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Abstract: The human immunodeficiency virus type 1 (HIV-1) capsid is a protein core formed by
multiple copies of the viral capsid (CA) protein. Inside the capsid, HIV-1 harbours all the viral com-
ponents required for replication, including the genomic RNA and viral enzymes reverse transcriptase
(RT) and integrase (IN). Upon infection, the RT transforms the genomic RNA into a double-stranded
DNA molecule that is subsequently integrated into the host chromosome by IN. For this to happen,
the viral capsid must open and release the viral DNA, in a process known as uncoating. Capsid plays
a key role during the initial stages of HIV-1 replication; therefore, its stability is intimately related to
infection efficiency, and untimely uncoating results in reverse transcription defects. How and where
uncoating takes place and its relationship with reverse transcription is not fully understood, but the
recent development of novel biochemical and cellular approaches has provided unprecedented detail
on these processes. In this review, we present the latest findings on the intricate link between capsid
stability, reverse transcription and uncoating, the different models proposed over the years for capsid
uncoating, and the role played by other cellular factors on these processes.
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1. Introduction

The discovery of the dogma-breaking concept of reverse transcription by Howard
Temin and David Baltimore in 1970 demonstrated that genetic information can flow from
RNA to DNA. This process is exploited by different viral families, such as Caulimoviridae [1]
or Hepadnaviridae [2], but is best known from retroviruses, which inherited their name
from this process. The most studied member of this family is human immunodeficiency
virus type 1 (HIV-1). HIV-1 is a major global health threat, infecting 39 million people
worldwide [3].

Over 40 years of intensive research has uncovered many aspects of HIV-1 biology [4].
Therefore, we know that HIV-1 is an enveloped virus decorated with viral glycoproteins
(Env), responsible for recognizing specific cellular receptors [5]. Surrounded by the viral en-
velope resides the capsid. This container-like structure, characterized by its roughly conical
shape, is built by around 1600 copies of a single protein, also called capsid (CA), arranged
in hexamers and pentamers [6–11]. This protein core contains all the viral components
required for replication, including two copies of the viral genomic RNA and the enzymes
reverse transcriptase (RT) and integrase (IN).

RT transforms the genomic RNA into a double-stranded DNA molecule [proviral
DNA] that is transported into the cell nucleus where IN mediates its integration into the
host chromosome. There, the proviral DNA (now called provirus) remains stably integrated,
resulting in the transfer of the provirus from the parental to all daughter cells.
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The relevance of capsid during HIV-1 infection was not initially appreciated and it
was viewed simply as a vehicle for transporting the viral RNA and proteins [12]. Never-
theless, its crucial role in viral replication began to be recognized through early studies
of its interactions with cellular components. Therefore, in the early 1990s, several groups
identified a cellular protein, Cyclophilin A (CypA), which interacts with a motif in the viral
capsid, named the CypA binding loop, on its honor, and that is incorporated into viral
particles [13–16]. Concomitantly, several studies focused on the determination of capsid
structure (reviewed in [17]), interaction with other cellular partners (reviewed in [18]), or
maturation (reviewed in [19]). Nevertheless, a concept that was accepted early as inevitable
was that capsid needs to disassemble, in a process termed uncoating, to release the vi-
ral components, access cytoplasmic dNTPs, and thus enable the progression of the viral
life cycle.

On the other hand, RT was early recognized as a key player in viral replication and
was therefore the target of intense research. This led to the characterization of the process
of reverse transcription (discussed below), and the design of diverse compounds with
the ability of inhibiting RT function. The wealth of HIV-1 inhibitors targeting the RT
and other viral enzymes resulted in combination therapies capable of suppressing viral
replication, referred to as highly active antiretroviral therapy (HAART). The inception
of HAART marked an important turning point in HIV-1 infection treatment and led to
a dramatic increase in the survival rate of HIV-1-infected individuals [20]; for updated
reviews on the state of RT inhibitors, please refer to [21–23]. However, both processes
(i.e., reverse transcription and capsid uncoating) were most frequently studied in isolation,
mostly owing to technical limitations, which for years hindered the recognition of their
intricate nature.

In this review, we will discuss the relationship between HIV-1 reverse transcription
and capsid uncoating. Existing data on the timing, location, and how the progress of
one affects the other will be presented. Finally, we will enumerate several unanswered
questions in the field.

2. The Process of Reverse Transcription

The replication of the HIV-1 genome involves the conversion of single-stranded RNA
(ssRNA) into double-stranded DNA (dsDNA) carried out by the viral RT. The RT is a
heterodimeric enzyme composed of subunits p66 and p51, and of 66 kDa and 51 kDa,
respectively. The p51 subunit is a truncated form of p66, lacking the RNase H domain
formed by residues 441–560. Both subunits contain four subdomains termed “fingers”
(amino acids 1–85 and 118–155), “palm” (86–117 and 156–236), “thumb” (237–318), and
“connection” (319–426) [24]. However, these subdomains fold in different configurations in
each subunit. The p51 subunit plays a structural role, while the DNA polymerase active
site, formed by residues Asp110, Asp185, and Asp186, resides in p66.

While RT DNA polymerase and RNase H activities are sufficient to complete all
the steps in the reverse transcription process, the viral nucleocapsid (NC) protein is a
necessary partner; for a recent review, see [25]. The mature NC protein is a nucleic acid-
binding protein with a chaperoning role in reverse transcription [26]. NC is involved in the
initiation of reverse transcription by promoting hybridization of the cellular transfer RNA
(tRNA) to the primer binding site (PBS) in the viral genome. In addition, it has a role in
facilitating strand transfer events occurring during the process. In vitro, NC increases RT
processivity and the fidelity of DNA synthesis [27]. However, the impact of those effects
in vivo is still unknown. The role of NC in the viral replication cycle relates to the structural
reorganization of the viral genomic RNA structure. NC acts as a chaperone, by modulating
nucleic acid rearrangements and thereby facilitating the formation of structures which are
thermodynamically more stable [28].

The HIV genome is made of two positive-sense ssRNA molecules with a structural
organization that resembles cellular messenger RNA (mRNA). Thus, the viral genomic
RNA contains a 5′ cap and a polyadenylated tail. The product of the reverse transcription
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process is a proviral dsDNA which is flanked by LTRs. HIV-1 LTRs have around 634 base
pairs, segmented into three regions, known as U3 (unique 3′), R (repeat), and U5 (unique
5′). LTR ends participate in the integration of the dsDNA into the host genome.

The reverse transcription process is outlined in Figure 1. Reverse transcription initiates
after the binding of a cognate cellular tRNA to the PBS. The PBS is positioned downstream
of the unique 5′ (U5) region, in the untranslated leader region. The 3′-OH of the tRNA
serves as a primer for RNA-dependent DNA synthesis. All lentiviruses (including HIV)
use tRNALys3 as a reverse transcription initiation primer. In HIV-1, the 3′-terminal 18
nucleotides of the tRNA primer anneal the complementary PBS (positions +182 to +199)
found in the viral genome. Structures of RT initiation complexes have been recently
obtained using cryo-electron microscopy [29] and by crystallography [30]. In the structure
obtained by cryo-electron microscopy, authors introduced a covalent cross link between
the enzyme and the full-length tRNALys3 annealed to 101 nucleotides of the viral 5′ UTR,
while Das et al. [30] reported the structure of HIV-1 RT complexed with 23 nucleotides of
the viral genomic RNA annealed to 17 nucleotides of the tRNA.

Int. J. Mol. Sci. 2024, 25, 7167 3 of 24 

RNA contains a 5′ cap and a polyadenylated tail. The product of the reverse transcription 
process is a proviral dsDNA which is flanked by LTRs. HIV-1 LTRs have around 634 base 
pairs, segmented into three regions, known as U3 (unique 3′), R (repeat), and U5 (unique 
5′). LTR ends participate in the integration of the dsDNA into the host genome.  

The reverse transcription process is outlined in Figure 1. Reverse transcription initi-
ates after the binding of a cognate cellular tRNA to the PBS. The PBS is positioned down-
stream of the unique 5′ (U5) region, in the untranslated leader region. The 3′-OH of the 
tRNA serves as a primer for RNA-dependent DNA synthesis. All lentiviruses (including 
HIV) use tRNALys3 as a reverse transcription initiation primer. In HIV-1, the 3′-terminal 18 
nucleotides of the tRNA primer anneal the complementary PBS (positions +182 to +199) 
found in the viral genome. Structures of RT initiation complexes have been recently ob-
tained using cryo-electron microscopy [29] and by crystallography [30]. In the structure 
obtained by cryo-electron microscopy, authors introduced a covalent cross link between 
the enzyme and the full-length tRNALys3 annealed to 101 nucleotides of the viral 5′ UTR, 
while Das et al. [30] reported the structure of HIV-1 RT complexed with 23 nucleotides of 
the viral genomic RNA annealed to 17 nucleotides of the tRNA.  

Figure 1. Outline of the HIV-1 reverse transcription process. The steps involving the conversion of 
single-stranded genomic RNA into dsDNA are shown. RNA is shown in blue and DNA in light 
orange. A ribbon diagram is used to represent the HIV RT structure. Abbreviations used: LTR, long 
terminal repeat; PBS, primer binding site; PPT, polypurine tract; R, repeat; U3, unique 3′; U5, unique 
5′. Adapted from Menéndez-Arias et al. [31], with permission from Elsevier. 

Although both RTs are catalytically active, none of the structures captures the initia-
tion complex poised for nucleotide incorporation. The 3′ primer terminus is displaced 
from the active site by 5–7 Å while the fingers subdomain of the RT remains open [32]. 
This is consistent with studies showing the slow polymerization rate shown by HIV-1 RT 
while incorporating the first 5–6 nucleotides at the 3′ end of the tRNA primer [33]. After 
these incorporations, the process speeds up considerably [34]. 

HIV virions contain two copies of genomic RNA and an estimated 20–770 copies of 
tRNA [35,36]. During reverse transcription, an intermediate known as minus-strand 
strong-stop DNA [(−)ssDNA] is formed once the tRNA primer is extended to the 5′ end of 
the viral genome. The 5′ end of the viral RNA is then removed by the RNase H activity of 

•••••••

•••••••

•••••••

•••••••

•••••••

minus (–) strand
DNA synthesis

PBS    gag          pol env PPT    U3    R  

U3    R     U5     PBS      gag         pol env PPT     U3    R   U5

PBS      gag         pol env U3    R   U5  PBS

PPTcPPT

riboA

riboA

LTR         LTR

(–) strand transfer

plus (+) strand
DNA synthesis

RNase H
cleavage

(+) strand
transfer

dsDNA

AAAA 3´5´ cap

cPPT

genomic RNA
(ssRNA)

cFLAP

(–)ssDNA

(+)ssDNA

(+)ssDNA

U5

U3    R   U5 

3´

3´

5´

5´

AAAA 3´

AAAA 3´

PPT

U3    R     U5     PBS      gag       pol env PPT       U3   R   U5

PBSR    U5    gag          pol env PPT   U3     R

Figure 1. Outline of the HIV-1 reverse transcription process. The steps involving the conversion of
single-stranded genomic RNA into dsDNA are shown. RNA is shown in blue and DNA in light
orange. A ribbon diagram is used to represent the HIV RT structure. Abbreviations used: LTR, long
terminal repeat; PBS, primer binding site; PPT, polypurine tract; R, repeat; U3, unique 3′; U5, unique
5′. Adapted from Menéndez-Arias et al. [31], with permission from Elsevier.

Although both RTs are catalytically active, none of the structures captures the initiation
complex poised for nucleotide incorporation. The 3′ primer terminus is displaced from
the active site by 5–7 Å while the fingers subdomain of the RT remains open [32]. This is
consistent with studies showing the slow polymerization rate shown by HIV-1 RT while
incorporating the first 5–6 nucleotides at the 3′ end of the tRNA primer [33]. After these
incorporations, the process speeds up considerably [34].

HIV virions contain two copies of genomic RNA and an estimated 20–770 copies
of tRNA [35,36]. During reverse transcription, an intermediate known as minus-strand
strong-stop DNA [(−)ssDNA] is formed once the tRNA primer is extended to the 5′ end of
the viral genome. The 5′ end of the viral RNA is then removed by the RNase H activity of
the RT, and the newly synthesised (−)ssDNA becomes available (Figure 1, second diagram).
Duplicated sequences known as repeats (R) are found at both ends of the viral genomic
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RNA. The R sequence in the (−)ssDNA facilitates the strand transfer event by which DNA
synthesis can continue from the 3′ of the viral RNA. The tRNA participates in both the first
(−) and the second (+) strand transfer events [37].

Minus-strand DNA synthesis can resume on the same RNA or on a different RNA
template and its elongation continues with simultaneous degradation of the template RNA
(catalyzed by the RNase H activity of the RT). However, all retroviruses contain at least one
purine-rich sequence at the 3′ region of the RNA genome (U3 region), but HIV-1 and other
retroviruses have an additional polypurine tract (PPT) located in the central part of the
genome (cPPT). PPTs are sequences of 15 ribonucleotides, that in HIV-1 contain a stretch of
eight adenines with a single intervening guanine and a stretch of six guanines. The 5′ end
of the PPTs is flanked by uridine-rich regions that, together with the intervening guanine,
evolved to protect the integrity of the downstream PPT sequence [38,39].

PPTs are resilient to cleavage by the RT’s RNase H activity, but their formation relies on
the introduction of specific cuts at its termini (within the U-tract and at the PPT-U3 junction).
The specificity of these cleavages depends on the distance from the DNA polymerase and
RNase H catalytic sites within the viral RT and can be influenced by mutations at the
connection subdomain of the RT [40,41].

PPTs serve as primers for plus-strand DNA synthesis (Figure 1, plus strand DNA
synthesis diagram). PPTs are extended to the 5′-end of the minus-strand DNA. When the
growing DNA chain reaches the 18th nucleotide in the tRNA, polymerization is blocked
due to the presence of a methylated base [42]. PPT elongation leads to the formation of
plus-strand strong-stop DNA [(+)ssDNA]. When the process is completed, the tRNA is
removed by the RT’s RNase H activity. This cleavage occurs at the 3′ end of the tRNA.
In HIV-1, the completed minus-strand DNA contains an extra adenosine monophosphate
(riboA) at its 5′ end [43,44]. The annealing of the (+)ssDNA to the 3′ end of the full-length
minus-strand DNA involves a strand transfer reaction that occurs via base pairing of the
complementary PBS sequences [45]. Finally, the strand displacement activity of HIV RTs
facilitates the completion of the process and the formation of a full-length, integration-
competent, double-stranded DNA with two identical LTRs, one at each end. Interestingly,
mutations affecting the PPT were found in some patients treated with second-generation
integrase inhibitors, such as dolutegravir. Biochemical studies showed that the mutated
3′-PPT sequence is unable to initiate plus-strand cDNA synthesis. Since this priming event
is critical for the second strand transfer reaction, its abrogation may cause the formation
and accumulation of 1-LTR circles, and not the linear DNA [46].

In HIV, the presence of a central PPT in the viral genome leads to the formation of
flaps of unknown function (Figure 1, bottom diagram). These flaps are constituted by three-
stranded structures with overlapping positive-strand sequences. The strand displacement
activity of HIV RT is responsible for the generation of those flaps, which are removed by
cellular endonucleases. After flap removal, the activity of cellular ligases joining the DNA
ends is required to generate a complete provirus that can eventually integrate in the host
cell genome.

3. Early Understanding of Uncoating and Its Relationship with Reverse Transcription

Efforts to characterize the nature of HIV-1 replication intermediates resulted in the
identification of two different complexes formed during the early stages of viral replication.
The first one to be assembled is the reverse transcription complex (RTC), followed by its
maturation into a preintegration complex (PIC). Characterization of these intermediates
heavily relied on biochemical analysis of isolated viral DNA and associated proteins. These
techniques usually employed high multiplicity of infection and the lysis of the infected
cells using harsh lysis buffers, followed by isolation of RTCs and PICs by sucrose gradient
sedimentation. Several studies determined that RTCs/PICs were characterized by the
presence of viral RNA and DNA, IN, and other viral proteins such as Vpr and matrix
(MA) [47–51]. These complexes contained low amounts of RT but were competent for
reverse transcription and integration in vitro [52–54]. Intriguingly, CA was barely detected
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or not detected at all in any of these complexes, leading to the logical conclusion that CA
was lost soon after the virus fused with the cell membrane.

Similarly, early studies using purified HIV-1 virions showed that intact particles or
isolated cores (that is, virions stripped of their envelope) can produce early reverse transcrip-
tion products upon addition of dNTPs, in reactions dubbed natural endogenous reverse
transcription (NERT) and endogenous reverse transcription (ERT), respectively [55–58].
However, these reactions very rarely progressed to full-length viral DNA, and this only
happened when detergents were added, pointing again to the need for capsid disassembly
for reverse transcription to progress [59].

However, some observations argued against this idea. A direct link was established
between CA functionality and reverse transcription through the identification of CA mu-
tations affecting capsid stability, which resulted in deficient synthesis of viral DNA prod-
ucts [60–62]. In addition, the identification of rhesus macaque restriction factor tripartite
motif-containing protein 5 alpha (TRIM5α) [63], which requires assembled capsid lattices
for viral inhibition [64], demonstrated that complete or nearly intact cores remain in the
cell cytoplasm for some time after entry, where they are recognized and degraded by this
protein [65–68]. Interestingly, TRIM5α-directed inhibition resulted in the accumulation
of early reverse transcription products and the concomitant absence of late products [63].
This discovery demonstrated the dependence of reverse transcription on capsid stability,
and it was reminiscent of the defect on reverse transcription observed with hypostable
capsids [62]. Further support for the persistence of assembled capsids after cell entry came
from early fluorescent microscopy experiments following individual HIV-1 particles in
infected cells. These studies detected large amounts of CA associated with these particles
as they moved through the cell cytoplasm [69].

Another inconsistency with the idea of rapid and complete shedding of viral CA
upon cell entry is the notion that viral nucleic acids must be protected from cytosolic DNA
sensors such as cyclic GMP-AMP (cGAMP) synthase (cGAS) and IFI16 [70,71], therefore
avoiding the cellular innate immune response.

Studies on the reciprocal effect, i.e., the role of reverse transcription on capsid disas-
sembly, came later, with a seminal work by Arhel et al., where the authors proposed that
the completion of reverse transcription, with the subsequent formation of a DNA flap, is
the trigger for capsid uncoating [72]. This conclusion was supported by further studies
demonstrating that the inhibition of reverse transcription by chemical or genetic means
delays uncoating [73], increasing capsid stability [74].

Nevertheless, early studies demonstrated that capsid uncoating and reverse transcrip-
tion are interconnected phenomena, with the modulation of one influencing the other.

4. Capsid and Its Journey through the Cell

HIV-1 capsid is composed of multiple copies of CA, arranged in around 250 hexamers
and 12 pentamers. While the hexamers form the bulk of this structure, the pentamers are
essential to confer the needed curvature to close both ends of the core. This specialized
structure defines multiple binding sites for cellular factors and small molecules to interact
with [Figure 2]: (i) the CypA binding loop spans residues 88–90 and it is essential for
Cyp-like domain-containing proteins binding, such as CypA [75] or nucleoporin (NUP)
358 [76]; (ii) the phenylalanine–glycine (FG) binding pocket is delimited by the amino-
terminal domain–carboxy-terminal domain interface of adjacent CAs and is important for
the binding of factors such as CPSF6 [77] or NUP153 [78], and small molecules with capsid
stabilizing activity, including PF74 and lenacapavir [15,79]; (iii) the tri-hexamer interface
lays on the boundary where three CA hexamers come together and is bound by cellular
factors MX2 and NUP153 [80,81]; (iv) the central pore (also known as the R18 pore due
to the central role of Arg18 on its function) is located at the centre of each CA hexamer
(and perhaps pentamer) and is bound by FEZ1 and IP6 [82–84]; (v) the macromolecular
structure of the core itself, which is targeted by TRIM5α and TRIMCyp [66,85].
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Figure 2. Structure of HIV-1 capsid, interacting interfaces, and main binders. Complete model of the
mature HIV-1 capsid shell, encompassing 186 hexamers and 12 pentamers based on PDB file 3J3Y [86],
and designed using the ChimeraX free software [87]. An individual CA pentamer is highlighted in
orange and depicted on the right (PDB file 3P05 [88]), together with an individual hexamer (PDB
file 4U0D, [89]) in green. A monomeric CA (PDB file 4XFY, [90]) has been highlighted in cyan in the
pentamer and is depicted next to it. The main interacting interfaces on each capsid structure have
been indicated with a circle, together with the main cellular proteins and small molecules interacting
with them: (i) CypA binding loop: CypA and NUP358; (ii) FG pocket: NUP153, CPSF6, PF74, and
lenacapavir; (iii) tri-hexamer interface: MX2 and NUP153; (iv) R18 pore: FEZ1 and IP6; (v) capsid
core: TRIM5α and TRIMCyp.

Mounting evidence of the presence and persistence of viral capsid during early HIV-
1 replication spurred the development of biochemical and cellular assays to track viral
particles as they moved through the infected cell cytoplasm. Different techniques applied on
different cell lines resulted in four main models for capsid uncoating, and are summarized
in Figure 3. As stated before, early biochemical approaches based on the isolation of RTCs
detected little, if any, CA associated and therefore supported a model in which uncoating
occurred early after virus internalization [73,85,91–94]. It is worth noting that a recent
study supports some degree of cytoplasmic uncoating, based on the sensing of reverse
transcription products by the cytoplasmic sensor cGAS [95]. Recent years have witnessed
the emergence of advanced techniques to track the fate of individual viral particles. This
includes microscopy-based techniques such as super-resolution microscopy, cryogenic
electron microscopy (cryoEM), and correlative light and electron microscopy (CLEM),
nucleic acids fluorescent labelling techniques such as EdU click-labelling or the ANCHOR
system, and viral particle labelling techniques (discussed below). The almost general
agreement amongst all the groups employing this vast array of techniques is that intact, or
nearly intact capsids reach the nuclear envelope. Moreover, three different models have
been proposed based on the location where uncoating takes place.
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uncoating at the nuclear pore; capsid remodelling during nuclear translocation followed by nuclear
uncoating; uncoating inside the nuclear lumen. All four models are depicted, with the unmodified
capsid, remodelled capsid, nuclear pore complex (NPC), and two different replication complexes
illustrating the different stages of viral DNA synthesis shown.

4.1. Uncoating at the Nuclear Pore Complex (NPC)

This model proposes that the viral capsid opens before the replication complex shuttles
into the nucleus [95–101]. By labelling the virion-incorporated protein APOBEC3F and
measuring its diffusion as a surrogate for capsid uncoating, the Pathak group reported a
significant loss of CA subunits before nuclear translocation [96]. Fernández et al. proposed
that HIV-1 capsid interacts with the nuclear envelope protein transportin 1, a β-karyopherin,
and that this interaction promotes its uncoating [100]. However, the main supporter
of this model has been the Melikyan group. In three different publications employing
immunofluorescence microscopy approaches based on direct labelling of viral proteins and
indirect labelling of viral capsids through its interaction with a tetrameric CypA-dsRed
chimeric protein, they visualized the loss of capsid integrity (loss of CypA-dsRed signal)
before nuclear import of replication complexes [98,99,101].

4.2. Uncoating in the Nucleus

Other groups propose that uncoating occurs after nuclear import [100–111]. This
theory has been historically rejected because the nuclear pore has a diameter of around
40 nm [112,113], and therefore is not wide enough for the passage of HIV-1 capsids of
roughly 60 nm diameter on the wide end [6,11]. However, this notion has been challenged
by a recent study from the Krausslich lab, in which correlative light and electron microscopy
combined with subtomogram averaging enabled visualization of HIV-1 capsids in infected
cells with unprecedented detail [108]. Interestingly, by studying the morphology of nuclear
pore complexes in intact cells, the authors measured nuclear pores wider than previously
described, of around 64 nm, and therefore wide enough for intact capsids to traverse.
Furthermore, they detected multiple capsids as they passed through nuclear pores and
therefore concluded that intact capsids reach the nucleus of infected cells.

In support of this in vivo study, the Xiong group developed mimics of the nuclear
pore consisting of a ring-shaped DNA framework decorated with cytoplasmic fragments
from NUP358, nuclear pore channel motifs from NUP62, and nuclear lumen fragments
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from NUP153, and observed virus cores nailing through these structures and interacting
with the NUP fragments in an orderly manner [110].

A recent study has proposed that not only do assembled capsids traverse the nuclear
pore, but that they are essential for nuclear import [111]. In this study, the authors employed
an in vitro-assembled cohesive FG phase mimicking the gel-like matrix formed by the FG-
rich motifs of several NUPs in the nuclear pore channel and observed that the capsid lattice
acts as a nuclear transport receptor, enabling its translocation into the nucleus. Similarly,
a coarse-grained model of the human nuclear pore complex demonstrated that entire
capsids translocate into the nucleus, and that this process requires certain capsid elasticity
to accommodate the structural stress generated during translocation [112].

One of the most elegant approaches supporting nuclear uncoating came from the
Campbell group, who fused the nuclear pore channel protein NUP62 to a drug-inducible
dimerization domain to block the nuclear import of replication complexes. The authors
determined that the capsid inhibitor PF74, which only binds to assembled capsid lattices,
was able to inhibit infection hours after the virus was insensitive to nuclear pore blockade,
indicating that assembled viral capsids reach the nucleus [102].

4.3. Capsid Remodelling during Nuclear Import (NPC Remodelling)

This model proposes that the viral capsid is structurally modified as it passes through
the nuclear pore [114–117]. Blanco-Rodriguez and co-workers employed electron mi-
croscopy coupled with gold-labelling of capsids to detect CA complexes at both sides of
the nuclear envelope, but with different staining properties, concluding that the capsid was
remodelled during nuclear entry [115].

Another study used hyperstable CA mutants that were proficient for reverse transcrip-
tion but became trapped at the nuclear pore. The authors linked the inability to complete
nuclear import to the lack of flexibility of these capsids to be remodelled and therefore
travel through the pore [117]. In experiments analysing the behaviour of viruses containing
fused GFP-CA subunits, Francis and co-workers determined that remodelling of the capsid
as it traverses the nuclear pore is necessary for productive infection [116].

In a recent study utilizing fluorescence fluctuation spectroscopy to examine the inter-
action between various FG-containing NUPs and in vitro assembled capsid-like structures,
the authors postulated that the capsid’s structure might undergo alterations during passage
through the nuclear pore complex. This hypothesis stems from the significant binding of
multiple NUPs’ FG motifs to the capsid simultaneously [118].

Finally, other studies have detected CA-containing complexes inside the infected cell
nucleus, but without details on their assembly state [119–123].

In addition to this direct method, indirect hints have suggested that whole capsids
are mostly intact during their travel through the cytoplasm, and on docking at the nuclear
envelope. As stated before, the discovery of TRIM5α demonstrated that assembled capsids
must remain in the cytoplasm for inhibition to happen. Since this discovery, several other
cytoplasmic proteins have been found to interact with assembled capsids. Therefore,
recent studies identified secondary binding sites for the cytoplasmic protein CypA in the
capsid lattice, expanding two hexameric assemblies [124,125]. Microtubule-associated
proteins BICD2 and KIFB5 were identified as key cellular shuttle transporters responsible
for conveying viral capsids through the microtubule network. Notably, their interaction
requires intact capsids [126–128]. Similarly, the kinesin-1 adaptor protein FEZ1 binds the
pore form at the centre of CA hexamers (R18 pore) to transport the capsid towards the cell
nucleus [82,83]. Recently, Sec24C has been shown to co-traffic with capsid in the cytoplasm
of infected cells, engaging with the FG-binding pocket [129].

Nuclear envelope proteins have also been identified as capsid interactors. Amongst
them, NUP153 and MX2 require the presence of assembled lattices to engage on the tri-
hexamer interface of capsid, demonstrating again the persistence of assembled cores up
to nuclear pore docking. Furthermore, the nuclear protein CPSF6 plays an important role
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in determining the integration sites of proviral DNA [130], and its interaction with capsid
also requires the presence of assembled cores.

In conclusion, the initial idea of HIV-1 capsid disassembling early after membrane
fusion has been substituted by models that support its persistence to at least the engagement
with the nuclear pore, with the possibility of arriving at the nuclear lumen intact or only
partially open.

5. Cell Factors Modulating Reverse Transcription

Numerous cellular proteins play pivotal roles in regulating HIV-1 reverse transcription.
Distinguishing between those directly influencing the reverse transcription process and
those affecting capsid stability, and consequently viral DNA synthesis (like TRIM5α), can
be challenging. Furthermore, in several cases, the factors listed here have been linked to
both activities, reinforcing the notion of the intricate nature of reverse transcription and
capsid uncoating.

5.1. APOBEC3 Proteins

Several apolipoprotein B editing complex members have shown antiviral activity [131].
These proteins are packaged into virions via interaction with the nucleocapsid protein
and viral RNA [132–135]. Amongst them, APOBEC3G has been characterized as a po-
tent inhibitor of retroviruses [136], retrotransposons [137], hepatitis B virus [138], and
Vif-deficient HIV-1 [139]. APOBEC3G inhibits HIV-1 by a lethal mutagenesis mechanism
in which deamination of deoxycytidine residues on the minus-strand DNA leads to in-
activation of HIV-1 through guanine (G) to adenine (A) hypermutation of the proviral
DNA [140–143]. Interestingly, in addition to inhibition by lethal mutagenesis, APOBEC3G
has also been shown to restrict HIV-1 by blocking reverse transcription [144]. Although not
fully understood, it has been proposed that the APOBEC3G-mediated inhibition of reverse
transcription involves either interaction with template viral RNA or (−) ssDNA [145–147],
or direct binding to the RT [148,149], in a mechanism involving cellular uracil base excision
repair (UBER) enzymes [149].

Moreover, other protein members of the APOBEC3 family have also shown the ability
to inhibit Vif-deficient HIV-1. APOBEC3F is a potent retroviral inhibitor producing G
to A hypermutation in the proviral DNA [140,150]. In addition, APOBEC3F inhibits the
accumulation of reverse transcription products in the absence of its hypermutation activ-
ity [150–152]. Finally, APOBEC3H seems to significantly inhibit reverse transcription in a
mutagenesis-independent manner, accumulating late DNA products [153], in a mechanism
involving the template switching frequency of the RT [154].

5.2. SAMHD1

Sterile alpha motif (SAM) and histidine-aspartic (HD) domain-containing protein 1
(SAMHD1) is a potent GTP/dNTP-stimulated triphosphohydrolase that converts de-
oxynucleoside triphosphates to the constituent deoxynucleoside and inorganic triphos-
phate [155,156]. In myeloid cells and resting T cells infected with HIV-1, SAMHD1 depletion
leads to an increase in late reverse transcription products, indicating that SAMHD1 inhibits
reverse transcription through depletion of dNTPs [157,158].

It is well established that phosphorylation of Thr592 negatively correlates with HIV-1
restriction by SAMHD1, and phosphomimetic mutants T592D and T592E abolish antiretro-
viral activity, but do not affect dNTP hydrolysis in vitro or in cellulo [159,160]. These
findings raised the possibility of an HIV-1 inhibition mechanism independent of SAMHD1
dNTPase activity.

In this regard, it has been shown that the RNase activity of SAMHD1 degrades the
viral RNA during early reverse transcription, inhibiting HIV-1 infection. Therefore, at
low GTP concentrations, SAMHD1 exists as a monomer or a dimer with RNase but not
dNTPase activity, while at higher GTP concentrations, the RNase activity of SAMHD1
is inhibited, promoting protein teramerization and its dNTPase activity [161]. Moreover,
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recent studies have focused on the nucleic acid binding activity of SAMHD1 and its role in
HIV-1 inhibition. It has been shown that SAMHD1 can bind DNA and RNA oligomers in
addition to GTP/dNTPs in the protein allosteric binding sites, resulting in active SAMHD1
tetrameric complexes with mixed occupancy of the binding sites [159,162].

5.3. p21

p21 [cyclin-dependent kinase inhibitor 1A], one of the p53 downstream-stimulated
genes, is associated with cell cycle regulation, anti-apoptotic responses, and differentia-
tion [163]. The expression of p21 inhibits the replication of HIV-1 and related primate
lentiviruses in macrophages [164].

p21 restricts the expression of ribonucleotide reductase subunit R2 (RNR2), a key
enzyme in dNTP biosynthesis, thus blocking dNTP production and consequently impairing
reverse transcription [165–167]. In addition, it has been shown that downregulation of p21
strongly enhances the phosphorylation of SAMHD1, resulting in increased HIV-1 proviral
DNA synthesis and virus infection, and strongly suggesting that p21 levels positively
correlate with the extent of SAMHD1-mediated HIV-1 restriction [168]. Similarly, Shi
et al. found that knockdown of p21 in human monocytes derived macrophages (hMDMs)
increases SAMHD1 Thr592 phosphorylation, supporting that p21 regulates SAMHD1
phosphorylation in non-cycling cells [169].

Indeed, it has been shown that p21 is strongly upregulated in CD4+ T cells from elite
controllers and reduces the susceptibility of these cells to HIV-1 by inhibiting viral reverse
transcription [170,171].

5.4. Daxx

Death-associated protein 6 (Daxx) is a highly conserved and ubiquitously expressed
protein in mammals involved in numerous cellular processes, such as apoptosis, transcrip-
tional repression, and carcinogenesis [172,173]. In addition, when recruited by promye-
locytic leukemia protein (PML, also known as TRIM19), Daxx inhibits HIV-1 reverse
transcription and retrotransposition of endogenous retroviruses [174].

It has recently been shown that a SUMO-interacting motif (SIM) located on the carboxi-
terminal end of Daxx is required for its CypA-mediated interaction with capsid. Subse-
quently, Daxx would serve as a link for the recruitment of other cellular proteins such
as TNPO3, TRIM5α, and TRIM34 to incoming HIV-1 cores. It has been proposed that
Daxx–capsid interaction results in increased capsid stability, thus preventing uncoating
and inhibiting reverse transcription [172].

5.5. eEF1A

Human eukaryotic translation elongation factor 1A (eEF1A) is a protein subunit of the
eukaryotic translation elongation 1 complex (eEF1) that has been described as an HIV-1
inhibitor [175].

eEF1A was identified as an RT cofactor from fractionated human T-cell lysates,
whose depletion ablated the ability of these lysates to stimulate late reverse transcrip-
tion in vitro. [176]. A recent study has uncovered that the RT thumb subdomain is involved
in eEF1A binding, and that this interaction is key for HIV-1 uncoating, reverse transcription,
and replication. Therefore, the mutation of surface-exposed acidic residues in the HIV-1 RT
thumb domain, such as the conserved Glu300 residue, reduces RT interaction with eEF1A
and leads to a delay in reverse transcription and uncoating kinetics [177].

5.6. Mov10

Moloney leukaemia virus 10 (Mov10) protein is an RNA helicase involved in the
replication of endogenous retroviruses [178,179]. Like APOBEC3 proteins, Mov10 localizes
to mRNA-processing bodies (P bodies) and is a component of the RNA-induced silencing
complex (RISC) [180]. Several groups have shown that Mov10 overexpression inhibits
HIV-1 infection at multiple stages of replication including virus production, proteolytic



Int. J. Mol. Sci. 2024, 25, 7167 11 of 23

processing of Gag, and reverse transcription [180–183]. However, the mechanism behind
these inhibitory activities is currently unknown.

5.7. RHA

DHX9/RNA helicase A (RHA) is a DEAH-box helicase with RNA- and DNA-dependent
helicase activity [184]. RHA is packaged into viral particles and enhances infectivity and
reverse transcription [185–188]. Different mechanisms have been proposed for its ability to
promote viral DNA synthesis, including increased tRNALys3 annealing [187], or (−)cDNA
synthesis [185]. However, a recent study has found that RHA does not enhance DNA
synthesis in the initial elongation steps, but rather increases RT processivity, resulting in
more efficient reverse transcription [189].

5.8. TOP1

Topoisomerase 1 (TOP1) is a DNA topoisomerase that regulates the DNA topology
during transcription [190]. Several studies have found that TOP1 enhances HIV-1 cDNA
synthesis [191–193], and this has been related to the ability of TOP1 to dissociate the RT from
structured RNA [194]. Specifically, TOP1 fostered in vitro reverse transcription reactions, a
finding that was supported by the ablation of this effect upon addition of the TOP1 inhibitor
camptothecin [191]. However, more recent studies have found that the antiviral activity of
this drug is TOP1-independent [195].

6. The Timing, Location, and Effect of Reverse Transcription

Newly formed HIV-1 particles can incorporate dNTPs into their capsid. Therefore,
reverse transcription could theoretically start in intact virions, and this was demonstrated
by the identification of early reverse transcription products in viral particles [56,73]. Once
inside the infected cell, reverse transcription continues until synthesis of full-length proviral
DNA around 8–10 h after infection in immortalized cell lines [73,104,196,197], and around
12 h after infection in primary CD4+ T cells [198].

As pointed out before, it was widely accepted that viral DNA synthesis could only
be completed upon capsid shedding, since the RTC would need access to more dNTPs
present in the cell cytoplasm [199]. This notion changed in 2016 when the James lab showed
that the pore existing in the centre of capsid hexamers (the R18 pore, Figure 2) allowed
the import of dNTPs into the capsid [200]. Interestingly, it was later shown that this same
pore is occupied by the cellular polyanion inositol hexakiphosphate (IP6), which promotes
assembly of the mature capsid [84,201,202], increases stability [203–205], aids avoiding host
immune sensing [206], facilitates dNTP import [207], and promotes ERT [196,197].

Proviral DNA constitutes a larger, more rigid molecule than RNA. The volume avail-
able inside the capsid is limited, and therefore, it is possible that synthesis of full-length
reverse transcription products can only be completed after capsid opening. This notion
seemed to be supported by the fact that ERT and NERT reactions can only proceed when
detergents are added to the mixture, likely shedding the capsid lattice [59], and by more
recent studies identifying the chaperone protein Daxx as an inhibitor of reverse transcrip-
tion, via the inhibition of uncoating [172,174]. However, many studies have recorded active
reverse transcription in closed cores. Therefore, ERT reactions carried out in the presence
of IP6 are greatly enhanced in the production of late reverse transcription products, and
hyperstable capsid mutants can complete viral DNA synthesis [62,117,196,203,208,209].

A hypothesis has been proposed to explain the advantages of reverse transcribing the
genomic RNA into closed capsids, which is commonly dubbed the cage model. Initially
proposed by Arhel and co-workers [72], this model proposes that given the limited number
of RT molecules per virion, estimated to be between 50 and 150 [210], the crowded environ-
ment inside the capsid [211], and the multiple strand transfer reactions required for reverse
transcription, an enclosed space, such as the viral core, would effectively concentrate all
the components, enhancing the efficiency of the reaction.
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The ability of reverse transcription to proceed in assembled capsids is also supported
by a study on the role of the kinesin 1 heavy chain KIF5B protein in capsid transport
through the microtubule network. Microtubules enhance uncoating, and deletion of this
protein delays it, but without affecting synthesis of reverse transcription products, at least
at early time points after infection [212].

DNA click-labelling with EdU combined with immunofluorescence microscopy has
also detected the strong association of CA with newly synthesised reverse transcription
products, again supporting the ability of viral DNA to be synthesised in capsid or capsid-
like structures [121,122]. Another immunofluorescence study combined viral particle
tracking with fractionation of viral capsids based on their size (the fate of capsid assay)
and found that intact or nearly intact capsids support reverse transcription [107]. The
Pathak lab has developed a method to directly monitor viral uncoating by constructing
a GFP-CA chimeric protein that is incorporated into viral capsids in low quantities. This
allowed the researchers to detect assembled viral capsids where reverse transcription is
undergoing [103,104].

The reverse scenario, wherein reverse transcription is required for uncoating, has also
been examined. In recent years, mounting evidence has supported this notion [Figure 4]. An
early hint of this phenomenon came from a study combining the fate of capsid assay with
ERT reactions carried out during increased periods of time, showing that the synthesis of
the last proviral DNA fragment [the DNA flap] was necessary for uncoating [72]. Following
this study, immunofluorescence tracking of viral particles combined with time-of-escape
inhibition from TRIMCyp also led to the conclusion that reverse transcription contributes
to uncoating [73], a notion supported by further work from the same group, which even
established that the inhibition of first-strand transfer delays uncoating [93]. In addition,
the fate of capsids where reverse transcription is inhibited showed that these capsids were
more stable than those undergoing viral DNA synthesis [74].
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Figure 4. Effect of reverse transcription on capsid uncoating. An HIV-1 core containing the reverse
transcription complex is represented, with the RNA in red, the growing DNA in black, and the RT as
a grey oval. Different stages of reverse transcription are depicted, from initiation, where only a few
nucleotides have been incorporated into the DNA strand, to late stages, where the viral DNA has been
extended. According to most recent studies [197,205,213,214], progression of reverse transcription to
its late stages triggers the loss of capsid integrity, creating holes in the capsid lattice from where DNA
loops protrude, as depicted in the right-most figure.

The Rousso lab has studied the stability of isolated capsids undergoing reverse tran-
scription through atomic force microscopy (AFM). Initially, they found that an increase of
core stiffness occurs 7 h after the initiation of reverse transcription, followed by an abrupt
fall. Interestingly, they detected an opening at the narrow end of viral capsids 12–17 h into
reverse transcription, probably coinciding with the reaction end, and followed shortly after
by further CA loss [213]. The addition of the capsid-stabilizing molecule PF74 led to the
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earlier appearance of the stiffness peak and opening at the capsid’s narrow end, which was
not followed by further CA loss [214]. In ERT reactions carried out in the presence of IP6,
they detected stiffness spikes concomitantly with specific stages of reverse transcription,
followed by accelerated disassembly of capsids [205,207]. Specifically, reactions performed
by an RNase H mutant RT unable to extend the DNA after the formation of minus-strand
strong-stop showed only the first spike, while spikes were not recorded in reactions carried
out in the presence of RT inhibitor efavirenz, which is consistent with the inability of the
capsid to open in these conditions [205].

A study employing different CA mutants with increased or decreased stability, and an
array of biochemical and cellular methods to determine capsid integrity, identified that a
step after the first-strand transfer initiates capsid uncoating [215]. Analysis of the loss of
association between a tetrameric CypA-DsRed reporter and the viral core has been used as a
surrogate for capsid disassembly, and this reaction is accelerated by the initiation of reverse
transcription [216]. Recently, in experiments tracking dually labelled particles capable
of detecting the loss of capsid integrity by direct tagging of CA through amber codon
suppression, it was observed that the addition of the RT inhibitor nevirapine produced a
delay in uncoating [109].

Christense et al. employed transmission electron microscopy (TEM) to visualize the
assembly state of capsids undergoing ERT for extended periods of time (up to completion of
reverse transcription) and identified many capsids that had lost local patches of CA instead
of suffering a complete disassembly of the lattice [Figure 4]. Interestingly, they observed
loops of DNA protruding out of these capsid holes and proposed that the internal pressure
exerted by the growing DNA produces these cracks [197]. In a recent study, the Pathak
group, employing again their chimeric GFP-CA constructs, has observed that uncoating of
the viral capsid requires the synthesis of dsDNA of over 3.5 Kb, linking again the size of
the transcript with uncoating activity [198].

The concept that reverse transcription can proceed (and maybe finish) inside closed
cores, together with the possibility of intact or nearly intact capsids reaching the nucleus,
opened the possibility that reverse transcription could be completed in the cell nucleus. This
is in contrast to early reports detecting full-length viral DNA in the cytoplasm [72,217,218].
By expressing the nuclear pore channel protein NUP62 fused to a drug-inducible dimeriza-
tion domain, Dharan and co-workers were able to block nuclear pores and therefore the
import of viral replication complexes. By adding RT inhibitors, the authors were able to
show that the virus remains sensitive to them hours after becoming insensitive to nuclear
pore blockade, indicating that reverse transcription continues after nuclear entry [102].

In addition, a large number of microscopy-based studies using different combinations
of viral particle tagging, DNA labelling, and biochemical approaches have concluded that
the synthesis of viral DNA finalizes inside the nuclear compartment. Therefore, by combin-
ing immunofluorescence microscopy and DNA click-labelling, a study found viral RNA in
the nucleus of infected cells capable of serving as a template for reverse transcription [219].
Employing their CypA-DsRed system, and the time-of-escape from RT inhibitors, the
Melikyan lab has detected ongoing reverse transcription in the nucleus [101]. Recently, the
same lab used viral particles containing CA subunits labelled by amber codon suppression,
and bearing a fluid marker (YFP-IN), to show that reverse transcription precedes uncoating
and that both processes are completed inside the nucleus [109]. Similarly, other studies
tracking cores labelled by incorporated GFP-CA subunits coupled with analysis of time-
of-escape from nevirapine have concluded that reverse transcription is completed in the
nucleus [103,104].

The ANCHOR system, enabling the direct labelling of viral DNA products, combined
with fluorescence microscopy has also been employed for the detection of active reverse
transcription complexes in the nucleus [105,115]. By identifying CA in nuclear fractions
of infected cells earlier than the peak of reverse transcription, Guedán and co-workers
determined that reverse transcription is completed in the nucleus [117]. In a similar
approach, the fate of the capsid assay was used to detect high-order CA assemblies from
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nuclear fractions of infected cells, together with most reverse transcription intermediates,
which the authors interpreted as an indication of nuclear reverse transcription [107].

Finally, some studies have established a connection between reverse transcription and
the nuclear import of viral capsids. Early works found that reverse transcription was neces-
sary for the nuclear import of viral replication complexes, based on the required presence of
the DNA flap [72,88,218]. More recently, Dharan et al. observed that nevirapine treatment
delayed the accumulation of CA in the nucleus and proposed that reverse transcription pro-
motes nuclear import [102]. On the contrary, most recent studies could not detect changes
in the efficiency or kinetics in the nuclear import of replication complexes, and therefore de-
termined these two processes are independently regulated [96,98,99,101,119,120,123,220].

7. Conclusions

Reverse transcription and capsid uncoating are two intricate processes. Technical
limitations on their study in living cells have hindered our understanding and led to
erroneous conclusions over the years. The advent of more sensitive techniques, together
with the ability to single out infecting viral particles, and key discoveries such as the role of
IP6 or the ability of nuclear pores to dilate, has greatly propelled the development of the
field. In addition, it has prompted authors to revisit old ideas, which more frequently than
not has resulted in a deep modification of existing models.

Nevertheless, there are many questions that remain to be answered. Some of them
are (i) where does capsid uncoating start? (ii) where does it finish? (iii) how is the capsid
shed during uncoating? (iv) what state of reverse transcription is required, if any, to
trigger uncoating? (v) is capsid opening, even if partially, needed for completion of
reverse transcription? (vi) where is reverse transcription completed? (vii) is there a single
mechanism for capsid uncoating, or are alternative routes possible (as it seems to occur
with N74D or P90A CA mutant viruses [102])?

Only by deeply understanding the viral and cellular processes underpinning HIV-1
replication can new therapeutic avenues be discovered, as is exemplified by the recent FDA
approval of the capsid inhibitor lenacapavir.
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