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Documenting large-scale patterns of animals in the ocean
and determining the drivers of these patterns is needed
for conservation efforts given the unprecedented rates of
change occurring within marine ecosystems. We used existing
datasets from two global expeditions, Tara Oceans and
Malaspina, that circumnavigated the oceans and sampled
down to 4000 m to assess metazoans from environmental
DNA (eDNA) extracted from seawater. We describe patterns
of taxonomic richness within metazoan phyla and orders
based on metabarcoding and infer the relative abundance
of phyla using metagenome datasets, and relate these data
to environmental variables. Arthropods had the greatest
taxonomic richness of metazoan phyla at the surface, while
cnidarians had the greatest richness in pelagic zones. Half
of the marine metazoan eDNA from metagenome datasets
was from arthropods, followed by cnidarians and nematodes.
We found that mean surface temperature and primary
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productivity were positively related to metazoan taxonomic richness. Our findings concur with
existing knowledge that temperature and primary productivity are important drivers of taxonomic
richness for specific taxa at the ocean’s surface, but these correlations are less evident in the
deep ocean. Massive sequencing of eDNA can improve understanding of animal distributions,
particularly for the deep ocean where sampling is challenging.

1. Introduction
Anthropogenic impacts, such as climate change and overexploitation, are resulting in continued
biodiversity loss on land and in the ocean [1,2]. Yet, we can barely understand the consequences of
these changes in the ocean as we are far from achieving a comprehensive understanding of animal
distribution and diversity in the marine realm, particularly in the open and deep ocean [3,4]. Enhanced
knowledge of the open and deep ocean is important given they form one of the largest habitats in the
biosphere [5,6]. Moreover, it is difficult to quantify fragile animals with conventional techniques, in
particular, gelatinous organisms that forage, and diet studies suggest to be prevalent in the deep sea
[7,8]. An enhanced understanding of marine animal distribution and environmental drivers across the
ocean is needed to characterize ecosystem structure, and as a baseline for detecting and understanding
change in marine communities as indicated by the Convention on Biological Diversity [9] and the
United Nations 2030 Agenda for Sustainable Development [10].

Environmental DNA (eDNA) analyses—based on the detection of marker gene sequences (metabar-
code or metagenome sequencing)—can identify a wide array of taxa regardless of life stage, while
traditional surveys often only measure animals of specific sizes and life stages. Although different
definitions of eDNA exist, it can be defined as DNA extracted from an environmental sample,
including intra- and extra-cellular DNA, to attain the most all-inclusive taxonomic data [11]. eDNA-
based surveys have emerged as a powerful tool to accelerate the description of diversity in the marine
environment by complementing traditional sampling methods because they bypass the need to capture
or observe organisms [11–13].

Here, we utilized metabarcode (PCR amplicons of the 18S rRNA gene) and metagenome (shotgun
sequencing of whole community DNA) datasets from already published global expeditions (figure 1).
These expeditions targeted microbial size fractions collected from seawater and publications character-
ized micro-eukaryotes in the photic zone from the Tara Oceans expedition [14,15] and in both photic
and aphotic zones from the Malaspina expedition [16,17]. However, some of these studies reported the
presence of metazoan DNA and we aimed to use these datasets to enhance the understanding of the
patterns of taxonomic richness and the abundance of marine metazoans in the open and deep ocean
based on eDNA. In particular, we used these datasets to (i) describe global patterns of taxonomic
richness and the abundance of individual metazoan phyla in the ocean and (ii) identify environmental
predictors of taxonomic richness and the abundance of all marine metazoans for the sun-lit and dark
ocean.

To determine the predictors of oceanic metazoan richness (from metabarcode datasets) and relative
abundance (from metagenome datasets), we chose variables based on the following a priori hypotheses.
First, taxon richness is expected to increase with temperature but to decrease with depth following
multiple theories including metabolic-related hypotheses because temperature is positively related to
physiological processes and mutation rates, which may lead to faster speciation rates [18,19], and
‘the more-individuals hypothesis’ based on the positive relationship between the number of individu-
als and available energy, which also suggests a positive relationship between primary productivity
and richness [20,21]. These species richness-energy hypotheses (metabolic theory/kinetic energy) are
particularly important for the deep sea [6]. In addition, ‘the more-individuals hypothesis’ inherently
suggests a positive relationship between the abundance of taxa and available energy. Second, richness
is expected to decrease as the distance to land increases because coastal margins may be a source of
diversity to the open and deep ocean [6,22]. Third, greater environmental stability, proxied here as both
the annual range in surface temperature and primary productivity, is hypothesized to be positively
related to taxonomic richness [23] which could result from stable environments having species with
more localized ranges resulting in higher species richness [24]. Finally, human activities can reduce
animal abundance and diversity [25] and we used the ocean health index [26], which incorporates
harvesting of organisms, global warming and transportation, as a proxy to assess the relationship
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between anthropogenic impacts and metazoan eDNA. Thus, we assessed the patterns in taxonomic
richness and the abundance of marine metazoans from eDNA and the associations of these patterns
with environmental and human variables.

2. Material and methods
2.1. Method overview
This study used metabarcode and metagenome data. These two data types were collected along the
survey tracks of both the Tara Oceans and the Malaspina expeditions (figure 1). Although it is generally
accepted that metabarcoding is appropriate for assessing taxonomic richness, biases associated with
PCR make metabarcoding’s relationship with abundance less direct and context dependent [27,28].
However, metagenomes utilize shotgun sequencing and may have a better relationship between the
abundance of DNA in the environment and post-sequencing data. As a result, we conducted an
initial step of comparing results from the two genomic dataset types with morphology-based surveys
conducted during the Malaspina cruise to determine which genomic data type, if either, relates to
abundance and biomass determined by more traditional methods. In light of the results detailed below,
we used metabarcode datasets to assess taxonomic richness and metagenome datasets to assess the
abundance of marine metazoans. We used these datasets to describe basic patterns in the richness
and abundance of the most prevalent metazoan phyla over the ocean’s surface and in the deep
ocean, while we used the cumulative taxonomic richness and abundance of all metazoans to analyse
relationships with environmental variables. Each expedition had different collection, sequencing and
sequence analysis protocols. Thus, we describe and analyse each of the genomic datasets from each
expedition separately to make the multiple protocols and findings clear and concise. The expeditions
were conducted before eDNA was targeted and thus did not include field or extraction controls that
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Figure 1. Sample locations for Tara Oceans and Malaspina global expeditions with sample distribution along the latitude and depth
are shown in the right panels for metabarcode (a) and metagenome (b) datasets.
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are optimally used to detect contamination and consideration given the lack of these controls in the
discussion. However, the expeditions did use common protocols to reduce contamination of samples
in the laboratory and details of protocols are given in respective references. For example, PCR controls
were always included for each PCR batch and samples were not sequenced if there was amplification
in the control. The goal of these expeditions was to maximize the spatial coverage of the collected
samples and replicates of samples were not sequenced.

2.2. Metabarcoding methods
The Tara Oceans sequences are open access and detailed methods are available elsewhere [14,29].
The Tara Oceans expedition was conducted from September 2009 to March 2012 and 241 samples
from 45 locations were collected, primarily from two or three depths at each location (<400 m depth;
figure 1). Sampling occurred day and night and there was no indication that this affected taxonomic
richness (supplementary text and electronic supplementary material, figure S1). Before each surface
sampling occasion, water was pumped for 10 min before collecting a sample. Before filling containers
with samples, they were rinsed with diluted bleach (approx. 1–10%), freshwater twice and collected
water twice. After each use, all equipment was rinsed with fresh water. Rinsing equipment with
fresh water was sufficient to minimize contamination among samples based on field blanks in a
plankton study using similar methods [30]. Water samples were filtered to collect four different size
fractions, 0.8–5, 5–20, 20–180 and 180–2000 µm and the filters were flash frozen (other filter size
fractions collected during Tara Oceans were not used because of inconstant sampling). However, to
make results consistent with the other expedition only data from the 0.8–5 µm size fraction were used
unless otherwise indicated (see electronic supplementary materials for details). DNA was extracted
and a 130 bp section within the V9 region of the 18S rDNA gene (forward/reverse primer-pair 1389F
5′- TTGTACACACCGCCC-3′ and 1510R 5′-CCTTCYGCAGGTTCACCTAC-3′ [31]) was PCR amplified
using 5 ng of total DNA template. Illumina compatible adapters with the NEBNext DNASample Prep
Master Mix were used to index samples [29]. Sequencing was performed using the Genome Analyser
IIx systems (Illumina, San Diego, CA, USA). Sequences were merged using custom fastx software
(http://hannonlab.cshl.edu/fastx_toolkit/index.html). Sequences were retained if they had forward and
reverse reads and less than 1% error based on the expected error in 50 bp sliding window. Chimeras
were removed using the USEARCH program [32]. The V9 sequencing dataset was clustered using
the ‘Swarm’ approach [33]. Unique operational taxonomic units (OTU) were removed if they did not
occur in at least two samples and had at least three sequences, and taxonomy was assigned using
a custom V9_PR2 reference database, primarily containing SILVA data with the ggsearch36 program
[14]. These filtering and clustering parameters were used because they were used in analysing these
data previously [14,15]. We used clustering methods for all amplicon data because this was the method
used previously for this data [14,15], and because OTUs were similar to sequence variants when
relating diversity to environmental gradients [34].

The Malaspina circumnavigation expedition was conducted from December 2010 to July 2011 (figure
1 [35]), and three separate datasets were collected: surface (119 samples from 119 stations taken at 
approximately 3 m depth, Logares et al. [36]), vertical profiles (86 samples from 13 stations [16]) and
deep (26 samples from 26 stations taken at >2000 m [17]). Sampling for Malaspina began around 06.00
and finished by 09.00 local time. Niskin bottles were closed at the deepest sample (typically 4000 m
depth for deep and profile datasets) and then sequentially shallower samples for the profile dataset.
All equipment used during sampling was rinsed several times with MilliQ water and then several
times with diluted HCl in between each sample and at the end of the day. Each station within the
Malaspina vertical profiles usually included seven samples, one from the surface (approx. 3 m), one
from the DCM (deep chlorophyll maximum), 2–3 from 200 to 1000 m and 2–3 samples from 1000 to
4000 m. Water was prefiltered through a 200 µm mesh and then sequentially filtered through 20, 3 and
0.2 µm filters (the intermediate filter was 0.8 µm instead of 3 µm for deep samples), which were then
flash frozen.

DNA and RNA (RNA only from vertical profile samples) were simultaneously extracted using the
Nucleospin RNA kit (Macherey-Nagel) with the NucleoSpin RNA/DNA Buffer Set (Macherey-Nagel)
procedures. Samples included the smallest size fraction in surface samples and vertical profiles (0.2–3
µm) and the intermediate size fraction in deep samples (0.8–20 µm). RNA was transcribed to cDNA
and the same procedures were followed for both DNA and cDNA. PCR amplification was conduc-
ted on a 380 bp section within the V4 region of the 18S rRNA gene (forward/reverse primer-pair
TAReukFWD1 5′-CCAGCASCYGCGGTAATTCC-3′ and TAReukREV3 5′-ACTTTCGTTCTTGATYRA-3′
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[37]) using 5 ng of the total DNA template. Samples were indexed with Illumina sequencing adapters
(i5 and i7) from the Illumina Nextera index kits. Amplicons for the surface and vertical profile samples
were sequenced on an Illumina MiSeq platform (2 × 250 bp) and the PCR and sequencing were run at
a specialized sequencing company (Research and Testing Lab, USA). Sequences were processed using
a custom pipeline [38]. The paired-end reads were merged with PEAR [39], dereplicated and clustered
with UPARSE at 99% similarity [40]. The deep samples differed from the other two sample sets and
were sequenced on a 454 Life Sciences platform and clustered at 99% similarity using QIIME Uclust
[41]. For all Malaspina data, taxonomy was assigned using BLAST search on the SILVA 18S database (v.
128 for surface and vertical profiles and 132 for deep samples). Taxonomy assignment to a reference
sequence was based on the greatest per cent identity, the max score and then the total score.

Only the sequences (from both expeditions) with taxonomy assigned to Metazoa at a per cent
identity match above 90% were retained for analysis. This is greater than past studies using global
datasets (80% [14]). Ninety per cent was chosen as a balanced approach to minimize false positives in
taxonomic assignment while reducing false negatives by identifying species or taxa not in the reference
library, particularly for taxa from the open and deep ocean that are not well represented in reference
libraries. All reads were summed for identical taxa (sequences with identical taxonomy) and taxonomic
richness was the number of unique taxa for each sample. We present results at higher taxonomic levels
(order or higher) given that the Malaspina pipeline did not use a common ancestor algorithm, as well
as the rare chance that all three BLAST assignment scores were identical.

2.3. Metagenome methods
Samples for the metagenome datasets were collected following similar protocols to the metabarcode
datasets and were detailed for Tara Oceans [42–44] and the Malaspina expeditions [17,45]. There were
200 Tara Oceans metagenome samples available in this dataset from 67 locations and 138 unique
sampling points, which included three size fraction categories 0.1–0.22, 0.22–3 (including 0.22–0.45,
0.22–1.6, 0.45–0.8 and 0.22–3 µm) and >0.22 µm. These three size categories included 19, 156 and 20
samples, respectively. There were 176 Malaspina metagenome samples included in this dataset with
deep samples from 31 locations and profile samples from 35 locations and 101 unique location and
depth sampling points, which included two size fractions for deep (0.2–0.8 and 0.8–20 µm) and for
profile (0.2–3 and 3–20 µm) datasets. Libraries were created and sequenced using Illumina (GAIIx,
HiSeq).

All metagenomes were re-annotated, standardized (among samples and calculated as sequences per
million), and filtered using the Dragon Metagenomics Analysis Platform (DMAP). Gene abundance
estimates from Tara samples were used without any modifications. However, for Malaspina datasets,
we obtained normalized read counts considering the gene length and scaling of sequencing depth
to one million reads, represented as fragments per kilobase of transcript per million mapped reads.
DMAP assigns taxonomy to sequences from the expeditions using the UniProt database with high-
throughput BLASTp using traverse lowest common ancestor from top hits. We searched the metage-
nome data for single-copy protein-encoding genes, or marker genes, that are taxonomically distinct.
We conducted the BLASTp search with three different percent identity matches (PID), 50, 70 and 90.
In addition, the search included three separate queries for different marker gene groups to assign
sequences to metazoans. Specifically, three different searches of documented [46] enzyme encoding (ec)
and mitochondrial domain (pf7) marker genes (search name followed by the exact genes in parenthe-
ses) included, ec3 (ec_id:1.6.5.3 OR ec_id:2.7.7.6 OR ec_id:6.3.2.2), ec4 (ec_id:1.6.5.3 OR ec_id:2.7.7.6 OR
ec_id:2.7.11.1 OR ec_id:6.3.2.2) and pf7 (hmm_id:PF00189 OR hmm_id:PF01479 OR hmm_id:PF00411
OR hmm_id:PF01248 OR hmm_id:PF00181 OR hmm_id:PF01929 OR hmm_id:PF00252). Thus, nine
distinct searches to assign taxonomy to sequences were performed for all metagenome datasets. We
chose the query for all analyses (PID and marker gene combination) that had the greatest correlation
coefficient (Spearman rank correlation) with morphology-based surveys (see electronic supplementary
materials for survey methods). To determine the taxonomic breadth of the reference library, which can
indicate biases in the results, the number of sequences for each phylum was obtained for each marker
gene query from the UniProt database (https://www.uniprot.org; searched on 8 July 2019). These
counts include all sequences as filtering out multiple occurrences of the same species and removing
terrestrial species was not feasible with this database.
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2.4. Statistical analysis
To determine what factors were related to changes in richness and relative abundance of metazo-
ans based on eDNA, we analysed taxonomic richness using metabarcode datasets and abundance
using metagenome datasets using either linear models (LM), linear mixed models (LMM) or spatial
autoregressive lag and error models (SAR; see electronic supplementary materials for model choice
and details). We conducted statistical analyses on the two response variables using eight different
datasets: Tara Oceans metabarcode and metagenome datasets, Malaspina surface metabarcode dataset,
Malaspina vertical profile DNA and RNA metabarcode datasets, Malaspina vertical profile metagenome
dataset and Malaspina deep metabarcode and metagenome datasets. All analyses were conducted in
R, v. 3.4.2 [47]. The datasets from each cruise were analysed separately because they used different
methods and targeted different oceanic zones. For metabarcode datasets, the number of reads for
each species within each sample was rarefied to the lowest number of reads within a sample for
each dataset; 201 505 reads for Tara Oceans, 6461 for all Malaspina DNA and 21 825 for Malaspina
vertical profile RNA (rarefy function from vegan package [48]). Rarefaction was chosen because it is a
straightforward approach that can be more appropriate than normalization [49]. In addition, to reduce
overestimating richness and to be conservative in our calculation of the number of species, reads from
different OTUs assigned to the same species were summed and any reads were removed that did
not include a species label because it was missing in the matching reference sequence. Finally, the
analysis only included samples from similar size fractions (within approx. 0.2–5 µm) to make findings
comparable among datasets and reflect findings from morphometric samples.

Predictor variables, chosen a priori to be included in statistical models, were sea surface tempera-
ture (SST) mean, SST range, surface primary productivity mean, surface primary productivity range,
distance to land and the ocean health index. The mean and ranges of SST and primary productivity
were extracted from Bio-ORACLE layers that are based on satellite data from 2000 to 2014 [50]. SST
and primary productivity ranges were determined by calculating the difference between minimum
and maximum temperature for each year of the dataset and then using the mean of these annual
ranges. Distance to land was obtained from the global marine environment datasets [51]. The ocean
health index is a standardized index of human influence based on many anthropogenic impacts and
was used as an overarching proxy for anthropogenic impacts [26]. Details on why we chose surface
variables and layer extraction, as well as details about additional analyses on the influence of latitude
and the relationship between taxa richness and abundance, are provided in the electronic supplemen-
tary material.

3. Results
3.1. Richness of taxa from metabarcode datasets
Patterns of taxonomic richness within individual metazoan phyla were different at the surface and in
the deep ocean. Arthropoda was the phylum with the highest taxonomic richness at the surface of the
ocean, especially for the Tara Oceans dataset (figure 2a,b). The arthropod taxa were primarily from the
order Calanoida. Arthropoda included taxa from six additional orders when limited to orders with a
mean richness of greater than one per sample (figure 2f). Other phyla with high taxonomic richness
included Chordata and Cnidaria. The Chordata taxa were primarily from Doliolida and Salpida orders,
while the Cnidaria taxon was primarily from Siphonophorae (figure 2f,g). In comparison with the
Malaspina surface data, the Malaspina profile data had lower richness within Arthropoda and Chordata,
but similar richness of Cnidaria (figure 2c,h). Malaspina profile eDNA and eRNA had similar patterns
of richness for both phyla and orders (figure 2c,d,h,i). The Malaspina deep data had greater taxonomic
richness within Cnidaria compared with the other metabarcode datasets, which were primarily in
Siphonophorae and Anthoathecata orders (figure 2e,j). There were changes in the richness of taxa
within the major phyla as depth increased within the Malaspina profile dataset (figure 3a). The richness
of arthropod taxon decreased with depth, while there was a peak in the richness of cnidarians within
the mesopelagic. Malaspina datasets had fewer sequences per sample and a lower percentage assigned
to metazoans (0.12% of approximately 97 000 sequences per sample) compared with the Tara Oceans
(42% of approximately 1.7 million sequences per sample), and this probably resulted in the lower
taxonomic richness and why we rarefied and analysed the datasets separately (see electronic supple-
mentary materials for details of sequence depth and assignment). This pattern was counter to the in
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silico results (the supplementary text and electronic supplementary material, figure S2) for which the
primers used for Malaspina amplified more metazoans, but the percentage of metazoan sequences
is dependent on the amplification of other organisms as well and the primers used for Malaspina
probably amplified more microorganisms and at a greater frequency compared with the primers used
for Tara Oceans.

3.2. Relative abundance of taxa from metagenomic datasets
Before we examined the patterns of relative abundance based on eDNA, we needed to determine
which genomic protocols to use based on the correlation coefficients between the results of the
different protocols and morphological surveys. We found that the most appropriate genomic protocol
to use for eDNA-based abundance estimates was metagenomes with a per cent identity matching of
>70%, the ec4 marker gene query and only samples from filtered size fractions between 0.2 and 3 µm
(electronic supplementary material, figures S3–S6). The sequences identified with this marker gene
query and per cent identity match had an r2 = 0.73 with morphological abundance and an r2 = 0.45 with
morphological biomass (electronic supplementary material, figure S5). These relationships were similar
to or better than the relationship between abundance and biomass of the morphological surveys (r2

= 0.48) and much better than the relationship between metabarcoding sequences and either of the
morphological surveys (r2 < 0.11). Although the pf7 query had slightly higher r2 values for biomass but
not abundance compared with ec4 (electronic supplementary material, figure S3), this query resulted
in assigning almost all sequences of the Tara Oceans dataset to Mollusca.

The metagenome datasets included 74 species assigned to sequences. This comprised 13 species of
arthropods with the majority of sequences assigned to Branchiopoda (>90% of arthropod and 44% of
metazoan sequences), 12 cnidarian species with the majority of sequences assigned to Anthazoa (>90%
cnidarian and 16% metazoan sequences) and 10 species of nematodes with all sequences assigned to
Chromadorea (27% of metazoan sequences).

Metagenomes indicated similar median relative abundance patterns among phyla at the surface, for
depth profiles, and the deep ocean, as well as for different ocean basins and latitudinal zones, with
a few exceptions (figure 4). Arthropods consistently made up 50% of the metazoan eDNA, regardless
of dataset or location. Cnidarians were the second most abundant phylum and made up 10–20% of
the metazoan sequences. One exception was the Malaspina deep samples for which cnidarians made
up approximately 30% of the metazoan eDNA. These deep samples were slightly different from the
profiles, which indicated that arthropods and cnidarians were more abundant at these depths than
nematodes (figure 4b,c). Overall, nematodes were the third most abundant phyla and were most
abundant in the Malaspina profile samples. All other metazoan phyla had eDNA that was undetected
in many samples (had medians of zero) with the exceptions of Placozoa and Tardigrada within the Tara
Oceans dataset, and Chordata and Mollusca within the Malaspina profile dataset. At the ocean’s surface,
arthropod eDNA (primarily zooplankton) was the most abundant of all metazoan phyla, followed by
Cnidaria and Nematoda. However, these three phyla had similar abundances in the bathypelagic zone
(figure 3b).

3.3. Environmental relationships with richness from metabarcode datasets
Overall, we found that temperature and primary production were related to the taxonomic rich-
ness of metazoans, however, there were differences among datasets in regard to specific significant
predictor variables. The taxonomic richness of all metazoans from the Tara Oceans was positively
related to the surface primary productivity mean and negatively related to the primary productivity
range (electronic supplementary material, figure S7a and b), but there were also two interactions:
one between mean primary productivity and ocean health index and the other between primary
productivity range and distance to land (electronic supplementary material, table S1). The interaction
between primary productivity and ocean health index was caused by the positive relationship between
primary productivity and richness being most evident in areas of greater human impact. The negative
relationship between primary productivity range and richness primarily occurred far from the land.
The taxonomic richness of metazoans from the Malaspina surface dataset was also negatively related
to the primary productivity range (electronic supplementary material, figure S7e), and positively
related to the SST mean and range (electronic supplementary material, figure S7c,d). The Malaspina
profile dataset indicated a positive relationship between richness and primary productivity for both
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eDNA and eRNA (electronic supplementary material, figure S7f, g), while eRNA also indicated a
negative relationship between richness and primary productivity range (electronic supplementary
material, figure S7h). There were no significant relationships between taxonomic richness and predictor
variables for the Malaspina deep dataset (electronic supplementary material, table S1), which included
the auxiliary model that included the additional variables, in situ temperature and POC flux, at 2000 m.
There were no significant relationships between the taxonomic richness and distance to land or ocean
health index for any of the datasets. The explanatory power of these models differed among datasets
(electronic supplementary material, table S1). The Tara Oceans, Malaspina surface, and Malaspina deep
had r2 values of 0.59, 0.47 and 0.44, respectively, while the Malaspina profile datasets had a low r2 value
(<0.15).

3.4. Environmental relationships with eDNA relative abundance from metagenome datasets
The relative abundance of metazoan eDNA within metagenome datasets was negatively related to
depth and SST mean for the Tara Oceans metagenome dataset (electronic supplementary material,
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table S1 and figure S7i,j). These same patterns were evident in the Malaspina deep dataset (p-value 
< 0.05), but the Malaspina profile dataset had no significant relationships between eDNA relative
abundance and predictor variables. The explanatory power of the models relating metazoan abun-
dance to environmental variables was the highest for the Malaspina deep dataset (r2 = 0.75), followed
by the Tara Oceans (r2 = 0.36) and Malaspina deep datasets (r2 = 0.16; electronic supplementary material,
table S1). Finally, we found no relationship between the richness and relative abundance of eDNA for
any of the datasets with both metabarcode and metagenome data (electronic supplementary material,
figure S8).

4. Discussion
4.1. Global patterns of richness for metazoan phyla eDNA
Given the global coverage of these two expeditions, their combined information probably constitutes
the most comprehensive dataset of metazoan eDNA retrieved from the open and deep ocean. These
data offered a unique opportunity to enhance our understanding of the distribution and drivers of
metazoans throughout the oceans based on eDNA. Patterns at the surface of the ocean indicate that
Arthropoda was the most taxonomically rich phylum followed by Chordata and Cnidaria. In addition,
the taxonomic richness of some gelatinous phyla increased with depth, including cnidarians, chordates
and ctenophores. These basic patterns in the taxonomic richness of metazoan phyla enhance our
knowledge of marine diversity from the ocean’s surface to the lesser-studied deep ocean.

Biodiversity and abundance are patchy over the surface of the Earth, particularly, in the oceans, and
determining the drivers of such patterns is an objective of ecology because it underpins our ability to
understand and mitigate anthropogenic impacts on ecosystems [25]. Multiple theories of biodiversity
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patterns focus on greater species richness being related to higher temperature and energy [20,21,52].
These hypotheses were supported by broad taxonomic assessments of global taxonomic richness, with
temperature being the only variable that was positively related to species richness across multiple
taxonomic groups [25,53] and a primary driver for taxonomic richness of copepods identified within
Tara Oceans metabarcode data [15]. However, the deep ocean may be an exception [53].

This assessment of metazoan taxonomic richness based on metabarcoding indicated that yearly
mean SST and primary productivity were positively related to the taxonomic richness of metazoans,
while greater ranges of primary productivity were negatively related to richness for the surface of the
ocean (electronic supplementary material, table S1 and figure S7). The consistent findings for surface
and profile samples from both expeditions, which had different sampling and processing methods,
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give additional credence to our findings on oceanic patterns—particularly for the Malaspina dataset
which had limited metazoan reads and low richness per sample (a mean of approx. 10 species per
sample). In addition, the relationship between taxonomic richness and environmental variables was
consistent between metabarcoding based on DNA and RNA. Although the relationship between eDNA
and eRNA is complex, eRNA can be a more direct indicator of the presence of organisms, given that
eRNA degrades quicker than eDNA in the environment [16,54]. These findings agree with past global
assessments in that mean temperature is a primary driver of species richness [25,53] and that primary
productivity is related to the diversity of copepods based on metabarcode data [15]. It is important to
consider that our results are based on sampling locations at a single time point, which could influence
our findings for areas with high ranges in the predictor variables, as this could also relate to changes in
taxonomic richness.

Knowledge of the drivers of global metazoan taxonomic richness in the open ocean, from the
surface to the deep sea, is minimal and resource pulses can both increase and decrease diversity
[55]. In addition, a study on ophiuroids (brittle stars) throughout the oceans found that deep-sea
species richness was positively related to high carbon export from surface primary production and
proximity to continental margins, and negatively related to variation in surface primary productiv-
ity [6]. Although we found similar relationships with oceanic profiles, we found no support for a
relationship between surface primary production and the taxonomic richness of metazoans in the deep
ocean. Overall, our findings agree with global assessments that species richness and temperature are
positively correlated at the surface of the ocean [25] and that temperature and primary production are
positively related to taxonomic richness when samples are taken throughout the water column [6].

We also assessed the influence of latitude (electronic supplementary materials), along with the
environmental variables already discussed, on metazoan taxonomic richness. Based on path analysis,
SST mean had the strongest causal linkage with richness followed by latitude, and these variables
also had a strong causal linkage, indicating that although these variables are correlated, richness is
primarily driven by SST and then secondarily by latitude (electronic supplementary material, figure
S8). In addition, there were no clear latitudinal trends for either taxonomic richness or the abundance
of marine metazoans (electronic supplementary material S9), which is contrary to existing findings
using disparate observations through time [53] and to Tara Oceans data showing peaks of copepod
richness at low latitudes [15]. Perhaps these differences could be a result of single samples versus
a culmination of many samples through time and that patterns in specific taxa may not persist in
metazoans overall.

4.2. Global patterns of metagenomic sequence abundance
Quantification of the global abundance and biomass of organisms is needed for understanding
large-scale bio-geochemical cycles and changes in ecosystem structure resulting from anthropogenic
impacts. Therefore, finding novel methods to assess abundance can improve our estimates by
complementing traditional survey techniques. With regard to eDNA, many studies have found a
relationship between the abundance and biomass of organisms and the number of sequences, but
there are multiple variables that may alter this relationship [27,56,57]. We found a significant relation-
ship between the relative abundance of marker gene sequences within metagenome datasets and
the abundance and biomass measured by morphological methods within metazoan phyla that were
identified in both techniques (figure 2a,b). We did not find a relationship between biomass and
metabarcoding data, which is different from some past studies [14,58], although this relationship is
probably taxa dependent [59].

Our findings from metagenome datasets indicate that arthropods, largely represented by crustacean
zooplankton, composed approximately 50% of the eDNA, followed by Cnidaria (approx. 11%) and
Nematoda (approx. 8%), based on the median per cent of eDNA from marker gene sequences (figure
4d). A global estimate of ocean biomass found that arthropods (1.0 Gigatons of Carbon (Gt C)) and fish
(0.7 Gt C) had the greatest biomass, followed by gelatinous cnidarians, mollusks and nematodes (0.04,
0.02 and 0.01 Gt C, respectively; [60]). The rank of these biomass estimates compares well with our
relative sequence abundance, with the exception of more nematodes and fewer fish. The abundance
of chordate DNA (mean of <1%) was orders of magnitude lower than would be expected based on
the global biomass estimate (assuming fish biomass to be approximately 70% of arthropod biomass,
which would equate to fish being 35% of all metazoan reads). The low relative abundance of fish
eDNA is surprising given that the mesopelagic fish biomass may be orders of magnitude greater
than previously thought [61]. However, only 0.3% of the DNA sequences were assigned to bony fish.
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This was unlikely a result of few reference sequences, given that more than one-third of the chordate
sequences within the reference database were fish. Another plausible explanation for this discrepancy
could be that fish release less eDNA compared with other taxa such as jellyfish [62], resulting in an
underestimation of fish abundance based on eDNA. A study using metabarcoding of a section of the
CO1 gene also found a low detection of oceanic fishes [30]. An alternative explanation is that the
biomass of other phyla is greater in comparison with the estimated fish biomass given the dispropor-
tionate sampling of the continental shelf compared with open and deep ocean surveys [5], and the
difficulty in sampling soft-bodied and cryptic taxa. In addition, nematode eDNA was prevalent in
metagenomes and this is discussed in the electronic supplementary material. Finally, our eDNA-based
study suggests that cnidarians had approximately one-fourth of the eDNA of arthropods (based on
medians; figure 3d), which would suggest that the global abundance of cnidarians may be greater than
current existing estimates. These findings offer the first assessment of the relative abundance of animal
phyla in the open ocean throughout the globe, based on a single assessment method.

Our ability to measure the abundance of gelatinous taxa may also be enhanced through genomic-
based surveys. Delicate gelatinous organisms are notoriously difficult to sample, and the evidence that
they have a major role in deep-sea food webs has been, thus far, derived indirectly from stomach
content studies [7] or anecdotal observations from submersibles and cameras [8] in specific locations.
Our results indicate that the abundance of cnidarian eDNA peaked in the bathypelagic zone (figure
3b). The greater abundance of gelatinous cnidarians in the deep ocean (bathypelagic zone) was also
evident in the Malaspina deep samples, in which cnidarians made up almost one-third of metazoan
sequences (figure 3b–c). This suggests that cnidarians are particularly prevalent in the deep sea,
consistent with inferences derived from indirect sampling [7,8]. Past observations and findings from
this study indicate that these gelatinous animals may be more abundant than previously thought in the
open ocean and particularly in the deep sea.

The abundance of animals within metazoan phyla may also relate to environmental variables.
This follows the ‘the more-individuals hypothesis’ which suggests that more energy (temperature or
resources) will lead to more individuals, which in turn will result in more species [21], suggesting that
taxonomic richness and abundance may have similar drivers. The abundance of metazoan eDNA was
negatively related to depth and mean SST for the Tara Oceans samples and a similar trend was found
for Malaspina deep samples (electronic supplementary material, table S1 and figure S7). Overall, these
results agree with current assumptions that the biomass of animals decreases with depth but disagree
because abundance did not increase with temperature [20,21]. In addition, comparing the richness
and abundance of simultaneously sampled metabarcode and metagenome data indicates little or
slightly negative relationship between abundance and taxonomic richness (electronic supplementary
material, figure S8). The negative relationship between temperature and eDNA may result from greater
preservation of eDNA in colder water [63], which could also affect the relationship between eDNA
taxonomic richness and abundance.

4.3. Strengths and potential limitations of these datasets and eDNA surveys
Although using a single method enhances comparability among samples compared with using
multiple methods, all sampling methods have imperfect detection [57] and a better understanding
of biases when using eDNA to survey metazoans is needed. Results from eDNA studies are not based
on counting or weighing individuals but on the DNA left from individuals and offer a ‘DNA view’ of
the ocean. Sources of eDNA are being investigated and insights from different filtered size fractions
can help elucidate eDNA origins (see electronic supplementary materials for a discussion on filtered
size fractions).

There are multiple considerations when interpreting eDNA-based datasets. First, results from
eDNA studies are limited by the coverage of the reference library used to assign DNA sequences
to taxa. The metabarcode reference library did contain many taxa within almost all the major metazoan
phyla with the exception of Nemertea, Gastrotricha and Ctenophora and the metagenome database did
not have thaliaceans (salps and doliolidas; electronic supplementary material, figure S2 and supple-
mentary text for a detailed discussion on considerations). Improvements in reference databases will
increase the diversity detected by eDNA-based surveys. A second consideration with eDNA-based
studies is removing false positives while minimizing false negatives. This is particularly important for
this study because these datasets were collected before field and extraction controls were common in
molecular studies, although PCR controls were run for all datasets and samples were only sequenced
if there was no indication of amplification in these controls (see electronic supplementary materials
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for a detailed discussion on considerations and potential biases of eDNA-based surveys). It is possible
that some of the taxa identified and used in our analysis were not present in samples and resulted
from contamination. However, these taxa were probably a very small percentage of the total taxonomic
richness and we chose our analysis to focus on broad taxonomic groups and the relationship between
basic metrics (taxonomic richness) and environmental variables so that the effect of potential contam-
ination would not affect our conclusions, which are extremely valuable given the unprecedented
breadth of these data. Although we took many steps to minimize potential biases associated with
genomic datasets so that taxonomic richness patterns based on eDNA reflected patterns of actual
species richness, the findings should be interpreted knowing that they are based on diversity inferred
from 18S rRNA sequences.

5. Conclusions
Ocean ecosystems are experiencing significant changes because of anthropogenic impacts [1,2], and
determining marine taxa occurrence and environmental properties related to diversity and abundance
are needed, especially for the deep ocean [3,4]. Surveys based on eDNA offer a complementary tool
to traditional techniques to survey metazoans, particularly for species at low densities or with fragile
body forms, as well as in locations difficult to sample such as the deep ocean. Taxonomic richness
for all metazoans was positively related to mean SST and mean primary productivity, but negatively
related to the range of primary productivity. However, the association with mean SST was not evident
for profile samples and no relationship with any of the environmental variables was found for the deep
ocean. In general, these findings based on eDNA agree with past findings focusing on specific groups
of metazoans and offer a promising tool to survey ocean fauna.
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