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Abstract

Hyperspectral imaging is an emerging imaging modality originated in the remote
sensing field that has expanded its application to other research and industrial areas in
the past years. Hyperspectral images are composed by spatial and spectral information,
conforming a three-dimensional matrix, where each spatial pixel is related to a vector
of intensity light values that spans hundreds of different spectral wavelengths,
conforming an almost continuous spectrum. In medical applications, hyperspectral
imaging technology has been widely investigated to measure different tissue properties
such as oxygen saturation, perfusion, water, melanin, etc. It has also used to
discriminate between tumor and normal tissue in different organs, or for early disease
detection. One major benefit of this technology is its potential use as a diagnostic and
guidance tool in various medical applications, being a non-contact, non-ionizing and
label-free imaging technique. This PhD dissertation explores the use of hyperspectral
imaging to advance beyond the current state-of-the-art and demonstrates its feasibility
in three different medical applications.

First, an intraoperative hyperspectral acquisition system for brain surgical
diagnostics and guidance was optimized to extend its capabilities and study the use of a
wider spectral range to discriminate between tumor and normal brain tissue. Using this
system, an in-vivo hyperspectral human brain image database was generated, and a
new approach was proposed to perform spectral fusion of data obtained from two
different hyperspectral cameras, covering the spectral range between 400 and 1,700
nm. Furthermore, using this database and the one acquired before the optimization in a
previous research project, vascular enhanced maps were generated, and different
analyses using spectral and spatial information were performed to detect and delineate
brain tumors with a robust validation methodology using machine learning algorithms.
The intraoperative system was validated using 61 hyperspectral images. Additionally,
the identification of the blood vessels could help to reduce the number of classes to be
differentiated by a classifier. The fusion approach led to classification maps that were
more detailed and had fewer false positives than the maps prior to the fusion.

Second, a customized dermatoscopic hyperspectral imaging prototype was
developed to capture real-time data of in-vivo pigmented skin lesions, with the main
goal of proposing a novel classification framework based on hyperspectral image
segmentation and supervised classification. This study aimed to demonstrate, as a
proof-of-concept, the potential use of hyperspectral imaging technology to assist
dermatologists in the discrimination of benign and malignant pigmented skin lesions
(including both melanoma and non-melanoma lesions) in routine clinical practice. The
dermatoscopic prototype was validated on 76 hyperspectral images and it was able to
segment the pigmented lesion, extract and classify the associated pixels to reduce the
computational cost. In addition, a risk threshold was applied to discriminate malignant
lesions.

Finally, the third application involved the use of a hyperspectral acquisition system
capable of capturing spectral information from 900 to 1700 nm, targeting the analysis
of blood plasma using pixel-wise supervised classifiers to discriminate between subjects



Abstract

affected by major neurocognitive disorder and healthy controls. The methodology
included subject selection, blood plasma samples preparation, and their subsequent
capture and analysis through machine learning methods. The study was conducted
using 83 hyperspectral images and showed promising results for the potential
identification of spectral biomarkers in blood plasma samples.

These studies showed that combining hyperspectral imaging with machine learning
algorithms can provide promising results in the identification and discrimination of
diseases in the three medical applications proposed.
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Resumen

Las imagenes hiperespectrales son una modalidad de imagen emergente originada
en el campo de la teledeteccion que ha ampliado su aplicacién a otras areas de la
investigacion y la industria en los ultimos afios. Las imagenes hiperespectrales estan
compuestas por informacion espacial y espectral, conformando una matriz
tridimensional, donde cada pixel espacial esta relacionado con un vector de valores de
intensidad en el rango de cientos de longitudes de onda espectrales diferentes,
formando un espectro casi continuo. En aplicaciones médicas, la tecnologia de
imagenes hiperespectrales se ha investigado ampliamente para medir distintas
propiedades de los tejidos, como por ejemplo, la saturacién de oxigeno, la perfusion, el
agua, la melanina, etc. También se ha utilizado para discriminar entre tejido tumoral y
normal en distintos 6rganos, o para la deteccion precoz de ciertas enfermedades. Una
de las principales ventajas de esta tecnologia es que puede utilizarse como herramienta
de ayuda al diagndstico en distintas aplicaciones médicas. En esta Tesis doctoral, el uso
de las imagenes hiperespectrales se empleo en tres aplicaciones médicas diferentes.

En primer lugar, se optimizd6 un sistema de adquisicion hiperespectral
intraoperatorio para el diagnostico durante operaciones de neurocirugia, con el fin de
ampliar las capacidades del sistema y estudiar el uso de un rango espectral mas amplio
para discriminar entre tejido cerebral tumoral y normal. Utilizando este sistema, se
gener6 una base de datos de imagenes hiperespectrales in vivo de cerebro humano y se
propuso un nuevo enfoque para realizar la fusion espectral de los datos obtenidos con
dos camaras hiperespectrales diferentes, cubriendo el rango espectral entre 400 y 1700
nm. Ademés, utilizando esta base de datos y la adquirida en un proyecto de
investigacion anterior, se generaron mapas vasculares mejorados, y se realizaron
diferentes analisis utilizando informacion espectral y espacial para detectar y delinear
tumores cerebrales con una metodologia de validacion robusta utilizando algoritmos de
aprendizaje automatico. El sistema intraoperatorio se validé utilizando 61 imagenes
hiperespectrales. Adicionalmente, la identificacion de los vasos sanguineos podria
ayudar a reducir el namero de clases a diferenciar por un clasificador. Los mapas de
clasificacion obtenidos utilizando el enfoque de fusion revelan que los mapas presentan
maés detalles, eliminando los falsos positivos que estaban presentes en los mapas antes
de realizar la fusion.

En segundo lugar, se desarroll6 un prototipo de imagen hiperespectral
dermatoscoOpica personalizado capaz de capturar datos en tiempo real de lesiones
cutaneas pigmentadas in vivo con el objetivo principal de proponer un novedoso marco
de clasificacion basado en la segmentacion de imagenes hiperespectrales y la
clasificacion supervisada. Este estudio pretendia demostrar, como prueba de concepto,
el uso potencial de la tecnologia de imagenes hiperespectrales en la practica clinica
habitual para ayudar a los dermatdlogos en la discriminacién de lesiones cutaneas
pigmentadas benignas y malignas (incluyendo tanto las lesiones de melanomas como
las de no-melanomas). El prototipo dermatoscopico se validd en 76 imagenes
hiperespectrales y fue capaz de segmentar las lesiones pigmentadas, asi como de
extraer y clasificar los pixeles asociados para reducir de esta forma el coste
computacional. Ademas, se aplico un umbral de riesgo para discriminar las lesiones
malignas.

Finalmente, la tercera aplicacion consistié en el uso de un sistema de adquisicion
hiperespectral capaz de capturar informacion espectral en el rango de 900 a 1700 nm,
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Resumen

dirigido al andlisis de plasma sanguineo mediante clasificadores supervisados por
pixeles para discriminar entre sujetos afectados por trastorno neurocognitivo mayor y
controles sanos. La metodologia incluy6 la seleccion de sujetos, la preparacion de
muestras de plasma sanguineo y su posterior captura y analisis mediante métodos de
aprendizaje automatico. El estudio se realizo utilizando 83 imagenes hiperespectrales y
mostr6é resultados prometedores para la identificacion potencial de biomarcadores
espectrales en muestras de plasma sanguineo.

Todos estos estudios han revelado que el uso de imagenes hiperespectrales
combinadas con algoritmos de aprendizaje automético son capaces de proporcionar
resultados prometedores en la identificacion y discriminacion de distintas
enfermedades en las tres aplicaciones médicas propuestas.

~1V ~
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Chapter 1: Introduction

1.1 Motivations

Hyperspectral (HS) Imaging (HSI) is an emerging technique capable of providing
label-free, non-contact, near real-time, and minimally-invasive intraoperative guidance
by using non-ionizing illumination and without employing any contrast agent [1], hence
being totally harmless for the patient. HS images are formed by hundreds of narrow
spectral channels within and beyond the visual spectral range. This technique provides,
for each pixel, an almost continuous spectrum that allows the identification of the
tissue, material or substance present in the captured scene based on its chemical
composition [2].

In recent years, medical HSI has started to achieve promising results in many
different specialties (e.g., oncology [3], [4], digital and computational pathology [5],
ophthalmology [6], dermatology [7], [8] or gastroenterology [9], [10]) through the
utilization of cutting-edge Artificial Intelligence (AI) algorithms and thanks to the
increased modern computational power [11], [12]. Promising results are being achieved
in the automatic identification of different types of cancer using HSI [3]. Particularly,
HSI has been widely studied in the literature for gastrointestinal cancer in both in-vivo
and ex-vivo tissue samples, including stomach, liver, esophagus, pancreas, and
colorectal cancer [10]. Additionally, HSI is becoming a tool not only for cancer
detection, but also for the diagnosis of other diseases, such as biomarker discoveries
and validation [13] or tissue perfusion measurements [14].

The research group where this PhD Thesis has been carried out has previously
utilized HSI technology in neurosurgery, as a proof-of-concept, to distinguish between
brain tumors and healthy tissue during surgical procedures. However, the potential of
HSI extends beyond neurosurgery applications. In this sense, this PhD Thesis evaluate
the potential of HSI as a diagnostic tool for three different medical applications:

1) Neurosurgery: by optimizing the acquisition system, increasing the in-vivo
HS brain database and evaluating a wider spectral range for intraoperative
brain tumor diagnostics and enhanced vascularization.

2) Dermatology: by developing a proof-of-concept system for the acquisition
and processing of dermatological HS data for in-situ diagnosis of skin cancer.
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3) Neurogeriatrics: by evaluating the spectral properties of blood plasma
samples using near-infrared information targeting the identification of
neurocognitive disorders (NCDs).

1.1.1 Neurosurgery

Surgical resection is the most common treatment for primary brain tumors,
especially for diffuse gliomas, since the early and total resection of the tumor increase
the overall survival rate (e.g., 5-year survival rate of 50% for diffuse astrocytoma and
81% for oligodendroglioma [15]). In this sense, the extent of resection increases the
survival rates of patients with all types of gliomas. However, to achieve maximal
resection, neurosurgeons need to determine the precise limits of the tumor during
surgery using imaging-guiding techniques [16]. Additionally, neurosurgeons must
avoid damaging normal tissue, which can lead to neurological deficits in patients and
thus affect their quality of life (QoL) [17]. Current intraoperative imaging guidance
techniques have several limitations [16], being necessary to develop new image
acquisition and visualization systems to provide quick, detailed, accurate and highly
personalized diagnostics for optimal decision-making during neurosurgical procedures,
improving the outcomes in the QoL of the patient and reducing the errors, surgical
times, and costs.

1.1.2 Dermatology

The process of diagnosing skin cancer is accomplished by a dermatologist who
performs a preliminary diagnosis by visually examining the Pigmented Skin Lesion
(PSL) normally following the ABCDE (Asymmetry of the mole, Border irregularity,
Color uniformity, Diameter and Evolving size, shape or color) rule [18]. After this
examination, a biopsy is performed if the dermatologist suspects that the lesion is
malignant. Then, a pathological analysis of the sample is carried out to assess the
definitive diagnosis. There are several tools based on dermoscopic images and
algorithms that implement the ABCD rule (without taking into account the evolving
characteristic, which would imply a monitoring over time of the PSL) to assist
dermatologist in their clinical routine practice for PSL evaluation and classification
[19], [20]. Nevertheless, the current methodologies are not accurate enough, giving as a
result high false positive and negative rates. To avoid unnecessary biopsies and surgical
procedures, because of the uncertainty in the current diagnoses, and to achieve cost-
effective early diagnosis, new methods to improve skin cancer diagnosis should be
investigated.

1.1.3 Neurogeriatrics

The diagnosis of NCD establishes, as a main goal, identifying cognitive impairment
and NCD from secondary etiology, therefore, potentially treatable patients [21]. Current
diagnostic criteria to determine the degree of functional impairment is based on scales
that evaluate the subject’s cognitive ability. The evolution of neurodegenerative
diseases, especially Alzheimer’s disease, is slow and both cognitive and behavioral
symptoms appear simultaneously. The disease presents and progresses differently in
each subject, which may mislead the diagnosis of another disease. For this reason, it is
necessary to find effective diagnostic techniques that could help in the early detection
of this disease. Biomarkers allow an early biological diagnosis (preclinical phase) and
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improve the etiological study of NCDs. The common clinical tests to diagnose a possible
Alzheimer’s disease are based on in-vivo neuroimaging biomarkers and body fluid
biomarkers [22], [23]. However, the use of these procedures is expensive, highly
invasive, and has a restricted availability for verifying the diagnosis [24]. For this
reason, other biomarkers related to blood samples are being investigated. This
alternative is less invasive and cost-effective for early detection, especially in the
identification of patients both in the clinical and preclinical phases of Alzheimer’s
disease.

1.1.4 Research Hypotheses
The research carried out in this PhD Thesis is based on two main hypotheses:

1) HS instrumentation can detect subtle spectral variations in biological samples
and can be adapted to different medical applications.

2) A methodology based on supervised and unsupervised Machine Learning (ML)
algorithms can be employed for processing spectral information, performing
disease diagnosis regardless of the type or origin of the disease.

In summary, this dissertation aims to explore the potential of HSI technology as a
diagnostic tool in different medical applications. The hypotheses are examined and
validated to advance our understanding of the role of HSI in modern medical diagnosis
and to facilitate its integration into clinical practice on a larger scale.

1.2 Objectives

The main objective of this PhD Thesis is to demonstrate the capabilities of HSI in
the medical field by analyzing its use in different medical applications, such as
neurosurgery (intraoperative brain cancer diagnostics and delineation), dermatology
(in-situ diagnostics of skin cancer), and neurogeriatrics (early diagnosis of major NCDs
(MNCDs) through blood plasma samples). In order to achieve this main goal, several
specific objectives have been raised at the beginning of this dissertation. These specific
objectives have been subdivided by primary and secondary specific objectives:

1) To acquire the necessary knowledge about the different HS
instrumentation for medical applications currently employed in the state-of-the-
art:

a) Medical HS instrumentation for intraoperative environments
and surgical guidance and diagnostics, especially for neurosurgery.

b) Medical HS instrumentation for in-situ diagnostics using
portable devices, especially for dermatology.

¢) Laboratory HS instrumentation for data acquisition of liquid
biological samples.

2) To obtain the necessary knowledge about the different algorithms based on
ML and Deep Learning (DL) commonly used in the literature for pre and post-
processing HS images.
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3) To design and develop HS acquisition systems for different medical
applications that will allow the generation of HS databases, which will be used
for the development of algorithms based on ML/DL for disease identification
and diagnosis:

a) To optimize an intraoperative HS-based acquisition system
developed in a previous project, enhancing its capabilities for capturing
data in a wide spectral range for the use case of neurosurgery.

b) To develop a dermatologic HS-based acquisition system for
capturing in-situ pigmented skin cancer lesions during clinical routine
practice.

c¢) To prepare an HS-based acquisition framework for capturing
blood plasma samples in a laboratory environment.

4) To design and develop HS classification frameworks capable of
identifying different diseases depending on the clinical application:

a) To generate a methodology to provide vascular enhanced maps
of in-vivo brain during neurosurgical operations.

b) To create a benchmark for intraoperative brain tumor
detection and delineation using an enhanced in-vivo human HS
database.

c¢) To propose a processing framework to fuse data from two
different HS cameras and evaluate its performance in the use case of
neurosurgery.

d) To design and evaluate a classification framework to
discriminate between benign, malignant, and atypical PSLs,
targeting a hand-held clinical device for dermatology.

e) To design and evaluate a classification framework for MNCD
detection through processing blood plasma samples.

1.3 Collaborations and acknowledgments

This PhD Thesis presents the outcomes achieved during the close collaboration
between the Institute for Applied Microelectronics (IUMA) of the University of Las
Palmas de Gran Canaria (ULPGC) and several research institutions:
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e Department of Neurosurgery of the University Hospital of Gran Canaria Doctor
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Negrin of Las Palmas de Gran Canaria (Spain).
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e Department of Dermatology of the Complejo Hospitalario Universitario Insular-
Materno Infantil of Las Palmas de Gran Canaria (Spain)
e Research Unit of the University Hospital of Gran Canaria Doctor Negrin (Spain).

In addition, this research was conducted as part of the ITHaCA (Hyperspectral
Identification of Brain Tumors) project, funded by the Canary Islands Government
under Grant Agreement ProID2017010164.

Finally, this PhD Thesis was developed while the candidate was beneficiary of a
predoctoral grant given by the “Agencia Canaria de Investigacion, Innovacion y
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1.4 Document organization

This document has been structured in 6 chapters. A brief explanation of each
chapter is presented next.

Chapter 1: Introduction. In the present chapter, the main motivations and
objectives that have led to the development of this dissertation are described. In
addition, the structure of the document is presented.

Chapter 2: Background on hyperspectral imaging instrumentation,
algorithms, and applications. In this chapter, the concept of the HSI and the
description of the main algorithms employed are presented. In addition, the
current state-of-the-art in different medical applications using HSI is detailed.

Chapter 3: Intraoperative HS acquisition system for brain surgical
diagnostics and guidance. This chapter presents an overview of the HS system
developed and the modifications applied to the previous intraoperative
demonstrator for brain cancer detection. In addition, brain cancer detection
algorithms are evaluated using an extensive HS database. Finally, VNIR-NIR
fusion algorithm are evaluated using the reference database and the in-vivo HS
human brain database.

Chapter 4: Dermatoscopic HS system for skin cancer detection. The
feasibility of the developed system for brain cancer detection was the basis for the
exploration of its application in other medical contexts, such as the specific case of
skin cancer detection using a similar approach. In this chapter, the HS system
employed for skin cancer detection and the HS database are presented. A
dermatologic framework based on automatic segmentation and classification is
explained. Finally, the framework is evaluated using a three-way partition.

Chapter 5: SWIR-based acquisition system targeting early detection of
major neurocognitive disorders. Previous applications evaluated the VNIR
and NIR spectral ranges for its application in different medical applications. This
chapter evaluates a different spectral range in a different application context but
using the same methodology for processing the spectral data. A SWIR-based
system was developed to generate a HS plasma database. A framework based on
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supervised classification using ML and DL approaches was used to detect major
neurocognitive disorders.

Chapter 6: Conclusions & future lines. This chapter concludes the work
presented in this dissertation by summarizing the advantages, disadvantages and
main contributions of the methods developed as well as presenting future research
lines of this dissertation. Finally, the academic production developed in the context
of this PhD Thesis is presented.

Annex A: Sinopsis en espafol. In this annex, a brief summary of the
dissertation is presented in Spanish.

Bibliography: This PhD Thesis manuscript concludes with the list of references
employed during the elaboration of this document.



Chapter 2: Background on
Hyperspectral Imaging
Instrumentation, Algorithms, and
Applications

2.1 Introduction

This chapter presents a comprehensive review of the current research in the
different medical fields relevant to the development of this PhD Thesis. First, the basic
concepts of HSI and the common HSI instrumentation are introduced. Second, a brief
description of the basic pre-processing techniques used to analyze HS images and the
different algorithms commonly used are described, as well as the performance metrics
for their evaluation. Finally, a brief state-of-the-art related to the use of HSI in the
medical field is presented, with special emphasis on brain cancer, skin cancer and
MNCD diseases, which are the areas studied in this dissertation.

2.2 Basic Concepts of HSI

HSI is an emerging imaging modality originated in the remote sensing field [25] that
has expanded its application to other research and industrial areas in the past years
[26], such as food quality inspection [27], quality control of pharmaceutical products
[28], marine ecosystems monitoring [29], soil pollution monitoring [30], petrochemical
industry [31] or defense and security [32]. HS images are composed by spatial and
spectral information, conforming a three-dimensional matrix, also called HS cube
(Figure 2-1.a), where each spatial pixel is related to a vector of intensity light values
that belong to hundreds of different spectral wavelengths, also called channels or
bands. This vector conforms a continuous spectrum that is commonly named spectral
signature. On the contrary, Multispectral (MS) sensors have lower spectral resolution
than HS sensors, where a spectral band can integrate between tens to hundreds of
nanometers. This MS sensors usually include spectral bands related to blue, green, red,
red edge, and near infrared, while maintaining gaps among different bands [33] (Figure
2-1.a). Unlike standard digital color cameras, that captures RGB (red, green and blue)
images, using only three wavelengths (Figure 2-1.a), MS and HS cameras are able to
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cover broadband spectral ranges (Figure 2-1.b), such as Visible (VIS), between 400 and
700 nm, Visual and Near Infrared (VNIR) between 400 and 1000 nm, Near Infrared
(NIR) from 900 to 1700 nm or near Short-Wave Infrared (SWIR) from 900 to 2500 nm
[34]. RGB images can be seen as a specific and very reduced case of MS Imaging. The
spectral signature allows the differentiation, at pixel level, of the materials presented in
the captured scene based on their chemical composition [35].
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Figure 2-1: Principles of hyperspectral imaging technology. a) Comparison of the different image
modalities. b) Electromagnetic spectrum.

Many studies in the literature have demonstrated the high potential of HSI for
improving remote and non-destructive detection of chemical compositions in different
applications, obtaining promising results. In remote sensing, vegetation indices are
commonly used to enhance vegetation information and suppress background
information [36]. These indices are based on RGB color and new indices have emerged
employing several spectral bands. HSI can be useful for differentiating plants
depending on the pigments or distinguishing crop types, analyzing their quality by
using the water absorption peak present in the plant leaf within the NIR range at 1400
and 1900 nm [37]. Chlorophyll is the primary photosynthetic pigment in green
vegetation and can be identify using the chlorophyll absorption peaks at 450 nm and
680 nm, related with the blue and red regions, respectively. Plant stress can be detected
by reducing the growth of chlorophyll [38]. Marine ecosystem has been study using
underwater HSI system showing its potential to monitor pigmentation in benthic and
sympagic phototrophic organisms at small spatial scales [29]. For example, in-vivo
chlorophyll pigments of warm-water corals achieve a maximum absorption at 670 nm
applying the second derivative. Chlorophyll absorption at 700 nm is employed to
discriminate coral from sand and algae [29].

The food industry employs visual inspection, microscopy, polymerase chain
reaction, fluorescence, etc. for detecting the presence of contaminants in monitoring
process [27]. HSI technology has been tested as non-invasive monitoring of food
quality, achieving to detect parasites at a depth of 8 mm using wavelengths between
350 and 950 nm [39]. Apart of contaminants, visual features have also been analyzed,
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such as color, to determinate the physical, chemical, or microbiological quality of food
products. Another examples of the use of HSI in this field are the detection of chilling
injuries produced by low-temperature storage or bruises in fruits and vegetables during
packing and transporting [40]. Fraud detection in meat is another application which
employ HSI technology to discriminate pure and mixed meat in minced meat. Six
wavelengths (957, 1071, 1121, 1144, 1368, and 1394 nm) were employed to identify
minced beef adulterated with horse, pork, or chicken [41]. In addition, detection of
adulterated chocolate powder with peanut flour was achieving using NIR HSI by
Laborde et al. [42]. The main ingredients of chocolate powder, sucrose and cocoa, and
the peanut flour were analyzed. The study found that cocoa has peak absorption at
1208, 1491, and 1935 nm, related with cocoa proteins. Sucrose has absorption peaks at
1435 and 2072 nm associated with the carbon-hydrogen and oxygen-hydrogen
stretching. Peanut flour has two main absorption peaks at 1200 and 1942 nm,
representative of the water absorption, and two peaks at 1474 and 1735 nm related with
proteins.

HSI technology has been also employed during quality control of pharmaceutical
products [28]. Al Ktash et al. [43] analyzed the active pharmaceutical ingredients in
tablets, as ibuprofen, acetylsalicylic acid, and paracetamol employing Ultra-Violet (UV)
region from 225 to 400 nm. Ibuprofen present an absorbance peak at 223 nm, while
acetylsalicylic acid achieves a maximum peak at 228 nm. Finally, paracetamol present a
distinct band at 244 nm.

In medical applications, HSI technology has been widely researched to measure
deoxyhemoglobin and oxyhemoglobin, employing isosbestic points of the hemoglobin
absorption spectra in the spectral region 510-590 nm or absorbance at the oxygen-
sensitive wavelength at 600 nm [44]. These points have been employed to visualize and
highlight the arteries and veins in forearm to assist in phlebotomy [45]. In addition,
skin lesions can be identified using the HSI systems, analyzing the spectral properties
of the skin, which are caused by groups of chromophores, such as melanin,
hemoglobin, water, beta-carotene, collagen, and bilirubin. These chromophores
concentrations have been analyzed in the epidermis and dermis in the spectral range
from 500 to 1000 nm [46]. The reflected light provides information of these
chromophores [47]. Kubelka-Munk is a theorical model employed to create skin models
using two layers (epidermis and dermis) and two chromophores (melanin and
hemoglobin) [48]. Another emerging application is organ quality assessment during
perfusion. HSI was evaluated to predict tissue water index in kidneys, allowing to
analyze tissue-related damage during ex vivo preservation. This index was computed
analyzing two water absorption peaks 760 and 970 nm [49]. Alzheimer’s disease has
been investigated by amyloid-beta protein analysis in the retina and the combination of
HSI system due to does not require the use of contrast agents. The presence of amyloid-
beta protein can increase the reflectance at 550 nm [50].

2.3 HSI Instrumentation

In HSI, the instrumentation is a crucial element to have a reliable, efficient, and
high-quality spectral data acquisition. Usually, an HSI platform consists of a HS
camera, a light source, a computer with the acquisition software, and, in some
instances, a motorized mobile station, which depends on the scanning mode employed
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by the HS camera [51]. HSI systems can be classified based on the measurement mode
(reflectance, transmittance, or interactance), the image acquisition mode (point, line,
or area scanning), or the spectral ranges that can be captured (VIS, VNIR, NIR, or
SWIR).

The three most commonly used measurement modes depend on the lighting
configuration [2]. In reflectance mode, the light source and the HS camera are on the
same side regarding the sample and the light reflected from the sample is captured.
(Figure 2-3.b). In the transmittance mode, the HS camera is located on the opposite
side of the light source, capturing the transmitted light that penetrates through the
sample (Figure 2-3.b). The interactance mode combines the reflectance and
transmittance modes. In this case, the light source and the HS camera are on the same
side, parallel to each other and separated by a light barrier. The light barrier ensures
that the light received by the HS camera is transmitted through the sample with a
minimal penetration depth, depending on the system employed. This is achieved by
sealing the light from the environment to prevent any interference (Figure 2-3.c).
Reflectance mode may not be as effective for detecting internal quality because of
limited light penetration but provides rich amount of information of regarding the
surface of the sample. Transmittance mode provides valuable information from inside
the sample but requires a high-intensity light source or the sample to be thin enough to
allow light transmission. Interactance mode is useful for evaluating the properties of
sublayer tissues. It works by transmitting light into the sample and then measuring the
amount of light that is backscattered to the surface [2]. A similar strategy to
interactance is light scattering, which quantifies the optical scattering coefficients of the
sample using a light source that can be a continuous wave, temporally modulated or
pulsed, or spatially modulated [52].

a Reflectance b Transmittance c Interactance

HS Camera HS Camera HS Camera

Light Source Light Source

Light Barrier

Sample

Sample 9((-) Sample QD
D Light Source

Figure 2-2: Hyperspectral imaging measurement modes. a) Reflectance mode. b) Transmittance
mode. ¢) Interactance mode.

The HS camera is the main component of the acquisition system, which consists of
two main structures: spectrographs or spectrometers and a detector or array of photo-
sensitive detectors [53]. Spectrographs allow dispersing of polychromatic incident light
into light beams with specific wavelengths, there being three types of devices [54]:
monochromator, optical bandpass filter, and single-shot imager. The scattering devices
focus the narrow wavelength light toward each of the detectors. In this sense, the
photosensors most used in HSI are Charge-Coupled Devices (CCDs) and
Complementary Metal-Oxide Semiconductors (CMOS) [55]. The principal difference
between these two sensors lies in the transmission scheme of the incoming signals. On
the one hand, CCD sensors focus on measuring the luminous intensity, transferring the
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resulting multi-sensor signal to a digital/analog converter. On the other hand, CMOS
sensors incorporate the photodetector and the digital/analog converter together, thus
the information from each sensor is independent of the rest. Because of this difference,
CMOS sensors are faster in measuring and capturing photons, but these sensors are
susceptible to the presence of non-linear noise and are mostly affected by dark currents
[55]. This situation is compensated by CCD sensors, since by digitizing the signals
outside the photodiode allows the inclusion of components with different
characteristics that mitigate noise, and dark current, but at the cost of a reduced
acquisition speed. In addition, CCDs and CMOS have better sensitivity for the spectral
range between 400 and 1000 nm (VNIR), while indium gallium arsenide (InGaAs) and
mercury cadmium telluride (MCT) sensors are used to cover the NIR range from 900 to
1700 nm and SWIR range, from 900 to 2500 nm (Figure 2-6) [2].
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Figure 2-3: Quantum efficiency of CCD and InGaAs sensors [56].

In general, HSI cameras are classified depending on the scanning method used to
generate the HS cubes, with four main types of scanning: whiskbroom, pushbroom,
focal plane, and snapshot [55], as indicated in Figure 2-4.

Whiskbroom or point-scanning cameras are characterized by capturing the spectral
information of one pixel per time (Figure 2-4.a); this means that to scan a particular
region, it is necessary to have a scanning platform that is moved through the scanning
area of the camera at each location in the X and Y spatial dimensions. Because of this,
whiskbroom cameras require considerable time to acquire an image, so spatial
resolution is often limited. Nevertheless, the main strength of these cameras is their
high spectral resolution which permits to capture a large amount of spectral
information.

Pushbroom or line-scanning cameras (Figure 2-4.b) acquire the complete spectra of
several pixels of one spatial dimension in one shot, hence, the area of interest is
scanned line by line until the entire HS image is composed. This scanning mode
requires also a scanning platform to cover the second spatial dimension, and for that
reason motion artifacts may occur. Pushbroom cameras provide relatively high spatial
and spectral resolution and for this reason it is the most used technique in several
applications.

Focal plane cameras (also known as spectral or area scanning) (Figure 2-4.c)
acquire a 2D monochromatic image at a given wavelength, i.e., each wavelength is
captured independently until completing the HS cube. Usually, this acquisition mode
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allows to capture different wavelengths using adjustable filters such as Liquid Crystal
Tunable Filter (LCTF) or Acousto-Optic Tunable Filter (AOTF). The main advantage of
these cameras is that they can capture a single wavelength or several wavelengths,
making them highly configurable, but they are susceptible to the presence of motion
artifacts. In addition, they are notable for their capacity to acquire detailed spatial
information in a relatively reduced amount of time.

Snapshot cameras (Figure 2-4.d) acquire spatial and spectral information
simultaneously, but unlike focal plane cameras, this type of cameras produces the HS
cube in a single shot, which results in a significative reduction of the acquisition time.
However, currently snapshot cameras can capture only a limited number of spectral
bands, so the spectral resolution is lower than with other camera types. The same
applies to the spatial resolution: to fit pixels in the sensor at different wavelengths the
spatial resolution is usually reduced.
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Figure 2-4: Hyperspectral imaging acquisition methods. a) Whishbroom. b) Pushbroom. ¢) Focal
Plane. d) Snapshot.
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After acquisition, the HS images must be stored in a logically organized file to allow
reconstruction of the HS cubes in any software. The most common formats are the
Band-Interleaved-by-Pixel (BIP), Band-Interleaved-by-Line (BIL), and Band
Sequential (BSQ). In BSQ format (Figure 2-5.a), each line of data is immediately
followed by the next line in the same spectral band. BIL format stores the first line of
the first band followed by the first line of the second band, and so forth (Figure 2-5.b).
In BIP format, the first pixel of all bands is placed in sequential order, followed by the
second pixel of all bands, and so on (Figure 2-5.c). Whiskbroom sensors typically store
HS images in BIP format, whereas pushbroom sensors use BIL format, and focal plane
and snapshot sensors typically use BSQ for storage [57].

In this sense, the light source is another crucial component of the HSI acquisition
system, since light is the medium that provides information about the objects under
study. Currently, halogen lamps are the most widely used because of their broad-
spectrum, which is continuous, soft, and without sharp peaks [53]. However, this type
of illumination has certain disadvantages, such as temperature rise in the sample, short
lifetime of the bulb, and spectral peak change due to variations in temperature, voltage,
and time of use. On the other hand, Light-Emitting Diodes (LEDs) have started to be
used as light sources due to their long lifetime, fast response, compact size, low power
consumption, and low heat generation [53]. LEDs can produce broad and short spectra
in the ultraviolet, visible, and infrared regions. However, they are not very efficient in
dissipating heat, which reduces their lifetime and affects their spectrum. Finally, lasers
are light sources with a narrow bandwidth, linearly directed, and used mainly in
fluorescence and photoluminescence applications.
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Figure 2-5: HS data storage structure types. a) Band Sequential (BSQ) format. b) Band-Interleaved-
by-Line (BIL) format. ¢) Band-Interleaved-by-Pixel (BIP) format.

2.4 Processing Algorithms for HSI

Many studies in the literature have demonstrated the high potential of HSI for
remote, non-invasive and non-destructive detection of the tissue chemical composition
in different applications, obtaining promising results [46]. However, a proper analysis
of HS images is not an easy task, considering that the key idea relies on the analysis of
spectral and spatial information presented in the HS image to identify the spectral
signatures of the basic components [58]. To achieve this proper spectral analysis, pre-
processing techniques could be applied to reduce the effects of temperature and
illumination changes and light source aging. After that, the HS images are processed
following different approaches that could be grouped as Spectral Unmixing (SU) and
ML, among the most relevant ones. The ML group can be subdivided into supervised,
unsupervised, and semi-supervised methods according to the prior labeling
information used for training. However, only supervised, and unsupervised methods
were evaluated in this dissertation. Figure 2-6 represents the most common processing
steps and algorithms that have been employed in the work presented in this
dissertation and will be presented in the following sections.

Pre-Processing Machine Learning Spectral Unmixing
[ : ] I—I—I
Calibration Supervised Unsupervised Linear Nonlinear

Noise Reduction
— SVM —| K-means | EBEAE | NEBEAE ‘

Dimensional Reduction

HKM

Normalization

K-medoids

KNN

DNN

Figure 2-6: Summary of the pre-processing techniques and algorithms used in this
dissertation.
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2.4.1 Basic Pre-processing Techniques

HS images are composed of a large number of pixels with a high correlation of
information between the bands. The accuracy and reliability of the results obtained
from these HS images may be compromised by the presence of erroneous data values
or outliers [59]. The instrumentation employed in the HS cameras can affect the
acquired data due to environmental factors. Temperature can cause fluctuations in the
dark currents of the sensors, introducing spectral noise, especially in the extreme bands
of the sensor. Additionally, the interaction of light with the object can generate artifacts
that affect the overall quality of the HS image. For these reasons, it is necessary to apply
various pre-processing techniques before analyzing HS images, such as, black-and-
white correction to reduce dark currents and the influence of illumination
irregularities, denoising methods using filters to reduce spatial and spectral noise or
even methods to reduce the redundant information [59], [60].

In general, once a raw HS image (/) is acquired by the sensor, it is necessary to
perform a first pre-processing to eliminate the effects of temperature and illumination
changes and aging of the light source. This pre-processing is known as spectral
calibration and is a widely used method for correcting dark current noise [61], [62]. The
raw image is modified based on a dark (D) and white (W) reference images. Commonly,
D is captured by closing the camera shutter, while W is obtained from an image of a
highly reflective and uniform white surface. These two reference images are used to
calculate the HS corrected image (I) by Eq. (1), which represents the relative reflectance
of each pixel [63]. Figure 2-7 shows an example of how the spectral signatures of
different pixels are calibrated. The spectral signatures of the dark and white references
are shown in Figure 2-7.a, and two random pixels before (Figure 2-7.b), and after
calibration (Figure 2-7.c).

Iy—D

I =
W —-D

@®

The HS corrected image I can also be expressed in terms of absorbance (A) by
evaluating Eq. (2) [63]. In addition, Figure 2-7.d shows the absorbance spectral
signature after applying Eq. (2).

I, —D
A= —logio (Vlol — D) )

In this PhD Thesis, all datasets employed were pre-processed applying spectral
calibration. In addition, other methods have been used depending on the type of
analysis to be performed. For example, to minimize the spectral noise caused by the low
response of the HS sensor in the lower and higher spectral bands, some bands can be
removed, and, hence, reducing the number of bands in the pre-processed HS cube.
Moreover, the HS data can be filtered using a smooth filter for reducing the spectral
noise in the remaining spectral bands. This filter can be based on several methods, but
the one employed in this works is based on a moving average filter, being applied to
each point of the spectral signature. The new smooth value (y;); of a certain
wavelength (k) is computed using Eq. (3), where 2n + 1 is defined as span or window
of the moving average filter, y; is the original value at the wavelength i, and n is the
number of neighboring data points on either side of y;.
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Figure 2-7: Effect of calibration in the spectral signatures. a) White and dark reference spectral
signatures. b) Two examples of uncalibrated spectral signatures. ¢) Two examples of calibrated spectral
signatures. d) Calibrated spectral signatures converted to absorbance.

Additionally, pushbroom HS sensors (as the one employed in some of our studies)
typically have high spectral resolution, providing redundant information in consecutive
bands. In some cases, in order to reduce this redundancy and to speed up the
processing algorithms execution, different dimensional reduction algorithms or
methods can be applied to reduce the number of bands. In this dissertation, we
decimated the number of bands in some experiments and also employed PCA
algorithms. PCA is a technique that performs a linear transformation of the HS image
by using orthogonal projections to minimize the covariance matrix of the original HS
image [64].

Finally, normalization can be applied to each spectral signature to range the data
between o0 and 1 with the goal of homogenizing its amplitude, thus avoiding the
subsequent processing methods to be affected by the amplitude differences caused by
non-uniform illumination conditions. In this sense, only the shape of the spectral
signature will be considered. Eq. (4) shows the min-max normalization that was
employed in this dissertation, where min(z;) and max(z;) are the minimum and
maximum value, respectively, in a certain pixel (z).

Z, — min(zy)

4)

(#e)n = max(z;) — min(z)
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In the following chapters, the different pre-processing methods applied to the
database will be explained in detail, depending on the HS camera used in each targeted
application.

2.4.2 Algorithms based on Machine Learning

The analysis of HSI by means of ML techniques allows the identification and
classification of different spectral signatures, recognizing of features or patterns,
mainly in a supervised or unsupervised manner.

2.4.2.1 Supervised ML algorithms

Supervised ML-based classifiers allow the automatic identification of substances or
tissue types at pixel level in a HS image relying on prior labeled data to train the
classification models. In this subsection, the supervised ML algorithms employed in
this dissertation are presented.

The Support Vector Machine (SVM) classifier finds out the best hyperplane to
separate data from different classes with a maximum margin, being used for
classification and regression purposes [65]. This classifier finds out the best hyperplane
to separate data from different classes with a maximum margin. The boundary
hyperplane is calculated using a training dataset. A linear hyperplane sometimes is not
enough to separate data in some classification problems. For this reason, it is necessary
to transform the dimensional space. This transformation is performed using different
kernel functions. Linear, Gaussian Radial Basis Function (RBF), sigmoid, and
polynomial kernel are the most used. Table 2-1 presents the mathematical expressions
of each kernel and the hyperparameters, where x and y are observation vectors and the
superscript T refers to transpose operation. The hyperparameter cost (C) is common to
all kernels and controls the trade-off between achieving a low training error and
minimizing the complexity of the decision boundary. The hyperparameter gamma (y)
influences individual training samples at the decision boundary. The (d)
hyperparameter is the degree of the polynomial kernel function. The higher the
hyperparameter value d, the more curved the resulting hyperplane line. cf is the
intercept constant hyperparameter. These hyperparameters can be tuned to improve
the outcomes of the classification. The LIBSVM library [66] was used in the different
experiments performed in this dissertation.

Table 2-1: Mathematical expressions of the Support Vector Machine (SVM) kernels and
control hyperparameters.

Kernel Formula Hyperparameters
Linear k(x,y) =xT-y C
RBF k(x,y) = exp(—y - llx — ylI*) Cy
Sigmoid k(x,y) = tanh(y - xT -y + cf) C,y,cf
Polynomial k(x,v) =@ -xT -y +cf)? C,y,cf,d

K-Nearest Neighbor (KNN) is a pixel-wise classifier focused on finding and
classifying data based on the majority class of the number of nearest neighbors (Kyn)
[67]. The neighborhood is formed by the training dataset, and each incoming sample is
compared with all neighbors (using a distance metric) to find the Kyn closest neighbors.
Then, the label of the incoming sample is assigned to the majority class of the Knn
nearest neighbors. Different distance metrics can be computed to find the nearest
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neighbors, such as Euclidean, Chebyshev, Cosine, or Mahalanobis metrics. Table 2-2
presents the mathematical expressions of each distance metric, where x and y are
observation vectors to determine the distance, and C is the covariance matrix. For the
KNN classifier, the number of nearest neighbors is the hyperparameter to be optimized
to obtain the best model. The MATLAB® Statistics and Machine Learning Toolbox was
employed for the KNN implementation used in the different experiments performed in
this dissertation.

Table 2-2: Mathematical expressions of the K-Nearest Neighbors (KNN) distance.

Distance Formula
Euclidean de =y -y -7
Chebychev dep = maxj“xj —Yj |}
vl
Cosine dc=1- —
xxD)y")
Mahalanobis dy =+ (x—y)Cx— )T

Random Forest (RF) is a supervised learning method that can be applied to solve
classification or regression problems [68]. It is composed by a combination of predictor
trees where each tree depends on the values of a random vector. The RF algorithm
identifies a new data class by obtaining a vote of the predictions of the new data from a
multitude of decision trees. The training data are hierarchically partitioned into smaller
homogeneous groups in each decision trees. Compared with other algorithms, RF offers
a reduced training time [69]. The optimization of a RF model can be performed by
establishing the most suitable number of trees (N) in the model. The MATLAB®
Statistics and Machine Learning Toolbox was employed for the RF implementation
used in the different experiments performed in this dissertation.

Deep Neural Networks (DNN) architecture is a system of interconnected neurons
composed of several layers, including input and output layers, and at least one hidden
layer in between (Figure 2-8). In DL models, neurons represent a linear function
followed by a nonlinear mapping function ®. In this way, the optimal solution provided
is a nonlinear solution spanned by the inputs. Let y = f(x) be a continuous function
from RZ to RN¢, where B represents the spectral resolution and NC the number of
classes. As a classification problem, the goal is to approximate y by a function f(x; 6),
where the training weights (6) are the parameters of the DL model that minimize a loss
function. In this dissertation, the Cross-Entropy Loss function was employed, where
the function controls the value of the parameters 0:

NC
min ~ > yiloglf(x; 0], (5)
where the i subscript enumerates the different classes. The MATLAB® Deep Learning

Toolbox was used for the DNN implementation used in the different experiments
performed in this dissertation.
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Input Layer i hidden layer Output layer

Figure 2-8: DNN Architecture with expandable hidden layers. Each neuron is a circle. Input layer
size is defined by dimension B, output size by number of classes NC.

2.4.2.2 Unsupervised ML algorithms

Unlike supervised ML algorithms, unsupervised algorithms do not have access to
target labels, discovering patterns, structures, or relationships in unlabeled data. These
algorithms are commonly used for tasks such as clustering, anomaly detection,
dimensionality reduction, and data visualization.

Clustering algorithms group similar data points in different groups or clusters. Data
are grouped together on the basis of feature similarity. K-means and K-medoids are
similar clustering algorithms widely used to segment HS images into K different
clusters [70]. K-medoids is robust to outliers and the centroid of each cluster is an
actual spectrum found in the cluster set, while in the K-means algorithm, the cluster
centroid is the average value of all spectra in the cluster set [71]. Hierarchical clustering
organizes the data into a tree structure, being the number of trees defined by the K
value. Hierarchical K-means (HKM) uses K-means to split the clusters [72].

The optimal number of clusters (K) can be determined employing clustering
evaluation methods, such as Silhouette [73], Calinski Harabasz [74] and Davies Bouldin
[75]. Silhouette value for the ith point is computed using Eq. (6), where a; is the
average distance between each point within a cluster, and b; is the average distance
between all clusters. Silhouette values range from -1 to 1, with high values indicating
that the points match their clusters well. The Calinski Harabasz value is computed
using Eq. (7), where SS; is the inter-cluster variance, SS,, is the overall within-cluster
variance, K is the number of clusters, and N is the number of observations. Davies
Bouldin value is computed using Eq. (8), where d; is the average distance between each
point in the iy, cluster and the centroid of the iy, cluster, d; is the average distance
between each point in the j., cluster and the centroid of the j, cluster, and d, ; is the
Euclidean distance between the centroids of the i;; and j;j clusters. The MATLAB®
Statistics and Machine Learning Toolbox was employed for the K-means and K-
medoids implementations used in the different experiments performed in this
dissertation.

bi—ai

N (6)
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2.4.3 Algorithms based on Spectral Unmixing

In the literature, several approaches have been proposed to identify and classify
endmembers present in an HS image, but the main two strategies are based on Spectral
Unmixing (SU) and ML [58], [76]. First, in SU, the physical relation between
endmembers and their abundances is represented by a mathematical model, which
describes the optical paths and interactions of the reflected light by the objects in the
scene [77]. The simplest approach in SU assumes that photons interact with only one
material before reaching the sensor, meaning that a linear mixing model might solve
the problem; however, this approach is only suitable for simple and not realistic
scenarios, because the light captured by the sensor may present scattering and
nonuniform reflection patterns. Therefore, a nonlinear mixture model, that considers
multiple reflections of photons, should be considered to pursue a SU for more realistic
scenarios [77], [78].

Nonlinear mixture model can be divided in terms of the order of the model into two
main categories: bilinear mixing models and high-order mixing models. On the one
hand, the generalized bilinear model proposed by Fan et al., and the linear quadratic
mixing model are one of the most representative approaches of the first category. On
the other hand, the p-linear model, the polynomial post-nonlinear model, and the
multilinear mixing model are examples of higher-order mixing models [79]. Despite of
the order of the nonlinear mixture model, all models are conformed by a linear
component and a nonlinear term depending on the assumed optical interactions.

Proper analysis of HSI under a SU approach requires not only the estimation of
endmembers and their abundances, but also the estimation of the specific nonlinear
mixture model parameters [80]. If early studies of materials or tissue elements with
their respective spectral signatures are available, a supervised strategy could be
considered, where the endmembers are assumed to be known. However, in many real
scenarios, including the medical application of HSI, it is very difficult to have prior
studies and the endmembers spectral information. Therefore, for cases where
endmembers are unknown, an unsupervised approach, also known as blind unmixing
methodology, could be considered where the information have to be jointly estimated
[81].

In this dissertation, two SU algorithms have been employed: linear Extended Blind
End-member and Abundance Extraction (EBEAE) and Nonlinear Extended Blind End-
member and Abundance Extraction (NEBEAE). The EBEAE is employed in non-
negative datasets using a linear mixing model to perform the estimation of
characteristic spectral endmembers and their abundances [81]. The NEBEAE is a
nonlinear version of EBEAE, capable of quantifying non-linear optical interactions
during the acquisition process, which is also robust against noise [77]. In both cases,
different hyperparameters can be modified such as the similarity between endmembers
(p) or the entropy of the abundances (y). The MATLAB® implementations for EBEAE
and NEBEAE [77], [81] were used in the different experiments performed in this
dissertation.
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2.4.4 Performance Evaluation Metrics

To assess the effectiveness and efficiency of HSI instrumentation and the outcomes
of the processing algorithms, performance metrics play a crucial role to provide
quantitative results for comparing different developments. In the following sections,
the evaluation metrics employed in the evaluation of the different works carried out in

this dissertation are briefly explained. Figure 2-9 shows a summary of theses metrics.

Evaluation

Metrics

Spectral
Repeatability

Spatial
Registration

Classification

Segmentation

Statistical
Analysis

Qualitative
Evaluation

L Relative — Mutual — Overall Accuracy Dice — Lilliefors test Classification
Difference Information Maps
Pearsons ) )
F— Correlation M Sensitivity Jaccard — WI|CO>§[OJ%R8HK- SegTAeantEUOH
Coefficient P
Structural
'— Similarity Index |4  Specificity L— Students t-test
Measure
— Macro F1-Score

Figure 2-9: Summary of the evaluation metrics used in this dissertation to evaluate the
effectiveness and efficiency of the HSI instrumentation and the results of the processing
algorithms.

2.4.4.1 Spectral Repeatability Metrics

In order to measure the spectral repeatability of the HS acquisition systems and to
evaluate the signal-to-noise ratio in each spectral band, the absolute Relative Difference
percentage (RD) metric can be employed. This metric computes the relation between
the absolute difference and the mean values of two vectors following Eq. (9), where x
and y represent the data from a HS image pair. A lower RD value in a certain spectral
band implies lower differences between the two bands of the same scene (i.e., better
repeatability of the acquisition system and higher signal-to-noise ratio).

RD(%) = % 100 (9)

2.4.4.2 Spatial Registration Metrics

Algorithms developed to spatially register images captured with different imaging
systems can be evaluated using image-based similarity and overlap-based metrics.
Mutual Information (MI) measures the dependency between two images X and Y [82].
This can be expressed as in Eq. (10), where py(x) and py (y) are the marginal probability
distributions of X and Y, respectively, and pyy(x,y) denotes the joint probability
distribution of X and Y. When the optimal alignment occurs, the MI is maximized. The
Pearson’s Correlation Coefficient (PCC) is widely used for comparing images [83]. This
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coefficient measures the degree of linear correlation or anti-correlation between two
sets of data in the range [-1,1], where PCC = —1 indicates perfectly anti-correlated
images, PCC = 1 indicates perfectly linearly correlated images, and PCC = 0 indicates
linearly uncorrelated images. The PCC can be expressed as the covariance between two
images by the product of their standard deviations (Eq. (11)). The Structural Similarity
Index Measure (SSIM) is a metric commonly used in image compression to evaluate
the compressed image against the original uncompressed image [84]. SSIM metric is
computed considering the luminance, contrast and structure terms as shown in Eq. (12-
14), where u and o represent the mean and standard deviations for x and y, oy,
represents the cross-covariance for x,y, and C;, C,, and Csrepresent the regularization
constants for luminance, contrast, and structural terms, respectively. Combining the
three terms, SSIM can be expressed as show in Eq. (15), where a, B, and y represent the
weight of each term. The SSIM result is a value in the range [-1,1], where SSIM = —1
indicates uncorrelated images and SSIM = 1 indicates correlated images.

Pxy (%, )
MI(X;Y) = z (x,y) log—X 077 (10)
= PxyiX:y gpx(x)py(y)
PCC = M (11)
_ z,ux.uy + Cl (12)
lm”_ﬁ+%+Q
20,0y, + C; (1
_ 3)
ctxy) ot +02+C,
Oxy + C3 (1
=2 = 4)
sty 20,0, + C3
SSIM(x,y) = [1(x, 1% - [c(x, 118 - [sCe, 1] (15)

2.4.4.3 Classification Metrics

The performance of the algorithms is evaluated using the confusion matrix, which
compares the actual values using the ground-truth, with the values predicted by the
algorithm. The confusion matrix is an N X N matrix, where N is the number of classes
evaluated. Each row represents the instance in an actual class, while each column
represents the instances in a predicted class, taking positive or negative values. Using
the matrix values, different performance metrics can be obtained, such as overall
accuracy (OA), macro Fi-score, sensitivity, or specificity metrics. Each of the values of
the confusion matrix (Figure 2-10) are defined as follows:

¢ True Positives (TP): the actual value is positive, and the predicted value is also
positive.

e True Negatives (TN): the actual value is negative, and the prediction is also
negative.

¢ False Positives (FP): the actual value is negative, but the prediction is positive.

¢ False Negatives (FN): the actual is positive, but the prediction is negative.
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Figure 2-10: Example of a confusion matrix.

OA measures the frequency of correct predictions made by the classifier, calculating
the ratio of correct predictions and the total number of predictions (Eq. (16)). This
metric is used in balanced datasets; for unbalanced datasets, the model can achieve
high accuracy in predicting that each point belongs to the majority class label.
However, the model could be not accurate.

Sensitivity evaluates the model’s ability to predict correctly positive instances (Eq.
(17)). High sensitivity is essential in situations where a positive case cannot be missed,
particularly in medicine. A high sensitivity score indicates that the model is capable of
reducing false negatives, thereby accurately detecting most true positive cases.

Specificity metric evaluates the model’s ability to predict correctly negative instances
(Eq. (18)). High specificity means that the model has the ability to minimize the
occurrence of incorrect positive predictions among the actual negatives.

F1-score metric (Eq. (20)) is used in imbalanced datasets, computing the harmonic
mean of the sensitivity and precision (Eq. (19)). In multi-class case, different average
scores can be employed. The macro F1-Score (Eq. (21)) is computed by the unweighted
mean of F1-Score per class, where i is the class index and N the number of classes. The
micro F1-Score (Eq.(22)) computes a global average F1-Score by counting the total TP,
FP, and FN. The weighted F1-Score (Eq. (23)) is computed with the mean of F1-Score
per class considering the weight of each class. This weight (w;) refers to the number of
actual occurrences of the class. Weight F1-Score assigns greater contribution to the
class with more samples; however, macro F1-Score assigns equal importance to each
class while micro F1-Score assigns equal importance to each individual sample.

The Receiver Operating characteristic (ROC) curve is commonly employed to find
the optimal hyperparameters of the supervised classifiers, finding the best performance
using the Area Under the Curve (AUC) metric. The ROC curve shows the relationship
between the sensitivity for the model and the false positive rate (1 — specificity) and is
used in binary classifications to determine whether one variable is more predictive than
another [85].

TP+ TN

OA = P Y TN+ FP+ FN (6)
Sensitivity = TPZ—% (17)
Specificity = % (18)

TP
Precision = TP+ FP (19)
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Sensitivity - Precision 2-TP

F1-Score =2 'Sensitivity ¥ Precision 2-TP + FP + FN (20)
1 N
Macro F1-Score = NZ F1-Score; (21)
i=1
Micro F1-Score = 2 Zia Th (22)
2-3N TP+ YN FP,+ YN FN;
N
Weight F1-Score = Z F1-Score; - w; (23)

i=1

2.4.4.4 Segmentation Metrics

Overlap-based metrics are employed to evaluate the segmentation quality achieved
by clustering algorithms, comparing the segmented image (SI) against the ground-truth
(GT). The Dice similarity coefficient measures the match between two images and is
equal to twice the intersection divided by the sum of the two images as can be seen in
Eq. (24) [86]. Jaccard similarity coefficient measures the similarity between the GT and
SI, being defined as the intersection over the union of the two images, as shown in Eq.
(25) [87]. These metrics are the most used in image segmentation evaluation and can be
expressed using the definition of TP, FP, and FN. Dice and Jaccard coefficients are
similar metrics and both measurements have a value range in [0, 1], where 0 indicates
no similarity, there are no common elements between the SI and the GT, while 1
indicates complete similarity, indicating that the SI and the GT are identical. However,
Jaccard coefficient penalizes misclassifications more than Dice coefficient.

pice = 2ISINGTI 2.TP 2a)
“ = ISII+IGT] ~ 2-TP+FP+FN
ISI 0 GT| TP
Jaccar = (25)

T ISIUGT| ~ TP+ FP +FN

2.4.4.5 Statistical Analysis

Segmentation and classification results can be statistically analyzed using paired
data. In addition, statistical analyses can be computed using reflectance and
absorbance spectral signatures to evaluate pairs of spectral signatures at each
wavelength.

In this dissertation, data normality was evaluated using the Lilliefors test [88],
which is a two-sided goodness-of-fit statistical procedure used to estimate the
distribution when they are unknown. In the case where the data had a non-normal
distribution, the two-tailed Wilcoxon Rank-Sum test was used to compute the
statistical analysis [89]. This test calculates the p-value for testing the null hypothesis
that two data vectors are samples from continuous distributions with equal medians
against the alternative hypothesis that they are not. In the other case, Student’s t-test
was employed when data had normal distribution [90]. Student’s t-test is a method of
testing hypotheses about the mean of a small sample drawn from a normally
distributed population when the population standard deviation is unknown. In both
cases, tests were performed at a 5% significance level.
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2.4.4.6 Qualitative Evaluation

After evaluating quantitative results, qualitative analysis plays a crucial role in
evaluating the performance of the HS processing algorithms in order to identify
different structures or patterns in the resulting color maps where each pixel
corresponds to a certain class or cluster. An RGB image (Figure 2-11.a) can be used to
generate a ground-truth map with predefined labels or classes (Figure 2-11.b).
Classification maps (Figure 2-11.c), generated by supervised algorithms, assign
predefined labels or classes to each pixel or region in an image. Segmentation maps,
generated by unsupervised algorithms, group pixels or regions based on their spectral
similarity and according to the number of previously defined clusters (Figure 2-11.d).
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Figure 2-11: Examples of classification and segmentation maps. a) RGB image. b) Ground-truth
map where each color represents a specific class. ¢) Classification map generated by a supervised ML
algorithm where each color represents a specific class. d) Segmentation map generated by an unsupervised
ML algorithm using 5 clusters where each color represents a cluster.

2.5 HSI Applications for Disease Detection

In recent years, HSI and MS Imaging (MSI) have emerged as powerful tools in
medicine. These imaging techniques provide non-invasive and non-destructive
approaches that allow real-time visualization and analysis of tissue [91]. In the context
of cancer, HSI and MSI have shown great potential for improving tumor detection and
delineation, differentiating between benign and malignant lesions, and could help to
reduce unnecessary biopsies and improve patient outcomes [1], [8]. These technologies
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allow monitoring various parameters such as tissue oxygenation, collagen, melanin,
etc., useful in fields like cancer detection, wound assessment, and tissue viability
monitoring [92], [93].

Gastrointestinal cancers represent 26% of global incidence and 35% of mortality in
2018 and include cancers of the stomach, liver, esophagus, pancreas, and colorectum
[94]. Endoscopic tools are employed to detect gastrointestinal cancers and other
abnormalities. These tools include gastroscopy, colonoscopy and wireless capsule
endoscopy, which employs mainly RGB cameras [95]. With the aim of increasing the
diagnostic performance of endoscopic systems, HSI has been employed to exploit the
spectral properties of the different tissue types. In 2018, Lin et al. developed a system
named ICL SLHSI (Structured Light and Hyperspectral Imager), which employed a
pushbroom HS camera able to capture 640 pixels, covering the spectral range between
400-1,000 nm with 270 spectral bands [96]. Wu et al. proposed a method for
identifying early esophageal cancerous lesions by an HS endoscopic imaging system
based on a spectrometer, analyzing the spectral range between 350-800 nm [97]. In the
work by Yoon et al., a line-scanning HS endoscopic system able to capture 100 spectral
bands covering the spectral range of 400-800 nm was developed with a spatial
resolution of 120 um at a working distance of 5 mm [98]. The HSI system was
employed to enhance polyp discrimination for detection and resection in 7 patients
undergoing routine colonoscopy screening. The KNN algorithm was employed as a
classifier to discriminate into patients with and without polyps [99]. Kohler et al.
developed a HSI laparoscope able to capture 500 spectral bands covering the spectral
range from 500 to 1,000 nm. Resulting HS cubes had a spatial dimension of 640x480
with 100 spectral channels after performing spectral and spatial reduction, testing the
system with resected (ex-vivo) human tissue [100]. Meanwhile, Sato et al. employed a
pushbroom NIR HS camera in the range 1,000—2,350 nm with 256 spectral bands and
capturing 320 pixels [101]. In this study, 12 ex-vivo gastrointestinal stromal tumors
were imaged. The SVM algorithm was employed to predict normal and tumor regions,
achieving specificity, sensitivity, and accuracy of 73.0%, 91.3%, and 86.1%, respectively.
Additionally, a commercial HSI system, TIVITA® Tissue System (Diaspective Vision
GmbH, Am Salzhaff, Germany) has been employed in several works to capture spectral
information of gastrointestinal tissue [102], [103]. This system was able to capture
images in the spectral range within 500-1,000 nm, with a spatial resolution of
640x480 pixels. This tool was evaluated for the determination of the resection margin
during colorectal surgery in 24 patients [102] and to detect colorectal carcinoma with a
database of ex-vivo HS images from 54 patients [103]. In this last work, using an
Artificial Neural Networks (ANN) classifier, tumor and healthy mucosa in colorectal
carcinoma was classified with a sensitivity of 86% and a specificity of 95% [103] .

Head and neck cancer includes the tumors that appear in the oral cavity,
nasopharynx, pharynx, and larynx [104]. The diagnosis strategies are quite diverse: (i)
oral cavity tumors are often detected by patient self-identification, (ii) laryngeal tumors
are diagnosed at early stage by presenting voice changes or florid hoarseness, (iii)
nasopharyngeal carcinoma can present hearing loss or cranial nerve palsies [104].
Halicek et al. proposed a method to use HSI and Convolutional Neural Network (CNN)
to perform an optical biopsy of ex-vivo head and neck cancer [105]. The data were
acquired employing the commercial CRI Maestro imaging system (Perkin Elmer Inc.,
Waltham, Massachusetts), which is composed of a xenon white-light illumination
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source, a LCTF system, and a 16-bit CCD camera with a spatial resolution of
1,040x1,392 pixels able to capture 91 spectral bands, ranging from 450 to 900 nm.
Brouwer de Koning et al. developed an HSI system to acquire ex-vivo samples of
tongue squamous cell carcinoma [106]. The system was based on two pushbroom HS
cameras operating from 400 to 1,700 nm. The VNIR camera worked from 400-950 nm,
capturing 384 spectral bands and a spatial resolution of 1,312 pixels. The NIR camera
captured 256 spectral bands from 950-1,700 nm with a spatial resolution of 320 pixels.
The HS system distinguished between tumor and muscle with a sensitivity of 84% in
the VNIR range, 77% in the NIR range, and 83% when both spectral ranges were
combined. Recently, Eggert et al. performed a prospective clinical observational study
to classify the tissue into healthy and tumor of laryngeal, hypopharyngeal and
oropharyngeal mucosa [107]. The HSI system was able to capture 30 spectral bands
from 390 to 680 nm. In this work, 98 patients were examined due to suspicious lesions
of the mucosal membrane before surgery in-vivo. DL methods were employed to
achieve an average accuracy of 81%, a sensitivity of 83% and a specificity of 79%.

Histological samples are examined by an expert physician using the naked eye and,
in some cases, using digital pathology to identify several diseases. In the latter case, the
samples are digitalized employing microscopy, so that partial or complete (whole-slide)
images are captured at different magnifications (e.g., 5%, 10x, 50x, etc.) [108]. HSI has
been employed in different works for histological analysis using microscopy [5]. Ortega
et al. presented a methodology to correctly set-up a pushbroom HS microscope to
acquire high-quality HS images [109]. The pushbroom HS camera worked in the
spectral range from 400 to 1,000 nm, capturing 826 spectral bands and 1,004 spatial
pixels. The HS camera was directly coupled to a conventional light microscope.
However, although the spectral range of the HS camera covered from 400 to 1,000 nm,
the optics of the microscope limited the effective spectral range to approximately 400—
800 nm. Employing this system, a dataset of 83 HS images was obtained at 5x and 10x
magnifications from 13 pathology slides from biopsies of human brain tissue resected
during surgery to patients affected by grade 4 Glioblastoma tumor [110]. The HS
images, captured using a 5x magnification, were classified using three different
supervised classification algorithms: SVM, ANN and RF. Competitive results in the
discrimination between normal and tumor tissue were obtained employing two
different approaches, intra-patient and inter-patient, with results above 80% accuracy
in both cases using 10-fold cross-validation. [111]. In a recent work, the pushbroom HS
microscope system was modified to remove the limitation of the effective spectral range
(400-800 nm). To achieve this goal, the microscope was replaced, obtaining an
effective spectral range of 400—1,000 nm. A new database was collected with 527 HS
images, where 337 were non-tumor brain samples and 190 were diagnosed as
Glioblastoma [112]. A CNN was employed to detect glioblastoma samples, achieving
average sensitivity and specificity values of 88% and 77%, respectively. In addition, the
same HS system was also used to discriminate between normal and tumor breast
cancer cells [113]. In this way, 112 HS images were captured from histology samples of
breast tumor from human patients using a 20x magnification. In order to discriminate
between tumor cells from normal breast cells, a CNN was used, which obtained results
with an AUC higher than 0.89 for all the experiments.

In another work, Ma et al. developed a HS microscopic imaging system employing a
SnapScan HS camera covering a spectral range from 460 to 750 nm with 87 spectral
bands [114]. A total of 15 histology slides of larynx and hypopharynx tissue from 15
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head and neck cancer patients were collected at a 40x magnification. The authors
proposed a nuclei segmentation method based on Principal Component Analysis (PCA).
After that, spectral-based SVM and patch-based CNN were used for nuclei
classification. The average accuracy results were 68% and 82% for the SVM and of CNN
classification, respectively. Finally, Souza et al. presented a system to acquire HS
images using a LCTF-based system and a conventional microscope [115]. The system
captured spectral information in the range of 400-720 nm based on light polarization.
This system was tested employing hematoxylin-eosin-stained slides of a rat skin treated
with Aminolevulinic Acid (ALA)-mediated photodynamic therapy. Four different
algorithms were employed (KNN, SVM Linear, SVM RBF, and RF) obtaining an overall
accuracy result between 96% and 98% in the discrimination of epidermis, dermis, and
necrotic area.

Next, a more detailed analysis of the state-of-the-art in the use of HSI for the
analysis of brain cancer, skin cancer, and major neurocognitive disorders is presented,
since these particular areas have been the primary focus of this dissertation.

2.5.1 Brain cancer

In 2020, brain and Central Nervous System (CNS) cancer was the twelfth most
common cancer in terms of mortality, with an estimated 308,102 incident cases,
associated to 251,329 deaths worldwide for both sexes and all ages [116]. These
numbers are expected to increase by 38.5% and 43.7% for incidences and mortality,
respectively, for 2040 [117]. In the young population under 35 years of age, it was the
second most common cancer in terms of mortality (31,181 deaths) after leukemia [116],
while in children under 14 years old, it was the second most common cancer in terms of
both morbidity and mortality (24,388 incident cases/11,889 deaths) worldwide [116].
Particularly, brain tumors account for more than 90% of occurrence within CNS
cancers, linked to high mortality and morbidity, especially in pediatric cases [118],

[119].

Treatment consists of biopsy or aggressive surgical resection with postoperative
radiation and chemotherapy [118]. However, successful tumor resection is associated
with prolonged survival, which requires accurate identification of the boundaries
between tumor and normal tissue [17]. Different intraoperative guidance tools are
employed during surgery, such as intraoperative Image Guided Stereotactic (IGS)
neuronavigation, intraoperative Magnetic Resonance Imaging (MRI), or fluorescent
tumor markers like 5-ALA [120].

In addition, HSI has emerged as a new intraoperative guidance tool. First works
employ HSI system for monitoring brain oxygenation and hemodynamic using animals
[121], [122]. Recently works employ HSI system to identify human brain cancer. Fabelo
et al. developed a HS intraoperative system for the identification of cancer tissue
during in-vivo brain surgery [123]. The system was based on two push broom HS
cameras, an illumination system, and a scanning platform. The HS cameras covered the
VNIR spectral range between 400 and 1,000 nm and was able to capture 826 spectral
bands and 1004 spatial pixels. Another HS camera covered the NIR range between 900
and 1,700 nm, capturing 172 spectral bands and 320 spatial pixels. The illumination
system was based on a Quartz Tungsten Halogen (QTH) lamp of 150 W with a
broadband emission between 400 and 2,200 nm. The lamp was connected to an optical
fiber that transmits the light to a cold light emitter, isolating the high temperature
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produced by the QTH lamp from the brain surface. To provide the necessary movement
to generate the HS cubes, the HS cameras and the illumination system were coupled to
a scanning platform.

Employing this system, a HS human brain database was obtained from 22 patients
with both primary and secondary tumors [124]. The data acquisition was performed in
two different campaigns: one at the University Hospital of Southampton, UK, and the
other one at the University Hospital of Gran Canaria Doctor Negrin of Las Palmas de
Gran Canaria, Spain. Several works have employed this database to perform brain
cancer classification and boundary delimitation. A hybrid framework that combined
supervised and unsupervised machine learning methods was proposed to perform a
spatio-spectral classification [70]. The SVM was employed as a supervised pixel-wise
classification algorithm and the generated -classification map was spatially
homogenized using a one-band representation of the HS cube and performing a KNN
filtering. The information generated in this stage was combined using a Majority Voting
(MV) algorithm with the unsupervised stage employing a HKM algorithm to obtain a
segmentation map. The results obtained demonstrated that it was possible to accurately
discriminate between normal tissue, tumor tissue, blood vessels and background with
an OA higher than 99% following an intra-patient methodology. Apart from the
traditional ML methods, DL approaches were also proposed to identify glioblastoma
tumor following an inter-patient approach [125]. The proposed framework was able to
identify the parenchymal area, which corresponds to the primary surgical area of the
exposed brain and blood vessels, employing a 2D convolution neural network. In
addition, a four-class classification map was obtained using 1D-DNN. This framework
was able to identify glioblastoma tumor obtaining an OA of 80% following an inter-
patient approach. Another research employed blind linear unmixing method to identify
glioblastoma as a low computational time cost alternative using the same database
[126]. This method was compared with a supervised SVM strategy, which required a
higher training time, achieving similar classification results but with a speedup factor of
~429x in the training phase. Using the same database, a method based on the fusion of
multiple deep models was proposed by Hao et al. to use the spectral and spatial
information to identify glioblastoma [127]. This framework included four steps: 1)
spectral phasor analysis and data oversampling; 2) 1D-DNN spectral HSI feature
extraction and classification; 3) 2D-CNN spectral—spatial HSI feature extraction and
classification; 4) edge-preserving filtering-based classification result fusion and
optimization, and fully convolutional network-based background segmentation. The
proposed method achieved an OA of 96.69% for four-class classification and OA of
06.34% for glioblastoma identification, adopting a leave-one-patient-out cross
validation technique.

Miihle et al. integrated an HSI camera into a surgical microscope (S100 OPMI Pico,
Carl Zeiss Meditec AG, Germany) for neurosurgical brain tumor resection [128]. The
HS system was based on the commercial HS camera TIVITA® Tissue System
(Diaspective Vision GmbH, Am Salzhaff, Germany), capturing 100 bands in the spectral
range from 500 to 1,000 nm, with a spatial image size of 640x480 pixel. In this proof
of concept, the authors performed an extensive evaluation of different lamps to assess
the effect in different spectral regions. In addition, a spectral characterization of the
light was performed and compared between the laboratory setup and the clinical setup.
Finally, a single HS image was analyzed using an RF classifier to discriminate between
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healthy tissue, malignant tissue, vessels, and background. Using 5-fold stratified cross-
validation, the RF classifier achieved an overall accuracy of 99.1%.

Urbanos et al. presented a HS acquisition system to acquire and process HS images
in the surgical environment [129]. The system was based on a snapshot HS camera able
to capture 25 bands along the spectral range from 655 to 975 nm. The illumination
system was based on 150 W halogen light source connected to two fiber-optic cables. In
this study, a HS database was generated, composed by more than 50 images of different
pathologies, and labeled into five different classes: healthy tissue, tumor, venous blood
vessel, arterial blood vessel and dura mater. Finally, 13 images corresponding to grade
3 tumors and glioblastoma (grade 4) were employed to train SVM, RF, and CNN
classifiers achieving an OA result between 60 to 95% using an intra-patient approach.
Using the same HS database, Martin-Pérez et al. performed a comparison between
non-optimized models with optimized models [130]. This comparison was performed
using SVM and RF algorithms and three different optimization methods: grid search,
random search, and Bayesian optimization. The study showed that the RF results did
not improve significantly when the model was optimized with any of the three
optimization methods. However, the optimized SVM model improved the tumor
identification. Sancho et al. presented SLIMBRAIN [131], a modification of the HS
system presented by Urbanos et al. that incorporated augmented reality using a LIDAR
(Light Detection and Ranging) camera. The classification results obtained from the HS
images were overlapped with the RGB point cloud captured by a LiDAR camera and
presented in an augmented reality visualization.

Puustinen et al. developed an operating microscope-integrated HSI system for
microneurosurgery as a monitoring tool during neurosurgical operations [132]. The
system was based on an operating microscope (OPMI Pentero 900, Carl Zeiss Meditec
AG, Germany) coupled to a snapshot HS camera with a spectral range of 500 to 900
nm, and a spatial resolution of 1,024x1,024 pixels. The illumination system was based
on a tunable LED source with 10 different channels. As a proof of concept, two HS
images were labeled and used to train and test different algorithms, with the best
overall accuracy of 98.3% for all tissue classes (compact bone, high-grade glioma,
blood, dura internal leaf, cortical vein, and intact cortex with pia matter) and 97.7% for
the glioma class using the light gradient boosting machine algorithm. In [133] the HS
system was used to generate a microneurosurgical HSI database with 11 HS images
obtained from two patients.

Giannantonio et al. presented an intraoperative HS system based on a surgical
microscope (OPMI Pentero 900, Carl Zeiss Meditec AG, Germany) coupled to an IMEC
Snapscan VNIR (IMEC, Leuven, Belgium) [134]. The HS camera covered the spectral
range of 470 - 900 nm in 150 spectral bands, however, due to the limitation of the
infrared filter in the microscope, only the spectral range from 470 to 780 nm with 104
spectral bands was considered. In this study, the authors presented a dataset of low-
grade gliomas (grade 1 and 2) composed of 18 HS images from 5 patients with a spatial
resolution of 1,600x1,600 pixels. Different algorithms were used (RF, SVM, and DNN)
and an OA of more than 90% was obtained when HS images were classified into
healthy and tumor using an intra-patient approach.

Additionally, HSI systems have been employed during neurosurgical procedures to
monitor the oxygenated and deoxygenated hemoglobin concentration changes
occurring in the brain [92]. The system was based on a HS camera able to capture 25
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spectral bands covering the spectral range between 675 and 975 nm. Another HSI
system employed the spectral range between 400 and 800 nm for monitoring
intraoperative changes in brain surface hemodynamics to identify postoperative
cerebral hyperperfusion syndrome [93].

The following Table 2-3 provides a comprehensive summary of the different HSI
systems used in the literature for the identification of brain tumor, highlighting the
specification of the system and the objective of the study.

Table 2-3: Summary of the HSI systems used to identify brain tumor.

HSI System | Wavelength Spatial . HS ..
Ref. Year Type (nm) Bands Resolution Patients Images Study Objective
[70] 2018 5 5 Primary (G4)
Primary (G1, G2,
[123]2018 26 43 G3, and G4) and
Seconda

Pushbroom 400 — 1,000 | 826 100‘.“1787 . Y
[125] 2019 pixels 16 26 Primary (G4)
[126] 2020 16 26 Primary (G4)
[127] 2021 5 7 Primary (G4)

Pushbroom - 1280%960
[128] 2020 Surgical 500 — 1,000 | 100 . 19 1 1 Primary (G3)
Microscope pixels
Primary
[129] /2021 12 13 (G3 and G4)
) 217x409 Primary
[130]2022 Snapshot 655 - 975 25 pixels 9 10 (G3 and Ga)
Primary
[131]/2023 12 13 (G3 and G4)

S hot - Primary
132]j2022 rsl{allr);ic(;l 500 - 900 n/a 102‘.“11024 2 - (G1and G3)
[133]2023 Microscope pixels 1 2 Primary (G3)

Snapscan - .

. 1600x1600 Primary
[134]2023 M?Erl;)gslg(e)li)e 470-780 104 pixels 5 18 (G1and G2)

G1: Grade 1; G2: Grade 2; G3: Grade 3; G4: Grade 4; n/a: not available

2.5.2 Skin cancer

The incidence of skin cancer has increased in the last years, being one of the most
common cancers [135]. Skin cancer includes Malignant Melanoma (MM) and Non-
Melanoma Skin Cancer (NMSC), which comprises Basal Cell Carcinoma (BCC),
Squamous Cell Carcinoma (SCC) and other types of cancer with minor incidence. MM
is the 17th most common cancer worldwide with 325,000 new cases in 2020, while
NMSC is the 5t most common cancer worldwide with 1,200,000 new cases in 2020
[135]. BCC is the most frequent skin cancer, involving 80-85% of NMSC, followed by
SCC (15-20%) [136].

Traditionally, skin cancer is detected during visual inspection by the naked eye and a
dermatoscopic system, which contains a magnifying lens and polarized light [137],
[138]. A preliminary diagnosis is performed following the ABCDE rule, which require to
study and measure such properties of the mole: asymmetry of the mole, border
irregularity, color uniformity, diameter and evolving size, shape or color [18].
Nowadays different novel imaging techniques are employed in clinical practice:
confocal microcopy, polarized imaging, three-dimensional topography, thermal
imaging, MSI and HSI, etc. [47]. The combination of these technologies and ML
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algorithms allows the development of tools aiming the automatic discrimination and
detection of skin cancer [139], [140]. Compared to the traditional dermatoscope, HSI is
able to provide information beyond the human visual range, capturing information
related of chromophores, such as melanin, hemoglobin, water, beta-carotene, collagen,
and bilirubin [141].

MSI technology has been widely employed to identify skin cancer, while HSI has
been employed to a lesser extent. In both cases, snapshot imaging systems have been
employed to capture skin lesions, as they provide fast acquisition of spatial and spectral
information in a single capture. Commercial MS systems have been developed to assist
in the detection of melanoma. MelaFind is a MS system able to capture 10 spectral
bands in the spectral rage comprised between 430 and 950 nm with spatial resolution
of 1,280x%1,024 pixels [142]. This tool provides a recommendation to perform or not a
biopsy of a skin lesion. The lowest wavelength was used to create a mask for
segmentation of the spatial information in the remaining wavelengths. After that, lesion
parameters (asymmetry, blotchiness, texture, etc.) were computed from each
segmented image. Linear and nonlinear classifiers were employed to classify the lesion
as malignant or benign. Finally, a threshold was applied to determine whether the
malignant lesion was a melanoma or non-melanoma [142]. This system has been used
in different studies to identify melanoma. In 2001, Elbaum et al. achieved 100% and
84% of sensitivity and specificity, respectively, to identify melanomas using a dataset of
63 melanomas and 183 melanocytic nevus [143]. In 2011, Monheit et al. performed a
prospective multicenter study to evaluate the effectiveness of MelaFind [144]. Seven
clinical sites participated in the study obtaining 1,831 PSLs from 1,383 patients. Finally,
1,632 lesions were eligible, where 127 were melanoma, reporting a sensitivity and
specificity of 98.4% and 9.9%, respectively. In 2017, Fink et al. performed an analysis of
this tool in a real-life clinical setting [145]. In this study, 360 PSLs were analyzed from
111 patients (but only 3 melanomas), achieving a melanoma sensitivity and specificity
values of 100% and 68.5%, respectively. Finally, in 2020, a study with 150 non-
melanomas and 59 melanomas was performed obtaining a sensitivity and specificity of
82.5%, 52.4%, respectively [146]. The results were compared with the diagnosis using
teledermoscopy, obtaining a sensitivity and specificity of 84.5% and 82.6%,
respectively, and the criteria of a local dermatologist (96.6% and 32.2%, respectively).

Another commercial MS system is Spectrophotometric Intracutaneous Analysis
(SIAscopy) [147]. This tool can capture 8 bands in the 400—1,000 nm spectral range of
a spatial area of 24x24 mm or 12x12 mm. The input MS images were calibrated and the
infrared spectral bands were subsequently used in combination with logistic regression
to determine different parameters, such as the quantity of collagen and hemoglobin in
the papillary dermis and the total melanin in epidermis and papillary dermis [147]. A
clinical evaluation of the system was performed in 2001 using a dataset of 348
pigmented lesions including 52 melanomas, achieving a melanoma sensitivity of 82.7%
and a specificity of 80.1% [147]. In 2007, Govindan et al. examined 886 patients
obtaining a sensitivity of 94.4% with a false negative rate of 3.7% for malignant
melanoma [148]. In 2010, Emery et al. performed a study with 858 patients and 1,211
lesions, developing a Primary Care Scoring Algorithm (PCSA), which modified the
logistic regression used in the tool to improve the diagnosis of suspicious lesions [149].
Using the PCSA, the authors obtained a sensitivity of 50% and a specificity of 84%.
PCSA was later integrated to SIAscopy. In 2013, the MoleMate system was integrated to
SIAscopy using PCSA to improve the management of PSLs in primary care [150]. In

~31~



Chapter 2: Background on Hyperspectral Imaging Instrumentation, Algorithms, and Applications

2014, Sgouros et al. analyzed the use of this tool in the detection of melanoma and non-
melanoma skin cancers [151]. In this study, 188 lesions of 180 patients were examined,
obtaining sensitivity and specificity values of 85.7% and 65.4% respectively.

Different non-commercial acquisition systems have been employed in the literature.
Tomatis et al. employed a MS acquisition system called SpectroShade (MHT, Verona,
Italy) able to capture MS images of 15 spectral bands between 483 and 950 nm, with a
spatial resolution of 640x480 pixels [152]. The illumination system was based on a
light source, a concave mirror incorporating a diffraction grating (monochromator),
and a bundle of optical fibers which provided homogeneous illumination. The mirror
was moved by a stepping motor allowing to select 15 different spectral bands. The
system included a digital color CCD camera and a digital Black & White CCD camera. A
calibration step was performed followed by a lesion segmentation obtained using a
hybrid algorithm, combining a region-oriented and a thresholding method. Later,
parameter extraction and data reduction were performed. Finally, an ANN classifier
was employed to perform an automatic diagnosis to discriminate between melanomas
and non-melanoma lesions, achieving a sensitivity of 80.4% and a specificity of 75.6%
in 1,391 in-vivo lesions. In 2007, Carrara et al. employed the same system in a study
that involved 1,784 patients. Using ANN achieved a sensitivity of 88% and a specificity
of 80%, using a dataset composed by 1,066 PSLs [153]. In 2010, Ascierto et al. used the
SpectroShade system to analyze 54 PSLs, obtaining sensitivity and specificity to detect
melanoma of 66.6% and 76.2%, respectively [154].

In 2012, Diebele et al. employed a MS camera that captured information in the
spectral range 450—950 nm [155]. The skin area was illuminated by a ring of halogen
lamps with a diffuser and a polarizing film. The system was able to distinguish
melanoma from pigmented nevi obtaining a sensitivity and specificity of 94% and 89%,
respectively. The diagnostic criterion was based on skin optical density differences at
three wavelengths: 540, 650 and 950 nm. In 2017, Stamnes et al. employed a spectral
radiometer able to capture 10 different wavelengths (365—1,000 nm), where, in each
wavelength, three images were captured simultaneously at different detection angles
[156]. The sensor head contained an illuminating system of 12 fixed LED lamps.
Different maps of physiology properties and morphometric parameters were obtained.
A classification method based on clustering was proposed using a dataset of 712 PSLs,
obtaining sensitivity and specificity results of 99% and 93%, respectively. Delpueyo et
al. developed a MS system to improve the detection of skin cancer lesions, specifically
melanomas and BCC [157]. The system was based on a CCD monochrome camera with
an illumination source based on LED, which allowed capturing 8 wavelengths between
400-1,000 nm with a spatial resolution of 1280x960 pixels. The discrimination was
performed between malignant and benign PSLs using the spectral features of the
lesions, such as reflectance and color. The study analyzed 429 pigmented and non-
pigmented lesions proving a sensitivity of 87.2% and a specificity of 54.5% in
melanoma identification. Rey-Barroso et al. developed an extended near infrared MSI
system based on an InGaAs sensor covering the range from 995 to 1,613 nm and
capturing 6 wavelengths with a spatial resolution of 320x256 pixels [158]. This system
had the goal of diagnosing skin cancer in an early and non-invasive way. The
classification method was based on the analysis of first-order statistic descriptors, PCA,
and SVM algorithms. The system was tested in a pilot study with 39 nevi and 14
melanomas from Caucasian patients, providing a sensitivity of 78.6% and a specificity
of 84.6%.
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In 2019, a novel smartphone-based MSI was reported by Ding et al. [159] as a proof
of concept of a portable and cost-effectiveness tool. The images were captured by the
CMOS sensor of the smartphone, combined with lens and linear variable filter allowed
to capture different spectral bands. The system captured 9 spectral bands within the
spectral range 400-700 nm. The skin was illuminated with linearly polarized light, with
the goal of detecting melanin and hemoglobin. Another smartphone-based
dermatoscope using MSI was proposed by Uthoff et al. in 2020 [160]. In this work,
polarized MSI was employed to obtain deoxyhemoglobin, oxyhemoglobin, and melanin
maps. The illumination employed was based on LEDs with different wavelengths
covering the range between 450-940 nm and capturing 8 spectral bands.

HSI acquisition systems also have been employed to identify skin cancer. In 2006, a
high resolution HSI microscopic system was developed for histopathology to detect
abnormalities in skin tissue using hematoxylin-eosin-stained preparations of normal
and abnormal skin, benign nevi and melanomas [161]. The system called PARISS
(Prism and Reflector Imaging Spectroscopy System) was able to capture the spectral
range comprised between 365 and 800 nm. More than 85% of the samples were
correctly assigned to the correct class and were able to distinguish between melanoma
and normal skin. Nagaoka et al. employed a system called MSI-03 (Mitaka Kohki Co.,
Ltd., Tokyo, Japan) to identify melanoma [162]. This system was able to capture an
effective area of 16x20 mm, with 658x489 spatial pixels, and spatial resolution of 32.7
um, covering the spectral range between 450—750 nm with 124 spectral bands. The
illumination system employed was based on a halogen lamp of 150 W. A melanoma
discrimination index was proposed by the authors to avoid unnecessary excision of
benign PSLs. Nagaoka et al. performed also a pilot study in 2011 to evaluate this
system, which discriminated melanomas with a sensitivity of 90% and a specificity of
84% [163]. In 2012, this system was employed to discriminate between acral
lentiginous melanoma and acral nevus, achieving a sensitivity of 92% and a specificity
of 86% [164]. In 2014, a clinical trial was performed in two centers using the MSI-03,
obtaining a dataset composed by 24 melanomas and 110 other skin lesions. In this
study, sensitivity and specificity results of 96% and 87%, respectively, were obtained
[162]. The MSI-03 system was mainly evaluated in Asian populations, however, in
2021, Christensen et al. evaluated the system in a Caucasian population [165]. This
study involved 186 patients with 202 PSLs. The objective of this study was to evaluate
the discrimination between melanoma and benign PSL, obtaining a sensitivity to detect
melanoma of 96.7% and a specificity for benign PSL of 42.1%.

In 2015, a HSI system prototype was presented by Neittaanmaki-Perttu et al. to
delineate the margins of lentigo maligna and MM [166]. The system was able to capture
76 bands in the spectral range of 500—900 nm with a spatial resolution of 240x320
pixels, using an external light source coupled to a fiber optic ring light. The HS images
were analyzed employing linear mixture model to obtain the pure spectral malignant
lesion and normal skin, producing abundance maps that delineate the lesion borders.
The results obtained were compared with histology results obtaining a match of 94.7%.
In 2019, this system was employed to delineate BCC in a pilot study, which included 16
lesions, being accurately delineated 75% of them [167]. In 2021, the system was tested
to distinguish between BCC and melanoma [168]. In this work, a CNN algorithm was
employed to classify 26 pigmented lesions (10 BCCs, 12 melanomas in-situ and 4
invasive melanomas), obtaining a sensitivity of 100% and a specificity of 90%.
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In 2016, Zherdeva et al. proposed a HSI system to discriminate between different
skin cancer types employing 61 bands in the range 450-750 nm, with a spatial
resolution of 501x501 pixels [169]. The work evaluated 16 melanomas, 19 BCCs and 10
benign tumors, identifying skin lesions (benign and malignant lesions) from healthy
skin with very high sensitivity and specificity of 84% and 87%, respectively. The optical
density of hemoglobin and melanin was employed to perform the discrimination.

In 2019, Hosking et al. employed the Melanoma Advanced Imaging Dermatoscope
(mAID) based on non-polarized LED-driven HS camera [170]. The illumination system
illuminated with 21 wavelengths, covering the spectral range between 350-950 nm. The
study obtained 70 HS images of skin lesions and performed a classification between
nevus and melanoma, achieving a sensibility of 100% and specificity of 36%.

In 2021, Courtenay et al. employed a pushbroom HS camera to distinguish between
healthy and non-healthy skin [171]. The HS camera was placed on a motorized
structure to capture the HS cube and two 60 W halogen light sources were mounted on
either side of the HS sensor. The system was able to capture 270 spectral bands with a
spectral range of 398-995 nm, generating HS cubes with a spatial dimension of
640x1,785 pixels. A total of 60 patients with 41 confirmed cases of BCC and 19 cases of
SCC were employed to perform robust statistical tests to identify the differences
between healthy tissue and carcinomas (BCC and SCC), finding differences between
429 and 520 nm. In a later work, the use of a CNN combined with a final SVM
activation layer was proposed to classify the same dataset, achieving up to 90%
classification in terms of OA [172].

In 2022, the SICSURFIS (Spectral Imaging of Complex Surface Tomographies)
system was proposed as a compact hand-held HSI tool for capturing HS data in
complex skin surfaces [173]. The system worked in the spectral range between 475-975
nm, capturing 33 spectral bands with a spatial dimension of 1,605x1,640 pixels. In
addition, the system had a photometric stereo imaging that provided skin-surface
models. A dataset of 42 skin lesions were evaluated to discriminate between malignant
and benign pigmented and non-pigmented skin tumors. Classification and delineation
methods were proposed using a CNN employing spectral, spatial, and a skin-surface
model. The results achieved a sensitivity of 87% and a specificity of 93% in recognizing
melanoma from pigmented nevi and healthy skin.

Different works employed HSI systems to analyze skin characteristics or
morphology. A multi-mode dermoscope based on HSI was proposed in 2014 by Vasefi
et al. called SkinSpect [174]. The system was composed by a programmable
illumination system based on Xenon arc light source, which allowed a wavelength
selection over the range from 468 to 857 nm and captured 33 spectral bands. The
images were obtained by two cameras, with polarization filters installed, and oriented
orthogonally to each other. However, this system was employed to perform an
analytical model to map the distribution of specific skin biomolecules. In subsequent
works, the system was used to measured melanin and hemoglobin concentrations skin
pigmented nevi [175]. In 2019, He and Wang proposed a HSI system based on a
snapshot camera to analyze morphological features [176]. The HS camera was based on
a CMOS sensor with 2,048x1,088 pixels able to capture 16 spectral bands in the range
between 400-600 nm.
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The following Table 2-4 provides a comprehensive summary of the different HSI
systems used in the literature to study skin cancer and other skin lesion, highlighting
the specification of the system and the objective of the study.

Table 2-4: HSI systems used to study skin cancer and other skin lesion.

Ref. |Year S;\;Itigll'ilglpe Wa‘(lflifll)lgth Bands Resoslllisit;;lll/FOV Patients ?ilsz{gi L’f‘;i)(:en
[143] ] 2001 n/a 246 MM and N
[144] 2011 ‘M - Focal Plane| ., o, 10 | 1280x1024 pixels 1383 | 1831 MM
[145)| 2017 ~ (MelaFind) 11 360 MM
[146] 2020 184 209 MM
[147]| 2001 311 348 MM
[148] 2007 MS — Focal Plane 24x24 mm or 886 886 MM
[149] 2010  (SIAscopy) 40071000 8 12x12 mm 858 1,211 | MMand B
[151] 2014 180 188 | MM and NM
[152] 2005 1,359 1,391 | MM and NM

MS — Focal Plane .
[153]|2007 (SpectroShade) 483-950 15 640%480 pixels 1,784 1,966 | MM and NM

[154]| 2010 54 54 MM
[155]| 2012 | MS - Focal Plane | 450—950 51 n/a n/a 82 MM and N
[156]| 2017 | MS — Focal Plane| 365-1,000 10 n/a n/a 712 M and B
[157]| 2017 | MS — Focal Plane| 400-1000 8 1280x960 pixels n/s 429 MM and BCC
[158]/2018| MS - Snapshot 900-1,600 6 320x256 pixels n/a 53 MM and N
MS — Focal Plane
[159] 2019 (Smartphone) 400—700 9 n/a n/a n/a N
[160] 2020 MS — Focal Plane 450-940 8 5312x298 pixels n/a n/a | NandSCC
(Smartphone)
HS — Pushbroom 2.5%500 um or NS, B, and
[161] 2006 (PARISS) 365-800 640 0.4%80 m n/a n/a MM
[163]| 2011 20 28 MM and NM
[164]| 2012 HS - LénMeSI 628x486 vixel 20 20 | ALM and AN
scannin. - 0—750 12, X 1XelS
[162]) 2015 Oég) 450775 4 PEX4CIP 97 132 | MM and NM
[165] 2021 186 202 MM and B
[174] 2014 | HS — Focal Plane 468-857 33 11%16 T 2 n/a N
[175] 2016 ~ (SkinSpect) 20 20 N
[166]| 2015 19 19 LIIYIME}\I/][d
[167]| 2019 HS - Snapshot 500-900 76 240x320 pixels 16 16 BCC
[168]| 2021 24 26 |MM and BCC
[169]| 2016 | HS — Focal Plane 450-750 61 501x501 pixels 45 45 Ml:{l’ (f gc’
[170]| 2019 HS —(Fo!cIall)flane 350-950 21 n/a 91 100 | MM and NM
[176] 2019 | HS - Snapshot 460-600 16 2’01?;;1’8088 n/a n/a N
[171] | 2021 . 60 60 BCC(,1 L;}\ICSC,
HS - Pushbroom 398-995 270 | 640 x 1785 pixels an
[172]|2022 60 60 BCC and NS
[173] |2022 HS - Focal Plane 475-975 33 | 1605x1640 pixels 33 42 Band M
(SICSURFIS)

ALM: Acral Lentigo Melanoma; AN: Acral Nevus; B: Benign; BCC: Basal Cell Carcinoma; FoV: Field of View; LM:
Lentigo Maligna; LMM: Lentigo Maligna Melanoma M: Malignant; MM: Malignant Melanoma; n/a: not available; N:
Nevus; NM: Non-Melanoma; NS: Normal Skin; SCC: Squamous Cell Carcinoma.
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2.5.3 Major Neurocognitive Disorders

The current increment in life expectancy is correlated with an increase in the
number of people affected by NCDs, which is the major cause of dependency and
disability among the older adult population [177]. Additionally, NCDs are not a natural
or unavoidable outcome of aging. These types of disorders are a rapidly growing public
health problem with nearly 10 million new cases every year, affecting over 50 million
people worldwide in 2019 [178]. The most common form of NCD is Alzheimer’s disease,
accounting for 60% to 70% of NCD cases [178].

NCD, previously known as dementia and/or mild cognitive impairment, is
characterized by a decline from a previously attained level of cognitive functioning. It
can be distinguished between minor and major NCD (mNCD and MNCD, respectively)
according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5)
criteria defined by the American Psychiatric Association [21]. mNCD is characterized by
a noticeable decrement in cognitive functioning [21]. This evidence of a cognitive
decline is revealed by the subject, an informant who knows the subject, or the clinician
who treats the subject. However, the cognitive deficit does not interfere with daily
activities and does not occur exclusively in the context of a confusional state. In
contrast, MNCD is characterized by the evidence of considerable deficits acquired in
one or more cognitive domains [21] that, as in mNCD, is also reported by the subject,
an informant, or the clinician. The evidence results from the fact that there is a
considerable decline in cognitive function and a substantial deterioration in cognitive
performance. In contrast to mNCD, MNCD cognitive deficits interfere with the
individual autonomy in daily routines and activities [21].

Diagnosis of NCD establishes, as a main goal, identifying cognitive impairment and
NCD from secondary etiology, therefore, potentially treatable controls, e.g., human
immunodeficiency virus (HIV), brain tumors or alcohol abuse [21]. Moreover, the
diagnostic process must analyze the personal and family history and the social context.
The diagnosis in the asymptomatic phase allows healthcare providers to monitor the
disease and define a care protocol. In addition, it offers the opportunity for family
members and the patient to make decisions about the patient’s future [179]. Current
diagnostic criteria to determine the degree of functional impairment is based on scales
that evaluate the subject’s cognitive ability. On the one hand, the Global Deterioration
Scale (GDS) developed by Reisberg et al. [180] and the Functional Assessment Staging
(FAST) [181] identify seven clinically recognizable stages from normality to the most
severe form of Alzheimer’s dementia. On the other hand, the Clinical Dementia Rating
(CDR) [182] describes five broad stages from normality to severe dementia.

The evolution of neurodegenerative diseases, especially Alzheimer’s disease, is slow
and both cognitive and behavioral symptoms appear simultaneously. The disease is
presented and evolves differently in each subject, which may mislead the diagnosis of
another disease. For this reason, it is necessary to find effective diagnostic techniques.
Biomarkers allow an early biological diagnosis (preclinical phase) and improve the
etiological study of NCDs. A biomarker can serve as an indicator of health or illness and
must be sensitive to normal biological process, pathological process, or
pharmacological interventions [183]. Several investigations explore the relationship
between biomarkers and atrophy in specific brain regions to make an accurate
diagnosis, both in the clinical and preclinical phases of Alzheimer’s disease [184], [185].
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Biomarkers can be divided into body fluid biomarkers, imaging biomarkers
(topographic and pathophysiological), and other biomarkers [22].

The common clinical tests to diagnose a possible Alzheimer’s disease are based on
in-vivo neuroimaging biomarkers using Positron-Emission Tomography (PET) or MRI,
both of which are used in a preclinical phase [23]. PET imaging diagnosis allows to
detect -amyloid peptide (AB) and tau protein [23]. MRI biomarkers are used to
discard specific pathologies, such as tumor or vascular disease. In-vivo neuroimaging
biomarkers are widely used to detect Alzheimer’s disease in the absence of symptoms,
or in cases where neuropathological changes are shown independently of the clinical
symptoms [186]. However, the use of these procedures is expensive and has a restricted
availability for verifying the diagnosis [24].

Cerebrospinal Fluid (CSF) is the most common body fluid employed to identify
Alzheimer’s disease biomarkers. Three CSF biomarkers have been studied in the
literature: A4, total tau protein (t-tau), and phosphorylated tau (p-tau). A decrement
of AB,.in CSF is a predictor of progression from mNCD (Alzheimer’s disease) to MNCD
(Alzheimer’s disease). However, an increment of t-tau represents axonal degeneration
at the early stages of Alzheimer’s disease. Finally, p-tau increases before the beginning
of the prodromal stage of Alzheimer’s disease [22]. Nevertheless, the lumbar puncture
in CSF collection is a highly invasive procedure that causes discomfort and can cause
side effects, such as headache, back pain, swelling, or bruising. For this reason, other
body fluid biomarkers related to blood samples have been investigated. This alternative
is less-invasive and is cost-effective for early detection, especially in the identification of
patients both in the clinical and preclinical phases of Alzheimer’s disease. Blood plasma
is used to identify proteins related with the disease, such as albumin, fibrinogen, and
immunoglobulins [187]. Biomarkers present in CSF have been studied in blood plasma
and include AB,2/40, neurofilament light chain (NfL), neurogranin (Ng) and YKL-40
(also known as Chitinase 3-like 1) [184]. Furthermore, the use of blood plasma
biomarkers reduces the cost and the risk of adverse effects. In this sense, novel
techniques to identify these biomarkers in blood plasma samples should be
investigated.

In the field of NCD detection the use of HSI is limited. In 2019, Hadoux et al.
employed a HS retinal camera, covering the VNIR range from 450 nm to 900 nm, to
identify potential biomarkers that represent the accumulation of AP in the retina for
Alzheimer’s disease detection [188]. The HS retinal camera captures images of the
retina with a 30-degree field of view and a pixel resolution of ~8.3 um. This study
consisted of 35 participants divided into case group (n=15) and the control group
(n=20). At wavelengths below 565 nm, reflectance spectra were different between
cases and controls. More et al. developed a system based on a clinical ophthalmic
camera and a spectrographic camera covering the spectral range from 400 to 1000 nm
with a resolution of 2.5 nm [189]. However, this study was a proof of concept to
translate the HS system from animal models to human Alzheimer’s disease subjects. In
2020, Lemmens et al. presented an HS retinal imaging based on a snapshot camera
able to capture from 460 to 620 nm with 16 spectral bands and 272x512 spatial pixels
[190]. The HS data and nerve fiber layer thickness data were used in a linear
discriminant classification model to discriminate between Alzheimer’s disease patients
and controls using a leave-one-out cross-validation technique, achieving an AUC value
of 0.74.
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Additionally, previous works carried out by our group employed HS microscopy in
the VNIR range to propose a novel methodology for identifying potential biomarkers of
MNCD in blood plasma samples [191]. The Table 2-5 provides a comprehensive
summary of the different HSI systems used in the literature to study MNCD disease,
highlighting the specification of the system and the objective of the study.

Table 2-5: HSI systems used to study MNCD disease.
HSI System |Wavelength Spatial Patients HS Study

Ref. Vear Type (nm) Bands Resolution | (Case/Control) Images Objective
Whiskbroom
[188] 2019 (Retinal Imaging) 450-900 90 n/a 15/20 n/a AD
Focal Plane
[189] 2019 (Retinal Tmaging) 400-1000 240 n/a 19/16 n/a AD
Snapshot (Retinal ) 272x512
[190] 2020 Imaging) 460-620 16 pixels 17/22 n/a AD
Pushbroom
[191]/2020 (Microscopy of | 400-1000 826 400122103 04 5/5 20 AD
Blood Plasma) p

AD: Alzheimer’s Disease; n/a: not available.

2.6 Conclusions

In this chapter, the basic concepts of HSI were presented, exploring the HS
instrumentation commonly employed for HS image acquisition. Different processing
methods found in the literature were explained, which play a key role in extracting
meaningful information from the complex hyperspectral datasets. In this context,
common algorithms used to process HS images were detailed, with a particular focus
on supervised and unsupervised methods that were employed in this dissertation.
These algorithms allow to extract critical results from the data. To ensure the reliability
of the results obtained in this dissertation, we discussed the use of various performance
evaluation metrics. These metrics provide an objective and quantitative means of
assessing the effectiveness and accuracy of the algorithms used, thus providing a solid
foundation for drawing meaningful conclusions from the HSI data.

The most recent advances in HSI for medical applications were presented, with
special emphasis in skin cancer, brain cancer, and MNCD. These specific medical
applications showcase the true potential of HSI image analysis in revolutionizing
healthcare due to the advantages of its non-contact, non-ionizing, label-free, and
minimally invasive nature. The use of HSI in the medical field can provide a wealth of
information that can help with early detection and accurate diagnosis. Skin cancer is
one of the most common types of cancer, the use of HSI can benefit in skin detection
with non-invasive tool, avoiding many biopsies. The early detection of lesions using
HSI can lead to improved patient outcomes and better overall prognosis. Similarly, in
the case of brain cancer, HSI can play a crucial role in guiding surgeons during tumor
resection surgeries. By providing a real-time tool that delineates between healthy and
tumor tissue, it enables effective removal of tumors while preserving vital healthy brain
tissue. In addition, the use of HSI in MNCD can potentially identify specific biomarkers
associated with neurodegenerative diseases. This advance could revolutionize early
diagnosis of Alzheimer’s disease and other dementias as a cost-effective tool.

Beyond medical applications, HSI techniques are branching out into various other
fields, ranging from agriculture and environmental monitoring to industrial quality
control and mineral exploration.

~38~



Chapter 3: Intraoperative HS
acquisition system for brain surgical
diagnostics and guidance

3.1 Introduction

This chapter presents the intraoperative HS acquisition system for brain surgery
diagnosis and guidance. The developments in this PhD Thesis build on a system that
was previously developed as part of the European HELICoiD project, funded by the
Research Executive Agency under Grant Agreement 618080, through the Future and
Emerging Technologies (FET-Open) Programme and under the 7th Framework
Programme of the European Union [123], [124]. The system that served as a starting
point for this research, was designed as a proof of concept with the goal of delineating
brain tumors during surgical procedures. By exploiting the existing system, this
dissertation aims to extend its capabilities, refine its functionalities, and explore new
avenues of application. Part of the research carried out in this dissertation was related
to the Regional Project ITHaCA, funded by the Canary Islands Government through the
ACIISI (Canarian Agency for Research, Innovation, and the Information Society) under
Grant Agreement ProID2017010164".

The original intraoperative HS acquisition system consisted of two pushbroom HS
cameras covering the VNIR spectral range from 400 to 1000 nm, and the NIR spectral
range from 900 to 1700 nm. The HS cameras and the illumination system were
mounted on a scanning platform to enable movement. However, only HS images of the
VNIR HS camera were used during the HELICoiD project for the algorithm’s
development. In this dissertation, several optimizations were performed to the original
system. Employing the optimized intraoperative HS acquisition system, an in-vivo HS
human brain image database was generated. Using this database, a new approach was
proposed to perform spectral fusion of two HS cubes obtained with two different HS
cameras covering the VNIR and NIR spectral range, aiming to obtain a broadband HS
cube. This fusion procedure was investigated targeting an improvement of the previous
results in the processing of the intraoperative HS brain tumors including NIR
information. Furthermore, combining the VNIR database generated in this dissertation

1 jthaca.iuma.ulpgc.es



https://ithaca.iuma.ulpgc.es/

Chapter 3: Intraoperative HS acquisition system for brain surgical diagnostics and guidance

and the one captured with the previous HS system [124], vascular enhanced maps
hemoglobin spectral ratios were proposed, and different analyses using spectral and
spatial information were performed to detect and delineate brain tumors with a robust
validation methodology.

The work related to the HS analysis using SU was performed in collaboration with
the research group of Prof. Daniel Ulises Campos-Delgado at the Faculty of Sciences of
the Universidad Autéonoma de San Luis Potosi (UASLP), Mexico. The work related with
the data collection in the operating theater was carried out in a very close collaboration
with the neurosurgery department led by Dr. Jests Morera (having a special role in the
research Dr. Adam Szolna and Dr. Juan F. Pifieiro) from the University Hospital of
Gran Canaria Doctor Negrin of Las Palmas de Gran Canaria and also with Dr.
Bernardino Clavo from the Research Unit of the same hospital.

3.2 Optimization of the Intraoperative HS Acquisition
System

The intraoperative HS acquisition system developed in the European Project
HELICoiD (Figure 3-1.a and Figure 3-1.b) was modified to optimize the system to
evaluate the delineation of brain tumors during surgical operations by using the VNIR
and NIR spectral ranges. The original system had several limitations that affected the
possible use of the two HS image types and also the real-time performance of the
system. Therefore, improvements to the original system were proposed to reduce the
acquisition time and increase the quality of the captured images from both HS cameras.

a b c

Figure 3-1: Original intraoperative HS acquisition system. a) HS acquisition system being used
during a neurosurgical operation at the University Hospital of Gran Canaria Doctor Negrin (Spain). b)
Original camera position (1) VNIR HS camera, (2) NIR HS camera, (3) cold light emitter. ¢) Example of a
VNIR and a NIR HS image captured from the same scene.

This HS acquisition system was composed by two pushbroom HS cameras: the VNIR
camera covered the spectral range between 400 and 1000 nm and the NIR camera
between the 900 and 1700 nm (1 and 2 in Figure 3-1.b). The illumination system was
based on a QTH lamp of 150 W with a broadband emission between 400 and 2200 nm.
The light source was connected to a cold light emitter (3 in Figure 3-1.b) through an
optical fiber to avoid the high temperatures of the QTH lamp in the exposed brain
surface. The HS cameras and the cold light emitter were installed in a scanning
platform to provide the necessary movement for the pushbroom technique to generate
the complete HS cubes. The working distance between the lens of the cameras and the
exposed brain tissue was 40 cm. The field of view of both cameras was oriented and
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aligned to the beam of the cold light emitter to obtain the highest reflectance value in
the sensors (Figure 3-1.b). As a result, both cameras were tilted to capture the same
FOV, but this meant that both HS cubes had different perspectives of the scene and it
was not possible to achieve an accurate registration for data fusion (Figure 3-1.c).

3.2.1 Improvements in the HS Cameras Positioning

In this dissertation, different modifications of the intraoperative HS acquisition
system were performed to achieve the optimal orientation of the cameras respect to the
exposed brain surface. In the original intraoperative HS acquisition system (Figure
3-2.a), both cameras were adjusted at a 15° angle to capture the same FOV, resulting
that each HS cube had a different perspective view of the scene.
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Figure 3-2: The original and the different modifications performed to the intraoperative HS
acquisition system. a) Original. b) First modification. ¢) Second modification. d) Third and selected
modification.

The first proposed variation of the intraoperative HS acquisition system was to
eliminate the tilt of the original HS camera system (Figure 3-2.b). In this variant, the
HS cameras are arranged in a coupled manner, where the line to be acquired coincides
for both cameras. This modification was made to avoid the addition of another light
source. With this arrangement, the scanning movement for both HS cameras is the
same and the HS cubes can be acquired in parallel in the same scan, reducing
acquisition times. However, this modification presents a problem. When analyzing the
HS images for the area of interest of approximately 10 cm (commonly maximum
exposed brain surface after craniotomy) and at the minimum allowed working distance
(due to safety restrictions in the operating theater) between the lens and the exposed
brain (30 cm), the HS cube formed by both cameras has a common area of less than 1
cm. In order to capture the same area of interest for both HS cameras the working

~ 41~



Chapter 3: Intraoperative HS acquisition system for brain surgical diagnostics and guidance

distance would have to be increased and this would cause a loss of spatial resolution
and could affect the accuracy of tumor classification. Therefore, another solution was
proposed.

The second proposed variation follows the main objective of the previous variation
to avoid tilting of the HS cameras (Figure 3-2.c). This changes from a single point
where both HS cameras focus to two different points separated by a certain distance. In
this case, it is necessary to add a second light source to provide illumination for each
HS camera independently. The acquisition process for this setup starts from idle state
and the motor moves the HS cameras, placing the VNIR lens at the beginning of the
region of interest (ROI). The VNIR acquisition begins, moving the HS cameras to
generate the HS cube. When the VNIR lens leaves the ROI, the acquisition of that HS
camera ends. The motor then moves the cameras to bring the NIR into the area of
interest and begin acquisition. This configuration has a problem when capturing the HS
cube for both cameras. Due to the size of the scanning platform, the acquisition of the
second HS camera is interrupted before the acquisition process is complete. The
distance between the lenses is too large and insurmountable due to the structure of
these cameras, so other alternatives were considered.

Finally, the third option is to place the HS cameras without tilting to ensure that the
area of interest coincides in the two HS images (Figure 3-2.d). In this configuration, the
goal is to reduce the distance between the lenses to ensure that the scan can be
performed completely. To do this, one HS camera is placed on top of the other to
reduce the distance between the HS camera housings. This means that one HS camera
is further away from the area of interest than the other, but this is compensated for by
the fact that the VNIR HS camera has a higher spatial resolution than the NIR HS
camera. The acquisition process for this setup starts from an idle state, placing the
VNIR lens at the beginning of the ROI. Before the VNIR camera finishes capturing the
entire area, the NIR lens enters the area of interest, capturing both HS cameras
simultaneously. Subsequently, the VNIR HS camera stops capturing and later the NIR
HS camera finishes the capture.

After modifying the intraoperative HS acquisition system, both HS cameras had a
similar FOV, allowing an accurate image registration. The working distance between
the lens of the cameras and the area to be captured were ~33 and ~42 cm for the NIR
and VNIR cameras, respectively, to obtain the sharpest focus. In addition, the
acquisition time of the modified system to capture both HS cubes was reduced to ~60 s,
performing only a scanning in a single direction. This improvement represented a time
reduction of 1 min, due to the original system required ~80 and ~40 s for the VNIR and
NIR HS cubes capturing, respectively, involving two scanning movements in both
directions as shown in Figure 3-2.a. Finally, the optimized intraoperative HS
acquisition system was validated during neurosurgical interventions (Figure 3-3) and
after the modifications the system was composed by: a NIR and a VNIR HS camera (1
and 2 in Figure 3-3.b, respectively), and two illumination systems based on a QTH
lamp of 150 W (3 and 4 in Figure 3-3.b), one for each HS camera. Each light source was
connected to a cold light emitter (5 and 6 in Figure 3-3.b) through an optical fiber to
avoid the high temperatures of the QTH lamp in the exposed brain surface.
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Wl

Figure 3-3: Modified intraoperative HS acquisition system. a) HS acquisition system being used
during a neurosurgical intervention at the University Hospital of Gran Canaria Doctor Negrin (Spain). b)
Final HS camera distribution (1) NIR HS camera, (2) VNIR HS camera, (3) VNIR illumination system, (4)
NIR illumination system, (5) NIR cold light emitter, (6) VNIR cold light emitter.

3.2.2 Graphical Interface for Control, Acquisition and Processing

The HELICoiD project was not focused on the creation of a single graphical interface
to perform the various stages of data acquisition and processing, working in real-time
in the operating room. These stages include motor control, image acquisition, image
display, image processing and classification, and presentation of classification maps.

In the work presented in this dissertation, a unified graphical interface (Figure 3-4)
was developed, integrating different SDKs (Software Development Kits) necessary to
control the VNIR and NIR HS cameras, as well as the motor controller for camera
movement. The software allowed the acquisition of the black and white reference of
both HS cameras, making possible to perform the pre-processing and post-processing
of the HS images in the same application. The system had a positioning camera that
allowed the visualization of the area to be scanned by the HS cameras, since these
cameras only capture a spatial line and, therefore, it is impossible to determine the
exact position over the exposed brain surface. For this reason, an RGB camera was
included and aligned with the HS cameras to identify the area of the brain to be
captured. The software shows the continuous visualization of the RGB image of the
positioning camera (1 in Figure 3-4.a) and the synthetic RGB images of the NIR and
VNIR cameras after finishing the capturing process (2 and 3 in Figure 3-4.a,
respectively). After viewing the HS images, image processing can be performed, which
included pre-processing and post-processing using the framework explained in Section
3.5. An advantage of this software is that the HS image can be cropped by adjusting the
ROI, thus reducing the processing time. Finally, the presentation of the thematic map
(generated using the VNIR data) is displayed together with the synthetic RGB image of
the VNIR (2 and 1 in Figure 3-4.b, respectively)

In addition to the aforementioned characteristics, an approach to optimize the focus
of the system was developed, guiding the user during this process that required to
displace up or down the head were the cameras were mounted. Several focusing
algorithms were analyzed, including derivative, statistical, and histogram-based
algorithms [192]. The output of an ideal focus algorithm is defined as having a
maximum value at the best-focused image. It decreases as defocus increases. However,
the choice of the algorithm was determined by its ease of implementation and reduced
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computational time, prioritizing simplicity and computational efficiency. For this
reason, the Squared Gradient (SG) derivative-based algorithm was selected. This
algorithm sums the squared differences, making larger gradients have more influence.
Eq. (26) compute the SG where f(x, y) is the luminance or grayscale level at pixel (x,y)
in an image of size MxN pixels.

M-2N-1

SG = Z Z[f(x +1,y) - f(x.]? (26)

x=0 y=0
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Figure 3-4: Graphical interface for control and acquisition. a) Graphical interface with (1) live
positioning camera, (2) synthetic RGB NIR image, (3) synthetic RGB VNIR image. b) Classification results
after processing the VNIR data, (1) synthetic RGB VNIR image after cropping the region of interest, (2)
thematic map.

In our case, the image used is a pushbroom frame (namely Y-lambda image or YA

image). In pushbroom systems, the YA images are employed for focusing the HS
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camera. This image is a conventional 2-D grayscale image where the A-axis represents
the spectral dimension, the Y-axis represents the spatial dimension, and the gray level
indicates the luminance for a certain pixel. The SG was calculated in real-time in the
software and was used to position the intraoperative HS acquisition system over the
exposed brain at the correct distance from the exposed brain to the lens to acquire a
focused HS image. Every 500 ms, a YA frame was captured (Figure 3-5.a) to calculate
the SG. The results were plotted on a graph in the graphical user interface (Figure
3-5.b), where the value was updated every 500 ms. At the same time, the intraoperative
HS acquisition system was moved in the Y-axes by a 24 VDC motor coupled to a
spindle. By observing the SG graph, the optimal position was found to obtain a focused
HS image.
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Figure 3-5: Focus procedure using the SG algorithm. a) Y-lambda images. b) Grey level intensity
computed using squared gradient.

3.2.3 Intraoperative HS Acquisition System Integration

In summary, the HS acquisition system consists of several submodules that
communicate directly with the control unit. Figure 3-6 shows how each module
communicates with the control unit. The two HS cameras are directly connected to the
control unit via USB 2.0 for the NIR camera and Camera Link for the VNIR camera.
These HS cameras are mounted on the scanner platform, which communicates directly
with the control unit via the RS-232 serial interface. The linear movement of this
platform is performed in the graphical interface for control and acquisition, where the
user can control its movement. In this interface, the user can start the acquisition of the
HS images, visualize its acquisition and subsequent result, and control the system
through the display port. The HS images captured by both HS cameras are stored in the
control unit's memory, which is accessible by the visualization software. This software
is responsible for accelerating the HS image post-processing algorithm. The
acceleration is performed by an NVIDIA STRIX-GTX1060 GPU, which communicates
directly with the control unit via PCI Express 3.0.
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Figure 3-6: Block diagram of the different modules that composed the HS acquisition
system.

3.3 Enhanced In-vivo and Ex-vivo Hyperspectral Human
Brain Image Database for Brain Cancer Detection

After the optimization of the intraoperative HS acquisition system, this system was
used to generate a new HS human brain cancer database, captured during the
execution of the ITHaCA project. This new database allowed to augment the database
previously collected in the HELICoiD project [124], making possible to perform more
robust analyses on the HS images and to validate the ML results for both classification
and data fusion methods. The procedure for capturing the HS images is shown in
Figure 3-7.
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Figure 3-7: HS data acquisition and labelling procedure during surgery. In the ground-truth
map, red represents tumor labelled pixels, green normal pixels, blue hypervascularized pixels, and black
background pixels. Meanwhile, white represents non-labelled pixels.
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First, a craniotomy was performed to the patient by using IGS neuronavigation and
then, the durotomy was accomplished to expose the brain surface. Next, the acquisition
system was placed over the patient’s brain to acquire the HS image. In some
questionable cases, rubber ring markers were placed over tumor and normal tissue
areas according to the IGS system information to later identify the tissue type. After
that, tumor tissue was resected for neuropathological evaluation to achieve the
definitive diagnosis of the tumor. When possible, more than one HS image was
acquired while the tumor was being resected.

HS images were manually cropped to select the ROI where the parenchymal area
was exposed. Afterwards, the data were labelled by using information provided by
neuropathologists and the knowledge of the operating surgeons through a semi-
automatic labelling tool based on the Spectral Angle Mapper (SAM) algorithm
developed to this end [124]. The SAM algorithm is an automated method for comparing
the spectra in the pixels of an HS image with a known spectrum obtained from a
reference pixel. The procedure to generate the neurosurgeon’s ground truth map is as
follows:

1) The operating surgeon selects a reference pixel from the synthetic RGB
image.

2) Then, the most similar pixels to the selected reference pixel are highlighted,
after computing the SAM algorithm.

3) The threshold to indicate if a pixel is considered similar or not the reference
pixel is configurable by the user to adjust tolerance levels on selected pixels.
This threshold is computed using SAM algorithm. Once only the pixels
belonging to a single class are highlighted, they are assigned to that class.
Neurosurgeons are advised to only select a few sets of highly reliable pixels
rather than a broader set that may be uncertain.

The ground-truth maps were composed by four classes (acronym — pixel color):
tumor tissue (TT — red), normal tissue (NT — green), blood vessels (BV — blue) and
background (BG — black). White pixels in the ground-truth maps represented the non-
labelled pixels, since only pixels with high confidence to belong to a certain class were
labelled. Several images in the database do not contain tumor pixels due to the
impossibility of performing a reliable labelling or due to the patient underwent surgery
for another pathology, such as a blood clot or epilepsy.

The data acquisition campaign was carried out at the University Hospital of Gran
Canaria Doctor Negrin, Spain, from July 2019 to October 2019. Written informed
consent was obtained from all participant subjects, and the study protocol and consent
procedures were approved by the Comité de Etica de la Investigacién / Comité de Etica
de la Investigaciéon con Medicamentos (CEI/CEIM) of the University Hospital Doctor
Negrin (2019-001-1). All the research methodologies were performed in accordance
with relevant guidelines/regulations. This data campaign was capture using the new
configuration of the acquisition system, explained in Section 3.2. During this data
campaign, nine neurosurgeries were attended and a total of 15 images were acquired.
Finally, this data campaign (called the third data campaign) consists of 10 images from
8 different patients, after excluding some images that were acquired in non-optimal
conditions.
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During the HELICoiD project, two data acquisition campaigns were carried out at
the University Hospital of Gran Canaria Doctor Negrin, Spain [124]. The first data
campaign was conducted from March 2015 to June 2016, and the second from October
2016 to April 2017. Written informed consent was obtained from all the participant
subjects. The study protocol and consent procedures were approved by the Comité
Etico de Investigacién Clinica-Comité de Etica en la Investigacién (CEIC/CEI) of the
University Hospital Doctor Negrin (130069). All the research methodologies were
performed in accordance with relevant guidelines/regulations.

Table 3-1 summarizes the in-vivo HS images (Figure 3-8.a) acquired in HELICoiD
and ITHaCA projects, showing the number of patients (identified as Opx: operation
number) and HS images (identified as Cy: capture number) captured in each data
campaign, the image dimensions, the number of labelled pixels, and the definitive
pathological diagnosis. Table 3-2 summarizes the ex-vivo HS images (Figure 3-8.b)
captured in HELICoiD and ITHaCA projects. Figure 3-8.c shows the number of
patients and HS images of each data acquisition campaign before and after excluding
the HS images that were captured in non-optimal conditions.

Initial Initial Initial
1st Campaign 2nd Campaign 3rd Campaign
(n =40, m=22) (n=30;,m=10) (n=15m=9)
[n=5m=3] [n=0,m=0] [n=9,m=5]
Excluded Excluded Excluded
(n=13m=6) (n=6;,m=0) (n=5m=1)
Eligible Eligible Eligible
15t Campaign 2nd Campaign 3rd Campaign
(n=27,m=6) (n=24; m=10) (n=10,m=28)
[n=5 m=3] [n=0; m=0] [n=9;,m=5]
L | ]
v
Total
(n=61, m=34)
[n=14m=38]

Figure 3-8: HS in-vivo and ex-vivo database. a) Example of HS in-vivo image. b) Example of HS ex-
vivo image. ¢) Patient/image flow scheme of the enhanced in-vivo (in parentheses) and ex-vivo (in
brackets) HS human brain image database. n: number of HS images; m: number of patients.
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Table 3-1: Summary of the enhanced in-vivo HS human brain image database.

C . Image | Size #Labeled Pixels . .
ampaign| " rP | o) NT T BV BG Diagnosis
0p04C2|389x345 5,007 0 965 1,992|Normal Brain

Opo5C1[483x488 6,061 0 1,727 20,483|Renal Carcinoma (S)
Opo7C1|582x400 7,714 0 1,089 0|Normal Brain

Opo8C1[460%549 2,295 1,221 1,331 630|G4 Glioblastoma (P)
Opo8C2|480x553 2,187 138| 1,000 7,444|G4 Glioblastoma (P)
Op10C3| 371x461 10,626 o| 2,332 3,972|G4 Glioblastoma (P)
Op12C1 [ 443%497 4,516 855| 8,697 1,685|G4 Glioblastoma (P)
Op12C2|445x498 6,553] 3,139| 6,041 8,731|G4 Glioblastoma (P)
Op13C1|298x253 1,827 0 129 589|Lung Carcinoma (S)

o Op14C1 | 317x244 0 30 64 1,866|G4 Glioblastoma (P)

.%f Op15C1 | 376%x494 1,251| 2,046| 4,089 696|G4 Glioblastoma (P)

2, Op16C1 | 335%323 3,970 0 246| 12,002|Normal Brain

E Op16C2 | 335%326 349 0 0 2,767|Normal Brain

Ej Op16C3 | 315%321 603 0 234 1,696 |Normal Brain

I 0Op16C4 | 383%297 1,178 0 1,064 956|G4 Glioblastoma (P)

e Op16C5 | 414x292 2,643 0 452 5,125|G4 Glioblastoma (P)

A Op17C1 [ 441x399 1,328 0 68| 3,069|G4 Glioblastoma (P)

- Op18C1 | 479x462 13,450 0 488 9,773|G1 Ganglioglioma (P)
Op18C2|510%x434 4,813 0 958 5,895|G1 Ganglioglioma (P)

Op19C1 | 601x535 6,499 ol 1,350 1,933|G1 Meningioma (P)
Op20C1|378%x330 1,842 3,655 1,513 2,625|G4 Glioblastoma (P)
Op21C1[452x334 3,405 167 793 5,330|Breast Carcinoma (S)
Op21C2|448x%324 2,353 31 555 2,137|Breast Carcinoma (S)
0p21C5|433%340 969 0 1,637 1,393 |Breast Carcinoma (S)
Op22C1|597x527 2,806 0 1,064 3,677|G3 Anaplastic Oligodendroglioma (P)
Op22C2| 611x527 8,174 0 680 0/G3 Anaplastic Oligodendroglioma (P)
Op22C3| 592%x471 0 96 0 0|G3 Anaplastic Oligodendroglioma (P)
0Op34C1| 319x356 0 0 0| 15,609|G3 Anaplastic Astrocytoma (P)
0p34C2|300x%342 512 145 0| 12,979|G3 Anaplastic Astrocytoma (P)
0p34C3|290x301 0 360 0| 10,533|G3 Anaplastic Astrocytoma (P)
Op35C1|431x503 9,025 0 7,287 485|G2 Oligodendroglioma (P) [DL]
Op35C2| 312%x535 ol 1,338 629 1,353|G2 Oligodendroglioma (P)
Op36C1|412x324 11,665 0 4,461 4,621|G4 Glioblastoma (P) [DL]
Op36C2|432x322 2,040 888| 2,980 5,853|G4 Glioblastoma (P)
Op37C1|434x453 12,719 o| 2,524 11,161/G4 Glioblastoma (P) [DL]

& Op37C2| 315%526 2,997 0 375 4,166|G4 Glioblastoma (P)

‘g Op37C3[290x422 3,201 407 0 0|G4 Glioblastoma (P)

g Op37C4|280x444 0 330 0 0|G4 Glioblastoma (P)

3 Op38C1[497x490 18,511 2,295 4,229 3,669|G1 Meningioma (P)

g Op39C1 | 415%x446 4,003 244 489 9,829|G4 Glioblastoma (P)

A Op39C2|399x439 7,705| 1,629 822 9,867|G4 Glioblastoma (P)

g Op40C1|303%374 2,728 394 1,151 3,492|G1 Meningioma (P)

8 Op40C2|294%344 817 700 2,130 902|G1 Meningioma (P)

A Op41C1[449%486 2,359 69|  1,047] 5,030|G1 Ganglioglioma (P)
Op41C2[437x488 4,874 158 2,150 4,888|G1 Ganglioglioma (P)
Op42C1|629x646 20,565 0| 10,956 8,991|G2 Astrocytoma (glioma) (P)
Op42C2|623x584 19,435 428 5,110,  3,983|G2 Astrocytoma (glioma) (P)
Op42C3|650%x582 2,385 401 979 716|G2 Astrocytoma (glioma) (P)
Op43C1| 575%543 28,285 1,177| 4,012 5,995|G4 Glioblastoma (P)
0Op43C2|554%446 17,236 475 2,103 1,964|G4 Glioblastoma (P)
Op43C3|522x533 11,798 589 2,727 1,587|G4 Glioblastoma (P)
Op43C4|538x525 14,160 0 4,749 687|G4 Glioblastoma (P)
Op50C1|565x533 2,116| 1,091 620 5,502|G1 Meningioma (P)

.Eo Op51C1 | 635%x617 1,164 0 424| 31,247|G4 Glioblastoma (P)

g Op53C1 |546x446 361 5,549 0| 33,606|Breast Carcinoma (S)

g Op54C1| 515%504 2,697 o| 3,506 9,535|G4 Glioblastoma (P)

&} Op55C1|397x435 3,128 0 901 8,278|G3 Astrocytoma (glioma) (P)

g Op55C2[500%349 0| 1,046 545 9,415|G3 Astrocytoma (glioma) (P)

=] Op56C1|446%x598 1,346] 4,081| 2,200| 28,370|G2 Astrocytoma (glioma) (P)

E Op56C2|467x566 1,326 372 1,116 7,702|G2 Astrocytoma (glioma) (P)

= Op57C1|440%535 1,773 771 1,263| 23,415|Breast Carcinoma (S)

Op58C2| 721x752 6,589 1,629 4,565 43,565/G2 Meningioma (P)
Total labeled pixels 305,449|37,944(101,305|405,401

NT: Normal; TT: Tumor; BV: Blood vessel; BG: Background; S: Secondary; P: Primary; G1: Grade 1; G2: Grade 2; G3:
Grade 3; G4: Grade 4; DL: Deep layer tumor; H: Height; W: Width.
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Table 3-2: Summary of the enhanced ex-vivo HS human brain image database, including
spatial and spectral dimension, and the diagnosis.

Campaign | Image ID (I-?;Z\ﬁ/) Diagnosis
P Opo8C3 158x196 G4 Glioblastoma (P)
g 2 Op15C2 146x182 G4 Glioblastoma (P)
2 g Opi15C3 326%x270 G4 Glioblastoma (P)
= Op21C3 215x223 Breast Carcinoma (S)
O Op21C4 214%229 Breast Carcinoma (S)
Op50C2 431x412 G1 Meningioma (P)
Op50C3 518x693 G1 Meningioma (P)
S = Op56C3 228x197 G2 Astrocytoma (glioma) (P)
8 -%0 Op56C4 210x213 G2 Astrocytoma (glioma) (P)
o & Op57C3 159%140 Breast Carcinoma (S)
E % Op57C4 169%x149 Breast Carcinoma (S)
=© Op58C3 330x346 G2 Meningioma (P)
Op58C4 455%338 G2 Meningioma (P)
Op58Cs 390x205 G2 Meningioma (P)

S: Secondary; P: Primary; G1: Grade 1; G2: Grade 2; G4: Grade 4; H: Height; W: Width.

The enhanced in-vivo HS human brain image database was composed by a total of
61 HS images from 34 adult patients with brain tumors. The summary of the patient
demographics and clinic data is shown in Table 3-3. Ages ranged from 30 to 73 years,
with a median age of 51.5 years. Among these patients, there were 21 males and 13
females. Of these 34 patients, 28 (82.4%) had a primary tumor. The most frequency
primary grade was the G4 (44.1%, n = 15), followed by G1 and G2 (14.7%, n = 5 each
one), while the 8.8% (n = 3) of the tumors were G3. The remaining 6 (17.6%) tumors
were secondary: 3 from breast carcinoma, 2 from lung (one adenocarcinoma and one
carcinoma), and 1 from kidney (renal carcinoma). Most of tumors were located in the
right temporal lobe (23.5%, n = 8), followed by the left frontal and right parietal lobes
(20.6%, n = 7 each).

Table 3-3: Summary of patient demographic and tumor characteristics.

N Characteristic Total %
[patients with no missing values/Total patients] (n)

Sex [34/34] Male 21 61.8
Female 13 38.2

Median 51.5 -

Age [33/34] Range 30-73 -
Tumor Type [34/34] ngglrllggyry % ?;.'g
WHO Grade 1 5 14.7
Primary Tumor Grade [28/34] wgg giggg g g 18487
WHO Grade 4 15 44.1
Breast 3 8.8
Metastasis [6/34] Lung 2 5.9
Kidney 1 2.9
Right Frontal Lobe 3 8.8
Left Frontal Lobe 7 20.6
Right Parietal Lobe 7 20.6
Left Parietal Lobe 4 11.8
Location [34/34] Right Temporal Lobe 8 23.5
Left Temporal Lobe 1 2.9
Right Occipital Lobe 2 5.9
Left Occipital Lobe 1 2.9
Cerebellum 1 2.9
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3.4 Vascular Enhanced Maps using a Diffuse Absorbance
Hemoglobin Spectral Ratio Framework

Spectral ratios have been used in the literature to discriminate between different
types of tissues in a variety of imaging methods including diffuse reflectance
spectroscopy [193] and HSI [194]. Fu et al. proposed the use of the ratio between 545
and 560 nm (named R545/R560) to calculate the degree of cerebral ischemia [194].
The spectral channel of 545 nm is an isosbestic band of oxygenated hemoglobin and
deoxygenated hemoglobin, which is independent of changes in saturation. The spectral
channel of 560 nm is the spectral band where the largest difference between
oxyhemoglobin and deoxyhemoglobin occurs [194]. The R545/R560 ratio reflects a
maximized difference between deoxyhemoglobin and oxyhemoglobin, that was studied
to help in the identification of brain ischemia using HSI, as well as the application of
classification thresholds based on these ratios to distinguish necrosis from normal
brain tissue [194].

In the work presented in this section, the R545/R560 spectral ratio was employed to
perform an evaluation of in-vivo and ex-vivo tumor tissue samples captured with the
optimized HS acquisition system. For this purpose, seven HS images from the in-vivo
database and their corresponding ex-vivo samples (presented in Section 3.3) were used,
selecting two wavelengths (545 and 560 nm) to compute the absorbance R545/R560
spectral ratio. In addition, the in-vivo HS images were used to generate heat maps and
vascular enhanced maps, demonstrating the potential of this framework to be used as
intraoperative surgical guidance system in real-time.

The proposed method for computing the absorbance spectral ratio and performing
the comparison between the in-vivo and ex-vivo tissue samples is summarized in
Figure 3-9.

a Extraction of In-vivo Spectral Signatures X
(using SAM) C HbRatio-base Heatmaps
Y SR

a R545/R560
Spectral Ratio

b  Extraction of Ex-vivo Spectral Signatures d Vascular Enhanced Map
(using K-means)

Figure 3-9: Block diagram of the proposed diffuse absorbance spectral ratio processing
framework.

First, the raw HS images acquired with the intraoperative acquisition system were
pre-processed and the spectral data were converted from reflectance to absorbance
values. In the case of the in-vivo HS images, only the labeled pixels were used to
perform the spectral analysis (Figure 3-9.a). In the case of ex-vivo HS images, the
complete samples were employed, splitting the HS image into different regions using
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an unsupervised segmentation method (Figure 3-9.b). Finally, HbRatio-based
heatmaps of the in-vivo HS images were generated using the R545/R560 spectral ratio
(Figure 3-9.c). A qualitative evaluation of the different tissue structure was performed.
In addition, an analysis of the distribution of the R545/R560 ratio in labeled blood
vessel pixels was employed to automatically enhance their structures in the in-vivo
images (Figure 3-9.d). These vascular enhanced maps were produced using the first
and third quartiles of the distribution as limits.

3.4.1 Spectral comparison of in-vivo and ex-vivo samples

Seven in-vivo and fourteen ex-vivo HS images obtained from seven different
patients were used in this work, extracted from the database presented in Section 3.3.
The in-vivo HS images were previously labeled using the semi-automatic labelling tool
based on the SAM algorithm. Table 3-4 summarizes the characteristics of the HS
images employed and the labeled pixels, where a total of 44,964 pixels were labeled
into three different tissue classes: 10,977 pixels of TT, 17,925 pixels of NT and 16,062
pixels of BV. The ex-vivo images were not labeled at the pixel level, and images
captured at different working distances (different focus of the scene that could cause
blurred data) were analyzed to determine if the differences in focus could affect the
results. The HS images were pre-processed following the different steps presented in
Section 2.4.1, applying data calibration, spectral noise reduction, and extreme band
removal. Finally, the resulting HS cube, composed of 645 spectral bands, was converted
to absorbance following Eq. (2) presented in Section 2.4.1.

Table 3-4: Summary of the labeled dataset employed to perform the diffuse absorbance
hemoglobin spectral ratio framework.

. #Labeled Pixels
PatientID | Image ID Sample type NT TT BV
C2 In-Vivo 2,187 138 1,000
Opo8 C3 Ex-Vivo - - -
C1 In-Vivo 1,251 2,046 4,089
Op15 C2 Ex-Vivo - - -
C3 Ex-Vivo - - -
C1 In-Vivo 2,663 1,221 2,325
Op21 C3 Ex-Vivo - - -
C4 Ex-Vivo - - -
C1 In-Vivo 2,116 1,001 620
Ops50 C2 Ex-Vivo - - -
C3 Ex-Vivo - - -
C1 In-Vivo 1,346 4,081 2,200
Op56 C3 Ex-Vivo - - -
C4 Ex-Vivo - - -
C1 In-Vivo 1,773 771 1,263
Ops7 C3 Ex-Vivo - - -
C4 Ex-Vivo - - -
C2 In-Vivo 6,589 1,629 4,565
Cs Ex-Vivo - - -
Op58 C4 Ex-Vivo - - -
Cs Ex-Vivo - - -
Total 17,925 | 10,977 | 16,062

NT: Normal; TT: Tumor; BV: Blood vessel.

The K-means algorithm was applied to the ex-vivo HS images in order to segment
the tissue samples into different clusters (tissue regions with similar spectral
characteristics). The number of clusters was determined by using clustering evaluation
methods (Calinski Harabasz, Davies Bouldin, and Silhouette) in each HS image
independently, and without taking account the background of the image (mainly
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composed by the white gauze where the tissue sample was placed). The background
was manually segmented. As shown in Figure 3-10, Opo8C3 is composed by three
pieces and each piece was consider as an independent image for the analysis. After
applying the three cluster evaluation methods, it was found that the optimal number of
clusters obtained for almost all HS ex-vivo images was two, except for Op50C3 (six
clusters), and Op58C4 and Op58Cs (five clusters, both). Figure 3-10 shows the
obtained ex-vivo segmentation maps. Additionally, it is worth noticing that Op21C3 and
Op21C4, which were captured with different working distances (and hence different
focus), obtained similar segmentation maps.

’ ® Cluster1 ® Cluster2 ©® Cluster3 ©® Cluster4 @ Cluster5 CIusterG‘
P08C3 P15C2 P15C3 P21C3 P24C4 P50C2

P50C3 P56C3 P56C4 P57C3 P58C3 P58C4 P58C5

Figure 3-10: Ex-vivo segmentation maps applying K-means algorithm (colors are randomly
assigned).

After extracting the spectral signatures from the in-vivo and ex-vivo HS images,
these spectral signatures were employed to evaluate the absorbance values in the
different tissue samples. Figure 3-11 shows a comparison between in-vivo and ex-vivo
spectral signatures. To achieve this comparison, the mean spectral signatures of each
class (NT, TT, and BV) was obtained using the in-vivo HS images (solid lines).

After tumor resection, the ex-vivo samples were captured and segmented into
different clusters (named CL# in the figure), obtaining the mean spectral signatures
from each cluster (dashed lines). It can be observed that in the in-vivo samples the
absorbance values of BV pixels between 500 and 600 nm are higher than in tumor and
normal tissue, having normal tissue the lowest absorbance values. The ex-vivo spectral
signatures have different absorbance values depending on the clusters obtained in the
HS images. This can be related to differences between tissue types in the resected
sample, which can involve tumor and the surrounding healthy tissue in some cases. Ex-
vivo spectral signatures from Op21C3 and Op21C4 (CL1 (C3) - CL1 (C4) and CL2 (C3) —
CL2 (C4) in Figure 3-11.c) are overlapping indicating, in this case, that having a slightly
different focus does not affect the spectral signature. However, in Op56C3 and Op56C4
(CL1 (C3) - CL1 (C4) and CL2 (C3) — CL2 (C4) in Figure 3-11.e) the amplitudes are
similar but not overlapped, this can be produced due to both images have higher
differences in focus than Op21.
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Figure 3-11: Mean spectral signatures of the different classes labelled in the in-vivo samples
(solid lines) and the different clusters (dashed lines) obtained from the corresponding
resected ex-vivo tissue (from different captures). a) Opo8, b) Opi5, ¢) Op21, d) Op50, ) Op56, )
Op57, and g) Ops8. TT: Tumor Tissue; NT: Normal Tissue; BV: Blood Vessels; CL#: Cluster; C#: Capture;
S#: Segment of capture Opo8C3 where there are three pieces of tissue.

3.4.2 Statistical analysis of the R545/R560 spectral ratio between
in-vivo and ex-vivo samples

Figure 3-12 shows the boxplots of the R545/R560 spectral ratios obtained in the
different tissue types. These results show that, in the in-vivo samples, NT achieved
higher ratios followed by TT and BV. Additionally, it can be observed that higher ratio
values were obtained in the ex-vivo data respect to the in-vivo data. However, ex-vivo
data present high interquartile rages (IQR). Lower values of the R545/R560 spectral
ratio involve higher hemoglobin contributions, as the wavelength of 560 nm maximizes
the difference between oxyhemoglobin and deoxyhemoglobin. In this sense, it is
possible to observe that in the in-vivo samples, as expected, the blood vessel class has
the lowest ratio values, while the normal class has the highest. In the case of the tumor
class, the ratio values are lower than the normal class due to the hypervascularization
produced by the tumor.
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Figure 3-12: Boxplots of the R545/R560 spectral ratios from the different classes labelled in
the in-vivo samples and the different clusters obtained from the corresponding resected ex-
vivo tissue (from different captures). a) Opo8, b) Op15, ¢) Op21, d) Op50, e) Ops6, f) Op57, and g)
Op58. TT: Tumor Tissue; NT: Normal Tissue; BV: Blood Vessels; CL#: Cluster; C#: Capture; S#: Segment
of capture Opo8 where there are three pieces.
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3.4.3 In-vivo HbRatio-based heatmaps and vascular enhanced maps

Using the R545/R560 spectral ratios and the first and third quartiles as threshold
points, the HbRatio-based heatmaps and vascular enhanced maps were generated as
shown in Figure 3-13. A Gaussian smoothing filter was applied to the HbRatio-based
heatmaps to reduce the spatial noise in the results. In the vascular enhanced maps,
blood vessels were visually, in general, well delimited using such spectral ratios.
However, in some cases, background elements were identified as vascular, for example
in P15C2 and P57C1. In any case, this background elements can be easily identified by
the operating surgeon’s naked eye.

3.4.4 Experimental Results Discussion

To the best of our knowledge, the work presented in this section employs, for the
first time, a discrimination of different in-vivo human brain tissue structures based on
hemoglobin ratios using HSI. The ratio reflects a maximized difference between
deoxyhemoglobin and oxyhemoglobin. In addition, HbRatio-based heatmaps and
vascular enhanced maps were obtained using the first and third quartiles of
R450/R560 spectral ratio. This work analyzes the correlation between ex-vivo and in-
vivo samples of human brain tissue that, to the best of our knowledge, has not been
carried out in the literature. This correlation was performed after analyzing the optimal
cluster values in the ex-vivo samples to extract the spectral signatures.

This work would allow the development of a real-time intraoperative system for
enhanced surgical guidance and blood flow monitoring. The system could be based on
an HS camera that captures only the spectral bands used to calculate the hemoglobin
ratio, reducing the acquisition time and the high computation requirements for
processing large number of spectral bands. By reducing the spectral range, the spatial
resolution could increase, also improving the definition of the generated maps. In
addition, the identification of the blood vessels in the enhanced vascular maps could
help to improve the identification of tumor areas during surgical procedures, by
reducing the number of classes to be differentiated by a ML classifier. This fact, in
addition with the identification of the parenchymal area of the surgical scene could
achieve a binary classification between tumor and normal tissue that have been
demonstrated to be more precise than a four class-classification [125]. For this reason,
future works will involve the use of DL techniques to identify parenchymal areas in the
HS images, as well as the use of the proposed enhanced vascular maps to identify blood
vessel, allowing a better binary classification of the brain tissue between tumor and
normal parenchymal tissue.
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Figure 3-13: HbRatio-based heatmaps and vascular enhanced maps. Synthetic RGB images,
HbRatio-based heatmaps (before and after applying Gaussian smoothing filter) and vascular enhanced
maps (obtained with first and third quartiles of R545/R560 spectral ratio) from the seven HS in-vivo
images from the seven different patients.
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3.5 HSI Benchmark for Intraoperative Brain Tumor
Detection and Delineation

In this section, we demonstrate with a robust k-fold cross-validation approach that
HSI combined with the proposed processing framework is a promising intraoperative
tool for in-vivo identification and delineation of brain tumors, including both primary
(high-grade - HG and low-grade - LG) and secondary tumors. Using the enhanced in-
vivo HS human brain image database, we have analyzed the spectral characteristics of
the brain tissue (normal and tumor) and blood vessels, and the different tumor types
according to their malignancy grades (G1 to G4) and origin (primary and secondary),
performing a statistical analysis between all the medians of each spectral channel when
comparing the different classes and tumor grades and origins. Here, we provide a
benchmark for further developments in the field of in-vivo brain tumor detection and
delineation using hyperspectral imaging to be used as a real-time decision support tool
during neurosurgical workflows.

3.5.1 Spectral characterization of brain tissue

To perform the spectral characterization a basic pre-processing was applied to the
HS images: calibration, extreme band noise removal, and noise filtering. Statistical
differences were found between all the medians of each spectral channel when
comparing TT vs NT (Figure 3-14.a) and TT vs BV (Figure 3-14.b) using the Wilcoxon
Rank Sum test at 5% of significance level. High standard deviation values were
obtained in the spectral signatures due to the interpatient variability and also the
different tumor types included in the database. Additionally, the intraoperative HS data
acquisition during surgery is a complex procedure that can be affected, in some cases,
by the non-flat brain surface. These irregular surfaces can affect the illumination
conditions, and, hence, the image focus in certain areas, reducing the reflectance values
and increasing the noise of the spectral signature respect to the more focused areas. For
this reason, a complete pre-processing chain was applied to the HS data, where each
spectral signature was normalized to a minimum of zero and a maximum of one, so that
only the shape of the signature was taken into account in the computation of the
processing algorithms, avoiding differences due to uneven illumination conditions.
Additionally, a decimation process was applied to reduce the dimensionality of the data
in the spectral dimension and, hence, the computational cost of the processing
algorithms [195].

The mean spectral signatures of TT, NT, BV were converted to absorbance values
(Figure 3-15) to be represented and compared with the molar extinction coefficient of
oxyhemoglobin and deoxyhemoglobin [196]. Absorbance values of all classes increase
between 500 and 600 nm (Figure 3-15.a-c-e), due to the existence of two
oxyhemoglobin absorbance peaks (~540 and ~575 nm) and one deoxyhemoglobin
absorbance peak (~555 nm) in this spectral range [197]. Particularly, oxyhemoglobin
peaks in BV are not detected (Figure 3-15.e), probably because we labelled veins and
arteries indistinctly, mixing oxy and deoxyhemoglobin characteristics. Higher
absorbance values were found in TT with respect to NT, but lower than BV. Moreover,
an absorbance peak was found at ~760 nm (Figure 3-15.b-f) related to
deoxyhemoglobin [198], [199]. Our spectral data reveal that the contribution of
deoxyhemoglobin is the highest in BV (Figure 3-15.f), having a lower contribution in TT
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(Figure 3-15.b). However, this contribution is not found in NT (Figure 3-15.d). This
difference between NT and TT could be mainly related to the lack of oxygenation in the
brain tissue affected by cancer [200].
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Figure 3-14: Spectral characterization of different brain tissue. Mean and standard deviation
(std) of the entire labelled dataset after applying a basic pre-processing (calibration, extreme band noise
removal, and noise filtering) and separated by classes, including the corresponding p-value computed for
each spectral channel using the Wilcoxon Rank Sum test at 5% of significance level between the two
compared classes. a) TT vs NT class, b) TT vs BV class.
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Figure 3-15: Spectral characterization of tumor tissue, normal tissue, and blood vessels
classes and their relationship with deoxyhemoglobin (Hb) and oxyhemoglobin (HbO:). Mean
absorbance values of the entire labelled dataset separated by classes (solid) after applying a basic pre-
processing (calibration, extreme band noise removal, and noise filtering) and molar extinction spectra
(dashed) of Hb and HbO2. a) Tumor tissue (TT) between 440 and 650 nm. b) TT between 650 and 910
nm. ¢) Normal tissue (NT) between 440 and 650 nm d, NT between 650 and 910 nm. e) Blood vessels (BV)
between 440 and 650 nm. f) BV between 650 and 910 nm.
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3.5.2 Spectral characterization of different brain tumor types

As stated in the introduction section, brain tumors can be subdivided into different
subtypes depending on their origin (primary/secondary) or the grade of malignity in
the case of primary tumors. Regardless of tumor grade and origin, there is an
absorbance peak (reflectance valley) around 760 nm (Figure 3-15) related to
deoxyhemoglobin [198]. Secondary tumors present lower standard deviation values
than primary ones (Figure 3-16.a). However, this fact can be related to the reduced
number of patients affected by secondary tumors in our database, and the reduced
number of labelled pixels with respect to the primary type. Despite of this, statistical
differences between the medians of each spectral channel were found at 440-599, 602-
756 and 769-909 nm spectral ranges. HG and LG primary tumors present similar
reflectance and standard deviation values (Figure 3-16.b). Nonetheless, statistical
differences were found at 466-510, 522-549, 559-572 and 580-909 nm spectral ranges
(Figure 3-15.b). Considering the tumor grades of primary tumors, statistical differences
were found between the medians of all spectral channels of G1 and G2 tumors (Figure
3-16.c), whereas in the case of G3 and G4 tumors (Figure 3-16.d), only the 440-460,
578-644, 745-764 and 779-909 nm spectral ranges were found to be statistically
different.
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Figure 3-16: Spectral characterization of different tumor types. Mean and standard deviation
(std) of the entire labelled dataset after applying a basic pre-processing (calibration, extreme band noise
removal, and noise filtering) and separated by classes, including the corresponding p-value computed for
each spectral channel using the Wilcoxon Rank Sum test at 5% of significance level between the two
compared classes. a) Primary vs. secondary tumors. b) HG vs. LG primary tumors. ¢) G1 vs. G2 primary
tumors. d) G3 vs. G4 primary tumors.

~ 60 ~



Chapter 3: Intraoperative HS acquisition system for brain surgical diagnostics and guidance

3.5.3 Supervised Classification Algorithms

ML algorithms used in this work were based on SVM, RF, and KNN classifiers
(Section 2.4.2), while the DL algorithm employed was a two-layer one-dimensional
DNN (Section 2.4.2). Moreover, two unmixing-based algorithms were studied (EBEAE
and NEBEAE) (Section 2.4.3). Linear and RBF kernels were employed in the case of
SVM algorithm and the hyperparameter optimized were cost (C) in both kernel, and
gamma (y) in RBF kernel. The optimization of the RF model was performed by
searching for the most appropriate number of trees (7). For the KNN classifier, we
employed the Euclidean and Cosine distance metrics and the hyperparameter to be
optimized in each case was the number of nearest neighbors (N). The DNN was
composed by two hidden layers, followed by a batch normalization layer, using the
rectified linear unit as an activation function. The learning rate was established to 0.1,
and the network was trained for 300 epochs. The output size (L) of the hidden layers
was optimized. This DNN structure was studied in a previous work and compared with
a two-dimensional CNN implementation, achieving the DNN the best performance
[125]. For the EBEAE and NEBEAE algorithms, the characteristic endmembers were
estimated by each algorithm. The estimation process was performed using the labelled
pixels from the training set. The representative number of endmembers was two for
NT, two for TT, one for BV and three for BG, while the hyperparameter p was set to 0.3
for NT, 0.2 for TT, and 0.01 for BG [126]. The endmember of the BV class was obtained
by calculating the average of all labelled pixels in that class. In both algorithms the
entropy weight (y) hyperparameter was optimized during the estimation of the
complete abundance matrix.

3.5.4 Data Partition and K-Fold Cross-Validation

Due to the high computational cost required to train several of the selected
classifiers, a methodology based on the K-Means algorithm was used to reduce the
number of pixels in the training set, balancing the classes, avoiding the inclusion of
redundant information, and drastically reducing the training execution time [195]. In
this approach, K-means clustering is applied independently to each class of labelled
pixels in the training set to obtain 100 different clusters (K = 100) per class empirically
selected (in this work, 400 clusters in total related to the four classes: NT, TT, BV, and
BG). Thus, 100 centroids corresponding to a particular class are obtained. To reduce
the original training data set, these centroids are used to identify the most
representative pixels of each class using the SAM algorithm. For each centroid, only the
n most similar pixels are included in the reduced training set. Figure 3-17 shows the
block diagram of the proposed training data reduction approach. In this work, three
different number of similar pixels were evaluated (n € {10, 20,40}), generating three
different training sets composed by 1,000, 2,000, and 4,000 pixels per class (100
centroids x n pixels). The total number of labelled pixels in the HS images from the
validation and test sets was used for the quantitative evaluation of the processing
framework (Table 3-5). This approach was evaluated in a previous work, where
different metrics were compared with respect to the completed training set. The results
obtained in such work revealed that the OA did not present a relevant change between
using the full and reduced training sets, however, the accuracy of TT class improved by
up to ~20% and the execution time when training the classification model was
drastically decreased (a speedup of ~48x) when using the reduced training set [195].
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Three different training sets were obtained using this methodology composed by 1,000,
2,000, and 4,000 pixels per class. The total number of labelled pixels in the HS images
from the validation and test sets was used for the quantitative evaluation.
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Figure 3-17: Block diagram of the training dataset reduction algorithm that employs K-
means and SAM algorithms.

Table 3-5: Summary of the total number of labelled pixels per class and fold divided by
training, validation, and test sets.

d # Labelled Pixels
#Fo NT | TT | HT | BG [ Total
Training Set
1 179,536 32,006 71,578 316,587 599,707
2 122,166 23,729 48,459 305,504 499,858
3 184,524 20,543 81,757 227,404 514,228
4 231,083 32,143 80,107 332,824 676,157
5 228,518 17,712 70,655 302,677 619,562
Validation Set
1 39,410 3,555 9,548 43,357 95,870
2 77,240 4,513 28,326 88,002 198,081
3 81,427 8,860 20,533 78,133 188,953
4 48,307 1,979 15,345 45,151 110,782
5 44,229 4,260 17,048 31,033 96,570
Test Set

1 90,164 1,764 29,713 82,724 204,365
2 109,704 9,083 34,054 49,162 202,003
3 43,159 7,922 8,549 137,131 196,761
4 29,720 3,203 15,387 64,693 113,003
5 36,363 15,353 23,136 108,958 183,810

In contrast to previous works that employed a leave-one-patient-out cross-validation
using a reduced database [125], in this study we robustly evaluate the classification
performance of the proposed approach by using a three-way data partition performed
at patient level, dividing the HS database into training (60%), validation (20%), and
test (20%) sets. Additionally, five different folds were created to achieve more robust
results due to the limited number of patients. This data partition was performed
randomly using the patients’ identifiers as instances, where each patient could have
more than one HS image (Figure 3-18 and Table 3-6). Labelled data were employed to
train the classification models (training set), to optimize their hyperparameters
(validation set), and to quantitatively evaluate the results using unseen HS data (test
set). The hyperparameter optimization of each algorithm was performed in each fold
independently, evaluating the results with their respective validation sets and using the
macro F1-Score metric and performing a coarse search. The optimal hyperparameters
were selected using the best macro Fi-Score result (Section 2.4.4.3) of each fold
without considering the BG class.
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Total
(n=61,m=34)
v v v v ¥
1st Fold 2 Fold 3rd Fold 4th Fold 5th Fold
Training: n = 34; m = 23 Training: n = 37; m = 22 Training: n =41; m = 22 Training: n = 45, m = 22 Training: n =41; m = 22
Validation:n =10, m=5 Validation:n =11, m=5 Validation:n =8 m=5 Validation:n =7, m=5 Validation: n =10, m=5
Testtn=17,m=6 Testtn=13;m=7 Testn=12m=7 Testn=9,m=7 Test:n=10,m=7

Figure 3-18: Proposed data partition employing the enhanced in-vivo HS human brain
image database. The database was split into 5 folds. Each fold contains training, validation, and test sets.

Table 3-6: Data partition detail of the 5 folds, divided into training, validation, and test sets.
Different captures from the same patient were included in the same set.

#Fold Training Patients Validation Patients Test Patients
(#Total Images) (#Total Images) (#Total Images)
. . . Op4*, Op8, Op22, Op39, O Op10*, Opi16*, Op21, Op37,
1 Remaining 23 patients (34) (1?)‘)‘ p p22, Up39, Up4l 054112 OPSI;‘ ) p21 p37
.. . Op37, 041, Op42, Op50, Op58 | Op4*, Opi12, Opi7*, Op22,
2 Remaining 22 patients (37) (111)537 4 p4 PS5 P> 0538 Opi);, OPSEI)) (ZS) p

Op4*, Op36, Op43, Op53, | Op5*, Op13*, Opi18*, Op34,

3 Remaining 22 patients (41) Op57 (8) 0p39, 0p50, Op56 (12)
. . . Op1o, Op18, Op36, Opso0, | Op7*, Opi4, Opi9*, Op35,
4 Remaining 22 patients (45) 0554 ) P p3 PS5 ng o Opg 13 Op{})7 ((99) P35
.. . Op10*, Op35, Op37, O 0, | Op8, Opi5, Op20, Op36, Op41,
5 Remaining 22 patients (41) 0550 (10)p35 p37, Up 4 055 3 (I))Il)gg (11)0) p3 P4

*indicates patients without tumor samples labelled.

3.5.5 Brain tissue classification based on spectral information.

The enhanced in-vivo HS human brain image database was used to perform
classification based on spectral information. The previously presented supervised
classification algorithms (Section 3.5.3) were trained using the three training sets and
following the previously presented data partition (Section 3.5.4) to achieve this spectral
classification capable of distinguishing between the four different classes.

First, three different training sets were evaluated with different number of balanced
pixels in each class (1,000, 2,000 and 4,000 pixels per class) as explained before. No
statistically significant differences were found between the three training data
reductions (Figure 3-19.a). Hence, the use of 1,000 pixels per class allowed to reduce
the time required for training the model (particularly for the SVM-based
implementations) without compromising the classification performance. For this
reason, we selected this training data reduction for the subsequent experiments.
Additionally, our results show that statistically significant differences were found
between the unmixing-based methods and the ML-based ones, obtaining both the
unmixing-based algorithms lower classification performance. The highest median
macro Fi-Score result was obtained with the SVM-RBF model (78.4+5.1%), but no
statistically significant differences were observed between this algorithm and the others
(except for EBEAE and NEBEAE). The highest average OA was also reached by the
SVM-RBF (91.5+4.7%), but the highest TT sensitivity (65.9+13.1%) was obtained with
the Figure 3-19.b. Average specificity results were higher than 90% for the ML and DL-
based approaches.
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Figure 3-19: Spectral classification results of brain tissue. a) Boxplots of the macro Fi-Score
results of the validation set for each training data reduction and each classifier, including the five folds
using the optimal hyperparameters in each classifier. Two medians are significantly different at the 5%
significance level if their intervals (shaded color areas) do not overlap. b) Average OA, sensitivity, and
specificity results of the validation set from the 5 folds using the data reduction of 1,000 pixels per class. c)
Examples of synthetic RGB (SRGB) images, ground-truth (GT) maps and supervised classification maps
generated using the eight algorithms with the optimal hyperparameters from different tumor types of the
validation set. Approximate tumor areas were surrounded in yellow on the SRGB image by the operating
surgeon according to the intraoperative neuronavigation and the definitive pathological diagnosis of the
resected tissue. Rubber ring markers were employed in some cases (e.g., Op8C1) to indicate the area where
the biopsies for pathology were resected. Opx: Operation number; Cy: Capture number.
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Qualitative results, extracted from the validation set and obtained after applying the
supervised classification model (generated using 1,000 pixels per class and the optimal
hyperparameters) to the entire HS image, show the pixel-wise identification of both
labelled and non-labelled pixels (Figure 3-19.c). As expected, according to the
quantitative results (Figure 3-19.a,b), the unmixing-based methods (EBEAE and
NEBEAE) increase the number of false positives and false negatives in the classification
maps, particularly in Op35C1 employing EBEAE, where the normal tissue is identified
as tumor, and Op57C1 using NEBEAE, where tumor areas are identified as normal
tissue. The remaining classifiers achieve more consistent results, although the SVM-
based and DNN algorithms improve the identification of the tumor areas in Op42C2
and Op57C1 (only using SVM-L and DNN).

3.5.6 Brain tumor identification and delineation based on spatial-
spectral information.

In order to develop this HSI benchmark using the enhanced in-vivo HS brain
database, a spatial-spectral approach was employed based on a combination of a
dimensionality reduction, a supervised classifier, a spatial filtering, an unsupervised
segmentation, and a Majority Voting (MV) algorithm to merge the results from both
supervised and unsupervised approaches (Figure 3-20).

Supervised Classification
(SVM-L, SVM-RBF, KNN-E,
KNN-C, DNN, EBEAE, NEBEAE)

Preprocessing
Raw HS Data

Spatial Filtering
(KNN Filter)

Spatial/Spectral )
Classification Three Maximun

Dimensional Reduction (Majority Voting) Density Map

(PCA - 1% component)

7

Figure 3-20: Proposed processing i’rmework to generate the density maps for
intraoperative pathology-assisted surgery.

This approach has been used in previous works [70], [125] to prove that the use of
the spatial information available in the HS images helps to improve the classification
results and to reduce the misclassified pixels found in the supervised classification
maps created using only the spectral information. In this work, the PCA algorithm was
employed for dimensionality reduction [123], obtaining a one-band representation of
the pre-processed HS image. The spatial filtering aims to improve the supervised
classification including the spatial features. The KNN filtering algorithm was employed
using the previously studied parameters (A = 1 and K = 40) [70] and a window size of 8
rows using the Euclidean distance [201]. The probability maps from the supervised
classifier and the one-band representation are the inputs of this algorithm. The K-
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means algorithm was used as the unsupervised segmentation method to identify K
different clusters into the HS images (K = 24 according to a previous work [70]).
Finally, the MV algorithm is used to merge the results obtained from the spatial-
spectral supervised classification and the unsupervised segmentation, using a color
gradient approach to create the Three Maximum Density (TMD) maps [70]. MATLAB®
Statistics and Machine Learning Toolbox was employed to implement the K-means,
PCA and KNN filtering algorithms.

Following this approach, we have compared the quantitative results of the validation
set (Figure 3-21.a) by using only the spectral information (Spectral), by applying the
KNN filtering to include also the spatial information (Spatial/Spectral) and by
combining the spatial-spectral supervised -classification with an unsupervised
segmentation through a MV (Majority Voting) approach. Our results reveal that the
inclusion of the spatial information increases the median macro F1-Score results (an
increment between 0.4 and 7.7%), reducing the standard deviation (an increment
between 0.2 and 3.7%), in all algorithms, except for the unmixing-based approaches.
However, no statistical differences were found between these results. Additionally, it is
worth noticing that the Majority Voting results achieved lower median results and
increased the standard deviation. Nonetheless, this lower performance could be
motivated by the construction of the output classification map in the MV approach,
which is obtained by considering only the majority class assigned to each cluster of the
unsupervised HKM map. At the Spatial/Spectral stage, the SVM-RBF reached the
highest average OA (92.3+4.6%), but the DNN obtained the best average TT sensitivity
(68.9+14.3%), closely followed by the SVM-L algorithm (67.7+19.3%) (Figure 3-21.b).

The qualitative results of each step of the proposed algorithm have been analyzed,
where the supervised map represents, as an example, the classification map generated
using only spectral information with the DNN method (Figure 3-21.c). The PCA map
represents, in a false color intensity map, the first principal component where the more
important information contained in the HS image is relocated in a low dimensional
space. For example, in Op8Ci1, the tumor area is partially highlighted with more
intensity values (between the two rubber ring markers on the right of the image). The
KNN-Filtered map offers a smoothed version of the supervised map, where the spatial
properties of the HS image are used (by combining the information of the probability
maps generated by the supervised classifier and the PCA map). This approach reduces
the granularity of the supervised map, providing more homogeneous class regions. This
Spatial/Spectral classification was combined with an unsupervised segmentation
(HKM map) that identifies 24 different regions (or clusters) in the HS image according
to their similar spectral characteristics, providing a very accurate delineation of
different structures but without any identification of the tissue, material, or substance
that each cluster represents. For this reason, the information provided by the HKM
map was merged with the KNN-Filtered map by means of a MV approach [70], where
each cluster is labelled by the majority class within it. In the MV map (Figure 3-21.c),
the boundaries between different class regions are determined by the HKM map, while
the identification of each cluster class is defined by the KNN-Filtered map. However, in
these maps, only the information relative to the class with the majority number of
pixels in each cluster is shown. Hence, as a surgical visualization tool, we proposed to
combine the information provided by the three maximum probability values (classes
NT, TT, and BV) of the MV approach, by mixing the RGB colors in each cluster
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according to the percentage of pixels covered by each class in such cluster (i.e., the R
channel corresponds to the percentage of TT pixels, the G channel to NT pixels, and the
B channel to BV pixels). For example, a cluster represented by a bright red, green or
blue color denotes it belongs to only one single class (TT, NT, or BV, respectively). In
contrast, any other color represents a combination of classes in a cluster (e.g., purple
color represents a mixture between TT and BV classes that commonly happens in
certain blood vessels, hypervascularized areas or extravasated blood, see Op42C2,
Op35C2 or Op57C1). This resulting map is called TMD map [70] (Figure 3-21.c).
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Figure 3-21: Quantitative and qualltatlve results at the dlfferent stages of the proposed
framework in the validation set. a) Macro F1-Score of the validation set using the eight different
classifiers at the three different stages. Two medians are significantly different at the 5% significance level
if their intervals (shaded color areas) do not overlap. b) Average OA, sensitivity, and specificity results of
the validation set from the 5 folds using the Spatial/Spectral approach. ¢) Example of SRGB images and
output maps from different tumor types of the validation set at the different stages of the proposed
framework (based on the DNN as supervised algorithm using the optimal hyperparameters).

After performing all the analysis and hyperparameter optimizations of the
algorithms using the validation set, the test sets of the different k-folds were evaluated
(Figure 3-22.a). Quantitative results of the macro F1-Score metric show, as expected, a
performance reduction in the test set of 0.5-1% respect to the validation one, providing
the best median score of 70.2+6.3% using the DNN algorithm in the Spatial/Spectral
approach. Similar average OA results are obtained using SVM-L (86.6+5.5%) and DNN
(86.8+3.4%) as supervised classifiers, while a slight increase of the SVM-L average TT

sensitivity (57.8+23.7%) respect to the DNN (54.7+21.9%) is obtained (Figure 3-22.b).
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Specificity average results are in general higher than 90% in all ML and DL-based
approaches for all classes.
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Figure 3-22: Quantitative results at the different stages of the proposed framework and
qualitative TMD classification maps in the test set. a) Macro F1-Score of the test set using the eight
different classifiers at the three different stages. Two medians are significantly different at the 5%
significance level if their intervals (shaded color areas) do not overlap. b) Average OA, sensitivity, and
specificity results of the test set from the 5 folds using the Spatial/Spectral approach. ¢) Examples of SRGB
images, ground-truth maps and TMD maps from different tumor types (based on the DNN as supervised
algorithm using the optimal hyperparameters).

Some examples of the TMD maps of the test set (Figure 3-22.c) show that the GB
cases (Op12C1, Op15C1, Op39C2, Op43C1, and Op43C2) delineate in red the tumor
areas, as expected by neurosurgeons (marked in yellow over the synthetic RGB images).
Particularly, Op15C1 presents some decolored red/orange/purple areas that could

represent the infiltrative nature of GBM tumors in the surrounding tissue. Moreover,
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the surrounding blue areas could be related to the hypervascularized tissue that
surrounds the tumor, also including the blood vessels in such regions (Op15C1 in Figure
3-22.¢). The same fact can be visualized in Op12C1, Op43C1, and Op43C2. In the case of
Op20C1 and Op39C1, the tumor is somehow revealed but not as a red area, since the
tumors are located in a deep layer of the brain tissue. Op20C1 has not an additional
image captured after the resection started, since the tumor resection in such location of
the brain could cause serious damages and side effects to the patient, and, additionally,
the tumor boundaries were not clear enough to perform a secure and effective
resection. For such reason, the operating surgeon decided not to operate the patient,
prevailing the quality of life of the patient over the tumor resection. On the contrary,
after Op39C1 was captured, the operating surgeon continued the tumor resection, and a
second image (Op39C2) was captured during resection, where it is possible to observe
the correct delineation of the tumor area in a bright red color. This was also the case of
Op43, but before starting the resection, the tumor was clearly visualized in the brain
surface, showing a possible infiltration in the surrounding tissue (orange/purple color
in the upper-left part of the tumor area).

Moreover, we qualitatively evaluated some examples of test cases not related to
high-grade gliomas (Figure 3-22.c). Firstly, Op35C1 presents a healthy brain surface,
since the tumor was in a deep layer, where there are no false positives in the
parenchymal area, only those related to extravasated blood surrounding the
parenchymal area. In Op35C2 and Op41C2, it is possible to observe that the proposed
algorithm can identify not only high-grade tumors but also low-grade tumors, a G2
oligodendroglioma and a G1 ganglioglioma, respectively. Finally, secondary tumors are
also detected by the proposed algorithm, as shown in Op35C1 where a metastatic breast
carcinoma is identified, although some false positives surrounding the parenchymal
area are also presented. These false positives could be produced because of the low
quality of the image, where an optimal focus was not achieved.

3.5.7 Experimental Results Discussion

The work presented in this section demonstrates the high potential of HSI for in-
vivo identification of brain tumor tissue and its boundaries during neurosurgical
operations. Employing enhanced in-vivo HS human brain image database, which
include three data acquisition campaigns, of exposed brain surface with respect to
previous works [70], [77], [123], [125], [126], we have analyzed the spectral
characteristics of the brain tissue (normal and tumor) and blood vessels, and the
different tumor types according to their malignancy grades (G1 to G4) and origin
(primary and secondary), performing a statistical analysis between all the medians of
each spectral channel when comparing the different classes and tumor grades and
origins. Moreover, a robust 5-fold cross-validation approach was used to evaluate eight
different processing algorithms, first using only spectral information, and then using
both spatial and spectral information following a processing framework that we
previously developed [70].

The spectral-based classification results obtained using the validation set (Figure 3-
19.a) showed that SVM-based and DNN methods provided the best macro Fi-Score
results, although no statistical differences were found among the other classifiers
(except for the unmixing-based methods, which provided less accurate results). The
qualitative results (Figure 3-19.c) demonstrate the ability of the proposed HSI-based
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system to identify not only high-grade gliomas (Op8C1), but also other low-grade
tumors (Op42C2 and Op35C2) and secondary tumors (Ops7C1). Moreover, these
results show the capability of HSI to accurately highlight the vascularization of the
brain surface, being especially remarkable in Op35C1 and Op42C2.

It is worth noticing that HS images captured in suboptimal acquisition conditions,
such as a lack of correct focus or illumination, can introduce inappropriate spectral
signatures for training the algorithms and can produce inaccurate classification maps.
This limitation is particularly evident in deep-layer tumors (Figure 3-23), where it was
not possible to correctly focus the entire area of interest by using our pushbroom-based
HSI system. In the case of Op37C2 (Figure 3-23.a), due to uncertainty at the time of
labelling the tumor pixels in the center of the image, only NT, BV, and BG classes were
labelled. The average spectral signatures (Figure 3-23.b) reveal an acquisition problem,
possibly related to a lack of proper illumination, as the reflectance values in the three
classes decrease dramatically in the infrared range (>700 nm). However, the DNN
method seems to overcome this handicap and correctly identify the tumor area even
using this non-optimal HS image.
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Figure 3-23: Examples of the limitations related to deep-layer tumors. a) Example of synthetic
RGB images, ground-truth (GT) maps and supervised classification maps created using the EBEAE and
DNN algorithms with the optimal hyperparameters from a deep-layer tumor captured in non-optimal
conditions in the validation set. b) Average spectral signatures of the GT pixels from (a).

The inclusion of spatial information improved the macro Fi-Score medians
compared to using only spectral information, although no statistical differences were
found between these results (Figure 3-21.a). After performing the hyperparameter
optimization process using the validation set, the test data of each k-fold were
processed providing both quantitative and qualitative results (Figure 3-22). The
processing framework based on the DNN algorithm in the Spatial/Spectral approach
provided a macro Fi-Score of 70.2+7.9%, representing, as expected, a performance
reduction of 3.6% respect to the validation results. Qualitative test results demonstrate
the ability of the proposed framework to identify not only HG gliomas (e.g., GB), but
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also LG and secondary tumors (e.g., G2 oligodendroglioma, Gi1 ganglioglioma,
metastatic breast carcinoma in Figure 3-22.c) and also extra-axial tumors (e.g., G1
meningioma).

The processing of the test dataset allowed us to identify some HS image cases where
the data acquisition conditions were not optimal, producing some errors in the
classification results (Figure 3-24.a), which may degrade the quantitative results of the
test sets. We found that in Op55C1 and Op55C2 the classification results identified
most of the pixels as tumor, and only some parts related to background (Figure 3-24.a).
After evaluating the spectral signatures of the labelled pixels in such HS images, we
found some differences in the infrared region (from 700 to 900 nm) with respect to the
other images. This unusual behavior was found also in Op56C2, where there is a
decrease in the reflectance values of the labelled spectral signatures in the same
infrared region (Figure 3-24.b), also producing wrong classification results where the
parenchymal area is identified as background (Figure 3-24.b). The low sensitivity of the
HS sensor in this spectral range, coupled with a possible misalignment of the light
beam with the lens (due to an improper focusing), could lead to this decrease in
reflectance.
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Figure 3-24: Examples of the limitations of the proposed framework after processing the
test set. a) Example of SRGB images, ground-truth (GT) maps and TMD maps (based on the DNN
algorithm) from HS images captured in non-optimal conditions in the test set. b) Average spectral
signatures of the GT pixels from (a).
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Despite these limitations, we have demonstrated with a robust classification
validation approach, the potential benefits of HSI for brain tumor tissue identification,
targeting a diagnostic support system for guiding neurosurgical interventions in real-
time. In previous works, we demonstrated that it is possible to achieve near real-time
HS data processing using graphical processing units, achieving processing times of ~6 s
[202]. The proposed intraoperative HSI-based acquisition system must be optimized in
further works by reducing the HS camera size, employing a snapshot-based HSI
technology (which is able to capture the entire HS cube in a single shoot, providing also
real-time performance) and integrating it into a surgical microscope. This new
experimental setup will guarantee an improvement of the HS image quality to solve the
focus problems, especially for deep-layer tumors. Additionally, an extensive clinical
validation of the proposed framework must be carried out, employing a large number of
patients and a multi-center trial. This clinical validation will perform a comprehensive
pathological analysis of the entire tumor area outlined by the TMD map (especially in
the boundaries between tumor and the surrounding normal tissue), as well as correlate
the results with the MRI information to verify that the system can adequately identify
tumor infiltration into normal brain tissue, especially in HG gliomas. Additionally, the
relation between the improvement of the patient outcomes and the use of the proposed
system during the surgery could be studied through the clinical validation.

3.5.7.1 Comparison with previous related works in HSI

Different previously published works used the first data campaign from the in-vivo
HS brain database employed in this work. Different frameworks were employed using
supervised and unsupervised machine learning methods to perform a classification and
also different methodology were used as intra-patient or inter-patient. In [70] the
spatial/spectral framework (Section 3.5.6) achieved an overall accuracy of 99.7% using
5 HS images from 5 patients an intra-patient methodology, which commonly provides
unrealistic optimistic results. Later, the work was tested using the complete first data
campaign (36 HS images from 22 patients), but only a qualitative analysis of the results
was performed [123]. A DL approach was proposed to identify glioblastoma tumors
obtaining an OA of 80% following an inter-patient approach using 26 HS images from
16 patients. In [203] was employed EBEAE with 26 HS images from 16 patients, where
only 6 HS images contained tumor tissue pixels labelled, achieving an OA of 76.1%
using a leave-one-patient-out cross-validation methodology. Later in [77], NEBEAE
approach was tested performing an intra-patient validation process using 2 HS images
from different patients. An OA of 97.9% was achieved, providing again unrealistic
results that cannot be employed in a real-world scenario. Finally using the same
database, in [127] it is proposed a method to use the spectral and spatial information to
identify glioblastoma, achieving an OA of 96.6% for four-class classification and OA of
96.3% for glioblastoma identification adopting a leave-one-patient-out cross validation
technique using 7 HS images from 5 patients.

Using the system presented in [129] and using 13 HS images from 12 patient, SVM
model achieved a OA result of 60.0% using an intra-patient approach. Using the same
HS database, a comparison between non-optimized models and optimized models was
performed using an intra-patient approach with 10 HS images from 9 patients [130].
The study showed that the RF results did not provide significant improvement when
the model was optimized with any of the three optimization methods. However, the
optimized SVM model improved the tumor identification. In [131], the classification
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results obtained from the HS images were overlapped with the RGB point cloud
captured by the LiDAR camera and presented in an augmented reality visualization.

In the field of surgical microscopes combined with HS cameras, in [204] a proof of
concept was performed with a single HS image using an RF classifier to discriminate
different tissues using a 5-fold stratified cross-validation methodology and achieving an
overall accuracy of 99.1%, again providing unrealistic results to be extrapolated in real-
world scenarios. In [132], as a proof of concept, two HS images of in-vivo glioma
tumors were labelled and used to train and test different ML algorithms, achieving the
best OA of 98.3% and an accuracy to identify the glioma class of 97.7% using the light
gradient boosting machine algorithm. Finally, in [134] different algorithms were used
(RF, SVM, and DNN), obtaining an OA of 92.0% using an intra-patient methodology
from 18 HS images from 5 patients.

Table 3-7 summarize and compare the current studies found in the literature which
employs HSI for in-vivo brain tumor detection. In particular, a significant number of
studies are based on small datasets and focus primarily on the identification of high-
grade tumors. Moreover, these studies are developed to utilize an intra-patient
framework. In contrast, our work uses an extensive and diverse database that includes
the four tumor grades and different tumor types, both primary and secondary. The use
of this database and the validation framework based on an inter-patient approach and a
three-way data partition (training, validation, and test) combined with a 5-fold cross-
validation approach, allow us to obtain robust results mitigating the risk of overfitting
commonly caused by Al-based algorithms.

Table 3-7: Summary of the studies which employs HSI for in-vivo brain tumor detection.

HSI Wav. Validation o Tumor
Ref. | Yr. System | (nm) | *B [*P|*] TG| PV Methodology OA (%) | accC (%)
[70] |2018Pushbroom|400-1,000{826 | 5 | 5 | 4 ;:ttireit 10-fold CV 99.7 99.5
1,2, | Inter- Training/test
[123] |2018[Pushbroom(400-1,000| 826 |26 (43 3, 8 4| patient (85%/15%) n/a n/a
[125] |2019[Pushbroom|400-1,000| 826 |16 |26| 4 ;};[tizrr;t LOPO-CV 80.0 42.0
[126] [2020[Pushbroom|400-1,000| 826 |16 |26| 4 ;:tti?;t LOPO-CV 76.1 n/a
[127] |2021[Pushbroom{400-1,000|826 |5 |7 | 4 pI:arllttizrr;t LOPO-CV 96.6 96.3
Pushbroom| Intra- Training/test
[128] |2021| - Surgical |500-1,000{ 100 | 1 | 1 | 3 atient (80%/20%) + 99.1 n/a
Microscope P 5-fold CV
Intra- Training/test
[129] |2021| Snapshot | 655-975 | 25 |12[13|3& 4 patient | (80%/20%) +5-fold CV 60.1 73.0
[77] |2022[Pushbroom{400-1,000|826 |2 | 2 | 4 ;};[tii;t n/a 97.7 n/a
; Intra- Training/test n/a
[130] |2022| Snapshot | 655-975 | 25 | 9 [10|3 & 4 patient (80%/20%) (AUC=08.6%) n/a
: Intra- Training/test n/a n/a
[131] [2023) Snapshot | 655-975 | 25 |12]13|3&4 patient (80%/20%) (AUC=95.2%)| (AUC=95.1%)
[132] |[202 Srslaps}g— 00-900 |n/a|1 |2 [1& Intra- Training/test 8
3 3Mi(131:0gslc0pe 500-9 a 3 patient (75%/25%) 98.3 97.7
Snapscan - ..
. Intra- Training/test
[134] 2023M§§:(§51§?)1)e 470-780 (104 | 5 [18 |1 &2 patient (70%/30%) 92.0 n/a
This L2 Inter- 3-way data partition
work 2023[Pushbroom|{400-1,000| 826 (34|61 3, & patient (60%/2f0;/21/é€7%)+5_ 86.8+3.4 | 57.8+23.7
0

4
ACC: Accuracy; AUC: Area Under the Curve; B: Band; CV: Cross-validation; I: Image; LOPO: Leave-one-patient-out;

n/a: Not Available; OA: Overall accuracy; P: Patient; PV: Patient Variability; Ref.: reference; TG: Tumor Grade; Wav.:
Wavelength; Yr.: year.
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3.6 VNIR-NIR Hyperspectral Imaging Fusion targeting
Intraoperative Brain Cancer Detection

As stated in Section 2.3, HS cameras generally use CCD or CMOS sensors to cover
the spectral range between 400 and 1000 nm (VNIR), while InGaAs and MCT sensors
are used to cover the range from 900 to 1700 nm (NIR) and 900 to 2500 nm (SWIR),
respectively [2]. Thus, to obtain a broadband spectral range image, more than one HS
sensor is required, involving image registration and fusion algorithms to generate a
combined HS image.

On the one hand, image fusion techniques are used in many applications to merge
information from different sensors with the goal of improving the classification or
segmentation results [205]. Usually this image fusion procedure is performed using MS
images, which have high-spectral but low-spatial resolution, combined with
panchromatic images, which have high-spatial but low-spectral resolution, to obtain a
new fused image with high-spatial and high-spectral resolution [206]. Spectral fusion is
applied to combine the spectral information from different sensors aiming to obtain an
HS image with a broadband spectral range. This approach has been employed to
identify geographical origins of herbal medicines [207] or to identify metallic alloys
from the recycling industry [208].

On the other hand, image registration techniques have the goal to match two or
more images of the same scene obtained by using different sensors or devices. The
image registration is a necessary step to correctly perform the image fusion. Image
registration methods can be classified into two groups: intensity-based and features-
based techniques [209]. The former uses the intensity values of the image to find
similarities between the images in the scene to perform the registration. This technique
is widely used to register Computerized Tomography (CT), MRI with PET images,
among other imaging modalities for computer-aided diagnosis, e.g. in brain tumor
detection [210], [211]. The latter uses the morphological structures presented in the
image to extract points, lines, curves, etc. to find similar features in the images and
perform the image registration. There are different feature detectors and extractors,
including Scale Invariant Feature Transform (SIFT) [212], Features From Accelerated
Segment Test (FAST) [213] or Harris detector [214]. All these methods have been
widely used in the literature due to they are robust and automatic feature extraction
algorithms [215]. Features-based technique have been used in fusion information from
different sensors or image mosaic technology [216], [217].

The proposed method is composed by two main stages: 1) VNIR-NIR spatial
registration; 2) VNIR-NIR spectral fusion (Figure 3-25). In the first stage, the VNIR
and NIR raw images are pre-processed applying image calibration to avoid the
influence of environmental illumination, noise filtering and band removing to reduce
the noise in the spectral signatures due to the camera sensor performance (especially in
the extreme bands). After that, the NIR image is upsampled to reach the VNIR pixel
size, allowing to perform the image registration using a transformation model
previously generated. In this transformation the fixed image is the VNIR, and the
moving image is the NIR. When both VNIR and NIR images are registered, both images
are cropped to obtain the same coincident ROI. Finally, in the last stage, the spectra
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from both VNIR and NIR images are combined, applying a reflectance offset to the NIR

spectrum,

to perform the spectral fusion and generate a single HS image.
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Figure 3-25: Block diagram of the proposed processing framework based on VNIR-NIR
spatial registration combined with spectral fusion. NIR: Near-Infrared; VNIR: Visual and Near-
Infrared; ROI: Region of Interest; W: Width; H: Height; HS: Hyperspectral.

3.6.1 VNIR-NIR fusion reference image database

Different HSI datasets were collected using the demonstrator described in Section
3.2 to develop and validate the proposed VNIR-NIR fusion method. Three different
datasets were acquired (Figure 3-26).

The HSI registration dataset was composed by seven HS images obtained
from four different spatial patterns, i.e., a shooting target and patterns based
on brain morphological structures (Figure 3-26.a).

The HSI spectral reference dataset (Figure 3-26.b) was composed by six HS
images obtained from three different Spectralon White Diffuse Reflectance
Standards (Labsphere Inc., North Sutton, US) with a reflectance value of
99%, where two consecutive captures were obtained from each white
reference. In addition, an HS image from a Zenith Polymer Reflectance
Standard (SphereOptics GmbH, Germany), composed by rare earth oxides,
was captured (SR4 in Figure 3-26.b).

The HSI plastic dataset (Figure 3-26.c) was composed by different samples of
3D printing filament, as Polylactic Acid (PLA), Acrylonitrile Butadiene
Styrene (ABS), and Polyethylene Terephthalate Glycol (PETG). Using the
Ultimaker 3 Extended (Utrecht, Netherlands) 3D printer, several 32x32x4.8
mm square samples were printed to create the HSI plastic dataset. In
addition to the three different materials, different colors were also printed.
At the end, twenty HS images from sixteen different plastic samples were
obtained.
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Figure 3-26: HS datasets used in this research. a) Patterns based on brain morphological structures
and a shooting target employed to generate the HSI registration dataset (seven HS images) used to
evaluate the image registration techniques. b) Three different 99% Spectralon White Diffuse Reflectance
Standards and a Zenith Polymer Reflectance Standard used to obtain the HSI spectral reference dataset
(seven HS images) employed to evaluate the proposed spectral fusion approach. ¢) Sixteen square plastic
samples of different colors and three materials: polylactic acid (PLA), acrylonitrile butadiene styrene
(ABS), and polyethylene terephthalate glycol (PETG). These samples were employed to generate the HSI
plastic dataset (twenty HS images), which was used to evaluate the fusion performance qualitatively and
quantitatively.

The HSI plastic dataset was partitioned into training (four HS images), validation
(three HS images) and test (thirteen HS images) sets. Additionally, the dataset was
organized into three groups for addressing different classification and segmentation
problems: color, material, and material-color. Then, each sample was labelled in
different classes corresponding to each problem type. The labelled pixels were divided
into training, validation, and test set. The training set was reduced using a methodology
based on K-Means explained in Section 3.5.4. The goal of this methodology is to reduce
the number of pixels in each class, avoiding the inclusion of redundant information,
and drastically reducing the training execution time. The K-means was applied to each
class of the twenty-seven classes contained in the dataset, obtaining a total of 1,000

pixels per class, reducing the total number of pixels from 2,631,192 to 27,000 (Table
3-8).

~76~



Chapter 3: Intraoperative HS acquisition system for brain surgical diagnostics and guidance

Table 3-8: Number of pixels labeled from the HSI plastic dataset in training, validation, and
test sets divided into color, material, and material-color. Original training sets contain all pixels
labeled before applied data reduction. Reduced training sets contain the pixels used to train the supervised
classifier.

Problem Class Name #Or'}‘g;’.i ;ilill;igxels #Re%;l:;:ltlili’;xels V:lli) (i;;ﬂ(sm #Pixels Test

Red 163,510 1,000 159,608 480,283

Yellow 53,782 1,000 51,544 52,172
Black 113,084 1,000 109,323 280,492

Magenta 108,124 1,000 106,648 216,632

Color

Blue 111,145 1,000 109,319 219,221

Transparent 110,026 1,000 109,660 167,104

White 164,366 1,000 161,605 486,471

Green 53,027 1,000 52,404 52,497
PLA 384,966 1,000 378,996 764,847

Material ABS 271,182 1,000 266,150 644,241
PETG 220,916 1,000 214,965 545,784

PLA Red 55,173 1,000 54,195 161,662

PLA Yellow 53,782 1,000 51,544 52,172

PLA Black 56,216 1,000 54,422 112,548
PLA Magenta 54,555 1,000 53,859 108,786

PLA Blue 56,858 1,000 55,757 111,534

PLA Transparent 54,502 1,000 55,804 55,645
PLA White 53,880 1,000 53,415 162,500

Material- ABS Red 54,801 1,000 52,026 159,378
Color ABS Magenta 53,569 1,000 52,789 107,846
ABS Blue 54,287 1,000 53,562 107,687

ABS White 55,498 1,000 54,469 216,833

ABS Green 53,027 1,000 52,404 52,497

PETG Red 53,536 1,000 52,487 159,243

PETG Black 56,868 1,000 54,901 167,944

PETG Transparent 55,524 1,000 53,856 111,459

PETG White 54,988 1,000 53,721 107,138

ABS: Acrylonitrile Butadiene Styrene; PLA: Polylactic Acid; PETG: Polyethylene Terephthalate Glycol.

3.6.1.1 VNIR-NIR Spatial Registration Approach

Before performing the VNIR-NIR spatial registration, the HS images were pre-
processed to facilitate the registration procedure. After that, intensity-based and
feature-based techniques were analyzed in order to obtain the best transformation
model using the intraoperative HS acquisition system.

3.6.1.2 NIR pre-processing

Due to both HS cameras have different spatial resolutions, it was necessary to
resample one of the two HS images to be able to register them. The VNIR camera
covered the spectral range between 400 and 1000 nm and can capture 1,004 spatial
pixels with a pixel pitch of 7.4 um, while the NIR camera captured information within
the 900-1700 nm spectral range, with 320 spatial pixels and a pixel pitch of 30 um. The
lens used in VNIR camera was a Xenoplan 1.4 (Schneider Optics, Hauppauge, NY,




Chapter 3: Intraoperative HS acquisition system for brain surgical diagnostics and guidance

USA) with a focal length of 23 mm and a working distance of ~42 cm. In the case of the
NIR camera, the lens used was a Kowa LM25HC-SW 1.4 (Kowa Optimed Deutschland
GmbH, Diisseldorf, Germany) with 25 mm of focal length and a working distance of
~33 cm.

Upsampling and downsampling methods were evaluated to achieve the same spatial
resolutions in both HS images. To exploit the higher VNIR spatial resolution for a later
visualization and manual labeling of the images with high detail in the targeting
application (intraoperative HS brain cancer detection), the downsampling method,
where the VNIR spatial resolution is reduced to reach the NIR resolution, was
discarded. In this targeted application, to generate a labelled dataset, the brain images
must be manually labeled, identifying the different classes (tumor, normal and
hypervascularized tissue). The high VNIR spatial resolution and the possibility of
generating a RGB image allows neurosurgeons to visualize the different brain regions
and identify the relevant pixels to be labeled using a semi-automatic labeling tool
developed to this end [124]. However, the low spatial resolution in the NIR camera was
not enough for performing a reliable labeling of the brain surface. For this reason, the
spatial resolution of the NIR image was upsampled until reaching the VNIR pixel size.

The scale factor to perform the spatial resampling is specified by the relation
between the Instantaneous Field of View (IFOV) of both cameras. The IFOV is
calculated employing the parameters of each camera following Eq. (27), achieving an
IFOV value of 0.402 and 0.137 nm for the NIR and VNIR cameras, respectively. Hence,
a scale factor of 2.93 was obtained following Eq. (28). This scale factor remains the
same independently of the sample type, as long as the HS acquisition system does not
suffer any modification. Hence, the HS images have a fixed width and height in both
HS cameras with a fixed working distance of ~33 and ~42 cm in NIR and VNIR
cameras, respectively. However, if there is any modification in the system, such as
different HS cameras, lenses, distance between the HS cameras or the working
distance, the scale factor must be recalculated with the new parameters.

Pixel Pitch - Working Distance

IFOV = (27)
(mm) Focal Length

F %) = —— K (28)
Scale Factor (%) TFOVy

The upsampling algorithm used to increase the NIR spatial resolution (from
320%253 to 939%743 pixels using a scale factor of 2.93) and to estimate the upsampled
spectral signatures is based on a bilinear interpolation, considering the nearest 2-by-2
neighborhood of a certain pixel. Nearest-neighbor, bilinear, and bicubic interpolation
methods were evaluated in terms of execution time and spectral similarity. This
evaluation was performed using the Zenith Polymer Reflectance Standard.

First, the execution time was evaluated performing the interpolation of the entire HS
image. This measure was calculated by taking the average one thousand consecutive
executions. Next, the quality of the interpolated spectral signatures was analyzed using
the SAM algorithm. To conduct this evaluation, the mean spectral signature of a region
of 15x15 pixels was selected from the reference image (original HS image without
interpolation) and was compared to the corresponding region of the interpolated
image, which consisted of 45x45 pixels.
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Table 3-9 shows the SAM results obtained with each interpolation method and the
corresponding execution times. It can be observed that the nearest-neighbor
interpolation offered the lowest execution time, followed by the bilinear and bicubic
methods. In addition, all methods obtain very low SAM values, suggesting that there
are no relevant differences between the methods. This can be observed in Figure 3-27,
where the three methods are compared respect to the original.

Table 3-9: Spectral Angle Mapper (SAM) and execution time results of different
interpolation methods for the evaluation. The SAM algorithm was computed using the mean

spectral signature of a region of 15x15 before and after the interpolation using Zenith Polymer Reflectance
Standard. The execution time was computed by interpolating the original HS image (320x253).

Nearest-neighbor Bilinear Bicubic
SAM Time (ms) SAM Time (ms) SAM Time (ms)
Polymer 4.91E-04 330.97 2.87E-04 424.41 3.02E-04 425.82
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Figure 3-27: Comparison of interpolation methods. a) Mean spectral signature before (reference)
and after interpolation using nearest-neighbor, bilinear, and bicubic methods. b) Absolute differences
between the bilinear and bicubic interpolation methods and the reference, along with the mean absolute
difference (MAD) for each comparison. ¢) Two different spectral regions, including reflectance values and
absolute differences, to observe similarities.
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Figure 3-27.a shows the mean spectral signature before and after the interpolation,
where it is possible to observe that all spectral signatures are practically overlapped.
However, to observe the small differences between the reference and the interpolated
spectral signatures, the absolute difference was computed (excluding the nearest-
neighbor interpolation due to its lower spectral similarity performance). Figure 3-27.b
represents high differences in the extreme bands due to the low response of the sensor.
Figure 3-27.c shows two different spectral regions in detail, including reflectance values
and absolute differences, to observe in detail such similarities. It is possible to notice
that the bilinear interpolation slightly improves the results compared to bicubic
interpolation. This could be motivated due to the bicubic interpolation oversmoothes
the spectral signatures in the HS image, while the bilinear interpolation better
preserves the original shape. For these reasons, the subsequent experiments employed
bilinear interpolation due to its spectral similarity and convenient execution time.

3.6.1.3 Spatial Registration

Intensity-based and feature-based techniques were employed for registering the
VNIR and NIR images. MATLAB® Image Processing Toolbox and Computer Vision
Toolbox (The MathWorks Inc., Natick, MA, USA) was employed to implement the
registration algorithms.

On the one hand, intensity-based techniques find the maximum (or minimum)
intensity value and correlate it with the intensity value of the reference image to
transform the misaligned image. To obtain the maximum (or minimum) intensity value
an iterative process is performed, where the parameters of the transformation model
are modified in each iteration. An evolutionary optimizer was used to find the best
geometric transformation model. The intensity value was measured applying Mattes
Mutual Information (MMI) [218]. The geometric transform types evaluated in this
technique were: 1) Translation transformations, where each pixel is displaced the same
amount in the same direction, but the size and orientation are not modified; 2)
Similarity transformations, which preserve shape, but not size, including isotropic
scaling, rotation, and translation; and 3) Affine transformations, which include all
similarity transformations and also preserve parallel lines.

On the other hand, feature-based techniques detect and extract interest points,
curves, or surfaces present in both images without consider the image intensity. The
number of common features detected in both images must be enough to perform the
registration, determining the quality results [219]. The feature-based techniques are
composed by several steps: 1) Feature detection and extraction, where regions, lines,
and curves are detected using feature detectors and subsequently extracted using
feature extractors; 2) Feature matching, where all possible matching points between
both images are found using an exhaustive matching method computing the pair-wise
distances between features; 3) Geometric transform estimation, where different
transformation types can be used (similarity, affine or projective). The projective
transformation includes all affine transformations and also supports tilting. The
matching pair are used to estimate the transformation matrix and the M-estimator
SAmple Consensus (MSAC) algorithm is used to exclude outlier points [220]. This
algorithm has a randomized nature and can offers different results in consecutive
executions. Two feature detectors and extractors were evaluated: Speeded Up Robust
Features (SURF) [221] and Maximally Stable Extremal Regions (MSER) [222]. SURF is
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a fast algorithm based on the Hessian-Matrix to find the keypoints. SURF has been
used to detect skin features to track patient position in navigated spinal surgery [223].
On the contrary, MSER algorithm is a shape-based method that detects regions using
image intensity. Regions where the intensity values do not change are considered
maximally stable. MSER has been used in the literature as shape detector in medical
applications to segment cells [224]. Also, SURF and MSER algorithms were selected as
they are robust to changes in scale and rotation.

The VNIR-NIR spatial registration was evaluated computing the SSIM, the MI, and
the PCC metrics (Section 2.4.4.2). To evaluate the performance of the different
registration techniques and geometric transformations, a gray-scale image was
generated from a pseudo-RGB image of both VNIR and NIR HS cubes for performing
the registration. After selecting the registration techniques and geometric
transformations, the transformation matrix was obtained comparing a pair of VNIR
and NIR spectral bands. The pseudo-RGB images were generated selecting three bands
which correspond with red, green, and blue colors in the VNIR range and other three
bands for creating a false-color RGB in the NIR range. The wavelengths selected for
VNIR pseudo-RGB image were 708.97 nm (red), 539.44 nm (green), and 479.06 nm
(blue). The wavelengths selected for NIR pseudo-RGB image were 1094.89 nm (red),
1247.44 nm (green), and 1595.45 nm (blue). These wavelengths were selected to
maintain the compatibility with the original software (Hyperspec III software,
Headwall Photonics Inc., Fitchburg, MA, USA) provided by the camera manufacturer.
Additionally, these wavelengths have been employed in previous works for generating
the NIR pseudo-RGB image [123]).

First, a preliminary analysis using the HSI registration dataset was performed using
the gray-scale images from the pseudo-RGB images. In the case of intensity-based
techniques, translation, similarity, and affine transformations were applied. In the case
of feature-based techniques using MSER and SURF detectors, the transformations
employed were affine, similarity and projective. Due to the randomized nature of MSAC
algorithm, in the feature-based technique, one thousand consecutive executions were
performed to estimate the geometric transformation. Figure 3-28 shows the results
applying the three registration metrics. Feature-based technique using SURF detector
offered the best registration. The results obtained using affine and projective
transformations were quite similar. This is produced due to the projective
transformation performs the same geometric transform (scaling, shear, rotation, and
translation) than the affine transformation, in addition to apply tilt to the
transformation. These results outperform the feature-based technique using MSER and
also the intensity-based technique.
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Figure 3-28: Average image registration results. Gray-scale representation of the pseudo-RGB
images from HSI registration dataset were used applying intensity-based techniques with similarity, affine,
and translation transformations and featured-based using Maximally Stable Extremal Regions (MSER)
and Speeded Up Robust Features (SURF) detector and similarity, affine and projective transformation. a)
Structural Similarity Index Measure (SSIM); b) Mutual Information (MI); ¢) Pearson’s Correlation
Coefficient (PCC) values.

Figure 3-29.a shows two example results of the HSI registration dataset, R2C2 and
R4C1. The first column shows the registration result without applying any geometric
transformation, while the remaining columns show the best results obtained with each
registration technique and the best geometric transformation. These images present an
overlay of the VNIR and NIR pseudo-RGB images using green-magenta false-color
images. Magenta and green pixels indicate misregistration between the VNIR and NIR
images, respectively. The areas with gray-scale pixels indicate areas where the two
registered images have similar intensity values. Using the translation transformation in
the intensity-based registration, R2C2 is incorrectly registered, while R4C1 improves
the registration respect to the result without applying any transformation. These
incorrect registrations can be produced due to the random noise that can be found in
some spectral bands, affecting to the maximum intensity. The feature-based MSER
technique using similarity transformation improves the intensity-based technique but
some misregistered pixels can be observed in both images. Finally, the feature-based
SURF technique with projective transformation offered the best results. For this
reason, this method was selected to be applied in the subsequent experiments.

A coarse-to-fine search was performed using gray-scale images from a single
spectral band extracted from both cameras to identify the VNIR and NIR bands, which
offer the best registration performance. To reduce the high computational time, the
coarse search was performed using steps of seven and three bands in the VNIR and NIR
images, respectively, to diminish the number of combinations. Figure 3-29.b shows the
R2C2 and R4C1 heatmaps resulting from the coarse search using SSIM, MI and PCC
metrics. It can be observed that in all metrics the lower and higher bands for each
camera do not offer a correct registration mainly due to the low performance of the
sensor in such bands. The MI and PCC metrics indicate all band combinations in the
central region offer similar results. In opposite, SSIM metric indicates that regions of
500-700 nm and 950-1500 nm in the VNIR and NIR ranges, respectively, achieve the
highest results. This is caused because the SSIM metric takes into account the image
structure while the other metrics only consider the image intensity. For this reason, to
select the optimal spectral bands in the coarse-to-fine search only the SSIM metric was
employed. The fine search was performed within the previously selected regions using
steps of one band for both cameras.
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Figure 3-29: VNIR-NIR Spatial Registration using the HSI registration dataset. a) Two
registration result examples applying different registration techniques. Both images are overlapped using
green-magenta false-color, VNIR (green) and NIR (magenta). First column shows the default registration
without applying any type of transformation to the data. Second, third and fourth columns show the results
of the intensity-based, feature-based with MSER, and feature-based with SURF techniques, respectively,
using the best transformation method. b) Coarse search results of the structural similarity index measure
(SSIM), the mutual information (MI), and the Pearson’s correlation coefficient (PCC) for identifying the
suitable spectral bands for the registration using the feature-based SURF technique with projective
transformation.

Figure 3-30.a shows the SSIM results using the optimal band combination and
summarizes the bands/wavelengths employed. One thousand consecutive executions
were performed using the best band combination of each VNIR-NIR HS image pair to
obtain the transformation with the highest SSIM value. Finally, the best transformation
model was selected after applying each projective transformation to all the images from
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the HSI registration dataset. Figure 3-30.b shows the SSIM boxplot results for each
transformation model, where an average SSIM value of ~0.78 was obtained for all
models. The R2C1 model was selected as it presented the lowest IQR. No statistically
significant differences were found across the mean SSIM values between R2C1 and
R2C2 (which has the higher mean value), using a paired, two-tailed Student’s T-test at
the 5% significance level.
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Figure 3-30: Structural Similarity Index Measure (SSIM) results. a) SSIM values using the best
spectral band for each HS image from the HSI registration dataset. The relation between the band number
and the wavelength in the VNIR is the following: 281=604.20 nm; 293=612.93 nm; 286=607.84 nm,;
265=592.56 nm; 289=610.02 nm; 255=585.28 nm; 260=588.92 nm; and in the NIR is the following:
89=1318.95 nm; 93=1338.02 nm; 91=1328.48 nm; 34=1056.76 nm; 97=1357.09 nm; 26=1018.62 nm;
87=1309.42 nm. b) SSIM results using the seven different transformation models obtained using the
optimal spectral bands for each image pair. The box boundaries represent the IQR (Interquartile Range) of
the results. Central bars and error bars depict median and minimum/maximum values of SSIM,
respectively.

3.6.2 VNIR-NIR Spectral Fusion Approach

The final step of the proposed framework (Figure 3-25) aims to combine the spectra
from the registered NIR and VNIR HS images into a single HS image. First, a spectral
analysis of the data generated in both HS images was performed to evaluate the optimal
spectral cutoff points where the HS sensors present low performance (i.e., low signal-
to-noise ratios). For this purpose, the HSI spectral reference dataset was employed to
evaluate which bands should be removed before performing the spectral fusion.

Both HS cameras have a common spectral range between 900 and 1000 nm (Figure
3-31.a). However, performing a spectral fusion based on the use of this common
spectral region is not suitable in this case due to the low performance of the VNIR
sensor in those bands. As shown in Figure 3-31.b, this method causes the NIR region of
the fused spectral signature to have a higher standard deviation than the VNIR region
when capturing a calibration polymer. Hence, a spectral analysis was performed
computing the absolute relative difference percentage (RD) metric using the image
pairs of each image in the HSI spectral reference dataset for both VNIR and NIR
cameras. Figure 3-31.c and d show the RD,, .., values for each wavelength in the VNIR
and NIR spectral signatures of a white reference (SR1), respectively. The
RD,,c.qn Tepresents the average RD value of all pixels in the image at a certain
wavelength. In the case of the VNIR data (Figure 3-31.c), the RD,,.,, is higher than the
average from 400 to 435 nm and from 800 to 1000 nm. In the case of the NIR data
(Figure 3-31.d), the RD,,.,, values obtained in the ranges 900-960 nm and 1619-1700
nm are higher than the average. These ranges are represented in the figures using the
vertical red dashed lines. The Average RD,,.,, value was used to establish the initial
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and final cutoff point for the selection of the operating bandwidth in each image of the
HSI spectral reference dataset.
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Figure 3-31: VNIR—NIR spectral fusion. a) Manufactured certified spectral signature of the Zenith
Polymer® and spectral signatures captured by the VNIR and NIR cameras. b) Fused spectral signature
using a common spectral band in the overlapped spectral region between VNIR and NIR data. ¢, d)
Average absolute relative difference percentage (RD) results of SR1 using VNIR and NIR data. Red dashed
lines represent the initial and final cutoff points for voiding the low performance of the HS sensors. e)
Comparison between the mean and std of the Zenith Polymer® VNIR spectral signature with 641 spectral
bands (green) and 575 spectral bands (red). f) Fused spectral signature of the Zenith Polymer® after
applying the proposed VNIR-NIR spectral fusion method.

Employing the HSI spectral reference dataset the initial cutoff points in the NIR
data are the same in the three cases (1 = 956.6 + 0 nm), while in the VNIR data there
are quite similar values around A = 435.2 + 0.4 nm. Considering the final cutoff point,
the NIR data values are close to A = 1632.0 + 11.0 nm, while the VNIR data values are
close to A =849.6 + 3.3nm. In the VNIR case, the final cut off point involves the
removal of ~200 spectral bands. With the purpose of reducing the number of bands to
be removed, an additional analysis was performed using three image pairs from the

HSI plastic dataset.

In this case, the initial cutoff point does not coincide in two of three VNIR image
pairs respect to the HSI spectral reference dataset, providing an average point of 1 =
496.5 + 70.1 nm. This is produced mainly due to the spectral contributions of the
plastic color (red and magenta). Considering the final cutoff point in the VNIR data, the
average value is higher with respect to the HSI spectral reference dataset (A = 896.0 +
14.7 nm). In the case of the NIR data, the initial and final cutoff points are similar to
the previous ones, 4 = 959.8 + 2.8 nm and A = 1,638.4 + 9.5 nm, respectively. At this
point, a qualitative assessment of the VNIR cutoff points was performed by plotting the
mean and standard deviation (std) of the spectral signatures of the Zenith Polymer®
reflectance standard.

Figure 3-31.e shows that the std values between 849 and 900 nm (green) are quite
similar to the previous spectral bands (red). For this reason, the selected cutoff points
for the VNIR data were 435 and 901 nm, having 641 spectral bands, while the NIR data
covered a spectral range between 956 and 1,638 nm formed by 144 spectral bands.
Finally, the VNIR-NIR spectral fusion was performed applying a reflectance offset to
the NIR spectrum in order to adjust the reflectance values of both spectral signatures.
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The fused spectral signature has a gap between 901 and 956 nm (Figure 3-31.f), in
order to preserve the original standard deviation of the NIR spectrum.

Then, a reflectance offset was applied to the NIR spectrum with the goal of adjusting
the reflectance values of both spectral signatures with respect to a reference. This
procedure requires the use of the NIR image (N € R x R?) and the VNIR image (V €
RP x R5) of the captured scene, as well as the certified spectral signature provided by
the manufacturer of the Zenith Polymer Reflectance Standard (P € RE). B represents
the number of spectral bands in each HS image and P the number of pixels of the
corresponding HS image. The procedure is as follows. First, the difference in the
reflectance levels in the Zenith Polymer (Pysss.¢) is computed following Eq. (29), where
the value corresponding with the first spectral band of the NIR image (Ay;z = 956 nm)
is P(Ay;r) and the value corresponding with the last spectral band of the VNIR image
(Aynir =901 nm) is P(Aynir)- The manufacturer provided the certified data in
percentage format. Figure 3-32.a shows a graphical representation of this first step.

a PQynig) = 901mm, — P(Ayig) = 956 nm
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Figure 3-32: Proposed VNIR-NIR spectral fusion explanation using, as example, one sample
of the HSI plastic dataset. a) Zenith Polymer Reflectance Standard spectrum provided by the
manufacturer representing the Posse: constant used to perform the spectral fusion. b) Average and standard
deviation of the spectral signatures extracted from the plastic sample before applying the reflectance offset
adjustment to the NIR data. ¢) Average and standard deviation of the spectral signatures extracted from
the plastic sample after applying the reflectance offset adjustment to the NIR data.

Next, the average value of all pixels in the last band of the VNIR image (V},,, .) and
the first band of the NIR image (N,,,.) are computed as expressed in Eq. (30-31). The
difference of these two values (Figure 3-32.b) is employed to obtain the reflectance
offset value (Fpffqe.) for the captured scene following Eq. (32). Finally, this offset is
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applied to each pixel of the NIR image from the captured scene independently,
resulting in the fused spectra as show in Figure 3-32.c.

POffset(%) = P(ANIR) — P(Aynir) (29)
R (30)

R (31)

Foffser = (Vlvzvm - Nﬂwm) " (Pogrser +1) (32)

Finally, the spectral signatures are normalized using min-max normalization in the
[0,1] range (Eq. (4) in Section 2.4.1) to homogenize reflectance levels in each pixel of
the HS image for the subsequent segmentation and classification analyses. Figure 3-33
shows the average spectral signatures of the HSI plastic dataset after performing the
VNIR-NIR spectral fusion.
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Figure 3-33: Average spectral signatures of the Fused data from the HSI plastic dataset. a)
Material spectral signatures. b, ¢, d) Color spectral signatures from polylactic acid (PLA), acrylonitrile
butadiene styrene (ABS), and polyethylene terephthalate glycol (PETG) materials.

3.6.3 Segmentation and classification of the fused data

The VNIR-NIR imaging fusion performance was evaluated in unsupervised
segmentation and supervised classification problems. The goal was to quantitatively
and qualitatively determine if the proposed fusion approach allows to improve the
different segmentation/classification problems (color, material, and material-color
identification) with respect to the exclusive use of either VNIR or NIR data separately.
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3.6.3.1 Segmentation results

The segmentation methods employed were the K-means, K-medoids, and HKM
algorithms to segment the HS images into K different clusters, since they are the most
widely used segmentation algorithms in scientific literature. The number of clusters (K)
was previously selected and, in the case of HSI plastic dataset, the selected K value
corresponds to the number of classes present in the ground-truth of each HS image to
be processed. Figure 3-34.a-c shows, as examples, the segmentation maps obtained
with K-means algorithm from three of the thirteen test HS images, as well as the
average Jaccard results obtained with the entire dataset for the three segmentation
algorithms. As expected, the VNIR data achieved the highest results in the color
segmentation using K-means algorithm, followed by the Fused data using K-medoids
and HKM (Figure 3-34.a), while the material identification using the NIR data was
superior in all three algorithms (Figure 3-34.b). However, the material-color
segmentation of the NIR data using HKM improved the segmentation results followed
by the Fused data using K-means (Figure 3-34.c). Statistical analysis was performed to
the segmentation results using a paired, one-tailed Student’s T-test at 5% significance
level. No statistically differences were found between the results of the material-color
segmentation problem.
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Figure 3-34: Segmentation maps of three examples of the test set from the HSI plastic
dataset and average Jaccard results obtained from the thirteen images. Color, material, and
material-color segmentation (a, b, ¢) problems using VNIR, NIR, and fused data. Each column (from left
to right) represents the RGB images obtained with a digital camera, the ground-truth (GT) maps, the
VNIR, NIR, and fused segmentation results, respectively, and the average Jaccard results obtained with the
entire test set for the three different segmentation algorithms. Results were statistically analyzed using a
paired, one-tailed Student’s T-test at the 5% significance level. (*) Statistically significant difference
(p<0.05). (**) Highly statistically significant difference (p<0.001). ABS: Acrylonitrile Butadiene Styrene;
PLA: Polylactic Acid; PETG: Polyethylene Terephthalate Glycol. HKM: Hierarchical K-means.

3.6.3.2 Classification results

The pixel-wise supervised classification was based on the SVM, RF and KNN
classifiers. In the classification problem, the HSI plastic dataset was partitioned into
training, validation, and test sets. The training and validation sets were used to
optimize, evaluate, and generate the classification model. A coarse-to-fine search (in
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the case of SVM) and a coarse search (in the case of RF and KNN) were performed to
optimize the hyperparameters of each classifier. After the hyperparameter
optimization, the performance of the model was evaluated using the test set. Table 3-10
shows the optimal hyperparameter values found for each classifier, data type and
classification problem, as well as the OA results obtained in the validation set.

Table 3-10: Coarse-to-fine search to optimize hyperparameters. The Cost (C), the number of
trees (T) and number of nearest neighbors (K) hyperparameters of the SVM, RF, and KNN classifiers were

optimized using the validation set of the HSI plastic dataset. Fine search was not performed in RF and
KNN algorithm because the execution time in these classifiers is lower than SVM classifier.

Coarse Search Fine Search
Classifier | HP | Sensor Method OA (%)
I/S/F Optimal I/S/F Optimal
Color 2720 /22 /960 22 20/20.5/24 22 82.93
VNIR Material 2720 /22 /960 20 22/20.5/22 205 72.83
Material-Color | 2720/22/260 24 22/20.5/26 22 79.68
Color 2720 /92/960 272 2°4/20:5/20 225 59.30
SVM-Linear | C NIR Material 2720 /92/960 22 22/205/22 21 93.10
Material-Color | 2720/22/260 24 26/205/2-2 23 53.25
Color 2720 /92/960 28 26/20.5/210 27 89.15
Fusion Material 2720 /92/960 272 2°4/20:5/20 23 83.56
Material-Color | 2720/22/260 24 22/20.5/26 25 82.65
Color 1/2/300 261 - - 87.33
VNIR Material 1/2/300 183 - - 79.17
Material-Color | 1/2/300 133 - - 77.37
Color 1/2/300 277 - - 56.47
RF T NIR Material 1/2/300 107 - - 93.01
Material-Color | 1/2/300 271 - - 52.98
Color 1/2/300 11 - - 88.39
Fusion Material 1/2/300 245 - - 84.65
Material-Color | 1/2/300 257 - - 77.43
Color 1/2/300 5 - - 85.47
VNIR Material 1/2/300 1 - - 81.03
Material-Color 1/2/300 3 - - 76.82
Color 1/2/300 19 - - 54.24
KNN K NIR Material 1/2/300 19 - - 93.16
Material-Color | 1/2/300 19 - - 50.86
Color 1/2/300 1 - - 87.47
Fusion Material 1/2/300 1 - - 76.50
Material-Color 1/2/300 1 - - 77.38

HP: Hyperparameter; I: Initial value; S: Step value; F: Final value.

Once SVM, KNN, and RF models were trained and optimized for each case, the
classifiers were evaluated using the test set to assess the results obtained in the
validation set. Figure 3-35 shows, as examples, the classification maps obtained with
the SVM classifier from three of the thirteen test HS images, as well as the average OA
results obtained with the entire dataset for the three supervised algorithms. The OA
was computed using the ground-truth image and the classification map of each HS
image. In the color classification VNIR and Fused data, using SVM and RF classifiers,
obtained quite similar performance, while NIR data decreases the accuracy in the three
classifiers (Figure 3-35.a). As it can be observed in the SVM example, NIR data
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misclassifies the three plastic samples, while the VNIR and Fused data identify
correctly two out of three samples, misclassifying the white color, which is identified as
transparent (orange color in Figure 3-35.a). On the contrary, in the material
classification, the NIR data achieved the highest accuracy in all three classifiers,
followed by the Fused data using SVM classifier (Figure 3-35.b). In the material
example applying SVM classifier, VNIR data only classified two out of three samples
correctly, while NIR and Fused data were able to successfully identify the three
samples. Finally, in the material-color classification the Fused data outperformed the
other two data types (Figure 3-35.c). Statistical analysis was performed to the
classification results using a paired, one-tailed Student’s T-test at 5% significance level.
In the material-color classification problem, statistically significant differences were
found between the VNIR and Fused data results.
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Figure 3-35: Classification maps of three examples of the test set from the HSI plastic
dataset and average accuracy results obtained from the thirteen images. Color, material, and
material-color classification (a, b, ¢) problems, using VNIR, NIR, and fused data. Each column (from left
to right) represents the RGB images obtained with a digital camera, the ground-truth (GT) maps, the
VNIR, NIR, and fused classification results, respectively, and the average accuracy results obtained with
the entire test set for the three different classification algorithms. Results were statistically analyzed using
a paired, one-tailed Student’s T-test at the 5% significance level: (*) Statistically significant difference
(p<0.05). (**) Highly statistically significant difference (p<0.001). ABS: Acrylonitrile Butadiene Styrene;
PLA: Polylactic Acid; PETG: Polyethylene Terephthalate Glycol. SVM: Support Vector Machines; RF:
Random Forest; KNN: K-Nearest Neighbors.

3.6.4 Experimental Results Discussion

Previous works of this research group employed an HS acquisition system composed
by VNIR and NIR cameras to capture HS images of in-vivo human brain tissue during
surgical procedures with the goal of identifying tumor boundaries in real-time [70],
[123], [125]. However, in these works only VNIR information was processed due to the
impossibility of performing a reliable labeling in the NIR HS images. In this research,
this acquisition system has been modified to combine both sources of information
(VNIR and NIR) and propose a VNIR-NIR imaging fusion approach to determine, as a
proof-of-concept, if the fused data can improve the delineation of different brain tissue
structures compared to using both sources of data independently. In the previous
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configuration, the VNIR and NIR image registration was not possible to be performed
due to the non-perpendicularity of the camera with respect to the scene, especially in
non-flat surface situations (e.g., after tumor resection beginning). Hence, the VNIR
labeling could not be used for the NIR images. Additionally, the labeling could not be
directly performed over the NIR images due to their low spatial resolution and the false
color representation of the pseudo-RGB. The proposed acquisition system
configuration allows performing the VNIR-NIR spatial registration, being possible to
extrapolate the VNIR labeling to the NIR images and perform a spectral fusion of both
sources of data. Additionally, a speedup factor of 2x was achieved in the acquisition
time since the capturing is performed in a single scanning.

To achieve an accurate VNIR-NIR spatial registration, several techniques and
geometric transformations were analyzed and tested using different HS images.
Additionally, a coarse-to-fine search was performed using all the combinations of gray-
scale images (extracted from each spectral band) from both HS cameras to identify the
most suitable bands for performing the spatial registration. The feature-based
technique using SURF detector and projective transformation was selected for the
VNIR-NIR spatial registration. Next, a detailed analysis of the VNIR and NIR spectral
signatures was performed to determine the optimal operating bandwidth captured by
each camera, being combined in the subsequent spectral fusion process. The resulting
HS cube was formed by 641 spectral bands in the VNIR range (435—901 nm) and 144
spectral bands in the NIR range (956—1638 nm).

To determine the discrimination capability of the fused data compared with the use
of the VNIR and NIR data independently, three segmentation and classification
problems have been proposed using a controlled HSI dataset based on plastic samples
of different materials and colors. The results show that VNIR data identified better the
color of the samples than the NIR and fused data, while the material is more accurately
identified using the NIR data. However, when the goal is to identify the material and
color of the sample, the fused data offered better results than the VNIR and NIR data
independently. Therefore, the selection of the data type to be employed in a certain
classification/segmentation problem will be determined by the nature of the materials,
substances or tissue to be analyzed. If the optical properties are more relevant in the
VNIR region than in the NIR region (or vice versa), then, using the fused data could
provide misclassifications in the results. On the contrary, if relevant optical properties
can be found in the two spectral ranges (as in the material-color problem), the fused
data could provide improved discrimination performance.

3.7 Evaluation of VNIR-NIR Hyperspectral Imaging Fusion
Method for In-vivo Brain Tumor Identification and
Delineation

The proposed VNIR-NIR spatial-spectral fusion method explained in Section 3.6
was applied to the third data campaign of the enhanced HS brain cancer database. This
campaign was collected after performing the acquisition system modifications to allow
the data fusion process. In total, due to the difficulties in obtaining intraoperative data
of in-vivo human brain, the third campaign is formed only by 10 HS images captured
from 8 different subjects (third data campaign in Table 3-1). After performing the
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fusion process, the ground-truth generated using VNIR images can be reused in the
NIR images. Thanks to this approach, the spectral characterization, segmentation, and
classification of both spectral regions were performed.

3.7.1 Spectral Characterization of Brain Tumors in the VNIR-NIR
Range

The VIS spectral range between 380-780 nm is the most used for medical HSI due to
hemoglobin contribution in this part of the spectrum. Absorbance peaks related to
deoxyhemoglobin are located at ~555 and ~760 nm [198], [199], while two
oxyhemoglobin absorbance peaks are situated at ~540 and ~575 nm [197]. However,
the NIR range between 700-1870 nm can additionally provide information related to
the presence of fat, collagen, or water [225]. Water absorption determines the
permeability of tissues and its peaks are located around 970, 1180, 1450, and 1775 nm
[226]. The collagen peaks are present at 1050, 1190, 1500, 1690, 1730, and 1760 nm,
being the most abundant protein in the human body [226]. Biological tissues contain
lipids as essential constituents, with peaks in the NIR range at 920, 1040, 1210, 1430,
1730, 1760, and 1900 to 2600 nm [226]. Reflectance and absorbance analysis were
performed in the VNIR and NIR spectral ranges in order to identify relevant features
between spectral signatures.

Figure 3-36 show the mean reflectance and absorbance spectra of each tumor type of
different grades (G1, G2 and G3), NT, and HT. In the VNIR range can be observed that
the reflectance value of astrocytoma grade 2 is higher than other tumor type, having the
HT the lowest reflectance values (Figure 3-36.a). In addition, reflectance values
increase rapidly over 580 nm and therefore, decrease the absorbance values (Figure
3-36.b). Between 500 and 600 nm, the absorbance increases due to the absorption
peak of the hemoglobin [227]. In HT and meningioma grade 2 is observed an
absorbance peak at 760 nm due to the deoxy-hemoglobin [199].
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Figure 3-36: Spectral analysis of brain tumors and tissues in VNIR and NIR ranges. a, b)
Mean reflectance and absorbance spectral signatures, respectively, of different brain tumors, normal, and
hypervascularized tissue in the VNIR range. ¢, d) Mean reflectance and absorbance spectral signatures,
respectively, of different brain tumors, normal, and hypervascularized tissue in the NIR range.
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In the NIR range, it is possible to observe the reflectance values decrease as
wavelengths increase and therefore (Figure 3-36.c), increasing the absorbance value as
wavelength increases (Figure 3-36.d). Astrocytoma grade 3 achieves the highest
reflectance in this spectral range, while NT and meningioma grades 1 and 2 have lower
reflectance values. Water absorbance peaks are observed in this range at 970 and 1450
nm [228]. In addition, water molecules without a hydroxy group are absorbed at 1160
nm [229].

A statistical analysis was performed to evaluate each pair of class sets (TT vs. NT, TT
vs. HT, and NT vs. HT). Figure 3-37 shows the mean and standard deviation of each
class (from all the HS images in the dataset) of the VNIR and NIR data, respectively,
employed to perform the statistical analysis. First, Lilliefors test was computed to
identify if each group at each wavelength has normal or non-normal distribution. After
performing the test, it was found that all three groups had a non-normal distribution.
For this reason, the Wilcoxon Rank-Sum test was employed for the statistical
evaluation.
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Figure 3-37: Spectral analysis of brain tissues in VNIR and NIR ranges. a, b) Mean and
standard deviation reflectance and absorbance spectral signatures, respectively, of different brain tumors,
normal, and hypervascularized tissue in the VNIR range. ¢, d) Mean and standard reflectance and
absorbance spectral signatures, respectively, of different brain tumors, normal, and hypervascularized
tissue in the NIR range. SD: Standard Deviation; TT: Tumor Tissue; NT: Normal Tissue; HT:
Hypervascularized Tissue.

Figure 3-38 show the p-value obtained from the statistical analysis among the
different classes from the VNIR and NIR data, respectively. In this figure, each graph
represents a pair of classes comparison. In the case of the VNIR data, HT shows highly
statistically significant difference with respect to TT (Figure 3-38.a) and NT (Figure
3-38.e) (p < 0.01) in reflectance and absorbance, except for the 444 nm where no
statistically significant differences between HT and TT was found (p > 0.05). In Figure
3-38.c, it can be observed that the spectral ranges 460-510 nm, 590-600 nm, and 700-
740 nm have no statistically significant differences between TT and NT (p > 0.05),
while in the spectral range 481-484 nm statistically significant differences were found
between TT and NT ( 0.01 < p < 0.05). In the case of NIR range, HT shows highly
statistically significant differences respect to TT (Figure 3-38.b) and NT (Figure 3-38.f)
(p < 0.01). However, in the spectral range between 1,340 and 1,376 nm, no statistically
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significant differences were found between TT and NT (p > 0.05) (Figure 3-38.d).
Finally, in 1,633 nm statistically significant difference between TT and NT was found (
0.01 < p < 0.05).
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Figure 3-38: p-value of each pair of tissue groups. a, ¢, e) p-value of TT vs. HT, TT vs. NT, and NT
vs. HT, respectively, in VNIR range. b, d, f) p-value of TT vs. HT, TT vs. NT, and NT vs. HT, respectively,
in NIR range. TT: Tumor Tissue; NT: Normal Tissue; HT: Hypervascularized Tissue.

3.7.2 Brain Tissue Segmentation using the VNIR-NIR Range

The main goal of this experiment was to evaluate, as a proof-of-concept, if the
proposed data fusion method could improve the morphological edge detection of
different tissue structures (particularly normal tissue and blood vessels) that can be
found in the exposed brain surface during surgery. Image segmentation based on the K-
means algorithm was performed in each HS image independently for a qualitative
evaluation of the results obtained using the three data types, VNIR, NIR, and Fused.
The number of clusters used was twenty-four. This number was selected based on the
results of a previous work [70]. Finally, to obtain the segmentation maps, the clusters
more similar to the ground-truth were selected using the Jaccard metric. In these
experiments, the clusters initialization was performed using the same seed.
Quantitative evaluation was not performed due to the low number of pixels labeled in
each image, which produced extremely low Jaccard values.

Figure 3-39 shows the pseudo-RGB images (generated from the VNIR data, where
the approximate tumor area has been delineated with a yellow line by visual inspection
of the operating surgeon according to the patient’s MRI), the ground-truth maps (green
and blue pixels represent normal and blood vessel classes, respectively, and white
pixels are non-labelled pixels), and the segmentation maps for the VNIR, NIR, and
Fused data overlapped with the pseudo-RGB images. Blue and green colors were
selected to be consistent with previous works [70]. After a visual evaluation of the
segmentation maps by the operating surgeons, it can be observed that in Op50Ci, the
VNIR map presents normal pixels in the tumor area and normal and blood vessel pixels
out of the parenchymal area. In contrast, NIR and fused maps reduce the
misclassifications in the tumor area. Moreover, the anatomical structures of the
parenchymal area are better defined in the fusion map than in the VNIR and NIR
maps, although some pixels are identified as normal within the tumor area. In Op51Ci,
the VNIR map defines well the anatomical structures of the vessels and normal tissues,
while the NIR map avoids misclassifications within the tumor area, delimiting well the
parenchyma. The fused map offers a tradeoff between the information shown in the
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VNIR and NIR maps, but some false negatives are presented in the tumor area. In
Op54C1, the tumor area was correctly defined in the VNIR map without false negatives,
but the anatomical structures of vessels are not accurately identified. In opposite, the
NIR map improve de delineation of blood vessels, but the anatomical structure of
normal tissue is poorly defined, including also false negatives in the tumor area.
Finally, the fused map offers the best anatomical structures and delineation of tumor
area. These results were assessed by the operating surgeons analyzing the MRI of the
patient and the pathological diagnosis of the tissue.
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Figure 3-39: Results of the image segmentation of the HSI brain dataset. Each column (from
left to right) represents the pseudo-RGB image generated form the VNIR data, the ground-truth (GT) map,
the VNIR, NIR, and fused segmentation maps overlapped with the pseudo-RGB image, respectively. Green
color represents normal tissue and blue color represents blood vessels. Op50C1: Meningioma Grade 1;
Op51C1: Glioblastoma Grade 4; Op54Ci: Glioblastoma Grade 4.
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3.7.3 Brain Tissue Classification using the VNIR-NIR Range

Due to the limited number of patients in this dataset, a leave-one-patient-out cross-
validation approach was employed in this study. Each HS image was used as test and
the training set contains all HS images except those of the corresponding patient. Three
algorithms were evaluated to perform the classification: SVM, KNN, and RF. In
addition, this approach was applied using NIR, VNIR, and fused images,
independently, in order to evaluate the contribution of the fusion process in the
classification performance.

Figure 3-40.a shows the boxplots of the OA results obtained from each classifier.
The highest median (horizontal bar within the box) and average (cross mark) OA were
obtained with the SVM-L model using fused data (94.1% and 93.0%, respectively).
Fusion and NIR results using KNN-C and KNN-E obtain similar OA results, while
VNIR results improve ~5% the average OA value. A similar trend occurs in SVM-RBF,
where VNIR achieves better results, but in all three cases (fusion, NIR, and VNIR) the



Chapter 3: Intraoperative HS acquisition system for brain surgical diagnostics and guidance

IQR dispersion decreases with respect to the other algorithms. The RF algorithm
obtains similar average OA results using fusion, NIR, and VNIR images.

To avoid the high contribution of the background in the OA results due to the large
number of labeled pixels in such class, the macro Fi-Score metric was computed.
Figure 3-40.b shows such results, where it can be observed that the values decrease
with respect to the OA. The highest median and average results were obtained using the
KNN-C model with VNIR data (69.4% and 65.9%, respectively). In general, the VNIR
classification achieves the best results in all classifiers but shows a large IQR compared
to the NIR and fusion results. Fusion results obtain similar results than NIR results,
and the results are comparable to the VNIR ones when using the SVM-L model.
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Figure 3-40: Fusion, NIR, and VNIR classification results using five classifiers. a) Overall
accuracy. b) Macro F1-Score.

Figure 3-41 shows the sensitivity results obtained for each class. The sensitivity of
the NT class can be observed in Figure 3-41.a, where in general the NIR data obtain less
data dispersion in all classifiers with respect to the VNIR data. KNN-C and KNN-E
obtain the best average sensitivity results employing fusion data (81.6% and 79.5%,
respectively). The highest median sensitivity of the NT class was obtained using the
KNN-C model and VNIR data (94.5%). NIR data improve the performance using SVM-
L, SVM-RBF, and RF algorithms. Figure 3-41.b shows the sensitivity of the TT class
where the NIR data obtain less IQR except in the SVM-L algorithm and low average
results. VNIR obtains the best average values in all classifiers, where the highest
median result was obtained using the RF model (69.4%). For VNIR, a similar trend
occurs in the HT class (Figure 3-41.c), which may be caused by the presence of
hemoglobin in the visible range. The highest median value was obtained using the
SVM-L algorithm and fused data (96.4%), while the highest average result was
obtained using KNN-C model and VNIR data (80.9%). The specificity results were
calculated obtaining an average result of up to 90% in all classifiers and data.
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Figure 3-41: Fusion, NIR, and VNIR sensitivity results using five classifiers. a) Sensitivity of
normal tissue. b) Sensitivity of tumor tissue. ¢) Sensitivity of hypervascularized tissue.

In addition, some outliers can be observed in Figure 3-41.a and Figure 3-41.b with a
value of zero in the fusion and VNIR data. This is caused by a non-optimal image
acquisition process of the image Op56C2, where the cold light emitter was not aligned
with the captured line, affecting the spectral range from 750 to 900 nm of the VNIR
sensor. This can be observed in Figure 3-42, where the normalized mean reflectance of
NT and TT classes from the Op56C1 and Op56C2 images are shown to compare both
consecutive captures.
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Figure 3-42: Mean reflectance spectral signature of normal (a) and tumor (b) tissue from
the VNIR image Op56C1 and Op56Cz2.

After applying the five supervised classification models to the entire VNIR, NIR, and
fusion HS images, four-class classification maps were generated. These maps were used
to analyze the results quantitatively. The synthetic RGB images and ground-truth maps
are also displayed.

Regarding the Op50C1 image (Figure 3-43), it can be observed that the VNIR maps
have more details about the hypervascularized class than the NIR maps due to the
hemoglobin contribution in the VIS region, as expected from HT sensitivity results. The
tumor is identified in the five classifiers using the VNIR image, however using NIR data
the SVM-L offers the high performance to identify TT. In addition, NIR provides better
delineation of background area. Employing both KNN algorithms, the resulting maps
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are noisy in the NIR case. The SVM-L model using fused data provides maps with fewer
artifacts.
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Figure 3-43: Spectral classification results of Op50Ci1. Synthetic RGB images, ground-truth (GT)
maps, and classification maps generated using, KNN-C, KNN-E, SVM-L, SVM-RBF, and RF algorithms for
fusion, NIR, and VNIR data.

Image Op51C1 (Figure 3-44) shows a high number of pixels misclassified as HT class
using NIR and VNIR. The background delineation is improved using NIR and fusion
data. The classification map using the fusion data improves the identification of NT,
reducing the false positives presented using NIR and VNIR, and obtaining better
performance using KNN-C and KNN-E models. False positives regarding TT class are
presented in NIR and VNIR images, while using fusion data these misclassified TT
pixels are located in the background area.
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Figure 3-44: Spectral classification results Op51C1. Synthetic RGB images, ground-truth (GT)
maps, and classification maps generated using, KNN-C, KNN-E, SVM-L, SVM-RBF, and RF algorithms for
fusion, NIR, and VNIR data.

In the case of Op56C1 (Figure 3-45), the TT was correctly identified in the VNIR
image by all classifiers, except the SVM-L model, where some TT pixels are identified as
NT. The HT class is identified with more detail using the fusion image. However, SVM-
L correctly identify the tumor area, but some NT pixels were identified as HT.
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Figure 3-45: Spectral classification results Op56C1. Synthetic RGB images, ground-truth (GT)
maps, and classification maps generated using, KNN-C, KNN-E, SVM-L, SVM-RBF, and RF algorithms for
fusion, NIR, and VNIR data.

3.7.4 Experimental Results Discussion

In this section, an in-vivo HS brain cancer dataset was analyzed using supervised
classification algorithms. This dataset was composed of VNIR, NIR and VNIR-NIR
fused images covering the spectral range between 400 and 1700 nm. SVM, KNN, and
RF algorithms were employed using a leave-patient-one-out data partition strategy. In
addition, the K-means algorithm was employed to perform image segmentation. NIR
and VNIR images were classified and segmented to determine if the fusion improved
the classification.

First, a preliminary analysis of three HS images of in-vivo human brain tissue
obtained during surgical procedures was performed to evaluate, as a proof-of-concept,
the segmentation results generated after processing the three data types. In this
preliminary analysis, only two classes (normal and blood vessel) were labeled in the
ground-truth maps and employed to reveal the two best clusters associated to such
labeled pixels. Analyzing these segmentation results, specialists determined that the
Fused maps provided a good tradeoff between the information presented in the VNIR
and NIR maps, offering improved anatomical structures delineation. In this
experiment, no tumor pixels were labeled or taken into account for the clustering
analysis. For such reason, further experiments must be conducted including an
increased dataset of HS images from in-vivo brain (where tumor pixels will be also
labeled) with the goal of performing both segmentation and classification problems,
aiming to identify tumor boundaries and compare the results obtained with the three
data types. Moreover, a clinical study, including large number of patients, different
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tumor types, and performing histological verification of several biopsies (within the
tumor area and margins), should be performed to validate the classification results
provided by the proposed method.

The classification results show that the presence of hemoglobin in the VIS region
improves the tumor and hypervascularized tissue using only VNIR images, while the
NIR images correctly delineate the parenchymal area. Classification maps obtained
using the VNIR-NIR fused images present more detailed maps, removing false
positives present in the VNIR and NIR images. The main characteristics observed in
the VNIR and NIR classification maps are reflected in the fused images.

This work represents an initial exploration into using VNIR-NIR analysis for
detecting and identifying brain cancer. While the results are promising, the dataset size
is the main limitation of this study. While the current dataset was sufficient to
demonstrate the potential of the approach, increasing the size of the dataset would
improve the robustness of the results. For future research, the size of the dataset will be
increased to employ other partition sets, avoiding the leave-one-patient-out approach.
In addition, hyperparameter optimization is an important step in the training process
to find the optimal configuration that leads to the best performance on a given dataset.
The results obtained in this work can be pessimistic and can be improved after
hyperparameter optimization.

Another important future work is to perform an analysis to determine the most
significant spectral bands within each range (VNIR and NIR). By identifying the most
significant spectral bands within each range, the total number of bands used in the
analysis and the computation time can be reduced. In addition, this band reduction can
lead to the use of HS sensors that employ only these specific bands.

3.8 Conclusions

Current guidance tools employed to assist brain tumor resection during surgery have
several limitations [230]-[233]. The IGS neuronavigation provide an accurate
identification of tumor boundaries in low-grade gliomas, but not in high-grade ones,
being affected also by the brain shift phenomenon. To accurately identify high-grade
gliomas, it is necessary the use of contrast agents with complex and expensive systems,
such as 5-ALA, or employing intraoperative MRI devices that requires especial
operating rooms and significatively extends the duration of the surgery. Moreover, the
treatment and decision made during surgery normally is determined by the
intraoperative pathological result, which may take up to 45 minutes. Reducing the
surgery time implies decreasing the risk of complications during the operation, such as
infection, ischemia, respiratory problems, etc., thus improving -cost-efficiency.
Furthermore, an accurate delimitation between tumor and normal tissue improves the
average survival of the patient [17]. For these reasons, it is desirable to develop
minimally invasive, label-free, and flexible guidance tools that allow identifying brain
tumor boundaries in real-time during surgery. The use of HSI in medical applications
has been proved to be a valuable resource to identify tumor tissue [3].

Additionally, an analysis of the most relevant spectral bands of the fused HS images
for an accurate delineation of the tumor boundaries will be explored in future works
with the goal of determining the minimum number of wavelengths required to develop
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customized HS cameras. This will allow a reduction of the acquisition system size and
also a time reduction of the data acquisition and processing, targeting real-time
performance during surgery. This identification of the most relevant spectral bands in
the NIR range will also allow to increase the spatial resolution of this HS images,
possibly avoiding the resampling process employed in this work. These advances could
allow the development of a novel guidance tool based on HSI technology for the
accurate identification of brain tumors, regardless of tumor grade, avoiding the use of
several independent devices during surgery and, hence, reducing the operation time.
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