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Abstract 

Hyperspectral imaging is an emerging imaging modality originated in the remote 

sensing field that has expanded its application to other research and industrial areas in 

the past years. Hyperspectral images are composed by spatial and spectral information, 

conforming a three-dimensional matrix, where each spatial pixel is related to a vector 

of intensity light values that spans hundreds of different spectral wavelengths, 

conforming an almost continuous spectrum. In medical applications, hyperspectral 

imaging technology has been widely investigated to measure different tissue properties 

such as oxygen saturation, perfusion, water, melanin, etc. It has also used to 

discriminate between tumor and normal tissue in different organs, or for early disease 

detection. One major benefit of this technology is its potential use as a diagnostic and 

guidance tool in various medical applications, being a non-contact, non-ionizing and 

label-free imaging technique. This PhD dissertation explores the use of hyperspectral 

imaging to advance beyond the current state-of-the-art and demonstrates its feasibility 

in three different medical applications.  

First, an intraoperative hyperspectral acquisition system for brain surgical 

diagnostics and guidance was optimized to extend its capabilities and study the use of a 

wider spectral range to discriminate between tumor and normal brain tissue. Using this 

system, an in-vivo hyperspectral human brain image database was generated, and a 

new approach was proposed to perform spectral fusion of data obtained from two 

different hyperspectral cameras, covering the spectral range between 400 and 1,700 

nm. Furthermore, using this database and the one acquired before the optimization in a 

previous research project, vascular enhanced maps were generated, and different 

analyses using spectral and spatial information were performed to detect and delineate 

brain tumors with a robust validation methodology using machine learning algorithms. 

The intraoperative system was validated using 61 hyperspectral images. Additionally, 

the identification of the blood vessels could help to reduce the number of classes to be 

differentiated by a classifier. The fusion approach led to classification maps that were 

more detailed and had fewer false positives than the maps prior to the fusion. 

Second, a customized dermatoscopic hyperspectral imaging prototype was 

developed to capture real-time data of in-vivo pigmented skin lesions, with the main 

goal of proposing a novel classification framework based on hyperspectral image 

segmentation and supervised classification. This study aimed to demonstrate, as a 

proof-of-concept, the potential use of hyperspectral imaging technology to assist 

dermatologists in the discrimination of benign and malignant pigmented skin lesions 

(including both melanoma and non-melanoma lesions) in routine clinical practice. The 

dermatoscopic prototype was validated on 76 hyperspectral images and it was able to 

segment the pigmented lesion, extract and classify the associated pixels to reduce the 

computational cost. In addition, a risk threshold was applied to discriminate malignant 

lesions. 

Finally, the third application involved the use of a hyperspectral acquisition system 

capable of capturing spectral information from 900 to 1700 nm, targeting the analysis 

of blood plasma using pixel-wise supervised classifiers to discriminate between subjects 
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affected by major neurocognitive disorder and healthy controls. The methodology 

included subject selection, blood plasma samples preparation, and their subsequent 

capture and analysis through machine learning methods. The study was conducted 

using 83 hyperspectral images and showed promising results for the potential 

identification of spectral biomarkers in blood plasma samples. 

These studies showed that combining hyperspectral imaging with machine learning 

algorithms can provide promising results in the identification and discrimination of 

diseases in the three medical applications proposed.  
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Resumen 

Las imágenes hiperespectrales son una modalidad de imagen emergente originada 

en el campo de la teledetección que ha ampliado su aplicación a otras áreas de la 

investigación y la industria en los últimos años. Las imágenes hiperespectrales están 

compuestas por información espacial y espectral, conformando una matriz 

tridimensional, donde cada píxel espacial está relacionado con un vector de valores de 

intensidad en el rango de cientos de longitudes de onda espectrales diferentes, 

formando un espectro casi continuo. En aplicaciones médicas, la tecnología de 

imágenes hiperespectrales se ha investigado ampliamente para medir distintas 

propiedades de los tejidos, como por ejemplo, la saturación de oxígeno, la perfusión, el 

agua, la melanina, etc. También se ha utilizado para discriminar entre tejido tumoral y 

normal en distintos órganos, o para la detección precoz de ciertas enfermedades. Una 

de las principales ventajas de esta tecnología es que puede utilizarse como herramienta 

de ayuda al diagnóstico en distintas aplicaciones médicas. En esta Tesis doctoral, el uso 

de las imágenes hiperespectrales se empleó en tres aplicaciones médicas diferentes.  

En primer lugar, se optimizó un sistema de adquisición hiperespectral 

intraoperatorio para el diagnóstico durante operaciones de neurocirugía, con el fin de 

ampliar las capacidades del sistema y estudiar el uso de un rango espectral más amplio 

para discriminar entre tejido cerebral tumoral y normal. Utilizando este sistema, se 

generó una base de datos de imágenes hiperespectrales in vivo de cerebro humano y se 

propuso un nuevo enfoque para realizar la fusión espectral de los datos obtenidos con 

dos cámaras hiperespectrales diferentes, cubriendo el rango espectral entre 400 y 1700 

nm. Además, utilizando esta base de datos y la adquirida en un proyecto de 

investigación anterior, se generaron mapas vasculares mejorados, y se realizaron 

diferentes análisis utilizando información espectral y espacial para detectar y delinear 

tumores cerebrales con una metodología de validación robusta utilizando algoritmos de 

aprendizaje automático. El sistema intraoperatorio se validó utilizando 61 imágenes 

hiperespectrales. Adicionalmente, la identificación de los vasos sanguíneos podría 

ayudar a reducir el número de clases a diferenciar por un clasificador. Los mapas de 

clasificación obtenidos utilizando el enfoque de fusión revelan que los mapas presentan 

más detalles, eliminando los falsos positivos que estaban presentes en los mapas antes 

de realizar la fusión. 

En segundo lugar, se desarrolló un prototipo de imagen hiperespectral 

dermatoscópica personalizado capaz de capturar datos en tiempo real de lesiones 

cutáneas pigmentadas in vivo con el objetivo principal de proponer un novedoso marco 

de clasificación basado en la segmentación de imágenes hiperespectrales y la 

clasificación supervisada. Este estudio pretendía demostrar, como prueba de concepto, 

el uso potencial de la tecnología de imágenes hiperespectrales en la práctica clínica 

habitual para ayudar a los dermatólogos en la discriminación de lesiones cutáneas 

pigmentadas benignas y malignas (incluyendo tanto las lesiones de melanomas como 

las de no-melanomas). El prototipo dermatoscópico se validó en 76 imágenes 

hiperespectrales y fue capaz de segmentar las lesiones pigmentadas, así como de 

extraer y clasificar los píxeles asociados para reducir de esta forma el coste 

computacional. Además, se aplicó un umbral de riesgo para discriminar las lesiones 

malignas. 

Finalmente, la tercera aplicación consistió en el uso de un sistema de adquisición 

hiperespectral capaz de capturar información espectral en el rango de 900 a 1700 nm, 
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dirigido al análisis de plasma sanguíneo mediante clasificadores supervisados por 

píxeles para discriminar entre sujetos afectados por trastorno neurocognitivo mayor y 

controles sanos. La metodología incluyó la selección de sujetos, la preparación de 

muestras de plasma sanguíneo y su posterior captura y análisis mediante métodos de 

aprendizaje automático. El estudio se realizó utilizando 83 imágenes hiperespectrales y 

mostró resultados prometedores para la identificación potencial de biomarcadores 

espectrales en muestras de plasma sanguíneo. 

Todos estos estudios han revelado que el uso de imágenes hiperespectrales 

combinadas con algoritmos de aprendizaje automático son capaces de proporcionar 

resultados prometedores en la identificación y discriminación de distintas 

enfermedades en las tres aplicaciones médicas propuestas. 
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Chapter 1: Introduction 

1.1 Motivations 

Hyperspectral (HS) Imaging (HSI) is an emerging technique capable of providing 

label-free, non-contact, near real-time, and minimally-invasive intraoperative guidance 

by using non-ionizing illumination and without employing any contrast agent [1], hence 

being totally harmless for the patient. HS images are formed by hundreds of narrow 

spectral channels within and beyond the visual spectral range. This technique provides, 

for each pixel, an almost continuous spectrum that allows the identification of the 

tissue, material or substance present in the captured scene based on its chemical 

composition [2]. 

In recent years, medical HSI has started to achieve promising results in many 

different specialties (e.g., oncology [3], [4], digital and computational pathology [5], 

ophthalmology [6], dermatology [7], [8] or gastroenterology [9], [10]) through the 

utilization of cutting-edge Artificial Intelligence (AI) algorithms and thanks to the 

increased modern computational power [11], [12]. Promising results are being achieved 

in the automatic identification of different types of cancer using HSI [3]. Particularly, 

HSI has been widely studied in the literature for gastrointestinal cancer in both in-vivo 

and ex-vivo tissue samples, including stomach, liver, esophagus, pancreas, and 

colorectal cancer [10]. Additionally, HSI is becoming a tool not only for cancer 

detection, but also for the diagnosis of other diseases, such as biomarker discoveries 

and validation [13] or tissue perfusion measurements [14]. 

The research group where this PhD Thesis has been carried out has previously 

utilized HSI technology in neurosurgery, as a proof-of-concept, to distinguish between 

brain tumors and healthy tissue during surgical procedures. However, the potential of 

HSI extends beyond neurosurgery applications. In this sense, this PhD Thesis evaluate 

the potential of HSI as a diagnostic tool for three different medical applications:  

1) Neurosurgery: by optimizing the acquisition system, increasing the in-vivo 

HS brain database and evaluating a wider spectral range for intraoperative 

brain tumor diagnostics and enhanced vascularization. 

2) Dermatology: by developing a proof-of-concept system for the acquisition 

and processing of dermatological HS data for in-situ diagnosis of skin cancer. 
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3) Neurogeriatrics: by evaluating the spectral properties of blood plasma 

samples using near-infrared information targeting the identification of 

neurocognitive disorders (NCDs).  

1.1.1 Neurosurgery 

Surgical resection is the most common treatment for primary brain tumors, 

especially for diffuse gliomas, since the early and total resection of the tumor increase 

the overall survival rate (e.g., 5-year survival rate of 50% for diffuse astrocytoma and 

81% for oligodendroglioma [15]). In this sense, the extent of resection increases the 

survival rates of patients with all types of gliomas. However, to achieve maximal 

resection, neurosurgeons need to determine the precise limits of the tumor during 

surgery using imaging-guiding techniques [16]. Additionally, neurosurgeons must 

avoid damaging normal tissue, which can lead to neurological deficits in patients and 

thus affect their quality of life (QoL) [17]. Current intraoperative imaging guidance 

techniques have several limitations [16], being necessary to develop new image 

acquisition and visualization systems to provide quick, detailed, accurate and highly 

personalized diagnostics for optimal decision-making during neurosurgical procedures, 

improving the outcomes in the QoL of the patient and reducing the errors, surgical 

times, and costs.  

1.1.2 Dermatology 

The process of diagnosing skin cancer is accomplished by a dermatologist who 

performs a preliminary diagnosis by visually examining the Pigmented Skin Lesion 

(PSL) normally following the ABCDE (Asymmetry of the mole, Border irregularity, 

Color uniformity, Diameter and Evolving size, shape or color) rule [18]. After this 

examination, a biopsy is performed if the dermatologist suspects that the lesion is 

malignant. Then, a pathological analysis of the sample is carried out to assess the 

definitive diagnosis. There are several tools based on dermoscopic images and 

algorithms that implement the ABCD rule (without taking into account the evolving 

characteristic, which would imply a monitoring over time of the PSL) to assist 

dermatologist in their clinical routine practice for PSL evaluation and classification 

[19], [20]. Nevertheless, the current methodologies are not accurate enough, giving as a 

result high false positive and negative rates. To avoid unnecessary biopsies and surgical 

procedures, because of the uncertainty in the current diagnoses, and to achieve cost-

effective early diagnosis, new methods to improve skin cancer diagnosis should be 

investigated. 

1.1.3 Neurogeriatrics 

The diagnosis of NCD establishes, as a main goal, identifying cognitive impairment 

and NCD from secondary etiology, therefore, potentially treatable patients [21]. Current 

diagnostic criteria to determine the degree of functional impairment is based on scales 

that evaluate the subject’s cognitive ability. The evolution of neurodegenerative 

diseases, especially Alzheimer’s disease, is slow and both cognitive and behavioral 

symptoms appear simultaneously. The disease presents and progresses differently in 

each subject, which may mislead the diagnosis of another disease. For this reason, it is 

necessary to find effective diagnostic techniques that could help in the early detection 

of this disease. Biomarkers allow an early biological diagnosis (preclinical phase) and 
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improve the etiological study of NCDs. The common clinical tests to diagnose a possible 

Alzheimer’s disease are based on in-vivo neuroimaging biomarkers and body fluid 

biomarkers [22], [23]. However, the use of these procedures is expensive, highly 

invasive, and has a restricted availability for verifying the diagnosis [24]. For this 

reason, other biomarkers related to blood samples are being investigated. This 

alternative is less invasive and cost-effective for early detection, especially in the 

identification of patients both in the clinical and preclinical phases of Alzheimer’s 

disease. 

1.1.4 Research Hypotheses 

The research carried out in this PhD Thesis is based on two main hypotheses:  

1) HS instrumentation can detect subtle spectral variations in biological samples 

and can be adapted to different medical applications.  

2) A methodology based on supervised and unsupervised Machine Learning (ML) 

algorithms can be employed for processing spectral information, performing 

disease diagnosis regardless of the type or origin of the disease. 

In summary, this dissertation aims to explore the potential of HSI technology as a 

diagnostic tool in different medical applications. The hypotheses are examined and 

validated to advance our understanding of the role of HSI in modern medical diagnosis 

and to facilitate its integration into clinical practice on a larger scale.  

1.2 Objectives 

The main objective of this PhD Thesis is to demonstrate the capabilities of HSI in 

the medical field by analyzing its use in different medical applications, such as 

neurosurgery (intraoperative brain cancer diagnostics and delineation), dermatology 

(in-situ diagnostics of skin cancer), and neurogeriatrics (early diagnosis of major NCDs 

(MNCDs) through blood plasma samples). In order to achieve this main goal, several 

specific objectives have been raised at the beginning of this dissertation. These specific 

objectives have been subdivided by primary and secondary specific objectives: 

1) To acquire the necessary knowledge about the different HS 

instrumentation for medical applications currently employed in the state-of-the-

art: 

a) Medical HS instrumentation for intraoperative environments 

and surgical guidance and diagnostics, especially for neurosurgery.  

b) Medical HS instrumentation for in-situ diagnostics using 

portable devices, especially for dermatology. 

c) Laboratory HS instrumentation for data acquisition of liquid 

biological samples. 

2) To obtain the necessary knowledge about the different algorithms based on 

ML and Deep Learning (DL) commonly used in the literature for pre and post-

processing HS images. 
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3) To design and develop HS acquisition systems for different medical 

applications that will allow the generation of HS databases, which will be used 

for the development of algorithms based on ML/DL for disease identification 

and diagnosis:  

a) To optimize an intraoperative HS-based acquisition system 

developed in a previous project, enhancing its capabilities for capturing 

data in a wide spectral range for the use case of neurosurgery.  

b) To develop a dermatologic HS-based acquisition system for 

capturing in-situ pigmented skin cancer lesions during clinical routine 

practice. 

c) To prepare an HS-based acquisition framework for capturing 

blood plasma samples in a laboratory environment. 

4) To design and develop HS classification frameworks capable of 

identifying different diseases depending on the clinical application:  

a) To generate a methodology to provide vascular enhanced maps 

of in-vivo brain during neurosurgical operations. 

b) To create a benchmark for intraoperative brain tumor 

detection and delineation using an enhanced in-vivo human HS 

database. 

c) To propose a processing framework to fuse data from two 

different HS cameras and evaluate its performance in the use case of 

neurosurgery.  

d) To design and evaluate a classification framework to 

discriminate between benign, malignant, and atypical PSLs, 

targeting a hand-held clinical device for dermatology. 

e) To design and evaluate a classification framework for MNCD 

detection through processing blood plasma samples. 

1.3 Collaborations and acknowledgments 

This PhD Thesis presents the outcomes achieved during the close collaboration 

between the Institute for Applied Microelectronics (IUMA) of the University of Las 

Palmas de Gran Canaria (ULPGC) and several research institutions: 

• University of Pavia (Italy). 

• Autonomous University of San Luis Potosí (Mexico). 

• Department of Neurosurgery of the University Hospital of Gran Canaria Doctor 

Negrin of Las Palmas de Gran Canaria (Spain). 

• Department of Dermatology of the University Hospital of Gran Canaria Doctor 

Negrin of Las Palmas de Gran Canaria (Spain). 
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• Department of Dermatology of the Complejo Hospitalario Universitario Insular-

Materno Infantil of Las Palmas de Gran Canaria (Spain) 

• Research Unit of the University Hospital of Gran Canaria Doctor Negrín (Spain).  

In addition, this research was conducted as part of the ITHaCA (Hyperspectral 

Identification of Brain Tumors) project, funded by the Canary Islands Government 

under Grant Agreement ProID2017010164.  

Finally, this PhD Thesis was developed while the candidate was beneficiary of a 

predoctoral grant given by the “Agencia Canaria de Investigacion, Innovacion y 

Sociedad de la Información (ACIISI)” of the “Consejería de Economía, Conocimiento y 

Empleo” of the “Gobierno de Canarias”, which is part-financed by the European Social 

Fund (FSE) (POC 2014-2020, Eje 3 Tema Prioritario 74 (85%)). 

1.4 Document organization 

This document has been structured in 6 chapters. A brief explanation of each 

chapter is presented next. 

Chapter 1: Introduction. In the present chapter, the main motivations and 

objectives that have led to the development of this dissertation are described. In 

addition, the structure of the document is presented. 

Chapter 2: Background on hyperspectral imaging instrumentation, 

algorithms, and applications. In this chapter, the concept of the HSI and the 

description of the main algorithms employed are presented. In addition, the 

current state-of-the-art in different medical applications using HSI is detailed. 

Chapter 3: Intraoperative HS acquisition system for brain surgical 

diagnostics and guidance. This chapter presents an overview of the HS system 

developed and the modifications applied to the previous intraoperative 

demonstrator for brain cancer detection. In addition, brain cancer detection 

algorithms are evaluated using an extensive HS database. Finally, VNIR-NIR 

fusion algorithm are evaluated using the reference database and the in-vivo HS 

human brain database.  

Chapter 4: Dermatoscopic HS system for skin cancer detection. The 

feasibility of the developed system for brain cancer detection was the basis for the 

exploration of its application in other medical contexts, such as the specific case of 

skin cancer detection using a similar approach. In this chapter, the HS system 

employed for skin cancer detection and the HS database are presented. A 

dermatologic framework based on automatic segmentation and classification is 

explained. Finally, the framework is evaluated using a three-way partition.  

Chapter 5: SWIR-based acquisition system targeting early detection of 

major neurocognitive disorders. Previous applications evaluated the VNIR 

and NIR spectral ranges for its application in different medical applications. This 

chapter evaluates a different spectral range in a different application context but 

using the same methodology for processing the spectral data. A SWIR-based 

system was developed to generate a HS plasma database. A framework based on 
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supervised classification using ML and DL approaches was used to detect major 

neurocognitive disorders.  

Chapter 6: Conclusions & future lines. This chapter concludes the work 

presented in this dissertation by summarizing the advantages, disadvantages and 

main contributions of the methods developed as well as presenting future research 

lines of this dissertation. Finally, the academic production developed in the context 

of this PhD Thesis is presented. 

Annex A:  Sinopsis en español. In this annex, a brief summary of the 

dissertation is presented in Spanish.   

Bibliography: This PhD Thesis manuscript concludes with the list of references 

employed during the elaboration of this document.  
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Chapter 2: Background on 

Hyperspectral Imaging 

Instrumentation, Algorithms, and 

Applications 

2.1 Introduction 

This chapter presents a comprehensive review of the current research in the 

different medical fields relevant to the development of this PhD Thesis. First, the basic 

concepts of HSI and the common HSI instrumentation are introduced. Second, a brief 

description of the basic pre-processing techniques used to analyze HS images and the 

different algorithms commonly used are described, as well as the performance metrics 

for their evaluation. Finally, a brief state-of-the-art related to the use of HSI in the 

medical field is presented, with special emphasis on brain cancer, skin cancer and 

MNCD diseases, which are the areas studied in this dissertation.  

2.2 Basic Concepts of HSI 

HSI is an emerging imaging modality originated in the remote sensing field [25] that 

has expanded its application to other research and industrial areas in the past years 

[26], such as food quality inspection [27], quality control of pharmaceutical products 

[28], marine ecosystems monitoring [29], soil pollution monitoring [30], petrochemical 

industry [31] or defense and security [32]. HS images are composed by spatial and 

spectral information, conforming a three-dimensional matrix, also called HS cube 

(Figure 2-1.a), where each spatial pixel is related to a vector of intensity light values 

that belong to hundreds of different spectral wavelengths, also called channels or 

bands. This vector conforms a continuous spectrum that is commonly named spectral 

signature. On the contrary, Multispectral (MS) sensors have lower spectral resolution 

than HS sensors, where a spectral band can integrate between tens to hundreds of 

nanometers. This MS sensors usually include spectral bands related to blue, green, red, 

red edge, and near infrared, while maintaining gaps among different bands [33] (Figure 

2-1.a). Unlike standard digital color cameras, that captures RGB (red, green and blue) 

images, using only three wavelengths (Figure 2-1.a), MS and HS cameras are able to 
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cover broadband spectral ranges (Figure 2-1.b), such as Visible (VIS), between 400 and 

700 nm, Visual and Near Infrared (VNIR) between 400 and 1000 nm, Near Infrared 

(NIR) from 900 to 1700 nm or near Short-Wave Infrared (SWIR) from 900 to 2500 nm 

[34]. RGB images can be seen as a specific and very reduced case of MS Imaging. The 

spectral signature allows the differentiation, at pixel level, of the materials presented in 

the captured scene based on their chemical composition [35].  

 

Figure 2-1: Principles of hyperspectral imaging technology. a) Comparison of the different image 
modalities. b) Electromagnetic spectrum. 

Many studies in the literature have demonstrated the high potential of HSI for 

improving remote and non-destructive detection of chemical compositions in different 

applications, obtaining promising results. In remote sensing, vegetation indices are 

commonly used to enhance vegetation information and suppress background 

information [36]. These indices are based on RGB color and new indices have emerged 

employing several spectral bands. HSI can be useful for differentiating plants 

depending on the pigments or distinguishing crop types, analyzing their quality by 

using the water absorption peak present in the plant leaf within the NIR range at 1400 

and 1900 nm [37]. Chlorophyll is the primary photosynthetic pigment in green 

vegetation and can be identify using the chlorophyll absorption peaks at 450 nm and 

680 nm, related with the blue and red regions, respectively. Plant stress can be detected 

by reducing the growth of chlorophyll [38]. Marine ecosystem has been study using 

underwater HSI system showing its potential to monitor pigmentation in benthic and 

sympagic phototrophic organisms at small spatial scales [29]. For example, in-vivo 

chlorophyll pigments of warm-water corals achieve a maximum absorption at 670 nm 

applying the second derivative. Chlorophyll absorption at 700 nm is employed to 

discriminate coral from sand and algae [29]. 

The food industry employs visual inspection, microscopy, polymerase chain 

reaction, fluorescence, etc. for detecting the presence of contaminants in monitoring 

process [27]. HSI technology has been tested as non-invasive monitoring of food 

quality, achieving to detect parasites at a depth of 8 mm using wavelengths between 

350 and 950 nm [39]. Apart of contaminants, visual features have also been analyzed, 
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such as color, to determinate the physical, chemical, or microbiological quality of food 

products. Another examples of the use of HSI in this field are the detection of chilling 

injuries produced by low-temperature storage or bruises in fruits and vegetables during 

packing and transporting [40]. Fraud detection in meat is another application which 

employ HSI technology to discriminate pure and mixed meat in minced meat. Six 

wavelengths (957, 1071, 1121, 1144, 1368, and 1394 nm) were employed to identify 

minced beef adulterated with horse, pork, or chicken [41]. In addition, detection of 

adulterated chocolate powder with peanut flour was achieving using NIR HSI by 

Laborde et al. [42]. The main ingredients of chocolate powder, sucrose and cocoa, and 

the peanut flour were analyzed. The study found that cocoa has peak absorption at 

1208, 1491, and 1935 nm, related with cocoa proteins. Sucrose has absorption peaks at 

1435 and 2072 nm associated with the carbon-hydrogen and oxygen-hydrogen 

stretching. Peanut flour has two main absorption peaks at 1200 and 1942 nm, 

representative of the water absorption, and two peaks at 1474 and 1735 nm related with 

proteins.  

HSI technology has been also employed during quality control of pharmaceutical 

products [28]. Al Ktash et al. [43] analyzed the active pharmaceutical ingredients in 

tablets, as ibuprofen, acetylsalicylic acid, and paracetamol employing Ultra-Violet (UV) 

region from 225 to 400 nm. Ibuprofen present an absorbance peak at 223 nm, while 

acetylsalicylic acid achieves a maximum peak at 228 nm. Finally, paracetamol present a 

distinct band at 244 nm.  

In medical applications, HSI technology has been widely researched to measure 

deoxyhemoglobin and oxyhemoglobin, employing isosbestic points of the hemoglobin 

absorption spectra in the spectral region 510-590 nm or absorbance at the oxygen-

sensitive wavelength at 600 nm [44]. These points have been employed to visualize and 

highlight the arteries and veins in forearm to assist in phlebotomy [45]. In addition, 

skin lesions can be identified using the HSI systems, analyzing the spectral properties 

of the skin, which are caused by groups of chromophores, such as melanin, 

hemoglobin, water, beta-carotene, collagen, and bilirubin. These chromophores 

concentrations have been analyzed in the epidermis and dermis in the spectral range 

from 500 to 1000 nm [46]. The reflected light provides information of these 

chromophores [47]. Kubelka-Munk is a theorical model employed to create skin models 

using two layers (epidermis and dermis) and two chromophores (melanin and 

hemoglobin) [48]. Another emerging application is organ quality assessment during 

perfusion. HSI was evaluated to predict tissue water index in kidneys, allowing to 

analyze tissue-related damage during ex vivo preservation. This index was computed 

analyzing two water absorption peaks 760 and 970 nm [49]. Alzheimer’s disease has 

been investigated by amyloid-beta protein analysis in the retina and the combination of 

HSI system due to does not require the use of contrast agents. The presence of amyloid-

beta protein can increase the reflectance at 550 nm [50].  

2.3 HSI Instrumentation 

In HSI, the instrumentation is a crucial element to have a reliable, efficient, and 

high-quality spectral data acquisition. Usually, an HSI platform consists of a HS 

camera, a light source, a computer with the acquisition software, and, in some 

instances, a motorized mobile station, which depends on the scanning mode employed 
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by the HS camera [51]. HSI systems can be classified based on the measurement mode 

(reflectance, transmittance, or interactance), the image acquisition mode (point, line, 

or area scanning), or the spectral ranges that can be captured (VIS, VNIR, NIR, or 

SWIR).  

The three most commonly used measurement modes depend on the lighting 

configuration [2]. In reflectance mode, the light source and the HS camera are on the 

same side regarding the sample and the light reflected from the sample is captured. 

(Figure 2-3.b). In the transmittance mode, the HS camera is located on the opposite 

side of the light source, capturing the transmitted light that penetrates through the 

sample (Figure 2-3.b). The interactance mode combines the reflectance and 

transmittance modes. In this case, the light source and the HS camera are on the same 

side, parallel to each other and separated by a light barrier. The light barrier ensures 

that the light received by the HS camera is transmitted through the sample with a 

minimal penetration depth, depending on the system employed. This is achieved by 

sealing the light from the environment to prevent any interference (Figure 2-3.c). 

Reflectance mode may not be as effective for detecting internal quality because of 

limited light penetration but provides rich amount of information of regarding the 

surface of the sample. Transmittance mode provides valuable information from inside 

the sample but requires a high-intensity light source or the sample to be thin enough to 

allow light transmission. Interactance mode is useful for evaluating the properties of 

sublayer tissues. It works by transmitting light into the sample and then measuring the 

amount of light that is backscattered to the surface [2]. A similar strategy to 

interactance is light scattering, which quantifies the optical scattering coefficients of the 

sample using a light source that can be a continuous wave, temporally modulated or 

pulsed, or spatially modulated [52]. 

 

Figure 2-2: Hyperspectral imaging measurement modes. a) Reflectance mode. b) Transmittance 
mode. c) Interactance mode. 

The HS camera is the main component of the acquisition system, which consists of 

two main structures: spectrographs or spectrometers and a detector or array of photo-

sensitive detectors [53]. Spectrographs allow dispersing of polychromatic incident light 

into light beams with specific wavelengths, there being three types of devices [54]: 

monochromator, optical bandpass filter, and single-shot imager. The scattering devices 

focus the narrow wavelength light toward each of the detectors. In this sense, the 

photosensors most used in HSI are Charge-Coupled Devices (CCDs) and 

Complementary Metal-Oxide Semiconductors (CMOS) [55]. The principal difference 

between these two sensors lies in the transmission scheme of the incoming signals. On 

the one hand, CCD sensors focus on measuring the luminous intensity, transferring the 
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resulting multi-sensor signal to a digital/analog converter. On the other hand, CMOS 

sensors incorporate the photodetector and the digital/analog converter together, thus 

the information from each sensor is independent of the rest. Because of this difference, 

CMOS sensors are faster in measuring and capturing photons, but these sensors are 

susceptible to the presence of non-linear noise and are mostly affected by dark currents 

[55]. This situation is compensated by CCD sensors, since by digitizing the signals 

outside the photodiode allows the inclusion of components with different 

characteristics that mitigate noise, and dark current, but at the cost of a reduced 

acquisition speed. In addition, CCDs and CMOS have better sensitivity for the spectral 

range between 400 and 1000 nm (VNIR), while indium gallium arsenide (InGaAs) and 

mercury cadmium telluride (MCT) sensors are used to cover the NIR range from 900 to 

1700 nm and SWIR range, from 900 to 2500 nm (Figure 2-6) [2]. 

 

Figure 2-3: Quantum efficiency of CCD and InGaAs sensors [56]. 

In general, HSI cameras are classified depending on the scanning method used to 

generate the HS cubes, with four main types of scanning: whiskbroom, pushbroom, 

focal plane, and snapshot [55], as indicated in Figure 2-4.  

Whiskbroom or point-scanning cameras are characterized by capturing the spectral 

information of one pixel per time (Figure 2-4.a); this means that to scan a particular 

region, it is necessary to have a scanning platform that is moved through the scanning 

area of the camera at each location in the 𝑋 and 𝑌 spatial dimensions. Because of this, 

whiskbroom cameras require considerable time to acquire an image, so spatial 

resolution is often limited. Nevertheless, the main strength of these cameras is their 

high spectral resolution which permits to capture a large amount of spectral 

information.  

Pushbroom or line-scanning cameras (Figure 2-4.b) acquire the complete spectra of 

several pixels of one spatial dimension in one shot, hence, the area of interest is 

scanned line by line until the entire HS image is composed. This scanning mode 

requires also a scanning platform to cover the second spatial dimension, and for that 

reason motion artifacts may occur. Pushbroom cameras provide relatively high spatial 

and spectral resolution and for this reason it is the most used technique in several 

applications.  

Focal plane cameras (also known as spectral or area scanning) (Figure 2-4.c) 

acquire a 2D monochromatic image at a given wavelength, i.e., each wavelength is 

captured independently until completing the HS cube. Usually, this acquisition mode 
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allows to capture different wavelengths using adjustable filters such as Liquid Crystal 

Tunable Filter (LCTF) or Acousto-Optic Tunable Filter (AOTF). The main advantage of 

these cameras is that they can capture a single wavelength or several wavelengths, 

making them highly configurable, but they are susceptible to the presence of motion 

artifacts. In addition, they are notable for their capacity to acquire detailed spatial 

information in a relatively reduced amount of time.   

Snapshot cameras (Figure 2-4.d) acquire spatial and spectral information 

simultaneously, but unlike focal plane cameras, this type of cameras produces the HS 

cube in a single shot, which results in a significative reduction of the acquisition time. 

However, currently snapshot cameras can capture only a limited number of spectral 

bands, so the spectral resolution is lower than with other camera types. The same 

applies to the spatial resolution: to fit pixels in the sensor at different wavelengths the 

spatial resolution is usually reduced.  

 

Figure 2-4: Hyperspectral imaging acquisition methods. a) Whishbroom. b) Pushbroom. c) Focal 
Plane. d) Snapshot.  

After acquisition, the HS images must be stored in a logically organized file to allow 

reconstruction of the HS cubes in any software. The most common formats are the 

Band-Interleaved-by-Pixel (BIP), Band-Interleaved-by-Line (BIL), and Band 

Sequential (BSQ). In BSQ format (Figure 2-5.a), each line of data is immediately 

followed by the next line in the same spectral band. BIL format stores the first line of 

the first band followed by the first line of the second band, and so forth (Figure 2-5.b). 

In BIP format, the first pixel of all bands is placed in sequential order, followed by the 

second pixel of all bands, and so on (Figure 2-5.c). Whiskbroom sensors typically store 

HS images in BIP format, whereas pushbroom sensors use BIL format, and focal plane 

and snapshot sensors typically use BSQ for storage [57]. 

In this sense, the light source is another crucial component of the HSI acquisition 

system, since light is the medium that provides information about the objects under 

study. Currently, halogen lamps are the most widely used because of their broad-

spectrum, which is continuous, soft, and without sharp peaks [53]. However, this type 

of illumination has certain disadvantages, such as temperature rise in the sample, short 

lifetime of the bulb, and spectral peak change due to variations in temperature, voltage, 

and time of use. On the other hand, Light-Emitting Diodes (LEDs) have started to be 

used as light sources due to their long lifetime, fast response, compact size, low power 

consumption, and low heat generation [53]. LEDs can produce broad and short spectra 

in the ultraviolet, visible, and infrared regions. However, they are not very efficient in 

dissipating heat, which reduces their lifetime and affects their spectrum. Finally, lasers 

are light sources with a narrow bandwidth, linearly directed, and used mainly in 

fluorescence and photoluminescence applications. 

 

 

          

 

 

         

 

 

           

 

 

            



Chapter 2: Background on Hyperspectral Imaging Instrumentation, Algorithms, and Applications 

~ 13 ~ 

 

Figure 2-5: HS data storage structure types. a) Band Sequential (BSQ) format. b) Band-Interleaved-
by-Line (BIL) format. c) Band-Interleaved-by-Pixel (BIP) format. 

2.4 Processing Algorithms for HSI  

Many studies in the literature have demonstrated the high potential of HSI for 

remote, non-invasive and non-destructive detection of the tissue chemical composition 

in different applications, obtaining promising results [46]. However, a proper analysis 

of HS images is not an easy task, considering that the key idea relies on the analysis of 

spectral and spatial information presented in the HS image to identify the spectral 

signatures of the basic components [58]. To achieve this proper spectral analysis, pre-

processing techniques could be applied to reduce the effects of temperature and 

illumination changes and light source aging. After that, the HS images are processed 

following different approaches that could be grouped as Spectral Unmixing (SU) and 

ML, among the most relevant ones. The ML group can be subdivided into supervised, 

unsupervised, and semi-supervised methods according to the prior labeling 

information used for training. However, only supervised, and unsupervised methods 

were evaluated in this dissertation. Figure 2-6 represents the most common processing 

steps and algorithms that have been employed in the work presented in this 

dissertation and will be presented in the following sections.  

 
Figure 2-6: Summary of the pre-processing techniques and algorithms used in this 
dissertation. 
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2.4.1 Basic Pre-processing Techniques 

HS images are composed of a large number of pixels with a high correlation of 

information between the bands. The accuracy and reliability of the results obtained 

from these HS images may be compromised by the presence of erroneous data values 

or outliers [59]. The instrumentation employed in the HS cameras can affect the 

acquired data due to environmental factors. Temperature can cause fluctuations in the 

dark currents of the sensors, introducing spectral noise, especially in the extreme bands 

of the sensor. Additionally, the interaction of light with the object can generate artifacts 

that affect the overall quality of the HS image. For these reasons, it is necessary to apply 

various pre-processing techniques before analyzing HS images, such as, black-and-

white correction to reduce dark currents and the influence of illumination 

irregularities, denoising methods using filters to reduce spatial and spectral noise or 

even methods to reduce the redundant information [59], [60].  

In general, once a raw HS image (𝐼0) is acquired by the sensor, it is necessary to 

perform a first pre-processing to eliminate the effects of temperature and illumination 

changes and aging of the light source. This pre-processing is known as spectral 

calibration and is a widely used method for correcting dark current noise [61], [62]. The 

raw image is modified based on a dark (𝐷) and white (𝑊) reference images. Commonly, 

𝐷 is captured by closing the camera shutter, while 𝑊 is obtained from an image of a 

highly reflective and uniform white surface. These two reference images are used to 

calculate the HS corrected image (𝐼) by Eq. (1), which represents the relative reflectance 

of each pixel [63]. Figure 2-7 shows an example of how the spectral signatures of 

different pixels are calibrated. The spectral signatures of the dark and white references 

are shown in Figure 2-7.a, and two random pixels before (Figure 2-7.b), and after 

calibration (Figure 2-7.c). 

𝐼 =
𝐼0 −𝐷

𝑊 −𝐷
 (1) 

The HS corrected image 𝐼 can also be expressed in terms of absorbance (A) by 

evaluating Eq. (2) [63]. In addition, Figure 2-7.d shows the absorbance spectral 

signature after applying Eq. (2). 

𝐴 = −log10 (
𝐼0 − 𝐷

𝑊 −𝐷
) (2) 

In this PhD Thesis, all datasets employed were pre-processed applying spectral 

calibration. In addition, other methods have been used depending on the type of 

analysis to be performed. For example, to minimize the spectral noise caused by the low 

response of the HS sensor in the lower and higher spectral bands, some bands can be 

removed, and, hence, reducing the number of bands in the pre-processed HS cube. 

Moreover, the HS data can be filtered using a smooth filter for reducing the spectral 

noise in the remaining spectral bands. This filter can be based on several methods, but 

the one employed in this works is based on a moving average filter, being applied to 

each point of the spectral signature. The new smooth value (𝑦𝑘)𝑠 of a certain 

wavelength (𝑘) is computed using Eq. (3), where 2𝑛 + 1 is defined as span or window 

of the moving average filter, 𝑦𝑖  is the original value at the wavelength 𝑖, and 𝑛 is the 

number of neighboring data points on either side of 𝑦𝑖. 
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(𝑦𝑘)𝑠 =
1

2𝑛 + 1
∑ 𝑦𝑖

𝑘+𝑛

𝑖=𝑘−𝑛

 (3) 

 

Figure 2-7: Effect of calibration in the spectral signatures. a) White and dark reference spectral 
signatures. b) Two examples of uncalibrated spectral signatures. c) Two examples of calibrated spectral 
signatures. d) Calibrated spectral signatures converted to absorbance. 

Additionally, pushbroom HS sensors (as the one employed in some of our studies) 

typically have high spectral resolution, providing redundant information in consecutive 

bands. In some cases, in order to reduce this redundancy and to speed up the 

processing algorithms execution, different dimensional reduction algorithms or 

methods can be applied to reduce the number of bands. In this dissertation, we 

decimated the number of bands in some experiments and also employed PCA 

algorithms. PCA is a technique that performs a linear transformation of the HS image 

by using orthogonal projections to minimize the covariance matrix of the original HS 

image [64].  

Finally, normalization can be applied to each spectral signature to range the data 

between 0 and 1 with the goal of homogenizing its amplitude, thus avoiding the 

subsequent processing methods to be affected by the amplitude differences caused by 

non-uniform illumination conditions. In this sense, only the shape of the spectral 

signature will be considered. Eq. (4) shows the min-max normalization that was 

employed in this dissertation, where min(𝑧𝑘) and max(𝑧𝑘) are the minimum and 

maximum value, respectively, in a certain pixel (𝑧𝑘). 

(𝑧𝑘)𝑛 =
𝑧𝑘 −min(𝑧𝑘)

max(𝑧𝑘) − min(𝑧𝑘)
 (4) 
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In the following chapters, the different pre-processing methods applied to the 

database will be explained in detail, depending on the HS camera used in each targeted 

application. 

2.4.2 Algorithms based on Machine Learning 

The analysis of HSI by means of ML techniques allows the identification and 

classification of different spectral signatures, recognizing of features or patterns, 

mainly in a supervised or unsupervised manner. 

2.4.2.1 Supervised ML algorithms 

Supervised ML-based classifiers allow the automatic identification of substances or 

tissue types at pixel level in a HS image relying on prior labeled data to train the 

classification models. In this subsection, the supervised ML algorithms employed in 

this dissertation are presented.  

The Support Vector Machine (SVM) classifier finds out the best hyperplane to 

separate data from different classes with a maximum margin, being used for 

classification and regression purposes [65]. This classifier finds out the best hyperplane 

to separate data from different classes with a maximum margin. The boundary 

hyperplane is calculated using a training dataset. A linear hyperplane sometimes is not 

enough to separate data in some classification problems. For this reason, it is necessary 

to transform the dimensional space. This transformation is performed using different 

kernel functions. Linear, Gaussian Radial Basis Function (RBF), sigmoid, and 

polynomial kernel are the most used. Table 2-1 presents the mathematical expressions 

of each kernel and the hyperparameters, where 𝑥 and 𝑦 are observation vectors and the 

superscript T refers to transpose operation. The hyperparameter cost (𝐶) is common to 

all kernels and controls the trade-off between achieving a low training error and 

minimizing the complexity of the decision boundary. The hyperparameter gamma (𝛾) 

influences individual training samples at the decision boundary. The (𝑑) 

hyperparameter is the degree of the polynomial kernel function. The higher the 

hyperparameter value 𝑑, the more curved the resulting hyperplane line. 𝑐𝑓 is the 

intercept constant hyperparameter. These hyperparameters can be tuned to improve 

the outcomes of the classification. The LIBSVM library [66] was used in the different 

experiments performed in this dissertation.  

Table 2-1: Mathematical expressions of the Support Vector Machine (SVM) kernels and 
control hyperparameters. 

Kernel Formula Hyperparameters 

Linear 𝑘(𝑥, 𝑦) = 𝑥𝑇 ∙ 𝑦 𝐶 

RBF 𝑘(𝑥, 𝑦) = 𝑒𝑥𝑝(−𝛾 ∙ ‖𝑥 − 𝑦‖2) 𝐶, 𝛾 

Sigmoid 𝑘(𝑥, 𝑦) = 𝑡𝑎𝑛ℎ(𝛾 · 𝑥𝑇 · 𝑦 + 𝑐𝑓) 𝐶, 𝛾, 𝑐𝑓 

Polynomial 𝑘(𝑥, 𝑦) = (𝛾 · 𝑥𝑇 · 𝑦 + 𝑐𝑓)𝑑  𝐶, 𝛾, 𝑐𝑓, 𝑑 

K-Nearest Neighbor (KNN) is a pixel-wise classifier focused on finding and 

classifying data based on the majority class of the number of nearest neighbors (KNN) 

[67]. The neighborhood is formed by the training dataset, and each incoming sample is 

compared with all neighbors (using a distance metric) to find the KNN closest neighbors. 

Then, the label of the incoming sample is assigned to the majority class of the KNN 

nearest neighbors. Different distance metrics can be computed to find the nearest 
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neighbors, such as Euclidean, Chebyshev, Cosine, or Mahalanobis metrics. Table 2-2 

presents the mathematical expressions of each distance metric, where 𝑥 and 𝑦 are 

observation vectors to determine the distance, and 𝐶 is the covariance matrix. For the 

KNN classifier, the number of nearest neighbors is the hyperparameter to be optimized 

to obtain the best model. The MATLAB® Statistics and Machine Learning Toolbox was 

employed for the KNN implementation used in the different experiments performed in 

this dissertation.  

Table 2-2: Mathematical expressions of the K-Nearest Neighbors (KNN) distance. 

Distance Formula 

Euclidean 𝑑𝐸 = √(𝑥 − y)(𝑥 − y)
𝑇 

Chebychev 𝑑𝐶ℎ = 𝑚𝑎𝑥𝑗{|𝑥𝑗 − 𝑦𝑗|} 

Cosine 𝑑𝐶 = 1 −
𝑥𝑦𝑇

√(𝑥𝑥𝑇)(𝑦𝑦𝑇)
 

Mahalanobis 𝑑𝑀 = √(𝑥 − 𝑦)𝐶−1(𝑥 − 𝑦)𝑇  

Random Forest (RF) is a supervised learning method that can be applied to solve 

classification or regression problems [68]. It is composed by a combination of predictor 

trees where each tree depends on the values of a random vector. The RF algorithm 

identifies a new data class by obtaining a vote of the predictions of the new data from a 

multitude of decision trees. The training data are hierarchically partitioned into smaller 

homogeneous groups in each decision trees. Compared with other algorithms, RF offers 

a reduced training time [69]. The optimization of a RF model can be performed by 

establishing the most suitable number of trees (N) in the model. The MATLAB® 

Statistics and Machine Learning Toolbox was employed for the RF implementation 

used in the different experiments performed in this dissertation.  

Deep Neural Networks (DNN) architecture is a system of interconnected neurons 

composed of several layers, including input and output layers, and at least one hidden 

layer in between (Figure 2-8). In DL models, neurons represent a linear function 

followed by a nonlinear mapping function Φ. In this way, the optimal solution provided 

is a nonlinear solution spanned by the inputs. Let 𝑦 = 𝑓(𝑥) be a continuous function 

from ℝ𝐵 to ℝ𝑁𝐶, where B represents the spectral resolution and NC the number of 

classes. As a classification problem, the goal is to approximate 𝑦 by a function 𝑓(𝑥; 𝜃), 

where the training weights (𝜃) are the parameters of the DL model that minimize a loss 

function. In this dissertation, the Cross-Entropy Loss function was employed, where 

the function controls the value of the parameters θ: 

min
𝜃
  −∑𝑦𝑖 log[𝑓(𝑥; 𝜃)𝑖]

𝑁𝐶

𝑖

, (5) 

where the 𝑖 subscript enumerates the different classes. The MATLAB® Deep Learning 

Toolbox was used for the DNN implementation used in the different experiments 

performed in this dissertation. 
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Figure 2-8: DNN Architecture with expandable hidden layers. Each neuron is a circle. Input layer 
size is defined by dimension B, output size by number of classes NC. 

2.4.2.2 Unsupervised ML algorithms 

Unlike supervised ML algorithms, unsupervised algorithms do not have access to 

target labels, discovering patterns, structures, or relationships in unlabeled data. These 

algorithms are commonly used for tasks such as clustering, anomaly detection, 

dimensionality reduction, and data visualization. 

Clustering algorithms group similar data points in different groups or clusters. Data 

are grouped together on the basis of feature similarity. K-means and K-medoids are 

similar clustering algorithms widely used to segment HS images into 𝐾 different 

clusters [70]. K-medoids is robust to outliers and the centroid of each cluster is an 

actual spectrum found in the cluster set, while in the K-means algorithm, the cluster 

centroid is the average value of all spectra in the cluster set [71]. Hierarchical clustering 

organizes the data into a tree structure, being the number of trees defined by the 𝐾 

value. Hierarchical K-means (HKM) uses K-means to split the clusters [72].  

The optimal number of clusters (𝐾) can be determined employing clustering 

evaluation methods, such as Silhouette [73], Calinski Harabasz [74] and Davies Bouldin 

[75]. Silhouette value for the 𝑖th point is computed using Eq. (6), where 𝑎𝑖 is the 

average distance between each point within a cluster, and 𝑏𝑖 is the average distance 

between all clusters. Silhouette values range from -1 to 1, with high values indicating 

that the points match their clusters well. The Calinski Harabasz value is computed 

using Eq. (7), where 𝑆𝑆𝐵 is the inter-cluster variance, 𝑆𝑆𝑊 is the overall within-cluster 

variance, 𝐾 is the number of clusters, and 𝑁 is the number of observations. Davies 

Bouldin value is computed using Eq. (8), where �̅�𝑖 is the average distance between each 

point in the 𝑖𝑡ℎ cluster and the centroid of the 𝑖𝑡ℎ cluster, �̅�𝑗 is the average distance 

between each point in the 𝑗𝑡ℎ cluster and the centroid of the 𝑗𝑡ℎ cluster, and 𝑑𝑖,𝑗 is the 

Euclidean distance between the centroids of the 𝑖𝑡ℎ  and 𝑗𝑡ℎ clusters. The MATLAB® 

Statistics and Machine Learning Toolbox was employed for the K-means and K-

medoids implementations used in the different experiments performed in this 

dissertation. 

𝑆𝑖 =
𝑏𝑖 − 𝑎𝑖

max(𝑎𝑖, 𝑏𝑖)
 (6) 

𝐶𝐻𝑘 =
𝑆𝑆𝐵
𝑆𝑆𝑊

×
(𝑁 − 𝐾)

(𝐾 − 1)
 (7) 
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𝐷𝐵𝑘 =
1

𝐾
∑max

𝑖≠𝑗
{
�̅�𝑖 + �̅�𝑗

𝑑𝑖,𝑗
}

𝐾

𝑖=1

 (8) 

2.4.3 Algorithms based on Spectral Unmixing 

In the literature, several approaches have been proposed to identify and classify 

endmembers present in an HS image, but the main two strategies are based on Spectral 

Unmixing (SU) and ML [58], [76]. First, in SU, the physical relation between 

endmembers and their abundances is represented by a mathematical model, which 

describes the optical paths and interactions of the reflected light by the objects in the 

scene [77]. The simplest approach in SU assumes that photons interact with only one 

material before reaching the sensor, meaning that a linear mixing model might solve 

the problem; however, this approach is only suitable for simple and not realistic 

scenarios, because the light captured by the sensor may present scattering and 

nonuniform reflection patterns. Therefore, a nonlinear mixture model, that considers 

multiple reflections of photons, should be considered to pursue a SU for more realistic 

scenarios [77], [78]. 

Nonlinear mixture model can be divided in terms of the order of the model into two 

main categories: bilinear mixing models and high-order mixing models. On the one 

hand, the generalized bilinear model proposed by Fan et al., and the linear quadratic 

mixing model are one of the most representative approaches of the first category. On 

the other hand, the p-linear model, the polynomial post-nonlinear model, and the 

multilinear mixing model are examples of higher-order mixing models [79]. Despite of 

the order of the nonlinear mixture model, all models are conformed by a linear 

component and a nonlinear term depending on the assumed optical interactions.  

Proper analysis of HSI under a SU approach requires not only the estimation of 

endmembers and their abundances, but also the estimation of the specific nonlinear 

mixture model parameters [80]. If early studies of materials or tissue elements with 

their respective spectral signatures are available, a supervised strategy could be 

considered, where the endmembers are assumed to be known. However, in many real 

scenarios, including the medical application of HSI, it is very difficult to have prior 

studies and the endmembers spectral information. Therefore, for cases where 

endmembers are unknown, an unsupervised approach, also known as blind unmixing 

methodology, could be considered where the information have to be jointly estimated 

[81].  

In this dissertation, two SU algorithms have been employed: linear Extended Blind 

End-member and Abundance Extraction (EBEAE) and Nonlinear Extended Blind End-

member and Abundance Extraction (NEBEAE). The EBEAE is employed in non-

negative datasets using a linear mixing model to perform the estimation of 

characteristic spectral endmembers and their abundances [81]. The NEBEAE is a 

nonlinear version of EBEAE, capable of quantifying non-linear optical interactions 

during the acquisition process, which is also robust against noise [77]. In both cases, 

different hyperparameters can be modified such as the similarity between endmembers 

(ρ) or the entropy of the abundances (𝛾). The MATLAB® implementations for EBEAE 

and NEBEAE [77], [81] were used in the different experiments performed in this 

dissertation. 
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2.4.4 Performance Evaluation Metrics 

To assess the effectiveness and efficiency of HSI instrumentation and the outcomes 

of the processing algorithms, performance metrics play a crucial role to provide 

quantitative results for comparing different developments. In the following sections, 

the evaluation metrics employed in the evaluation of the different works carried out in 

this dissertation are briefly explained. Figure 2-9 shows a summary of theses metrics.  

 

Figure 2-9: Summary of the evaluation metrics used in this dissertation to evaluate the 
effectiveness and efficiency of the HSI instrumentation and the results of the processing 
algorithms. 

2.4.4.1 Spectral Repeatability Metrics 

In order to measure the spectral repeatability of the HS acquisition systems and to 

evaluate the signal-to-noise ratio in each spectral band, the absolute Relative Difference 

percentage (𝑅𝐷) metric can be employed. This metric computes the relation between 

the absolute difference and the mean values of two vectors following Eq. (9), where 𝑥 

and 𝑦 represent the data from a HS image pair. A lower 𝑅𝐷 value in a certain spectral 

band implies lower differences between the two bands of the same scene (i.e., better 

repeatability of the acquisition system and higher signal-to-noise ratio). 

𝑅𝐷(%)  =  
|𝑥 − 𝑦|

(�̅� + �̅�)/2
· 100 (9) 

2.4.4.2 Spatial Registration Metrics 

Algorithms developed to spatially register images captured with different imaging 

systems can be evaluated using image-based similarity and overlap-based metrics. 

Mutual Information (MI) measures the dependency between two images 𝑋 and 𝑌 [82]. 

This can be expressed as in Eq. (10), where 𝑝𝑋(𝑥) and 𝑝𝑌(𝑦) are the marginal probability 

distributions of 𝑋 and 𝑌, respectively, and 𝑝𝑋𝑌(𝑥, 𝑦) denotes the joint probability 

distribution of 𝑋 and 𝑌. When the optimal alignment occurs, the MI is maximized. The 

Pearson’s Correlation Coefficient (PCC) is widely used for comparing images [83]. This 
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coefficient measures the degree of linear correlation or anti-correlation between two 

sets of data in the range [-1,1], where 𝑃𝐶𝐶 = −1 indicates perfectly anti-correlated 

images, 𝑃𝐶𝐶 = 1 indicates perfectly linearly correlated images, and 𝑃𝐶𝐶 = 0 indicates 

linearly uncorrelated images. The PCC can be expressed as the covariance between two 

images by the product of their standard deviations (Eq. (11)). The Structural Similarity 

Index Measure (SSIM) is a metric commonly used in image compression to evaluate 

the compressed image against the original uncompressed image [84]. SSIM metric is 

computed considering the luminance, contrast and structure terms as shown in Eq. (12-

14), where 𝜇 and 𝜎 represent the mean and standard deviations for 𝑥 and 𝑦, 𝜎𝑥𝑦 

represents the cross-covariance for 𝑥, 𝑦, and 𝐶1, 𝐶2, and 𝐶3represent the regularization 

constants for luminance, contrast, and structural terms, respectively. Combining the 

three terms, SSIM can be expressed as show in Eq. (15), where α, β, and γ represent the 

weight of each term. The SSIM result is a value in the range [-1,1], where 𝑆𝑆𝐼𝑀 = −1 

indicates uncorrelated images and 𝑆𝑆𝐼𝑀 = 1 indicates correlated images.  

𝑀𝐼(𝑋; 𝑌) =∑𝑝𝑋,𝑌(𝑥, 𝑦) log
𝑝𝑋𝑌(𝑥, 𝑦)

𝑝𝑋(𝑥)𝑝𝑌(𝑦)
𝑥,𝑦

 (10) 

𝑃𝐶𝐶 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 (11) 

𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1
 (12) 

𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2
 (13) 

𝑠(𝑥, 𝑦) =
𝜎𝑥𝑦 + 𝐶3

2𝜎𝑥𝜎𝑦 + 𝐶3
 (14) 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝛼 · [𝑐(𝑥, 𝑦)]𝛽 · [𝑠(𝑥, 𝑦)]𝛾 (15) 

2.4.4.3 Classification Metrics 

The performance of the algorithms is evaluated using the confusion matrix, which 

compares the actual values using the ground-truth, with the values predicted by the 

algorithm. The confusion matrix is an 𝑁 × 𝑁 matrix, where 𝑁 is the number of classes 

evaluated. Each row represents the instance in an actual class, while each column 

represents the instances in a predicted class, taking positive or negative values. Using 

the matrix values, different performance metrics can be obtained, such as overall 

accuracy (OA), macro F1-score, sensitivity, or specificity metrics. Each of the values of 

the confusion matrix (Figure 2-10) are defined as follows:  

• True Positives (TP): the actual value is positive, and the predicted value is also 

positive. 

• True Negatives (TN): the actual value is negative, and the prediction is also 

negative. 

• False Positives (FP): the actual value is negative, but the prediction is positive.  

• False Negatives (FN): the actual is positive, but the prediction is negative.  



Chapter 2: Background on Hyperspectral Imaging Instrumentation, Algorithms, and Applications 

~ 22 ~ 

 

 Figure 2-10: Example of a confusion matrix.  

OA measures the frequency of correct predictions made by the classifier, calculating 

the ratio of correct predictions and the total number of predictions (Eq. (16)). This 

metric is used in balanced datasets; for unbalanced datasets, the model can achieve 

high accuracy in predicting that each point belongs to the majority class label. 

However, the model could be not accurate.  

Sensitivity evaluates the model’s ability to predict correctly positive instances (Eq. 

(17)). High sensitivity is essential in situations where a positive case cannot be missed, 

particularly in medicine. A high sensitivity score indicates that the model is capable of 

reducing false negatives, thereby accurately detecting most true positive cases.  

Specificity metric evaluates the model’s ability to predict correctly negative instances 

(Eq. (18)). High specificity means that the model has the ability to minimize the 

occurrence of incorrect positive predictions among the actual negatives.  

F1-score metric (Eq. (20)) is used in imbalanced datasets, computing the harmonic 

mean of the sensitivity and precision (Eq. (19)). In multi-class case, different average 

scores can be employed. The macro F1-Score (Eq. (21)) is computed by the unweighted 

mean of F1-Score per class, where 𝑖 is the class index and N the number of classes. The 

micro F1-Score (Eq.(22)) computes a global average F1-Score by counting the total TP, 

FP, and FN. The weighted F1-Score (Eq. (23)) is computed with the mean of F1-Score 

per class considering the weight of each class. This weight (wi) refers to the number of 

actual occurrences of the class. Weight F1-Score assigns greater contribution to the 

class with more samples; however, macro F1-Score assigns equal importance to each 

class while micro F1-Score assigns equal importance to each individual sample.  

The Receiver Operating characteristic (ROC) curve is commonly employed to find 

the optimal hyperparameters of the supervised classifiers, finding the best performance 

using the Area Under the Curve (AUC) metric. The ROC curve shows the relationship 

between the sensitivity for the model and the false positive rate (1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) and is 

used in binary classifications to determine whether one variable is more predictive than 

another [85]. 

𝑂𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (16) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (17) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (18) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (19) 
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𝐹1-𝑆𝑐𝑜𝑟𝑒 = 2 ·
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
=

2 · 𝑇𝑃

2 · 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (20) 

𝑀𝑎𝑐𝑟𝑜 𝐹1-𝑆𝑐𝑜𝑟𝑒 =
1

𝑁
∑𝐹1-𝑆𝑐𝑜𝑟𝑒𝑖

𝑁

𝑖=1

 (21) 

𝑀𝑖𝑐𝑟𝑜 𝐹1-𝑆𝑐𝑜𝑟𝑒 =
2 · ∑ 𝑇𝑃𝑖

𝑁
𝑖=1

2 · ∑ 𝑇𝑃𝑖
𝑁
𝑖=1 + ∑ 𝐹𝑃𝑖

𝑁
𝑖=1 + ∑ 𝐹𝑁𝑖

𝑁
𝑖=1

 (22) 

𝑊𝑒𝑖𝑔ℎ𝑡 𝐹1-𝑆𝑐𝑜𝑟𝑒 =∑𝐹1-𝑆𝑐𝑜𝑟𝑒𝑖 · 𝑤𝑖

𝑁

𝑖=1

 (23) 

2.4.4.4 Segmentation Metrics 

Overlap-based metrics are employed to evaluate the segmentation quality achieved 

by clustering algorithms, comparing the segmented image (SI) against the ground-truth 

(GT). The Dice similarity coefficient measures the match between two images and is 

equal to twice the intersection divided by the sum of the two images as can be seen in 

Eq. (24) [86]. Jaccard similarity coefficient measures the similarity between the GT and 

SI, being defined as the intersection over the union of the two images, as shown in Eq. 

(25) [87]. These metrics are the most used in image segmentation evaluation and can be 

expressed using the definition of TP, FP, and FN. Dice and Jaccard coefficients are 

similar metrics and both measurements have a value range in [0, 1], where 0 indicates 

no similarity, there are no common elements between the SI and the GT, while 1 

indicates complete similarity, indicating that the SI and the GT are identical. However, 

Jaccard coefficient penalizes misclassifications more than Dice coefficient. 

𝐷𝑖𝑐𝑒 =  
2 · |𝑆𝐼 ∩ 𝐺𝑇|

|𝑆𝐼| + |𝐺𝑇|
 =  

2 · 𝑇𝑃

2 · 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (24) 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =  
|𝑆𝐼 ∩ 𝐺𝑇|

|𝑆𝐼 ∪ 𝐺𝑇|
 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (25) 

2.4.4.5 Statistical Analysis 

Segmentation and classification results can be statistically analyzed using paired 

data. In addition, statistical analyses can be computed using reflectance and 

absorbance spectral signatures to evaluate pairs of spectral signatures at each 

wavelength.  

In this dissertation, data normality was evaluated using the Lilliefors test [88], 

which is a two-sided goodness-of-fit statistical procedure used to estimate the 

distribution when they are unknown. In the case where the data had a non-normal 

distribution, the two-tailed Wilcoxon Rank-Sum test was used to compute the 

statistical analysis [89]. This test calculates the p-value for testing the null hypothesis 

that two data vectors are samples from continuous distributions with equal medians 

against the alternative hypothesis that they are not. In the other case, Student’s t-test 

was employed when data had normal distribution [90]. Student’s t-test is a method of 

testing hypotheses about the mean of a small sample drawn from a normally 

distributed population when the population standard deviation is unknown. In both 

cases, tests were performed at a 5% significance level.  
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2.4.4.6 Qualitative Evaluation 

After evaluating quantitative results, qualitative analysis plays a crucial role in 

evaluating the performance of the HS processing algorithms in order to identify 

different structures or patterns in the resulting color maps where each pixel 

corresponds to a certain class or cluster. An RGB image (Figure 2-11.a) can be used to 

generate a ground-truth map with predefined labels or classes (Figure 2-11.b). 

Classification maps (Figure 2-11.c), generated by supervised algorithms, assign 

predefined labels or classes to each pixel or region in an image. Segmentation maps, 

generated by unsupervised algorithms, group pixels or regions based on their spectral 

similarity and according to the number of previously defined clusters (Figure 2-11.d). 

 

Figure 2-11: Examples of classification and segmentation maps. a) RGB image. b) Ground-truth 
map where each color represents a specific class. c) Classification map generated by a supervised ML 
algorithm where each color represents a specific class. d) Segmentation map generated by an unsupervised 
ML algorithm using 5 clusters where each color represents a cluster. 

2.5 HSI Applications for Disease Detection  

In recent years, HSI and MS Imaging (MSI) have emerged as powerful tools in 

medicine. These imaging techniques provide non-invasive and non-destructive 

approaches that allow real-time visualization and analysis of tissue [91]. In the context 

of cancer, HSI and MSI have shown great potential for improving tumor detection and 

delineation, differentiating between benign and malignant lesions, and could help to 

reduce unnecessary biopsies and improve patient outcomes [1], [8]. These technologies 
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allow monitoring various parameters such as tissue oxygenation, collagen, melanin, 

etc., useful in fields like cancer detection, wound assessment, and tissue viability 

monitoring [92], [93]. 

Gastrointestinal cancers represent 26% of global incidence and 35% of mortality in 

2018 and include cancers of the stomach, liver, esophagus, pancreas, and colorectum 

[94]. Endoscopic tools are employed to detect gastrointestinal cancers and other 

abnormalities. These tools include gastroscopy, colonoscopy and wireless capsule 

endoscopy, which employs mainly RGB cameras [95]. With the aim of increasing the 

diagnostic performance of endoscopic systems, HSI has been employed to exploit the 

spectral properties of the different tissue types. In 2018, Lin et al. developed a system 

named ICL SLHSI (Structured Light and Hyperspectral Imager), which employed a 

pushbroom HS camera able to capture 640 pixels, covering the spectral range between 

400-1,000 nm with 270 spectral bands [96]. Wu et al. proposed a method for 

identifying early esophageal cancerous lesions by an HS endoscopic imaging system 

based on a spectrometer, analyzing the spectral range between 350-800 nm [97]. In the 

work by Yoon et al., a line-scanning HS endoscopic system able to capture 100 spectral 

bands covering the spectral range of 400-800 nm was developed with a spatial 

resolution of 120 µm at a working distance of 5 mm [98]. The HSI system was 

employed to enhance polyp discrimination for detection and resection in 7 patients 

undergoing routine colonoscopy screening. The KNN algorithm was employed as a 

classifier to discriminate into patients with and without polyps [99]. Köhler et al. 

developed a HSI laparoscope able to capture 500 spectral bands covering the spectral 

range from 500 to 1,000 nm. Resulting HS cubes had a spatial dimension of 640×480 

with 100 spectral channels after performing spectral and spatial reduction, testing the 

system with resected (ex-vivo) human tissue [100]. Meanwhile, Sato et al. employed a 

pushbroom NIR HS camera in the range 1,000–2,350 nm with 256 spectral bands and 

capturing 320 pixels [101]. In this study, 12 ex-vivo gastrointestinal stromal tumors 

were imaged. The SVM algorithm was employed to predict normal and tumor regions, 

achieving specificity, sensitivity, and accuracy of 73.0%, 91.3%, and 86.1%, respectively. 

Additionally, a commercial HSI system, TIVITA® Tissue System (Diaspective Vision 

GmbH, Am Salzhaff, Germany) has been employed in several works to capture spectral 

information of gastrointestinal tissue [102], [103]. This system was able to capture 

images in the spectral range within 500-1,000 nm, with a spatial resolution of 

640×480 pixels. This tool was evaluated for the determination of the resection margin 

during colorectal surgery in 24 patients [102] and to detect colorectal carcinoma with a 

database of ex-vivo HS images from 54 patients [103]. In this last work, using an 

Artificial Neural Networks (ANN) classifier, tumor and healthy mucosa in colorectal 

carcinoma was classified with a sensitivity of 86% and a specificity of 95% [103] .  

Head and neck cancer includes the tumors that appear in the oral cavity, 

nasopharynx, pharynx, and larynx [104]. The diagnosis strategies are quite diverse: (i) 

oral cavity tumors are often detected by patient self-identification, (ii) laryngeal tumors 

are diagnosed at early stage by presenting voice changes or florid hoarseness, (iii) 

nasopharyngeal carcinoma can present hearing loss or cranial nerve palsies [104]. 

Halicek et al. proposed a method to use HSI and Convolutional Neural Network (CNN) 

to perform an optical biopsy of ex-vivo head and neck cancer [105]. The data were 

acquired employing the commercial CRI Maestro imaging system (Perkin Elmer Inc., 

Waltham, Massachusetts), which is composed of a xenon white-light illumination 
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source, a LCTF system, and a 16-bit CCD camera with a spatial resolution of 

1,040×1,392 pixels able to capture 91 spectral bands, ranging from 450 to 900 nm. 

Brouwer de Koning et al. developed an HSI system to acquire ex-vivo samples of 

tongue squamous cell carcinoma [106]. The system was based on two pushbroom HS 

cameras operating from 400 to 1,700 nm. The VNIR camera worked from 400-950 nm, 

capturing 384 spectral bands and a spatial resolution of 1,312 pixels. The NIR camera 

captured 256 spectral bands from 950-1,700 nm with a spatial resolution of 320 pixels. 

The HS system distinguished between tumor and muscle with a sensitivity of 84% in 

the VNIR range, 77% in the NIR range, and 83% when both spectral ranges were 

combined. Recently, Eggert et al. performed a prospective clinical observational study 

to classify the tissue into healthy and tumor of laryngeal, hypopharyngeal and 

oropharyngeal mucosa [107]. The HSI system was able to capture 30 spectral bands 

from 390 to 680 nm. In this work, 98 patients were examined due to suspicious lesions 

of the mucosal membrane before surgery in-vivo. DL methods were employed to 

achieve an average accuracy of 81%, a sensitivity of 83% and a specificity of 79%.  

Histological samples are examined by an expert physician using the naked eye and, 

in some cases, using digital pathology to identify several diseases. In the latter case, the 

samples are digitalized employing microscopy, so that partial or complete (whole-slide) 

images are captured at different magnifications (e.g., 5×, 10×, 50×, etc.) [108]. HSI has 

been employed in different works for histological analysis using microscopy [5]. Ortega 

et al. presented a methodology to correctly set-up a pushbroom HS microscope to 

acquire high-quality HS images [109]. The pushbroom HS camera worked in the 

spectral range from 400 to 1,000 nm, capturing 826 spectral bands and 1,004 spatial 

pixels. The HS camera was directly coupled to a conventional light microscope. 

However, although the spectral range of the HS camera covered from 400 to 1,000 nm, 

the optics of the microscope limited the effective spectral range to approximately 400–

800 nm. Employing this system, a dataset of 83 HS images was obtained at 5× and 10× 

magnifications from 13 pathology slides from biopsies of human brain tissue resected 

during surgery to patients affected by grade 4 Glioblastoma tumor [110]. The HS 

images, captured using a 5× magnification, were classified using three different 

supervised classification algorithms: SVM, ANN and RF. Competitive results in the 

discrimination between normal and tumor tissue were obtained employing two 

different approaches, intra-patient and inter-patient, with results above 80% accuracy 

in both cases using 10-fold cross-validation. [111]. In a recent work, the pushbroom HS 

microscope system was modified to remove the limitation of the effective spectral range 

(400–800 nm). To achieve this goal, the microscope was replaced, obtaining an 

effective spectral range of 400–1,000 nm. A new database was collected with 527 HS 

images, where 337 were non-tumor brain samples and 190 were diagnosed as 

Glioblastoma [112]. A CNN was employed to detect glioblastoma samples, achieving 

average sensitivity and specificity values of 88% and 77%, respectively. In addition, the 

same HS system was also used to discriminate between normal and tumor breast 

cancer cells [113]. In this way, 112 HS images were captured from histology samples of 

breast tumor from human patients using a 20× magnification. In order to discriminate 

between tumor cells from normal breast cells, a CNN was used, which obtained results 

with an AUC higher than 0.89 for all the experiments. 

In another work, Ma et al. developed a HS microscopic imaging system employing a 

SnapScan HS camera covering a spectral range from 460 to 750 nm with 87 spectral 

bands [114]. A total of 15 histology slides of larynx and hypopharynx tissue from 15 



Chapter 2: Background on Hyperspectral Imaging Instrumentation, Algorithms, and Applications 

~ 27 ~ 

head and neck cancer patients were collected at a 40× magnification. The authors 

proposed a nuclei segmentation method based on Principal Component Analysis (PCA). 

After that, spectral-based SVM and patch-based CNN were used for nuclei 

classification. The average accuracy results were 68% and 82% for the SVM and of CNN 

classification, respectively. Finally, Souza et al. presented a system to acquire HS 

images using a LCTF-based system and a conventional microscope [115]. The system 

captured spectral information in the range of 400-720 nm based on light polarization. 

This system was tested employing hematoxylin-eosin-stained slides of a rat skin treated 

with Aminolevulinic Acid (ALA)-mediated photodynamic therapy. Four different 

algorithms were employed (KNN, SVM Linear, SVM RBF, and RF) obtaining an overall 

accuracy result between 96% and 98% in the discrimination of epidermis, dermis, and 

necrotic area.  

Next, a more detailed analysis of the state-of-the-art in the use of HSI for the 

analysis of brain cancer, skin cancer, and major neurocognitive disorders is presented, 

since these particular areas have been the primary focus of this dissertation.   

2.5.1 Brain cancer 

In 2020, brain and Central Nervous System (CNS) cancer was the twelfth most 

common cancer in terms of mortality, with an estimated 308,102 incident cases, 

associated to 251,329 deaths worldwide for both sexes and all ages [116]. These 

numbers are expected to increase by 38.5% and 43.7% for incidences and mortality, 

respectively, for 2040 [117]. In the young population under 35 years of age, it was the 

second most common cancer in terms of mortality (31,181 deaths) after leukemia [116], 

while in children under 14 years old, it was the second most common cancer in terms of 

both morbidity and mortality (24,388 incident cases/11,889 deaths) worldwide [116]. 

Particularly, brain tumors account for more than 90% of occurrence within CNS 

cancers, linked to high mortality and morbidity, especially in pediatric cases [118], 

[119].  

Treatment consists of biopsy or aggressive surgical resection with postoperative 

radiation and chemotherapy [118]. However, successful tumor resection is associated 

with prolonged survival, which requires accurate identification of the boundaries 

between tumor and normal tissue [17]. Different intraoperative guidance tools are 

employed during surgery, such as intraoperative Image Guided Stereotactic (IGS) 

neuronavigation, intraoperative Magnetic Resonance Imaging (MRI), or fluorescent 

tumor markers like 5-ALA [120].  

In addition, HSI has emerged as a new intraoperative guidance tool. First works 

employ HSI system for monitoring brain oxygenation and hemodynamic using animals 

[121], [122]. Recently works employ HSI system to identify human brain cancer. Fabelo 

et al. developed a HS intraoperative system for the identification of cancer tissue 

during in-vivo brain surgery [123]. The system was based on two push broom HS 

cameras, an illumination system, and a scanning platform. The HS cameras covered the 

VNIR spectral range between 400 and 1,000 nm and was able to capture 826 spectral 

bands and 1004 spatial pixels. Another HS camera covered the NIR range between 900 

and 1,700 nm, capturing 172 spectral bands and 320 spatial pixels. The illumination 

system was based on a Quartz Tungsten Halogen (QTH) lamp of 150 W with a 

broadband emission between 400 and 2,200 nm. The lamp was connected to an optical 

fiber that transmits the light to a cold light emitter, isolating the high temperature 
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produced by the QTH lamp from the brain surface. To provide the necessary movement 

to generate the HS cubes, the HS cameras and the illumination system were coupled to 

a scanning platform.  

Employing this system, a HS human brain database was obtained from 22 patients 

with both primary and secondary tumors [124]. The data acquisition was performed in 

two different campaigns: one at the University Hospital of Southampton, UK, and the 

other one at the University Hospital of Gran Canaria Doctor Negrin of Las Palmas de 

Gran Canaria, Spain. Several works have employed this database to perform brain 

cancer classification and boundary delimitation. A hybrid framework that combined 

supervised and unsupervised machine learning methods was proposed to perform a 

spatio-spectral classification [70]. The SVM was employed as a supervised pixel-wise 

classification algorithm and the generated classification map was spatially 

homogenized using a one-band representation of the HS cube and performing a KNN 

filtering. The information generated in this stage was combined using a Majority Voting 

(MV) algorithm with the unsupervised stage employing a HKM algorithm to obtain a 

segmentation map. The results obtained demonstrated that it was possible to accurately 

discriminate between normal tissue, tumor tissue, blood vessels and background with 

an OA higher than 99% following an intra-patient methodology. Apart from the 

traditional ML methods, DL approaches were also proposed to identify glioblastoma 

tumor following an inter-patient approach [125]. The proposed framework was able to 

identify the parenchymal area, which corresponds to the primary surgical area of the 

exposed brain and blood vessels, employing a 2D convolution neural network. In 

addition, a four-class classification map was obtained using 1D-DNN. This framework 

was able to identify glioblastoma tumor obtaining an OA of 80% following an inter-

patient approach. Another research employed blind linear unmixing method to identify 

glioblastoma as a low computational time cost alternative using the same database 

[126]. This method was compared with a supervised SVM strategy, which required a 

higher training time, achieving similar classification results but with a speedup factor of 

~429× in the training phase. Using the same database, a method based on the fusion of 

multiple deep models was proposed by Hao et al. to use the spectral and spatial 

information to identify glioblastoma [127]. This framework included four steps: 1) 

spectral phasor analysis and data oversampling; 2) 1D-DNN spectral HSI feature 

extraction and classification; 3) 2D-CNN spectral–spatial HSI feature extraction and 

classification; 4) edge-preserving filtering-based classification result fusion and 

optimization, and fully convolutional network-based background segmentation. The 

proposed method achieved an OA of 96.69% for four-class classification and OA of 

96.34% for glioblastoma identification, adopting a leave-one-patient-out cross 

validation technique. 

Mühle et al. integrated an HSI camera into a surgical microscope (S100 OPMI Pico, 

Carl Zeiss Meditec AG, Germany) for neurosurgical brain tumor resection [128]. The 

HS system was based on the commercial HS camera TIVITA® Tissue System 

(Diaspective Vision GmbH, Am Salzhaff, Germany), capturing 100 bands in the spectral 

range from 500 to 1,000 nm, with a spatial image size of 640×480 pixel. In this proof 

of concept, the authors performed an extensive evaluation of different lamps to assess 

the effect in different spectral regions. In addition, a spectral characterization of the 

light was performed and compared between the laboratory setup and the clinical setup. 

Finally, a single HS image was analyzed using an RF classifier to discriminate between 



Chapter 2: Background on Hyperspectral Imaging Instrumentation, Algorithms, and Applications 

~ 29 ~ 

healthy tissue, malignant tissue, vessels, and background. Using 5-fold stratified cross-

validation, the RF classifier achieved an overall accuracy of 99.1%. 

Urbanos et al. presented a HS acquisition system to acquire and process HS images 

in the surgical environment [129]. The system was based on a snapshot HS camera able 

to capture 25 bands along the spectral range from 655 to 975 nm. The illumination 

system was based on 150 W halogen light source connected to two fiber-optic cables. In 

this study, a HS database was generated, composed by more than 50 images of different 

pathologies, and labeled into five different classes: healthy tissue, tumor, venous blood 

vessel, arterial blood vessel and dura mater. Finally, 13 images corresponding to grade 

3 tumors and glioblastoma (grade 4) were employed to train SVM, RF, and CNN 

classifiers achieving an OA result between 60 to 95% using an intra-patient approach. 

Using the same HS database, Martín-Pérez et al. performed a comparison between 

non-optimized models with optimized models [130]. This comparison was performed 

using SVM and RF algorithms and three different optimization methods: grid search, 

random search, and Bayesian optimization. The study showed that the RF results did 

not improve significantly when the model was optimized with any of the three 

optimization methods. However, the optimized SVM model improved the tumor 

identification. Sancho et al. presented SLIMBRAIN [131], a modification of the HS 

system presented by Urbanos et al. that incorporated augmented reality using a LiDAR 

(Light Detection and Ranging) camera. The classification results obtained from the HS 

images were overlapped with the RGB point cloud captured by a LiDAR camera and 

presented in an augmented reality visualization. 

Puustinen et al. developed an operating microscope-integrated HSI system for 

microneurosurgery as a monitoring tool during neurosurgical operations [132]. The 

system was based on an operating microscope (OPMI Pentero 900, Carl Zeiss Meditec 

AG, Germany) coupled to a snapshot HS camera with a spectral range of 500 to 900 

nm, and a spatial resolution of 1,024×1,024 pixels. The illumination system was based 

on a tunable LED source with 10 different channels. As a proof of concept, two HS 

images were labeled and used to train and test different algorithms, with the best 

overall accuracy of 98.3% for all tissue classes (compact bone, high-grade glioma, 

blood, dura internal leaf, cortical vein, and intact cortex with pia matter) and 97.7% for 

the glioma class using the light gradient boosting machine algorithm. In [133] the HS 

system was used to generate a microneurosurgical HSI database with 11 HS images 

obtained from two patients.  

Giannantonio et al. presented an intraoperative HS system based on a surgical 

microscope (OPMI Pentero 900, Carl Zeiss Meditec AG, Germany) coupled to an IMEC 

Snapscan VNIR (IMEC, Leuven, Belgium) [134]. The HS camera covered the spectral 

range of 470 - 900 nm in 150 spectral bands, however, due to the limitation of the 

infrared filter in the microscope, only the spectral range from 470 to 780 nm with 104 

spectral bands was considered. In this study, the authors presented a dataset of low-

grade gliomas (grade 1 and 2) composed of 18 HS images from 5 patients with a spatial 

resolution of 1,600×1,600 pixels. Different algorithms were used (RF, SVM, and DNN) 

and an OA of more than 90% was obtained when HS images were classified into 

healthy and tumor using an intra-patient approach. 

Additionally, HSI systems have been employed during neurosurgical procedures to 

monitor the oxygenated and deoxygenated hemoglobin concentration changes 

occurring in the brain [92]. The system was based on a HS camera able to capture 25 
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spectral bands covering the spectral range between 675 and 975 nm. Another HSI 

system employed the spectral range between 400 and 800 nm for monitoring 

intraoperative changes in brain surface hemodynamics to identify postoperative 

cerebral hyperperfusion syndrome [93]. 

The following Table 2-3 provides a comprehensive summary of the different HSI 

systems used in the literature for the identification of brain tumor, highlighting the 

specification of the system and the objective of the study. 

Table 2-3: Summary of the HSI systems used to identify brain tumor. 

Ref. Year 
HSI System 

Type 
Wavelength 

(nm) 
Bands 

Spatial 
Resolution 

Patients 
HS 

Images 
Study Objective 

[70] 2018 

Pushbroom 400 – 1,000 826 
1004×1787 

pixels 

5 5 Primary (G4) 

[123] 2018 26 43 
Primary (G1, G2, 
G3, and G4) and 

Secondary 

[125] 2019 16 26 Primary (G4) 

[126] 2020 16 26 Primary (G4) 

[127] 2021 5 7 Primary (G4) 

[128] 2020 
Pushbroom - 

Surgical 
Microscope 

500 – 1,000 100 
1280×960 

pixels 
1 1 Primary (G3) 

[129] 2021 

Snapshot 655 - 975 25 
217×409 

pixels 

12 13 
Primary  

(G3 and G4) 

[130] 2022 9 10 
Primary  

(G3 and G4) 

[131] 2023 12 13 
Primary  

(G3 and G4) 

[132] 2022 Snapshot - 
Surgical 

Microscope 
500 - 900 n/a 

1024×1024 
pixels 

2 11 
Primary  

(G1 and G3) 

[133] 2023 1 2 Primary (G3) 

[134] 2023 
Snapscan - 

Surgical 
Microscope 

470 - 780 104 
1600×1600 

pixels 
5 18 

Primary  
(G1 and G2) 

G1: Grade 1; G2: Grade 2; G3: Grade 3; G4: Grade 4; n/a: not available 

2.5.2 Skin cancer 

The incidence of skin cancer has increased in the last years, being one of the most 

common cancers [135]. Skin cancer includes Malignant Melanoma (MM) and Non-

Melanoma Skin Cancer (NMSC), which comprises Basal Cell Carcinoma (BCC), 

Squamous Cell Carcinoma (SCC) and other types of cancer with minor incidence. MM 

is the 17th most common cancer worldwide with 325,000 new cases in 2020, while 

NMSC is the 5th most common cancer worldwide with 1,200,000 new cases in 2020 

[135]. BCC is the most frequent skin cancer, involving 80-85% of NMSC, followed by 

SCC (15-20%) [136].  

Traditionally, skin cancer is detected during visual inspection by the naked eye and a 

dermatoscopic system, which contains a magnifying lens and polarized light [137], 

[138]. A preliminary diagnosis is performed following the ABCDE rule, which require to 

study and measure such properties of the mole: asymmetry of the mole, border 

irregularity, color uniformity, diameter and evolving size, shape or color [18]. 

Nowadays different novel imaging techniques are employed in clinical practice: 

confocal microcopy, polarized imaging, three-dimensional topography, thermal 

imaging, MSI and HSI, etc. [47]. The combination of these technologies and ML 
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algorithms allows the development of tools aiming the automatic discrimination and 

detection of skin cancer [139], [140]. Compared to the traditional dermatoscope, HSI is 

able to provide information beyond the human visual range, capturing information 

related of chromophores, such as melanin, hemoglobin, water, beta-carotene, collagen, 

and bilirubin [141].   

MSI technology has been widely employed to identify skin cancer, while HSI has 

been employed to a lesser extent. In both cases, snapshot imaging systems have been 

employed to capture skin lesions, as they provide fast acquisition of spatial and spectral 

information in a single capture. Commercial MS systems have been developed to assist 

in the detection of melanoma. MelaFind is a MS system able to capture 10 spectral 

bands in the spectral rage comprised between 430 and 950 nm with spatial resolution 

of 1,280×1,024 pixels [142]. This tool provides a recommendation to perform or not a 

biopsy of a skin lesion. The lowest wavelength was used to create a mask for 

segmentation of the spatial information in the remaining wavelengths. After that, lesion 

parameters (asymmetry, blotchiness, texture, etc.) were computed from each 

segmented image. Linear and nonlinear classifiers were employed to classify the lesion 

as malignant or benign. Finally, a threshold was applied to determine whether the 

malignant lesion was a melanoma or non-melanoma [142]. This system has been used 

in different studies to identify melanoma. In 2001, Elbaum et al. achieved 100% and 

84% of sensitivity and specificity, respectively, to identify melanomas using a dataset of 

63 melanomas and 183 melanocytic nevus [143]. In 2011, Monheit et al. performed a 

prospective multicenter study to evaluate the effectiveness of MelaFind [144]. Seven 

clinical sites participated in the study obtaining 1,831 PSLs from 1,383 patients. Finally, 

1,632 lesions were eligible, where 127 were melanoma, reporting a sensitivity and 

specificity of 98.4% and 9.9%, respectively. In 2017, Fink et al. performed an analysis of 

this tool in a real-life clinical setting [145]. In this study, 360 PSLs were analyzed from 

111 patients (but only 3 melanomas), achieving a melanoma sensitivity and specificity 

values of 100% and 68.5%, respectively. Finally, in 2020, a study with 150 non-

melanomas and 59 melanomas was performed obtaining a sensitivity and specificity of 

82.5%, 52.4%, respectively [146]. The results were compared with the diagnosis using 

teledermoscopy, obtaining a sensitivity and specificity of 84.5% and 82.6%, 

respectively, and the criteria of a local dermatologist (96.6% and 32.2%, respectively). 

Another commercial MS system is Spectrophotometric Intracutaneous Analysis 

(SIAscopy) [147]. This tool can capture 8 bands in the 400–1,000 nm spectral range of 

a spatial area of 24×24 mm or 12×12 mm. The input MS images were calibrated and the 

infrared spectral bands were subsequently used in combination with logistic regression 

to determine different parameters, such as the quantity of collagen and hemoglobin in 

the papillary dermis and the total melanin in epidermis and papillary dermis [147]. A 

clinical evaluation of the system was performed in 2001 using a dataset of 348 

pigmented lesions including 52 melanomas, achieving a melanoma sensitivity of 82.7% 

and a specificity of 80.1% [147]. In 2007, Govindan et al. examined 886 patients 

obtaining a sensitivity of 94.4% with a false negative rate of 3.7% for malignant 

melanoma [148]. In 2010, Emery et al. performed a study with 858 patients and 1,211 

lesions, developing a Primary Care Scoring Algorithm (PCSA), which modified the 

logistic regression used in the tool to improve the diagnosis of suspicious lesions [149]. 

Using the PCSA, the authors obtained a sensitivity of 50% and a specificity of 84%. 

PCSA was later integrated to SIAscopy. In 2013, the MoleMate system was integrated to 

SIAscopy using PCSA to improve the management of PSLs in primary care [150]. In 
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2014, Sgouros et al. analyzed the use of this tool in the detection of melanoma and non-

melanoma skin cancers [151]. In this study, 188 lesions of 180 patients were examined, 

obtaining sensitivity and specificity values of 85.7% and 65.4% respectively.  

Different non-commercial acquisition systems have been employed in the literature. 

Tomatis et al. employed a MS acquisition system called SpectroShade (MHT, Verona, 

Italy) able to capture MS images of 15 spectral bands between 483 and 950 nm, with a 

spatial resolution of 640×480 pixels [152]. The illumination system was based on a 

light source, a concave mirror incorporating a diffraction grating (monochromator), 

and a bundle of optical fibers which provided homogeneous illumination. The mirror 

was moved by a stepping motor allowing to select 15 different spectral bands. The 

system included a digital color CCD camera and a digital Black & White CCD camera. A 

calibration step was performed followed by a lesion segmentation obtained using a 

hybrid algorithm, combining a region-oriented and a thresholding method. Later, 

parameter extraction and data reduction were performed. Finally, an ANN classifier 

was employed to perform an automatic diagnosis to discriminate between melanomas 

and non-melanoma lesions, achieving a sensitivity of 80.4% and a specificity of 75.6% 

in 1,391 in-vivo lesions. In 2007, Carrara et al. employed the same system in a study 

that involved 1,784 patients. Using ANN achieved a sensitivity of 88% and a specificity 

of 80%, using a dataset composed by 1,966 PSLs [153]. In 2010, Ascierto et al. used the 

SpectroShade system to analyze 54 PSLs, obtaining sensitivity and specificity to detect 

melanoma of 66.6% and 76.2%, respectively [154].  

In 2012, Diebele et al. employed a MS camera that captured information in the 

spectral range 450–950 nm [155]. The skin area was illuminated by a ring of halogen 

lamps with a diffuser and a polarizing film. The system was able to distinguish 

melanoma from pigmented nevi obtaining a sensitivity and specificity of 94% and 89%, 

respectively. The diagnostic criterion was based on skin optical density differences at 

three wavelengths: 540, 650 and 950 nm. In 2017, Stamnes et al. employed a spectral 

radiometer able to capture 10 different wavelengths (365–1,000 nm), where, in each 

wavelength, three images were captured simultaneously at different detection angles 

[156]. The sensor head contained an illuminating system of 12 fixed LED lamps. 

Different maps of physiology properties and morphometric parameters were obtained. 

A classification method based on clustering was proposed using a dataset of 712 PSLs, 

obtaining sensitivity and specificity results of 99% and 93%, respectively. Delpueyo et 

al. developed a MS system to improve the detection of skin cancer lesions, specifically 

melanomas and BCC [157]. The system was based on a CCD monochrome camera with 

an illumination source based on LED, which allowed capturing 8 wavelengths between 

400-1,000 nm with a spatial resolution of 1280×960 pixels. The discrimination was 

performed between malignant and benign PSLs using the spectral features of the 

lesions, such as reflectance and color. The study analyzed 429 pigmented and non-

pigmented lesions proving a sensitivity of 87.2% and a specificity of 54.5% in 

melanoma identification. Rey-Barroso et al. developed an extended near infrared MSI 

system based on an InGaAs sensor covering the range from 995 to 1,613 nm and 

capturing 6 wavelengths with a spatial resolution of 320×256 pixels [158]. This system 

had the goal of diagnosing skin cancer in an early and non-invasive way. The 

classification method was based on the analysis of first-order statistic descriptors, PCA, 

and SVM algorithms. The system was tested in a pilot study with 39 nevi and 14 

melanomas from Caucasian patients, providing a sensitivity of 78.6% and a specificity 

of 84.6%. 
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In 2019, a novel smartphone-based MSI was reported by Ding et al. [159] as a proof 

of concept of a portable and cost-effectiveness tool. The images were captured by the 

CMOS sensor of the smartphone, combined with lens and linear variable filter allowed 

to capture different spectral bands. The system captured 9 spectral bands within the 

spectral range 400-700 nm. The skin was illuminated with linearly polarized light, with 

the goal of detecting melanin and hemoglobin. Another smartphone-based 

dermatoscope using MSI was proposed by Uthoff et al. in 2020 [160]. In this work, 

polarized MSI was employed to obtain deoxyhemoglobin, oxyhemoglobin, and melanin 

maps. The illumination employed was based on LEDs with different wavelengths 

covering the range between 450-940 nm and capturing 8 spectral bands.  

HSI acquisition systems also have been employed to identify skin cancer. In 2006, a 

high resolution HSI microscopic system was developed for histopathology to detect 

abnormalities in skin tissue using hematoxylin-eosin-stained preparations of normal 

and abnormal skin, benign nevi and melanomas [161]. The system called PARISS 

(Prism and Reflector Imaging Spectroscopy System) was able to capture the spectral 

range comprised between 365 and 800 nm. More than 85% of the samples were 

correctly assigned to the correct class and were able to distinguish between melanoma 

and normal skin. Nagaoka et al. employed a system called MSI-03 (Mitaka Kohki Co., 

Ltd., Tokyo, Japan) to identify melanoma [162]. This system was able to capture an 

effective area of 16×20 mm, with 658×489 spatial pixels, and spatial resolution of 32.7 

μm, covering the spectral range between 450–750 nm with 124 spectral bands. The 

illumination system employed was based on a halogen lamp of 150 W. A melanoma 

discrimination index was proposed by the authors to avoid unnecessary excision of 

benign PSLs. Nagaoka et al. performed also a pilot study in 2011 to evaluate this 

system, which discriminated melanomas with a sensitivity of 90% and a specificity of 

84% [163]. In 2012, this system was employed to discriminate between acral 

lentiginous melanoma and acral nevus, achieving a sensitivity of 92% and a specificity 

of 86% [164]. In 2014, a clinical trial was performed in two centers using the MSI-03, 

obtaining a dataset composed by 24 melanomas and 110 other skin lesions. In this 

study, sensitivity and specificity results of 96% and 87%, respectively, were obtained 

[162]. The MSI-03 system was mainly evaluated in Asian populations, however, in 

2021, Christensen et al. evaluated the system in a Caucasian population [165]. This 

study involved 186 patients with 202 PSLs. The objective of this study was to evaluate 

the discrimination between melanoma and benign PSL, obtaining a sensitivity to detect 

melanoma of 96.7% and a specificity for benign PSL of 42.1%.  

In 2015, a HSI system prototype was presented by Neittaanmäki-Perttu et al. to 

delineate the margins of lentigo maligna and MM [166]. The system was able to capture 

76 bands in the spectral range of 500–900 nm with a spatial resolution of 240×320 

pixels, using an external light source coupled to a fiber optic ring light. The HS images 

were analyzed employing linear mixture model to obtain the pure spectral malignant 

lesion and normal skin, producing abundance maps that delineate the lesion borders. 

The results obtained were compared with histology results obtaining a match of 94.7%. 

In 2019, this system was employed to delineate BCC in a pilot study, which included 16 

lesions, being accurately delineated 75% of them [167]. In 2021, the system was tested 

to distinguish between BCC and melanoma [168]. In this work, a CNN algorithm was 

employed to classify 26 pigmented lesions (10 BCCs, 12 melanomas in-situ and 4 

invasive melanomas), obtaining a sensitivity of 100% and a specificity of 90%.  
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In 2016, Zherdeva et al. proposed a HSI system to discriminate between different 

skin cancer types employing 61 bands in the range 450-750 nm, with a spatial 

resolution of 501×501 pixels [169]. The work evaluated 16 melanomas, 19 BCCs and 10 

benign tumors, identifying skin lesions (benign and malignant lesions) from healthy 

skin with very high sensitivity and specificity of 84% and 87%, respectively. The optical 

density of hemoglobin and melanin was employed to perform the discrimination.  

In 2019, Hosking et al. employed the Melanoma Advanced Imaging Dermatoscope 

(mAID) based on non-polarized LED-driven HS camera [170]. The illumination system 

illuminated with 21 wavelengths, covering the spectral range between 350-950 nm. The 

study obtained 70 HS images of skin lesions and performed a classification between 

nevus and melanoma, achieving a sensibility of 100% and specificity of 36%.  

In 2021, Courtenay et al. employed a pushbroom HS camera to distinguish between 

healthy and non-healthy skin [171]. The HS camera was placed on a motorized 

structure to capture the HS cube and two 60 W halogen light sources were mounted on 

either side of the HS sensor. The system was able to capture 270 spectral bands with a 

spectral range of 398–995 nm, generating HS cubes with a spatial dimension of 

640×1,785 pixels. A total of 60 patients with 41 confirmed cases of BCC and 19 cases of 

SCC were employed to perform robust statistical tests to identify the differences 

between healthy tissue and carcinomas (BCC and SCC), finding differences between 

429 and 520 nm. In a later work, the use of a CNN combined with a final SVM 

activation layer was proposed to classify the same dataset, achieving up to 90% 

classification in terms of OA [172]. 

In 2022, the SICSURFIS (Spectral Imaging of Complex Surface Tomographies) 

system was proposed as a compact hand-held HSI tool for capturing HS data in 

complex skin surfaces [173]. The system worked in the spectral range between 475–975 

nm, capturing 33 spectral bands with a spatial dimension of 1,605×1,640 pixels. In 

addition, the system had a photometric stereo imaging that provided skin-surface 

models. A dataset of 42 skin lesions were evaluated to discriminate between malignant 

and benign pigmented and non-pigmented skin tumors. Classification and delineation 

methods were proposed using a CNN employing spectral, spatial, and a skin-surface 

model. The results achieved a sensitivity of 87% and a specificity of 93% in recognizing 

melanoma from pigmented nevi and healthy skin.  

Different works employed HSI systems to analyze skin characteristics or 

morphology. A multi-mode dermoscope based on HSI was proposed in 2014 by Vasefi 

et al. called SkinSpect [174]. The system was composed by a programmable 

illumination system based on Xenon arc light source, which allowed a wavelength 

selection over the range from 468 to 857 nm and captured 33 spectral bands. The 

images were obtained by two cameras, with polarization filters installed, and oriented 

orthogonally to each other. However, this system was employed to perform an 

analytical model to map the distribution of specific skin biomolecules. In subsequent 

works, the system was used to measured melanin and hemoglobin concentrations skin 

pigmented nevi [175]. In 2019, He and Wang proposed a HSI system based on a 

snapshot camera to analyze morphological features [176]. The HS camera was based on 

a CMOS sensor with 2,048×1,088 pixels able to capture 16 spectral bands in the range 

between 400-600 nm.  
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The following Table 2-4 provides a comprehensive summary of the different HSI 

systems used in the literature to study skin cancer and other skin lesion, highlighting 

the specification of the system and the objective of the study. 

Table 2-4: HSI systems used to study skin cancer and other skin lesion. 

Ref. Year 
MSI/HSI 

System Type 
Wavelength 

(nm) 
Bands 

Spatial 
Resolution/FoV 

Patients 
MS/HS 
Images 

Lesion 
Type 

[143] 2001 

MS – Focal Plane 
(MelaFind) 

430–950 10 1280×1024 pixels 

n/a 246 MM and N 

[144] 2011 1,383 1,831 MM 

[145] 2017 111 360 MM 

[146] 2020 184 209 MM 

[147] 2001 

MS – Focal Plane 
(SIAscopy) 

400–1000 8 
24×24 mm or 

12×12 mm 

311 348 MM 

[148] 2007 886 886 MM 

[149] 2010 858 1,211 MM and B 

[151] 2014 180 188 MM and NM 

[152] 2005 
MS – Focal Plane 
(SpectroShade) 

483–950 15 640×480 pixels 

1,359 1,391 MM and NM 

[153] 2007 1,784 1,966 MM and NM 

[154] 2010 54 54 MM 

[155] 2012 MS - Focal Plane 450–950 51 n/a n/a 82 MM and N 

[156] 2017 MS – Focal Plane 365–1,000 10 n/a n/a 712 M and B 

[157] 2017 MS – Focal Plane 400-1000 8 1280×960 pixels n/s 429 MM and BCC 

[158] 2018 MS - Snapshot 900-1,600 6 320×256 pixels n/a 53 MM and N 

[159] 2019 
MS – Focal Plane 

(Smartphone) 
400–700 9 n/a n/a n/a N 

[160] 2020 
MS – Focal Plane 

(Smartphone) 
450-940 8 5312×298 pixels n/a n/a N and SCC 

[161] 2006 
HS – Pushbroom 

(PARISS) 
365-800 640 

2.5×500 µm or 
0.4×80 µm 

n/a n/a 
NS, B, and 

MM 

[163] 2011 

HS – Line 
scanning (MSI-

03) 
450–750 124 658×489 pixels 

20 28 MM and NM 

[164] 2012 20 20 ALM and AN 

[162] 2015 97 132 MM and NM 

[165] 2021 186 202 MM and B 

[174] 2014 HS – Focal Plane 
(SkinSpect) 

468–857 33 11×16 mm 
2 n/a N 

[175] 2016 20 20 N 

[166] 2015 

HS - Snapshot 500-900 76 240×320 pixels 

19 19 
LM and 

LMM 

[167] 2019 16 16 BCC 

[168] 2021 24 26 MM and BCC 

[169] 2016 HS – Focal Plane 450-750 61 501×501 pixels 45 45 
MM, BCC, 

and B 

[170] 2019 
HS – Focal Plane 

(mAID) 
350-950 21 n/a 91 100 MM and NM 

[176] 2019 HS - Snapshot 460-600 16 
2,048×1,088 

pixels 
n/a n/a N 

[171] 2021 
HS - Pushbroom 398-995 270 640 × 1785 pixels 

60 60 
BCC, SCC, 

and NS 

[172] 2022 60 60 BCC and NS 

[173] 2022 
HS – Focal Plane 

(SICSURFIS) 
475-975 33 1605×1640 pixels 33 42 B and M 

ALM: Acral Lentigo Melanoma; AN: Acral Nevus; B: Benign; BCC: Basal Cell Carcinoma; FoV: Field of View; LM: 
Lentigo Maligna; LMM: Lentigo Maligna Melanoma M: Malignant; MM: Malignant Melanoma; n/a: not available; N: 
Nevus; NM: Non-Melanoma; NS: Normal Skin; SCC: Squamous Cell Carcinoma.  
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2.5.3 Major Neurocognitive Disorders 

The current increment in life expectancy is correlated with an increase in the 

number of people affected by NCDs, which is the major cause of dependency and 

disability among the older adult population [177]. Additionally, NCDs are not a natural 

or unavoidable outcome of aging. These types of disorders are a rapidly growing public 

health problem with nearly 10 million new cases every year, affecting over 50 million 

people worldwide in 2019 [178]. The most common form of NCD is Alzheimer’s disease, 

accounting for 60% to 70% of NCD cases [178]. 

NCD, previously known as dementia and/or mild cognitive impairment, is 

characterized by a decline from a previously attained level of cognitive functioning. It 

can be distinguished between minor and major NCD (mNCD and MNCD, respectively) 

according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) 

criteria defined by the American Psychiatric Association [21]. mNCD is characterized by 

a noticeable decrement in cognitive functioning [21]. This evidence of a cognitive 

decline is revealed by the subject, an informant who knows the subject, or the clinician 

who treats the subject. However, the cognitive deficit does not interfere with daily 

activities and does not occur exclusively in the context of a confusional state. In 

contrast, MNCD is characterized by the evidence of considerable deficits acquired in 

one or more cognitive domains [21] that, as in mNCD, is also reported by the subject, 

an informant, or the clinician. The evidence results from the fact that there is a 

considerable decline in cognitive function and a substantial deterioration in cognitive 

performance. In contrast to mNCD, MNCD cognitive deficits interfere with the 

individual autonomy in daily routines and activities [21].  

Diagnosis of NCD establishes, as a main goal, identifying cognitive impairment and 

NCD from secondary etiology, therefore, potentially treatable controls, e.g., human 

immunodeficiency virus (HIV), brain tumors or alcohol abuse [21]. Moreover, the 

diagnostic process must analyze the personal and family history and the social context. 

The diagnosis in the asymptomatic phase allows healthcare providers to monitor the 

disease and define a care protocol. In addition, it offers the opportunity for family 

members and the patient to make decisions about the patient’s future [179]. Current 

diagnostic criteria to determine the degree of functional impairment is based on scales 

that evaluate the subject’s cognitive ability. On the one hand, the Global Deterioration 

Scale (GDS) developed by Reisberg et al. [180] and the Functional Assessment Staging 

(FAST) [181] identify seven clinically recognizable stages from normality to the most 

severe form of Alzheimer’s dementia. On the other hand, the Clinical Dementia Rating 

(CDR) [182] describes five broad stages from normality to severe dementia.  

The evolution of neurodegenerative diseases, especially Alzheimer’s disease, is slow 

and both cognitive and behavioral symptoms appear simultaneously. The disease is 

presented and evolves differently in each subject, which may mislead the diagnosis of 

another disease. For this reason, it is necessary to find effective diagnostic techniques. 

Biomarkers allow an early biological diagnosis (preclinical phase) and improve the 

etiological study of NCDs. A biomarker can serve as an indicator of health or illness and 

must be sensitive to normal biological process, pathological process, or 

pharmacological interventions [183]. Several investigations explore the relationship 

between biomarkers and atrophy in specific brain regions to make an accurate 

diagnosis, both in the clinical and preclinical phases of Alzheimer’s disease [184], [185]. 
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Biomarkers can be divided into body fluid biomarkers, imaging biomarkers 

(topographic and pathophysiological), and other biomarkers [22]. 

The common clinical tests to diagnose a possible Alzheimer’s disease are based on 

in-vivo neuroimaging biomarkers using Positron-Emission Tomography (PET) or MRI, 

both of which are used in a preclinical phase [23]. PET imaging diagnosis allows to 

detect β-amyloid peptide (Aβ) and tau protein [23]. MRI biomarkers are used to 

discard specific pathologies, such as tumor or vascular disease. In-vivo neuroimaging 

biomarkers are widely used to detect Alzheimer’s disease in the absence of symptoms, 

or in cases where neuropathological changes are shown independently of the clinical 

symptoms [186]. However, the use of these procedures is expensive and has a restricted 

availability for verifying the diagnosis [24]. 

Cerebrospinal Fluid (CSF) is the most common body fluid employed to identify 

Alzheimer’s disease biomarkers. Three CSF biomarkers have been studied in the 

literature: Aβ1-42, total tau protein (t-tau), and phosphorylated tau (p-tau). A decrement 

of Aβ42 in CSF is a predictor of progression from mNCD (Alzheimer’s disease) to MNCD 

(Alzheimer’s disease). However, an increment of t-tau represents axonal degeneration 

at the early stages of Alzheimer’s disease. Finally, p-tau increases before the beginning 

of the prodromal stage of Alzheimer’s disease [22]. Nevertheless, the lumbar puncture 

in CSF collection is a highly invasive procedure that causes discomfort and can cause 

side effects, such as headache, back pain, swelling, or bruising. For this reason, other 

body fluid biomarkers related to blood samples have been investigated. This alternative 

is less-invasive and is cost-effective for early detection, especially in the identification of 

patients both in the clinical and preclinical phases of Alzheimer’s disease. Blood plasma 

is used to identify proteins related with the disease, such as albumin, fibrinogen, and 

immunoglobulins [187]. Biomarkers present in CSF have been studied in blood plasma 

and include Aß42/40, neurofilament light chain (NfL), neurogranin (Ng) and YKL-40 

(also known as Chitinase 3-like 1) [184]. Furthermore, the use of blood plasma 

biomarkers reduces the cost and the risk of adverse effects. In this sense, novel 

techniques to identify these biomarkers in blood plasma samples should be 

investigated. 

In the field of NCD detection the use of HSI is limited. In 2019, Hadoux et al. 

employed a HS retinal camera, covering the VNIR range from 450 nm to 900 nm, to 

identify potential biomarkers that represent the accumulation of Aβ in the retina for 

Alzheimer’s disease detection [188]. The HS retinal camera captures images of the 

retina with a 30-degree field of view and a pixel resolution of ~8.3 µm. This study 

consisted of 35 participants divided into case group (n = 15) and the control group 

(n = 20). At wavelengths below 565 nm, reflectance spectra were different between 

cases and controls. More et al. developed a system based on a clinical ophthalmic 

camera and a spectrographic camera covering the spectral range from 400 to 1000 nm 

with a resolution of 2.5 nm [189]. However, this study was a proof of concept to 

translate the HS system from animal models to human Alzheimer’s disease subjects. In 

2020, Lemmens et al. presented an HS retinal imaging based on a snapshot camera 

able to capture from 460 to 620 nm with 16 spectral bands and 272×512 spatial pixels 

[190]. The HS data and nerve fiber layer thickness data were used in a linear 

discriminant classification model to discriminate between Alzheimer’s disease patients 

and controls using a leave-one-out cross-validation technique, achieving an AUC value 

of 0.74. 
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Additionally, previous works carried out by our group employed HS microscopy in 

the VNIR range to propose a novel methodology for identifying potential biomarkers of 

MNCD in blood plasma samples [191]. The Table 2-5 provides a comprehensive 

summary of the different HSI systems used in the literature to study MNCD disease, 

highlighting the specification of the system and the objective of the study. 

Table 2-5: HSI systems used to study MNCD disease. 

Ref. Year 
HSI System 

Type 
Wavelength 

(nm) 
Bands 

Spatial 
Resolution 

Patients 
(Case/Control) 

HS 
Images 

Study 
Objective 

[188] 2019 
Whiskbroom 

(Retinal Imaging) 
450-900 90 n/a 15/20 n/a AD 

[189] 2019 
Focal Plane 

(Retinal Imaging) 
400-1000 240 n/a 19/16 n/a AD 

[190] 2020 
Snapshot (Retinal 

Imaging) 
460-620 16 

272×512 
pixels 

17/22 n/a AD 

[191] 2020 
Pushbroom 

(Microscopy of 
Blood Plasma)  

400-1000 826 
400×1004 

pixels 
5/5 20 AD 

AD: Alzheimer’s Disease; n/a: not available. 

2.6 Conclusions 

In this chapter, the basic concepts of HSI were presented, exploring the HS 

instrumentation commonly employed for HS image acquisition. Different processing 

methods found in the literature were explained, which play a key role in extracting 

meaningful information from the complex hyperspectral datasets. In this context, 

common algorithms used to process HS images were detailed, with a particular focus 

on supervised and unsupervised methods that were employed in this dissertation. 

These algorithms allow to extract critical results from the data. To ensure the reliability 

of the results obtained in this dissertation, we discussed the use of various performance 

evaluation metrics. These metrics provide an objective and quantitative means of 

assessing the effectiveness and accuracy of the algorithms used, thus providing a solid 

foundation for drawing meaningful conclusions from the HSI data. 

The most recent advances in HSI for medical applications were presented, with 

special emphasis in skin cancer, brain cancer, and MNCD. These specific medical 

applications showcase the true potential of HSI image analysis in revolutionizing 

healthcare due to the advantages of its non-contact, non-ionizing, label-free, and 

minimally invasive nature. The use of HSI in the medical field can provide a wealth of 

information that can help with early detection and accurate diagnosis. Skin cancer is 

one of the most common types of cancer, the use of HSI can benefit in skin detection 

with non-invasive tool, avoiding many biopsies. The early detection of lesions using 

HSI can lead to improved patient outcomes and better overall prognosis. Similarly, in 

the case of brain cancer, HSI can play a crucial role in guiding surgeons during tumor 

resection surgeries. By providing a real-time tool that delineates between healthy and 

tumor tissue, it enables effective removal of tumors while preserving vital healthy brain 

tissue. In addition, the use of HSI in MNCD can potentially identify specific biomarkers 

associated with neurodegenerative diseases. This advance could revolutionize early 

diagnosis of Alzheimer’s disease and other dementias as a cost-effective tool.  

Beyond medical applications, HSI techniques are branching out into various other 

fields, ranging from agriculture and environmental monitoring to industrial quality 

control and mineral exploration. 
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Chapter 3: Intraoperative HS 

acquisition system for brain surgical 

diagnostics and guidance 

3.1 Introduction 

This chapter presents the intraoperative HS acquisition system for brain surgery 

diagnosis and guidance. The developments in this PhD Thesis build on a system that 

was previously developed as part of the European HELICoiD project, funded by the 

Research Executive Agency under Grant Agreement 618080, through the Future and 

Emerging Technologies (FET-Open) Programme and under the 7th Framework 

Programme of the European Union [123], [124]. The system that served as a starting 

point for this research, was designed as a proof of concept with the goal of delineating 

brain tumors during surgical procedures. By exploiting the existing system, this 

dissertation aims to extend its capabilities, refine its functionalities, and explore new 

avenues of application. Part of the research carried out in this dissertation was related 

to the Regional Project ITHaCA, funded by the Canary Islands Government through the 

ACIISI (Canarian Agency for Research, Innovation, and the Information Society) under 

Grant Agreement ProID20170101641.  

The original intraoperative HS acquisition system consisted of two pushbroom HS 

cameras covering the VNIR spectral range from 400 to 1000 nm, and the NIR spectral 

range from 900 to 1700 nm. The HS cameras and the illumination system were 

mounted on a scanning platform to enable movement. However, only HS images of the 

VNIR HS camera were used during the HELICoiD project for the algorithm’s 

development. In this dissertation, several optimizations were performed to the original 

system. Employing the optimized intraoperative HS acquisition system, an in-vivo HS 

human brain image database was generated. Using this database, a new approach was 

proposed to perform spectral fusion of two HS cubes obtained with two different HS 

cameras covering the VNIR and NIR spectral range, aiming to obtain a broadband HS 

cube. This fusion procedure was investigated targeting an improvement of the previous 

results in the processing of the intraoperative HS brain tumors including NIR 

information. Furthermore, combining the VNIR database generated in this dissertation 

 
1 ithaca.iuma.ulpgc.es  

https://ithaca.iuma.ulpgc.es/
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and the one captured with the previous HS system [124], vascular enhanced maps 

hemoglobin spectral ratios were proposed, and different analyses using spectral and 

spatial information were performed to detect and delineate brain tumors with a robust 

validation methodology.  

The work related to the HS analysis using SU was performed in collaboration with 

the research group of Prof. Daniel Ulises Campos-Delgado at the Faculty of Sciences of 

the Universidad Autónoma de San Luis Potosí (UASLP), Mexico. The work related with 

the data collection in the operating theater was carried out in a very close collaboration 

with the neurosurgery department led by Dr. Jesús Morera (having a special role in the 

research Dr. Adam Szolna and Dr. Juan F. Piñeiro) from the University Hospital of 

Gran Canaria Doctor Negrin of Las Palmas de Gran Canaria and also with Dr. 

Bernardino Clavo from the Research Unit of the same hospital.  

3.2 Optimization of the Intraoperative HS Acquisition 

System 

The intraoperative HS acquisition system developed in the European Project 

HELICoiD (Figure 3-1.a and Figure 3-1.b) was modified to optimize the system to 

evaluate the delineation of brain tumors during surgical operations by using the VNIR 

and NIR spectral ranges. The original system had several limitations that affected the 

possible use of the two HS image types and also the real-time performance of the 

system. Therefore, improvements to the original system were proposed to reduce the 

acquisition time and increase the quality of the captured images from both HS cameras.  

 

Figure 3-1: Original intraoperative HS acquisition system. a) HS acquisition system being used 
during a neurosurgical operation at the University Hospital of Gran Canaria Doctor Negrin (Spain). b) 
Original camera position (1) VNIR HS camera, (2) NIR HS camera, (3) cold light emitter. c) Example of a 
VNIR and a NIR HS image captured from the same scene.  

This HS acquisition system was composed by two pushbroom HS cameras: the VNIR 

camera covered the spectral range between 400 and 1000 nm and the NIR camera 

between the 900 and 1700 nm (1 and 2 in Figure 3-1.b). The illumination system was 

based on a QTH lamp of 150 W with a broadband emission between 400 and 2200 nm. 

The light source was connected to a cold light emitter (3 in Figure 3-1.b) through an 

optical fiber to avoid the high temperatures of the QTH lamp in the exposed brain 

surface. The HS cameras and the cold light emitter were installed in a scanning 

platform to provide the necessary movement for the pushbroom technique to generate 

the complete HS cubes. The working distance between the lens of the cameras and the 

exposed brain tissue was 40 cm. The field of view of both cameras was oriented and 
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aligned to the beam of the cold light emitter to obtain the highest reflectance value in 

the sensors (Figure 3-1.b). As a result, both cameras were tilted to capture the same 

FOV, but this meant that both HS cubes had different perspectives of the scene and it 

was not possible to achieve an accurate registration for data fusion (Figure 3-1.c).  

3.2.1 Improvements in the HS Cameras Positioning 

In this dissertation, different modifications of the intraoperative HS acquisition 

system were performed to achieve the optimal orientation of the cameras respect to the 

exposed brain surface. In the original intraoperative HS acquisition system (Figure 

3-2.a), both cameras were adjusted at a 15º angle to capture the same FOV, resulting 

that each HS cube had a different perspective view of the scene.  

 

Figure 3-2: The original and the different modifications performed to the intraoperative HS 
acquisition system. a) Original. b) First modification. c) Second modification. d) Third and selected 
modification.  

The first proposed variation of the intraoperative HS acquisition system was to 

eliminate the tilt of the original HS camera system (Figure 3-2.b). In this variant, the 

HS cameras are arranged in a coupled manner, where the line to be acquired coincides 

for both cameras. This modification was made to avoid the addition of another light 

source. With this arrangement, the scanning movement for both HS cameras is the 

same and the HS cubes can be acquired in parallel in the same scan, reducing 

acquisition times. However, this modification presents a problem. When analyzing the 

HS images for the area of interest of approximately 10 cm (commonly maximum 

exposed brain surface after craniotomy) and at the minimum allowed working distance 

(due to safety restrictions in the operating theater) between the lens and the exposed 

brain (30 cm), the HS cube formed by both cameras has a common area of less than 1 

cm. In order to capture the same area of interest for both HS cameras the working 
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distance would have to be increased and this would cause a loss of spatial resolution 

and could affect the accuracy of tumor classification. Therefore, another solution was 

proposed. 

The second proposed variation follows the main objective of the previous variation 

to avoid tilting of the HS cameras (Figure 3-2.c). This changes from a single point 

where both HS cameras focus to two different points separated by a certain distance. In 

this case, it is necessary to add a second light source to provide illumination for each 

HS camera independently. The acquisition process for this setup starts from idle state 

and the motor moves the HS cameras, placing the VNIR lens at the beginning of the 

region of interest (ROI). The VNIR acquisition begins, moving the HS cameras to 

generate the HS cube. When the VNIR lens leaves the ROI, the acquisition of that HS 

camera ends. The motor then moves the cameras to bring the NIR into the area of 

interest and begin acquisition. This configuration has a problem when capturing the HS 

cube for both cameras. Due to the size of the scanning platform, the acquisition of the 

second HS camera is interrupted before the acquisition process is complete. The 

distance between the lenses is too large and insurmountable due to the structure of 

these cameras, so other alternatives were considered. 

Finally, the third option is to place the HS cameras without tilting to ensure that the 

area of interest coincides in the two HS images (Figure 3-2.d). In this configuration, the 

goal is to reduce the distance between the lenses to ensure that the scan can be 

performed completely. To do this, one HS camera is placed on top of the other to 

reduce the distance between the HS camera housings. This means that one HS camera 

is further away from the area of interest than the other, but this is compensated for by 

the fact that the VNIR HS camera has a higher spatial resolution than the NIR HS 

camera. The acquisition process for this setup starts from an idle state, placing the 

VNIR lens at the beginning of the ROI. Before the VNIR camera finishes capturing the 

entire area, the NIR lens enters the area of interest, capturing both HS cameras 

simultaneously. Subsequently, the VNIR HS camera stops capturing and later the NIR 

HS camera finishes the capture. 

After modifying the intraoperative HS acquisition system, both HS cameras had a 

similar FOV, allowing an accurate image registration. The working distance between 

the lens of the cameras and the area to be captured were ~33 and ~42 cm for the NIR 

and VNIR cameras, respectively, to obtain the sharpest focus. In addition, the 

acquisition time of the modified system to capture both HS cubes was reduced to ~60 s, 

performing only a scanning in a single direction. This improvement represented a time 

reduction of 1 min, due to the original system required ~80 and ~40 s for the VNIR and 

NIR HS cubes capturing, respectively, involving two scanning movements in both 

directions as shown in Figure 3-2.a. Finally, the optimized intraoperative HS 

acquisition system was validated during neurosurgical interventions (Figure 3-3) and 

after the modifications the system was composed by: a NIR and a VNIR HS camera (1 

and 2 in Figure 3-3.b, respectively), and two illumination systems based on a QTH 

lamp of 150 W (3 and 4 in Figure 3-3.b), one for each HS camera. Each light source was 

connected to a cold light emitter (5 and 6 in Figure 3-3.b) through an optical fiber to 

avoid the high temperatures of the QTH lamp in the exposed brain surface. 
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Figure 3-3: Modified intraoperative HS acquisition system. a) HS acquisition system being used 
during a neurosurgical intervention at the University Hospital of Gran Canaria Doctor Negrin (Spain). b) 
Final HS camera distribution (1) NIR HS camera, (2) VNIR HS camera, (3) VNIR illumination system, (4) 
NIR illumination system, (5) NIR cold light emitter, (6) VNIR cold light emitter. 

3.2.2 Graphical Interface for Control, Acquisition and Processing 

The HELICoiD project was not focused on the creation of a single graphical interface 

to perform the various stages of data acquisition and processing, working in real-time 

in the operating room. These stages include motor control, image acquisition, image 

display, image processing and classification, and presentation of classification maps.  

In the work presented in this dissertation, a unified graphical interface (Figure 3-4) 

was developed, integrating different SDKs (Software Development Kits) necessary to 

control the VNIR and NIR HS cameras, as well as the motor controller for camera 

movement. The software allowed the acquisition of the black and white reference of 

both HS cameras, making possible to perform the pre-processing and post-processing 

of the HS images in the same application. The system had a positioning camera that 

allowed the visualization of the area to be scanned by the HS cameras, since these 

cameras only capture a spatial line and, therefore, it is impossible to determine the 

exact position over the exposed brain surface. For this reason, an RGB camera was 

included and aligned with the HS cameras to identify the area of the brain to be 

captured. The software shows the continuous visualization of the RGB image of the 

positioning camera (1 in Figure 3-4.a) and the synthetic RGB images of the NIR and 

VNIR cameras after finishing the capturing process (2 and 3 in Figure 3-4.a, 

respectively). After viewing the HS images, image processing can be performed, which 

included pre-processing and post-processing using the framework explained in Section 

3.5. An advantage of this software is that the HS image can be cropped by adjusting the 

ROI, thus reducing the processing time. Finally, the presentation of the thematic map 

(generated using the VNIR data) is displayed together with the synthetic RGB image of 

the VNIR (2 and 1 in Figure 3-4.b, respectively) 

In addition to the aforementioned characteristics, an approach to optimize the focus 

of the system was developed, guiding the user during this process that required to 

displace up or down the head were the cameras were mounted. Several focusing 

algorithms were analyzed, including derivative, statistical, and histogram-based 

algorithms [192]. The output of an ideal focus algorithm is defined as having a 

maximum value at the best-focused image. It decreases as defocus increases. However, 

the choice of the algorithm was determined by its ease of implementation and reduced 
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computational time, prioritizing simplicity and computational efficiency. For this 

reason, the Squared Gradient (SG) derivative-based algorithm was selected. This 

algorithm sums the squared differences, making larger gradients have more influence. 

Eq. (26) compute the SG where 𝑓(𝑥, 𝑦) is the luminance or grayscale level at pixel (𝑥, 𝑦) 

in an image of size M×N pixels. 

𝑆𝐺 =  ∑ ∑[𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥, 𝑦)]2
𝑁−1

𝑦=0

𝑀−2

𝑥=0

 

𝑖𝑓 [𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥, 𝑦)]2 ≥∈ 

(26) 

 

Figure 3-4: Graphical interface for control and acquisition. a) Graphical interface with (1) live 
positioning camera, (2) synthetic RGB NIR image, (3) synthetic RGB VNIR image. b) Classification results 
after processing the VNIR data, (1) synthetic RGB VNIR image after cropping the region of interest, (2) 
thematic map. 

In our case, the image used is a pushbroom frame (namely Y-lambda image or Yλ 

image). In pushbroom systems, the Yλ images are employed for focusing the HS 
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camera. This image is a conventional 2-D grayscale image where the λ-axis represents 

the spectral dimension, the Y-axis represents the spatial dimension, and the gray level 

indicates the luminance for a certain pixel. The SG was calculated in real-time in the 

software and was used to position the intraoperative HS acquisition system over the 

exposed brain at the correct distance from the exposed brain to the lens to acquire a 

focused HS image. Every 500 ms, a Yλ frame was captured (Figure 3-5.a) to calculate 

the SG. The results were plotted on a graph in the graphical user interface (Figure 

3-5.b), where the value was updated every 500 ms. At the same time, the intraoperative 

HS acquisition system was moved in the Y-axes by a 24 VDC motor coupled to a 

spindle. By observing the SG graph, the optimal position was found to obtain a focused 

HS image. 

 

Figure 3-5: Focus procedure using the SG algorithm. a) Y-lambda images. b) Grey level intensity 
computed using squared gradient. 

3.2.3 Intraoperative HS Acquisition System Integration 

In summary, the HS acquisition system consists of several submodules that 

communicate directly with the control unit. Figure 3-6 shows how each module 

communicates with the control unit. The two HS cameras are directly connected to the 

control unit via USB 2.0 for the NIR camera and Camera Link for the VNIR camera. 

These HS cameras are mounted on the scanner platform, which communicates directly 

with the control unit via the RS-232 serial interface. The linear movement of this 

platform is performed in the graphical interface for control and acquisition, where the 

user can control its movement. In this interface, the user can start the acquisition of the 

HS images, visualize its acquisition and subsequent result, and control the system 

through the display port. The HS images captured by both HS cameras are stored in the 

control unit's memory, which is accessible by the visualization software. This software 

is responsible for accelerating the HS image post-processing algorithm. The 

acceleration is performed by an NVIDIA STRIX-GTX1060 GPU, which communicates 

directly with the control unit via PCI Express 3.0. 
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Figure 3-6: Block diagram of the different modules that composed the HS acquisition 
system. 

3.3 Enhanced In-vivo and Ex-vivo Hyperspectral Human 

Brain Image Database for Brain Cancer Detection 

After the optimization of the intraoperative HS acquisition system, this system was 

used to generate a new HS human brain cancer database, captured during the 

execution of the ITHaCA project. This new database allowed to augment the database 

previously collected in the HELICoiD project [124], making possible to perform more 

robust analyses on the HS images and to validate the ML results for both classification 

and data fusion methods. The procedure for capturing the HS images is shown in 

Figure 3-7.  

 

Figure 3-7: HS data acquisition and labelling procedure during surgery. In the ground-truth 
map, red represents tumor labelled pixels, green normal pixels, blue hypervascularized pixels, and black 
background pixels. Meanwhile, white represents non-labelled pixels. 
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First, a craniotomy was performed to the patient by using IGS neuronavigation and 

then, the durotomy was accomplished to expose the brain surface. Next, the acquisition 

system was placed over the patient’s brain to acquire the HS image. In some 

questionable cases, rubber ring markers were placed over tumor and normal tissue 

areas according to the IGS system information to later identify the tissue type. After 

that, tumor tissue was resected for neuropathological evaluation to achieve the 

definitive diagnosis of the tumor. When possible, more than one HS image was 

acquired while the tumor was being resected.  

HS images were manually cropped to select the ROI where the parenchymal area 

was exposed. Afterwards, the data were labelled by using information provided by 

neuropathologists and the knowledge of the operating surgeons through a semi-

automatic labelling tool based on the Spectral Angle Mapper (SAM) algorithm 

developed to this end [124]. The SAM algorithm is an automated method for comparing 

the spectra in the pixels of an HS image with a known spectrum obtained from a 

reference pixel. The procedure to generate the neurosurgeon’s ground truth map is as 

follows:  

1) The operating surgeon selects a reference pixel from the synthetic RGB 

image.  

2) Then, the most similar pixels to the selected reference pixel are highlighted, 

after computing the SAM algorithm.  

3) The threshold to indicate if a pixel is considered similar or not the reference 

pixel is configurable by the user to adjust tolerance levels on selected pixels. 

This threshold is computed using SAM algorithm. Once only the pixels 

belonging to a single class are highlighted, they are assigned to that class. 

Neurosurgeons are advised to only select a few sets of highly reliable pixels 

rather than a broader set that may be uncertain.  

The ground-truth maps were composed by four classes (acronym – pixel color): 

tumor tissue (TT – red), normal tissue (NT – green), blood vessels (BV – blue) and 

background (BG – black). White pixels in the ground-truth maps represented the non-

labelled pixels, since only pixels with high confidence to belong to a certain class were 

labelled. Several images in the database do not contain tumor pixels due to the 

impossibility of performing a reliable labelling or due to the patient underwent surgery 

for another pathology, such as a blood clot or epilepsy.  

The data acquisition campaign was carried out at the University Hospital of Gran 

Canaria Doctor Negrin, Spain, from July 2019 to October 2019. Written informed 

consent was obtained from all participant subjects, and the study protocol and consent 

procedures were approved by the Comité de Ética de la Investigación / Comité de Ética 

de la Investigación con Medicamentos (CEI/CEIM) of the University Hospital Doctor 

Negrin (2019-001-1). All the research methodologies were performed in accordance 

with relevant guidelines/regulations. This data campaign was capture using the new 

configuration of the acquisition system, explained in Section 3.2. During this data 

campaign, nine neurosurgeries were attended and a total of 15 images were acquired. 

Finally, this data campaign (called the third data campaign) consists of 10 images from 

8 different patients, after excluding some images that were acquired in non-optimal 

conditions.  
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During the HELICoiD project, two data acquisition campaigns were carried out at 

the University Hospital of Gran Canaria Doctor Negrin, Spain [124]. The first data 

campaign was conducted from March 2015 to June 2016, and the second from October 

2016 to April 2017. Written informed consent was obtained from all the participant 

subjects. The study protocol and consent procedures were approved by the Comité 

Ético de Investigación Clínica-Comité de Ética en la Investigación (CEIC/CEI) of the 

University Hospital Doctor Negrín (130069). All the research methodologies were 

performed in accordance with relevant guidelines/regulations.  

Table 3-1 summarizes the in-vivo HS images (Figure 3-8.a) acquired in HELICoiD 

and ITHaCA projects, showing the number of patients (identified as Op𝑥: operation 

number) and HS images (identified as C𝑦: capture number) captured in each data 

campaign, the image dimensions, the number of labelled pixels, and the definitive 

pathological diagnosis. Table 3-2 summarizes the ex-vivo HS images (Figure 3-8.b) 

captured in HELICoiD and ITHaCA projects. Figure 3-8.c shows the number of 

patients and HS images of each data acquisition campaign before and after excluding 

the HS images that were captured in non-optimal conditions.  

 

 

Figure 3-8: HS in-vivo and ex-vivo database. a) Example of HS in-vivo image. b) Example of HS ex-
vivo image. c) Patient/image flow scheme of the enhanced in-vivo (in parentheses) and ex-vivo (in 
brackets) HS human brain image database. n: number of HS images; m: number of patients. 
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Table 3-1: Summary of the enhanced in-vivo HS human brain image database.  

Campaign 
Image 

ID 
Size 

(H×W) 
#Labeled Pixels 

Diagnosis 
NT TT BV BG 

F
ir

st
 D

a
ta

 C
a

m
p

a
ig

n
 

Op04C2 389×345 5,007 0 965  1,992  Normal Brain 
Op05C1 483×488 6,061  0 1,727  20,483  Renal Carcinoma (S) 
Op07C1 582×400 7,714 0 1,089  0 Normal Brain 
Op08C1 460×549 2,295  1,221  1,331 630  G4 Glioblastoma (P) 
Op08C2 480×553 2,187 138  1,000 7,444  G4 Glioblastoma (P) 
Op10C3 371×461 10,626  0 2,332  3,972  G4 Glioblastoma (P) 
Op12C1 443×497 4,516  855  8,697  1,685  G4 Glioblastoma (P) 
Op12C2 445×498 6,553  3,139  6,041  8,731  G4 Glioblastoma (P) 
Op13C1 298×253 1,827  0 129  589  Lung Carcinoma (S) 
Op14C1 317×244 0 30  64  1,866  G4 Glioblastoma (P) 
Op15C1 376×494 1,251  2,046  4,089  696  G4 Glioblastoma (P) 
Op16C1 335×323 3,970  0 246  12,002  Normal Brain 
Op16C2 335×326 349  0 0 2,767  Normal Brain 
Op16C3 315×321 603  0 234  1,696  Normal Brain 
Op16C4 383×297 1,178  0 1,064  956  G4 Glioblastoma (P) 
Op16C5 414×292 2,643  0 452  5,125  G4 Glioblastoma (P) 
Op17C1 441×399 1,328  0 68  3,069  G4 Glioblastoma (P) 
Op18C1 479×462 13,450  0 488  9,773  G1 Ganglioglioma (P) 
Op18C2 510×434 4,813  0 958  5,895  G1 Ganglioglioma (P) 
Op19C1 601×535 6,499  0 1,350  1,933  G1 Meningioma (P) 
Op20C1 378×330 1,842  3,655  1,513  2,625  G4 Glioblastoma (P) 
Op21C1 452×334 3,405  167  793  5,330  Breast Carcinoma (S) 
Op21C2 448×324 2,353  31  555  2,137  Breast Carcinoma (S) 
Op21C5 433×340 969  0 1,637  1,393  Breast Carcinoma (S) 
Op22C1 597×527 2,806  0 1,064  3,677  G3 Anaplastic Oligodendroglioma (P) 
Op22C2 611×527 8,174  0 680  0 G3 Anaplastic Oligodendroglioma (P) 
Op22C3 592×471 0 96  0 0 G3 Anaplastic Oligodendroglioma (P) 

S
ec

o
n

d
 D

a
ta

 C
a

m
p

a
ig

n
 

Op34C1 319×356 0 0 0 15,609 G3 Anaplastic Astrocytoma (P) 
Op34C2 300×342 512 145 0 12,979 G3 Anaplastic Astrocytoma (P) 
Op34C3 290×301 0 360 0 10,533 G3 Anaplastic Astrocytoma (P) 
Op35C1 431×503 9,025 0 7,287 485 G2 Oligodendroglioma (P) [DL] 
Op35C2 312×535 0 1,338 629 1,353 G2 Oligodendroglioma (P) 
Op36C1 412×324 11,665 0 4,461 4,621 G4 Glioblastoma (P) [DL] 
Op36C2 432×322 2,940 888 2,980 5,853 G4 Glioblastoma (P)  
Op37C1 434×453 12,719 0 2,524 11,161 G4 Glioblastoma (P) [DL] 
Op37C2 315×526 2,997 0 375 4,166 G4 Glioblastoma (P) 
Op37C3 290×422 3,201 407 0 0 G4 Glioblastoma (P) 
Op37C4 280×444 0 330 0 0 G4 Glioblastoma (P) 
Op38C1 497×490 18,511 2,295 4,229 3,669 G1 Meningioma (P) 
Op39C1 415×446 4,003 244 489 9,829 G4 Glioblastoma (P) 
Op39C2 399×439 7,705 1,629 822 9,867 G4 Glioblastoma (P) 
Op40C1 303×374 2,728 394 1,151 3,492 G1 Meningioma (P) 
Op40C2 294×344 817 700 2,130 902 G1 Meningioma (P) 
Op41C1 449×486 2,359 69 1,047 5,030 G1 Ganglioglioma (P) 
Op41C2 437×488 4,874 158 2,150 4,888 G1 Ganglioglioma (P) 
Op42C1 629×646 20,565 0 10,956 8,991 G2 Astrocytoma (glioma) (P) 
Op42C2 623×584 19,435 428 5,110 3,983 G2 Astrocytoma (glioma) (P) 
Op42C3 650×582 2,385 401 979 716 G2 Astrocytoma (glioma) (P) 
Op43C1 575×543 28,285 1,177 4,012 5,995 G4 Glioblastoma (P) 
Op43C2 554×446 17,236 475 2,103 1,964 G4 Glioblastoma (P) 
Op43C3 522×533 11,798 589 2,727 1,587 G4 Glioblastoma (P) 
Op43C4 538×525 14,160 0 4,749 687 G4 Glioblastoma (P) 

T
h

ir
d

 D
a

ta
 C

a
m

p
a

ig
n

 Op50C1 565×533 2,116 1,091 620 5,502 G1 Meningioma (P) 
Op51C1 635×617 1,164 0 424 31,247 G4 Glioblastoma (P) 
Op53C1 546×446 361 5,549 0 33,606 Breast Carcinoma (S) 
Op54C1 515×504 2,697 0 3,506 9,535 G4 Glioblastoma (P) 
Op55C1 397×435 3,128 0 901 8,278 G3 Astrocytoma (glioma) (P) 
Op55C2 500×349 0 1,046 545 9,415 G3 Astrocytoma (glioma) (P) 
Op56C1 446×598 1,346 4,081 2,200 28,370 G2 Astrocytoma (glioma) (P) 
Op56C2 467×566 1,326 372 1,116 7,702 G2 Astrocytoma (glioma) (P) 
Op57C1 440×535 1,773 771 1,263 23,415 Breast Carcinoma (S) 
Op58C2 721×752 6,589 1,629 4,565 43,565 G2 Meningioma (P) 

Total labeled pixels 305,449 37,944 101,305 405,401  
NT: Normal; TT: Tumor; BV: Blood vessel; BG: Background; S: Secondary; P: Primary; G1: Grade 1; G2: Grade 2; G3: 
Grade 3; G4: Grade 4; DL: Deep layer tumor; H: Height; W: Width. 
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Table 3-2: Summary of the enhanced ex-vivo HS human brain image database, including 
spatial and spectral dimension, and the diagnosis.  

Campaign Image ID 
Size  

(H×W) 
Diagnosis 

F
ir

st
 D

a
ta

 
C

a
m

p
a

ig
n

 Op08C3 158×196 G4 Glioblastoma (P) 
Op15C2 146×182 G4 Glioblastoma (P) 
Op15C3 326×270 G4 Glioblastoma (P) 
Op21C3 215×223 Breast Carcinoma (S) 
Op21C4 214×229 Breast Carcinoma (S) 

T
h

ir
d

 D
a

ta
 

C
a

m
p

a
ig

n
 

Op50C2 431×412 G1 Meningioma (P) 
Op50C3 518×693 G1 Meningioma (P) 
Op56C3 228×197 G2 Astrocytoma (glioma) (P) 
Op56C4 210×213 G2 Astrocytoma (glioma) (P) 
Op57C3 159×140 Breast Carcinoma (S) 
Op57C4 169×149 Breast Carcinoma (S) 
Op58C3 330×346 G2 Meningioma (P) 
Op58C4 455×338 G2 Meningioma (P) 
Op58C5 390×205 G2 Meningioma (P) 

S: Secondary; P: Primary; G1: Grade 1; G2: Grade 2; G4: Grade 4; H: Height; W: Width. 

The enhanced in-vivo HS human brain image database was composed by a total of 

61 HS images from 34 adult patients with brain tumors. The summary of the patient 

demographics and clinic data is shown in Table 3-3. Ages ranged from 30 to 73 years, 

with a median age of 51.5 years. Among these patients, there were 21 males and 13 

females. Of these 34 patients, 28 (82.4%) had a primary tumor. The most frequency 

primary grade was the G4 (44.1%, 𝑛 = 15), followed by G1 and G2 (14.7%, 𝑛 = 5 each 

one), while the 8.8% (𝑛 = 3) of the tumors were G3. The remaining 6 (17.6%) tumors 

were secondary: 3 from breast carcinoma, 2 from lung (one adenocarcinoma and one 

carcinoma), and 1 from kidney (renal carcinoma). Most of tumors were located in the 

right temporal lobe (23.5%, 𝑛 = 8), followed by the left frontal and right parietal lobes 

(20.6%, 𝑛 = 7 each).  

Table 3-3: Summary of patient demographic and tumor characteristics. 

Variable  
[patients with no missing values/Total patients] 

Characteristic  
Total  

(n) 
%  

Sex [34/34] 
Male 21 61.8 

Female 13 38.2 

Age [33/34] 
Median 51.5 - 
Range 30-73 - 

Tumor Type [34/34] 
Primary 28 82.4 

Secondary 6 17.6 

Primary Tumor Grade [28/34] 

WHO Grade 1 5 14.7 
WHO Grade 2 5 14.7 
WHO Grade 3 3 8.8 
WHO Grade 4 15 44.1 

Metastasis [6/34]  
Breast 3 8.8 
Lung 2 5.9 

Kidney 1 2.9 

Location [34/34] 

Right Frontal Lobe 3 8.8 
Left Frontal Lobe 7 20.6 

Right Parietal Lobe 7 20.6 
Left Parietal Lobe 4 11.8 

Right Temporal Lobe 8 23.5 
Left Temporal Lobe 1 2.9 
Right Occipital Lobe 2 5.9 
Left Occipital Lobe 1 2.9 

Cerebellum 1 2.9 
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3.4 Vascular Enhanced Maps using a Diffuse Absorbance 

Hemoglobin Spectral Ratio Framework  

Spectral ratios have been used in the literature to discriminate between different 

types of tissues in a variety of imaging methods including diffuse reflectance 

spectroscopy [193] and HSI [194]. Fu et al. proposed the use of the ratio between 545 

and 560 nm (named R545/R560) to calculate the degree of cerebral ischemia [194]. 

The spectral channel of 545 nm is an isosbestic band of oxygenated hemoglobin and 

deoxygenated hemoglobin, which is independent of changes in saturation. The spectral 

channel of 560 nm is the spectral band where the largest difference between 

oxyhemoglobin and deoxyhemoglobin occurs [194]. The R545/R560 ratio reflects a 

maximized difference between deoxyhemoglobin and oxyhemoglobin, that was studied 

to help in the identification of brain ischemia using HSI, as well as the application of 

classification thresholds based on these ratios to distinguish necrosis from normal 

brain tissue [194]. 

In the work presented in this section, the R545/R560 spectral ratio was employed to 

perform an evaluation of in-vivo and ex-vivo tumor tissue samples captured with the 

optimized HS acquisition system. For this purpose, seven HS images from the in-vivo 

database and their corresponding ex-vivo samples (presented in Section 3.3) were used, 

selecting two wavelengths (545 and 560 nm) to compute the absorbance R545/R560 

spectral ratio. In addition, the in-vivo HS images were used to generate heat maps and 

vascular enhanced maps, demonstrating the potential of this framework to be used as 

intraoperative surgical guidance system in real-time.  

The proposed method for computing the absorbance spectral ratio and performing 

the comparison between the in-vivo and ex-vivo tissue samples is summarized in 

Figure 3-9.  

 
Figure 3-9: Block diagram of the proposed diffuse absorbance spectral ratio processing 
framework. 

First, the raw HS images acquired with the intraoperative acquisition system were 

pre-processed and the spectral data were converted from reflectance to absorbance 

values. In the case of the in-vivo HS images, only the labeled pixels were used to 

perform the spectral analysis (Figure 3-9.a). In the case of ex-vivo HS images, the 

complete samples were employed, splitting the HS image into different regions using 

          
               

                                         
           

                                         
               

                     

                     

 

 

 

 



Chapter 3: Intraoperative HS acquisition system for brain surgical diagnostics and guidance 

~ 52 ~ 

an unsupervised segmentation method (Figure 3-9.b). Finally, HbRatio-based 

heatmaps of the in-vivo HS images were generated using the R545/R560 spectral ratio 

(Figure 3-9.c). A qualitative evaluation of the different tissue structure was performed. 

In addition, an analysis of the distribution of the R545/R560 ratio in labeled blood 

vessel pixels was employed to automatically enhance their structures in the in-vivo 

images (Figure 3-9.d). These vascular enhanced maps were produced using the first 

and third quartiles of the distribution as limits.  

3.4.1 Spectral comparison of in-vivo and ex-vivo samples  

Seven in-vivo and fourteen ex-vivo HS images obtained from seven different 

patients were used in this work, extracted from the database presented in Section 3.3. 

The in-vivo HS images were previously labeled using the semi-automatic labelling tool 

based on the SAM algorithm. Table 3-4 summarizes the characteristics of the HS 

images employed and the labeled pixels, where a total of 44,964 pixels were labeled 

into three different tissue classes: 10,977 pixels of TT, 17,925 pixels of NT and 16,062 

pixels of BV. The ex-vivo images were not labeled at the pixel level, and images 

captured at different working distances (different focus of the scene that could cause 

blurred data) were analyzed to determine if the differences in focus could affect the 

results. The HS images were pre-processed following the different steps presented in 

Section 2.4.1, applying data calibration, spectral noise reduction, and extreme band 

removal. Finally, the resulting HS cube, composed of 645 spectral bands, was converted 

to absorbance following Eq. (2) presented in Section 2.4.1. 

Table 3-4: Summary of the labeled dataset employed to perform the diffuse absorbance 
hemoglobin spectral ratio framework. 

Patient ID Image ID Sample type 
#Labeled Pixels 

NT TT BV 

Op08 
C2 In-Vivo 2,187 138 1,000 
C3 Ex-Vivo - - - 

Op15 
C1 In-Vivo 1,251 2,046 4,089 
C2 Ex-Vivo - - - 
C3 Ex-Vivo - - - 

Op21 
C1 In-Vivo 2,663 1,221 2,325 
C3 Ex-Vivo - - - 
C4 Ex-Vivo - - - 

Op50 
C1 In-Vivo 2,116 1,091 620 
C2 Ex-Vivo - - - 
C3 Ex-Vivo - - - 

Op56 
C1 In-Vivo 1,346 4,081 2,200 
C3 Ex-Vivo - - - 
C4 Ex-Vivo - - - 

Op57 
C1 In-Vivo 1,773 771 1,263 
C3 Ex-Vivo - - - 
C4 Ex-Vivo - - - 

Op58 

C2 In-Vivo 6,589 1,629 4,565 
C3 Ex-Vivo - - - 
C4 Ex-Vivo - - - 
C5 Ex-Vivo - - - 
Total 17,925 10,977 16,062 

NT: Normal; TT: Tumor; BV: Blood vessel. 

The K-means algorithm was applied to the ex-vivo HS images in order to segment 

the tissue samples into different clusters (tissue regions with similar spectral 

characteristics). The number of clusters was determined by using clustering evaluation 

methods (Calinski Harabasz, Davies Bouldin, and Silhouette) in each HS image 

independently, and without taking account the background of the image (mainly 
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composed by the white gauze where the tissue sample was placed). The background 

was manually segmented. As shown in Figure 3-10, Op08C3 is composed by three 

pieces and each piece was consider as an independent image for the analysis. After 

applying the three cluster evaluation methods, it was found that the optimal number of 

clusters obtained for almost all HS ex-vivo images was two, except for Op50C3 (six 

clusters), and Op58C4 and Op58C5 (five clusters, both). Figure 3-10 shows the 

obtained ex-vivo segmentation maps. Additionally, it is worth noticing that Op21C3 and 

Op21C4, which were captured with different working distances (and hence different 

focus), obtained similar segmentation maps. 

 

Figure 3-10: Ex-vivo segmentation maps applying K-means algorithm (colors are randomly 
assigned). 

After extracting the spectral signatures from the in-vivo and ex-vivo HS images, 

these spectral signatures were employed to evaluate the absorbance values in the 

different tissue samples. Figure 3-11 shows a comparison between in-vivo and ex-vivo 

spectral signatures. To achieve this comparison, the mean spectral signatures of each 

class (NT, TT, and BV) was obtained using the in-vivo HS images (solid lines).  

After tumor resection, the ex-vivo samples were captured and segmented into 

different clusters (named CL# in the figure), obtaining the mean spectral signatures 

from each cluster (dashed lines). It can be observed that in the in-vivo samples the 

absorbance values of BV pixels between 500 and 600 nm are higher than in tumor and 

normal tissue, having normal tissue the lowest absorbance values. The ex-vivo spectral 

signatures have different absorbance values depending on the clusters obtained in the 

HS images. This can be related to differences between tissue types in the resected 

sample, which can involve tumor and the surrounding healthy tissue in some cases. Ex-

vivo spectral signatures from Op21C3 and Op21C4 (CL1 (C3) - CL1 (C4) and CL2 (C3) – 

CL2 (C4) in Figure 3-11.c) are overlapping indicating, in this case, that having a slightly 

different focus does not affect the spectral signature. However, in Op56C3 and Op56C4 

(CL1 (C3) - CL1 (C4) and CL2 (C3) – CL2 (C4) in Figure 3-11.e) the amplitudes are 

similar but not overlapped, this can be produced due to both images have higher 

differences in focus than Op21. 



Chapter 3: Intraoperative HS acquisition system for brain surgical diagnostics and guidance 

~ 54 ~ 

 

Figure 3-11: Mean spectral signatures of the different classes labelled in the in-vivo samples 
(solid lines) and the different clusters (dashed lines) obtained from the corresponding 
resected ex-vivo tissue (from different captures). a) Op08, b) Op15, c) Op21, d) Op50, e) Op56, f) 
Op57, and g) Op58. TT: Tumor Tissue; NT: Normal Tissue; BV: Blood Vessels; CL#: Cluster; C#: Capture; 
S#: Segment of capture Op08C3 where there are three pieces of tissue. 

3.4.2 Statistical analysis of the R545/R560 spectral ratio between 

in-vivo and ex-vivo samples 

Figure 3-12 shows the boxplots of the R545/R560 spectral ratios obtained in the 

different tissue types. These results show that, in the in-vivo samples, NT achieved 

higher ratios followed by TT and BV. Additionally, it can be observed that higher ratio 

values were obtained in the ex-vivo data respect to the in-vivo data. However, ex-vivo 

data present high interquartile rages (IQR). Lower values of the R545/R560 spectral 

ratio involve higher hemoglobin contributions, as the wavelength of 560 nm maximizes 

the difference between oxyhemoglobin and deoxyhemoglobin. In this sense, it is 

possible to observe that in the in-vivo samples, as expected, the blood vessel class has 

the lowest ratio values, while the normal class has the highest. In the case of the tumor 

class, the ratio values are lower than the normal class due to the hypervascularization 

produced by the tumor. 
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Figure 3-12: Boxplots of the R545/R560 spectral ratios from the different classes labelled in 
the in-vivo samples and the different clusters obtained from the corresponding resected ex-
vivo tissue (from different captures). a) Op08, b) Op15, c) Op21, d) Op50, e) Op56, f) Op57, and g) 
Op58. TT: Tumor Tissue; NT: Normal Tissue; BV: Blood Vessels; CL#: Cluster; C#: Capture; S#: Segment 
of capture Op08 where there are three pieces. 
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3.4.3 In-vivo HbRatio-based heatmaps and vascular enhanced maps 

Using the R545/R560 spectral ratios and the first and third quartiles as threshold 

points, the HbRatio-based heatmaps and vascular enhanced maps were generated as 

shown in Figure 3-13. A Gaussian smoothing filter was applied to the HbRatio-based 

heatmaps to reduce the spatial noise in the results. In the vascular enhanced maps, 

blood vessels were visually, in general, well delimited using such spectral ratios. 

However, in some cases, background elements were identified as vascular, for example 

in P15C2 and P57C1. In any case, this background elements can be easily identified by 

the operating surgeon’s naked eye. 

3.4.4 Experimental Results Discussion 

To the best of our knowledge, the work presented in this section employs, for the 

first time, a discrimination of different in-vivo human brain tissue structures based on 

hemoglobin ratios using HSI. The ratio reflects a maximized difference between 

deoxyhemoglobin and oxyhemoglobin. In addition, HbRatio-based heatmaps and 

vascular enhanced maps were obtained using the first and third quartiles of 

R450/R560 spectral ratio. This work analyzes the correlation between ex-vivo and in-

vivo samples of human brain tissue that, to the best of our knowledge, has not been 

carried out in the literature. This correlation was performed after analyzing the optimal 

cluster values in the ex-vivo samples to extract the spectral signatures. 

This work would allow the development of a real-time intraoperative system for 

enhanced surgical guidance and blood flow monitoring. The system could be based on 

an HS camera that captures only the spectral bands used to calculate the hemoglobin 

ratio, reducing the acquisition time and the high computation requirements for 

processing large number of spectral bands. By reducing the spectral range, the spatial 

resolution could increase, also improving the definition of the generated maps. In 

addition, the identification of the blood vessels in the enhanced vascular maps could 

help to improve the identification of tumor areas during surgical procedures, by 

reducing the number of classes to be differentiated by a ML classifier. This fact, in 

addition with the identification of the parenchymal area of the surgical scene could 

achieve a binary classification between tumor and normal tissue that have been 

demonstrated to be more precise than a four class-classification [125]. For this reason, 

future works will involve the use of DL techniques to identify parenchymal areas in the 

HS images, as well as the use of the proposed enhanced vascular maps to identify blood 

vessel, allowing a better binary classification of the brain tissue between tumor and 

normal parenchymal tissue. 
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Figure 3-13: HbRatio-based heatmaps and vascular enhanced maps. Synthetic RGB images, 
HbRatio-based heatmaps (before and after applying Gaussian smoothing filter) and vascular enhanced 
maps (obtained with first and third quartiles of R545/R560 spectral ratio) from the seven HS in-vivo 
images from the seven different patients. 
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3.5 HSI Benchmark for Intraoperative Brain Tumor 

Detection and Delineation  

In this section, we demonstrate with a robust k-fold cross-validation approach that 

HSI combined with the proposed processing framework is a promising intraoperative 

tool for in-vivo identification and delineation of brain tumors, including both primary 

(high-grade - HG and low-grade - LG) and secondary tumors. Using the enhanced in-

vivo HS human brain image database, we have analyzed the spectral characteristics of 

the brain tissue (normal and tumor) and blood vessels, and the different tumor types 

according to their malignancy grades (G1 to G4) and origin (primary and secondary), 

performing a statistical analysis between all the medians of each spectral channel when 

comparing the different classes and tumor grades and origins. Here, we provide a 

benchmark for further developments in the field of in-vivo brain tumor detection and 

delineation using hyperspectral imaging to be used as a real-time decision support tool 

during neurosurgical workflows. 

3.5.1 Spectral characterization of brain tissue 

To perform the spectral characterization a basic pre-processing was applied to the 

HS images: calibration, extreme band noise removal, and noise filtering. Statistical 

differences were found between all the medians of each spectral channel when 

comparing TT vs NT (Figure 3-14.a) and TT vs BV (Figure 3-14.b) using the Wilcoxon 

Rank Sum test at 5% of significance level. High standard deviation values were 

obtained in the spectral signatures due to the interpatient variability and also the 

different tumor types included in the database. Additionally, the intraoperative HS data 

acquisition during surgery is a complex procedure that can be affected, in some cases, 

by the non-flat brain surface. These irregular surfaces can affect the illumination 

conditions, and, hence, the image focus in certain areas, reducing the reflectance values 

and increasing the noise of the spectral signature respect to the more focused areas. For 

this reason, a complete pre-processing chain was applied to the HS data, where each 

spectral signature was normalized to a minimum of zero and a maximum of one, so that 

only the shape of the signature was taken into account in the computation of the 

processing algorithms, avoiding differences due to uneven illumination conditions. 

Additionally, a decimation process was applied to reduce the dimensionality of the data 

in the spectral dimension and, hence, the computational cost of the processing 

algorithms [195]. 

The mean spectral signatures of TT, NT, BV were converted to absorbance values 

(Figure 3-15) to be represented and compared with the molar extinction coefficient of 

oxyhemoglobin and deoxyhemoglobin [196]. Absorbance values of all classes increase 

between 500 and 600 nm (Figure 3-15.a-c-e), due to the existence of two 

oxyhemoglobin absorbance peaks (~540 and ~575 nm) and one deoxyhemoglobin 

absorbance peak (~555 nm) in this spectral range [197]. Particularly, oxyhemoglobin 

peaks in BV are not detected (Figure 3-15.e), probably because we labelled veins and 

arteries indistinctly, mixing oxy and deoxyhemoglobin characteristics. Higher 

absorbance values were found in TT with respect to NT, but lower than BV. Moreover, 

an absorbance peak was found at ~760 nm (Figure 3-15.b-f) related to 

deoxyhemoglobin [198], [199]. Our spectral data reveal that the contribution of 

deoxyhemoglobin is the highest in BV (Figure 3-15.f), having a lower contribution in TT 
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(Figure 3-15.b). However, this contribution is not found in NT (Figure 3-15.d). This 

difference between NT and TT could be mainly related to the lack of oxygenation in the 

brain tissue affected by cancer [200].  

 

Figure 3-14: Spectral characterization of different brain tissue. Mean and standard deviation 
(std) of the entire labelled dataset after applying a basic pre-processing (calibration, extreme band noise 
removal, and noise filtering) and separated by classes, including the corresponding p-value computed for 
each spectral channel using the Wilcoxon Rank Sum test at 5% of significance level between the two 
compared classes. a) TT vs NT class, b) TT vs BV class. 

 

 

Figure 3-15: Spectral characterization of tumor tissue, normal tissue, and blood vessels 
classes and their relationship with deoxyhemoglobin (Hb) and oxyhemoglobin (HbO2). Mean 
absorbance values of the entire labelled dataset separated by classes (solid) after applying a basic pre-
processing (calibration, extreme band noise removal, and noise filtering) and molar extinction spectra 
(dashed) of Hb and HbO2. a) Tumor tissue (TT) between 440 and 650 nm. b) TT between 650 and 910 
nm. c) Normal tissue (NT) between 440 and 650 nm d, NT between 650 and 910 nm. e) Blood vessels (BV) 
between 440 and 650 nm. f) BV between 650 and 910 nm.  
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3.5.2 Spectral characterization of different brain tumor types 

As stated in the introduction section, brain tumors can be subdivided into different 

subtypes depending on their origin (primary/secondary) or the grade of malignity in 

the case of primary tumors. Regardless of tumor grade and origin, there is an 

absorbance peak (reflectance valley) around 760 nm (Figure 3-15) related to 

deoxyhemoglobin [198]. Secondary tumors present lower standard deviation values 

than primary ones (Figure 3-16.a). However, this fact can be related to the reduced 

number of patients affected by secondary tumors in our database, and the reduced 

number of labelled pixels with respect to the primary type. Despite of this, statistical 

differences between the medians of each spectral channel were found at 440-599, 602-

756 and 769-909 nm spectral ranges. HG and LG primary tumors present similar 

reflectance and standard deviation values (Figure 3-16.b). Nonetheless, statistical 

differences were found at 466-510, 522-549, 559-572 and 580-909 nm spectral ranges 

(Figure 3-15.b). Considering the tumor grades of primary tumors, statistical differences 

were found between the medians of all spectral channels of G1 and G2 tumors (Figure 

3-16.c), whereas in the case of G3 and G4 tumors (Figure 3-16.d), only the 440-460, 

578-644, 745-764 and 779-909 nm spectral ranges were found to be statistically 

different.      

 

Figure 3-16: Spectral characterization of different tumor types. Mean and standard deviation 
(std) of the entire labelled dataset after applying a basic pre-processing (calibration, extreme band noise 
removal, and noise filtering) and separated by classes, including the corresponding p-value computed for 
each spectral channel using the Wilcoxon Rank Sum test at 5% of significance level between the two 
compared classes. a) Primary vs. secondary tumors. b) HG vs. LG primary tumors. c) G1 vs. G2 primary 
tumors. d) G3 vs. G4 primary tumors. 
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3.5.3 Supervised Classification Algorithms 

ML algorithms used in this work were based on SVM, RF, and KNN classifiers 

(Section 2.4.2), while the DL algorithm employed was a two-layer one-dimensional 

DNN (Section 2.4.2). Moreover, two unmixing-based algorithms were studied (EBEAE 

and NEBEAE) (Section 2.4.3). Linear and RBF kernels were employed in the case of 

SVM algorithm and the hyperparameter optimized were cost (C) in both kernel, and 

gamma (𝛾) in RBF kernel. The optimization of the RF model was performed by 

searching for the most appropriate number of trees (T). For the KNN classifier, we 

employed the Euclidean and Cosine distance metrics and the hyperparameter to be 

optimized in each case was the number of nearest neighbors (N). The DNN was 

composed by two hidden layers, followed by a batch normalization layer, using the 

rectified linear unit as an activation function. The learning rate was established to 0.1, 

and the network was trained for 300 epochs. The output size (L) of the hidden layers 

was optimized. This DNN structure was studied in a previous work and compared with 

a two-dimensional CNN implementation, achieving the DNN the best performance 

[125]. For the EBEAE and NEBEAE algorithms, the characteristic endmembers were 

estimated by each algorithm. The estimation process was performed using the labelled 

pixels from the training set. The representative number of endmembers was two for 

NT, two for TT, one for BV and three for BG, while the hyperparameter ρ was set to 0.3 

for NT, 0.2 for TT, and 0.01 for BG [126]. The endmember of the BV class was obtained 

by calculating the average of all labelled pixels in that class. In both algorithms the 

entropy weight (𝛾) hyperparameter was optimized during the estimation of the 

complete abundance matrix. 

3.5.4 Data Partition and K-Fold Cross-Validation  

Due to the high computational cost required to train several of the selected 

classifiers, a methodology based on the K-Means algorithm was used to reduce the 

number of pixels in the training set, balancing the classes, avoiding the inclusion of 

redundant information, and drastically reducing the training execution time [195]. In 

this approach, K-means clustering is applied independently to each class of labelled 

pixels in the training set to obtain 100 different clusters (𝐾 = 100) per class empirically 

selected (in this work, 400 clusters in total related to the four classes: NT, TT, BV, and 

BG). Thus, 100 centroids corresponding to a particular class are obtained. To reduce 

the original training data set, these centroids are used to identify the most 

representative pixels of each class using the SAM algorithm. For each centroid, only the 

𝑛 most similar pixels are included in the reduced training set. Figure 3-17 shows the 

block diagram of the proposed training data reduction approach. In this work, three 

different number of similar pixels were evaluated (𝑛 ∈ {10, 20, 40}), generating three 

different training sets composed by 1,000, 2,000, and 4,000 pixels per class (100 

centroids × 𝑛 pixels). The total number of labelled pixels in the HS images from the 

validation and test sets was used for the quantitative evaluation of the processing 

framework (Table 3-5). This approach was evaluated in a previous work, where 

different metrics were compared with respect to the completed training set. The results 

obtained in such work revealed that the OA did not present a relevant change between 

using the full and reduced training sets, however, the accuracy of TT class improved by 

up to ~20% and the execution time when training the classification model was 

drastically decreased (a speedup of ~48×) when using the reduced training set [195]. 



Chapter 3: Intraoperative HS acquisition system for brain surgical diagnostics and guidance 

~ 62 ~ 

Three different training sets were obtained using this methodology composed by 1,000, 

2,000, and 4,000 pixels per class. The total number of labelled pixels in the HS images 

from the validation and test sets was used for the quantitative evaluation. 

 

Figure 3-17: Block diagram of the training dataset reduction algorithm that employs K-
means and SAM algorithms.  

Table 3-5: Summary of the total number of labelled pixels per class and fold divided by 
training, validation, and test sets. 

#Fold 
# Labelled Pixels 

NT TT HT BG Total 

Training Set 

1 179,536 32,006 71,578 316,587 599,707 

2 122,166 23,729 48,459 305,504 499,858 

3 184,524 20,543 81,757 227,404 514,228 

4 231,083 32,143 80,107 332,824 676,157 

5 228,518 17,712 70,655 302,677 619,562 

Validation Set 

1 39,410 3,555 9,548 43,357 95,870 

2 77,240 4,513 28,326 88,002 198,081 

3 81,427 8,860 20,533 78,133 188,953 

4 48,307 1,979 15,345 45,151 110,782 

5 44,229 4,260 17,048 31,033 96,570 

Test Set 

1 90,164 1,764 29,713 82,724 204,365 

2 109,704 9,083 34,054 49,162 202,003 

3 43,159 7,922 8,549 137,131 196,761 

4 29,720 3,203 15,387 64,693 113,003 

5 36,363 15,353 23,136 108,958 183,810 

In contrast to previous works that employed a leave-one-patient-out cross-validation 

using a reduced database [125], in this study we robustly evaluate the classification 

performance of the proposed approach by using a three-way data partition performed 

at patient level, dividing the HS database into training (60%), validation (20%), and 

test (20%) sets. Additionally, five different folds were created to achieve more robust 

results due to the limited number of patients. This data partition was performed 

randomly using the patients’ identifiers as instances, where each patient could have 

more than one HS image (Figure 3-18 and Table 3-6). Labelled data were employed to 

train the classification models (training set), to optimize their hyperparameters 

(validation set), and to quantitatively evaluate the results using unseen HS data (test 

set). The hyperparameter optimization of each algorithm was performed in each fold 

independently, evaluating the results with their respective validation sets and using the 

macro F1-Score metric and performing a coarse search. The optimal hyperparameters 

were selected using the best macro F1-Score result (Section 2.4.4.3) of each fold 

without considering the BG class.  
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Figure 3-18: Proposed data partition employing the enhanced in-vivo HS human brain 
image database. The database was split into 5 folds. Each fold contains training, validation, and test sets.  

Table 3-6: Data partition detail of the 5 folds, divided into training, validation, and test sets. 
Different captures from the same patient were included in the same set.  

#Fold 
Training Patients 
(#Total Images) 

Validation Patients  
(#Total Images) 

Test Patients  
(#Total Images) 

1 Remaining 23 patients (34) 
Op4*, Op8, Op22, Op39, Op41 
(10) 

Op10*, Op16*, Op21, Op37, 
Op42, Op54* (17) 

2 Remaining 22 patients (37) 
Op37, O41, Op42, Op50, Op58 
(11) 

Op4*, Op12, Op17*, Op22, 
Op38, Op43, Op55 (13) 

3 Remaining 22 patients (41) 
Op4*, Op36, Op43, Op53, 
Op57 (8) 

Op5*, Op13*, Op18*, Op34, 
Op39, Op50, Op56 (12) 

4 Remaining 22 patients (45) 
Op10, Op18, Op36, Op50, 
Op54 (7) 

Op7*, Op14, Op19*, Op35, 
Op40, Op51*, Op57 (9) 

5 Remaining 22 patients (41) 
Op10*, Op35, Op37, Op 40, 
Op50 (10) 

Op8, Op15, Op20, Op36, Op41, 
Op53, Op58 (10) 

*indicates patients without tumor samples labelled. 

3.5.5 Brain tissue classification based on spectral information. 

The enhanced in-vivo HS human brain image database was used to perform 

classification based on spectral information. The previously presented supervised 

classification algorithms (Section 3.5.3) were trained using the three training sets and 

following the previously presented data partition (Section 3.5.4) to achieve this spectral 

classification capable of distinguishing between the four different classes.  

First, three different training sets were evaluated with different number of balanced 

pixels in each class (1,000, 2,000 and 4,000 pixels per class) as explained before. No 

statistically significant differences were found between the three training data 

reductions (Figure 3-19.a). Hence, the use of 1,000 pixels per class allowed to reduce 

the time required for training the model (particularly for the SVM-based 

implementations) without compromising the classification performance. For this 

reason, we selected this training data reduction for the subsequent experiments. 

Additionally, our results show that statistically significant differences were found 

between the unmixing-based methods and the ML-based ones, obtaining both the 

unmixing-based algorithms lower classification performance. The highest median 

macro F1-Score result was obtained with the SVM-RBF model (78.4±5.1%), but no 

statistically significant differences were observed between this algorithm and the others 

(except for EBEAE and NEBEAE). The highest average OA was also reached by the 

SVM-RBF (91.5±4.7%), but the highest TT sensitivity (65.9±13.1%) was obtained with 

the Figure 3-19.b. Average specificity results were higher than 90% for the ML and DL-

based approaches. 
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Figure 3-19: Spectral classification results of brain tissue. a) Boxplots of the macro F1-Score 
results of the validation set for each training data reduction and each classifier, including the five folds 
using the optimal hyperparameters in each classifier. Two medians are significantly different at the 5% 
significance level if their intervals (shaded color areas) do not overlap. b) Average OA, sensitivity, and 
specificity results of the validation set from the 5 folds using the data reduction of 1,000 pixels per class. c) 
Examples of synthetic RGB (SRGB) images, ground-truth (GT) maps and supervised classification maps 
generated using the eight algorithms with the optimal hyperparameters from different tumor types of the 
validation set. Approximate tumor areas were surrounded in yellow on the SRGB image by the operating 
surgeon according to the intraoperative neuronavigation and the definitive pathological diagnosis of the 
resected tissue. Rubber ring markers were employed in some cases (e.g., Op8C1) to indicate the area where 
the biopsies for pathology were resected. Opx: Operation number; Cy: Capture number. 
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Qualitative results, extracted from the validation set and obtained after applying the 

supervised classification model (generated using 1,000 pixels per class and the optimal 

hyperparameters) to the entire HS image, show the pixel-wise identification of both 

labelled and non-labelled pixels (Figure 3-19.c). As expected, according to the 

quantitative results (Figure 3-19.a,b), the unmixing-based methods (EBEAE and 

NEBEAE) increase the number of false positives and false negatives in the classification 

maps, particularly in Op35C1 employing EBEAE, where the normal tissue is identified 

as tumor, and Op57C1 using NEBEAE, where tumor areas are identified as normal 

tissue. The remaining classifiers achieve more consistent results, although the SVM-

based and DNN algorithms improve the identification of the tumor areas in Op42C2 

and Op57C1 (only using SVM-L and DNN).  

3.5.6 Brain tumor identification and delineation based on spatial-

spectral information. 

In order to develop this HSI benchmark using the enhanced in-vivo HS brain 

database, a spatial-spectral approach was employed based on a combination of a 

dimensionality reduction, a supervised classifier, a spatial filtering, an unsupervised 

segmentation, and a Majority Voting (MV) algorithm to merge the results from both 

supervised and unsupervised approaches (Figure 3-20).  

 
Figure 3-20: Proposed processing framework to generate the density maps for 
intraoperative pathology-assisted surgery. 

This approach has been used in previous works [70], [125] to prove that the use of 

the spatial information available in the HS images helps to improve the classification 

results and to reduce the misclassified pixels found in the supervised classification 

maps created using only the spectral information. In this work, the PCA algorithm was 

employed for dimensionality reduction [123], obtaining a one-band representation of 

the pre-processed HS image. The spatial filtering aims to improve the supervised 

classification including the spatial features. The KNN filtering algorithm was employed 

using the previously studied parameters (𝜆 = 1 and 𝐾 = 40) [70] and a window size of 8 

rows using the Euclidean distance [201]. The probability maps from the supervised 

classifier and the one-band representation are the inputs of this algorithm. The K-
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means algorithm was used as the unsupervised segmentation method to identify K 

different clusters into the HS images (𝐾 = 24 according to a previous work [70]). 

Finally, the MV algorithm is used to merge the results obtained from the spatial-

spectral supervised classification and the unsupervised segmentation, using a color 

gradient approach to create the Three Maximum Density (TMD) maps [70]. MATLAB® 

Statistics and Machine Learning Toolbox was employed to implement the K-means, 

PCA and KNN filtering algorithms. 

Following this approach, we have compared the quantitative results of the validation 

set (Figure 3-21.a) by using only the spectral information (Spectral), by applying the 

KNN filtering to include also the spatial information (Spatial/Spectral) and by 

combining the spatial-spectral supervised classification with an unsupervised 

segmentation through a MV (Majority Voting) approach. Our results reveal that the 

inclusion of the spatial information increases the median macro F1-Score results (an 

increment between 0.4 and 7.7%), reducing the standard deviation (an increment 

between 0.2 and 3.7%), in all algorithms, except for the unmixing-based approaches. 

However, no statistical differences were found between these results. Additionally, it is 

worth noticing that the Majority Voting results achieved lower median results and 

increased the standard deviation. Nonetheless, this lower performance could be 

motivated by the construction of the output classification map in the MV approach, 

which is obtained by considering only the majority class assigned to each cluster of the 

unsupervised HKM map. At the Spatial/Spectral stage, the SVM-RBF reached the 

highest average OA (92.3±4.6%), but the DNN obtained the best average TT sensitivity 

(68.9±14.3%), closely followed by the SVM-L algorithm (67.7±19.3%) (Figure 3-21.b). 

The qualitative results of each step of the proposed algorithm have been analyzed, 

where the supervised map represents, as an example, the classification map generated 

using only spectral information with the DNN method (Figure 3-21.c). The PCA map 

represents, in a false color intensity map, the first principal component where the more 

important information contained in the HS image is relocated in a low dimensional 

space. For example, in Op8C1, the tumor area is partially highlighted with more 

intensity values (between the two rubber ring markers on the right of the image). The 

KNN-Filtered map offers a smoothed version of the supervised map, where the spatial 

properties of the HS image are used (by combining the information of the probability 

maps generated by the supervised classifier and the PCA map). This approach reduces 

the granularity of the supervised map, providing more homogeneous class regions. This 

Spatial/Spectral classification was combined with an unsupervised segmentation 

(HKM map) that identifies 24 different regions (or clusters) in the HS image according 

to their similar spectral characteristics, providing a very accurate delineation of 

different structures but without any identification of the tissue, material, or substance 

that each cluster represents. For this reason, the information provided by the HKM 

map was merged with the KNN-Filtered map by means of a MV approach [70], where 

each cluster is labelled by the majority class within it. In the MV map (Figure 3-21.c), 

the boundaries between different class regions are determined by the HKM map, while 

the identification of each cluster class is defined by the KNN-Filtered map. However, in 

these maps, only the information relative to the class with the majority number of 

pixels in each cluster is shown. Hence, as a surgical visualization tool, we proposed to 

combine the information provided by the three maximum probability values (classes 

NT, TT, and BV) of the MV approach, by mixing the RGB colors in each cluster 
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according to the percentage of pixels covered by each class in such cluster (i.e., the R 

channel corresponds to the percentage of TT pixels, the G channel to NT pixels, and the 

B channel to BV pixels). For example, a cluster represented by a bright red, green or 

blue color denotes it belongs to only one single class (TT, NT, or BV, respectively). In 

contrast, any other color represents a combination of classes in a cluster (e.g., purple 

color represents a mixture between TT and BV classes that commonly happens in 

certain blood vessels, hypervascularized areas or extravasated blood, see Op42C2, 

Op35C2 or Op57C1). This resulting map is called TMD map [70] (Figure 3-21.c).   

 
Figure 3-21: Quantitative and qualitative results at the different stages of the proposed 
framework in the validation set. a) Macro F1-Score of the validation set using the eight different 
classifiers at the three different stages. Two medians are significantly different at the 5% significance level 
if their intervals (shaded color areas) do not overlap. b) Average OA, sensitivity, and specificity results of 
the validation set from the 5 folds using the Spatial/Spectral approach. c) Example of SRGB images and 
output maps from different tumor types of the validation set at the different stages of the proposed 
framework (based on the DNN as supervised algorithm using the optimal hyperparameters). 

After performing all the analysis and hyperparameter optimizations of the 

algorithms using the validation set, the test sets of the different k-folds were evaluated 

(Figure 3-22.a). Quantitative results of the macro F1-Score metric show, as expected, a 

performance reduction in the test set of 0.5-1% respect to the validation one, providing 

the best median score of 70.2±6.3% using the DNN algorithm in the Spatial/Spectral 

approach. Similar average OA results are obtained using SVM-L (86.6±5.5%) and DNN 

(86.8±3.4%) as supervised classifiers, while a slight increase of the SVM-L average TT 

sensitivity (57.8±23.7%) respect to the DNN (54.7±21.9%) is obtained (Figure 3-22.b). 
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Specificity average results are in general higher than 90% in all ML and DL-based 

approaches for all classes. 

 
Figure 3-22: Quantitative results at the different stages of the proposed framework and 
qualitative TMD classification maps in the test set. a) Macro F1-Score of the test set using the eight 
different classifiers at the three different stages. Two medians are significantly different at the 5% 
significance level if their intervals (shaded color areas) do not overlap. b) Average OA, sensitivity, and 
specificity results of the test set from the 5 folds using the Spatial/Spectral approach. c) Examples of SRGB 
images, ground-truth maps and TMD maps from different tumor types (based on the DNN as supervised 
algorithm using the optimal hyperparameters).  

Some examples of the TMD maps of the test set (Figure 3-22.c) show that the GB 

cases (Op12C1, Op15C1, Op39C2, Op43C1, and Op43C2) delineate in red the tumor 

areas, as expected by neurosurgeons (marked in yellow over the synthetic RGB images). 

Particularly, Op15C1 presents some decolored red/orange/purple areas that could 

represent the infiltrative nature of GBM tumors in the surrounding tissue. Moreover, 
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the surrounding blue areas could be related to the hypervascularized tissue that 

surrounds the tumor, also including the blood vessels in such regions (Op15C1 in Figure 

3-22.c). The same fact can be visualized in Op12C1, Op43C1, and Op43C2. In the case of 

Op20C1 and Op39C1, the tumor is somehow revealed but not as a red area, since the 

tumors are located in a deep layer of the brain tissue. Op20C1 has not an additional 

image captured after the resection started, since the tumor resection in such location of 

the brain could cause serious damages and side effects to the patient, and, additionally, 

the tumor boundaries were not clear enough to perform a secure and effective 

resection. For such reason, the operating surgeon decided not to operate the patient, 

prevailing the quality of life of the patient over the tumor resection. On the contrary, 

after Op39C1 was captured, the operating surgeon continued the tumor resection, and a 

second image (Op39C2) was captured during resection, where it is possible to observe 

the correct delineation of the tumor area in a bright red color. This was also the case of 

Op43, but before starting the resection, the tumor was clearly visualized in the brain 

surface, showing a possible infiltration in the surrounding tissue (orange/purple color 

in the upper-left part of the tumor area).  

Moreover, we qualitatively evaluated some examples of test cases not related to 

high-grade gliomas (Figure 3-22.c). Firstly, Op35C1 presents a healthy brain surface, 

since the tumor was in a deep layer, where there are no false positives in the 

parenchymal area, only those related to extravasated blood surrounding the 

parenchymal area. In Op35C2 and Op41C2, it is possible to observe that the proposed 

algorithm can identify not only high-grade tumors but also low-grade tumors, a G2 

oligodendroglioma and a G1 ganglioglioma, respectively. Finally, secondary tumors are 

also detected by the proposed algorithm, as shown in Op35C1 where a metastatic breast 

carcinoma is identified, although some false positives surrounding the parenchymal 

area are also presented. These false positives could be produced because of the low 

quality of the image, where an optimal focus was not achieved. 

3.5.7 Experimental Results Discussion  

The work presented in this section demonstrates the high potential of HSI for in-

vivo identification of brain tumor tissue and its boundaries during neurosurgical 

operations. Employing enhanced in-vivo HS human brain image database, which 

include three data acquisition campaigns, of exposed brain surface with respect to 

previous works [70], [77], [123], [125], [126], we have analyzed the spectral 

characteristics of the brain tissue (normal and tumor) and blood vessels, and the 

different tumor types according to their malignancy grades (G1 to G4) and origin 

(primary and secondary), performing a statistical analysis between all the medians of 

each spectral channel when comparing the different classes and tumor grades and 

origins. Moreover, a robust 5-fold cross-validation approach was used to evaluate eight 

different processing algorithms, first using only spectral information, and then using 

both spatial and spectral information following a processing framework that we 

previously developed [70].  

The spectral-based classification results obtained using the validation set (Figure 3-

19.a) showed that SVM-based and DNN methods provided the best macro F1-Score 

results, although no statistical differences were found among the other classifiers 

(except for the unmixing-based methods, which provided less accurate results). The 

qualitative results (Figure 3-19.c) demonstrate the ability of the proposed HSI-based 
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system to identify not only high-grade gliomas (Op8C1), but also other low-grade 

tumors (Op42C2 and Op35C2) and secondary tumors (Op57C1). Moreover, these 

results show the capability of HSI to accurately highlight the vascularization of the 

brain surface, being especially remarkable in Op35C1 and Op42C2.  

It is worth noticing that HS images captured in suboptimal acquisition conditions, 

such as a lack of correct focus or illumination, can introduce inappropriate spectral 

signatures for training the algorithms and can produce inaccurate classification maps. 

This limitation is particularly evident in deep-layer tumors (Figure 3-23), where it was 

not possible to correctly focus the entire area of interest by using our pushbroom-based 

HSI system. In the case of Op37C2 (Figure 3-23.a), due to uncertainty at the time of 

labelling the tumor pixels in the center of the image, only NT, BV, and BG classes were 

labelled. The average spectral signatures (Figure 3-23.b) reveal an acquisition problem, 

possibly related to a lack of proper illumination, as the reflectance values in the three 

classes decrease dramatically in the infrared range (>700 nm). However, the DNN 

method seems to overcome this handicap and correctly identify the tumor area even 

using this non-optimal HS image.  

 
Figure 3-23: Examples of the limitations related to deep-layer tumors. a) Example of synthetic 
RGB images, ground-truth (GT) maps and supervised classification maps created using the EBEAE and 
DNN algorithms with the optimal hyperparameters from a deep-layer tumor captured in non-optimal 
conditions in the validation set. b) Average spectral signatures of the GT pixels from (a). 

The inclusion of spatial information improved the macro F1-Score medians 

compared to using only spectral information, although no statistical differences were 

found between these results (Figure 3-21.a). After performing the hyperparameter 

optimization process using the validation set, the test data of each k-fold were 

processed providing both quantitative and qualitative results (Figure 3-22). The 

processing framework based on the DNN algorithm in the Spatial/Spectral approach 

provided a macro F1-Score of 70.2±7.9%, representing, as expected, a performance 

reduction of 3.6% respect to the validation results. Qualitative test results demonstrate 

the ability of the proposed framework to identify not only HG gliomas (e.g., GB), but 
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also LG and secondary tumors (e.g., G2 oligodendroglioma, G1 ganglioglioma, 

metastatic breast carcinoma in Figure 3-22.c) and also extra-axial tumors (e.g., G1 

meningioma). 

The processing of the test dataset allowed us to identify some HS image cases where 

the data acquisition conditions were not optimal, producing some errors in the 

classification results (Figure 3-24.a), which may degrade the quantitative results of the 

test sets. We found that in Op55C1 and Op55C2 the classification results identified 

most of the pixels as tumor, and only some parts related to background (Figure 3-24.a). 

After evaluating the spectral signatures of the labelled pixels in such HS images, we 

found some differences in the infrared region (from 700 to 900 nm) with respect to the 

other images. This unusual behavior was found also in Op56C2, where there is a 

decrease in the reflectance values of the labelled spectral signatures in the same 

infrared region (Figure 3-24.b), also producing wrong classification results where the 

parenchymal area is identified as background (Figure 3-24.b). The low sensitivity of the 

HS sensor in this spectral range, coupled with a possible misalignment of the light 

beam with the lens (due to an improper focusing), could lead to this decrease in 

reflectance. 

 
Figure 3-24: Examples of the limitations of the proposed framework after processing the 
test set. a) Example of SRGB images, ground-truth (GT) maps and TMD maps (based on the DNN 
algorithm) from HS images captured in non-optimal conditions in the test set. b) Average spectral 
signatures of the GT pixels from (a). 
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Despite these limitations, we have demonstrated with a robust classification 

validation approach, the potential benefits of HSI for brain tumor tissue identification, 

targeting a diagnostic support system for guiding neurosurgical interventions in real-

time. In previous works, we demonstrated that it is possible to achieve near real-time 

HS data processing using graphical processing units, achieving processing times of ~6 s 

[202]. The proposed intraoperative HSI-based acquisition system must be optimized in 

further works by reducing the HS camera size, employing a snapshot-based HSI 

technology (which is able to capture the entire HS cube in a single shoot, providing also 

real-time performance) and integrating it into a surgical microscope. This new 

experimental setup will guarantee an improvement of the HS image quality to solve the 

focus problems, especially for deep-layer tumors. Additionally, an extensive clinical 

validation of the proposed framework must be carried out, employing a large number of 

patients and a multi-center trial. This clinical validation will perform a comprehensive 

pathological analysis of the entire tumor area outlined by the TMD map (especially in 

the boundaries between tumor and the surrounding normal tissue), as well as correlate 

the results with the MRI information to verify that the system can adequately identify 

tumor infiltration into normal brain tissue, especially in HG gliomas. Additionally, the 

relation between the improvement of the patient outcomes and the use of the proposed 

system during the surgery could be studied through the clinical validation. 

3.5.7.1 Comparison with previous related works in HSI 

Different previously published works used the first data campaign from the in-vivo 

HS brain database employed in this work. Different frameworks were employed using 

supervised and unsupervised machine learning methods to perform a classification and 

also different methodology were used as intra-patient or inter-patient. In [70] the 

spatial/spectral framework (Section 3.5.6) achieved an overall accuracy of 99.7% using 

5 HS images from 5 patients an intra-patient methodology, which commonly provides 

unrealistic optimistic results. Later, the work was tested using the complete first data 

campaign (36 HS images from 22 patients), but only a qualitative analysis of the results 

was performed [123]. A DL approach was proposed to identify glioblastoma tumors 

obtaining an OA of 80% following an inter-patient approach using 26 HS images from 

16 patients. In [203] was employed EBEAE with 26 HS images from 16 patients, where 

only 6 HS images contained tumor tissue pixels labelled, achieving an OA of 76.1% 

using a leave-one-patient-out cross-validation methodology. Later in [77], NEBEAE 

approach was tested performing an intra-patient validation process using 2 HS images 

from different patients. An OA of 97.9% was achieved, providing again unrealistic 

results that cannot be employed in a real-world scenario. Finally using the same 

database, in [127] it is proposed a method to use the spectral and spatial information to 

identify glioblastoma, achieving an OA of 96.6% for four-class classification and OA of 

96.3% for glioblastoma identification adopting a leave-one-patient-out cross validation 

technique using 7 HS images from 5 patients. 

Using the system presented in [129] and using 13 HS images from 12 patient, SVM 

model achieved a OA result of 60.0% using an intra-patient approach. Using the same 

HS database, a comparison between non-optimized models and optimized models was 

performed using an intra-patient approach with 10 HS images from 9 patients [130]. 

The study showed that the RF results did not provide significant improvement when 

the model was optimized with any of the three optimization methods. However, the 

optimized SVM model improved the tumor identification. In [131], the classification 



Chapter 3: Intraoperative HS acquisition system for brain surgical diagnostics and guidance 

~ 73 ~ 

results obtained from the HS images were overlapped with the RGB point cloud 

captured by the LiDAR camera and presented in an augmented reality visualization. 

In the field of surgical microscopes combined with HS cameras, in [204] a proof of 

concept was performed with a single HS image using an RF classifier to discriminate 

different tissues using a 5-fold stratified cross-validation methodology and achieving an 

overall accuracy of 99.1%, again providing unrealistic results to be extrapolated in real-

world scenarios. In [132], as a proof of concept, two HS images of in-vivo glioma 

tumors were labelled and used to train and test different ML algorithms, achieving the 

best OA of 98.3% and an accuracy to identify the glioma class of 97.7% using the light 

gradient boosting machine algorithm. Finally, in [134] different algorithms were used 

(RF, SVM, and DNN), obtaining an OA of 92.0% using an intra-patient methodology 

from 18 HS images from 5 patients. 

Table 3-7 summarize and compare the current studies found in the literature which 

employs HSI for in-vivo brain tumor detection. In particular, a significant number of 

studies are based on small datasets and focus primarily on the identification of high-

grade tumors. Moreover, these studies are developed to utilize an intra-patient 

framework. In contrast, our work uses an extensive and diverse database that includes 

the four tumor grades and different tumor types, both primary and secondary. The use 

of this database and the validation framework based on an inter-patient approach and a 

three-way data partition (training, validation, and test) combined with a 5-fold cross-

validation approach, allow us to obtain robust results mitigating the risk of overfitting 

commonly caused by AI-based algorithms. 

Table 3-7: Summary of the studies which employs HSI for in-vivo brain tumor detection. 

Ref. Yr. 
HSI 

System  
Wav. 
(nm) 

#B #P #I TG PV 
Validation 

Methodology 
OA (%) 

Tumor 
ACC (%) 

[70] 2018 Pushbroom 400-1,000 826 5 5 4 
Intra-

patient 
10-fold CV 99.7 99.5 

[123] 2018 Pushbroom 400-1,000 826 26 43 
1, 2, 

3, & 4 
Inter-

patient 
Training/test 
(85%/15%) 

n/a n/a 

[125] 2019 Pushbroom 400-1,000 826 16 26 4 
Inter-

patient  
LOPO-CV 80.0 42.0 

[126] 2020 Pushbroom 400-1,000 826 16 26 4 
Inter-

patient  
LOPO-CV 76.1 n/a 

[127] 2021 Pushbroom 400-1,000 826 5 7 4 
Inter-

patient  
LOPO-CV 96.6 96.3 

[128] 2021 
Pushbroom 
- Surgical 

Microscope 
500-1,000 100 1 1 3 

Intra-
patient 

Training/test 
(80%/20%) +  

5-fold CV 
99.1 n/a 

[129] 2021 Snapshot 655-975 25 12 13 3 & 4 
Intra-

patient 
Training/test 

(80%/20%) +5-fold CV 
60.1 73.0 

[77] 2022 Pushbroom 400-1,000 826 2 2 4 
Intra-

patient 
n/a 97.7 n/a 

[130] 2022 Snapshot 655-975 25 9 10 3 & 4 
Intra-

patient 
Training/test 
(80%/20%) 

n/a 
(AUC=98.6%) 

n/a 

[131] 2023 Snapshot 655-975 25 12 13 3 & 4 
Intra-

patient 
Training/test 
(80%/20%) 

n/a 
(AUC=95.2%) 

n/a 
(AUC=95.1%) 

[132] 2023 
Snapshot - 

Surgical 
Microscope 

500-900 n/a 1 2 1 & 3 
Intra-

patient 
Training/test 
(75%/25%) 

98.3 97.7 

[134] 2023 
Snapscan - 

Surgical 
Microscope 

470-780 104 5 18 1 & 2 
Intra-

patient 
Training/test 
(70%/30%) 

92.0 n/a 

This 
work 

2023 Pushbroom 400-1,000 826 34 61 
1, 2, 
3, & 

4 

Inter-
patient  

3-way data partition 
(60%/20%/20%) + 5-

fold CV 
86.8±3.4 57.8±23.7 

ACC: Accuracy; AUC: Area Under the Curve; B: Band; CV: Cross-validation; I: Image; LOPO: Leave-one-patient-out; 
n/a: Not Available; OA: Overall accuracy; P: Patient; PV: Patient Variability; Ref.: reference; TG: Tumor Grade; Wav.: 
Wavelength; Yr.: year. 
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3.6 VNIR-NIR Hyperspectral Imaging Fusion targeting 

Intraoperative Brain Cancer Detection 

As stated in Section 2.3, HS cameras generally use CCD or CMOS sensors to cover 

the spectral range between 400 and 1000 nm (VNIR), while InGaAs and MCT sensors 

are used to cover the range from 900 to 1700 nm (NIR) and 900 to 2500 nm (SWIR), 

respectively [2]. Thus, to obtain a broadband spectral range image, more than one HS 

sensor is required, involving image registration and fusion algorithms to generate a 

combined HS image.  

On the one hand, image fusion techniques are used in many applications to merge 

information from different sensors with the goal of improving the classification or 

segmentation results [205]. Usually this image fusion procedure is performed using MS 

images, which have high-spectral but low-spatial resolution, combined with 

panchromatic images, which have high-spatial but low-spectral resolution, to obtain a 

new fused image with high-spatial and high-spectral resolution [206]. Spectral fusion is 

applied to combine the spectral information from different sensors aiming to obtain an 

HS image with a broadband spectral range. This approach has been employed to 

identify geographical origins of herbal medicines [207] or to identify metallic alloys 

from the recycling industry [208]. 

On the other hand, image registration techniques have the goal to match two or 

more images of the same scene obtained by using different sensors or devices. The 

image registration is a necessary step to correctly perform the image fusion. Image 

registration methods can be classified into two groups: intensity-based and features-

based techniques [209]. The former uses the intensity values of the image to find 

similarities between the images in the scene to perform the registration. This technique 

is widely used to register Computerized Tomography (CT), MRI with PET images, 

among other imaging modalities for computer-aided diagnosis, e.g. in brain tumor 

detection [210], [211]. The latter uses the morphological structures presented in the 

image to extract points, lines, curves, etc. to find similar features in the images and 

perform the image registration. There are different feature detectors and extractors, 

including Scale Invariant Feature Transform (SIFT) [212], Features From Accelerated 

Segment Test (FAST) [213] or Harris detector [214]. All these methods have been 

widely used in the literature due to they are robust and automatic feature extraction 

algorithms [215]. Features-based technique have been used in fusion information from 

different sensors or image mosaic technology [216], [217].  

The proposed method is composed by two main stages: 1) VNIR-NIR spatial 

registration; 2) VNIR-NIR spectral fusion (Figure 3-25). In the first stage, the VNIR 

and NIR raw images are pre-processed applying image calibration to avoid the 

influence of environmental illumination, noise filtering and band removing to reduce 

the noise in the spectral signatures due to the camera sensor performance (especially in 

the extreme bands). After that, the NIR image is upsampled to reach the VNIR pixel 

size, allowing to perform the image registration using a transformation model 

previously generated. In this transformation the fixed image is the VNIR, and the 

moving image is the NIR. When both VNIR and NIR images are registered, both images 

are cropped to obtain the same coincident ROI. Finally, in the last stage, the spectra 
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from both VNIR and NIR images are combined, applying a reflectance offset to the NIR 

spectrum, to perform the spectral fusion and generate a single HS image. 

 

Figure 3-25: Block diagram of the proposed processing framework based on VNIR-NIR 
spatial registration combined with spectral fusion. NIR: Near-Infrared; VNIR: Visual and Near-
Infrared; ROI: Region of Interest; W: Width; H: Height; HS: Hyperspectral. 

3.6.1 VNIR-NIR fusion reference image database 

Different HSI datasets were collected using the demonstrator described in Section 

3.2 to develop and validate the proposed VNIR-NIR fusion method. Three different 

datasets were acquired (Figure 3-26).  

• The HSI registration dataset was composed by seven HS images obtained 

from four different spatial patterns, i.e., a shooting target and patterns based 

on brain morphological structures (Figure 3-26.a).  

• The HSI spectral reference dataset (Figure 3-26.b) was composed by six HS 

images obtained from three different Spectralon White Diffuse Reflectance 

Standards (Labsphere Inc., North Sutton, US) with a reflectance value of 

99%, where two consecutive captures were obtained from each white 

reference. In addition, an HS image from a Zenith Polymer Reflectance 

Standard (SphereOptics GmbH, Germany), composed by rare earth oxides, 

was captured (SR4 in Figure 3-26.b).  

• The HSI plastic dataset (Figure 3-26.c) was composed by different samples of 

3D printing filament, as Polylactic Acid (PLA), Acrylonitrile Butadiene 

Styrene (ABS), and Polyethylene Terephthalate Glycol (PETG). Using the 

Ultimaker 3 Extended (Utrecht, Netherlands) 3D printer, several 32×32×4.8 

mm square samples were printed to create the HSI plastic dataset. In 

addition to the three different materials, different colors were also printed. 

At the end, twenty HS images from sixteen different plastic samples were 

obtained. 
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Figure 3-26: HS datasets used in this research. a) Patterns based on brain morphological structures 
and a shooting target employed to generate the HSI registration dataset (seven HS images) used to 
evaluate the image registration techniques. b) Three different 99% Spectralon White Diffuse Reflectance 
Standards and a Zenith Polymer Reflectance Standard used to obtain the HSI spectral reference dataset 
(seven HS images) employed to evaluate the proposed spectral fusion approach. c) Sixteen square plastic 
samples of different colors and three materials: polylactic acid (PLA), acrylonitrile butadiene styrene 
(ABS), and polyethylene terephthalate glycol (PETG). These samples were employed to generate the HSI 
plastic dataset (twenty HS images), which was used to evaluate the fusion performance qualitatively and 
quantitatively. 

The HSI plastic dataset was partitioned into training (four HS images), validation 

(three HS images) and test (thirteen HS images) sets. Additionally, the dataset was 

organized into three groups for addressing different classification and segmentation 

problems: color, material, and material-color. Then, each sample was labelled in 

different classes corresponding to each problem type. The labelled pixels were divided 

into training, validation, and test set. The training set was reduced using a methodology 

based on K-Means explained in Section 3.5.4. The goal of this methodology is to reduce 

the number of pixels in each class, avoiding the inclusion of redundant information, 

and drastically reducing the training execution time. The K-means was applied to each 

class of the twenty-seven classes contained in the dataset, obtaining a total of 1,000 

pixels per class, reducing the total number of pixels from 2,631,192 to 27,000 (Table 

3-8). 
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Table 3-8: Number of pixels labeled from the HSI plastic dataset in training, validation, and 
test sets divided into color, material, and material-color. Original training sets contain all pixels 
labeled before applied data reduction. Reduced training sets contain the pixels used to train the supervised 
classifier.  

Problem Class Name 
#Original Pixels 

Training 
#Reduced Pixels  

Training 
#Pixels 

Validation 
#Pixels Test 

Color 

Red 163,510 1,000 159,608 480,283 

Yellow 53,782 1,000 51,544 52,172 

Black 113,084 1,000 109,323 280,492 

Magenta 108,124 1,000 106,648 216,632 

Blue 111,145 1,000 109,319 219,221 

Transparent 110,026 1,000 109,660 167,104 

White 164,366 1,000 161,605 486,471 

Green 53,027 1,000 52,404 52,497 

Material 

PLA 384,966 1,000 378,996 764,847 

ABS 271,182 1,000 266,150 644,241 

PETG 220,916 1,000 214,965 545,784 

Material-
Color 

PLA Red 55,173 1,000 54,195 161,662 

PLA Yellow 53,782 1,000 51,544 52,172 

PLA Black 56,216 1,000 54,422 112,548 

PLA Magenta 54,555 1,000 53,859 108,786 

PLA Blue 56,858 1,000 55,757 111,534 

PLA Transparent 54,502 1,000 55,804 55,645 

PLA White 53,880 1,000 53,415 162,500 

ABS Red 54,801 1,000 52,926 159,378 

ABS Magenta  53,569 1,000 52,789 107,846 

ABS Blue 54,287 1,000 53,562 107,687 

ABS White 55,498 1,000 54,469 216,833 

ABS Green 53,027 1,000 52,404 52,497 

PETG Red 53,536 1,000 52,487 159,243 

PETG Black 56,868 1,000 54,901 167,944 

PETG Transparent 55,524 1,000 53,856 111,459 

PETG White 54,988 1,000 53,721 107,138 

ABS: Acrylonitrile Butadiene Styrene; PLA: Polylactic Acid; PETG: Polyethylene Terephthalate Glycol. 

 

3.6.1.1 VNIR-NIR Spatial Registration Approach 

Before performing the VNIR-NIR spatial registration, the HS images were pre-

processed to facilitate the registration procedure. After that, intensity-based and 

feature-based techniques were analyzed in order to obtain the best transformation 

model using the intraoperative HS acquisition system.  

3.6.1.2 NIR pre-processing 

Due to both HS cameras have different spatial resolutions, it was necessary to 

resample one of the two HS images to be able to register them. The VNIR camera 

covered the spectral range between 400 and 1000 nm and can capture 1,004 spatial 

pixels with a pixel pitch of 7.4 µm, while the NIR camera captured information within 

the 900-1700 nm spectral range, with 320 spatial pixels and a pixel pitch of 30 µm. The 

lens used in VNIR camera was a Xenoplan 1.4 (Schneider Optics, Hauppauge, NY, 
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USA) with a focal length of 23 mm and a working distance of ~42 cm. In the case of the 

NIR camera, the lens used was a Kowa LM25HC-SW 1.4 (Kowa Optimed Deutschland 

GmbH, Düsseldorf, Germany) with 25 mm of focal length and a working distance of 

~33 cm.  

Upsampling and downsampling methods were evaluated to achieve the same spatial 

resolutions in both HS images. To exploit the higher VNIR spatial resolution for a later 

visualization and manual labeling of the images with high detail in the targeting 

application (intraoperative HS brain cancer detection), the downsampling method, 

where the VNIR spatial resolution is reduced to reach the NIR resolution, was 

discarded. In this targeted application, to generate a labelled dataset, the brain images 

must be manually labeled, identifying the different classes (tumor, normal and 

hypervascularized tissue). The high VNIR spatial resolution and the possibility of 

generating a RGB image allows neurosurgeons to visualize the different brain regions 

and identify the relevant pixels to be labeled using a semi-automatic labeling tool 

developed to this end [124]. However, the low spatial resolution in the NIR camera was 

not enough for performing a reliable labeling of the brain surface. For this reason, the 

spatial resolution of the NIR image was upsampled until reaching the VNIR pixel size.  

The scale factor to perform the spatial resampling is specified by the relation 

between the Instantaneous Field of View (IFOV) of both cameras. The IFOV is 

calculated employing the parameters of each camera following Eq. (27), achieving an 

IFOV value of 0.402 and 0.137 nm for the NIR and VNIR cameras, respectively. Hence, 

a scale factor of 2.93 was obtained following Eq. (28). This scale factor remains the 

same independently of the sample type, as long as the HS acquisition system does not 

suffer any modification. Hence, the HS images have a fixed width and height in both 

HS cameras with a fixed working distance of ~33 and ~42 cm in NIR and VNIR 

cameras, respectively. However, if there is any modification in the system, such as 

different HS cameras, lenses, distance between the HS cameras or the working 

distance, the scale factor must be recalculated with the new parameters.  

The upsampling algorithm used to increase the NIR spatial resolution (from 

320×253 to 939×743 pixels using a scale factor of 2.93) and to estimate the upsampled 

spectral signatures is based on a bilinear interpolation, considering the nearest 2-by-2 

neighborhood of a certain pixel. Nearest-neighbor, bilinear, and bicubic interpolation 

methods were evaluated in terms of execution time and spectral similarity. This 

evaluation was performed using the Zenith Polymer Reflectance Standard.  

First, the execution time was evaluated performing the interpolation of the entire HS 

image. This measure was calculated by taking the average one thousand consecutive 

executions. Next, the quality of the interpolated spectral signatures was analyzed using 

the SAM algorithm. To conduct this evaluation, the mean spectral signature of a region 

of 15×15 pixels was selected from the reference image (original HS image without 

interpolation) and was compared to the corresponding region of the interpolated 

image, which consisted of 45×45 pixels. 

𝐼𝐹𝑂𝑉 (𝑚𝑚) =
𝑃𝑖𝑥𝑒𝑙 𝑃𝑖𝑡𝑐ℎ · 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐹𝑜𝑐𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ
 (27) 

𝑆𝑐𝑎𝑙𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 (%) =
𝐼𝐹𝑂𝑉𝑁𝐼𝑅
𝐼𝐹𝑂𝑉𝑉𝑁𝐼𝑅

  (28) 
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 Table 3-9 shows the SAM results obtained with each interpolation method and the 

corresponding execution times. It can be observed that the nearest-neighbor 

interpolation offered the lowest execution time, followed by the bilinear and bicubic 

methods. In addition, all methods obtain very low SAM values, suggesting that there 

are no relevant differences between the methods. This can be observed in Figure 3-27, 

where the three methods are compared respect to the original.  

Table 3-9: Spectral Angle Mapper (SAM) and execution time results of different 
interpolation methods for the evaluation. The SAM algorithm was computed using the mean 
spectral signature of a region of 15×15 before and after the interpolation using Zenith Polymer Reflectance 
Standard. The execution time was computed by interpolating the original HS image (320×253).  

 
Nearest-neighbor  Bilinear Bicubic 

SAM Time (ms) SAM Time (ms) SAM Time (ms) 

Polymer 4.91E-04 330.97 2.87E-04 424.41 3.02E-04 425.82 

 

Figure 3-27: Comparison of interpolation methods. a) Mean spectral signature before (reference) 
and after interpolation using nearest-neighbor, bilinear, and bicubic methods. b) Absolute differences 
between the bilinear and bicubic interpolation methods and the reference, along with the mean absolute 
difference (MAD) for each comparison. c) Two different spectral regions, including reflectance values and 
absolute differences, to observe similarities. 
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Figure 3-27.a shows the mean spectral signature before and after the interpolation, 

where it is possible to observe that all spectral signatures are practically overlapped. 

However, to observe the small differences between the reference and the interpolated 

spectral signatures, the absolute difference was computed (excluding the nearest-

neighbor interpolation due to its lower spectral similarity performance). Figure 3-27.b 

represents high differences in the extreme bands due to the low response of the sensor. 

Figure 3-27.c shows two different spectral regions in detail, including reflectance values 

and absolute differences, to observe in detail such similarities. It is possible to notice 

that the bilinear interpolation slightly improves the results compared to bicubic 

interpolation. This could be motivated due to the bicubic interpolation oversmoothes 

the spectral signatures in the HS image, while the bilinear interpolation better 

preserves the original shape. For these reasons, the subsequent experiments employed 

bilinear interpolation due to its spectral similarity and convenient execution time.  

3.6.1.3 Spatial Registration 

Intensity-based and feature-based techniques were employed for registering the 

VNIR and NIR images. MATLAB® Image Processing Toolbox and Computer Vision 

Toolbox (The MathWorks Inc., Natick, MA, USA) was employed to implement the 

registration algorithms.  

On the one hand, intensity-based techniques find the maximum (or minimum) 

intensity value and correlate it with the intensity value of the reference image to 

transform the misaligned image. To obtain the maximum (or minimum) intensity value 

an iterative process is performed, where the parameters of the transformation model 

are modified in each iteration. An evolutionary optimizer was used to find the best 

geometric transformation model. The intensity value was measured applying Mattes 

Mutual Information (MMI) [218]. The geometric transform types evaluated in this 

technique were: 1) Translation transformations, where each pixel is displaced the same 

amount in the same direction, but the size and orientation are not modified; 2) 

Similarity transformations, which preserve shape, but not size, including isotropic 

scaling, rotation, and translation; and 3) Affine transformations, which include all 

similarity transformations and also preserve parallel lines. 

On the other hand, feature-based techniques detect and extract interest points, 

curves, or surfaces present in both images without consider the image intensity. The 

number of common features detected in both images must be enough to perform the 

registration, determining the quality results [219]. The feature-based techniques are 

composed by several steps: 1) Feature detection and extraction, where regions, lines, 

and curves are detected using feature detectors and subsequently extracted using 

feature extractors; 2) Feature matching, where all possible matching points between 

both images are found using an exhaustive matching method computing the pair-wise 

distances between features; 3) Geometric transform estimation, where different 

transformation types can be used (similarity, affine or projective). The projective 

transformation includes all affine transformations and also supports tilting. The 

matching pair are used to estimate the transformation matrix and the M-estimator 

SAmple Consensus (MSAC) algorithm is used to exclude outlier points [220]. This 

algorithm has a randomized nature and can offers different results in consecutive 

executions. Two feature detectors and extractors were evaluated: Speeded Up Robust 

Features (SURF) [221] and Maximally Stable Extremal Regions (MSER) [222]. SURF is 
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a fast algorithm based on the Hessian-Matrix to find the keypoints. SURF has been 

used to detect skin features to track patient position in navigated spinal surgery [223]. 

On the contrary, MSER algorithm is a shape-based method that detects regions using 

image intensity. Regions where the intensity values do not change are considered 

maximally stable. MSER has been used in the literature as shape detector in medical 

applications to segment cells [224]. Also, SURF and MSER algorithms were selected as 

they are robust to changes in scale and rotation.  

The VNIR-NIR spatial registration was evaluated computing the SSIM, the MI, and 

the PCC metrics (Section 2.4.4.2). To evaluate the performance of the different 

registration techniques and geometric transformations, a gray-scale image was 

generated from a pseudo-RGB image of both VNIR and NIR HS cubes for performing 

the registration. After selecting the registration techniques and geometric 

transformations, the transformation matrix was obtained comparing a pair of VNIR 

and NIR spectral bands. The pseudo-RGB images were generated selecting three bands 

which correspond with red, green, and blue colors in the VNIR range and other three 

bands for creating a false-color RGB in the NIR range. The wavelengths selected for 

VNIR pseudo-RGB image were 708.97 nm (red), 539.44 nm (green), and 479.06 nm 

(blue). The wavelengths selected for NIR pseudo-RGB image were 1094.89 nm (red), 

1247.44 nm (green), and 1595.45 nm (blue). These wavelengths were selected to 

maintain the compatibility with the original software (Hyperspec III software, 

Headwall Photonics Inc., Fitchburg, MA, USA) provided by the camera manufacturer. 

Additionally, these wavelengths have been employed in previous works for generating 

the NIR pseudo-RGB image [123]).  

First, a preliminary analysis using the HSI registration dataset was performed using 

the gray-scale images from the pseudo-RGB images. In the case of intensity-based 

techniques, translation, similarity, and affine transformations were applied. In the case 

of feature-based techniques using MSER and SURF detectors, the transformations 

employed were affine, similarity and projective. Due to the randomized nature of MSAC 

algorithm, in the feature-based technique, one thousand consecutive executions were 

performed to estimate the geometric transformation. Figure 3-28 shows the results 

applying the three registration metrics. Feature-based technique using SURF detector 

offered the best registration. The results obtained using affine and projective 

transformations were quite similar. This is produced due to the projective 

transformation performs the same geometric transform (scaling, shear, rotation, and 

translation) than the affine transformation, in addition to apply tilt to the 

transformation. These results outperform the feature-based technique using MSER and 

also the intensity-based technique.  
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Figure 3-28: Average image registration results. Gray-scale representation of the pseudo-RGB 
images from HSI registration dataset were used applying intensity-based techniques with similarity, affine, 
and translation transformations and featured-based using Maximally Stable Extremal Regions (MSER) 
and Speeded Up Robust Features (SURF) detector and similarity, affine and projective transformation. a) 
Structural Similarity Index Measure (SSIM); b) Mutual Information (MI); c) Pearson’s Correlation 
Coefficient (PCC) values. 

Figure 3-29.a shows two example results of the HSI registration dataset, R2C2 and 

R4C1. The first column shows the registration result without applying any geometric 

transformation, while the remaining columns show the best results obtained with each 

registration technique and the best geometric transformation. These images present an 

overlay of the VNIR and NIR pseudo-RGB images using green-magenta false-color 

images. Magenta and green pixels indicate misregistration between the VNIR and NIR 

images, respectively. The areas with gray-scale pixels indicate areas where the two 

registered images have similar intensity values. Using the translation transformation in 

the intensity-based registration, R2C2 is incorrectly registered, while R4C1 improves 

the registration respect to the result without applying any transformation. These 

incorrect registrations can be produced due to the random noise that can be found in 

some spectral bands, affecting to the maximum intensity. The feature-based MSER 

technique using similarity transformation improves the intensity-based technique but 

some misregistered pixels can be observed in both images. Finally, the feature-based 

SURF technique with projective transformation offered the best results. For this 

reason, this method was selected to be applied in the subsequent experiments. 

A coarse-to-fine search was performed using gray-scale images from a single 

spectral band extracted from both cameras to identify the VNIR and NIR bands, which 

offer the best registration performance. To reduce the high computational time, the 

coarse search was performed using steps of seven and three bands in the VNIR and NIR 

images, respectively, to diminish the number of combinations. Figure 3-29.b shows the 

R2C2 and R4C1 heatmaps resulting from the coarse search using SSIM, MI and PCC 

metrics. It can be observed that in all metrics the lower and higher bands for each 

camera do not offer a correct registration mainly due to the low performance of the 

sensor in such bands. The MI and PCC metrics indicate all band combinations in the 

central region offer similar results. In opposite, SSIM metric indicates that regions of 

500-700 nm and 950-1500 nm in the VNIR and NIR ranges, respectively, achieve the 

highest results. This is caused because the SSIM metric takes into account the image 

structure while the other metrics only consider the image intensity. For this reason, to 

select the optimal spectral bands in the coarse-to-fine search only the SSIM metric was 

employed. The fine search was performed within the previously selected regions using 

steps of one band for both cameras. 



Chapter 3: Intraoperative HS acquisition system for brain surgical diagnostics and guidance 

~ 83 ~ 

 

Figure 3-29: VNIR-NIR Spatial Registration using the HSI registration dataset. a) Two 
registration result examples applying different registration techniques. Both images are overlapped using 
green-magenta false-color, VNIR (green) and NIR (magenta). First column shows the default registration 
without applying any type of transformation to the data. Second, third and fourth columns show the results 
of the intensity-based, feature-based with MSER, and feature-based with SURF techniques, respectively, 
using the best transformation method. b) Coarse search results of the structural similarity index measure 
(SSIM), the mutual information (MI), and the Pearson’s correlation coefficient (PCC) for identifying the 
suitable spectral bands for the registration using the feature-based SURF technique with projective 
transformation. 

Figure 3-30.a shows the SSIM results using the optimal band combination and 

summarizes the bands/wavelengths employed. One thousand consecutive executions 

were performed using the best band combination of each VNIR-NIR HS image pair to 

obtain the transformation with the highest SSIM value. Finally, the best transformation 

model was selected after applying each projective transformation to all the images from 
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the HSI registration dataset. Figure 3-30.b shows the SSIM boxplot results for each 

transformation model, where an average SSIM value of ~0.78 was obtained for all 

models. The R2C1 model was selected as it presented the lowest IQR. No statistically 

significant differences were found across the mean SSIM values between R2C1 and 

R2C2 (which has the higher mean value), using a paired, two-tailed Student’s T-test at 

the 5% significance level. 

 

Figure 3-30: Structural Similarity Index Measure (SSIM) results. a) SSIM values using the best 
spectral band for each HS image from the HSI registration dataset. The relation between the band number 
and the wavelength in the VNIR is the following: 281=604.20 nm; 293=612.93 nm; 286=607.84 nm; 
265=592.56 nm; 289=610.02 nm; 255=585.28 nm; 260=588.92 nm; and in the NIR is the following: 
89=1318.95 nm; 93=1338.02 nm; 91=1328.48 nm; 34=1056.76 nm; 97=1357.09 nm; 26=1018.62 nm; 
87=1309.42 nm. b) SSIM results using the seven different transformation models obtained using the 
optimal spectral bands for each image pair. The box boundaries represent the IQR (Interquartile Range) of 
the results. Central bars and error bars depict median and minimum/maximum values of SSIM, 
respectively. 

3.6.2 VNIR-NIR Spectral Fusion Approach 

The final step of the proposed framework (Figure 3-25) aims to combine the spectra 

from the registered NIR and VNIR HS images into a single HS image. First, a spectral 

analysis of the data generated in both HS images was performed to evaluate the optimal 

spectral cutoff points where the HS sensors present low performance (i.e., low signal-

to-noise ratios). For this purpose, the HSI spectral reference dataset was employed to 

evaluate which bands should be removed before performing the spectral fusion.  

Both HS cameras have a common spectral range between 900 and 1000 nm (Figure 

3-31.a). However, performing a spectral fusion based on the use of this common 

spectral region is not suitable in this case due to the low performance of the VNIR 

sensor in those bands. As shown in Figure 3-31.b, this method causes the NIR region of 

the fused spectral signature to have a higher standard deviation than the VNIR region 

when capturing a calibration polymer. Hence, a spectral analysis was performed 

computing the absolute relative difference percentage (𝑅𝐷) metric using the image 

pairs of each image in the HSI spectral reference dataset for both VNIR and NIR 

cameras. Figure 3-31.c and d show the 𝑅𝐷𝑚𝑒𝑎𝑛 values for each wavelength in the VNIR 

and NIR spectral signatures of a white reference (SR1), respectively. The 

𝑅𝐷𝑚𝑒𝑎𝑛 represents the average RD value of all pixels in the image at a certain 

wavelength. In the case of the VNIR data (Figure 3-31.c), the 𝑅𝐷𝑚𝑒𝑎𝑛 is higher than the 

average from 400 to 435 nm and from 800 to 1000 nm. In the case of the NIR data 

(Figure 3-31.d), the 𝑅𝐷𝑚𝑒𝑎𝑛 values obtained in the ranges 900-960 nm and 1619-1700 

nm are higher than the average. These ranges are represented in the figures using the 

vertical red dashed lines. The 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝐷𝑚𝑒𝑎𝑛 value was used to establish the initial 
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and final cutoff point for the selection of the operating bandwidth in each image of the 

HSI spectral reference dataset.  

 

Figure 3-31: VNIR–NIR spectral fusion. a) Manufactured certified spectral signature of the Zenith 
Polymer® and spectral signatures captured by the VNIR and NIR cameras. b) Fused spectral signature 
using a common spectral band in the overlapped spectral region between VNIR and NIR data. c, d) 
Average absolute relative difference percentage (RD) results of SR1 using VNIR and NIR data. Red dashed 
lines represent the initial and final cutoff points for voiding the low performance of the HS sensors. e) 
Comparison between the mean and std of the Zenith Polymer® VNIR spectral signature with 641 spectral 
bands (green) and 575 spectral bands (red). f) Fused spectral signature of the Zenith Polymer® after 
applying the proposed VNIR-NIR spectral fusion method. 

Employing the HSI spectral reference dataset the initial cutoff points in the NIR 

data are the same in the three cases (𝜆 = 956.6 ± 0 𝑛𝑚), while in the VNIR data there 

are quite similar values around 𝜆 = 435.2 ± 0.4 𝑛𝑚. Considering the final cutoff point, 

the NIR data values are close to 𝜆 = 1632.0 ± 11.0 𝑛𝑚, while the VNIR data values are 

close to 𝜆 = 849.6 ± 3.3 𝑛𝑚. In the VNIR case, the final cut off point involves the 

removal of ~200 spectral bands. With the purpose of reducing the number of bands to 

be removed, an additional analysis was performed using three image pairs from the 

HSI plastic dataset.  

In this case, the initial cutoff point does not coincide in two of three VNIR image 

pairs respect to the HSI spectral reference dataset, providing an average point of 𝜆 =

496.5 ± 70.1 𝑛𝑚. This is produced mainly due to the spectral contributions of the 

plastic color (red and magenta). Considering the final cutoff point in the VNIR data, the 

average value is higher with respect to the HSI spectral reference dataset (𝜆 = 896.0 ±

14.7 𝑛𝑚). In the case of the NIR data, the initial and final cutoff points are similar to 

the previous ones, 𝜆 = 959.8 ± 2.8 𝑛𝑚 and 𝜆 = 1,638.4 ± 9.5 𝑛𝑚, respectively. At this 

point, a qualitative assessment of the VNIR cutoff points was performed by plotting the 

mean and standard deviation (std) of the spectral signatures of the Zenith Polymer® 

reflectance standard. 

Figure 3-31.e shows that the std values between 849 and 900 nm (green) are quite 

similar to the previous spectral bands (red). For this reason, the selected cutoff points 

for the VNIR data were 435 and 901 nm, having 641 spectral bands, while the NIR data 

covered a spectral range between 956 and 1,638 nm formed by 144 spectral bands. 

Finally, the VNIR-NIR spectral fusion was performed applying a reflectance offset to 

the NIR spectrum in order to adjust the reflectance values of both spectral signatures. 

a

b

c

d

e

f
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The fused spectral signature has a gap between 901 and 956 nm (Figure 3-31.f), in 

order to preserve the original standard deviation of the NIR spectrum. 

Then, a reflectance offset was applied to the NIR spectrum with the goal of adjusting 

the reflectance values of both spectral signatures with respect to a reference. This 

procedure requires the use of the NIR image (𝑁 ∈ ℝ𝑃 × ℝ𝐵) and the VNIR image (𝑉 ∈

ℝ𝑃 × ℝ𝐵) of the captured scene, as well as the certified spectral signature provided by 

the manufacturer of the Zenith Polymer Reflectance Standard (𝑃 ∈ ℝ𝐵). 𝐵 represents 

the number of spectral bands in each HS image and 𝑃 the number of pixels of the 

corresponding HS image. The procedure is as follows. First, the difference in the 

reflectance levels in the Zenith Polymer (𝑃𝑂𝑓𝑓𝑠𝑒𝑡) is computed following Eq. (29), where 

the value corresponding with the first spectral band of the NIR image (𝜆𝑁𝐼𝑅 = 956 𝑛𝑚) 

is 𝑃(𝜆𝑁𝐼𝑅) and the value corresponding with the last spectral band of the VNIR image 

(𝜆𝑉𝑁𝐼𝑅 = 901 𝑛𝑚) is 𝑃(𝜆𝑉𝑁𝐼𝑅). The manufacturer provided the certified data in 

percentage format. Figure 3-32.a shows a graphical representation of this first step. 

 

Figure 3-32: Proposed VNIR-NIR spectral fusion explanation using, as example, one sample 
of the HSI plastic dataset. a) Zenith Polymer Reflectance Standard spectrum provided by the 
manufacturer representing the POffset constant used to perform the spectral fusion. b) Average and standard 
deviation of the spectral signatures extracted from the plastic sample before applying the reflectance offset 
adjustment to the NIR data. c) Average and standard deviation of the spectral signatures extracted from 
the plastic sample after applying the reflectance offset adjustment to the NIR data.  

 Next, the average value of all pixels in the last band of the VNIR image (�̅�𝜆𝑉𝑁𝐼𝑅) and 

the first band of the NIR image (�̅�𝜆𝑁𝐼𝑅) are computed as expressed in Eq. (30-31). The 

difference of these two values (Figure 3-32.b) is employed to obtain the reflectance 

offset value (𝐹𝑂𝑓𝑓𝑠𝑒𝑡) for the captured scene following Eq. (32). Finally, this offset is 
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applied to each pixel of the NIR image from the captured scene independently, 

resulting in the fused spectra as show in Figure 3-32.c. 

𝑃𝑂𝑓𝑓𝑠𝑒𝑡(%)  = 𝑃(𝜆𝑁𝐼𝑅) − 𝑃(𝜆𝑉𝑁𝐼𝑅) (29) 

�̅�𝜆𝑉𝑁𝐼𝑅 = ∑
𝑉(𝑖,𝜆𝑉𝑁𝐼𝑅)

𝑃

𝑃
𝑖=1   (30) 

𝑁𝜆𝑁𝐼𝑅 = ∑
𝑁(𝑖,𝜆𝑁𝐼𝑅)

𝑃

𝑃
𝑖=1   (31) 

𝐹𝑂𝑓𝑓𝑠𝑒𝑡 = (�̅�𝜆𝑉𝑁𝐼𝑅 − 𝑁𝜆𝑁𝐼𝑅) · (𝑃𝑂𝑓𝑓𝑠𝑒𝑡 + 1) 
(32) 

Finally, the spectral signatures are normalized using min-max normalization in the 

[0,1] range (Eq. (4) in Section 2.4.1) to homogenize reflectance levels in each pixel of 

the HS image for the subsequent segmentation and classification analyses. Figure 3-33 

shows the average spectral signatures of the HSI plastic dataset after performing the 

VNIR-NIR spectral fusion.  

 

Figure 3-33: Average spectral signatures of the Fused data from the HSI plastic dataset. a) 
Material spectral signatures. b, c, d) Color spectral signatures from polylactic acid (PLA), acrylonitrile 
butadiene styrene (ABS), and polyethylene terephthalate glycol (PETG) materials. 

3.6.3 Segmentation and classification of the fused data 

The VNIR-NIR imaging fusion performance was evaluated in unsupervised 

segmentation and supervised classification problems. The goal was to quantitatively 

and qualitatively determine if the proposed fusion approach allows to improve the 

different segmentation/classification problems (color, material, and material-color 

identification) with respect to the exclusive use of either VNIR or NIR data separately.  
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3.6.3.1 Segmentation results 

The segmentation methods employed were the K-means, K-medoids, and HKM 

algorithms to segment the HS images into K different clusters, since they are the most 

widely used segmentation algorithms in scientific literature. The number of clusters (𝐾) 

was previously selected and, in the case of HSI plastic dataset, the selected K value 

corresponds to the number of classes present in the ground-truth of each HS image to 

be processed. Figure 3-34.a-c shows, as examples, the segmentation maps obtained 

with K-means algorithm from three of the thirteen test HS images, as well as the 

average Jaccard results obtained with the entire dataset for the three segmentation 

algorithms. As expected, the VNIR data achieved the highest results in the color 

segmentation using K-means algorithm, followed by the Fused data using K-medoids 

and HKM (Figure 3-34.a), while the material identification using the NIR data was 

superior in all three algorithms (Figure 3-34.b). However, the material-color 

segmentation of the NIR data using HKM improved the segmentation results followed 

by the Fused data using K-means (Figure 3-34.c). Statistical analysis was performed to 

the segmentation results using a paired, one-tailed Student’s T-test at 5% significance 

level. No statistically differences were found between the results of the material-color 

segmentation problem.   

 

Figure 3-34: Segmentation maps of three examples of the test set from the HSI plastic 
dataset and average Jaccard results obtained from the thirteen images. Color, material, and 
material-color segmentation (a, b, c) problems using VNIR, NIR, and fused data. Each column (from left 
to right) represents the RGB images obtained with a digital camera, the ground-truth (GT) maps, the 
VNIR, NIR, and fused segmentation results, respectively, and the average Jaccard results obtained with the 
entire test set for the three different segmentation algorithms. Results were statistically analyzed using a 
paired, one-tailed Student’s T-test at the 5% significance level. (*) Statistically significant difference 
(p<0.05). (**) Highly statistically significant difference (p<0.001). ABS: Acrylonitrile Butadiene Styrene; 
PLA: Polylactic Acid; PETG: Polyethylene Terephthalate Glycol. HKM: Hierarchical K-means. 

3.6.3.2 Classification results 

The pixel-wise supervised classification was based on the SVM, RF and KNN 

classifiers. In the classification problem, the HSI plastic dataset was partitioned into 

training, validation, and test sets. The training and validation sets were used to 

optimize, evaluate, and generate the classification model. A coarse-to-fine search (in 
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the case of SVM) and a coarse search (in the case of RF and KNN) were performed to 

optimize the hyperparameters of each classifier. After the hyperparameter 

optimization, the performance of the model was evaluated using the test set. Table 3-10 

shows the optimal hyperparameter values found for each classifier, data type and 

classification problem, as well as the OA results obtained in the validation set. 

Table 3-10: Coarse-to-fine search to optimize hyperparameters. The Cost (C), the number of 
trees (T) and number of nearest neighbors (K) hyperparameters of the SVM, RF, and KNN classifiers were 
optimized using the validation set of the HSI plastic dataset. Fine search was not performed in RF and 
KNN algorithm because the execution time in these classifiers is lower than SVM classifier.  

Classifier HP Sensor Method 
Coarse Search Fine Search 

OA (%) 
I/S/F Optimal I/S/F Optimal 

SVM-Linear 𝐶 

VNIR 

Color 2-20/22/260 22 20/20.5/24 22 82.93 

Material 2-20/22/260 20 2-2/20.5/22 20.5 72.83 

Material-Color 2-20/22/260 2-4 22/20.5/26 22 79.68 

NIR 

Color 2-20/22/260 2-2 2-4/20.5/20 2-2.5 59.30 

Material 2-20/22/260 22 2-2/20.5/22 21 93.10 

Material-Color 2-20/22/260 2-4 2-6/20.5/2-2 2-3 53.25 

Fusion 

Color 2-20/22/260 28 26/20.5/210 27 89.15 

Material 2-20/22/260 2-2 2-4/20.5/20 2-3 83.56 

Material-Color 2-20/22/260 24 22/20.5/26 25 82.65 

RF 𝑇 

VNIR 

Color 1/2/300 261 - - 87.33 

Material 1/2/300 183 - - 79.17 

Material-Color 1/2/300 133 - - 77.37 

NIR 

Color 1/2/300 277 - - 56.47 

Material 1/2/300 107 - - 93.01 

Material-Color 1/2/300 271 - - 52.98 

Fusion 

Color 1/2/300 111 - - 88.39 

Material 1/2/300 245 - - 84.65 

Material-Color 1/2/300 257 - - 77.43 

KNN 𝐾 

VNIR 

Color 1/2/300 5 - - 85.47 

Material 1/2/300 1 - - 81.03 

Material-Color 1/2/300 3 - - 76.82 

NIR 

Color 1/2/300 19 - - 54.24 

Material 1/2/300 19 - - 93.16 

Material-Color 1/2/300 19 - - 50.86 

Fusion 

Color 1/2/300 1 - - 87.47 

Material 1/2/300 1 - - 76.50 

Material-Color 1/2/300 1 - - 77.38 

HP: Hyperparameter; I: Initial value; S: Step value; F: Final value. 

Once SVM, KNN, and RF models were trained and optimized for each case, the 

classifiers were evaluated using the test set to assess the results obtained in the 

validation set. Figure 3-35 shows, as examples, the classification maps obtained with 

the SVM classifier from three of the thirteen test HS images, as well as the average OA 

results obtained with the entire dataset for the three supervised algorithms. The OA 

was computed using the ground-truth image and the classification map of each HS 

image. In the color classification VNIR and Fused data, using SVM and RF classifiers, 

obtained quite similar performance, while NIR data decreases the accuracy in the three 

classifiers (Figure 3-35.a). As it can be observed in the SVM example, NIR data 



Chapter 3: Intraoperative HS acquisition system for brain surgical diagnostics and guidance 

~ 90 ~ 

misclassifies the three plastic samples, while the VNIR and Fused data identify 

correctly two out of three samples, misclassifying the white color, which is identified as 

transparent (orange color in Figure 3-35.a). On the contrary, in the material 

classification, the NIR data achieved the highest accuracy in all three classifiers, 

followed by the Fused data using SVM classifier (Figure 3-35.b). In the material 

example applying SVM classifier, VNIR data only classified two out of three samples 

correctly, while NIR and Fused data were able to successfully identify the three 

samples. Finally, in the material-color classification the Fused data outperformed the 

other two data types (Figure 3-35.c). Statistical analysis was performed to the 

classification results using a paired, one-tailed Student’s T-test at 5% significance level. 

In the material-color classification problem, statistically significant differences were 

found between the VNIR and Fused data results. 

 

Figure 3-35: Classification maps of three examples of the test set from the HSI plastic 
dataset and average accuracy results obtained from the thirteen images. Color, material, and 
material-color classification (a, b, c) problems, using VNIR, NIR, and fused data. Each column (from left 
to right) represents the RGB images obtained with a digital camera, the ground-truth (GT) maps, the 
VNIR, NIR, and fused classification results, respectively, and the average accuracy results obtained with 
the entire test set for the three different classification algorithms. Results were statistically analyzed using 
a paired, one-tailed Student’s T-test at the 5% significance level: (*) Statistically significant difference 
(p<0.05). (**) Highly statistically significant difference (p<0.001). ABS: Acrylonitrile Butadiene Styrene; 
PLA: Polylactic Acid; PETG: Polyethylene Terephthalate Glycol. SVM: Support Vector Machines; RF: 
Random Forest; KNN: K-Nearest Neighbors. 

3.6.4 Experimental Results Discussion 

Previous works of this research group employed an HS acquisition system composed 

by VNIR and NIR cameras to capture HS images of in-vivo human brain tissue during 

surgical procedures with the goal of identifying tumor boundaries in real-time [70], 

[123], [125]. However, in these works only VNIR information was processed due to the 

impossibility of performing a reliable labeling in the NIR HS images. In this research, 

this acquisition system has been modified to combine both sources of information 

(VNIR and NIR) and propose a VNIR-NIR imaging fusion approach to determine, as a 

proof-of-concept, if the fused data can improve the delineation of different brain tissue 

structures compared to using both sources of data independently. In the previous 
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configuration, the VNIR and NIR image registration was not possible to be performed 

due to the non-perpendicularity of the camera with respect to the scene, especially in 

non-flat surface situations (e.g., after tumor resection beginning). Hence, the VNIR 

labeling could not be used for the NIR images. Additionally, the labeling could not be 

directly performed over the NIR images due to their low spatial resolution and the false 

color representation of the pseudo-RGB. The proposed acquisition system 

configuration allows performing the VNIR-NIR spatial registration, being possible to 

extrapolate the VNIR labeling to the NIR images and perform a spectral fusion of both 

sources of data. Additionally, a speedup factor of 2× was achieved in the acquisition 

time since the capturing is performed in a single scanning.  

To achieve an accurate VNIR-NIR spatial registration, several techniques and 

geometric transformations were analyzed and tested using different HS images. 

Additionally, a coarse-to-fine search was performed using all the combinations of gray-

scale images (extracted from each spectral band) from both HS cameras to identify the 

most suitable bands for performing the spatial registration. The feature-based 

technique using SURF detector and projective transformation was selected for the 

VNIR-NIR spatial registration. Next, a detailed analysis of the VNIR and NIR spectral 

signatures was performed to determine the optimal operating bandwidth captured by 

each camera, being combined in the subsequent spectral fusion process. The resulting 

HS cube was formed by 641 spectral bands in the VNIR range (435–901 nm) and 144 

spectral bands in the NIR range (956–1638 nm).  

To determine the discrimination capability of the fused data compared with the use 

of the VNIR and NIR data independently, three segmentation and classification 

problems have been proposed using a controlled HSI dataset based on plastic samples 

of different materials and colors. The results show that VNIR data identified better the 

color of the samples than the NIR and fused data, while the material is more accurately 

identified using the NIR data. However, when the goal is to identify the material and 

color of the sample, the fused data offered better results than the VNIR and NIR data 

independently. Therefore, the selection of the data type to be employed in a certain 

classification/segmentation problem will be determined by the nature of the materials, 

substances or tissue to be analyzed. If the optical properties are more relevant in the 

VNIR region than in the NIR region (or vice versa), then, using the fused data could 

provide misclassifications in the results. On the contrary, if relevant optical properties 

can be found in the two spectral ranges (as in the material-color problem), the fused 

data could provide improved discrimination performance. 

3.7 Evaluation of VNIR-NIR Hyperspectral Imaging Fusion 

Method for In-vivo Brain Tumor Identification and 

Delineation  

The proposed VNIR-NIR spatial-spectral fusion method explained in Section 3.6 

was applied to the third data campaign of the enhanced HS brain cancer database. This 

campaign was collected after performing the acquisition system modifications to allow 

the data fusion process. In total, due to the difficulties in obtaining intraoperative data 

of in-vivo human brain, the third campaign is formed only by 10 HS images captured 

from 8 different subjects (third data campaign in Table 3-1). After performing the 
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fusion process, the ground-truth generated using VNIR images can be reused in the 

NIR images. Thanks to this approach, the spectral characterization, segmentation, and 

classification of both spectral regions were performed.  

3.7.1 Spectral Characterization of Brain Tumors in the VNIR-NIR 

Range 

The VIS spectral range between 380-780 nm is the most used for medical HSI due to 

hemoglobin contribution in this part of the spectrum. Absorbance peaks related to 

deoxyhemoglobin are located at ~555 and ~760 nm [198], [199], while two 

oxyhemoglobin absorbance peaks are situated at ~540 and ~575 nm [197]. However, 

the NIR range between 700-1870 nm can additionally provide information related to 

the presence of fat, collagen, or water [225]. Water absorption determines the 

permeability of tissues and its peaks are located around 970, 1180, 1450, and 1775 nm 

[226]. The collagen peaks are present at 1050, 1190, 1500, 1690, 1730, and 1760 nm, 

being the most abundant protein in the human body [226]. Biological tissues contain 

lipids as essential constituents, with peaks in the NIR range at 920, 1040, 1210, 1430, 

1730, 1760, and 1900 to 2600 nm [226]. Reflectance and absorbance analysis were 

performed in the VNIR and NIR spectral ranges in order to identify relevant features 

between spectral signatures.  

Figure 3-36 show the mean reflectance and absorbance spectra of each tumor type of 

different grades (G1, G2 and G3), NT, and HT. In the VNIR range can be observed that 

the reflectance value of astrocytoma grade 2 is higher than other tumor type, having the 

HT the lowest reflectance values (Figure 3-36.a). In addition, reflectance values 

increase rapidly over 580 nm and therefore, decrease the absorbance values (Figure 

3-36.b). Between 500 and 600 nm, the absorbance increases due to the absorption 

peak of the hemoglobin [227]. In HT and meningioma grade 2 is observed an 

absorbance peak at 760 nm due to the deoxy-hemoglobin [199].  

 

Figure 3-36: Spectral analysis of brain tumors and tissues in VNIR and NIR ranges. a, b) 
Mean reflectance and absorbance spectral signatures, respectively, of different brain tumors, normal, and 
hypervascularized tissue in the VNIR range. c, d) Mean reflectance and absorbance spectral signatures, 
respectively, of different brain tumors, normal, and hypervascularized tissue in the NIR range.  
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In the NIR range, it is possible to observe the reflectance values decrease as 

wavelengths increase and therefore (Figure 3-36.c), increasing the absorbance value as 

wavelength increases (Figure 3-36.d). Astrocytoma grade 3 achieves the highest 

reflectance in this spectral range, while NT and meningioma grades 1 and 2 have lower 

reflectance values. Water absorbance peaks are observed in this range at 970 and 1450 

nm [228]. In addition, water molecules without a hydroxy group are absorbed at 1160 

nm [229]. 

A statistical analysis was performed to evaluate each pair of class sets (TT vs. NT, TT 

vs. HT, and NT vs. HT). Figure 3-37 shows the mean and standard deviation of each 

class (from all the HS images in the dataset) of the VNIR and NIR data, respectively, 

employed to perform the statistical analysis. First, Lilliefors test was computed to 

identify if each group at each wavelength has normal or non-normal distribution. After 

performing the test, it was found that all three groups had a non-normal distribution. 

For this reason, the Wilcoxon Rank-Sum test was employed for the statistical 

evaluation.  

 

Figure 3-37: Spectral analysis of brain tissues in VNIR and NIR ranges. a, b) Mean and 
standard deviation reflectance and absorbance spectral signatures, respectively, of different brain tumors, 
normal, and hypervascularized tissue in the VNIR range. c, d) Mean and standard reflectance and 
absorbance spectral signatures, respectively, of different brain tumors, normal, and hypervascularized 
tissue in the NIR range. SD: Standard Deviation; TT: Tumor Tissue; NT: Normal Tissue; HT: 
Hypervascularized Tissue. 

Figure 3-38 show the p-value obtained from the statistical analysis among the 

different classes from the VNIR and NIR data, respectively. In this figure, each graph 

represents a pair of classes comparison. In the case of the VNIR data, HT shows highly 

statistically significant difference with respect to TT (Figure 3-38.a) and NT (Figure 

3-38.e) (𝑝 < 0.01) in reflectance and absorbance, except for the 444 nm where no 

statistically significant differences between HT and TT was found (𝑝 > 0.05). In Figure 

3-38.c, it can be observed that the spectral ranges 460-510 nm, 590-600 nm, and 700-

740 nm have no statistically significant differences between TT and NT (𝑝 > 0.05), 

while in the spectral range 481-484 nm statistically significant differences were found 

between TT and NT ( 0.01 < 𝑝 < 0.05). In the case of NIR range, HT shows highly 

statistically significant differences respect to TT (Figure 3-38.b) and NT (Figure 3-38.f) 

(𝑝 < 0.01). However, in the spectral range between 1,340 and 1,376 nm, no statistically 
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significant differences were found between TT and NT (𝑝 > 0.05) (Figure 3-38.d). 

Finally, in 1,633 nm statistically significant difference between TT and NT was found ( 

0.01 < 𝑝 < 0.05). 

 

Figure 3-38: p-value of each pair of tissue groups. a, c, e) p-value of TT vs. HT, TT vs. NT, and NT 
vs. HT, respectively, in VNIR range. b, d, f) p-value of TT vs. HT, TT vs. NT, and NT vs. HT, respectively, 
in NIR range. TT: Tumor Tissue; NT: Normal Tissue; HT: Hypervascularized Tissue. 

3.7.2 Brain Tissue Segmentation using the VNIR-NIR Range 

The main goal of this experiment was to evaluate, as a proof-of-concept, if the 

proposed data fusion method could improve the morphological edge detection of 

different tissue structures (particularly normal tissue and blood vessels) that can be 

found in the exposed brain surface during surgery. Image segmentation based on the K-

means algorithm was performed in each HS image independently for a qualitative 

evaluation of the results obtained using the three data types, VNIR, NIR, and Fused. 

The number of clusters used was twenty-four. This number was selected based on the 

results of a previous work [70]. Finally, to obtain the segmentation maps, the clusters 

more similar to the ground-truth were selected using the Jaccard metric. In these 

experiments, the clusters initialization was performed using the same seed. 

Quantitative evaluation was not performed due to the low number of pixels labeled in 

each image, which produced extremely low Jaccard values.  

Figure 3-39 shows the pseudo-RGB images (generated from the VNIR data, where 

the approximate tumor area has been delineated with a yellow line by visual inspection 

of the operating surgeon according to the patient’s MRI), the ground-truth maps (green 

and blue pixels represent normal and blood vessel classes, respectively, and white 

pixels are non-labelled pixels), and the segmentation maps for the VNIR, NIR, and 

Fused data overlapped with the pseudo-RGB images. Blue and green colors were 

selected to be consistent with previous works [70]. After a visual evaluation of the 

segmentation maps by the operating surgeons, it can be observed that in Op50C1, the 

VNIR map presents normal pixels in the tumor area and normal and blood vessel pixels 

out of the parenchymal area. In contrast, NIR and fused maps reduce the 

misclassifications in the tumor area. Moreover, the anatomical structures of the 

parenchymal area are better defined in the fusion map than in the VNIR and NIR 

maps, although some pixels are identified as normal within the tumor area. In Op51C1, 

the VNIR map defines well the anatomical structures of the vessels and normal tissues, 

while the NIR map avoids misclassifications within the tumor area, delimiting well the 

parenchyma. The fused map offers a tradeoff between the information shown in the 
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VNIR and NIR maps, but some false negatives are presented in the tumor area. In 

Op54C1, the tumor area was correctly defined in the VNIR map without false negatives, 

but the anatomical structures of vessels are not accurately identified. In opposite, the 

NIR map improve de delineation of blood vessels, but the anatomical structure of 

normal tissue is poorly defined, including also false negatives in the tumor area. 

Finally, the fused map offers the best anatomical structures and delineation of tumor 

area. These results were assessed by the operating surgeons analyzing the MRI of the 

patient and the pathological diagnosis of the tissue. 

 

Figure 3-39: Results of the image segmentation of the HSI brain dataset. Each column (from 
left to right) represents the pseudo-RGB image generated form the VNIR data, the ground-truth (GT) map, 
the VNIR, NIR, and fused segmentation maps overlapped with the pseudo-RGB image, respectively. Green 
color represents normal tissue and blue color represents blood vessels. Op50C1: Meningioma Grade 1; 
Op51C1: Glioblastoma Grade 4; Op54C1: Glioblastoma Grade 4. 

3.7.3 Brain Tissue Classification using the VNIR-NIR Range 

Due to the limited number of patients in this dataset, a leave-one-patient-out cross-

validation approach was employed in this study. Each HS image was used as test and 

the training set contains all HS images except those of the corresponding patient. Three 

algorithms were evaluated to perform the classification: SVM, KNN, and RF. In 

addition, this approach was applied using NIR, VNIR, and fused images, 

independently, in order to evaluate the contribution of the fusion process in the 

classification performance.  

Figure 3-40.a shows the boxplots of the OA results obtained from each classifier. 

The highest median (horizontal bar within the box) and average (cross mark) OA were 

obtained with the SVM-L model using fused data (94.1% and 93.0%, respectively). 

Fusion and NIR results using KNN-C and KNN-E obtain similar OA results, while 

VNIR results improve ~5% the average OA value. A similar trend occurs in SVM-RBF, 

where VNIR achieves better results, but in all three cases (fusion, NIR, and VNIR) the 
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IQR dispersion decreases with respect to the other algorithms. The RF algorithm 

obtains similar average OA results using fusion, NIR, and VNIR images.  

To avoid the high contribution of the background in the OA results due to the large 

number of labeled pixels in such class, the macro F1-Score metric was computed. 

Figure 3-40.b shows such results, where it can be observed that the values decrease 

with respect to the OA. The highest median and average results were obtained using the 

KNN-C model with VNIR data (69.4% and 65.9%, respectively). In general, the VNIR 

classification achieves the best results in all classifiers but shows a large IQR compared 

to the NIR and fusion results. Fusion results obtain similar results than NIR results, 

and the results are comparable to the VNIR ones when using the SVM-L model.  

 
Figure 3-40: Fusion, NIR, and VNIR classification results using five classifiers. a) Overall 
accuracy. b) Macro F1-Score. 

Figure 3-41 shows the sensitivity results obtained for each class. The sensitivity of 

the NT class can be observed in Figure 3-41.a, where in general the NIR data obtain less 

data dispersion in all classifiers with respect to the VNIR data. KNN-C and KNN-E 

obtain the best average sensitivity results employing fusion data (81.6% and 79.5%, 

respectively). The highest median sensitivity of the NT class was obtained using the 

KNN-C model and VNIR data (94.5%). NIR data improve the performance using SVM-

L, SVM-RBF, and RF algorithms. Figure 3-41.b shows the sensitivity of the TT class 

where the NIR data obtain less IQR except in the SVM-L algorithm and low average 

results. VNIR obtains the best average values in all classifiers, where the highest 

median result was obtained using the RF model (69.4%). For VNIR, a similar trend 

occurs in the HT class (Figure 3-41.c), which may be caused by the presence of 

hemoglobin in the visible range. The highest median value was obtained using the 

SVM-L algorithm and fused data (96.4%), while the highest average result was 

obtained using KNN-C model and VNIR data (80.9%). The specificity results were 

calculated obtaining an average result of up to 90% in all classifiers and data. 
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Figure 3-41: Fusion, NIR, and VNIR sensitivity results using five classifiers. a) Sensitivity of 
normal tissue. b) Sensitivity of tumor tissue. c) Sensitivity of hypervascularized tissue.  

In addition, some outliers can be observed in Figure 3-41.a and Figure 3-41.b with a 

value of zero in the fusion and VNIR data. This is caused by a non-optimal image 

acquisition process of the image Op56C2, where the cold light emitter was not aligned 

with the captured line, affecting the spectral range from 750 to 900 nm of the VNIR 

sensor. This can be observed in Figure 3-42, where the normalized mean reflectance of 

NT and TT classes from the Op56C1 and Op56C2 images are shown to compare both 

consecutive captures. 

 

Figure 3-42: Mean reflectance spectral signature of normal (a) and tumor (b) tissue from 
the VNIR image Op56C1 and Op56C2.  

After applying the five supervised classification models to the entire VNIR, NIR, and 

fusion HS images, four-class classification maps were generated. These maps were used 

to analyze the results quantitatively. The synthetic RGB images and ground-truth maps 

are also displayed. 

Regarding the Op50C1 image (Figure 3-43), it can be observed that the VNIR maps 

have more details about the hypervascularized class than the NIR maps due to the 

hemoglobin contribution in the VIS region, as expected from HT sensitivity results. The 

tumor is identified in the five classifiers using the VNIR image, however using NIR data 

the SVM-L offers the high performance to identify TT. In addition, NIR provides better 

delineation of background area. Employing both KNN algorithms, the resulting maps 
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are noisy in the NIR case. The SVM-L model using fused data provides maps with fewer 

artifacts.  

 

Figure 3-43: Spectral classification results of Op50C1. Synthetic RGB images, ground-truth (GT) 
maps, and classification maps generated using, KNN-C, KNN-E, SVM-L, SVM-RBF, and RF algorithms for 
fusion, NIR, and VNIR data.  

Image Op51C1 (Figure 3-44) shows a high number of pixels misclassified as HT class 

using NIR and VNIR. The background delineation is improved using NIR and fusion 

data. The classification map using the fusion data improves the identification of NT, 

reducing the false positives presented using NIR and VNIR, and obtaining better 

performance using KNN-C and KNN-E models. False positives regarding TT class are 

presented in NIR and VNIR images, while using fusion data these misclassified TT 

pixels are located in the background area. 
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Figure 3-44: Spectral classification results Op51C1. Synthetic RGB images, ground-truth (GT) 
maps, and classification maps generated using, KNN-C, KNN-E, SVM-L, SVM-RBF, and RF algorithms for 
fusion, NIR, and VNIR data.  

In the case of Op56C1 (Figure 3-45), the TT was correctly identified in the VNIR 

image by all classifiers, except the SVM-L model, where some TT pixels are identified as 

NT. The HT class is identified with more detail using the fusion image. However, SVM-

L correctly identify the tumor area, but some NT pixels were identified as HT. 
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Figure 3-45: Spectral classification results Op56C1. Synthetic RGB images, ground-truth (GT) 
maps, and classification maps generated using, KNN-C, KNN-E, SVM-L, SVM-RBF, and RF algorithms for 
fusion, NIR, and VNIR data.  

3.7.4 Experimental Results Discussion 

In this section, an in-vivo HS brain cancer dataset was analyzed using supervised 

classification algorithms. This dataset was composed of VNIR, NIR and VNIR-NIR 

fused images covering the spectral range between 400 and 1700 nm. SVM, KNN, and 

RF algorithms were employed using a leave-patient-one-out data partition strategy. In 

addition, the K-means algorithm was employed to perform image segmentation. NIR 

and VNIR images were classified and segmented to determine if the fusion improved 

the classification.  

First, a preliminary analysis of three HS images of in-vivo human brain tissue 

obtained during surgical procedures was performed to evaluate, as a proof-of-concept, 

the segmentation results generated after processing the three data types. In this 

preliminary analysis, only two classes (normal and blood vessel) were labeled in the 

ground-truth maps and employed to reveal the two best clusters associated to such 

labeled pixels. Analyzing these segmentation results, specialists determined that the 

Fused maps provided a good tradeoff between the information presented in the VNIR 

and NIR maps, offering improved anatomical structures delineation. In this 

experiment, no tumor pixels were labeled or taken into account for the clustering 

analysis. For such reason, further experiments must be conducted including an 

increased dataset of HS images from in-vivo brain (where tumor pixels will be also 

labeled) with the goal of performing both segmentation and classification problems, 

aiming to identify tumor boundaries and compare the results obtained with the three 

data types. Moreover, a clinical study, including large number of patients, different 
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tumor types, and performing histological verification of several biopsies (within the 

tumor area and margins), should be performed to validate the classification results 

provided by the proposed method.  

The classification results show that the presence of hemoglobin in the VIS region 

improves the tumor and hypervascularized tissue using only VNIR images, while the 

NIR images correctly delineate the parenchymal area. Classification maps obtained 

using the VNIR-NIR fused images present more detailed maps, removing false 

positives present in the VNIR and NIR images. The main characteristics observed in 

the VNIR and NIR classification maps are reflected in the fused images.  

This work represents an initial exploration into using VNIR-NIR analysis for 

detecting and identifying brain cancer. While the results are promising, the dataset size 

is the main limitation of this study. While the current dataset was sufficient to 

demonstrate the potential of the approach, increasing the size of the dataset would 

improve the robustness of the results. For future research, the size of the dataset will be 

increased to employ other partition sets, avoiding the leave-one-patient-out approach. 

In addition, hyperparameter optimization is an important step in the training process 

to find the optimal configuration that leads to the best performance on a given dataset. 

The results obtained in this work can be pessimistic and can be improved after 

hyperparameter optimization. 

Another important future work is to perform an analysis to determine the most 

significant spectral bands within each range (VNIR and NIR). By identifying the most 

significant spectral bands within each range, the total number of bands used in the 

analysis and the computation time can be reduced. In addition, this band reduction can 

lead to the use of HS sensors that employ only these specific bands. 

3.8 Conclusions 

Current guidance tools employed to assist brain tumor resection during surgery have 

several limitations [230]–[233]. The IGS neuronavigation provide an accurate 

identification of tumor boundaries in low-grade gliomas, but not in high-grade ones, 

being affected also by the brain shift phenomenon. To accurately identify high-grade 

gliomas, it is necessary the use of contrast agents with complex and expensive systems, 

such as 5-ALA, or employing intraoperative MRI devices that requires especial 

operating rooms and significatively extends the duration of the surgery. Moreover, the 

treatment and decision made during surgery normally is determined by the 

intraoperative pathological result, which may take up to 45 minutes. Reducing the 

surgery time implies decreasing the risk of complications during the operation, such as 

infection, ischemia, respiratory problems, etc., thus improving cost-efficiency. 

Furthermore, an accurate delimitation between tumor and normal tissue improves the 

average survival of the patient [17]. For these reasons, it is desirable to develop 

minimally invasive, label-free, and flexible guidance tools that allow identifying brain 

tumor boundaries in real-time during surgery. The use of HSI in medical applications 

has been proved to be a valuable resource to identify tumor tissue [3].  

Additionally, an analysis of the most relevant spectral bands of the fused HS images 

for an accurate delineation of the tumor boundaries will be explored in future works 

with the goal of determining the minimum number of wavelengths required to develop 
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customized HS cameras. This will allow a reduction of the acquisition system size and 

also a time reduction of the data acquisition and processing, targeting real-time 

performance during surgery. This identification of the most relevant spectral bands in 

the NIR range will also allow to increase the spatial resolution of this HS images, 

possibly avoiding the resampling process employed in this work. These advances could 

allow the development of a novel guidance tool based on HSI technology for the 

accurate identification of brain tumors, regardless of tumor grade, avoiding the use of 

several independent devices during surgery and, hence, reducing the operation time. 
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Chapter 4: Dermatoscopic HS system 

for Skin Cancer Detection 

4.1 Introduction 

This chapter explores the potential of HS images in non-surgical medical 

diagnostics, specifically in dermatology, with a focus on the identification of PSLs. In 

this sense, the main goal of this research is the design and development of a HS-based 

instrumentation and a data processing framework based on HS image segmentation 

and supervised classification, following a similar methodology as the one presented in 

the previous chapter. A customized dermatologic HSI system was developed and 

employed to capture real-time HS data of in-vivo PSLs composed by 125 bands in the 

450–950 nm spectral range. This study aims to demonstrate, as a proof-of-concept, the 

potential use of HSI technology to assist dermatologists in their clinical routine practice 

for discriminating between benign and malignant PSLs (including both NMSC and 

melanoma lesions) using a real-time, non-invasive, label-free and non-ionizing hand-

held device. To the best of our knowledge, this is the first work focused in using 

snapshot HS cameras within the VNIR range to segment and classify among benign 

and malignant PSLs using only spectral information. 

This work was performed in collaboration with the research group of Prof. Francesco 

Leporati at University of Pavia during a research stay. The work related with the data 

collection has been carried out in a very close collaboration with the research group of 

Dr. Gregorio Carretero and Dr. Irene Castaño from the Department of Dermatology at 

the University Hospital of Gran Canaria Doctor Negrín (Spain), and Dr. Javier A 

Hernandez and Dr. Pablo Almeida from the Department of Dermatology at the 

Complejo Hospitalario Universitario Insular-Materno Infantil of Las Palmas de Gran 

Canaria (Spain), and also with Dr. Bernardino Clavo from the Research Unit of the 

University Hospital of Gran Canaria Doctor Negrín.  

4.2 Dermatoscopic HS system 

The HS dermatoscopic acquisition system used in this study for the assistance in the 

diagnosis of PSLs is a custom development described in detail in [234]. The system is 

composed by a snapshot HS camera (Cubert UHD 185, Cubert GmbH, Ulm, Germany) 

capable of capturing HS data in the VNIR spectral range from 450 to 950 nm, having a 
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spectral resolution of 8 nm (125 spectral bands) and a spatial resolution of 50×50 

pixels (i.e. a pixel size of 240×240 µm) (1 in Figure 4-1). This camera has coupled a 

Cinegon 1.9/10 (Schneider Optics Inc., Hauppauge, NY, USA) lens with a F-number of 

1.9 and a focal length of 10.4 nm. The acquisition system employs a 150 W QTH-based 

illumination system (Dolan-Jenner, Boxborough, MA, USA) (2 in Figure 4-1) coupled 

to a fiber optic ring light guide to obtain cold light emission in the skin surface, 

avoiding the high temperatures produced by the halogen lamp (3 in Figure 4-1). The 

illumination system is attached to the HS camera through a 3D printed customized 

dermatoscopic contact structure where the skin contact part is a dermatoscopic lens 

with the same refraction index as the human skin (4 in Figure 4-1). The HS 

dermatologic system can capture HS images, with an effective area of 12×12 mm, with 

an acquisition time of ~250 ms. This system is connected to a laptop where the 

acquisition software is executed (5 in Figure 4-1). Figure 1.6 shows an example of the 

use of the developed HS dermatologic acquisition system during a clinical data 

acquisition campaign at the University Hospital of Gran Canaria Doctor Negrin, Spain. 

 
Figure 4-1: HS dermatologic acquisition system. (1) HS snapshot camera; (2) QTH (Quartz-
Tungsten Halogen) source light; (3) Fiber optic ring light guide; (4) 3D printed customized dermoscopic 
contact structure attached to the ring light; (5) Acquisition software installed onto a laptop; (6) System 
employed during a data acquisition campaign. 

4.3 HS dermatoscopic database for skin cancer detection 

The HS dermatologic acquisition system was employed to obtain an HS in-vivo 

human PSL database to evaluate the efficiency of HS images to discriminate between 

benign and malignant lesions. The data acquisition campaign was performed from 

March 2018 to June 2019. Several types of PSLs from different parts of the body were 

captured from 116 subjects in two different hospitals, the University Hospital of Gran 

Canaria Doctor Negrín and Complejo Hospitalario Universitario Insular - Materno 

Infantil (Spain). The study protocol and consent procedures were approved by the 

Comité Ético de Investigación Clínica-Comité de Ética en la Investigación (CEIC/CEI) 

from both hospitals. Written informed consent was obtained from all subjects. 

After a preliminary analysis of the captured data, 55 subjects/images were removed 

from the database due to the PSLs were located in areas that were extremely difficult to 

be captured (e.g., shoulders, nose, chin, and some difficult to access parts of the face) 
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and, hence, the HS images were not captured in optimal conditions. The dermatoscopic 

lens had no complete contact with the skin surface, producing shadows or glares in the 

images and, consequently, it was impossible to perform reliable image calibration or 

PSL labeling on captured HS images. The final database was composed by 76 images 

from 61 subjects as shown in Figure 4-2.a. 

 

Figure 4-2: Patient/image flow scheme in this study. n: number of patients; m: number of HS 
images. There are several subjects with different lesions captured.  

In addition to the HS image, a standard digital dermatoscopic camera (3Gen 

Dermlite Dermatoscope, 3Gen Inc., San Juan Capistrano, CA, USA) was employed to 

capture conventional RGB images of 3,000×4,000 pixels (i.e. a pixel size of 6.6×6.6 

µm) of the same PSL for dermatologist evaluation. Suspected malignant lesions were 

diagnosed through histological assessment. Figure 4-3 shows some RGB dermatoscopic 

images obtained by using the digital dermatoscopic camera. The HS images 

corresponding to these image IDs were employed as validation and test sets in the 

experimental setup. 

 
Figure 4-3: RGB images obtained with the digital dermatoscopic camera with their 
correspondent image ID above. The first row shows the validation set images and the second row the 
test set images. 
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A labeled dataset was created employing the HS images by assigning to certain 

pixels the diagnostic class of the PSL obtained from the dermatologist/pathologist 

assessment. This assignation was performed by using a semi-automatic labeling tool 

based on the SAM algorithm. This algorithm determines the spectral similarity between 

two spectral signatures, where lower spectral angle values indicate higher similarity 

among both spectral signatures [235]. The semi-automatic labeling tool allows labeling 

the most similar pixels in the image with respect to a reference pixel, which is manually 

selected and identify to belong to a certain class. Only pixels with high confidence to 

belong to a class were labeled. This tool has been already employed to label HS images 

in-vivo brain surface for brain tumor classification [124]. After performing the labeling 

of the entire database, a total of 15,961 pixels were used for the classification 

experiments employing ML algorithms. The data were labeled in two different classes: 

Benign and Malignant. In addition, each class was split into melanocytic and 

epidermal [236] (Table 4-1). Concretely, the labeled dataset was composed by 61 

patients, but two of them have different lesions captured where one lesion belongs to 

the benign class and the other lesion belongs to the malignant class. Table 4-2 shows 

the number of patients, images and labeled pixels per class, while the Figure 4-4 shows 

the training, validation, and test set distribution of this preliminary study.  

Table 4-1: HS epidermal dataset description.  

Capture 
Date 

Subject 
ID 

Capture 
ID 

Binary 
ID 

Multilabel 
ID 

Lesion Location Diagnosis 

20/03/2018 

13 
C1 M ME Chest Basal cell carcinoma 
C2 B BM Stomach Blue nevus 
C3 B BM Stomach Blue nevus 

14 C1 B BM Right Arm Congenital nevus 

15 
C1 B BM Back Centre Nevus 
C2 B BM Back Top Nevus 

16 C1 B BM Right Forearm Nevus 

22/03/2018 

17 
C1 B BM Back Nevus 
C2 B BM Back Nevus 

18 C1 B BM Centre Back Nevus 
20 C2 B BM Back Melanocytic nevus 
21 C1 M ME Jaw Basal cell carcinoma 

05/04/2018 

23 C1 B BM Left Arm Nevus 
24 C1 B BM Left Cheekbone Solar lentigo 

25 
C2 B BM Stomach Nevus 
C3 B BM Back Nevus 

26 C1 B BM Right Forearm Nevus 

10/04/2018 

27 

C1 B BM Top Right Back Nevus 
C2 B BM Centre Back Nevus 
C3 B BM Top Left Back Nevus 
C4 B BM Top Left Back Nevus 

28 C1 B BM Neck Solar lentigo 

29 
C1 B BM Left Arm Nevus spilus 
C2 B BM Left Arm Nevus spilus 
C3 B BM Left Back Nevus 

30 C1 B BM Right Chest Nevus 
32 C1 B BE Nose Atypical keratosis 

08/08/2018 56 C1 M ME Left cheek 
Infiltrative basal cell 

carcinoma 

15/02/2019 
60 

C1 B BE Back Atypical nevus 
C2 B BM Left side Atypical nevus 
C3 B BE Left side Angioma 

61 C1 B BE Left leg Seborrheic keratosis 
62 C1 M MM Left eyebrow Melanoma 

22/02/2019 63 C1 B BM Stomach Atypical nevus 

 66 C1 M ME Left nose Basal cell carcinoma 
67 C1 M ME nose Carcinoma with Merkel cells 
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Capture 
Date 

Subject 
ID 

Capture 
ID 

Binary 
ID 

Multilabel 
ID 

Lesion Location Diagnosis 

28/02/2019 68 C1 M MM Left leg Melanoma 
04/03/2019 69 C1 B BM Back Melanocytic nevus 
08/03/2019 71 C1 B BM Stomach Atypical nevus 

18/03/2019 
74 C1 M ME Eye Basal cell carcinoma 
75 C1 M ME Nose/Eye Basal cell carcinoma 
77 C1 M ME Nose Basal cell carcinoma 

25/03/2019 

78 C3 B BE Ear Seborrheic keratosis 
79 C1 M ME Brow Basal cell carcinoma 
80 C1 M ME Head Epidermoid carcinoma 
81 C1 M MM Abdomen Melanoma 

28/03/2019 82 C1 M MM Right arm Melanoma 
01/04/2019 83 C1 B BE Nose Seborrheic keratosis 

05/04/2019 
86 

C1 B BM Chest Atypical nevus 
C2 B BM Stomach Atypical nevus 
C3 B BM Back Atypical nevus 
C4 B BM Back Atypical nevus 

87 C1 M MM Left cheek Malignant lentigo 

08/04/2019 
88 C1 M ME Right shoulder Basal cell carcinoma 
89 C1 M ME Left ear Basal cell carcinoma 
90 C1 M ME Head Basal cell carcinoma 

22/04/2019 
91 C1 M ME Face 

Basal cell carcinoma with 
infiltration 

92 C1 M ME Neck Epidermoid carcinoma 
23/04/2019 94 C1 M MM Back Melanoma Clark level III-IV 
26/04/2019 95 C1 M MM Buttock Melanoma 
06/04/2019 96 C1 M MM Right leg Melanoma 

29/04/2019 
97 C1 M MM Chest Melanoma Clark level II 
98 C1 M MM Back Dysplastic Nevus  
99 C1 M ME Face Basal cell carcinoma 

06/05/2019 
100 C1 M ME Neck Basal cell carcinoma 
101 C1 M ME Right hand Basal cell carcinoma 

07/05/2019 102 C1 M MM Back Melanoma Clark level IV 
17/05/2019 103 C1 B BM Right forearm Blue nevus 
20/05/2019 104 C1 M ME Nasal wing Basal cell carcinoma 
24/05/2019 106 C1 M MM Nose Malignant lentigo 

27/05/2019 
107 C1 B BM Left arm Blue nevus 
109 C1 M ME Back left hand Epidermoid carcinoma 

03/06/2019 
110 C1 M ME Head Basal cell carcinoma 
112 C1 M ME Helix Basal cell carcinoma 
113 C1 M ME Nose Epidermoid carcinoma 

10/06/2019 116 C1 M ME Face Basal cell carcinoma 
B: Benign; M: Malignant; MM: Malignant Melanocytic; ME: Malignant Epithelial; BM: Benign Melanocytic; BE: 
Benign Epithelial. 

 

Table 4-2: HS Dermatological Labeled Dataset. 

Type #Patients #Images #Labeled Pixels 

Benign 27 40 7471 

Malignant 36 36 8490 

Total 618 * 76 15,961 

* The total number of patients is not the sum of Benign and Malignant patients as two patients had several lesion types 
captured. 
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Figure 4-4: Proposed data partition employing the HS dermatoscopic database for skin 
cancer detection. The database was split in training, validation, and test sets. 

4.4 Two-class Dermatology HS Processing Framework 

The HS dermatologic classification framework is composed of three main steps: HS 

data pre-processing, automatic PSL segmentation, and supervised classification. Figure 

4-5 shows a block diagram of this framework. The first step consists in performing the 

pre-processing chain to homogenize the incoming raw HS image captured by the HS 

dermatologic acquisition system. After performing the pre-processing, the resulting 

image is automatically segmented, where the normal skin and PSL pixels are 

discriminated. This discrimination is performed using a spectral signature reference 

library, composed of three spectral signatures of benign, malignant and atypical PSL (in 

blue, red and black colors respectively in Figure 4-5) and three normal skin spectral 

signatures (in green color in Figure 4-5). Finally, the pixels previously identified as 

lesion are classified by a supervised classifier, providing the class results, benign or 

malignant.  

 

Figure 4-5: Block diagram of the HS dermatologic classification framework (pre-processing, 
automatic segmentation, and supervised classification) and HS dermatologic acquisition 
system. Spectral signature reference library is composed of six spectral signatures: benign, malignant, 
and atypical PSL spectral signatures in blue, red, and black colors respectively, and three different normal 
skin spectral signatures in green color.  
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4.4.1 HS Dermatologic Data Pre-Processing 

The HS data were pre-processed to homogenize the spectral signatures among the 

different patients and data campaigns. First, data calibration was performed employing 

a white and dark reference acquired under the same conditions. In order to reduce the 

spectral noise found in the spectral signatures, the first 4 bands and the last 5 bands 

were removed due to the HS sensor low response in such bands. Moreover, a smooth 

filter was applied with a windows size of 5. The final spectral signature was formed by 

116 bands. In the final step, a normalization was applied to each spectral signature to 

make the data range between 0 and 1 with the goal of homogenizing its amplitude, thus 

avoiding the subsequent processing methods to be affected by the amplitude 

differences caused by non-uniform illumination conditions.  

4.4.2 HS Dermatologic Segmentation Framework 

A processing framework to automatically segment the captured HS image into 

normal skin and PSL pixels based on an unsupervised segmentation algorithm is 

proposed (Figure 4-6). The proposed segmentation framework aims to select only PSL 

pixels in a HS image to reduce the data that will be sent to the classification stage and, 

consequently, decrease the computational cost of the classifiers, performing a two-class 

classification. The K-means clustering algorithm was selected to perform the 

segmentation as it is a well-established algorithm that provides a good delimitation of 

the different areas presented in an HS image scene [70]. This algorithm divides an 

input HS image into 𝐾 different clusters for a previously selected 𝐾 value. However, the 

identification of each cluster is not associated to any pre-established class, so the 

segmentation maps only represent relevant spectral differences. In this framework, 

first, the evaluation of the optimal 𝐾 value for this application is performed. Different 

clustering evaluation methods were employed to determine the optimal 𝐾 value, such 

as Silhouette, Calinski Harabasz and Davies Bouldin methods. The training dataset was 

used to find the optimal K value. Table 4-3 shows the minimum and maximum 𝐾 

values obtained from the different methods, where the most frequent value to segment 

the image is two. Considering this result, the range between two and seven clusters will 

be evaluated to compare the results and select the 𝐾 value that provides the best result. 

 

Figure 4-6: Block diagram of the HS dermatologic segmentation framework. 

Table 4-3 𝑲 value using Silhouette, Calinski Harabasz and Davies Bouldin clustering 
evaluation methods. 

K Value Silhouette Calinski Harabasz Davies Bouldin 
Minimum 2 2 2 
Maximum 6 6 7 

Most Frequent 2 2 2 
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After the K value evaluation, a two-class segmentation map is generated, where the 

PSL and the normal skin pixels are identified considering the information of each 

cluster of the segmentation map, using the SAM algorithm. In order to perform the 

SAM comparison, a spectral signature reference library of normal skin and PSL data 

was created, employing only the spectral signatures of the labeled training set in order 

to avoid the inclusion of validation or test HS images in the reference library. This 

library contains five different spectral signatures: three from normal skin, and two from 

malignant and benign PSLs (see Figure 4-7). These reference spectral signatures were 

obtained computing the average of the labeled data per class. The normal skin data 

were divided into three groups using the K-means clustering algorithm, where the 

number of clusters employed was selected after evaluating the results using the 

Silhouette, Calinski Harabasz and Davies Bouldin methods. The Silhouette and Davies 

Bouldin methods indicate that the optimal number of clusters to segment the normal 

skin data was three; taking into account the smallest index value achieved in Figure 

4-8.a,b. Instead, for Calinski Harabasz method the optimal K value was two, 

considering the highest index value reached in Figure 4-8.c. Taking into account these 

results, the selected number of clusters to segment the training set was established in 

three. These reference spectral signatures were employed to automatically identify the 

PSL pixels through the SAM algorithm, which will be next considered as input for the 

supervised classification. 

 

Figure 4-7: Reference spectral signatures included in the skin/PSL library. a) Benign spectral 
signature. b) Malignant spectral signature. c, d, e) PSL spectral signatures. Three different normal skin 
spectral signatures of the training dataset. 

 

Figure 4-8: Clustering evaluation to segment the normal skin training dataset. Results of the 
optimal cluster number evaluation using the following methods: a) Silhouette (maximum K indicates 
optimal value). b) Davies Bouldin (minimum K indicates optimal value). c) Calinski Harabasz (maximum 
K indicates optimal value). 

For the computation of the SAM algorithm, two different methods were employed to 

generate the two-class segmentation maps. The first method (called per centroid) 

compared the centroid from each cluster of the segmentation map with the spectral 

signatures of the reference library. In this method, the most similar spectral signature 

               

               

               

               

               

               

               

               

               

               

 

   

 

 
 

  
 

 
  

 
 
 

     

        

                  

    

   

    

   

    

   

    

   

 
   

 
 

 
  

 
  

 
  

 
 

     

        

                  

   

   

 

   

   

   

   

 
 

 
  

 
 

 
 

  
  

  
 

  
 

 

     

        

                  

    

    

    

    

    

    

    

    

 
 

   
 
 
  

 
  

 
 

 
 
  

 
  

 
 

     

   



Chapter 4: Dermatoscopic HS system for Skin Cancer Detection 

~ 111 ~ 

to each centroid was assigned to a certain class (PSL or normal skin). The second 

method (called per pixel) compared each pixel in a certain cluster with the spectral 

signatures of the reference library and computed the sum of the resulting SAM values. 

Then, the smallest sum in each centroid is assigned to a certain class (PSL or normal 

skin). Finally, a morphological closing operation based on dilatation followed by 

erosion was applied to the two-class segmentation map in order to remove small and 

isolated regions and to obtain a better representation of the lesion. Figure 4-9 shows an 

example of a segmentation, where Figure 4-9.a shows the gray-scale image and Figure 

8.b shows the segmentation map of an HS image using seven clusters, where the colors 

are randomly assigned. Figure 4-9.c shows the classification map obtained after 

applying the SAM methodology, while Figure 4-9.d shows the same two-class 

segmentation map after the morphological post-processing. In these maps, normal skin 

and PSL pixels are represented in green and red colors, respectively. Finally, these 

results were compared with the ground-truth maps of the validation dataset using 

segmentation evaluation metrics to select the most appropriate 𝐾 value and SAM 

comparison method. The PSL pixels were used as input for the supervised classification 

in the complete processing framework. 

 

Figure 4-9: HS dermatologic segmentation example. a) Gray-scale image. b) Segmentation map 
using seven clusters (colors are randomly assigned). c) Two-class segmentation map obtained after 
comparing the five centroids with the reference library using the SAM algorithm (red indicates PSL and 
green normal skin). d) Two-class segmentation map after applying morphological closing operation. 

Ten HS validation images from 8 different patients were evaluated with two 

methods (per centroid and per pixel) based on the K-means and the SAM algorithms, 

using different K values to find out which combination of method and number of 

clusters offers the best results. 

Figure 4-10 shows the boxplot results of the Jaccard coefficient metric using the 10 

HS validation images for each method (per centroid and per pixel) using different 

number of clusters in the range 2 ≤  𝐾 ≤  7. In the figure, the boxes boundaries 

represent the IQR, which refers to the results of the validation set comprised between 

the first quartile (Q1, 25th percentile) and the third quartile (Q3, 75th percentile). The 

central bars represent the median result values (Q2, 50th percentile), while the error 

bars depict minimum and maximum values of the Jaccard coefficient for such method 

excluding any outliers. The outlier values are represented in the plot with the small 

dots. Attending to the boxplots, 𝐾 = 2 with the per centroid method offers the best IQR 

value with a median of 0.81, while 𝐾 = 3 and 𝐾 = 7 provide the best median results in 

both methods higher than 0.82, also representing a reduced IQR for 𝐾 = 3. However, it 

should be noted that most of the results in the boxplot present one or two outliers 

(represented with small dots), where their vertical positions show the Jaccard value for 

a specific HS image of the validation set in such method. This abnormal distance from 
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the other values is produced due to the fact that images P20_C2 and P113_C1 were not 

taken in optimal conditions, producing shadows or glares in the HS images (see gray-

scale images in Figure 4-11). Considering these outliers and analyzing the two-class 

segmentation maps when 𝐾 = 2 and 𝐾 = 3, no PSL pixels are detected in P113_C1 

image. On the contrary, it is observed that the results using 𝐾 = 7 provide a better 

segmentation of the PSLs. For example, P113_C1 is better segmented than the 𝐾 = 2 

and 𝐾 = 3 results (as it is shown in Figure 4-11), allowing PSL classification to be 

performed by the supervised classifier. In addition, using 𝐾 = 7, the per pixel method 

provides a better median value (0.82) than the per centroid method (0.71), 

representing an improvement of 11%. For this reason, we selected 𝐾 = 7 with the per 

pixel method as the most suitable configuration for the overall framework. 

 

Figure 4-10: Comparison between per centroid and per pixel methods using different 
number of clusters for the validation data using the Jaccard coefficient. The box boundaries 
represent the IQR of the results. Central bars and error bars depict median and minimum/maximum 
values of Jaccard coefficient, respectively. The small dots outside the minimum/maximum values 
represent the outliers of the Jaccard coefficient found in each method. 

Figure 4-11 shows the qualitative results obtained in the segmentation framework 

using the per pixel method. Figure 4-11.a shows the gray-scale images for each HS 

validation cube, while Figure 4-11.b shows the ground-truth, where the PSL has been 

manually segmented by an expert. Figure 4-11.c-d show the two-class segmentation 

maps obtained with 𝐾 = 3 and 𝐾 = 7, respectively. It is observed that the results in 

both cases are very similar. Nonetheless, in the case of P113_C1 using 𝐾 = 7, the 

qualitative results are better than in the other cases. Finally, Figure 4-11.e shows the 

two-class segmentation maps after performing a morphological closing operation to 

remove small-isolated regions of PSL pixels, ensuring that in the next classification 

stage, only PSL pixels will be employed. The PSL area is clearly identified in almost all 

images, except in images P20_C2, P60_C1, and P113_C1, achieving an average Jaccard 

value of 0.82. 

Taking into account the results obtained, it has been concluded that the per pixel 

method with 𝐾 = 7 and morphological post-processing provides the best results with 

 
 

 
 
 

  
  

 
 

  
  

  
 

 

   

   

   

   

   

   

   

   

   

   

   

                     

      

    

                 

 



Chapter 4: Dermatoscopic HS system for Skin Cancer Detection 

~ 113 ~ 

the validation database. Next, the evaluation of the test database, composed by 10 HS 

images from 10 different patients, using the selected method was performed to validate 

the algorithm for the automatic identification of the PSL pixels. Figure 4-12 shows the 

qualitative and quantitative results for each HS test image. The resulting two-class 

segmentation maps after applying the morphological post-processing are shown in 

Figure 4-12.c, and below, their respective Jaccard coefficients. It is worth noticing that 

the results obtained in images P13_C1, P14_C1, P23_C1, P74_C1, P97_C1, P102_C1, 

and P107_C1, the PSL areas are clearly identified, achieving an average Jaccard value of 

0.81. 

 
Figure 4-11: Two-class segmentation maps of the validation database using the per pixel 
method. a) Gray-scale images. b) Ground-truth maps. c) Results with K = 3. d) Results with K = 7. e) 
Results with K = 7 and morphological post-processing. f) Jaccard coefficient values of the results with K = 7 
and morphological post-processing. 

 
Figure 4-12: Two-class segmentation maps of the test database using per pixel method with 
𝑲 =  𝟕. a) Gray-scale images. b) Ground-truth maps. c) Results with morphological post-processing. d) 
Jaccard coefficient values of the results with morphological post-processing. 

Nonetheless, in image P69_C1, a small area of the PSL pixels was identified with a 

Jaccard value of 0.10. However, this area corresponds with the center of the lesion, 

enabling the more relevant pixels of the PSL to be processed by the next classification 

stage. On the other hand, in images P28_C1, and P100_C1 the segmentation process 

did not detect any PSL pixel. After analyzing the spectral signatures of these images and 

comparing them with the spectral signatures of the reference library, it was observed 
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that the PSL spectral signatures of both images were very similar to the normal skin 

references. This phenomenon can be observed in Figure 4-13, where a comparison 

between the reference spectral signatures and the average of the PSL and normal skin 

pixels was performed. In the case of image P28_C1 (Figure 4-13.a), the PSL was 

diagnosed as a benign lesion; however, the average spectral signature of the PSL is 

more similar to the normal skin references than to the benign reference. In the case of 

P100_C1 (Figure 4-13.b), the PSL was diagnosed as a malignant lesion, but the average 

spectral signature of the PSL is more similar to the normal skin references than to the 

malignant reference. These results suggest the necessity of increasing the HS database 

to improve the spectral signature reference library with a wider variability of PSLs and 

normal skin types.  

 
Figure 4-13: Average spectral signatures of the test set. Labeled PSL (dashed red line) and normal 
skin (dashed green line) pixels, and reference spectral signatures of PSLs (red line) and normal skin (green 
line). a) P28_C1 (benign PSL). b) P100_C1 (malignant PSL). 

4.4.3 HS Dermatologic Classification Framework 

The HS dermatologic classification framework developed in this section is based on 

a supervised classification with an automatic fine tuning of the classifier 

hyperparameters employing an optimization algorithm. The pre-processed HS labeled 

dataset was employed to find the most suitable classification model using the data 

presented in Section 4.3. The HS labeled dataset of PSL spectral signatures was 

employed to train, validate, and test the developed classification algorithms. The 

validation process was performed using a stratified patient assignment where the 

labeled data were divided into three independent sets: test, validation, and training. 

The test set was composed by labeled data from 10 HS images from 10 patients with 

2,472 pixels. The validation set was formed by labeled data from 10 HS images from 9 

patients, having 1,931 pixels and, the training set was composed by the remaining 

labeled data of 56 HS images from 44 patients, formed by 11,558 pixels. Figure 4-14 

shows the block diagram of this processing framework, where a Genetic Algorithm (GA) 

was employed to optimize the hyperparameter values of the supervised classifier using 

the training and validation sets. The AUC was used for the evaluation of the validation 

results. After finding the optimal hyperparameters, the classifier is trained with the 

training set and evaluated with the test set, obtaining the final evaluation metrics. The 
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supervised classification algorithms evaluated in this section are SVM, RF and ANNs. 

The experimental results obtained in the classification of the labeled samples are 

presented. Table 4-4 shows the AUC results obtained with each supervised classifier 

using the default and the optimal hyperparameters to classify the validation dataset.  

Table 4-4: Area under the ROC Curve (AUC) results obtained with default and optimized 
hyperparameters.  

Classifier Default Hyperparameters AUC Optimized Hyperparameters  AUC 

SVM Linear 𝐶 =  1 0.70 𝐶 =  94.07 0.89 

SVM RBF 𝐶 =  1; 𝛾 =  1/116 0.66 𝐶 =  13.41; 𝛾 =  8.43 0.77 

SVM Sigmoid 𝐶 =  1; 𝑠 =  1/116; 𝑐𝑓 =  0 0.50 𝐶 =  45.75;  𝑠 =  −9.53; 𝑐𝑓 =  −14.22 0.83 

RF 𝑛𝑇𝑟𝑒𝑒𝑠 =  500 0.61 𝑛𝑇𝑟𝑒𝑒𝑠 =  3 0.61 

ANN 𝑛𝑒𝑢𝑟𝑜𝑛𝑠𝑝𝑒𝑟 𝑙𝑎𝑦𝑒𝑟  =  [1] 0.59 𝑛𝑒𝑢𝑟𝑜𝑛𝑠𝑝𝑒𝑟 𝑙𝑎𝑦𝑒𝑟  =  [1; 3; 443; 2] 0.61 

𝑪: Cost; 𝜸: Gamma; 𝒄𝒇: Intercept Constant; 𝒔: Slope. 

 

Figure 4-14: Proposed block diagram of the HS dermatologic classification processing 
framework. 

As can be seen from the results, the optimized SVM Linear algorithm achieved the 

best AUC (0.89), followed by the SVM Sigmoid and SVM RBF algorithms (0.83 and 

0.77, respectively). In addition to these results, Figure 4-15 shows the ROC curves 

obtained with each classifier with and without hyperparameters optimization. In this 

figure it is possible to observe the differences between the curves, where SVM Linear, 

Sigmoid and RBF classifiers improve the results after the optimization. Nevertheless, 

RF and ANN classifiers show no relevant improvement in the results. Taking into 

account these results, the SVM Linear was selected for the classification of the PSLs to 

complete the processing framework, achieving a sensitivity of 96.7%.  

In order to assess the results obtained with the SVM Linear classifier optimized with 

the validation set, the classifier was evaluated on the test set. Figure 4-16 shows the 

ACC results of each HS test image, where it is possible to observe that 8 images were 

classified with an ACC higher than 80%, one image (P102_C1) was identified with a 

53% of ACC, and only one HS image (P13_C1) was not correctly classified. As it can be 

seen in Figure 4-17, the average spectral signatures of the malignant lesions P13_C1 

and P102_C1 are quite different from the reference spectral signatures of such classes 

(Figure 4-17.a,b). On the contrary, P14_C1 offers an excellent classification accuracy 

value as its average spectral signature is very similar to the benign reference spectrum 

(Figure 4-17.c). In this sense, it is possible that the skin cancer database requires more 

data and patients’ variability to generalize a classification model able to achieve higher 
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accuracy. Summarizing, on the test set, the classifier provided an average ACC of 78%, 

correctly identifying 9 PSLs and incorrectly identifying 1 PSL. 

 

Figure 4-15: ROC curves for validation classification results obtained with the five 
classifiers. a) Classification results with default parameters. b) Classification results with optimized 
hyperparameters. 

 

Figure 4-16: Test classification accuracy results obtained with the SVM Linear classifier. 
Below each patient ID, the correct diagnosis of the PSL is presented. B: Benign; M: Malignant. 

 

Figure 4-17: Average spectral signatures of the labeled PSL (dashed red line) and normal 
skin (dashed green line) pixels, and reference spectral signatures of PSLs (red line) and 
normal skin (green line). a) P13_C1 (malignant PSL). b) P102_C1 (malignant PSL). c) P14_C1 (benign 
PSL), correctly classified.  
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4.4.4 Experimental Results Discussion 

The results obtained with the fully HS dermatologic processing framework has been 

presented. This framework is composed by the selected segmentation and classification 

algorithms which provided the best results in the previous analysis. 

Figure 4-18 shows the ACC results for each HS test image after applying the 

segmentation and classification of the PSL pixels. On the one hand, in the images 

P28_C1, and P100_C1, no pixels were identified as PSL by the segmentation stage. 

Thus, the classification stage could not provide the identification of the pixels. In this 

case, the system will require asking the user a new acquisition of the PSL due to the 

non-optimal conditions of the captured HS image. On the other hand, the PSL image 

P13_C1 achieved a very low accuracy in the identification of the lesion (10%), while 

image P102_C1 obtained an accuracy of 45%. As explained in the previous section, the 

spectral signatures of these lesions are quite different from the reference spectra, 

indicating the need for an expanded database where the inter-patient and inter-lesion 

variability were taken into account. The remaining HS test images (P14_C1, P23_C1, 

P69_C1, P74_C1, P97_C1, and P107_C1) provided competitive results in the 

identification of the PSL type with an average ACC of 85%. 

 

Figure 4-18: Test classification ACC results obtained with the SVM Linear classifier and with 
the pixel segmentation dataset. n/a: HS images without PSL pixels identified in the segmentation 
stage. 

Summarizing, using the proposed processing framework in this preliminary study, 

two of the HS test images were not evaluated due to non-optimal conditions of the 

acquisition procedure. In addition, another HS test image was not correctly identified 

due to the necessity of increasing the HS PSL database in order to better generalize the 

segmentation and classification models for the large diversity of PSLs and skin types. 

However, using a risk threshold of 40% for the discrimination of the malignant lesions, 

7 of 8 evaluable HS test images (87.5%) were accurately classified according to the PSL 

pathological diagnosis. In this sense, the malignant PSLs with an accuracy higher than 

40% will be considered to have clear evidence of malignant behavior. 

These preliminary results are very promising due to the rigorous validation 

methodology employed, which is based on dividing the database into training, 

validation, and test sets. In this sense, the test set consists of data from patients who 

were not involved in the generation of the processing models. This guarantees the 

reliability of the achieved results without producing overfitting, which can provide 
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optimistic accuracy results. In addition, the average execution time for the proposed HS 

dermatologic framework is ~500 ms, requiring ~220 ms to perform the pre-processing 

stage, ~135 ms for the segmentation stage and ~145 ms to execute the supervised 

classification. The implementation was performed using MATLAB® in an Intel i7-

4790K with a working frequency of 4,00 GHz and a RAM memory of 8 GB. Therefore, 

this preliminary study reveals the potential use of HSI as a non-invasive imaging 

modality for in-situ clinical support during the routine clinical practice. 

In order to compare the results obtained in this preliminary study with the state-of-

the-art, a summary table is shown in Table 4-5. It is worth noting that our work cannot 

be directly compared with most of the studies already published since our focus is on 

distinguishing between benign and malignant PSLs, whereas the other research works 

are based on distinguishing between melanoma and non-melanoma lesions. In 

consequence, since the dataset used in each research is different, the comparative 

between different approaches is not fair. Nevertheless, we would like to present the 

most relevant results of the current state of the art. 

Table 4-5: Comparison of the obtained results with the state-of-the-art.  

Reference Patients Images Bands Spectral Range (nm) Sensitivity (%) Specificity (%)  

[152] 1278 1391 15 483–950 80.4 * 75.6 

[147] 311 348 8 400–1000 100.0 *,¥ 5.5 

[145] 111 360 10 430–950 100.0 *,¥ 5.5 

[237] 55 36 10 430–950 71.4 *,α 25.0 

 [144] 1257 1612 10 430–950 98.2 * 9.5 

[162] 97 134 124 380–780 96.0 * 87.0 

[156] - 157 10 365–1000 97.0 97.0 

[156] - 712 10 365–1000 99.0 93.0 

This work 61 76 116 450–950 87.5/100.0 * 100.0 
* Sensitivity for melanoma detection. ¥ Only reported sensitivity for 3 melanoma lesions. α Only reported sensitivity for 
4 melanoma lesions. 

In [152], the research of Tomatis et al. used a dataset of 1,278 patients with 1,391 

images, where 184 lesions were melanomas. The dataset was divided into three sets, 

where the test set was composed by 347 images, including 41 melanomas. The 

sensitivity obtained was 80.4% with a specificity of 75.6%. Moncrieff et al. performed a 

discrimination between melanoma and non-melanoma lesions by using the MS 

SIAscope/SIAscopy system to generate a database composed by 52 melanomas and 296 

non-melanomas, achieving a sensitivity and specificity of 82.7% and 80.1%, 

respectively [147]. The studies performed by Fink et al. [145] and Song et al. [237] were 

based on MelaFind system, achieving a 100% and 71.4% of sensitivity, respectively, but 

having a very low number of melanomas in the database (3 and 4 melanomas, 

respectively). However, the multicenter study of Monheit et al. [144] evaluated the 

MelaFind tool with a dataset of 1,612 images (including 114 melanomas) and achieved a 

sensitivity of 98.2% but with a very low specificity (9.5%). In another study performed 

by Nagaoka et al. authors generated a database composed by 24 melanomas and 110 

non-melanoma lesions using a HS system capable of obtaining 124 bands, achieving a 

sensitivity and specificity of 96% and 87%, respectively [162]. 

To the best of our knowledge, the only work found in the literature which deals with 

the discrimination between malignant and benign PSL was performed by Stamnes et al. 

[156]. In this work, two datasets were evaluated: a small dataset with 157 images (35 

malignant and 39 benign); and a large dataset, which included lesions employed to 

train the system, composed by 712 images (80 malignant and 217 benign). The results 
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were promising achieving sensitivity and specificity of 97% and 99%; and 97% and 93% 

for the small and large datasets, respectively. Compared to our proposed system, 

MelaFind performs similar in the identification of melanoma, but fails in the 

identification of non-melanoma lesions. The fairest comparison is regarding the results 

obtained by Stammes et al. that employed a similar annotation scheme to our work, 

i.e., malignant vs. benign. Our system provided the best specificity results that can be 

found in the literature, but the sensitivity result for the malignant lesions is lower than 

other works. We have computed the sensitivity of our approach in classifying 

melanoma lesions. In the test set, 2 melanoma lesions (P102_C1 and P97_C1) were 

included in the malignant class. Using the risk threshold of 40%, these two lesions were 

correctly identified as melanoma; hence, the sensitivity of our proposed approach for 

melanoma detection would be 100%. In any case, the reduced number of HS images in 

the test set (10 images, 5 benign and 5 malignant) in our study, highly penalizes the 

results when an HS image is misclassified, especially for the less common class (i.e., 

melanoma). 

4.5 Three-class Dermatology HS Processing Framework 

A variation of the segmentation and classification framework was developed with the 

goal of differentiating between malignant, benign, and atypical PSLs. An Atypical mole, 

or dysplastic nevus, is a transition between benign moles and melanoma. A significant 

number of atypical moles evolve into melanoma and, for this reason, they should be 

promptly noticed and diagnosed [238]. The HS dermatoscopic database presented in 

Section 4.3 included nine HS images from atypical moles that were labeled as benign. 

In this section we present the experimentation after dividing the dataset as shown in 

Table 4-6, where the dataset is labelled into three classes: Benign, Atypical and 

Malignant.  

Table 4-6: Three-class HS Dermatological dataset. Including number of patients, number of HS 
images and number of labeled pixels. 

Type #Patients #Images #Labeled Pixels 

Benign 22 31 6,003 

Atypical 5 9 1,468 

Malignant 39 39 8,734 

Total 66 79 16,205 

 In previous experiments, it was deduced that the most effective number of clusters 

for the segmentation of the PSL and healthy skin was seven (𝐾 = 7) using clustering 

evaluation methods. After that, a two-class segmentation map was generated using the 

spectral signature reference library. The PSL and the normal skin pixels were identified 

considering the information of each cluster of the segmentation map and the spectral 

library, using the SAM algorithm. However, the two best number of clusters in the 

experiments presented in Section 4.4.2 (Figure 4-10) were 𝐾 = 3 and 𝐾 = 7. Therefore, 

a pragmatic decision was made for this three-class dermatology HS processing 

framework, selecting the optimal k value in three clusters (𝐾 = 3). This choice was 

motivated by the good trade-off between the computational requirements and the PSL 

segmentation accuracy, especially since this approach was orientated to achieve a 

hardware implementation on low-power platforms, targeting its future use as a hand-

held device. After that, the spectral signature reference library used to generate the 
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two-class segmentation map was modified. A new spectral signature reference was 

added, atypical lesion. In the previous section, this type of lesion had been added as 

benign lesion. In this sense, the benign spectral signature reference was modified. 

Finally, the library contains six different spectral signatures: three from PSL 

(malignant, benign, and atypical lesions, in Figure 4-19, represented in red, blue, and 

black colors, respectively) and three from normal skin (in green color in Figure 4-19). 

 
Figure 4-19: Reference spectral signatures included in the skin for the three-class PSL 
library. a) Benign spectral signatures b) Malignant spectral signature. c) Atypical spectral signature. 
d,e,f) Three different normal skin spectral signatures of the training dataset. 

Finally, the SVM model was generated again to perform a three-class classification: 

malignant, benign, and atypical lesions. In order to find the optimal configuration of 

the SVM, the hyperparameters for each type of kernel were adjusted using a GA and a 

custom Figure of Merit (FoM) conceived to obtain the most balanced accuracy results 

among the three classes. The FoM is shown in Eq. (33), where the similarity measure is 

calculated as the sum of the accuracy per class (ACC) divided by the absolute difference 

of the accuracies plus a regularization term (1). In addition, the FoM applied a 

normalization term that depends on the total number of classes, which is intended to 

adjust the FoM to be independent of the number of classes and to ensure that the FoM 

is comparable in different contexts. In this FoM, 𝑖 and 𝑗 are the indices of the classes 

that are being computed and n is the number of classes. Higher FoM values imply 

simultaneously increasing the ACC and reducing the differences between classes. 

Finally, to evaluate the results obtained for the optimized classifier, the false negative 

rate per class (𝐹𝑁𝑅𝑐) was computed. 𝐹𝑁𝑅𝑐 reveals the misclassifications produced by 

the classifier and discovers which classes were misclassified. Eq. (34) shows the 

mathematical expression of the 𝐹𝑁𝑅𝑐, where 𝐹𝑁𝑖 is the number of false negatives in the 

i-th class and 𝑃 is the total number of positive samples. 

𝐹𝑜𝑀 =
1

2
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 (33) 

𝐹𝑁𝑅𝑐 =
𝐹𝑁𝑖
𝑃

 (34) 

Following the same procedure as in Section 4.4, the segmentation framework was 

validated, achieving similar results. Figure 4-20 shows the qualitative and quantitative 

results of each HS test image. The resulting two-class segmentation maps after applying 

the morphological post-processing are shown in Figure 4-20.c, and below (Figure 

4-20.d), their respective Jaccard coefficient using the ground-truth (Figure 4-20.b) to 

compute this metric. The segmentation process does not detect PSL pixels in P28_C1, 

P71_C1, and P100_C1 images. After analyzing the spectral signatures of these images 

and comparing them with the spectral signatures of the reference library, it is observed 
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that the PSL spectral signatures of each image are very similar to the normal skin 

references. This phenomenon can be observed in Figure 4-21, where a comparison 

between the reference spectral signatures and the average of the PSL and normal skin 

pixels was performed. In the case of P28_C1 (Figure 4-21.a), the PSL was diagnosed as 

a benign lesion; however, the average spectral signature of the PSL is more similar to 

one of the normal skin references than to the benign reference. In the case of P71_C1 

(Figure 4-21.b), the PSL was diagnosed as an unknown lesion, but the average spectral 

signature of the PSL is more comparable to one of the normal skin references than to 

the unknown reference. The same behavior is found in P100_C1 (Figure 4-21.c) where 

the PSL was diagnosed as a malignant lesion. 

 

Figure 4-20: Two-class segmentation maps of the test database using per pixel method with 
𝑲 = 𝟑. a) Gray-scale images. b) Ground-truth maps. c) Results with morphological post-processing. d) 
Jaccard coefficient values of the results with morphological post-processing. 

 

Figure 4-21: Average spectral signatures of the labeled PSL (dashed red line) and normal 
skin (dashed green line) pixels and reference spectral signatures of PSLs (red line) and 
normal skin (green line). a) P28_C1 (benign PSL). b) P71_C1 (atypical PSL). c) P100_C1 (malignant 
PSL). 

Using the SVM algorithm and the labeled samples of the PSL from the HS dataset, 

three different models were obtained. Table 4-7 shows the FoM results and the values 

of the optimized hyperparameters obtained with the GA algorithm for each kernel 

classifier. The obtained results show that the SVM Sigmoid model achieved the best 

FoM (60.67%), followed by the SVM Linear and the RBF (38.82% and 29.98%, 

respectively). Considering these results, the SVM with Sigmoid kernel was selected for 

the HS dermatologic classification framework. 
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Table 4-7: Figure of Merit (FoM) results obtained with the optimized hyperparameters. 

Classifier Hyperparameters FoM (%) 

SVM Linear 𝐶 = −21.56 38.82 

SVM RBF 𝐶 = 9.85; 𝛾 = 4.83 29.98 

SVM Sigmoid 𝐶 = 1.54; 𝑠 = −20.79; 𝑐𝑓 = −1.97 60.67 

𝐶: Cost; 𝛾: Gamma; 𝑐𝑓: Intercept Constant; 𝑠: Slope. 

Figure 4-22.a illustrates the FNRc results for each validation HS image, where it is 

possible to observe that images P15_C1, P15_C2, P20_C2 and P113_C1 present an 

accurate identification of the diagnosed PSL, while images P96_C1 and P99_C1 have 

some pixels that were misclassified but clearly reveal the correct diagnosis. On the 

contrary, images P60_C1, P60_C2 and P68_C1 misclassified more than 50% of the 

labeled pixels. Image P68_C1 classified 58.2% and 9.9% of the pixels as benign and 

atypical classes, respectively, being a malignant PSL. In summary, six out of nine 

images of the validation set were correctly diagnosed with the proposed classification 

framework based on the optimized SVM Sigmoid classifier. Figure 4-22.c shows the 

qualitative classification maps obtained for the validation set where green color 

indicates the skin pixels, while red, orange, and blue colors represent the pixels 

classified as malignant, atypical, and benign PSLs, respectively. These results also 

include the detailed percentage of pixels classified as each PSL in each HS cube (Figure 

4-22.d). 

 
Figure 4-22: Quantitative and qualitative classification results using validation set. a) FNRc 
results per each HS image obtained with the SVM Sigmoid classifier. b) Grayscale image. c) classification 
map, where skin, malignant, benign, and atypical pixels are represented in green, red, blue, and orange 
colors, respectively. d) Percentages of PSL pixels classified to each class. On the right side of each patient 
ID, the correct diagnosis of the PSL is presented between brackets. B: Benign; A: Atypical; M: Malignant. 
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In order to assess the results obtained with the SVM Sigmoid classifier optimized 

with the validation set, the classifier was evaluated on the test set. Figure 4-23.a shows 

the FNRc results of each HS test image. On the one hand, in the images P28_C1, 

P71_C1, and P100_C1, no pixels were identified as PSL by the segmentation stage and 

the classification stage could not provide the results. The lack of identification of PSL 

pixels in such cases occurs because the PSL spectral signatures of these HS images were 

highly similar to the normal skin references employed in the K-means segmentation. 

This can be appreciated in the gray scale images of the PSLs presented in Figure 4-23.b, 

where the PSL pixels of such images are quite similar to the skin pixels. These results 

could indicate the necessity of increasing the HS skin database for including high inter-

patient variability of data. On the other hand, the PSL images P14_C1, P23_C1, and 

P97_C1 were correctly identified, having in the latter one only 22.3% of pixels 

misclassified as atypical class. In the case of image P74_C1, 48.7% of the pixels were 

misclassified as atypical class, but the remaining 51.3% were correctly identified as 

malignant PSL. In the remaining images (P102_C1, and P107_C1) the 

misclassifications values were above 50%. P102_C1 misclassified 51% and 12.5% of 

pixels as benign and atypical classes, respectively, being a malignant PSL. Finally, in 

P107_C1, 59.6% of pixels were classified as malignant class, being a benign PSL. 

 

Figure 4-23: Quantitative and qualitative classification results using test set. a) FNRc results 
per each HS image obtained with the SVM Sigmoid classifier. b) Grayscale image. c) classification map, 
where skin, malignant, benign, and atypical pixels are represented in green, red, blue, and orange colors, 
respectively. d) Percentages of PSL pixels classified to each class. On the right side of each patient ID, the 
correct diagnosis of the PSL is presented between brackets. B: Benign; A: Atypical; M: Malignant. 
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Figure 4-24 shows the processing time of each HS image of the test set when 

applying the complete HS dermatologic classification framework implemented in 

MATLAB®. These results were obtained using an Intel i7-4790K with a working 

frequency of 4.00 GHz and a RAM of 8 GB. 

 

Figure 4-24: Processing time (in seconds) of the MATLAB® execution for each HS image of 
the test set. 

4.5.1 Experimental Results Discussion 

Additional research must be carried out to validate and improve the obtained results 

taking into account the current limitations of this study. One of these limitations is 

related with the low number of samples in each class (benign: 31; malignant: 39; 

atypical: 9). Although this number of samples is enough for a preliminary study, our 

future investigations will aim to increase the number of samples for each class with 

different types of skins and PSLs to improve the segmentation and classification 

results. Moreover, other processing approaches should be investigated, such as 

developing specific mathematical models for processing the data or the employment of 

DL techniques. Other limitation is related with the low spatial resolution of the HS 

camera employed in this study. The use of a higher spatial resolution HS camera could 

improve the results by including spatial features of the PSLs. Another future challenge 

for this application is the generation of the classification results in real-time while the 

HS image is captured, providing in-situ diagnosis support. For this task, future 

research to accelerate the processing framework in specific hardware platforms, such as 

GPUs (Graphics Processing Unit) or FPGAs (Field-Programmable Gate Array), will be 

explored. In the future, this system could reduce the number of biopsies of non-

malignant PSLs, making the dermatologist’s diagnosis more confident, as well as 

making it easier for non-experimented medical doctors (or even patients themselves) to 

diagnosis potentially malignant lesions. 

4.6 Conclusions 

The work presented in this chapter had the goal of using HSI technology as a non-

invasive clinical support system for diagnosing PSLs during dermatological routine 

practice. A customized HS dermatologic acquisition system for capturing HS data of 

PSLs was developed, obtaining an HS database composed by 76 images from 61 

subjects. Using this HS database, a processing framework to classify the PSLs was 

proposed and validated using a methodology based on a three data partition fashion 

(train, validation, and test sets), which provides an unbiased evaluation of the final 

processing model. The proposed framework isolates the PSL pixels in the HS image 
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using a segmentation methodology, and classifies such pixels using a supervised 

classifier, with the main goal of achieving real-time processing for in-situ diagnosis 

support. 

Two different image segmentation methods were proposed. Both methods combined 

the K-means and SAM algorithms to identify the PSL pixels using a reference spectral 

signature library of PSL and normal skin. The first one compared each cluster obtained 

by the K-means with the library, while the second one compared each pixel from each 

cluster from the K-means with the library. In addition, different classifiers were 

employed to obtain the most accurate results in the discrimination of the different 

types of PSL. The GA algorithm was used to find the optimal hyperparameters for each 

classifier. This preliminary study provides evidence that the combination of HSI and 

machine learning algorithms allows achieving promising differentiation of PSL types. 
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Chapter 5: SWIR-based acquisition 

system targeting early detection of 

Major Neurocognitive disorders.  

5.1 Introduction 

Previous chapters have explored the use of different spectral ranges (VNIR and NIR) 

for cancer identification in in-vivo tissue samples through the use of a data processing 

framework based on supervised and unsupervised machine learning methods. In this 

chapter, a similar methodology is applied to explore its potential use for the early 

detection of MNCD using blood plasma samples (a distinct sample type). Additionally, 

in this work a new spectral range, covering between 900 and 2500 nm, is explored by 

using a SWIR-based acquisition system capable of capturing blood plasma samples in a 

transmittance illumination mode. The goal of this study is to explore, as a proof-of-

concept, the potential use of HSI and the proposed methodology based on 

segmentation and pixel-wise supervised classification to discriminate between subjects 

affected by MNCD and healthy controls via blood plasma sample analysis. The main 

contribution of this research is the development of a methodology for the analysis of 

blood plasma samples, including the selection of subjects, the preparation of blood 

plasma samples, and their subsequent capture and analysis using the HSI system. 

Additionally, the proposed processing framework evaluates and compares three 

different data normalizations approaches with the goal of homogenizing the 

distribution of features in the spectral dimension to highlight as much as possible the 

differences between the two target groups. Finally, the data processing framework has 

primarily relied on supervised classifiers, where two approaches have been evaluated: a 

ML approach using SVM, KNN and RF classifiers; and a DL approach with a DNN 

classifier.  

The work related with the data collection was carried out in a very close 

collaboration with Dr. Francisco J. Balea-Fernandez from the Department of 

Psychology, Sociology and Social Work at the University of Las Palmas de Gran 

Canaria. 
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5.2 SWIR-based acquisition system 

The HS acquisition system employed to capture the blood plasma samples was based 

on a halogen-based illumination system and a pushbroom HS camera recording data in 

transmittance mode (Figure 5-1.a). The HS camera used in this study was a Hyperspec® 

SWIR pushbroom camera (Headwall Photonics, Inc., Bolton, Massachusetts, United 

States), covering the spectral range of 900-2500 nm and capturing 273 spectral 

channels, also called spectral bands, with a spectral resolution of 12 nm. To provide the 

necessary movement for capturing the whole scene by moving the pushbroom camera 

in one spatial dimension, the HS camera was coupled to a scanning platform, 

generating a complete HS cube. The halogen-based illumination system consisted of a 

power supply and a QTH lamp able to emit in the spectral range from 400 to 2200 nm 

(MI-150 Fiber-Lite®, Dolan-Jenner, Boxborough, Massachusetts, United States), 

coupled to a fiber-optic backlight illuminator (QVABL 4×3, Dolan-Jenner, Boxborough, 

Massachusetts, United States), able to emit in the spectral range from 400-2000 nm. 

The glass slide (Figure 5-1.b) with the plasma sample was placed over the backlight 

illuminator (Figure 5-1.c) and the HS camera captured the sample with a spatial 

resolution of 384×162 pixels. 

 

Figure 5-1: SWIR-based acquisition system. a) HS SWIR camera, scanning platform, light source, 
and backlight illuminator. b) Blood plasma slides. c) Glass slide over the backlight illuminator.  

5.3 HS plasma database 

The blood plasma samples used to create the HS SWIR blood plasma database were 

obtained from participants who were divided into two groups: control (healthy 

subjects) and case (subjects affected by MNCD with Alzheimer’s disease). The case 

participants were recruited at the Hospital Insular de Lanzarote (Canary Islands, 

Spain) and the Asociación de Alzheimer Gran Canaria (Canary Islands, Spain). The 
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control participants were recruited at the Hospital Insular de Lanzarote and Peritia et 

Doctrina program (university program for students over 55 years) of the University of 

Las Palmas de Gran Canaria (ULPGC, Canary Islands, Spain). The study protocol and 

consent procedures were approved by the Comité de Bioética of the Hospital 

Universitario de Gran Canaria Doctor Negrin (2019-054-1). 

The subject selection criteria are as follows. The control group was formed by 

subjects over 65 years old, with no previous diagnosis of NCD (neither MNCD nor 

mNCD), a Pfeiffer test result less than or equal to 2, and a blood test performed no 

more than 6 months prior to taking the sample in a baseline situation. The case group 

was formed by subjects over 65 years old, with a previous diagnosis of MNCD (not 

produced due to a cerebrovascular disease), a blood test performed no more than 6 

months prior to taking the sample in a baseline situation, and an interview with a first-

degree relative or guardian who was the primary caregiver.  

The data acquisition campaign was performed from March 2019 to October 2019. 

The protocol followed to recruit the subjects in both groups was the same: to provide 

information about the research project, to request the participation, and to sign a 

written informed consent. For the subjects from the case group, a written informed 

consent was signed by the primary caregiver. Then, an interview was conducted with 

the subject (for the case group, in the presence of the primary caregiver). Finally, the 

blood collection was performed in a tube with anticoagulant, and an identification code 

was assigned. The tube with the blood sample was transported to the ULPGC 

pharmacology department within a maximum time of 2 hours after the blood draw. 

Then, the sample was centrifuged at 3,000 rpm for 10 minutes at room temperature. 

Afterwards, the plasma serum was extracted by using a Pasteur pipette and deposited 

in a storage tube (Figure 5-2.a). Centrifugation and subsequent extraction of the 

plasma prevent interferences produced by the red and white blood cells, and other 

elements contained in the blood sample. Then, the plasma samples were frozen at a 

temperature of -25ºC after collection. The plasma samples obtained at the Hospital 

Insular de Lanzarote were sent in a portable aseptic refrigerator by air transportation 

from Lanzarote to the Research Institute for Applied Microelectronics (IUMA) of the 

ULPGC, in Gran Canaria. Prior to the capture of the samples with the HS acquisition 

system, the samples were defrosted at room temperature (~23ºC) for one hour. Two 

drops of plasma were placed in different locations of a blank glass slide with a syringe, 

0.05 mL for each drop, and dried at room temperature (~23ºC) over the course of ~24 

hours (Figure 5-2.b). Only one drop of the sample was then captured with the HS 

acquisition system, choosing the most homogeneous drop. Finally, this study included 

83 subjects, of which 45 were cases and 38 were controls, as shown in Figure 5-3. One 

case subject was excluded due to nonoptimal acquisition conditions.  
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Figure 5-2: Methodology scheme of blood plasma samples acquisition. a) Blood plasma sample 
extraction. b) Plasma sample slide and red-blue-green (RGB) image of the plasma drop captured with a 
microscope at 5× magnification. c) HS acquisition system based on a SWIR camera. d) Example of a region 
of interest (ROI) of the HS cube captured macroscopically with the SWIR camera. e) Segmentation map 
obtained using a K-means algorithm with K = 3 to identify the pixels that belong to the plasma sample 
(colors are assigned randomly) and selected cluster (yellow pixels) to extract the spectral signatures of the 
plasma. 

 

Figure 5-3: Subject dataset summary scheme of this study. n: number of subjects. 

5.3.1 HS Data Pre-processing 

The HS image obtained with the acquisition system previously described was pre-

processed according to the following steps. First, ROI, where the plasma drop was 

located, was identified and cropped (Figure 5-2.d). The acquisition system was able to 

capture the complete slide and the ROI identification was performed manually.  
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The second step consisted on the calibration of the HS image using both the white 

and dark reference images (Eq. (1), Section 2.4.1). In this case, the white reference was 

obtained by capturing a blank area of the sample glass slide under the same 

illumination conditions as the image was taken. In this way, the white reference used 

for calibration contains both the spectral response of the backlight illuminator and the 

sample slide.  

Next, the last 139 spectral channels were removed due to the low response of the 

backlight illuminator from 1700 to 2500 nm (Figure 5-4.a). The spectral channels in 

this range did not contain any relevant information, as can be observed in Figure 5-4.b. 

Hence, the final spectral signature was formed by 134 spectral channels. After 

calibration, a data-smoothing approach based on a moving average filter was employed 

to reduce the high-frequency noise. Each smoothed value was averaged using a window 

of five data points. Finally, a segmentation algorithm based on the K-Means algorithm 

was applied in order to automatically isolate the plasma sample from the background. 

This algorithm divides an input HS image into 𝐾 different clusters for a previously 

selected 𝐾 value. The number of clusters used in this approach was 𝐾 = 3, and the 

cluster that contained the plasma sample was manually identified and selected (Figure 

5-2.e). Then, the plasma pixels were extracted from the segmented area, generating the 

SWIR plasma spectral library employed in the subsequent analyses.  

 

Figure 5-4: Case and control SWIR plasma sample spectral signatures. a) Mean and standard 
deviation (std) of the training dataset of plasma pixels from control and case subjects. The most relevant 
wavelengths are identified, where the differences among the means of the control and case classes are 
visually identified. b) Gray-scale images of an example HS image at each highlighted wavelength and some 
examples out of the selected working spectral bandwidth. 

                            

               

  

  

  

  

  

  

  

  

   

 
  

 
 
 

  
  

 
 
 

  
 

  

         

        

            

           

                          

    
    

    

    

    

   

 

                                                 

                                                  

 



Chapter 5: SWIR-based acquisition system targeting early detection of Major Neurocognitive disorders. 

~ 132 ~ 

5.3.2 HS Data Partition 

The SWIR plasma spectral library was created using the subjects selected during the 

acquisition campaign, including 84 subjects, of which 46 were cases and 38 were 

controls. The dataset was divided into three independent sets following a distribution 

of 60% for training, 20% for validation, and 20% for test. In the proposed data 

partition, every subject is assigned to a unique dataset. The training set was used to 

generate a pixel-wise classification model based on supervised classifiers. The 

validation set was employed to optimize the hyperparameters of the classification 

models in the ML approaches and to identify the best model in the DL approach. After 

finding the optimal models, the classifiers were evaluated over the test set.  

A preliminary analysis of the spectral data included in the training set was 

performed, representing case and control samples independently using the mean and 

standard deviation (Figure 5-4.b). Figure 5-5 shows the case and control boxplots of 

each spectral channel in the training set, where it is possible to observe that samples 

belonging to the case class present several outliers (Figure 5-5.a), especially in the 

range between 900 and 1300 nm, in contrast to control case samples (Figure 5-5.b). 

After analyzing the pixels with such outliers, it was determined that all of these pixels 

belong to the same HS image. Hence, it was concluded that this sample was not 

acquired under the appropriate conditions. For this reason, the sample was excluded 

from the dataset, being it finally composed by 83 subjects (45 cases and 38 controls). 

Table 5-1 shows the data partition and the number of images/subjects and pixels that 

comprise the HS database.  

  

Figure 5-5: Spectral data exploration of the training set using boxplot. a) Case boxplot. b) 
Control boxplots. The small dots outside the minimum/maximum values represent the outliers. The box 
boundaries represent the interquartile range (IQR) of the results. 
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Table 5-1: HS data partition between the training, validation, and test sets. 

 Number of images/subjects Number of Pixels 

 Training Validation Test Training Validation Test 

Case 27 9 9 24,107 7,022 7,389 

Control 22 8 8 20,315 6,955 8,362 

Total 49 17 17 44,422 13,977 15,751 

5.3.3 Statistical pre-processing approach 

The HSI modality is characterized by high dimensionality defined by 𝕏 ∈

ℝ𝑊 × ℝ𝐻 × ℝ𝐵, where 𝐵 represents the spectral resolution, and 𝑊 and 𝐻 correspond to 

the spatial resolution of the image. However, in this work, the spatial resolution is not 

taken into account based on the hypothesis that HS information should contain enough 

information to discriminate between case and control samples employing pixel-wise 

supervised classifiers.  

Considering the aforementioned hypothesis, the spatial resolution is dismissed, and 

only the spectral information is used, so the HS data is reduced to 𝕏 ∈ ℝ𝐵. In this way, 

the dataset 𝑋 comprises a number of 𝑁 samples, which corresponds to the total number 

of pixels extracted after the segmentation performed on all of the HS images. 

In this work, data standardization (or z-score normalization) was employed to 

homogenize the distribution of features in the spectral dimension, resulting in a zero 

mean and unit variance. Let 𝑥𝑖 ∈ 𝑋, 𝑖 = 1, 2, . . . , 𝑁 denote data points. The 

standardization function is defined as: 

𝑥′𝑖 =
𝑥𝑖 − 𝜇

𝜎
 , (35) 

where 𝜇 ∈ ℝ𝐵 represents the mean value in each spectral channel, and 𝜎 ∈ ℝ𝐵 

represents the standard deviation.  

As can be seen in Eq. (35), the standardization depends on 𝜇 and 𝜎, and these 

statistics were computed using the training dataset to apply them to the validation and 

test sets. For this purpose, three different approaches were proposed to compute these 

parameters. Two of these approaches were based on the detection of outliers employing 

the well-known IQR methodology. The first approach employed the full dataset without 

removing outliers (called NOR – No Outlier Removal) for calculating 𝜇 and 𝜎. In the 

second approach, outliers were detected and the spectral signatures that contained 

such outliers were removed (called SOR –Signature Outlier Removal) to compute 𝜇 and 

𝜎. Finally, the third approach computed the 𝜇 and 𝜎 values after removing only the 

outliers located at specific wavelengths, and hence not discarding the complete spectral 

signature from the dataset. In the latter approach, only the conflictive spectral bands 

were removed for the calculation of 𝜇 and 𝜎 (called BOR – Band Outlier Removal). 

 Figure 5-6 shows the mean and the standard deviation of each proposed normalization 

approach for each wavelength. As a result, Figure 5-7 illustrates, as an example, some 

spectral signatures extracted from the training dataset 𝑋 and the normalized dataset 𝑋′ 

using the NOR approach.  
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Figure 5-6: Mean and standard deviation (std) statistic values of the training set for the z-
score normalization obtained from the full dataset. a) Without removing outliers (NOR). b) 
Removing the samples with outliers (SOR). c) Removing only the values of the spectral bands with outliers 
(BOR). 

 

Figure 5-7: Spectral signature comparison using blood plasma samples. a) Examples of spectral 
signatures of the training set. b) Examples of spectral signatures of the training set after z-score 
normalization using the NOR (No Outlier Removal) approach. 

5.4 HS Processing Framework for Major Neurocognitive 

Disorders Detection through Plasma Analysis  

The processing framework proposed in this section is based on a pixel-wise 

supervised classification. Two approaches were evaluated based on ML and DL 

algorithms. Figure 5-8 shows the block diagram of the processing framework where the 

ML approach performs an hyperparameter optimization to find the best AUC on the 

validation set. In the DL approach, the model was also optimized attending to the best 

AUC to select the best epoch. After generating the optimal models of each classifier, an 

optimal decision threshold (𝑡ℎ𝐴𝑈𝐶  ) was selected using the ROC curve. The heat maps in 

Figure 5-8 show two examples of HS images from the validation set, where the scores 

obtained in the pixel-wise classification of the drop sample are represented in different 

colors (red to blue gradient indicates the maximum to minimum probability for a 

certain pixel to belong to the case class). Once this threshold was identified for each 

classifier, the validation set was classified to obtain the evaluation metrics. At this 

point, the classification results are provided in a pixel-wise fashion (pixel-based 
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classification). The classification maps in Figure 5-8 show the pixel-wise classification, 

using each sample independently (each HS image for each subject) of the two HS image 

examples, where blue, red, and black colors represent control, case, and background 

classes, respectively. Based on the pixel-wise classification and considering the 

proportion of positive pixels (case pixels) that are correctly identified by the classifier, a 

classification result per sample (HS image) is provided by a thresholding method. This 

threshold, called sample threshold (𝑡ℎ𝐻𝑆𝐼), provides information on the number of 

pixels needed in a HS image to determine whether this image should be classified as a 

case or control. Finally, using the optimal 𝑡ℎ𝐴𝑈𝐶  and 𝑡ℎ𝐻𝑆𝐼 selected, the test set was 

classified to assess the results.  

 

Figure 5-8: Block diagram of the proposed processing framework for the HS SWIR blood 
plasma samples analysis. AUC: Area Under the Curve; BG: Background; Cs: Case; Ctrl: Control; KNN: 
K-Nearest Neighbors; DNN: Deep Neural Networks; RF: Random Forest; ROC: Receiver Operating 
Characteristic; SVM: Support Vector Machine; thAUC: decision threshold; thHSI: sample threshold.  

5.4.1 Machine Learning approach 

The ML approach was based on three different supervised classifiers: SVM, KNN, 

and RF. Different SVM kernel were evaluated such as RBF or Sigmoid, however only 

the linear kernel was reported. The SVM linear hyperparameter to be optimized was the 

cost (C) parameter, which controls the decision limit that separates the positive and 

negative classes. In the case of KNN, several distance metrics were evaluated, such as, 

Chebyshev, Cosine, Euclidian, Hamming, Jaccard, and Spearman metrics. However, 

since the results obtained using all of them were quite similar, only the Euclidian 

distance metric is reported in this work because it provided the best results, being also 

one of the most commonly used metrics in the literature. The number of nearest 

neighbors (KNN) hyperparameter was optimized to obtain the best model. The 

optimization of the RF model was performed by searching for the most appropriate 

number of trees (NT) in the model.  

Hyperparameter optimization of the SVM, KNN, and RF classifiers was performed 

by modifying each hyperparameter within a range of values and performing a grid 

search to find the higher AUC value. After identifying the best AUC result using the 

validation set, the best classification model was obtained.  

5.4.2 Deep Learning approach 

Several tests were conducted to determine the DNN architecture used in the DL 

approach. Finally, the DNN architecture was composed of 6 layers: an input layer of 

size 𝐵 (which corresponds to the number of spectral channels, 134); 4 hidden layers of 

size 512, 256, 64 and 32; and an output layer of size 𝑁𝐶 (which corresponds to the 
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number of classes in our classification problem, 2). As Φ function, a Rectified Linear 

Unit (ReLU) function is applied to each neuron output. 

For training process, the Stochastic Gradient Descent (SGD) method was selected as 

optimization algorithm, applying an initial learning rate of 0.001 that decreases every 

75 epochs, a momentum of 0.9, and a batch size of 128. During training, dropout layers 

were used, which randomly apply zeros to their inputs with probability 𝑝 = 0.5 using 

samples from a Bernoulli distribution, being those commonly used as technique for 

regularization [239], [240].  

5.4.3 Validation Classification Results 

The validation set was employed to optimize the hyperparameters of the ML 

algorithms. The results obtained after performing the grid search using the ML 

approach are presented in Table 5-2, where the selected hyperparameters were those 

that achieved the higher AUC values. Furthermore, in this table, it can be observed the 

AUC values that were obtained applying different data normalizations, where the SVM 

classifier with the linear kernel (SVM-L) achieved the higher AUC value for each data 

normalization type. The data normalization has no effect on the AUC results obtained 

using the RF classifier. In the case of the SVM-L and KNN classifiers, the data 

normalization worsens the AUC results respect to the use of the data without 

normalization. These results suggest that the data normalization does not suppose an 

improvement in the classification performance. Hence, the best classification model is 

obtained with the SVM-L without applying data normalization, achieving an AUC of 

0.72.  

Table 5-2: Grid search results using different ML classifiers with and without applying the 
different data normalizations. 

Normalization Type Classifier HP 
Grid Search 

Initial/Step/Final Optimal HP AUC 

None  

SVM-L 𝐶 2-20/22/220 2-14 0.720 

KNN NT 1/2/600 17 0.612 

RF KNN 1/2/600 197 0.625 

NOR 

SVM-L 𝐶 2-20/22/220 2-8 0.707 

KNN NT 1/2/600 11 0.573 

RF KNN 1/2/600 197 0.625 

SOR 

SVM-L 𝐶 2-20/22/220 2-8 0.706 

KNN NT 1/2/600 7 0.573 

RF KNN 1/2/600 197 0.625 

BOR 

SVM-L 𝐶 2-20/22/220 2-8 0.707 

KNN NT 1/2/600 7 0.572 

RF KNN 1/2/600 55 0.625 

AUC: Area Under the Curve; BOR: Band Outlier Removal; C: Cost; HP: Hyperparameters; KNN: Number of Nearest 
Neighbors; NT: Number of Trees; NOR: No Outlier Removal; SOR: Signature Outlier Removal. 

Considering the DL approach based on the DNN classifier, the results obtained are 

presented in Table 5-3 with and without applying the different data normalizations. 

Unlike the previous results using the ML approach, in this case, the higher AUC values 

are obtained by employing data normalization. The BOR normalization achieved the 

highest AUC result (~0.78), followed by the SOR normalization (~0.77). Table 5-3 also 

shows the number of epochs required to achieve the best result. These DL results 
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represent an AUC improvement of 0.06 with respect to the results obtained with the 

ML approach. 

Table 5-3: Best AUC results obtained using the proposed DL approach with and without 
applying the different data normalizations. 

Normalization Type Best AUC Number Epoch 

None 0.768 15 

NOR 0.765 25 

SOR 0.775 53 

BOR 0.786 21 

AUC: Area Under the Curve; BOR: Band Outlier Removal; NOR: No Outlier Removal; SOR: Signature Outlier Removal. 

After finding the optimal models in both approaches, the ROC curve was generated, 

plotting all possible cut-off values of the true positive rate (TPR), also called sensitivity, 

versus the false positive rate (FPR), which corresponds to 1 - specificity. Figure 5-9.a 

shows the ROC curves corresponding to the best classifier per each normalization type 

in the ML approach, i.e. SVM-L. As previously stated, here it is also possible to observe 

that the SVM-L classifier without data normalization offers a higher AUC with respect 

to the different normalization types. However, the DL approach based on the MLP 

classifier achieves higher AUC values with and without normalization than the ML 

approach, achieving the best AUC value with the DNN classifier using BOR 

normalization (Figure 5-9.b). The optimal 𝑡ℎ𝐴𝑈𝐶  can be obtained for each classifier by 

analyzing the ROC curves. Normally, the class assignment of the results is performed 

using a default 𝑡ℎ𝐴𝑈𝐶  with a value of 0.5. If a classification result has a probability value 

below or equal to 0.5, it is predicted as the control class, meanwhile a sample with a 

probability value above 0.5 is assigned to the case class. Hence, the optimal operating 

point is used to find the 𝑡ℎ𝐴𝑈𝐶  located in the upper-left part of the ROC curve, where 

subtraction between TPR and FPR achieves its maximum [241]. Table 5-4 shows the 

optimal 𝑡ℎ𝐴𝑈𝐶  found for the best classifiers of each approach with and without applying 

data normalization, indicating the TPR and FPR values corresponding to the optimal 

operating point. 

 

Figure 5-9: ROC curves of the validation results using the different normalizations. a) ROC 
curves for the SVM-L classifiers. b) ROC curves for the DNN classifiers. Dots show the optimal operating 
point. AUC: Area Under the Curve; BOR: Band Outlier Removal; NOR: No Outlier Removal; SOR: 
Signature Outlier Removal.  
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Table 5-4: Optimal decision threshold (𝒕𝒉𝑨𝑼𝑪) for each classifier and normalization type 
presented in the ROC curves. 

Normalization Type Classifier TPR FPR Optimal 𝒕𝒉𝑨𝑼𝑪 

None 
SVM-L 0.828 0.458 0.513 

MLP 0.690 0.296 0.717 

NOR 
SVM-L 0.723 0.410 0.536 

MLP 0.664 0.266 0.667 

SOR 
SVM-L 0.732 0.413 0.532 

MLP 0.571 0.189 0.898 

BOR 
SVM-L 0.721 0.408 0.537 

MLP 0.717 0.305 0.708 

AUC: Area Under the Curve; BOR: Band Outlier Removal; FPR: False Positive Rate; NOR: No Outlier Removal; SOR: 
Signature Outlier Removal; thAUC: decision threshold; TPR: True Positive Rate. 

Once the optimal 𝑡ℎ𝐴𝑈𝐶  was found, the ACC, sensitivity, specificity, and F1-score 

metrics were computed to determine which method offered the best tradeoff between 

these metrics. Table 5-5 shows the classification results obtained by classifying the 

entire validation set after applying the 𝑡ℎ𝐴𝑈𝐶 . SVM-L without data normalization 

offered the highest sensitivity and F1-score results of 82.8% and 72.6%, respectively, 

but with a reduced specificity of 54.2% and an ACC of 68.6%. However, the MLP 

classifier using BOR normalization achieved the best ACC (70.6%), with balanced 

results of sensitivity and specificity, 71.7% and 69.5%, respectively. Regarding the F1-

score value, it decreased 1.6 with respect to the SVM-L without data normalization. 

Considering these results, the following experiments were carried out using only these 

two classifiers that obtained the highest F1-score values.  

Table 5-5: Validation results of pixel-based classification 

Normalization 
Type 

Classifier ACC (%) Sensitivity (%) Specificity (%) F1 (%) 

None 
SVM-L 68.6 82.8 54.2 72.6 

MLP 69.7 69.0 70.4 69.6 

NOR 
SVM-L 65.7 72.3 59.0 67.9 

MLP 69.9 66.4 73.4 68.9 

SOR 
SVM-L 66.0 73.2 58.7 68.4 

MLP 69.1 57.1 81.1 65.0 

BOR 
SVM-L 65.7 72.1 59.2 67.8 

MLP 70.6 71.7 69.5 71.0 

ACC: Accuracy; BOR: Band Outlier Removal; NOR: No Outlier Removal; SOR: Signature Outlier Removal. 

Figure 5-10 shows the percentage of pixels classified as the case class in each 

validation image independently. In this sense, images from control subjects should 

have a low sensitivity percentage value (low number of pixels classified as case), while 

case images should have a high sensitivity percentage value (high number of pixels 

classified as case). Both classifiers misclassified several control pixels as the case class. 

However, SVM-L better identified the case pixels than the DNN classifier. 
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Figure 5-10: Validation results of the pixel-based classification for each independent sample 
using the selected two best classifiers. VS: Validation Subject. 

In the final step of the processing framework, a sample-based classification was 

performed using the two previously selected classifiers (SVM-L without normalization 

and MLP using BOR normalization). This step implied the determination of a 𝑡ℎ𝐻𝑆𝐼 to 

obtain the classification results in a sample-based fashion. For this purpose, the 

sensitivity metric from the pixel-based classification results (Figure 5-10) was 

employed to determine the 𝑡ℎ𝐻𝑆𝐼 for a potential improvement in the discrimination 

between case and control samples. For example, in a most-voted approach, if 50% or 

more pixels of the plasma sample of a subject are classified as case, then the sample is 

classified as case. In contrast, if 50% or more pixels of a certain plasma sample of a 

subject are classified as control, then the sample is classified as control. To select an 

appropriate 𝑡ℎ𝐻𝑆𝐼 for this application, an analysis of the evaluation metrics was 

performed by sweeping the 𝑡ℎ𝐻𝑆𝐼 value and computing the evaluation metrics for each 

threshold.  

Figure 5-11 shows the ACC, sensitivity, specificity, and F1-score results for each 

𝑡ℎ𝐻𝑆𝐼 value in both selected ML and DL approaches. It can be observed that in both 

approaches the sensitivity metric achieved high values when using low 𝑡ℎ𝐻𝑆𝐼 and the 

specificity improves when the 𝑡ℎ𝐻𝑆𝐼 is increased. At this point, the goal is to select the 

optimal 𝑡ℎ𝐻𝑆𝐼 that provides the best classification results in the validation set. For this 

application, we tried to select a 𝑡ℎ𝐻𝑆𝐼 that provided the best trade-off between 

sensitivity and specificity, but always attempted to have high sensitivity values.  

In the ML approach (Figure 5-11.a), the best trade-off between sensitivity (77.7%) 

and specificity (62.5%) is obtained using a 𝑡ℎ𝐻𝑆𝐼 of 0.65, with an ACC of 70.5% and an 

F1-score of 73.6%. In the DL approach (Figure 5-11.b), the 𝑡ℎ𝐻𝑆𝐼 value selected was 0.3, 

obtaining the best ACC (82.3%) and sensitivity (100%), with a specificity of 62.5% and 

an F1-score of 85.7%. As it can be seen in these results, although the pixel-based 

classification revealed that the selected SVM-L classifier seemed to perform better than 

the selected DNN classifier, when employing this sample-based classification 

methodology, the results of the DNN classifier were improved.  
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Figure 5-11: Sample threshold (𝒕𝒉𝑯𝑺𝑰) analysis of the validation results for an optimal 
sample-based classification. a) SVM-L classifier without data normalization. b) DNN classifier with 
BOR normalization. 

5.4.4 Test Classification Results 

At this point in the experimentation, the best classifiers, 𝑡ℎ𝐴𝑈𝐶  and 𝑡ℎ𝐻𝑆𝐼 have been 

selected. In this section, the proposed approaches will be evaluated in the test set to 

indicate if the developed models are able to accurately predict the diagnosis in new 

samples. The SVM-L classifier without data normalization (configured with 𝑡ℎ𝐴𝑈𝐶 =

0.513 and 𝑡ℎ𝐻𝑆𝐼 = 0.65) and the DNN classifier using BOR normalization (configured 

with 𝑡ℎ𝐴𝑈𝐶 = 0.708 and 𝑡ℎ𝐻𝑆𝐼 = 0.3) were evaluated employing the test set. First, Table 

5-6 shows the pixel-based classification results for each classifier using the optimal 

𝑡ℎ𝐴𝑈𝐶, where SVM-L offers better results than DNN. However, the results in both cases 

are quite low with respect to the results achieved using the validation set. Additionally, 

Figure 5-12 shows the sensitivity results obtained in each test sample independently. 

Here, it can be also observed that the SVM-L classifier correctly identified more case 

samples than the DNN classifier.  

Finally, the ACC, sensitivity, and specificity metrics were computed using the test 

samples, applying the selected 𝑡ℎ𝐻𝑆𝐼 for each classifier in the validation phase. Figure 

5-13 shows these results where, on the one hand, it can be observed that the SVM-L 

classifier offers high specificity (88%), correctly classifying 7 out of 8 control samples, 

but with a sensitivity value of 44%, which correctly identifies 4 out of 9 case samples. 

On the other hand, the MLP classifier correctly identified only 1 out of 8 control 

samples but with high sensitivity, correctly classifying 7 out of 9 samples.  

Table 5-6: Test classification results of the pixel-based classification using the optimal 
decision threshold (𝒕𝒉𝑨𝑼𝑪).  

Normalization Type Classifier ACC (%) Sensitivity (%) Specificity (%) F1 (%) 

None SVM-L 62.4 56.2 67.9 58.4 

BOR DNN 51.1 44.3 57.0 45.9 

ACC: Accuracy; BOR: Band Outlier Removal. 
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Figure 5-12: Test classification results of pixel-based classification for each independent 
sample using the optimal decision threshold (𝒕𝒉𝑨𝑼𝑪). TS: Test Subject. 

 
Figure 5-13: Test results of sample-based classification. Numbers between parenthesis represent 
the subjects correctly identified over the total number of subjects for the ACC metric, and the total number 
of subjects in the case and control class for the sensitivity and specificity metrics, respectively. 

5.4.5 Limitations of the study 

After analyzing the results obtained in the validation and test sets, additional 

research must be carried out to validate and improve the obtained results considering 

the current limitations of this work. One of these limitations is related to the low 

number of samples available in this study. It is necessary to increase the dataset to 

improve the results obtained with different algorithms and better generalize a solution 

that could enhance the test results. In addition, other processing approaches must be 

considered in future research, such as employing other DL algorithms, using spatial 

information, or exploring the use of other spectral ranges, such as the VNIR or the 

SWIR range between 1700 and 2500 nm. Inclusion of spatial information could 

improve the discrimination between subjects affected by MNCD and healthy control 

subjects using the morphology of drying blood plasma [242], [243]. In this sense, the 

use of a higher spatial resolution HS camera will be necessary to better analyze the drop 

morphology and possibly locate the protein deposition associated with MNCD. The use 

of other spectral ranges, or a combination of several ranges should be investigated to 

determine if spectral biomarkers can be identified to improve the discrimination. To 

perform such experiments, the development of a new HS acquisition system is 

necessary to associate both spectral ranges. Other preliminary research of our group is 

based on use of HSI microscopy for potential identification of spectral biomarkers 

using VNIR information for eventual classification using macroscopic image samples 

[191]. 
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5.5 Conclusions 

The work presented in this chapter shows a methodology that utilizes HSI in the 

SWIR spectral range combined with pixel-wise supervised classifiers to discriminate 

between subjects affected by MNCD and healthy control subjects through blood plasma 

samples analysis. This study shows, as a proof-of-concept, the limitations, and the 

potential of HSI technology to assist in the diagnosis of MNCD as an alternative to 

other highly invasive or more expensive methods. We proposed a methodology for the 

analysis of blood plasma samples, including subject selection, blood plasma sample 

preparation and their subsequent capture and analysis using HSI. By means of this 

methodology, a database composed of 83 images (45 cases and 38 controls) was 

generated using an HSI system able to capture blood plasma drop samples deposited 

on a glass slide, capturing information between 900 and 1700 nm. In addition, in this 

methodology, three different data normalizations were proposed with the goal of 

homogenizing the distribution of features in the spectral dimension. The dataset was 

partitioned into training, validation, and test set. The classification results were 

evaluated using the different data normalizations, and two classification approaches: an 

ML approach applying SVM, KNN and RF classifiers; and a DL approach with an DNN 

classifier.  

To the best of our knowledge, this is the first work focused on using HSI to analyze 

blood plasma samples and discriminate between healthy subjects and subjects affected 

by MNCD. Considering the obtained results, it seems that the spectral information in 

the SWIR range could contain relevant information for the potential identification of 

spectral biomarkers in blood plasma samples, which might be useful for diagnostic 

purposes. Additionally, further experiments might involve the use of other processing 

strategies to improve the performance of the classification results, as well as increase 

the HS dataset for a better generalization.  
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Chapter 6: Conclusions & Future Lines 

6.1 Introduction 

This chapter summarizes the main contributions of this dissertation and outlines the 

main conclusions drawn from this research. In addition, the future lines of research 

that have emerged from the development of this dissertation are presented. Finally, the 

scientific and academic production developed in the context of this dissertation is 

presented. 

6.2 Conclusions 

The aim of this PhD Thesis was the use of HSI for the identification of different 

diseases in three medical applications: neurosurgery, dermatology, and neurogeriatrics. 

Many studies in the literature have demonstrated the high potential of the HSI 

technology for improving remote and non-destructive detection of chemical 

compositions in different applications, with promising results. In medical applications, 

HSI technology has been extensively researched analyzing the spectral properties of 

tissue and other types of biological samples due to its non-contact, non-ionizing, and 

label-free nature. One of the major advantages of this technology is that it can be used 

for real-time in-situ diagnosis and guidance in clinical routine practice in different 

medical scenarios. 

6.2.1 Neurosurgery  

In the field of brain cancer, this technology is arising as a novel imaging technique 

that can offer new capabilities to assist neurosurgeons to identify and delineate brain 

tumor tissue in surgical-time. The accurate identification of the boundaries between 

tumor and normal tissue during surgery improves the resection and a successful 

resection of the tumor is associated with prolonged survival. Nonetheless, due to the 

nature and location of the tumor, the complete resection is not always possible or can 

produce neurological damages to the patient. Hence, surgeons must strike a balance 

between removing the tumor and preserving neurological functions. Currently, 

neurosurgeons use several intraoperative guidance tools for tumor resection assistance, 

such as IGS neuronavigation, intraoperative MRI, or fluorescent tumor markers (e.g., 

5-ALA). However, these tools present several limitations. For example, intraoperative 

MRI is a costly procedure as it requires specific operating rooms without ferromagnetic 
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elements and significatively increases surgical time. The changes in tumor volume that 

occurs during craniotomy and the problem of brain shift are not covered by IGS 

neuronavigation. 5-ALA is only able to identify high-grade gliomas by administering 

orally a contrast agent to the patient, being an invasive methodology that can cause side 

effects in the patient. Therefore, there is a current need to explore new imaging 

modalities that could overcome such limitations. 

In this PhD Thesis, an intraoperative HS acquisition system for brain cancer was 

optimized with the goal of delineating brain tumors during surgical operations. This 

demonstrator was composed by two pushbroom HS cameras: a VNIR and NIR cameras 

covering the spectral ranges 400-1000 nm and 900-1700 nm, respectively. Using this 

optimized HS system, an HS human brain image database was collected, consisting of 

10 HS images from 8 different patients. Employing this database and another two data 

acquisition campaigns obtained by the original system, a total of 61 HS images of 

exposed brain surface from 34 different patients have been analyzed in this 

dissertation.  

Vascular enhanced maps using diffuse absorbance hemoglobin spectral ratios were 

studied, allowing the discrimination of different in-vivo human brain tissue structures. 

This ratio reflects a maximized difference between deoxyhemoglobin and 

oxyhemoglobin. The identification of the blood vessels in the enhanced vascular maps 

could help to improve the identification of tumor areas during surgical procedures, by 

reducing the number of classes to be differentiated by a ML classifier. In addition, a 

robust 5-fold cross-validation approach was used to evaluate eight different processing 

algorithms, first using only spectral information, and then using both spatial and 

spectral information. ML algorithms were trained by employing the three data 

acquisition campaigns only using the VNIR HS images. The spectral-based 

classification results obtained showed that SVM-based and DNN methods provided the 

best results. The qualitative results demonstrate the ability of the proposed HSI-based 

system to identify not only high-grade gliomas, but also other low-grade tumors and 

secondary tumors. Moreover, these results show the capability of HSI to accurately 

highlight the vascularization of the brain surface.  

Finally, an exploration of the use of VNIR-NIR fused data for brain cancer tumor 

detection and identification was performed using the in-vivo HS brain cancer dataset 

acquired in this PhD Thesis. Due to the challenges of obtaining in-vivo HS images 

during human neurosurgical procedures, creating a comprehensive database that 

encompasses the full diversity of different patients and brain tumor types, has 

supposed a challenging task. For this reason, the fusion experiments were performed 

using a dataset composed by 10 HS images acquired from 8 different subjects, using a 

leave-patient-one-out data partition strategy. The results of the classification indicate 

that the presence of hemoglobin in the VIS region enhances the identification of tumors 

and hypervascularized tissue when using only VNIR images, while NIR images 

accurately outline the parenchymal area. The classification maps generated from the 

VNIR-NIR fused images provide more detailed maps, eliminating false positives 

present in the independent VNIR and NIR results.  

6.2.2 Dermatology 

Skin cancer is one of the most common forms of cancer worldwide and its early 

detection its key to achieve an effective treatment of the lesion. Commonly, skin cancer 
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diagnosis is based on dermatologist expertise and pathological assessment of biopsies. 

To avoid unnecessary surgical procedures, because of the uncertainty in the current 

diagnoses, and to achieve cost-effective early diagnosis, new methods to improve skin 

cancer diagnosis should be investigated. Despite that the state-of-the-art works and 

commercial systems available for assisting in skin cancer diagnosis mainly use MS 

imaging for melanoma and non-melanoma discrimination, there is still room for 

improvement and investigation using HSI for malignant and benign PSL 

discrimination, providing higher number of spectral bands in larger spectral ranges.  

In this sense, one of the goals of this PhD Thesis was the development of a data 

processing framework based on HS image segmentation and supervised classification. 

To do this, a customized dermatologic HSI system able to capture real-time HS data of 

in-vivo PSLs was developed, providing HS images composed by 125 bands in the 450–

950 nm spectral range. This preliminary study aimed to demonstrate, as a proof-of-

concept, the potential use of HSI technology to assist dermatologists in the 

discrimination of benign and malignant PSLs (including both NMSC and melanoma 

lesions) during clinical routine practice. A skin cancer database composed by 76 HS 

images from 61 subjects was collected using this system. The framework was able to 

segment and classify among benign and malignant PSLs using only spectral 

information. Two-class segmentation maps were generated where the PSL and the 

normal skin pixels were identified. A spectral signature reference library of normal skin 

and PSL data was created, employing only the spectral signatures of the labeled 

training set in order to avoid the inclusion of validation or test HS images in the 

reference library. Although the number of samples was low, this reference library was 

enough for a preliminary study. However, increasing the number of samples for each 

class with different types of skins and PSLs could improve the segmentation and 

classification results. In the classification step, high sensitivity was obtained when 

discriminating between benign and malignant lesions. In the case of atypical PSLs, 

misclassifications may occur due to the low number of samples in this class, indicating 

the need of an increased database where the inter-patient and inter-lesion variability 

are taken into account. Evaluating the entire framework, a risk threshold was applied to 

discriminate malignant PSLs, i.e., PSLs with an accuracy higher than 40% in the 

malignant class were considered to have clear evidence of malignant behavior. 

6.2.3 Neurogeriatrics 

In this PhD Thesis, the VNIR spectral range has been investigated in two medical 

fields, while the NIR spectral range has been analyzed only in the brain tumor 

application due to the possibility of capturing data in such spectral range during 

surgical operations. However, the use of the SWIR range was motivated to be studied in 

a different medical context, where the HS images of the samples could be acquired in a 

laboratory. The purpose of this investigation is to uncover new insights and potential 

applications of using SWIR for disease diagnosis through blood plasma samples. As 

stated in Chapter 2, NCDs are a rapidly growing public health issue and a major cause 

of disability and dependency among older people, being a not natural or inevitable 

consequence of ageing. Alzheimer’s disease is the most common form of NCD. The 

common clinical tests to diagnose a possible MNCD are based on in-vivo neuroimaging 

biomarkers using PET or MRI, and CSF biomarkers. These biomarker identification 

methods are widely used to detect Alzheimer’s disease in the absence of symptoms, or 

in cases showing neuropathologic changes independently of clinical symptoms. 
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However, these procedures are expensive, invasive and with restricted availability for 

verifying the diagnosis. For these reasons, alternative methods are necessary to identify 

MNCD biomarkers, such as blood-based biomarkers, which are a less-invasive and 

cost-effective alternative for early detection. Plasma is used to identify proteins related 

with the disease, such as albumin, fibrinogen, and immunoglobulins. Plasma is 

composed of mostly water (90%), various proteins (6%), inorganic electrolytes (1%), 

glucose, and other minor components.  

In this area, the last goal of this PhD Thesis was the analysis of blood plasma 

samples using HSI technology and supervised ML and DL classifiers to discriminate 

between subjects affected by MNCD and healthy control subjects, evaluating the 

potential use of this technology in this field. A methodology for the analysis of blood 

plasma samples, including subject selection, blood plasma sample preparation and 

their subsequent capture and analysis using HSI was proposed. By means of this 

methodology, a database composed of 83 images (45 cases and 38 controls) was 

generated using an HSI system able to capture blood plasma drop samples deposited 

on a glass slide, capturing information between 900 and 1700 nm in transmittance 

mode. In addition, three different data normalizations were proposed, evaluated and 

compared with the goal of homogenizing the distribution of features in the spectral 

dimension. The dataset was partitioned into training, validation, and test set. The 

classification results were evaluated using the different data normalizations, and two 

classification approaches: a ML approach applying SVM, KNN and RF classifiers; and a 

DL approach with a DNN classifier. Using a coarse-to-fine search, the hyperparameters 

of the classifiers were optimized to provide the optimal results. After that, using the 

ROC curves, the optimal threshold of each classifier was identified for a pixel-based 

classification. At this point, HS images from control subjects should have a low 

sensitivity percentage value (low number of pixels classified as case), while case 

subjects should have a high sensitivity percentage value (high number of pixels 

classified as case). On the one hand, SVM-L and DNN classifiers misclassified several 

control pixels as case class. On the other hand, SVM-L better identified case pixels than 

the DNN classifier. Finally, the plasma samples were classified via an image-based 

methodology. This step implied the determination of a threshold to obtain the 

classification results in a sample-based manner. This threshold was selected by 

performing an analysis of the evaluation metrics. For this application, we selected a 

threshold that provided the best trade-off between sensitivity and specificity, but 

always attempting to have high sensitivity values. Considering the obtained results, it 

seems that the spectral information in the SWIR range could contain relevant 

information for the potential identification of spectral biomarkers in blood plasma 

samples, which might be useful for diagnostic purposes. 

In summary, this PhD Thesis demonstrates the potential use of HSI as an 

innovative, non-invasive, and non-ionizing aid system for real-time visualization, 

delineation, and identification of different lesions or diseases. This technology has the 

potential to enhance patient outcomes across various medical applications.  

6.3 Future lines 

As stated before, the research presented in this PhD Thesis demonstrates the high 

potential of the HSI as a supportive imaging modality to aid in different applications in 
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the medical field. Upon completion of this dissertation, several lines of research are 

available for future investigation to improve and progress beyond the state-of-the-art. 

In the field of neurosurgery, we have demonstrated with a robust classification 

validation approach, the potential benefits of HSI for brain tumor tissue identification, 

targeting a diagnostic support system for guiding neurosurgical interventions in real-

time. After performing the optimization of the intraoperative HS acquisition system, it 

is possible to achieve near real-time HS data processing using graphical processing 

units, achieving processing times of ~6 s. The proposed intraoperative HSI-based 

acquisition system must be optimized in further works by reducing the number of HS 

cameras, and the HS camera size, possibly employing a snapshot-based HSI technology 

(which is able to capture the entire HS cube in a single shoot, providing also real-time 

performance) and integrating it into a surgical microscope.  

In this sense, an analysis of the most relevant spectral bands of the fused HS images 

for an accurate delineation of the tumor boundaries will be explored in future works 

with the goal of determining the minimum number of wavelengths required to develop 

customized HS cameras while maintaining accurate identification of the tumor. This 

will allow a reduction of the acquisition system size and also a time reduction of the 

data acquisition and processing, achieving, hence, real-time performance during 

surgery. This identification of the most relevant spectral bands in the NIR range will 

also allow to increase the spatial resolution of this type of HS images by developing 

specific HS sensors able to capture these bands. The use of this customized sensors 

could avoid the resampling process employed in this dissertation. These advances could 

help in the development of a novel guidance tool based on HSI technology for the 

accurate identification of brain tumors, regardless of tumor grade, avoiding the use of 

several independent devices during surgery and, hence, reducing the operation time. 

This new experimental setup will guarantee an improvement of the HS image quality 

to solve the focus problems, especially for deep-layer tumors. Additionally, an extensive 

clinical validation of the proposed framework must be carried out, employing a large 

number of patients and a multi-center trial. This clinical validation will perform a 

comprehensive pathological analysis of the entire tumor area outlined by the TMD map 

(especially in the boundaries between tumor and the surrounding normal tissue), as 

well as correlate the results with the MRI information to verify that the system can 

adequately identify tumor infiltration into normal brain tissue, especially in HG 

gliomas. Additionally, the relation between the improvement of the patient outcomes 

and the use of the proposed system during the surgery could be studied through the 

clinical validation. Currently it is not possible to make a fair comparison between the 

results obtained from HSI systems and intraoperative fluorescence imaging systems, 

due to the lack of rigorous clinical studies to evaluate the actual accuracy of HSI 

systems. However, it could be very useful to carry out this comparison in future clinical 

studies by using HSI systems in real environments during brain surgical procedures to 

test their usability, safety, efficacy, and efficiency respect to the tools currently 

employed. 

In the dermatology application, this study demonstrated the potential use of HSI 

technology to assist dermatologists in the discrimination of different types of PSLs. 

However, additional research must be carried out to validate and improve the results 

obtained in this work, targeting its use during clinical routine practice using a real-time 

and non-invasive handheld device. One of these limitations is related with the low 
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number of samples in each class. Although the number of samples is enough for a 

preliminary study, our future investigations will aim to increase the number of samples 

for each class, including different types of skins and PSLs to improve the segmentation 

and classification results. Particularly, a multicenter clinical trial whereby more 

patients and samples are included in the database will be necessary to further validate 

the proposed approach. 

The proposed dermatoscopic HS system based on a 50 x 50 pixels HS camera based 

on halogen illumination faces limitations in ergonomic design and real-time HS image 

processing capabilities. For this reason, some optimizations must be performed in 

order to improve such limitations. In terms of design, the ergonomic design needs to be 

refined to allow for single-handed operation to enhance user comfort during 

examinations. Regarding the instrumentation, a HS camera with a resolution higher 

than the current 50×50 HS pixels could improve the results by including spatial 

features of the PSLs. In addition, transitioning from halogen to LED-based illumination 

will reduce the system size and power consumption by eliminating the need for an 

external illumination system. A critical consideration in this transition is the cost 

reduction. Halogen systems requires an external illumination system that uses specific 

halogen bulbs, and fiber optics to emit cold light. However, the LED illumination must 

cover adequately the operating spectral range.  

Another future challenge for this application is the generation of the classification 

results in real-time while the HS image is captured, providing in-situ diagnosis support. 

For this task, future research to accelerate the processing framework in specific 

hardware platforms, such as low-power GPUs or FPGAs, will be explored. In the future, 

this system could allow reducing the number of biopsies of non-malignant PSLs, giving 

more confidence to the dermatologist’s diagnosis as well as to facilitate to non-

specialist medical doctors (general physicians, nurses or even patients themselves) the 

diagnosis of potential malignant lesions. 

In the field of neurogeriatrics, further research is necessary to validate and improve 

the obtained results for diagnosing MNCDs through blood plasma samples, considering 

the current limitations of this work. This study was performed using a SWIR camera 

capable of capturing wavelengths between 900 to 2,500 nm. However, due to 

limitations in the illumination system, the spectral range between 1,700 and 2,500 nm 

was not captured. To capture the entire spectral range between 1,700 and 2,500 nm, it 

is crucial to address the limitations of the illumination system. Improving the 

illumination setup could overcome these limitations and enable a more comprehensive 

investigation of the spectral characteristics within this range. In this sense, analyzing 

additional spectral ranges, such as VNIR, could be essential to identify potential 

biomarkers. 

Furthermore, the incorporation of spatial information to examine the morphology of 

drying blood plasma shows potential to determine whether a subject is affected by 

MNCD or is a healthy control subject. In this sense, it is crucial to improve the spatial 

resolution of the HS camera to capture these details and enable a more accurate 

morphological analysis. This could provide valuable information on the structural 

alterations that occur in blood plasma due to MNCD, assisting in distinguishing 

affected individuals from healthy controls. Related to the morphology, further studies 

should be performed using microscopy to analyze structural patterns. In addition, 

potential identification of spectral biomarkers can be performed using microscopy.  
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6.4 Impact of the PhD Thesis  

This section contains all scientific communications published during the 

development of the work described in this dissertation. The communications are 

divided into journal publications, book chapters, and conference presentations, 

organized chronologically. During the course of this dissertation, 11 Journal Citation 

Reports (JCR) papers, 2 book chapters, and 15 peer-reviewed conference papers 

directly related to this research have been achieved, including 1 Best Paper Award in 

the SPIE Medical Imaging 2022 Conference. In total, 28 scientific contributions have 

been accomplished. 

6.4.1 Publications and dissemination 

In this subsection, we provide a list of publications and dissemination, which may 

include international collaborations or publications in open access journals. This list 

uses the following acronyms to highlight the special characteristics of each one of the 

publications: OA: Open Access; OC: Open Code; OD: Open Data; IC: International 

collaboration; CA: Corresponding author; IF: Impact Factor. 
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Annex A: Resumen en español 

A1.1. Introducción y motivación 

La imagen hiperespectral es una técnica emergente capaz de proporcionar una guía 

intraoperatoria sin etiquetas, sin contacto, casi en tiempo real y mínimamente invasiva 

mediante el uso de iluminación no ionizante y sin emplear ningún agente de contraste, 

por lo que es totalmente inocuas para el paciente. Las imágenes hiperespectrales están 

formadas por cientos de bandas espectrales dentro y fuera del rango espectral visual 

humano. Esta técnica proporciona, para cada píxel, un espectro continuo que permite 

identificar el tejido, material o sustancia presente en la escena capturada basándose en 

su composición química. 

En los últimos años, la imagen hiperespectral médica ha empezado a lograr 

resultados prometedores en muchas especialidades diferentes (como por ejemplo en la 

oncología, patología digital, oftalmología, dermatología o gastroenterología) mediante 

la utilización de algoritmos de inteligencia artificial de vanguardia y gracias al aumento 

de la potencia computacional. Actualmente, se están consiguiendo resultados 

prometedores en diferentes tipos de cáncer utilizando la imagen hiperespectral. En 

particular, la imagen hiperespectral ha sido ampliamente estudiada en la literatura 

para el cáncer gastrointestinal tanto en muestras de tejido in-vivo como ex-vivo, 

incluyendo estómago, hígado, esófago, páncreas y cáncer colorrectal. Además, la 

imagen hiperespectral se está convirtiendo en una herramienta no sólo para la 

detección del cáncer, sino también para el diagnóstico de otras enfermedades, como el 

descubrimiento y la validación de biomarcadores o la medición de la perfusión tisular. 

En este sentido, esta tesis doctoral evalúa el potencial de la imagen hiperespectral 

como herramienta de diagnóstico para tres aplicaciones médicas diferentes: 

neurocirugía, dermatología y neurogeriatría. 

Esta Tesis presenta los resultados alcanzados gracias a la colaboración entre el 

Instituto de Microelectrónica Aplicada (IUMA) de la Universidad de Las Palmas de 

Gran Canaria (ULPGC) y varias instituciones de investigación: 

• Universidad de Pavía (Italia). 

• Universidad Autónoma de San Luis Potosí (México). 

• Departamento de Neurocirugía del Hospital Universitario de Gran Canaria 

Doctor Negrín de Las Palmas de Gran Canaria (España). 

• Departamento de Dermatología del Hospital Universitario de Gran Canaria 

Doctor Negrín de Las Palmas de Gran Canaria (España). 
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• Departamento de Dermatología del Complejo Hospitalario Universitario Insular-

Materno Infantil de Las Palmas de Gran Canaria (España). 

• Unidad de Investigación del Hospital Universitario de Gran Canaria Doctor 

Negrín de Las Palmas de Gran Canaria (España). 

Además, esta investigación se ha realizado en el marco del proyecto ITHaCA 

(Identificación Hiperespectral de Tumores Cerebrales), financiado por el Gobierno de 

Canarias mediante Convenio de Subvención ProID2017010164.  

Por último, esta tesis se desarrolló mientras Raquel León era beneficiaria de una 

beca predoctoral concedida por la "Agencia Canaria de Investigación, Innovación y 

Sociedad de la Información (ACIISI)" de la "Consejería de Economía, Conocimiento y 

Empleo" del "Gobierno de Canarias", cofinanciada por el Fondo Social Europeo (FSE) 

(POC 2014-2020, Eje 3 Tema Prioritario 74 (85%)). 

A1.2. Sistema de adquisición intraoperatoria 

hiperespectral para el diagnóstico y guiado en 

neurocirugía  

En el campo del cáncer cerebral, esta tecnología está surgiendo como una novedosa 

técnica de imagen que podría ofrecer nuevas capacidades para delimitar el tejido 

tumoral cerebral en tiempo quirúrgico. La identificación precisa de los límites entre el 

tumor y el tejido normal durante la cirugía mejora la resección. Una resección exitosa 

del tumor se asocia a una supervivencia prolongada. No obstante, debido a la 

naturaleza y localización del tumor, la resección completa no siempre es posible o 

puede producir daños neurológicos al paciente. Por lo tanto, los cirujanos tienen que 

encontrar un equilibrio entre la extirpación del tumor y el compromiso neurológico. 

Actualmente, los neurocirujanos utilizan varias herramientas de guía intraoperatoria 

para ayudar a la resección tumoral, como la neuronavegación, la imagen por resonancia 

magnética o marcadores tumorales fluorescentes como el 5-ALA. Sin embargo, estas 

herramientas presentan varias limitaciones, por ejemplo, la imagen por resonancia 

magnética es un procedimiento caro debido a que requiere quirófanos específicos sin 

elementos ferromagnéticos, lo que aumenta el tiempo quirúrgico. Los cambios en el 

volumen del tumor que se producen durante la craneotomía y el desplazamiento del 

cerebro no se contemplan en la neuronavegación. El 5-ALA sólo es capaz de identificar 

gliomas de alto grado administrando por vía oral un agente de contraste al paciente, 

siendo una metodología invasiva que puede provocar efectos secundarios en el 

paciente. Por tanto, existe una necesidad actual de explorar nuevas modalidades de 

imagen que puedan superar dichas limitaciones. 

En esta Tesis se optimizó un sistema de adquisición de imagen hiperespectral 

intraoperatorio para cáncer cerebral con el objetivo de delinear tumores cerebrales 

durante operaciones quirúrgicas. Este demostrador estaba compuesto por dos cámaras 

hiperespectrales de tipo pushbroom: la cámara que cubre el rango visible e infrarrojo 

cercano (VNIR) cubría el rango espectral entre 400 y 1000 nm y la del rango infrarrojo 

cercano (NIR) entre 900-1700 nm. Utilizando este sistema hiperespectral optimizado, 

se recopiló una base de datos de hiperespectral de cerebro humano compuesta por 10 

imágenes de 8 pacientes diferentes. Utilizando esta base de datos y otras dos campañas 
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de adquisición de datos obtenidas por el sistema original, se analizaron un total de 61 

imágenes hiperespectrales de cerebro humano de 34 pacientes diferentes. 

Se crearon y evaluaron una serie de mapas vasculares que utilizan ratios espectrales 

de hemoglobina de absorbancia difusa, permitiendo así la discriminación de diferentes 

estructuras de tejido cerebral humano in-vivo. Esta relación refleja una diferencia 

maximizada entre hemoglobina desoxigenada y oxigenada. La identificación de los 

vasos sanguíneos en los mapas vasculares podría ayudar a mejorar la identificación de 

áreas tumorales durante procedimientos quirúrgicos, al reducir el número de clases que 

debe diferenciar un clasificador. Además, se utilizó un método robusto de validación 

cruzada para evaluar ocho algoritmos de procesamiento diferentes (Figure A 1), 

primero utilizando sólo información espectral y después utilizando información 

espacial y espectral. Los algoritmos de machine learning se entrenaron empleando las 

tres campañas de adquisición de datos, utilizando únicamente las imágenes VNIR. Los 

resultados de clasificación espectral obtenidos mostraron que los métodos basados en 

SVM (Support Vector Machine) y DNN (Deep Neural Network) proporcionaron los 

mejores resultados. Los resultados cualitativos demuestran la capacidad del sistema 

propuesto basado en imagen hiperespectral para identificar no sólo gliomas de alto 

grado, sino también otros tumores de bajo grado y tumores secundarios. Además, estos 

resultados muestran la capacidad de la imagen hiperespectral para resaltar con 

precisión la vascularización de la superficie cerebral.  

Por último, se realizó una exploración del uso del análisis de los datos fusionados 

VNIR-NIR para la detección e identificación de tumores de cáncer cerebral utilizando 

la base de datos capturada en esta Tesis. Debido a las dificultades que plantea la 

obtención de imágenes hiperespectrales in vivo durante procedimientos 

neuroquirúrgicos en humanos, la creación de una base de datos exhaustiva que abarque 

toda la diversidad de diferentes pacientes y tipos de tumores cerebrales es una tarea 

ardua. Por esta razón, los experimentos de fusión se realizaron utilizando un conjunto 

de datos compuesto por 10 imágenes de HS adquiridas de 8 sujetos diferentes, 

utilizando una estrategia de partición leave-patient-one-out. Los resultados de la 

clasificación indican que la presencia de hemoglobina en la región visible mejora la 

identificación de tumores y tejido hipervascularizado cuando se utilizan únicamente 

imágenes VNIR, mientras que las imágenes NIR delimitan con precisión la zona 

parenquimatosa. Los mapas de clasificación generados a partir de las imágenes VNIR-

NIR fusionadas proporcionan mapas más detallados, eliminando los falsos positivos 

presentes en los resultados VNIR y NIR de manera independiente.    
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Figure A 1: Propuesta de marco de procesamiento para generar los mapas de densidad para 
la cirugía intraoperatoria asistida por patología. 

A1.3. Sistema dermatoscópico hiperespectral para la 

detección del cáncer de piel 

El cáncer de piel es una de las formas de cáncer más comunes en todo el mundo y su 

detección precoz es clave para lograr un tratamiento eficaz de la lesión. Habitualmente, 

el diagnóstico del cáncer de piel se basa en la experiencia del dermatólogo y en la 

evaluación patológica de las biopsias. Para evitar procedimientos quirúrgicos 

innecesarios, debido a la incertidumbre en los diagnósticos actuales, se deben 

investigar nuevos métodos para mejorar el diagnóstico del cáncer de piel. A pesar de los 

trabajos de vanguardia y los sistemas comerciales disponibles para ayudar en el 

diagnóstico del cáncer de piel utilizando principalmente imágenes multiespectrales 

para la discriminación de melanoma y no melanoma, existe margen para realizar 

mejoras e investigaciones utilizando la imagen hiperespectral para la discriminación de 

lesiones pigmentadas malignas y benignas, proporcionando un mayor número de 

bandas espectrales en rangos espectrales más amplios. 

En este sentido, el objetivo principal de esta Tesis es el desarrollo de un marco de 

clasificación (Figure A 2) basado en la segmentación de imágenes hiperespectrales y la 

clasificación supervisada mediante el empleo de un sistema dermatológico 

hiperespectral personalizado. El sistema es capaz de capturar datos hiperespectral en 

tiempo real de lesiones pigmentadas in vivo compuestos por 125 bandas en el rango 

espectral de 450-950 nm. Este estudio preliminar pretende demostrar, como prueba de 

concepto, el uso potencial de la tecnología hiperespectral para ayudar a los 

dermatólogos en la discriminación de lesiones benignas y malignas (incluyendo tanto 

lesiones de no melanoma como de melanoma) durante la práctica clínica rutinaria. Se 

recopiló una base de datos de cáncer de piel compuesta por 76 imágenes 

hiperespectrales de 61 sujetos utilizando este sistema para la asistencia en el 

diagnóstico de lesiones pigmentadas. 
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Figure A 2: Diagrama de bloques del marco de clasificación dermatológica hiperespectral 
(preprocesamiento, segmentación automática y clasificación supervisada) y del sistema de 
adquisición.  

El método propuesto fue capaz de segmentar y clasificar entre lesiones benignas y 

malignas utilizando únicamente información espectral. Se generó un mapa de 

segmentación de dos clases en el que se identificaron las lesiones pigmentadas y los 

píxeles de piel normal. Además, se creó una biblioteca de referencia de firmas 

espectrales de datos de piel normal y lesiones pigmentadas, empleando únicamente las 

firmas espectrales del conjunto de entrenamiento etiquetado para evitar la inclusión de 

imágenes hiperespectrales de validación o prueba en la biblioteca de referencia. 

Aunque el número de muestras es bajo, esta biblioteca de referencia fue suficiente para 

un estudio preliminar. Sin embargo, aumentar el número de muestras para cada clase 

con diferentes tipos de pieles y lesiones pigmentadas podría mejorar los resultados de 

la segmentación. En los casos en los que la segmentación de la lesión era incorrecta, 

normalmente esto se producía por una adquisición no óptima de las imágenes 

hiperespectrales. En el paso de clasificación, se obtuvo una alta sensibilidad para 

discriminar entre lesión benigna y maligna. En el caso de lesiones atípicas, el bajo 

número de muestras de esta clase puede producir una clasificación errónea, lo que 

indica la necesidad de una base de datos mayor en la que se tenga en cuenta la 

variabilidad entre pacientes y entre lesiones. Evaluando el marco completo, se aplicó un 

umbral de riesgo para discriminar las lesiones malignas. Las lesiones malignas con una 

precisión superior al 40% se considerarán que tienen claras evidencias de 

comportamiento maligno. 

A1.4. Sistema de adquisición basado en SWIR para la 

detección precoz de trastorno neurocognitivo mayor 

En esta Tesis, el rango espectral VNIR se ha investigado en dos campos médicos, 

mientras que el rango espectral NIR se ha analizado únicamente en la aplicación de 

neurocirugía debido a la posibilidad de capturar datos en dicho rango espectral durante 
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operaciones quirúrgicas. Sin embargo, el uso del rango SWIR estuvo motivado en ser 

estudiado en un contexto médico diferente donde las imágenes hiperespectrales de las 

muestras pueden ser adquiridas en un laboratorio. El propósito de esta investigación es 

descubrir nuevas perspectivas y aplicaciones potenciales del uso de SWIR para el 

diagnóstico de enfermedades a través de muestras de plasma sanguíneo. El trastorno 

neurocognitivo constituye un problema de salud pública en rápido crecimiento y es una 

de las principales causas de discapacidad y dependencia entre las personas mayores, ya 

que no son una consecuencia natural o inevitable del envejecimiento. La enfermedad de 

Alzheimer es la forma más común de trastorno neurocognitivo. Las pruebas clínicas 

habituales para diagnosticar un posible trastorno neurocognitivo mayor se basan en 

biomarcadores de neuroimagen in vivo mediante tomografía de emisión de positrones 

o resonancia magnética, y en biomarcadores en el líquido cefalorraquídeo. Estos 

métodos de identificación de biomarcadores se utilizan ampliamente para detectar la 

enfermedad de Alzheimer en ausencia de síntomas, o en casos que muestran cambios 

neuropatológicos independientemente de los síntomas clínicos. Sin embargo, estos 

procedimientos son caros, invasivos y con una disponibilidad restringida para verificar 

el diagnóstico. Por estos motivos, se necesitan métodos alternativos para identificar 

biomarcadores de trastorno neurocognitivo mayor, como los biomarcadores 

sanguíneos, que son una alternativa menos invasiva y rentable para la detección precoz. 

El plasma se utiliza para identificar proteínas relacionadas con la enfermedad, como la 

albúmina, el fibrinógeno y las inmunoglobulinas. El plasma se compone 

principalmente de agua (90%), diversas proteínas (6%), electrolitos inorgánicos (1%), 

glucosa y otros componentes menores. 

El objetivo de esta Tesis fue el análisis de muestras de plasma utilizando la 

tecnología hiperespectral y clasificadores supervisados para discriminar entre sujetos 

afectados por trastorno neurocognitivo mayor y sujetos de control sanos, evaluando el 

potencial uso de esta tecnología en este campo. Se propuso una metodología para el 

análisis de muestras de plasma sanguíneo, incluyendo la selección de sujetos, la 

preparación de muestras de plasma sanguíneo y su posterior captura y análisis 

mediante imagen hiperespectral. Mediante esta metodología se generó una base de 

datos compuesta por 83 imágenes (45 casos y 38 controles) utilizando un sistema 

hiperespectral capaz de capturar muestras de gotas de plasma sanguíneo depositadas 

sobre un portaobjetos de vidrio, captando información entre 900 y 1700 nm. Además, 

en esta metodología se propusieron, evaluaron y compararon tres normalizaciones 

diferentes de los datos con el objetivo de homogeneizar la distribución de las 

características en la dimensión espectral. El conjunto de datos se dividió en conjunto de 

entrenamiento, validación y prueba. Los resultados de la clasificación se evaluaron 

utilizando las diferentes normalizaciones de datos, y dos enfoques de clasificación: un 

enfoque usando machine learning aplicando clasificadores SVM, KNN (K-Nearest 

Neighbors) y RF (Random Forest); y un enfoque usando Deep learning con un 

clasificador DNN. 
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Figure A 3: Esquema metodológico de la adquisición de muestras de plasma sanguíneo. a) 
Extracción de la muestra de plasma sanguíneo. b) Portaobjetos de la muestra de plasma e imagen RGB de 
la gota de plasma capturada con un microscopio a 5×. c) Sistema de adquisición hiperespectral basado en 
una cámara SWIR. d) Ejemplo de una región de interés del cubo hiperespectral capturado 
macroscópicamente con la cámara SWIR. e) Mapa de segmentación obtenido mediante un algoritmo K-
means con K = 3 para identificar los píxeles que pertenecen a la muestra de plasma (los colores se asignan 
aleatoriamente) y clúster seleccionado (píxeles amarillos) para extraer las firmas espectrales del plasma. 

Mediante una metodología de búsqueda coarse-to-fine, se optimizaron los 

hiperparámetros de los clasificadores para obtener resultados óptimos. Después, 

utilizando las curvas ROC, se identificó el umbral óptimo de cada clasificador para la 

clasificación basada en píxeles. En este punto, las imágenes hiperespectrales de sujetos 

de control deberían tener un valor de porcentaje de sensibilidad bajo (bajo número de 

píxeles clasificados como caso), mientras que las imágenes de caso deberían tener un 

valor de porcentaje de sensibilidad alto (alto número de píxeles clasificados como caso). 

Sin embargo, los clasificadores SVM-L y DNN clasificaron erróneamente varios píxeles 

de control como clase de caso. A pesar de esto, SVM-L identificó mejor los píxeles de 

caso que el clasificador DNN. Por último, las muestras de plasma se clasificaron 

mediante una metodología basada en la imagen. Este paso implicó la determinación de 

un umbral para obtener los resultados de la clasificación de forma basada en la 

muestra. Este umbral se seleccionó realizando un análisis de las métricas de 

evaluación. Para esta aplicación, se intentó seleccionar un umbral que proporcionara el 

mejor compromiso entre sensibilidad y especificidad, pero siempre intentando tener 

valores de sensibilidad altos. En el enfoque de machine learning, el mejor compromiso 

entre sensibilidad (77,7%) y especificidad (62,5%) se obtiene utilizando un umbral de 

0,65, con un ACC del 70,5% y una puntuación F1 del 73,6%. En el enfoque Deep 

learning, el valor umbral seleccionado fue 0,3, obteniéndose el mejor ACC (82,3%) y 

sensibilidad (100%), con una especificidad del 62,5% y una puntuación F1 del 85,7%. 
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Este umbral se validó utilizando las muestras de prueba. El clasificador SVM-L ofrece 

una especificidad elevada (88%), clasificando correctamente 7 de 8 muestras de 

control, pero con un valor de sensibilidad del 44%, que identifica correctamente 4 de 9 

muestras de caso. Por otro lado, el clasificador DNN sólo identificó correctamente 1 de 

cada 8 muestras de control, pero con una alta sensibilidad, clasificando correctamente 

7 de cada 9 muestras. 

A1.5. Conclusiones 

En resumen, esta tesis destaca el potencial de la imagen hiperespectral como ayuda 

innovadora, no invasiva y no ionizante para la visualización, delineación e 

identificación de lesiones o enfermedades en tiempo real, mejorando los resultados de 

los pacientes en diversas aplicaciones médicas. La investigación muestra su utilidad 

para ayudar a los neurocirujanos durante la resección de tumores cerebrales. Además, 

la tesis presenta un prototipo que utiliza la imagen hiperespectral para identificar y 

clasificar lesiones pigmentadas de piel, diferenciando entre lesiones benignas, malignas 

y atípicas. Por último, esta tesis explora el uso de la imagen hiperespectral en muestras 

de plasma sanguíneo para la identificación temprana de trastornos neurocognitivos.  

Aunque queda aún mucho recorrido y mucha experimentación por realizar en este 

campo y solventar las limitaciones existentes, el enfoque innovador presentado en esta 

Tesis es prometedor para el futuro desarrollo de herramientas de diagnóstico no 

invasivas y eficientes para su aplicación dentro del campo médico en diferentes 

modalidades. 
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