
Citation: Rodrigues, F.; Mendonça, I.;

Faria, M.; Gomes, R.; Pinchetti, J.L.G.;

Ferreira, A.; Cordeiro, N. Response

Surface Methodology Applied to

Cyanobacterial EPS Production: Steps

and Statistical Validations. Processes

2024, 12, 1733. https://doi.org/

10.3390/pr12081733

Academic Editor: Olympia Roeva

Received: 10 July 2024

Revised: 13 August 2024

Accepted: 14 August 2024

Published: 18 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Response Surface Methodology Applied to Cyanobacterial EPS
Production: Steps and Statistical Validations
Filipa Rodrigues 1,2,†, Ivana Mendonça 1,2,3,† , Marisa Faria 1,2, Ricardo Gomes 1, Juan Luis Gómez Pinchetti 4 ,
Artur Ferreira 3 and Nereida Cordeiro 1,2,*

1 LB3-Faculty of Science and Engineering, University of Madeira, 9000-072 Funchal, Portugal;
ana.f.rodrigues@staff.uma.pt (F.R.); ivana.mendonca@staff.uma.pt (I.M.); marisa.faria@staff.uma.pt (M.F.)

2 Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto,
4099-002 Porto, Portugal

3 Aveiro Institute of Materials and Águeda School of Technology and Management (CICECO), University of
Aveiro, 3810-193 Aveiro, Portugal; artur.ferreira@ua.pt

4 Spanish Bank of Algae (BEA), Institute of Oceanography and Global Change (IOCAG), University of Las
Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain; juan.gomez@ulpgc.es

* Correspondence: ncordeiro@staff.uma.pt
† These authors contributed equally to this work.

Abstract: Understanding the impact of variables involved in soluble-extracellular polymeric sub-
stance (S-EPS) production processes is crucial for reducing production costs and enhancing sus-
tainability. Response surface methodology (RSM) provides essential tools that assist in developing
predicted interactions among process variables for both industrial and non-industrial applications.
The present study offers a simple and systematic demonstration of RSM capabilities, focusing on max-
imizing efficiency and minimizing production costs of S-EPS produced by Cyanocohniella rudolphia.
RSM was employed to (1) design the production setup; (2) fit the collected data into a second-order
polynomial model; (3) statistically evaluate the model’s validity and the significance of the involved
variables; and (4) identify and optimize production variables to enhance output and reduce costs.
Focused on four key variables, each at three levels, RSM designed 25 distinct S-EPS production
conditions, each with three replicates. Statistical analysis identified the most significant variables
affecting S-EPS production as the culture medium/wet biomass ratio, production days, and nitrogen
concentration. The model’s validation demonstrated a strong correlation between the predicted and
experimental values, with S-EPS production ranging from 70.46 to 228.65 mg/L and a maximum
variation of 11.6%. This study demonstrates the effectiveness of RSM in optimizing S-EPS production,
with the developed model showing a strong correlation between the variables and the response. The
RSM model offers a promising approach for the bioprocessing industry, enhancing productivity and
efficiency, minimizing costs, and leading to sustainable, cost-effective practices.

Keywords: response surface methodology; cyanobacteria; Cyanocohniella rudolphia; soluble-extracellular
polymeric substances; EPS production modulation

1. Introduction

Extracellular polymeric substances (EPSs) are high-molecular-weight compounds,
predominantly composed of polysaccharides, which can be secreted by microalgae and
cyanobacteria into their surrounding environment. Soluble EPSs (S-EPSs) are a specific
subset of these substances that remain dissolved in the culture medium and are usually
discarded. However, based on their characteristics and potential applications in various
fields, these S-EPS deserve the attention of the scientific community.

To fully realize the potential of cyanobacteria-based S-EPS production and maximize
its industrial value, it is crucial to enhance S-EPS production and improve its subsequent
utilization. Optimizing the production conditions for S-EPS by cyanobacteria is essential
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for achieving higher yields. Various physicochemical parameters, such as light intensity
and photoperiod, nutrient availability and sources, temperature, and pH, significantly
impact S-EPS production in cyanobacteria [1,2].

A systematic approach, such as response surface methodology (RSM) [3–5], is needed
to identify the key factors and their optimal levels to maximize S-EPS synthesis by cyanobac-
teria. RSM can employ designs such as Central Composite Design (CCD), Box-Behnken,
or Doehlert designs. The choice between these designs should be based on the specific
nature of the problem, practical limitations, and study objectives. CCD has advantages
over the others, being applied to a wide variety of RSM studies. Box-Behnken is advanta-
geous when aiming to minimize the number of experiments and avoid extreme points in
the experimental space. Doehlert is useful for studies requiring uniform coverage of the
experimental space with flexibility in the number of factors and levels [6]. RSM utilizes
advanced statistical techniques to develop models that predict interactions among process
variables and demonstrate how these variables influence the response. This methodology
provides essential tools for both industrial and non-industrial processes. The different steps
involved in RSM (Figure 1) are as follows:

Step 1—Experimental design—creation of fractional factorial production design;
Step 2—Polynomial model—fitting of collected data into a second-order polynomial model;
Step 3—Model validation—a statistical evaluation of the model’s validity and the assess-
ment of the significance of the involved independent variables;
Step 4—Response optimization—identification of optimal independent variables to secure
the best possible outcomes.

While the one-factor-at-a-time method can effectively test the independent variables,
it overlooks potential interactions between them. Therefore, a three-level (low, medium,
and high) fractional factorial experimental design should be employed to evaluate how
different parameters (variables and levels) influence the response (Step 1).

When using CCD, the number of experimental conditions (N) is determined using
Equation (1) and depends on the number of independent variables (k) and nc, the number
of center points.

N =2k + 2k + nc. (1)

In a CCD, the design typically includes the following: (1) factorial points, which are
combinations of the lowest and highest levels of the independent variables; (2) star points,
located at a distance α from the center values; and (3) center points, repeated multiple
times at the central values of all independent variables to estimate experimental error
and improve model reliability. Thus, for a given k and a specified nc, a total number of
experiments was defined. This structured approach ensures a robust design that allows for
a comprehensive analysis of the independent variables and their interactions.

The collected experimental data can be analyzed to formulate the second-order
polynomial model (Step 2), achieved using a quadratic polynomial regression equation
(Equation (2)). This equation consists of the response Y, the independent variables Xi
and Xj, the model constant β0, the first-order model coefficients βi for each independent
variables, the quadratic coefficients βii for each independent variable i, the interaction coef-
ficient βij for the interaction between variables i and j, and ε, the error term that represents
the variability not explained by the model [3].

Y =β0 + ΣβiXi + Σβij XiXj + ΣβiiX2
i + ε (2)

Model validation involves several statistical analyses (Step 3); these included assessing
residuals to estimate model adequacy, evaluating the lack of fit between the predicted and
experimental responses, and analyzing F-values and p-values from ANOVA tests. Statistical
analysis can also be useful in studying the influence of each independent variable and
simplifying the model for easier practical application.
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Figure 1. Flowchart illustrating the key steps in the application of RSM for optimizing S-EPS
production by C. rudolphia.

Additionally, RSM can be applied to determine the optimal independent variables to
secure the best response, whether by minimizing or maximizing these variables according
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to the pretended goal (Step 4). In terms of practical applicability, optimizing these variables
aims to enhance output and reduce costs.

Based on this, and to demonstrate in a simple way the most relevant key points
of RSM, the study used the production of S-EPS by Cyanocohniella rudolphia as a case
study. By employing RSM, the production setup was designed, a polynomial model was
developed and validated, and key variables were optimized to make the process more
efficient and economical.

2. Experimental Design
2.1. S-EPS Production and Determination

Cyanocohniella rudolphia (BEA 0786B) was provided by the Collection at the Spanish
Bank of Algae. The cyanobacteria were cultured in a continuously aerated Spirulina
medium with an initial pH of 9.0. The conditions set were an irradiance of 40 µmol
photons/m2/s, a 14/10 h light/dark cycle, and a temperature of 22 ± 1 ◦C. To study
the variation in phosphorus and nitrogen concentrations in the RSM application, the
concentrations of phosphorus (as K2HPO4) and nitrogen (as NaNO3) were adjusted in
the Spirulina medium. The S-EPS production was assessed using the Alcian Blue method.
To ensure precise quantification, a calibration curve was constructed with purified S-EPS
derived from an axenic culture of C. rudolphia, following the procedures described by
Rodrigues et al. [7].

2.2. RSM Methodology

RSM was employed to develop mathematical models with experimental data from
C. rudolphia S-EPS production through the CCD methodology (Figure 1). The optimization
algorithm utilized was the least squares method, implemented via the Design-Expert
software (version 13). This algorithm fits the collected data into a second-order polynomial
model by minimizing the sum of the squares of the differences between the observed and
predicted values, ensuring the best fit for the experimental data. A three-level factorial
design and a four-variable fractional factorial experimental design were performed during
the experiment (Table 1). For the simplified model, after the statistical analysis (Step 3;
Figure 1) of the significance of the variables, an optimization algorithm with three levels
and three variables (ratio, days, and nitrogen concentration) was conducted, maintaining
the phosphorus concentration at 0.50 g/L and using the same significant variable levels as
in the general model (Table 1). A face-centered CCD (α = 1) was used to ensure that the
star points were equally distanced from the center. As the goal was to maximize S-EPS
production, a value of 1 was assigned to the Desirability function.

Table 1. Independent variables and respective experimental levels used for the optimization of
C. rudolphia-based S-EPS production.

Independent Variables Units Type of Variable
Variable Level *

−1 0 +1

Ratio (culture medium/wet biomass) (R) mL/g Continuous 1:1 7.5:1 14:1
Days (D) days Discrete 1 4 7

Nitrogen concentration (N) g/L Continuous 2.50 6.25 10.00
Phosphorus concentration (P) # g/L Continuous 0.50 1.25 2.00

* α = 1 was used. # the simplified model with three levels and three variables was used, maintaining the
phosphorus concentration at 0.50 g/L.

The selected independent variables and their level ranges were as follows: culture
medium/wet biomass ratio (R) (ranging from 1:1 to 14:1 (v/w)), number of production days
(ranging from 1 to 7 days), phosphorus concentration (phosphate from K2HPO4) (ranging
from 0.5 to 2 g/L), and nitrogen concentration (nitrate from NaNO3) (ranging from 2.5 to
10 g/L). The specific value of α (α = 1) was determined to ensure that the star points were
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equally distanced from the center. Using Equation (1) for the four independent variables
(k = 4) and their respective levels (nc = 9), 25 different S-EPS production conditions (N) were
generated (Table 2) and performed experimentally in triplicate (step 1). The CCD included
16 factorial points (N 1 to 16), 8 star points (N 18 to 25), and 1 repeated center point (N 17,
repeated 6 times). The arrangement of the input variables is detailed in Table 2.

Table 2. RSM experimental design with three levels and four variables for C. rudolphia-based S-EPS
experimental response and model-predicted response obtained by the general model (Equation (4)).

N

Independent Variables—Production Conditions
(Coded Levels) ˆ Response—S-EPS Production (mg/L) #

Ratio (Culture
Medium/Wet

Biomass) (mL/g)

Production
Days

(D; day)

Phosphorus
Concentration

(P; g/L)

Nitrogen
Concentration

(N; g/L)

Experimental
Values

Predicted
Values

Variation
(%) *

1 1:1 (−1) 1 (−1) 0.50 (−1) 2.50 (−1) 192.86 ± 8.55 199.52 −3.45
2 1:1 (−1) 1 (−1) 0.50 (−1) 10.00 (+1) 217.92 ± 12.28 208.79 4.19
3 1:1 (−1) 1 (−1) 2.00 (+1) 2.50 (−1) 224.53 ± 5.66 225.52 −0.44
4 1:1 (−1) 1 (−1) 2.00 (+1) 10.00 (+1) 228.65 ± 16.31 228.97 −0.14
5 1:1 (−1) 7 (+1) 0.50 (−1) 2.50 (−1) 199.64 ± 63.96 186.90 6.38
6 1:1 (−1) 7 (+1) 0.50 (−1) 10.00 (+1) 178.69 ± 21.11 194.32 −8.75
7 1:1 (−1) 7 (+1) 2.00 (+1) 2.50 (−1) 200.96 ± 14.04 203.96 −1.49
8 1:1 (−1) 7 (+1) 2.00 (+1) 10.00 (+1) 206.82 ± 2.94 203.73 1.49
9 14:1 (+1) 1 (−1) 0.50 (−1) 2.50 (−1) 70.46 ± 8.82 67.56 4.12

10 14:1 (+1) 1 (−1) 0.50 (−1) 10.00 (+1) 112.49 ± 0.77 113.89 −1.24
11 14:1 (+1) 1 (−1) 2.00 (+1) 2.50 (−1) 72.73 ± 8.52 61.51 15.43
12 14:1 (+1) 1 (−1) 2.00 (+1) 10.00 (+1) 93.44 ± 3.37 100.19 −7.22
13 14:1 (+1) 7 (+1) 0.50 (−1) 2.50 (−1) 143.40 ± 8.69 149.33 −4.14
14 14:1 (+1) 7 (+1) 0.50 (−1) 10.00 (+1) 200.78 ± 11.09 193.80 3.48
15 14:1 (+1) 7 (+1) 2.00 (+1) 2.50 (−1) 131.20 ± 5.19 134.34 −2.39
16 14:1 (+1) 7 (+1) 2.00 (+1) 10.00 (+1) 173.40 ± 14.18 171.16 1.29
17 7.5:1 (0) 4 (0) 1.25 (0) 6.25 (0) 160.31 ± 15.66 142.34 11.21
18 1:1 (−1) 4 (0) 1.25 (0) 6.25 (0) 226.75 ± 1.55 205.61 9.32
19 7.5:1 (0) 1 (−1) 1.25 (0) 6.25 (0) 115.44 ± 10.65 128.88 −11.64
20 7.5:1 (0) 4 (0) 0.50 (−1) 6.25 (0) 132.21 ± 1.17 143.34 −8.42
21 7.5:1 (0) 4 (0) 1.25 (0) 2.50 (−1) 120.24 ± 8.22 129.03 −7.31
22 7.5:1 (0) 4 (0) 2.00 (+1) 6.25 (0) 130.89 ± 4.07 142.34 −8.75
23 7.5:1 (0) 4 (0) 1.25 (0) 10.00 (+1) 157.07 ± 2.98 155.65 0.90
25 7.5:1 (0) 7 (+1) 1.25 (0) 6.25 (0) 162.24 ± 5.61 155.80 3.97
25 14:1 (+1) 4 (0) 1.25 (0) 6.25 (0) 135.24 ± 6.75 125.91 6.90

N: number of experimental conditions determined using CCD (Equation (1)). * Variation (%) = [(experimental
value − predicted value)/experimental value) × 100)]. # mean ± standard deviation of the replicates: 3 replicates
for the factorial and star points and 6 replicates for the center point (total of 78 trials). ˆ Variable-coded levels:
low (−1); medium (0); high (+1).

Considering these independent variables (R, D, P, and N) and their respective levels
(Table 1) employed in this experimental design, a quadratic equation was specifically
derived (Equation (3)) to correlate with the experimental responses obtained (Step 2).

Y = X0 + X1R+ X2D+X3P+ X4N+ X12R ∗ D+X13R ∗ P+ X14R ∗ N+
X23D ∗ P+ X24D ∗ N+ X34P ∗ N+ X11R ∗ R+ X22D ∗ D+ X33P ∗ P+ X44N ∗ N + ε

(3)

3. Results and Discussion
3.1. RSM Model: Application, Refinement, and Validation Applications to Response Optimization

Based on the experimental design set-up and the corresponding results obtained for
S-EPS production (summarized in Table 2), a second-order polynomial model was obtained
as follows:

S − EPS production (mg/L)= 147.43 − 41.31R + 14.92D + 0.788P + 11.8N + 23.6R ∗ D − 8.01R ∗ P
+9.26R ∗ N − 2.23D ∗ P − 0.4639D ∗ N − 1.91P ∗ N + 37.87R ∗ R − 4.29D ∗ D − 11.57P ∗ P − 4.47N ∗ N

(4)
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This model (referred to as the general model) elucidates the relationship between the
independent variables (production conditions) and the response (C. rudolphia-based S-EPS
production). The model enables the prediction or estimation of C. rudolphia-based S-EPS
production under various experimental conditions, which can be visualized in 3D models
(Figure 2A1).
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In these specific experimental setups, the cyanobacteria produced S-EPS ranging from
70.46 to 228.65 mg/L. This range aligns with the RSM model’s estimated S-EPS production,
which ranges from 67.56 to 228.97 mg/L (Table 2). The maximum percentage variation
between the experimental and predicted values was 11.64%. To further assess the precision
of the model across the entire design space, the Fraction of Design Space (FDS) analysis
was performed. The FDS plot (Figure 2D1) illustrates the prediction variance across the
design space, confirming the precision and reliability of the model and demonstrating its
effectiveness in estimating S-EPS production.

The statistical analysis, which includes the evaluation of residuals (Figure 2B1), lack-
of-fit, and ANOVA (Table 3), confirms the model’s applicability. The scatterplot of residual
vs. predicted values showed a uniform distribution, indicating normality (R2 = 0.9417) and
the absence of outliers (Figure 2C1).

For practical applications, simplifying the model is often crucial, especially when
dealing with a large number of independent variables. This simplification can be achieved
by analyzing the significance of each variable, as exemplified in Figure 3A, where ANOVA
analysis provided insights into the significance of the model’s independent variables. The
p-value and F-value (Table 3) indicated that the R, D, and N variables were significant,
whereas variations in P (phosphorus concentration) did not significantly affect the response.
Since the P variable was not significant, the experimental design was refined (optimized
algorithm) to focus on the three significant independent variables (R, D, and N), reducing
the number of experimental conditions to 15 (Table 4). These conditions included eight
factorial points, six star points, and one center point (Equation (1); N = 23 + 2 × 3 + 1 = 15;
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center point repeated six times). Each condition was performed in triplicate, resulting in
a total of 48 trials instead of the previous 78. With this experimental simplification, the
previously identified mathematical model (general model, Equation (4)) was streamlined
into a more simplified model (Equation (5)).

Table 3. Analysis of variance (ANOVA) applied to the general model (Equation (4)).

Sum of Squares Degree of Freedom Mean Square F-Value p-Value

Model 1.59 × 105 14 11,361.83 40.06 <0.0001

R 92,171.23 1 92,171.23 325.02 <0.0001
D 12,026.63 1 12,026.63 42.41 <0.0001
P 33.53 1 33.53 0.12 0.7321
N 7578.77 1 7578.77 26.72 <0.0001

R*D 26,725.88 1 26,725.88 94.24 <0.0001
R*P 3082.14 1 3082.14 10.87 0.0016
R*N 4119.63 1 4119.63 14.53 0.0003
D*P 239.76 1 239.76 0.85 0.3614
D*N 10.33 1 10.33 0.04 0.8492
P*N 175.79 1 175.79 0.62 0.4340

R*R 11,017.20 1 11,017.20 38.85 <0.0001
D*D 141.23 1 141.23 0.50 0.4830
P*P 1029.33 1 1029.33 3.63 0.0613
N*N 153.57 1 153.57 0.54 0.4645

Residual 17,865.95 63 283.59 ----- -----

Lack of Fit 4834.92 10 483.49 1.97 0.0561

Error 13,031.03 53 245.87 ----- -----
* R: culture medium/wet biomass ratio; D: production days; P: phosphorus concentration; N: nitrogen concentration.

S − EPS production (mg/L) = 142.34–39.85R + 13.46D + 13.31N + 25.24R ∗ D + 7.62R ∗ N + 23.41R ∗ R (5)
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Figure 3. Pareto chart showing the degree of influence of independent variables on S-EPS production
by the general model (A) and the simplified model (B). (*) The horizontal line represents the threshold
of statistical significance. R: culture medium/wet biomass ratio; D: production cycle time; N: nitrogen
concentration; P: phosphorus concentration.
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Table 4. RSM fractional experimental design with three levels and three variables for C. rudolphia-
based S-EPS experimental production and model-predicted response obtained by the simplified
model (Equation (5)). Phosphorus concentration: 0.50 g/L.

N

Independent Variables—Production Conditions
(Coded Levels) ˆ Response—S-EPS Production (mg/L) #

Ratio (Culture
Medium/Wet

Biomass) (mL/g)

Production
Days

(D; day)

Nitrogen
Concentration

(N; g/L)

Experimental
Values

Predicted
Values

Variation
(%) *

1 1:1 (−1) 1 (−1) 2.50 (−1) 211.70 ± 9.41 212.47 −0.36
2 1:1 (−1) 1 (−1) 10.00 (+1) 219.65 ± 1.19 218.56 0.50
3 1:1 (−1) 4 (0) 6.25 (0) 200.49 ± 8.49 222.09 −10.77
4 1:1 (−1) 7 (+1) 2.50 (−1) 197.60 ± 8.49 196.05 0.78
5 1:1 (−1) 7 (+1) 10.00 (+1) 205.42 ± 7.06 200.29 2.50
6 7.5:1 (0) 1 (−1) 6.25 (0) 142.06 ± 1.79 123.70 12.92
7 7.5:1 (0) 4 (0) 2.50 (−1) 128.03 ± 1.20 126.58 1.13
8 7.5:1 (0) 4 (0) 6.25 (0) 149.15 ± 14.00 146.15 2.01
9 7.5:1 (0) 4 (0) 10.00 (+1) 154.73 ± 3.56 150.28 2.88

10 7.5:1 (0) 7 (+1) 6.25 (0) 155.86 ± 2.50 153.54 1.49
11 14:1 (+1) 1 (−1) 2.50 (−1) 65.57 ± 4.44 64.12 2.21
12 14:1 (+1) 7 (+1) 2.50 (−1) 138.18 ± 1.54 142.08 −2.82
13 14:1 (+1) 1 (−1) 10.00 (+1) 104.80 ± 8.88 107.27 −2.36
14 14:1 (+1) 7 (+1) 10.00 (+1) 183.01 ± 5.10 183.38 −0.20
15 14:1 (+1) 4 (0) 6.25 (0) 136.31 ± 4.76 139.46 −2.31

N: number of experimental conditions determined using the CCD (Equation (1)). * Variation (%) = [(experimental
value − predicted value)/experimental value) × 100)]. # mean ± standard deviation of the replicates: 3 replicates
for the factorial and star points, and 6 replicates for the center point (total of 48 trials). ˆ Variable-coded levels:
low (−1); medium (0); high (+1).

The simplified model (Equation (5)) demonstrated improved prediction accuracy
compared to the general model (Equation (4)), as evidenced by the lower F-value for the
residual lack-of-fit (Table 5). The reduction in the F-value from the general model’s 1.97 to
1.86 in the simplified model suggests an enhanced fit to the data, signifying an improvement
in predictive performance. Despite a slight decrease in the R2 value to 0.8880 (Table 6), the
close alignment between the predicted R2 (0.8629) and adjusted R2 (0.8784) indicates that
the model maintains its robustness. This congruence between the predicted and adjusted
R2 values suggests that the simplified model, with its refined parameters, offers reliable
response predictions, maintaining a high degree of accuracy and applicability.

Table 5. Analysis of variance (ANOVA) applied to the simplified model (Equation (5)).

Sum of Squares Degree of Freedom Mean Square F-Value p-Value

Model 1.467 × 105 6 24,450.32 92.48 <0.0001

R 83,999.52 1 83,999.52 317.72 <0.0001
D 9583.41 1 9583.41 36.25 <0.0001
N 9370.07 1 9370.07 35.44 <0.0001

R*D 29,880.44 1 29,880.44 113.02 <0.0001
R*N 2721.69 1 2721.69 10.29 0.0020
R*R 9050.72 1 9050.72 34.23 <0.0001

Residual 18,506.94 70 264.38
Lack of Fit 3586.34 8 448.29 1.86 0.0823

Error 14,920.61 62 240.65
* R: culture medium/wet biomass ratio; D: production days; N: nitrogen concentration.
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Table 6. Comparative statistical analysis of responses using the general (Equation (4)) and simplified
models (Equation (5)).

General Model (Equation (4)) Simplified Model (Equation (5))

Predicted R2 0.9092 0.8629
Adjusted R2 0.9285 0.8784

R2 0.9417 0.8880

The analysis of the residuals from the simplified model’s predictions for S-EPS pro-
duction indicated that they were uniformly distributed (Figure 2C2), consistent with the
experimental data (R2 = 0.9178), and free from outliers. The uniform distribution demon-
strates a strong correlation between the predicted and observed values, indicating the
model’s effectiveness in capturing the underlying patterns of the dataset. Through ANOVA
statistical analyses, the adequacy of the simplified model’s fit was further validated by a
high F-value of 92.48, which significantly exceeds the critical value of F(0.05,6,70) = 2.215,
alongside a p-value smaller than 0.0001 (Table 5). Such statistical evidence robustly supports
the simplified model’s ability to accurately represent the relationship between the indepen-
dent variables and the response, affirming its reliability with a high level of confidence.

Thus, the statistical analysis indicates that the simplified model not only preserves but
may also enhance the efficacy of predictive analysis for S-EPS production. Furthermore,
this streamlined approach improves clarity, leading to better decision-making and resource
management across experimental and industrial environments.

Regarding S-EPS production, the simplified model predicts that S-EPS production
ranges from 64.12 to 218.56 mg/L (Figure 2A2; Table 4), aligning closely with both the
experimentally obtained S-EPS production (65.57 to 219.65 mg/L) and the range predicted
by the general model (67.56 to 228.97 mg/L). The percentage variation between the experi-
mental and predicted responses being less than 10.77% attests to the model’s accuracy in
estimating S-EPS production.

The specific value of the Fraction of Design Space (FDS; Figure 2D) and the shape of
the FDS curve offer additional insights into the precision and efficiency of the models across
different sections of the design space. Using a direct approach to optimize EPS production
(with a Desirability score of 1), an FDS = 0.50 was obtained for both models. However,
a significant difference in measurement precision is observed within the 95% confidence
interval. This is indicated by the lower standard error of the mean (SE) in the simplified
model (SE = 0.28; Figure 2D2) compared to the higher SE in the general model (SE = 0.64;
Figure 2D1). This means that 50% of the design space has an SE ≤ 0.28 for the simplified
model, while the same 50% for the general model has an SE ≤ 0.64. Regarding the shape of
the curve, the flatter curve of the simplified model indicates a more uniformly distributed
precision across the entire design space, making it more robust and reliable in predicting
C. rudolphia-based S-EPS.

To confirm experimentally the reliability and predictability of the model, combinations
of independent variables not included in the experimental design must be used. Ideally,
these combinations should span a range of response levels, from the lowest to the highest,
as illustrated in Figure 2A2 (points 1–3). Comparing both predicted and experimental
responses will experimentally confirm the model’s applicability.

3.2. RSM Model: Applications to Response Optimization

Another significant potential of RSM lies in identifying optimal production variables
to achieve the best possible outcomes, a crucial aspect regardless of whether these variables
are targeted for minimization or maximization (step 4; Figure 1). Through modeling
responses in relation to various production variables, RSM enables the maximization of
responses. This capability extends to scenarios without specific conditioning variables
as well as to those aimed at reducing production costs, illustrating the versatility and
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utility of RSM in optimizing production processes to meet effectively diverse industrial
and sustainability objectives.

Applying this approach to the study case (Figure 1), for the scenario focused on
maximizing S-EPS production (optimum condition) from the cyanobacteria C. rudolphia,
the experimental conditions determined by the RSM are 1 g of wet biomass per 1 mL of
culture medium for 1 day of production time, 0.98 g/L of phosphorus, and 10 g/L of
nitrogen. Under these specific conditions, the achieved S-EPS production by the model
would be 223.1 mg/L. Experimentally, for these experimental conditions, a production
of 219.08 ± 5.94 mg/L was obtained, which corresponded to a variation of less than 2%
between the experimental value and the model-predicted value. Alternatively, in the
scenario aimed at minimizing production costs, the R variables proved to be the most
significant, with the optimal production conditions being 1 g of wet biomass per 6.87 mL
of culture medium for 7 days of production time, 0.98 g/L of phosphorous, and 10 g/L
of nitrogen. Under these specific conditions, the achieved S-EPS production would be
113.2 mg/L, obtained when the R variable was intentionally set to its lowest level. Ex-
perimentally, for these experimental conditions, a production of 112.75 ± 1.17 mg/L was
obtained, which corresponded to a variation of 0.4% between the experimental value and
the model-predicted value.

Although the study by Jung et al. [8] on C. rudolphia reported significant tolerance
to saline conditions, the production of EPS by C. rudolphia has not yet been quantified,
making a direct comparison or evaluation of the results obtained in this study impossi-
ble. Nevertheless, compared to published studies on different species and experimental
conditions [9–17], the values obtained for EPS production by C. rudolphia under optimal
conditions are within the range found in these studies for species considered good EPS
producers. This indicates that C. rudolphia is a viable species for EPS production. However,
the main purpose of this work was to demonstrate that using RSM offers unparalleled ad-
vantages over the approach of testing independent variables individually. In contrast, RSM
allows for a detailed analysis of the interactions between independent variables, leading to
a more precise and efficient optimization of EPS production. Furthermore, RSM requires
a significantly lower number of experiments to identify the best experimental conditions,
thereby saving time and resources. Additionally, based on the explanation provided in
this study, a beginner can easily and intuitively use RSM to create the experimental design,
identify the most impactful independent variables on EPS production, model the response,
conduct a complete statistical analysis, and identify the best combination of independent
variables to ensure the best possible outcomes in terms of production or production costs.
Thus, the industrial applicability of RSM for EPS production becomes evident, as the
optimized conditions can be easily scaled up for large-scale production. The efficiency
and cost reduction achieved through the optimization of production parameters can bring
significant economic benefits to the EPS bioprocessing industry.

4. Conclusions

Using the optimization of EPS production by C. rudolphia as a case study, this study
explored and demonstrated simply and intuitively the various steps and tools of RSM. This
study highlighted the effective application of RSM in optimizing EPS production, using
a reduced number of experimental trials compared to traditional methods, thus saving
time and resources. The statistical analysis identified the most significant physicochemical
parameters affecting EPS production, and the developed polynomial model was applied
to optimize the independent variables, aiming for maximum response and cost reduction
with a focus on industrial application. The findings underline the potential for scaling up
the optimized conditions for industrial applications, promoting sustainable and economical
practices in the bioprocessing industry. The approach demonstrated in this study supports
enhanced productivity and resource efficiency, paving the way for significant economic
benefits in the large-scale production of EPS.
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16. Koçer, A.T.; İnan, B.; Kaptan Usul, S.; Koçer, B.; Çakmak, Y.S.; Usul, M.; Mendi, A.; Gencer, S. Exopolysaccharides from microalgae:
Production, characterization, optimization and techno-economic assessment. Braz. J. Microbiol. 2021, 52, 1779–1790. [CrossRef]
[PubMed]

17. Cunha, C.; Silva, L.; Paulo, J.; Faria, M.; Nogueira, N.; Cordeiro, N. Microalgal-based biopolymer for nano- and microplastic
removal: A possible biosolution for wastewater treatment. Environ. Pollut. 2020, 263 Pt B, 114385. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s42770-021-00575-3
https://www.ncbi.nlm.nih.gov/pubmed/34510399
https://doi.org/10.1016/j.envpol.2020.114385
https://www.ncbi.nlm.nih.gov/pubmed/32203858

	Introduction 
	Experimental Design 
	S-EPS Production and Determination 
	RSM Methodology 

	Results and Discussion 
	RSM Model: Application, Refinement, and Validation Applications to Response Optimization 
	RSM Model: Applications to Response Optimization 

	Conclusions 
	References

