantic, the shape of rhodoliths and
complexity of the bed they formed were weakly influenced by
bottom currents and wind exposure, and driven instead by
underlying sediment composition (Jardim et al., 2022). In addi-
tion, the shape of rhodoliths is influenced by biotic factors.
For example, boring bivalves can produce cavities in nodules,
providing further niche space for both vertebrates and inverte-
brates (Gagnon et al., 2012; Teichert, 2014).

IV. POTENTIAL OF RHODOLITHS TO MODIFY
BIOTIC AND ABIOTIC CONDITIONS

Rhodoliths are widely recognised as ecosystem engineers
(Nelson, 2009; Teichert & Freiwald, 2014; Qui-Minet
et al., 2018; Otero-Ferrer et al., 2019; Voerman et al., 2022)
and there is compelling evidence that they support higher
invertebrate species diversity compared to surrounding soft
sediments (Steller et al., 2003; Teichert, 2014; Boye
et al., 2019; Neves & Costa, 2022) and equivalent fish
species diversity compared to adjacent coral reefs (Moura
et al., 2021; Anderson et al., 2023). Nonetheless, few studies
have formally identified the mechanisms underpinning
facilitation, which requires experimental manipulation of
biotic (e.g. manipulation of consumer or competition
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pressure) and/or abiotic conditions (e.g. environmental
stressors) (Bulleri, 2009; Thomsen et al., 2018, 2022; Gribben
et al., 2019). Instead, the positive effects of rhodoliths on other
species have been widely explained through the general effect
of (micro)habitat creation, since nodule and bed complexity
generate multiple niches for associated organisms. Below,
we provide some examples of rhodolith beds enhancing the
settlement, growth and survival of benthic species for each
of the three facilitation mechanisms. Note that this is not
meant to be a comprehensive review of the literature and
here we distinguish among the different facilitation mecha-
nisms for clarity, although they are likely to co-occur due to
simultaneous changes in both biotic and abiotic conditions
induced by rhodoliths.

(1) Amelioration of environmental conditions

Although the amelioration of environmental conditions is not
a predominant mechanism of species facilitation in subtidal
environments (Bulleri, 2009), intense hydrodynamic forces
and high sediment load can generate adverse conditions for
benthic species (Witman, 1987; Bulleri et al., 2011). Rhodo-
lith beds can thrive in wave- and/or current-swept areas,
yet their rigid calcareous thalli can reduce hydrodynamic
forces and trap finer sediments, providing shelter and trophic
resources to other species (Hall-Spencer, 1998; Gabara,
2020). Experiments showed that irregularly shaped rhodo-
liths can enhance substratum stability in wave-swept environ-
ments (Joshi, Duffy & Brown, 2017), regulate sediment grain
size distribution (de Queiroz et al., 2016) and create inter-
stices that favour oxygen penetration to deeper layers (Hall-
Spencer & Atkinson, 1999), ultimately favouring colonisation
by both epibenthic and infauna species (Caronni et al., 2023).
Rhodoliths have also been documented on intertidal flats,
but reported densities are too low (<1 m2) for the formation
of habitat (Perry, 2005), and, hence, their potential to facili-
tate species through the buffering of heat and desiccation
stress remains uncertain.

Coralline algae, including rhodoliths, alter seawater
chemistry through their metabolic activity (i.e. photosynthe-
sis, respiration and calcification) by producing O2, and mod-
ifying pH, HCO3

− and CO3
2− concentrations at their

surface with respect to the surrounding water (Hofmann,
Schoenrock & de Beer, 2018; McNicholl, Koch &
Hofmann, 2019; Schubert et al., 2021). It is likely that these
changes in seawater chemistry provide more suitable condi-
tions for other non-calcifying species, at least during daytime.
This feature is likely to become even more relevant under
projected levels of ocean acidification and warming
(Cornwall et al., 2022).

(2) Reduction of predation and competition
pressure

By providing a three-dimensional structure, rhodolith beds
act as nursery areas for both vertebrate and invertebrate spe-
cies, including those of commercial importance; this is likely

due to the reduction of competition pressure they provide
via refuge creation (Kamenos, Moore &Hall-Spencer, 2004a).
For example, juvenile cod (Gadus morhua), saithe (Pollachius
virens) and pollack (Pollachius pollachius) were more abundant
in rhodolith habitats than adjacent heavily vegetated rocky
and gravel substrata (Kamenos,Moore &Hall-Spencer, 2004-
c). Rhodolith beds have a high holding capacity for juvenile
gadoids, likely by virtue of their food and refuge provisioning,
and are thus an important part of the inshore nursery system
(Kamenos, Moore & Hall-Spencer, 2004d). The sand tilefish
Malacanthus plumieri is almost exclusively found on rhodolith
beds, building rhodolith mounds that are used as a reference
during foraging movements, shelter against predation and
may also play a role in social organisation (Pereira
et al., 2015). The mounds themselves are used as microhabitats
for several other fish and invertebrate species (Pereira
et al., 2015; Francini et al., 2018). Similarly, hollow rhodoliths,
formed by boring bivalves, are known to function as nesting
sites for fish and for shelter from predation for several species
of ophiurids (Gagnon et al., 2012; Teichert, 2014). The positive
effects of rhodoliths through the reduction of consumer pres-
sure are not limited to the formation of interstices that can
be used by prey as refuges from predators. Leemans et al.
(2020) demonstrated experimentally that spiky rhodoliths pro-
moted the recovery and persistence of the seagrass Thalassia
testudinum by directly reducing the access of marine turtles to
plants. Likewise, juvenile bivalves of many species have been
found at higher densities in rhodoliths compared to surround-
ing substrata (Kamenos et al., 2004c; Steller & Caceres-Marti-
nez, 2009). This is thought to be due to attraction to the living
coralline algal surface and also the presence of a rugose three-
dimensional structure (Kamenos, Moore & Hall-
Spencer, 2004b).

There is evidence that the presence of the living algal
veneer acts as an attractant to juvenile scallops, signalling ref-
uge presence and endowing lower stress responses in the
presence of predatory starfish (Kamenos, Calosi &
Moore, 2006). The attractant effect may be facilitated by
the high production of dimethylsulphide (DMS) and its sec-
ondary metabolite precursor dimethylsulphoniopropionate
(DMSP) by rhodoliths, especially at high and low latitudes
(Burdett, Hatton & Kamenos, 2015; Burdett, 2017). Both
compounds are important chemical cues for a range of
ecological processes, including herbivorous grazing and
vertebrate larval settlement (Lyons, Scheibling & Van
Alstyne, 2010; Foretich et al., 2017).

(3) Enhancement of resource availability

Biogenic substrata, primarily formed by rhodoliths and often
consolidated by binding species, such as sponges or mussels,
may extend the distribution of hard-bottom-dwelling species
to soft sediments, which can play an important ecological role
in places with reduced availability of natural rocky bottoms
(Ávila, Riosmena-Rodriguez & Hinojosa-Arango, 2013;
Pereira et al., 2015). This phenomenon has been recorded
in estuaries, deep reefs in oceanic islands with reduced shelf
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and on seamounts (Steller et al., 2003; Pereira et al., 2012;
Otero-Ferrer et al., 2019). For example, in the Madeira Archi-
pelago, rhodolith beds considerably increase the availability of
subtidal hard substrata around the islands (Neves et al., 2021).
The provisioning of consolidated, biogenic substrata could be
highly relevant also on hard bottoms since, despite the avail-
ability of hard surfaces, the settlement and growth of benthic
species can be facilitated or, indeed, restricted to living coral-
line algal beds (Kamenos et al., 2004a; Steller & Caceres-Mar-
tinez, 2009). Vertical expansions of species distribution
(i.e. bathymetric) fostered by rhodoliths might be particularly
relevant in the context of global warming (see Section VI).

Rhodolith beds increase food availability for associated
organisms by entraining organic matter and promoting local
small-scale primary production from microphytobenthos
and soft red seaweeds, thus increasing secondary production
(Grall et al., 2006; Gabara, 2020; Neto, Bernardino &
Netto, 2021; Teper, Parrish & Gagnon, 2022). This is consis-
tent with analyses of the trophic groups associated with rho-
dolith beds, revealing a dominance of deposit feeders
(Grall et al., 2006; Sciberras et al., 2009; Teper et al., 2022).
The higher resource availability and diversity of food sources
in rhodolith beds may ensure a more constant resource sup-
ply than in bare habitats. Indeed, stable isotope analyses have
suggested that Arctic rhodolith beds may function as
benthic–pelagic hotspots, at least seasonally (Teper
et al., 2022). Finally, the high functional richness and redun-
dancy of associated communities (Boye et al., 2019) may pro-
mote temporal community stability through compensatory
dynamics and asynchronous species temporal fluctuations
within functional groups (Magurran & Henderson, 2018).

V. MULTIPLE FACILITATION CASCADES IN
RHODOLITH BEDS

Many of the species or groups of species that are
dependent upon rhodoliths for colonisation of soft sediment
areas can act as secondary facilitators. According to the
Foundation Species-Biodiversity (FSB) model (Angelini &
Silliman, 2014), the difference in morphological traits
between the basal and the secondary facilitator determines
the strength of the effects on species diversity. The larger
the difference, the greater the positive effect of the association
between the basal species and secondary facilitators on spe-
cies diversity at upper cascade levels. By contrast, the addi-
tion of a secondary facilitator that does not differ from the
basal species in terms of morphological complexity would
simply increase habitat availability, enhancing the abun-
dance, but not the diversity, of species within the
assemblage associated with the basal species. The effects of
secondary facilitators on species abundance and diversity
can be expected to be very high in rhodolith beds since they
support a broad variety of secondary facilitators. Rhodolith
beds are often composed of different rhodolith morphospe-
cies (up to 25 in a single bed; Del Rio et al., 2022), with

subsequent large variations in functional traits (e.g. size,
shape, rugosity, branching) and thereby, high microhabitat
diversity. Indeed, although unexplored, some rhodolith mor-
phospecies could facilitate others. For example, highly
branched forms could enhance the retainment of simpler
nodules, by reducing their drag by currents. This means that,
conceptually, the first two levels of a facilitation cascade
(i.e. the basal species and the secondary facilitator) could both
be represented by rhodoliths. High within-bed rhodolith
diversity should therefore broaden the pool of species they
can support at the seascape scale and, hence, increase the
likelihood of secondary facilitator establishment. In addition,
a single rhodolith bed can support multiple taxonomically
distant and architecturally distinct species (e.g. Porifera,
Cnidaria, Mollusca, Ochrophyta, Chlorophyta, other Rho-
dophyta), with a broad range of functional traits and hence,
a wealth of secondary microhabitat and food resources provi-
sion. Rhodoliths, by supporting many secondary facilitators
that differ morphologically, are expected to amplify positive
effects on species diversity.
Two features that distinguish rhodoliths from most foun-

dation species are their small size and mobility. Many of
the widely acknowledged marine foundation species, includ-
ing seagrasses, mangroves, kelps and corals, are generally
conspicuous in size and larger than the species they support
through their facilitative effects. Thus, in most cases, there
is a clear decreasing pattern in body size when moving from
the basal species to the upper levels of facilitation cascades.
This does not necessarily apply to rhodoliths, as they are
often smaller than the species they support that act as second-
ary facilitators, such as many seaweeds, sponges and bivalves.
Thus, despite being dominant in abundance, and at the base
of a network of positive, non-trophic species interactions
(in accordance with the definition by Ellison, 2019), rhodoliths
markedly deviate from the common view of foundation spe-
cies. Although unexplored, the smaller size of rhodoliths – in
comparison to that of the species they support – could increase
the likelihood of negative feedbacks. For example, epibiota
(e.g. sponges, oysters) and epiphytes (macroalgae) on the roots
of mangroves (Bishop et al., 2012; Gribben et al., 2019) are
unlikely to have negative effects on the trees, while they could
completely overgrow rhodoliths, hampering their movement
and impairing their photosynthetic efficiency.
Rhodoliths can be transported by waves and currents

(Lavenère-Wanderley et al., 2021). The only other known
example of a mobile foundation species is that of the pencil
sea urchins in the Galapagos (Altieri & Witman, 2014). The
mobility of rhodoliths implies that they can redistribute asso-
ciated species, potentially expanding the distribution of spe-
cies with short-distance dispersal abilities. Widespread
rolling and movement of rhodoliths occurs sporadically
because of storms, but also periodically, due to currents and
wind-propagated waves [up to several centimetres per day
(Steller & Foster, 1995; Harris et al., 1996; Marrack, 1999)].
Overgrowth by large erect species, such as macroalgae and
sea fans, is likely to increase the distance over which rhodo-
liths can be dragged by currents and waves. Moreover,
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associated fauna can contribute to rhodolith displacement
through bioturbation, for example movement of sea urchins
that use rhodoliths as covering material (Foster et al., 1997;
Marrack, 1999) and the activity of the sand tilefish that moves
rhodoliths to build mounds, likely playing an important role
in the spatial extension of rhodolith beds (Pereira et al., 2015).
Displacement by biotic or abiotic factors does not transport
rhodoliths exclusively horizontally, but can cause their spill-
ing down from shallow-water environments to greater
depths, such as in the case of steep slopes of seamounts, where
rhodoliths have been found at a depth of up to 290 m (Littler,
Littler & Hanisak, 1991). On the other hand, some epifauna
(e.g. sponges, tunicates, anemones) can also bind rhodoliths
together, decreasing their movement (Marrack, 1999).

Although rhodolith survival is dependent upon light avail-
ability, their calcified skeleton means that even dead nodules
maintain their shape and can continue to support a high diver-
sity of associated species (Kamenos et al., 2004a,b). As
acknowledged for other foundation species (Saldaña
et al., 2024), rhodoliths are therefore likely to maintain their
foundation species effect beyond their lifetime and in areas
unsuitable for their survival.

To the best of our knowledge, no study has, to date,
experimentally demonstrated facilitation cascades (i.e. the
co-occurrence of the basal species, i.e. the primary facilitator,
and a secondary facilitator or a focal species that does not form
habitat) in rhodolith beds. Nonetheless, based on the available
information and to illustrate the potential of rhodoliths to start
facilitation cascades, we here focus on three taxa, seaweeds,
sponges and bivalves (Fig. 2), that are commonly associated
with rhodoliths and are broadly known to function as primary
or secondary facilitators (Dayton, 1972; Steneck et al., 2002;
Gribben et al., 2009; Bishop et al., 2012; MacDonald &
Weis, 2013; van de Koppel et al., 2015; Thomsen
et al., 2018, 2022; Ravaglioli et al., 2021). This does not exclude
the potential for other taxa to be part of rhodolith facilitation
cascades. Moreover, our examples are focused on facilitation
cascades in which the rhodoliths and the secondary benefac-
tors are embedded within the same patch (i.e. nested facilita-
tion, sensu Angelini et al., 2011). However, as shown for other
facilitative interactions, such as those involving mangroves,
seagrasses, corals, oysters and marsh plants (van de Koppel
et al., 2015; Gribben et al., 2019), positive effects of rhodoliths
could expand beyond the margins of the bed they form to
influence other habitats (i.e. adjacent or landscape facilitation,
sensu Angelini et al., 2011). For instance, some of the biomass
generated by invertebrates and macroalgae preferentially
recruiting into rhodolith beds might move outside, either
actively or passively, fuelling adjacent bare-sand trophic webs.
Likewise, rhodolith-driven changes in water chemistry (i.e. pH
and CO3

2−) or bottom currents could affect adjacent habitats,
such as coralligenous or coral reefs and seagrass beds.

(1) Seaweeds

Seaweed assemblages associated with rhodolith beds are
known to be extremely diverse. For instance, northeast

Atlantic maerl beds host at least 349 associated macroalgal
species, including 232 Rhodophyta, 72 Heterokontophyta
and 45 Chlorophyta, making up about 30% of the total
macroalgal diversity in the region (Peña et al., 2014).
Likewise, Helias & Burel (2023) recorded 170 macroalgal
species, belonging to Rhodophyta, Ochrophyta and Chloro-
phyta in rhodolith beds from the Bay of Brest, 108 of which
were found growing exclusively on rhodoliths, while
14 occurred only as epiphytes on other species, indicating
two and three levels of co-occurring habitat-formers. In
Brazil, local estimates (across areas of tens of km2) of seaweed
diversity in rhodolith beds range from 44 to 67 species, with
regional estimates (i.e. across hundreds of km2 in the
Abrolhos Bank) of 146 species (Riul et al., 2009; Pascelli
et al., 2013; Brasileiro et al., 2016).

Rhodolith beds also host kelp species (Fig. 2A), which
are themselves foundation species (Steneck et al., 2002;
Fernandez, 2011; Bracken, 2018). Association of kelp species
(e.g. Saccharina latissima, Saccorhiza polyschides, Laminaria hyper-
borea, L. abyssalis, L. ochroleuca, L. rodriguezii, Ecklonia radiata)
with rhodoliths has been documented in both tropical and
temperate basins, including the Mediterranean, and the
coasts of France, New Zealand, Brazil and the Madeira
islands (Amado et al., 2007; Peña & B�arbara, 2008;
Nelson, 2009; Amado-Filho & Pereira-Filho, 2012; Barber�a
et al., 2012; Marins et al., 2014; Peña et al., 2014; Braga-
Henriques et al., 2022). In some cases, such as that of
L. rodriguezii in the Menorca Channel (western Mediterra-
nean), kelps can comprise most of the macroalgal biomass
associated with rhodolith beds. While large kelp individuals,
and the rhodoliths to which their haptera are attached, can
be dislodged from rhodolith beds in shallow, wave-swept
areas, kelp populations on deeper beds are likely to be more
stable. For example, deep (45–120 m) rhodolith beds of the
Abrolhos Bank (Brazil) host permanent populations of
L. abyssalis (Amado-Filho & Pereira-Filho, 2012; Foster
et al., 2013). Thus, rhodolith beds can extend the distribution
of this marine foundation species to areas that would other-
wise lack suitable hard surfaces (Foster et al., 2013), creating
a facilitation cascade that enhances local and regional species
diversity (Fig. 3A).

Epiphytic macroalgae supported by rhodoliths, including
filamentous and fleshy morphotypes (Fig. 2B), can also pro-
vide shelter against predators and resources (space and food)
for fish (Chaves, Pereira & Feitosa, 2013; Fulton et al., 2020)
and for sessile and mobile invertebrates, as widely
demonstrated for epiphytes on seagrasses and macroalgae
(Thomsen et al., 2018; Ravaglioli et al., 2021; El-Khaled
et al., 2022). Thus, although not considered as foundation
or habitat-forming species, epiphytic macroalgae can
still function as secondary or tertiary facilitators (Fig. 3). In
addition, some macroalgal species, such as Codium bursa

and C. cf. effusum, were exclusively found free-living
(i.e. unattached to the bottom) within rhodolith beds in the
Bay of Brest, France (Helias & Buriel, 2023) and in Sardinia
(D. Basso, personal observations). This suggests that facilita-
tion can occur at scales varying from that of the single
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rhodolith (by providing a surface for attachment) to that of
the whole bed, which, by virtue of its complex topography,
acts as a passive collector of macroalgae, comparable to

mangrove pneumatophores in tidal flats (Bishop et al., 2012;
Bastos et al., 2013). This may be important in sustaining a
large biomass of fleshy organic carbon which can then be

Fig. 2. Habitat-forming species in rhodolith/maerl beds. (A) Laminaria ochroleuca fromGalicia, Spain, depth 11 m (photograph credit:
Ignacio B�arbara. (B) Diverse macroalgal assemblages supported by rhodoliths at the Fernando de Noronha Archipelago, Brazil,
depth 40 m (photograph credit: Zaira Matheus). (C) The tubular sponge, Haliclona simulans, supporting ophiurans, gastropods and
hosting cuttlefish eggs in Brittany, France, depth 7 m (photograph credit: Erwan Amice). (D) Unidentified concave sponge from
the Fernando de Noronha Archipelago, Brazil, depth 40 m (photograph credit: Zaira Matheus). (E) The bivalve Limaria hians in
the north of Norway, depth 15 m (photograph credit: Jason Hall-Spencer). (F) The flat oyster Ostrea edulis supporting fish spawning,
hydroids, seaweeds, encrusting sponges, ascidians and galatheidaes in a maerl bed of Brittany, France, depth 3 m (photograph
credit: Erwan Amice).

Biological Reviews (2024) 000–000 © 2024 The Author(s). Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

8 Fabio Bulleri and others

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.13148 by U

niversidad D
e L

as Palm
as D

e G
ran C

anaria, W
iley O

nline L
ibrary on [30/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



buried locally in the rhodolith bed, thus acting as a blue car-
bon repository (James et al., 2024; Mao et al., 2020). Finally,
rhodolith beds may also function as a bank for microscopic
algal stages, thus representing a reservoir for several macroal-
gae (Hoffmann & Santelices, 1991; Fredericq et al., 2019).

(2) Sponges

As described above for seaweeds, rhodolith beds host highly
diverse sponge assemblages (Fig. 2C, D), including boring
(infauna) and epifaunal species, across the world’s oceans
(Sol�orzano & Urgorri, 1991; Aguilar et al., 2009; Ávila
et al., 2013; Pereira-Filho et al., 2015; Longo et al., 2020).
For example, in two rhodolith beds off the Island of Ustica
(Southern Tyrrhenian Sea), Longo et al. (2020) documented
the presence of 25 sponge taxa. While mostly belonging to
the class of Demospongiae, these sponges were characterised
by a variety of growth forms (i.e. massive, encrusting, insinu-
ating and excavating). Similarly, Sol�orzano & Urgorri (1991)
reported 39 species of sponges associated with a single
Galician maerl bed, while Santín et al. (2024) documented
eight sponge species in rhodolith beds within the Madeira
archipelago, including a new species (Hemimycale funchalensis).
Recent surveys in mesophotic rhodolith beds off the Amazon

River mouth in Brazil have recorded highly diverse sponge
assemblages, including new species (Moura et al., 2016;
Sandes et al., 2021). Such “sponge gardens” over rhodolith
beds in north Brazil, in turn, serve as habitat for a diverse fish
assemblage and may act as stepping stones for reef biota
between the Caribbean and Brazilian Provinces (Rocha,
Rosa & Feitoza, 2000; Rocha, 2003).

When at high density and biomass (Lopez-Acosta
et al., 2022), sponges can form structurally complex structures
that provide nursery and rearing areas for other organisms,
often augmenting the diversity of invertebrate and fish
assemblages (Fig. 3B) (Rocha et al., 2000; Kazanidis
et al., 2016; Hawkes et al., 2019; Campanino et al., 2023).
Sponges are known to be secondary habitat-formers in man-
grove forest facilitation cascades (Gribben et al., 2019). For
example, the species richness and abundance of fish and
mobile invertebrate assemblages in Caribbean mangrove
forests was positively correlated with the abundance of
sponges growing on prop-roots (MacDonald & Weis, 2013;
Stewart et al., 2022). Sponges with a tubular, convoluted or
massive growing form could provide shelter from predation
for smaller fish and, at the same time, represent a food source
for other fish or invertebrate species. In oligotrophic systems,
sponges can also exert positive effects on primary producers

Fig. 3. Positive interactions within facilitation cascades in rhodolith beds. (A) Rhodoliths (the basal species) promote the
establishment of kelp on sedimentary bottoms through the provisioning of hard substrates for attachment. The holdfast, stipe and
blades of kelp (secondary facilitator) can provide habitat and/or food to fish and invertebrates, directly or indirectly by supporting
epibiota (e.g. macroalgae) that act as tertiary facilitators. (B) Rhodoliths facilitate the establishment of sponges which, in turn, can
stabilise beds through the binding of nodules. Sponges (secondary facilitators) can provide habitat for a variety of invertebrates and
sustain the growth of macroalgae by recycling nutrients. (C) Bivalves growing on rhodoliths can facilitate invertebrates and
macroalgae by providing interstitial or attachment space. In all cases, species at the second or upper level within the facilitation
cascade can be used as food by consumers (i.e. herbivores or predators). Arrows show the positive effects of one species on another,
with the number of plus signs indicating the level of the facilitative interaction within the cascade. Some of the functions
performed by rhodoliths, such as the creation of microhabitat and provisioning of attachment surface, can continue when they are
dead (represented in grey); for convenience, dead rhodoliths are illustrated below the living layer, although, in real beds, the
surficial layer is often composed of a variable proportion of live and dead nodules. Magnifying lenses provide details of macroalgae
and invertebrates supported by secondary facilitators (Illustration by ©Lúcia Antunes, www.luciaantunes.com).
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through nutrient supply (Archer et al., 2021) – providing a
growth-promoting feedback loop to the rhodoliths and other
associated algae.

In addition, sponge–rhodolith assemblages play an impor-
tant role in substrate construction and stabilisation, due to
overgrowth and binding (Ávila et al., 2013; Pereira-Filho
et al., 2015). For example, on the continental shelf of the
Fernando de Noronha Archipelago, rhodolith mounds
formed by the sand tilefish can then be bound by the sponges
Xestospongia muta and Agelas clathrodes, stabilising the rhodolith
accumulation and facilitating the establishment of coral colo-
nies (Pereira et al., 2015; Pereira-Filho et al., 2015). Within
this context, rhodoliths directly enable at least two distinct
cascades – one initiated by the sand tilefish and the other
by sponges, with cascading effects across trophic levels.

(3) Bivalves

Bivalves are common inhabitants of rhodolith beds (Fig. 2E,
F), both as epifauna and endofauna (Kamenos et al., 2004c;
Hall-Spencer et al., 2003; Steller et al., 2003) and can also
act as secondary facilitators (Fig. 3C). Several aggregating
bivalve species, such as flat oysters or mytilid species, may
reach densities high enough to enhance further the three-
dimensional complexity of rhodolith beds (Fig. 3C), promot-
ing local biodiversity through the provisioning of refugia
against predators or by trapping organic matter (Norling &
Kautsky, 2008; Bishop et al., 2012; Gribben et al., 2019), as
also shown for oysters growing on mangrove prop-roots
(Bishop et al., 2012; Stewart et al., 2022). Rhodolith beds
are able to support bivalve species in areas where they are
otherwise locally rare, such as enhanced abundance of Gregar-
iella semigranata and Leisonelus aristatu in the oligotrophic waters
of the Madeira Archipelago (AMACO, 2022). Similarly, in
the northeast Atlantic, Limaria hians, a bivalve species of high
conservation value, uses rhodolith beds for nesting, again sta-
bilising the substratum and facilitating further colonisation
by sessile species (Hall-Spencer & Moore, 2000). Further
species diversity is facilitated in rhodolith beds via

support of larger bivalve species such as fan mussels, horse
mussels and scallops (Steller & Caceres-Martinez, 2009;
Kersting & García-March, 2017), which host additional
distinctive species assemblages on their shells, including
macroalgae, hydroids, sponges, molluscs, bryozoans, and
crustaceans (Corriero & Pronzato, 1987; Cummings
et al., 1998; Giacobbe, 2002; Cerrano et al., 2001; Farren &
Donovan, 2007) (Fig. 3C).

VI. RESEARCH NEEDS AND FUTURE
DIRECTIONS IN THE CONTEXT OF
FACILITATION CASCADES

Below, we provide a synthetic account of strategic research
required to fill in gaps in our understanding of the role of

positive species interactions in shaping the biodiversity and
functioning of rhodolith beds.

(1) Experimental evaluation of the role of rhodoliths
as basal facilitators

Due to the hierarchical nature of the organisation of
rhodolith communities, assessing the effect of the foundation
species (i.e. the rhodoliths) on species at upper levels of
the facilitation cascade should be considered a priority.
To the best of our knowledge, no study has assessed whether
the facilitative effects of rhodoliths are biological
and/or physical (Fig. 4A). Only one study (Otero-Ferrer
et al., 2019) has experimentally investigated the effects of var-
iations in the size and heterogeneity of nodules on macrofau-
nal assemblages and the role of rhodolith species composition
in regulating the structure of associated invertebrate and
macroalgal communities (Fig. 4B) remains virtually unex-
plored. The removal of rhodolith nodules from some areas,
or transplanting them onto bare sediments, to generate dif-
ferent densities (Fig. 4C), would allow assessments of their
net effect on the diversity of the associated community and
to identify which species are reliant on their presence
(i.e. obligate associations). In addition, the experimental
manipulation of rhodolith species richness and abundance
could provide insights into the ecological mechanisms sus-
taining the functioning of the associated community
(Tilman, 1999; Lehman & Tilman, 2000; Loreau, 2000).
According to the Biodiversity–Ecosystem Function theory
(Hooper et al., 2012; Naeem, Duffy & Zavaleta, 2012), the
number and relative abundance of facilitated species would
be expected to increase with the number of rhodolith species
or morphologies composing a bed. Due to their mobile
nature and reduced size, the experimental manipulation of
rhodoliths is more feasible than those of other coastal founda-
tion species that are generally large sized, sessile and, in some
cases, have developed root systems (e.g. seagrass and man-
groves). Rhodolith manipulation, among areas within beds
or between beds and nearby bare habitats, over relatively
small areas would be sufficient to assess the effects on associ-
ated flora and fauna without causing significant damage to
beds. On the other hand, experimental manipulations by
scuba divers could be limited by depth in some regions. For
example, in the Mediterranean Sea, many rhodolith beds
occur at depths greater than 50 m (Basso et al., 2017;
Illa-L�opez et al., 2023). However, rapid technological
advancements in underwater remote operating vehicles
may provide novel opportunities for experimental research
on deeper habitats in the near future.

(2) The length of facilitation cascades and negative
feedbacks on rhodoliths

We currently have no empirical data on the number of levels
within rhodolith bed facilitation cascades. Experimental
removal approaches will be needed to assess the role of sec-
ondary facilitators on upper levels of the facilitation cascade
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(Thomsen et al., 2016). The analysis of features of secondary
and upper-level facilitators, such as their abundance
(Fig. 4D, E) and the degree of morphological complexity,

could enhance our understanding of their roles within the
cascade (Thomsen et al., 2022). In particular, assessing
whether there are density thresholds for the formation and

(Figure 4 legend continues on next page.)
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maintenance of facilitation cascades should be a priority
(Fig. 4D, E). Secondary facilitators may be ineffective at sus-
taining other species when at very low abundance, or may
trigger negative feedbacks on the foundation species
(i.e. exert negative effects on rhodoliths) when at very high
abundance. For example, in deep waters, high covers of facil-
itated macroalgae will likely have a detrimental effect on rho-
dolith nodules through shading and competition for light. In
shallow waters, high epiphyte loads may favour the persis-
tence of rhodoliths by mitigating excessive light intensity
(Ravaglioli et al., 2021), but also increase drag forces due to
wave action, potentially leading to onshore stranding
(J. Grall, personal observations). Also, the permanent stabili-
sation of rhodolith beds by bivalves or sponges may be detri-
mental to underlying rhodolith nodules (Ávila et al., 2013),
with anecdotal concerns that flame shell Limaria hians nests
are beginning to smother rhodolith habitat in northwest
Scotland. Similarly, the invasive gastropod Crepidula fornicata

has been reported to overgrow living rhodoliths, leading
to smothering and ultimately their death (Grall & Hall-Spen-
cer, 2003). Likewise, boring species of sponges and bivalves,
while generating further microhabitats, can cause nodule
fragmentation when at high densities. Thus, as shown for
other systems, density-dependent switches from facilitation
to parasitism or competitive exclusion can be expected
(Bulleri et al., 2011; Schob et al., 2014), resulting in a low den-
sity of living rhodolith thalli and a decline or loss of the rho-
dolith bed. Nonetheless, potential negative effects of
facilitated species on rhodoliths remain unexplored.

(3) Variability across environmental gradients

The factors that shape rhodolith composition may also
directly influence the associated species community and the
interactions among species within and across cascade levels.
The presence of marked gradients of environmental condi-
tions or resource availability could open avenues for research
framed within well-established theoretical frameworks, such
the Stress Gradient Hypothesis (SGH; Bertness &
Callaway, 1994). Assessing changes in the sign and strength

of interactions among species within a facilitation cascade
under varying environmental conditions, such as wave expo-
sure, light intensity, water chemistry, sedimentation rate or
consumer pressure, would provide insights into the facilita-
tion pathways underpinning the hierarchical organisation
of rhodolith beds. According to the SGH, the intensity of pos-
itive effects of rhodoliths on sessile and mobile species
through the provisioning of more stable substrates or the
trapping of organic matter are predicted to decrease when
moving from wave-swept to sheltered environments. Like-
wise, the relevance of rhodoliths as refuges against predation
would weaken in areas where consumer pressure is low. For
example, positive effects of rhodoliths on the seagrass Thalas-
sia testudinum should decrease in intensity and eventually shift
to negative (i.e. competition), in areas where the abundance
of sea turtles and, hence, grazing pressure, is low.

(4) The temporal stability of cascades

Facilitation cascade stability is predicted to decrease with
growing numbers of facilitation links and increase with func-
tional redundancy (Yakovis & Artemieva, 2017; Gribben
et al., 2019). Due to the high numbers of species supported,
functional redundancy within and across facilitation cascade
levels could be expected to be high, enhancing its stability.
For example, according to the biodiversity–stability theory
(Tilman & Downing, 1994), rhodolith beds composed of
multiple rhodolith species could absorb external perturba-
tions more efficiently than monospecific beds. Thus, facilita-
tion cascades in multispecies-rhodolith beds might be more
stable than those found in seagrass beds, mangroves and kelp
forests, which are often formed by single species. This poten-
tial resilience (Allison, 2004) should be addressed experimen-
tally, testing multi-stressor scenarios encompassing ocean
warming, acidification and their interactions with regional
and local stressors (Gissi et al., 2021). Assessing the temporal
stability of rhodolith facilitation cascades requires, however,
a mix of experimental and observational research. On the
one hand, the selective removal/addition of species within
the same facilitation level would allow evaluation of the role

(Figure legend continued from previous page.)
Fig. 4. (A–C) Schematic representation of potential experiments assessing the effects of rhodolith bed traits on associated species.
(A) A comparison between live and dead rhodoliths. (B) Comparisons among rhodolith assemblages composed of a different
number of species or morphospecies (e.g. natural assemblage versus two-species assemblages versus monospecific assemblages); in
this example, natural rhodolith assemblages are composed of four species across a branching gradient. (C) Comparisons between
assemblages composed of the same rhodolith species, but differing in their density (natural versus reduced versus total removal).
(D, E) Schematic representation of potential experiments assessing the effects of upper-level facilitators on rhodoliths and
associated assemblages. (D) Different densities of the secondary facilitator (natural versus total removal versus reduced density versus
increased density). (E) Different densities of the tertiary facilitator (natural versus total removal versus reduced density versus increased
density); in these examples, the secondary and tertiary facilitators are a canopy-forming and an epiphytic macroalga, respectively.
For each of the illustrated experimental tests, double-headed arrows indicate comparisons with the natural controls and lateral
close-ups represent the response variable/s (the rhodoliths, the canopy-forming macroalga and the invertebrate assemblage) that
can be potentially taken into account to assess positive/negative effects of each of the three levels included in the cascade. The
illustrated densities of the basal, secondary and tertiary facilitators are simple examples of possible manipulations which can be
extended to the upper levels of a cascade. A detailed account of experimental designs for disentangling the effects of species
richness from those of species identity and density can be found in Benedetti-Cecchi (2004).
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of functional redundancy in sustaining stability. This seems
particularly relevant in rhodolith beds since they often host
multiple species potentially acting as secondary or tertiary
facilitators (Fig. 3). On the other hand, temporal series of
data encompassing generation turn-overs of involved species
are necessary to calculate key metrics, such as the coefficient
of variation and the synchrony of species fluctuations
(Lehman & Tilman, 2000; Loreau & de Mazancourt, 2008).

(5) Rhodolith beds as climate refugia

While there has been considerable interest in assessing the
vulnerability of rhodolith beds to climate changes (Noisette
et al., 2013; Rindi et al., 2019; Koerich et al., 2021; Costa
et al., 2023), field and laboratory experiments remain needed
to evaluate their role as climatic refugia (Voerman
et al., 2022). Depth has been hypothesised to provide refugia
against warming (Graham et al., 2007; Liberman et al., 2022)
and the provision of consolidated substrata might extend the
bathymetric distribution of hard-bottom dwelling species to
depths less influenced by extreme warming events. In addi-
tion, rhodoliths support high diversity and biomass of epi-
phytic macroalgae, which can modify seawater chemistry
through their biological activities. Epiphytic macroalgae,
due to photosynthesis, could locally increase seawater pH
(Burdett et al., 2018) and provide spatial and temporal refugia
for benthic calcifying species, including rhodoliths facing
ocean acidification. In future envisaged high-pCO2 condi-
tions, epiphytic macroalgae on rhodoliths are expected to
benefit from higher CO2 concentrations and primary pro-
duction to be enhanced in future rhodolith beds (Martin &
Hall-Spencer, 2017). Thus, these habitats could provide suit-
able environmental (chemical) conditions for their associated
calcifying species in future high-pCO2 conditions. The wide
distribution of rhodolith beds from tropical to polar latitudes
(Fragkopoulou et al., 2021), is broader than that of many
other marine and coastal foundation species. Thus, assessing
how the diversity of rhodolith species or morphospecies and
that of associated habitat-formers varies across such broad
latitudinal gradients would provide insights into their poten-
tial to act as climate refugia.

VII. CONCLUSIONS

(1) Despite being distributed throughout the photic zone
across the global oceans (from tropical to polar regions),
and being recognised as biodiversity hotspots, rhodolith beds
are yet to be fully appreciated as key marine habitats at the
level of seagrass meadows, mangrove and macroalgal forests
or coral reefs.
(2) Here, we show that rhodoliths can function as foundation
species of multi-level facilitation cascades, and hence are fun-
damental for the persistence of hierarchically structured
communities within coastal oceans around the world.

(3) Research priorities should now seek to understand better
the processes underpinning these community assemblies, the
pathways of ecological facilitation and the effects of human
and environmental perturbations.
(4) Addressing these priorities will allow the development of
evidence-based policy decisions and elevate rhodolith beds
within marine conservation and coastal management
strategies.

VIII. ACKNOWLEDGEMENTS

The preparation of this review was supported by Euro-
Marine through the Foresight Workshop RHODOCARB
(https://euromarinenetwork.eu/activities/rhodocarb/). F.B.
was supported by the European Union’s Horizon 2020
research and innovation programme under grant agreement
No. 869300 (FutureMARES). N.S. acknowledges funding by
Portuguese National Funds from FCT-Fundação para a
Ciência e a Tecnologia through an Assistant researcher grant
(https://doi.org/10.54499/2020.01282.CEECIND/CP1597/
CT0003), by a FCT/CAPES project (2019.00067.CBM),
and through FCT-funded projects UIDB/04326/2020,
UIDP/04326/2020, and LA/P/0101/2020. F.T. and V.P.
acknowledge funding by the Spanish Science and Innovation
Ministry (project “POPCORN”, PID2021-124257OB-I00).
F.R. acknowledges NBFC support to the Stazione Zoologica
Anton Dohrn (SZN), funded under the National Recovery
and Resilience Plan (NRRP) Mission 4, Component 2, Inves-
timent 1.4 -Call for tender No. 3138 of 16 December 2021,
rectified by Decree n 3175 of 18 December 2021 of Italian
Ministry of University and Research funded by the
European Union -Next Generation EU. Project code,
CN00000033 Concession Decree No.1034, of 17 June
2022 adopted by the Italian Ministry of University and
Research, CUP: C63C22000520001 Project title “National
Biodiversity future Center-NBFC”. M.N. was supported by
a PhD fellowship funded by the SZN (Open
University – SZN PhD Program). R.B.F.-F. is grateful for a
research productivity scholarship provided by CNPq
(#309651/2021-2). H.L.B. and N.A.K. acknowledge fund-
ing from the Kempe Foundation (JCSMK24-0033). Finally,
we sincerely thank two anonymous reviewers for providing
insightful comments and constructive criticism.

IX. REFERENCES

Aguilar, R., Pastor, X., Torriente, A. & Garcia, S. (2009). Deep-sea
coralligenous beds observed with ROV on four seamounts in the western
Mediterranean. In Proceedings of the 1st Mediterranean Symposium on the Conservation of the

Coralligenous and Others Calcareous Bio-Concretions, pp. 147–149. UNEP-MAP-
RAC/SPA. CAR/ASP Publishing, Tabarka, Tunis.

Allison, G. (2004). The influence of species diversity and stress intensity on
community resistance and resilience. Ecological Monographs 74, 117–134.

Altieri, A. H., Silliman, B. R. & Bertness, M. D. (2007). Hierarchical
organization via a facilitation cascade in intertidal cordgrass bed communities.
American Naturalist 169, 195–206.

Biological Reviews (2024) 000–000 © 2024 The Author(s). Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

Facilitation cascades in rhodolith beds 13

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.13148 by U

niversidad D
e L

as Palm
as D

e G
ran C

anaria, W
iley O

nline L
ibrary on [30/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://euromarinenetwork.eu/activities/rhodocarb/
https://doi.org/10.54499/2020.01282.CEECIND/CP1597/CT0003
https://doi.org/10.54499/2020.01282.CEECIND/CP1597/CT0003


Altieri, A. H. & Witman, J. D. (2014). Modular mobile foundation species as
reservoirs of biodiversity. Ecosphere 5, 1–11.

AMACO (2022). Madeira Maërl Mapping & Conservation Project. Final Report.
Life4Best 2020-M-44.

Amado, G. M., Maneveldt, G., Manso, R. C. C., Marins-Rosa, B. V.,
Pacheco, M. R. & Guimaraes, S. (2007). Structure of rhodolith beds from 4 to
55 meters deep along the southern coast of Espirito Santo state, Brazil. Ciencias
Marinas 33, 399–410.

Amado-Filho, G. M. & Pereira-Filho, G. H. (2012). Rhodolith beds in Brazil: a
new potential habitat for marine bioprospection. Brazilian Journal of Pharmacognosy

22, 782–788.
Anderson, A. B., Pinheiro, H. T., Batista, M. B., Francini, R. B.,

Gomes, L. E. O., Bernardino, A. F., Horta, P. & Joyeux, J. C. (2023).
Biogeographic patterns of marine fishes associated with rhodolith beds in the
southwestern Atlantic reveal an ecotone of biodiversity. Biodiversity and Conservation

32, 821–837.
Angelini, C., Altieri, A. H., Silliman, B. R. & Bertness, M. D. (2011).

Interactions among foundation species and their consequences for community
organization, biodiversity, and conservation. Bioscience 61, 782–789.

Angelini, C. & Silliman, B. R. (2014). Secondary foundation species as drivers of
trophic and functional diversity: evidence from a tree epiphyte system. Ecology 95,
185–196.

Ape, F., Gristina, M., Chemello, R., Sarà, G. & Mirto, S. (2018). Meiofauna
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