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BULL Database – Spanish Basin 
attributes for Unravelling Learning 
in Large-sample hydrology
Javier Senent-aparicio  1 ✉, Gerardo Castellanos-Osorio1, Francisco Segura-Méndez1, 
adrián López-Ballesteros1, Patricia Jimeno-Sáez1 & Julio Pérez-Sánchez2

We present a novel basin dataset for large-sample hydrological studies in Spain. BULL comprises data 
for 484 basins, combining hydrometeorological time series with several attributes related to geology, 
soil, topography, land cover, anthropogenic influence and hydroclimatology. Thus, we followed 
recommendations in the CaRaVaN initiative for generating a truly open global hydrological dataset to 
collect these attributes. Several climatological data sources were used, and their data were validated 
by hydrological modelling. One of the main novelties of BULL compared to other national-scale 
datasets is the analysis of the hydrological alteration of the basins included in this dataset. this aspect 
is critical in countries such as Spain, which are characterised by rivers suffering from the highest levels of 
anthropisation. the BULL dataset is freely available at https://zenodo.org/records/10605646.

Background & Summary
Large-sample hydrology (LSH) yields reliable insights into hydrological processes and models by leveraging 
comprehensive basin datasets. Recent review studies1 have underscored the fundamental role of these datasets 
in a wide range of hydrological investigations, including catchment classification2, assessments of terrestrial 
water storage and extreme events3, evaluations of hydrological models4, benchmarking5, parameter estimation6, 
regionalisation through machine learning algorithms7, analyses of human impacts on hydrology8, streamflow 
forecasting9, exploration of climate change impacts10, and assessments of data and model uncertainties11.

In recent years, several LSH datasets have been developed at a national scale. For instance, Addor et al.12 con-
tinued the work published by Newman et al.13 to create a dataset that included streamflow measurements, mete-
orological forcing data, and basin attributes for 671 watersheds in the contiguous United States.Other scientists 
extended this initiative in subsequentyears to develop similar databases in other countries, such as Chile14, the 
Great Britain15, Brazil16,17, Australia18, Central Europe19, China20, Iceland21, and Switzerland22. The vast number 
of hydrological databases published in recent years motivated the recently published work of Kratzert et al.23, 
which combined and standardised several LSH datasets into a global community dataset called CARAVAN. 
Recently, several datasets were published following the recommendations and codes provided by this initiative 
in Israel24, Germany25, Denmark26, and Spain27.

Despite being one of the driest countries in the European Union, Spain has the most irrigated croplands, 
accounting for 75% of total water resources consumption28. Paradoxically, the primary areas with irrigation 
are concentrated in the country’s most arid regions. This considerable imbalance between water resources and 
demands has prompted substantial investments in hydraulic infrastructure, leading to varying degrees of water 
resource exploitation across basins. Spain boasts the world’s largest reservoir capacity relative to its surface area; 
over 1,200 large dams (predominantly constructed in the mid-20th century) play a crucial role in the nation’s 
socio-economic development29. The extensive dam network has placed Spanish rivers among the most regulated 
globally, as evident from the GlObal georeferenced Database of Dams (GOODD)30 analysis. Notably, only 25% 
of the surface area of Peninsular Spain does not drain into one of the 823 largest dams recorded in the GOODD 
database, highlighting the pervasive influence of dams on Spanish rivers, which has resulted in the difficulty 
of finding flow gauging stations in a natural regime. Therefore, the need to characterise LSH datasets with the 
degree of hydrological anthropisation, as highlighted by Addor et al.1, is especially relevant in a country like 
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Spain where a large number of dams makes Spanish rivers among the most regulated in the world, making it a 
great challenge to find those whose regime has not been altered.

However, recently published datasets following the recommendations of the CARAVAN initiative for Spain27 
have not provided a detailed analysis of this issue. For instance, the degree of regulation is calculated in the 
CARAVAN initiative based on the Global Reservoir and Dam (GRanD) database developed by Lehner et al.31. 
Considering Spain, CAMELS-ES includes the degree of alteration and, the information provided by the Spanish 
Ministry of Environment on whether there are dams upstream of the gauging station. However, these criteria are 
not enough to identify hydrological anthropisation, since groundwater exploitation upstream of the monitoring 
station in some gauging stations is so important that the hydrological regime of the river is clearly altered despite 
the absence of dams. Hence, our work compared the observed flows of all study basins with the flows simulated 
by the national-scale hydrological model (Integrated System for Rainfall-Runoff Modelling, SIMPA)32 to identify 
basins with minimally altered hydrological regimes.

Precipitation is a pivotal factor in hydrological modelling since it significantly influences the accuracy33.This 
relationship exhibits nonlinearity despite its undeniable connection to various processes within the hydrological 
cycle, including the amount, intensity, and distribution. Nonetheless, precise precipitation assessment remains 
paramount for hydrological modelling, as it furnishes meteorological data crucial for hydrological studies34. 
Thus, ensuring reliable and accurate precipitation data at adequate spatial and temporal resolutions is impera-
tive for scrutinising climate trends and effective water resource management35. Estimating precipitation across 
space poses challenges due to its spatio-temporal diversity and the complexity of involved physical processes36. 
However, recent advancements have seen notable strides in developing global reanalysis systems that combine 
observations of diverse variables with numerical weather predictions through data assimilation techniques37. 
ERA5-Land38 is one such reanalysis product the CARAVAN initiative recommends by the CARAVAN initia-
tive for extracting meteorological forcing data. However, recent studies39 evaluating this product for Peninsular 
Spain have highlighted its poor detection capacity on the Mediterranean coast, especially during the summer. 
Other recent initiatives27 include the EMO-1 meteorological dataset40 developed for Europe at a higher resolu-
tion than ERA5-Land within the CAMELS-ES dataset. However, its performance has not yet been evaluated for 
Peninsular Spain. The BULL database includes the weather data for ERA5-Land and EMO-1 for all catchments, 
as well as the official grid of the Spanish State Meteorological Agency, whose performance has been shown as 
highly suitable for hydrological modelling34.

The main objective of this study was to present the BULL database, which was developed for application in 
large-scale hydrological studies following the CARAVAN initiative’s procedures. In addition, the 484 catchments 
were analysed to determine which had unaltered hydrological regimes. Moreover, data from three meteorolog-
ical reanalysis products were analysed, considering precipitation and temperature estimation as well as their 
influence on the hydrological simulation using the Témez41 hydrological model. The BULL database expands 
on previous efforts by other authors, including hydrometeorological daily time series from 1951 to 2021. This 
database provides opportunities for identifying long-term trends for climate research over decades as well as 
conducting short-term local water cycle analyses in specific basins. The BULL database can also serve as a 
benchmark dataset for improved modelling and analysis tools in Peninsular Spain and holds potential for fur-
ther extensions, such as refining the temporal resolution from daily to hourly, adding water quality and chemical 
data, and incorporating data from over 400 reservoirs available in the Official Gauging Station Network of Spain 
(ROEA).

Methods
The conceptual framework designed to build the BULL dataset is shown in a flowchart in Fig. 1. The first part of 
this study selected the basins to include in the BULL database. All available basins in the ROEA) were consid-
ered. Additional information from flow gauge stations provided by the Catalan Water Agency (ACA) and the 
Andalusian Environmental Information Network (REDIAM) was also obtained. These data were subjected to 
a series of selection criteria to obtain 484 basins. Secondly, the code provided by the CARAVAN initiative was 
used to extract meteorological forcing data from ERA5, and basin attributes to extend CARAVAN with data 
from 484 basins in Spain. Subsequently, an analysis was conducted to determine how many of these 484 basins 
were unaltered by comparing observational data with national-scale hydrological model SIMPA data. SIMPA is 
a distributed hydrological model that Spanish authorities use to evaluate water resources in natural regimes. It 
simulates the natural water balance and provides information about the main hydrological variables at a monthly 
time step and with a spatial resolution of 500 m. Finally, meteorological data from AEMET and EMO-1 products 
were extracted for all basins, analysing their performance, and simulating hydrological processes through the 
Témez hydrological modelto highlight the influence of the meteorological data in hydrological simulation.

Basin selection and delineation. Selecting basins for the BULL database began with data from the flow 
measurements available at the 1,634 stations registered in the ROEA, ACA, and REDIAM. Next, initial filtering 
excluded all flow measurement stations that only had data before 1951 since the available meteorological data 
from the Spanish Meteorological Agency began that year. As a result, the number of stations was reduced to 
1,431. Then, the CARAVAN initiative’s recommended filter regarding the size of the basins was applied, discard-
ing those smaller than 100 km² or larger than 2000 km², which reduced the number of available stations to 848. 
Subsequently, the percentage of gaps in the data from these stations was analysed, eliminating those with a per-
centage of gaps greater than 10%, reducing the number of available stations to 764. Finally, the minimum number 
of years with complete data available at these stations was studied, discarding all stations with less than 20 com-
plete years of data, resulting in the total number of basins analysed in the BULL database, which was 484 (Fig. 2a). 
Two hundred twenty-nine of these basins have forest as the primary land use. Regarding size, 59% (n = 286) have 
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an area between 100 and 500 km2, while only 6% of the basins (n = 28) have an area greater than 1500 km2. It is 
important to highlight that 287 basins, representing 60% of the total, have complete series without gaps for those 
20 years. Additionally, approximately 19% of the basins have complete time series covering at least 60 years of 
observed daily runoff, while approximately 26% have 90% data coverage for that period. Figure 2b shows that 
the stations in the BULL dataset tend to have long-term gauging records, with the shortest record being 20 years, 
and more than half of the records (68% of the stations) being at least 40 years long. The distribution of stations 
according to the time-series length is uniform across the entire area, except for those with at least a span of 60 
years, which are more abundant in the central-northern region.

Spain currently lacks a dedicated spatial database for extracting the geometrical attributes of gauged basins. 
Consequently, these basins’ dimensions were derived from previously acquired gauge data, designating them as 
the drainage focal points for Spanish gauged basins. The accuracy and spatial resolution of the digital elevation 
models (DEMs) were fundamental technical aspects during this phase17. Therefore, the choice was made to uti-
lise the Delineator.py code42 to achieve this task, which employs hybrid methodologies, integrating vector- and 
raster-based approaches alongside data from MERIT-Hydro to delineate basins. These DEMs accurately depict 
terrain elevations at a 3-second resolution (approximately 90 metres at the equator), encompassing land areas 
between 90°N and 60°S for basin delineation purposes. Subsequently, geoprocessing techniques were employed 
to calculate the surface area of each delineated basin. The quality control process began by cross-referencing 
the information provided by the ROEA, ACA, and REDIAM, as well as the initial watershed delineation results 
obtained using delineator.py. Basins with significant differences in surface area were addressed by verifying the 
location of gauging points and adjusting the basin boundaries accordingly. Once the initial errors were rectified, 
the QGIS 3.23.3 command “fix geometries” was applied to ensure the integrity of the final basin geometries. 
Subsequently, the CARAVAN initiative scripts were applied to obtain each basin’s attributes.

Methodological approach for identifying non-altered basins. As mentioned, Spain’s rivers exhibit 
a higher degree of anthropisation than other countries, mainly due to the large number of existing dams and the 
need to supply water to the entire Mediterranean Spain43. Therefore, the BULL initiative sought to analyse which 
basins included in the database had a natural or quasi-natural regime. Hence, the monthly observed flows of the 
484 basins included in the BULL database were compared with the flows simulated by the national-scale hydro-
logical model SIMPA, which Spain uses to calculate water resources in the various river basin plans developed 
under the framework of the European Water Directive44. To identify unaltered basins in the BULL database, we 
established a criterion of those whose observed flows compared to those of SIMPA produce a Nash-Sutcliffe coef-
ficient45 (NSE) equal to or greater than 0.50. This NSE value is commonly used in hydrological modelling follow-
ing Moriasi et al.46. A significant limitation of this approach was the assumption that the SIMPA model adequately 
reflected the natural regime flow series. The results of the model presented different sources of uncertainty due to 

Fig. 1 Schematic figure of the approach to generating the BULL dataset for Peninsular Spain.
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input data error, model parameters, and model structure. However, as seen in the analysis of water resources for 
Peninsular Spain conducted by the Centre of Hydrographic Studies of the Centre for Studies and Experimentation 
of Public Works (CEDEX)47, the results were acceptable in most of the territory. Nevertheless, the efficiency 
decreased in the more arid areas of the Southeast with few unaltered gauging stations.

evaluation of reanalysis datasets for hydrological modelling. The meteorological data used to pro-
duce BULL were statistically validated by comparing and evaluating the robustness and accuracy of the datasets. 
AEMET was used as a benchmark34,39,48 to evaluate the performance of ERA5-Land and EMO1. The Spearman 
correlation coefficient (ρ), relative bias (RBIAS), root mean square error (RMSE), and Kling-Gupta efficiency 
(KGE) were calculated separately for each basin according to four meteorological variables: the total monthly 
precipitation and the monthly maximum, minimum, and mean temperatures. The equations of these statistics 
used for continuous analysis were described by Gomis-Cebolla et al.39. The coefficient ρ offers a robust assess-
ment of the degree to which two variables exhibit a monotonic relationship, regardless of the data’s distributional 
properties. The RBIAS, expressed as a percentage, denotes the systematic bias in the estimates of precipitation and 
temperature, while the RMSE quantitatively represents the error characteristics between the different estimates of 
the variables and those taken as reference. KGE consolidates multiple statistical metrics into one measure, evalu-
ating the model’s accuracy, variability reproduction, and temporal alignment with the reference data.

The Témez hydrological model was employed to validate the meteorological sources from a hydrologi-
cal perspective. The Témez lumped rainfall-runoff model has been extensively employed in Spain for water 
resource management34,49–51 and in several other countries52. More details of the Témez model can be found in 
Pérez-Sánchez et al.41. The calibration process of the hydrological model was conducted to adjust its parame-
ters to achieve an accurate streamflow simulation. AEMET data served as our reference dataset for calibration. 
The calibration involved a loss function based on the mean squared error (MSE), which compared observed 
and simulated streamflows. Once the parameters were calibrated, the streamflows were simulated using other 
available data sources. Optimisation was conducted using the least squares method with defined search bounds 
to identify the best model parameters. Specifically, the implementation in Python involved defining the loss 
function (MSE) and performing optimisation using the SciPy library’s minimise function with the L-BFGS-B 
algorithm53. To evaluate each hydrological model, the NSE, PBIAS, and RMSE observations’ standard deviation 
ratio (RSR) statistics were employed, following the criteria established by Moriasi et al.54, whose work provided 
comprehensive details on these widely used statistics for hydrological model evaluation. The RSR standardised 
the RMSE using observation standard deviation, providing an integrated error index.

Data Records
The BULL dataset presented in this work55, encompassing 484 watersheds, can be accessed, and downloaded 
at https://zenodo.org/records/10605646. The dataset is organised according to the following folder structure:

•	 The attributes folder contains three CSV files obtained by using the CARAVAN script. One file, labelled 
“attributes_caravan_.csv”, comprises climate indices derived from ERA5-Land. The “attributes_hydroatlas_.
csv” file encompasses attributes derived from HydroATLAS. In contrast, the “attributes_other_.csv” file 
incorporates other data relating to additional attributes such as the latitude and longitude coordinates, name, 
country of each gauge station and catchment area. The initial column in all attribute files is designated as 
“gauge_id”, featuring a unique basin identifier in the format “BULL_{id}”. Here, BULL corresponds to the 
source dataset, while {id} represents the basin ID defined in the original source dataset.

•	 A README.md file with the link to the scripts used is included in the code folder.

Fig. 2 Analysis of missing data and time series length in streamflow stations: (a) the number and percentage 
of stations with different percentages of missing data across various time periods and (b) the length of the 
streamflow time series for each station.
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•	 The licenses folder encompasses licensing details for BULL and the incorporated dta. The README.md file 
in this directory provides general information about licenses and specific details about the source datasets 
used.

•	 The shapefiles folder contains a shapefile depicting the catchment boundaries of each basin included in the 
dataset. This shapefile was the basis for deriving the catchment attributes and ERA5-Land time series data. 
Each polygon in the shapefile is associated with a “gauge_id” field, containing the unique basin identifier.

•	 The timeseries folder comprises two subfolders, csv and netcdf, with the same structure and data—presented 
in CSV and netCDF formats. Within these subdirectories, five other subdirectories are labelled according to 
the source datasets, and individual files (CSV or netCDF) are allocated and encompass comprehensive time 
series data, including meteorological forcings, state variables, and streamflow. Moreover, the netCDF files 
incorporate metadata information such as physical units, time zones, and details regarding the data sources.

•	 The coordinate system used for shapefiles and netCDF files is the WGS 1984 Geographic Coordinate System 
(EPSG 4326).

technical Validation
Validation of the identified unaltered basins. Analysis of the distribution of the basins estimated to 
be in a natural regime revealed that most with a lower degree of anthropisation were located in Northern Spain, 
especially in Galicia, Asturias, Cantabria, the Basque Country, and the Western Pyrenees, as shown in Fig. 3. The 
basins with less altered hydrological regimes were abundant in areas influenced by oceanic climates. In contrast, 
those with more altered regimes were found in regions characterised by continental and Mediterranean climates. 
Radinger et al.56 detected variable flow patterns between and within geographical regions greatly influenced by 
climatic conditions. As expected, most of the basins analysed in the Mediterranean area exhibited high anthropi-
sation. Leduc et al.57 repeteadly emphasised the anthropisation of water resources in the Mediterranean area. This 
analysis allowed validation of the information provided by ROEA that assesses whether basins are altered based 
on the presence of upstream reservoirs. The approach undertaken in this study confirmed that some of the basins 
the ROEA estimated to be unaltered were instead altered, because agricultural land use in these basins has signif-
icantly altered their hydrological regime. Thus, 149 unaltered basins were identified, which are of great utility for 
future large-scale hydrological studies in the Iberian Peninsula.

Validation of reanalysis products using hydrological modelling. Spearman correlation analysis, 
shown in Fig. 4a, illustrated a spatial gradient from the west-central regions (with the highest values) to the east 
(with the lowest values) for ERA5-Land. The highest RMSE values (Fig. 4c) were observed for ERA5-Land and 
EMO1 in the northern region. Gomis-Cebolla et al.39 found similar results indicating that the northern coast was 
one of the most critical regions in reanalysis modelling due to its performance. However, a more complez spa-
tial pattern was observed for the rest of the statistics, which complicated straightforward spatial regionalisation. 
Regarding the correlation coefficient (Fig. 4a), the performance of ERA5-Land and EMO1 was similar, indicat-
ing that both were equally correlated with AEMET. However, ERA5-Land demonstrated better performance for 
RBIAS and RMSE compared to EMO1. In contrast, KGE showed a better performance for EMO1. Regarding 
monthly temperatures (i.e. the maximum, minimum, and mean), the correlation between all data sources was 
very high, with a median value higher than 0.98 for all temperatures. In addition, for RMSE performance, the 
median values were less than 1 °C.

Validation of these meteorological time series was conducted in a hydrological framework. Precipitation 
and temperature were fundamental inputs to hydrological models, where precipitation significantly influenced 
model accuracy33. In this study, the performance of three meteorological products was evaluated as input in a 

Fig. 3 NSE values comparing observed data with SIMPA national scale hydrological model values.
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hydrological model for streamflow simulation. For this purpose, a common time period was selected during 
which climatological data from the three data sources (i.e. EMO-1, ERA5-Land, and AEMET) were available 
(1990–2020). This new time period considered which stations were identified as unaltered. The missing monthly 
streamflow data was less than 10%, identifying 87 stations in which the Témez hydrological model was applied.

The model was calibrated using AEMET data, and the simulated streamflow was obtained using three pre-
cipitation and temperature products. The performance ofeach product (Fig. 5) was assessed by comparing it 
with the observed streamflows at the outlet of each basin. According to Moriasi et al.54, AEMET demonstrated 
performance exceeding satisfactory levels in nearly all basins. The worst models were observed with EMO1. The 
variability of the results obtained with ERA5-Land and EMO1 was much higher than with AEMET, with the 
highest dispersion observed with EMO1 data. The poorest performance was observed with EMO1, as depicted 
in Fig. 5, where the median values for NSE/RBIAS/RSR were 0.6/22/0.6 for ERA5 and 0.3/48/0.8 for EMO1.

Fig. 4 Spatial distribution and boxplot of ERA5-Land and EMO1 monthly continuous statistics: Spearman 
correlation (a), RBIAS (b), RMSE (c) and KGE (d) statistics.

Fig. 5 Boxplot of the monthly statistics from the streamflow simulation with the hydrological model using 
AEMET, ERA5-Land and EMO1 meteorological data: NSE (a), RBIAS (b) and RSR (c) statistics.
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Code availability
The code developed by Kratzert et al. in the CARAVAN initiative has been used for the calculation of the 
basin attributes (available at https://zenodo.org/records/6578598). The code used for the validation of the 
meteorological data including the coding of the Témez hydrological model are written in Python and are available 
at https://zenodo.org/records/10605646.
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