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1.1 Introduction 

Wind power technology has experienced significant growth in recent years, and an 
increasing prevalence of offshore wind farms has been observed owing to better offshore 

wind conditions and fewer space limitations for their installation [6]. According to the 
Offshore Wind Market Report, which analysed more than 200 global operating offshore 
wind energy projects up to 2020 [7], monopile foundations are the most frequent choice 
for these devices, representing 74.8% of the total, followed by jacket substructures at 
10.8%. However, this trend is different for announced projects [7], where monopiles 
and jackets account for 51.6% and 21.5%, respectively. This change is mainly due to 
the increase in manufacturing options and depths at which wind turbines are installed. 

To support this demand and assist in the expansion of offshore wind turbines 
(OWT), greater efficiency in the design and manufacturing of jacket structures should 
be pursued. Nevertheless, the design of complex structural systems, such as jacket 
structures, is a task that consumes relevant computational resources, because several 

load cases are considered and many structural elements must be evaluated and verified. 
This becomes more significant the more rigorous the calculation models implemented 
are. In this sense, a consideration that has not been sufficiently studied is the relevance 
of the soil–structure interaction (SSI), which is usually not included in optimization 
processes. 

The main objective of this dissertation is to explore the implementation of models 
based on artificial neural networks (ANNs) to assist in the analysis and design of 
jacket structures for OWTs, taking into to account the SSI effects. For this purpose, a 
structural numerical model is developed to obtain the jacket response to several load 
cases. Then, an ANN-based surrogate model is generated from the structural model 
to enhance the design process. 

The structural model considers the expected external loads acting on the structure 
and the interaction among the wind turbine, the jacket elements, the foundation, and 
the seabed, taking into account the SSI. Then, the technical requirements imposed for 
these support structures are checked. Therefore, this model is used to evaluate jacket 
structures and guide the design process through feasible structures, that is, jacket 
structures that verify the imposed requirements. 

In order to study the importance of SSI in the design process of jacket structures, 
an initial analysis is performed. For this purpose, the influence of the SSI on the struc- 
tural feasibility of relevant jacket designs, obtained through an optimization process, 
is evaluated. 

An ANN-based surrogate model is trained from a synthetic dataset previously eval- 
uated through the structural model. This surrogate model may replace the structural 
model during the design process, reducing the consumption of computational resources. 
To analyse the usefulness of this surrogate model, a metamodel-assisted optimization 
process is performed. The designs obtained trough this strategy highlight the advan- 
tages of using specific-developed surrogate models. 
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1.2 Aims and objectives 

The aim of this Ph. D. Thesis is to explore the implementation of ANN-models to assist 
in the analysis and design of jacket structures for OWTs, taking into to account the 
SSI effects. To address this objective, two partial objectives are established: 

 
1. The development of a structural numerical model for studying the response of 

OWTs, incorporating the SSI effects. Therefore, it can be used in the develop- 
ment of strategies for the design of the support structure of the wind turbine. 
In order to evaluate the feasibility of the jacket as the support structure for the 
OWT, this model must take into account: 

• All the relevant elements of the system and their mutual interactions: the 
seabed, the foundation, the jacket substructure, the tower, and the nacelle- 
rotor-blade assembly. 

• The expected loads acting to the wind turbine and the jacket structure, 
which are the weight of the wind turbine and the structural elements, and 
the drag forces produced by the wind and the sea. 

• The technical requirements imposed by guidelines and recommended prac- 
tices to support structures for OWTs. 

2. Explore the usefulness of implementing ANN-based models to assist in the design 
process of support jacket structures for OWTs. These models should be able to 
replace the structural model in some stages of the design process. An enhance- 
ment in the jacket designs process is expected by taking advantage of the lower 
computational cost of the surrogate models. 

 

1.3 Research group framework 

The research group where this Ph. D. Thesis is developed works on the formulation and 
implementation of numerical models for solving problems of structural dynamics and 
elastic wave propagation. The models created have provided numerical solutions to 
several problems. Some of them are: 

1. Soil–water–structure interaction problems. Seismic response of vault dams [8]. 

2. SSI problems. Dynamic response of pile foundations [9, 10] or buried structures 
[11, 12]. 

3. Dynamic behaviour of poroelastic media [13, 14]. 

4. Outdoor acoustic propagation. Study and optimization of the effectiveness of 
anti-noise screens [15]. 
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All of them addresses the presence of unbounded media. For this reason, the basic 

numerical methodology used in the development of all these models is the Boundary 
Element Method. This methodology naturally takes into account the energy radiation, 
which offers advantages in the numerical treatment of problems that involve unbounded 
regions. Furthermore, based on these models, optimization strategies applied to some 
of these problems have recently been addressed [12, 15]. 

In this context, the research group has taken advantage of the experience in the 
infinite media problems to address another task: the design and analysis of the sup- 
port structures of OWTs. This is a relevant problem, where the influence of SSI on 
these devices should be taken into account. The present Ph. D. Thesis belongs to this 
framework, being part of two research projects. 

 

1.3.1 Research Project BIA2017‐88770‐R1 

The Research Project BIA2017-88770-R, which has already concluded, was supported 
by the Subdirección General de Proyectos de Investigación of the Ministerio de Economía, 
Industria y Competitividad (MINECO) and Agencia Estatal de Investigación (AEI) of 
Spain and FEDER. This project was entitled “Influence of soil–structure interaction 
phenomena in the seismic response of offshore wind turbines”, and was focused on two 
main objectives: 

1. The development, implementation and validation of numerical models for the 
evaluation of the wind turbine and the support structure response. These mod- 
els aimed to analyse the system constituted by the seabed, the foundation, the 
substructure, and the tower of the wind turbine as a coupled system, incorporat- 
ing their mutual interactions, to obtain the structural dynamic response. 

Several foundation typologies were considered, including gravity foundations, suc- 
tion caissons, and embedded piles. Also, mono or multi-element substructures 
were assumed as the support structure. Coupled harmonic formulations of fi- 
nite element method (substructure, tower, foundation) and boundary element 
methods (soil–foundation interaction) were implemented. 

2. The model developed for first objective was applied to relevant problems to study 
the response of wind turbines and the effects of seismic excitation. The influ- 
ence of the foundation typology, the soil, and the excitation characteristics were 
analysed, focusing on the relevance of SSI phenomena. 

This Ph. D. Thesis contributed to the development of the first objective of the re- 
search project by developing a model for evaluating the structural response of the jacket 
structure for OWTs. 

 

1Adapted from the Scientific Report for the application of the Research Project. Supported by 
the Subdirección General de Proyectos de Investigación of the Ministerio de Economía, Industria y 
Competitividad (MINECO) and Agencia Estatal de Investigación (AEI) of Spain and FEDER. Project 
duration: 3 years (January 2018 – December 2020). 
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1.3.2 Research Project PID2020‐120102RB‐I002 

The Research Project PID2020-120102RB-I00, on which work continues, is supported 
by the Ministerio de Ciencia e Innovación (MCI) and the Agencia Estatal de Inves- 
tigación (AEI) of Spain. The project is entitled “ANN-based design of the support 
structures of offshore wind turbines including advanced models of soil-structure inter- 
action and seismic actions”, and is focused on two main objectives: 

1. The development of a methodology, based on artificial neural networks, for the 
design of the support structures for offshore wind turbines founded on the seabed, 
including its foundation. The requirements that these structures must verify, the 
environmental loads, the geotechnical conditions, and aspects such as water depth 
must be taken into account. The search for solutions with lower economic cost 
and material consumption are also included as a design criterion. The structural 
analysis is carried out using the computational models developed by the group 
in previous research projects, and the design methodology will be based funda- 
mentally on artificial neural networks under a supervised learning paradigm. 

2. The application of the models, already developed by the research group, to ex- 
pand the studies included in the previous Research Project BIA2017-88770-R. 
The identification of main factors that determine the seismic response of offshore 
wind turbines is intended. 

The first objective of the research project is mainly developed in the present Ph. D. 
Thesis. The evaluation of technical requirements imposed for jacket support structures 
by international standards, the development of ANNs-based surrogate models for jacket 
evaluation, and the metamodel-assisted optimization of jacket design establish the 
bases for completing this objective. 

 

1.4 Published works derived from the Ph. D. Thesis 

The publications and communications derived from the results obtained during the 
development of the objectives established for the present Ph. D. Thesis are listed in 
this section. 

 

1.4.1 Contributions in JCR journals 

• C. Medina, G. M. Álamo and R. Quevedo-Reina. Evolution of the seismic re- 
sponse of monopile-supported offshore wind turbines of increasing size from 5 to 
15 MW including dynamic soil-structure interaction. Journal of Marine Science 
and Engineering, 9(11), 2021 

 

2Adapted from the Scientific Report for the application of the Research Project. Supported by the 
Ministerio de Ciencia e Innovación (MCI) and the Agencia Estatal de Investigación (AEI) of Spain. 
Project duration: 3 years (July 2021 – June 2024). 
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• R. Quevedo-Reina, G. M. Álamo, L. A. Padrón and J. J. Aznárez. Surrogate 

model based on ANN for the evaluation of the fundamental frequency of offshore 
wind turbines supported on jackets. Computers & Structures, 274:106917, 2023 

• R. Quevedo-Reina, G. M. Álamo, S. François, G. Lombaert and J. J. Aznárez. 
Importance of the soil–structure interaction in the optimisation of the jacket 
designs of offshore wind turbines. Ocean Engineering, 303:117802, 2024 

• R. Quevedo-Reina, G. M. Álamo and J. J. Aznárez. Estimation of pile stiff- 
ness in non-homogeneous soils through artificial neural networks. Engineering 
Structures, 308:117999, 2024 

• B. Benítez-Suárez, R. Quevedo-Reina, G. M. Álamo and L. A. Padrón. PSO- 
based design and optimization of jacket substructures for offshore wind turbines. 
Marine Structures, (under review), 2024 

 

1.4.2 Conference contributions 

• R. Quevedo-Reina, G. M. Álamo, L. A. Padrón and J. J. Aznárez. Dynamic 
characterization of offshore wind turbines supported on a jacket using artificial 
neural networks. World Congress in Computational Mechanics and ECCOMAS 
Congress, Oslo, Norway, 5–9 June 2022 

• R. Quevedo-Reina, G. M. Alamo, L. A. Padrón, J. J. Aznárez and O. Maeso. 
Characterization of pile stiffness using artificial neural networks. Congress on 
Numerical Methods in Engineering, Las Palmas de Gran Canaria, Spain, 12–14 
September 2022 

• R. Quevedo-Reina, G. M. Alamo, L. A. Padrón, J. J. Aznárez and O. Maeso. 
Structural evaluation of offshore wind turbines supported on a jacket using ar- 
tificial neural networks. Congress on Numerical Methods in Engineering, Las 
Palmas de Gran Canaria, Spain, 12–14 September 2022 

• C. Medina, G. M. Alamo and R. Quevedo-Reina. Respuesta sı́smica de aero- 
generadores marinos monopilotados de gran tamaño considerando la interacción 
dinámica suelo-estructura. Congress on Numerical Methods in Engineering, Las 
Palmas de Gran Canaria, Spain, 12–14 September 2022 

 

1.5 Structure of the dissertation 

The work developed during the Ph. D. Thesis is structured in this document. The 
contents are divided in seven chapters and two appendices that organize the partial 
objectives addressed. Instead of a single state-of-the-art review at the beginning of 
the document, specific introductions are included in every chapter. In addition, every 
chapter collects the specific conclusions extracted on it. The contents included in the 
chapters and appendices are the following: 
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• Chapter 1: Introduction and background. 
It is the present chapter. A brief introduction of the motivation of this disserta- 
tion and its main objectives are detailed. 

• Chapter 2: Structural model. 
This chapter presents the structural model for jacket assessment developed. This 
model incorporates the loads acting on the structure, the evaluation of the jacket 
response, taking into account the SSI, and the verification of the technical re- 
quirements imposed. 

• Chapter 3: Jacket optimization. 
In this chapter, an initial approach of an optimization procedure to obtain jacket 
designs is performed. To ensure the feasibility of the jackets designs, the struc- 
tural model presented in Chapter 2 is used. Additionally, the importance of SSI 
in the optimization process of these structures is analysed. 

• Chapter 4: Surrogate models based on artificial neural networks. 
A brief introduction of the surrogate models based on ANNs is presented. In order 
to explore the capabilities of this methodology, two surrogate models for related 
problems are developed: first, a surrogate model for pile stiffness estimation, 
and later, a surrogate model for dynamic characterization of OWT on a jacket 
structure, including SSI effects. 

• Chapter 5: Surrogate models for jacket evaluation. 
In this chapter, ANN-based surrogate models for jacket evaluation are devel- 
oped, following the methodology presented in Chapter 4. To train these models, 
the structural behaviour of the jacket as the support structure for the OWT is 
extracted from the structural model described in Chapter 2. 

• Chapter 6: Metamodel-assisted optimization. 
This chapter performs a metamodel-assisted optimization process to obtain jacket 
designs. The surrogate model developed in Chapter 5 is used. Optimization 
results are compared to those obtained in Chapter 3. 

• Chapter 7: Summary, conclusions, and future research directions. 
As the chapter title indicates, the main aspects of the developed tasks and their 
conclusions are summarized. In addition, some future research directions are 
proposed. 

• Appendix A: Nonlinear Winkler springs model. 
This appendix present the nonlinear Winkler spring model developed to evaluate 
the lateral pile capacity in the model described in Chapter 2. 

• Appendix B: Resumen en castellano. 

This appendix contains a summary in Spanish of the present Ph. D. Thesis. 
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2.1 Introduction and general hypothesis 

This chapter presents the structural model used to evaluate the response and feasibility 
of the jacket as support structure of OWT. This model is a fundamental element for 
the Ph. D. Thesis, because it will be used as an auxiliary tool to develop the specific 
objectives of the other chapters of the document. 

A jacket foundation is a three-dimensional structure composed of tubular elements 
welded as a frame structure, as shown in Figure 2.1. The geometry of this structure 
is typically reduced to three or four legs joined by different levels of bracing, which 
provide stability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1. Representation of an OWT on a jacket support structure with four legs 
and four levels of bracing, all with the same inclination. 

 
From a general perspective, the system topology can be defined by the following set 

of hyperparameters: the height of the structure (Hjck), number of legs (nleg), number 
of bracings (nbr) and their spacing, and separation of the legs at the base (Sbase) and 
top (Stop). Regarding cross-sections, note that the geometries of several elements must 
coincide to provide radial symmetry to the structure. The structural assembly is fixed 
to the seabed using foundation elements connected to the bottom of the legs of the 
structure. A pile foundation is assumed in this Ph. D. Thesis. 

Three different modules can be found within the presented model. First, the eval- 
uation of the design loads that are considered to act on the support structure, detailed 
in Section 2.2. Gravitational loads derived from the wind turbine and the structural 
elements, as well as their buoyancy, are included. In addition, a set of load cases of the 
environmental loads produced by the drag forces of the wind and the sea, proposed by 
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Arany et al. [3], are taken into account. Also, IEC [25] and DNV [2, 4] standards are 
also consulted for the loads definition. 

Second, the numerical model used to obtain the structural response is described 
in Section 2.3. An equivalent static analysis through a linear finite element model is 
performed to obtain the displacements and internal forces produced by the external 
loads. SSI is considered by pile-heads impedance functions computed by a previously 
developed model [10]. 

Third, the technical requirements listed in Section 2.4 are checked. Some geometric 
restrictions are imposed to ensure the feasibility of the structure. Also, most relevant 
failure criteria from DNV [4, 26] and API [27] codes are taken into account. 

Figure 2.2 shows a flow diagram of all the processes implemented in the model and 
the information flow. This information flow is represented by arrows that start with 
the corresponding input variables or outputs of the intermediate processes, and end 
with the process that requires this information. 
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ULS Geometry restrictions 

Figure 2.2. Flow diagram of the calculation process implemented in the structural 
model. Arrows connect the input variables or intermediate results with the processes 
that require that information. The numbers in brackets indicate the sections of this 
chapter in which each process is detailed. 
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2.2 Design loads 

The jacket structure must support permanent loads derived from gravitational action, 
and variable loads caused mainly by the action of meteorological and hydrological 
phenomena. International standards include all loads that must be considered in the 
design. However, this model includes the most relevant loads for determining the design 
of this type of foundation, as described in this section. 

 

2.2.1 Permanent loads 

The permanent loads considered in this Ph. D. Thesis are limited to gravitational loads. 
First, the self-weight is considered as a distributed vertical load for all the tubular 
members of the jacket structure. The platform and wind turbine weights are considered 
as punctual vertical loads applied to the centre of the jacket top platform. 

The other contribution is the hydrostatic pressure on the submerged elements, 
which produces buoyancy forces. Considering the hydrostatic pressure produced by 
water, punctual loads at the nodes owing to the pressure on the free faces of the 
section and a normal sectional load distributed along the element owing to the pressure 
gradient in the section are considered. 

 

2.2.2 Environmental load scenarios 

DNV codes [4] contain numerous load combinations that must be verified in OWT 
designs. Evaluating all of them in an approximate procedure such as the one proposed 
herein would increase the computational cost of the process and reduce the advantages 
of its use. Therefore, the environmental loads implemented in this model are reduced 
to those derived from the action of wind and sea, which are known to be the most 
frequent and significant in this type of offshore structure. The five load hypotheses 
proposed by Arany et al. [3] are adopted as the most significant hypotheses for the 
proposed evaluation model. The load states listed in Table 2.1 are based on different 
combinations of wind and waves. The wind conditions are as follows. 

U1 - Normal turbulence scenario: The average wind speed is equal to the rated 
wind speed (UR) under a normal turbulence model (NTM). 

U2 - Extreme turbulence scenario: The average wind speed is equal to the rated 
wind speed (UR) under an extreme turbulence model (ETM). 

U3 - Extreme gust at rated wind speed scenario: The average wind speed is equal 
to the rated wind speed (UR) under the 50-y extreme operating gust (EOG). 

U4 - Extreme gust at cut-out scenario: The average wind speed is equal to the 
cut-out wind speed (Uout) under the 50-y extreme operating gust (EOG). 

Conversely, the conditions related to waves are 
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Table 2.1. Load states considered in the presented model, proposed by Arany et al. [3]. 
 

Scenario Wind model Wave model Alignment Limit state 

E1 NTM at UR (U1) 1-y ESS (W1) Collinear ULS and SLS 

E2 ETM at UR (U2) 50-y EWH (W4) Collinear ULS and SLS 

E3 EOG at UR (U3) 1-y EWH (W2) Collinear ULS and SLS 

E4 EOG at Uout (U4) 50-y EWH (W4) Collinear ULS and SLS 

E5 ETM at UR (U2) 50-y EWH (W4) Misaligned 90° ULS and SLS 

 
W1 - 1-y extreme sea state: A stationary wave scenario with a 1-y significant wave 

height. 

W2 - 1-y extreme wave height: A stationary wave scenario with a 1-y maximum 
wave height. 

W3 - 50-y extreme sea state: A stationary wave scenario with a 50-y significant 
wave height. 

W4 - 50-y extreme wave height: A stationary wave scenario with a 50-y maximum 
wave height. 

The expressions needed to evaluate these scenarios are summarized in subsequent 
sections. 

 

2.2.3 Wind loads 

The main component of wind action is the load on the wind turbine rotor. This can 
be simplified as 

FTH = 
1 

ρa AR CT (um + utb)2 (2.1) 

where AR represents the wind turbine rotor area, um and utb are the mean and turbulent 
components of the wind speed, respectively, and CT is the thrust coefficient used by 
Arany et al. [3]. 

 

 
CT = 

 
3.5 (2 um + 3.5) 

 
 

2 
m 

 

um ≤ UR 

 

 

; being CT ≤ 1 (2.2) 
3.5UR (2UR + 3.5) 

 
 

3 
m 

UR < um ≤ Uout 

where UR and Uout are the rated and cut-out wind speeds of the wind turbine, respec- 
tively. 

u 
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In addition, the wind load acting on the structural elements located above sea 

level is considered. In this case, a distributed load is implemented along the element 
according to DNVGL-RP-C205 [2]. 

fth = 
1 

CD D ρa sin(αw) uwind (z)2 (2.3) 

where CD represents the drag coefficient (defined in Equation (2.14)), αw the angle 
between the wind direction and the element axis, and uwind is the wind velocity, which 
depends on the height (z): 

 

uwind(z) = uwind(zref) 
 z   

0.12 

zref 

 

(2.4) 

To evaluate this load in the different load cases, the mean speed (um) is considered 
to be the one that characterizes the load state (Table 2.1), whereas the turbulent speed 
(utb) is estimated from the associated wind model (defined by IEC-61400-1 [25]). 

• Normal turbulence model (NTM) 

The standard deviation presented by the wind turbulence under this model is 
defined as 

σNTM = Iref (0.75 um + 5.6) (2.5) 

where Iref is the expected value of the turbulence intensity at 15 m/s, which 
depends on the class of the wind turbine. In this Ph. D. Thesis, a value of 0.16 is 
taken as it is the most critical case. In a real wind turbine, it must be understood 
that the pitch control will modify the blade orientation, and with it, the drag 
coefficient. Therefore, turbulence with a sufficiently low frequency of variation 
should not be included in this calculation because there would be a different load 
hypothesis at another wind speed. It is assumed that the frequency limit that 
the pitch control could not correct is the maximum rotor speed ( fr,max) [3]. The 
Kaimal spectrum [28] is used to recalculate the standard deviation of turbulence: 

σ σ 

1
I  ∞

 
 

4 8.1Λ  um  d f = σ 
I

 
NTM, fKS≥ fr,max = NTM

I
�  

fr,max 
(
1 + 6·8.1Λ1 fKS

 
5 KS 

 

3 

NTM 2 
 

. 3 

um ,max 

(2.6) 

where Λ1 is the scalar parameter of longitudinal turbulence, 

0.7 z  z 60 m 

42 z ≥ 60 m 

 

(2.7) 

Given that the IEC-61400-1 [25] standard establishes the 90% percentile as a 
representative value for this turbulence model, the turbulent component of speed 
would be 

utb = 1.282 σNTM, fKS≥ fr,max (2.8) 
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• Extreme turbulence model (ETM) 

The procedure for obtaining the turbulent component of the velocity in the ex- 
treme turbulence model is similar to that of the normal turbulence model. In this 
case, the standard deviation also depends on the annual average wind velocity 
at the hub level (uavg), as indicated by the following expression: 

σETM = 2 Iref 
(
0.072 

(uavg 
+ 3

  (
um 

− 4
  

+ 10
 

(2.9) 

 
The same procedure as in Equation (2.6) is applied, and the representative value 
for turbulence is established at the 95th percentile. 

utb = 1.645 σETM, fKS≥ fr,max (2.10) 

 

 

• Extreme operating gust (EOG) 

In the case of the extreme operating gust, the turbulent component of wind 
velocity is defined by the following expression: 

utb = min

f

1.35 (0.8 ue50 −um) ; 
3.3 σNTM 

l 

(2.11) 
 

where σNTM is defined by Equation (2.5), Λ1 by Equation (2.7), Drotor is the rotor 
diameter, and ue50 is the reference wind speed, which is established by the class 
of the wind turbine and is defined as the mean value of 10 min of the extreme 
wind speed at the height of the hub, with a recurrence period of 50 y. Because 
this reference data is generally not available, following DNVGL-RP-C205 [2], its 
value is estimated from the characterization of the wind in the area: 

( ( 
5 2 5 6
√

0  
  

k 

 

where λwind and kwind are the scale and shape parameters of the Weibull distri- 
bution of wind velocity, respectively. 

 

2.2.4 Sea load 

A drag force perpendicular to the element is considered for the submerged elements of 
the jacket. The tangential component is neglected. According to DNVGL-RP-C205 [2], 
the force received by the structural element can be evaluated as follows: 

 

 

fwn = ρw CM 
π D2 

 
 

4 
v˙n + 

1 
ρw CD D|vn|vn (2.13) 

10 Λ1 

ue50 = λwind 
wind (2.12) 
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where vn and v˙n are the normal components of the water particle velocity and acceler- 
ation, respectively, CM is the mass coefficient (taken as 2 for safety reason), and CD is 
the drag coefficient, which is obtained via 

 0.65 ∆ ≤ 10
−4

 

 
1.05 ∆ > 10

−2 

 

The water particle velocity and acceleration fields are defined through the superpo- 
sition of the wave and current models. Both models are extracted from DNVGL-RP- 
C205 [2]. 

 

• Current model: 

The implemented current model assumes constant velocities; therefore, its contri- 
bution to the acceleration field is neglected. The velocity of the water particles is 
obtained from the superposition of the wind-generated and circulational currents: 

– Wind-generated current: This is modelled by a linear profile from the water 
surface to a depth of 50 m. The induced speed on the surface corresponded 
to 3% of the wind speed at a height of 10 m. 

vc wind(z) = vc wind(0)

(
z + 50 

) 

for − 50 m ≤ z ≤ 0 (2.15) 

 

 
– Circulational currents: The tidal current velocity profile along water depth 

(Hw) is considered. The particle velocity on the surface is assumed to rep- 
resent current environmental data. 

(
z + H  

)1

 

 

 

• Wave model 

To define the water particle velocity and acceleration fields completely, it is nec- 
essary to determine the wave period. According to DNVGL-ST-0437 [4], the 
wave period in deep water can be assumed to be within the following range: 

 
 

11.1

  
hwave 

≤ Twave ≤ 14.3

  
hwave

 

 

(2.17) 

CD = being ∆ = 5 · 10
−6/D (2.14) 

vc,circ (z) = vc,circ (0) for z ≤ 0 (2.16) 
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From this interval, the lower limit can be assumed to be the period of the wave 
in the calculation, because it is the worst-case scenario. The velocity and accel- 
eration fields can then be defined according to the Airy wave theory. 

vw x = 
π hwave cosh(kwave (z + Hw)) 

cos

(

kwave x− 
 2π  

t

) 

(2.18a)
 

vw z = 
π hwave sinh(kwave (z + Hw)) 

sin

(

kwave x− 
 2π  

t

) 

(2.18b)
 

v˙ 
2 π2 hwave cosh(kwave (z + Hw)) 

sin

(

k x 
 2π  

t

) 

(2.18c)
 

v˙ 
2 π2 hwave sinh(kwave (z + Hw)) 

cos

(

k x 
 2π  

t

) 

(2.18d)
 

 
where kwave is the wave number obtained by solving the following implicit equa- 
tion: 

 2 π  
= Twave

,/
  g   

tanh(kwave Hw) (2.19) 

2.3 Numerical model for structural analysis 

The proposed model performs an equivalent static analysis of the jacket response under 
external forces. However, the dynamic characterization of the system is a fundamental 
aspect for the feasibility evaluation of the structure. Therefore, the dynamic effects of 
the water–structure interaction, damping, and SSI are introduced for this calculation. 

 

2.3.1 Jacket substructure response 

To analyse the static response of the jacket foundation, the wind turbine and its loads 
are replaced by the loads transferred to the jacket. This is mechanically allowed because 
the wind turbine forms an isostatic subsystem, and the efforts at the tower base depend 
only on the loads and not on the displacements. Nevertheless, this element must be 
included in the dynamic characterization described in Section 2.3.5. A linear finite 
element model is implemented to obtain the response of the jacket structure under the 
loads described in Section 2.2. For each load case, the following system of equations is 
solved: 

K · u = Fext (2.20) 

Where Fext represents the vector of the external forces acting on the structure, K is 
the stiffness matrix of the system, and u is the nodal displacement. 

The structural elements are modelled using Timoshenko beam theory [29], consid- 
ering a rigid connection between the elements in the welded joints. The platform is 
considered to be rigid, linking the nodes of the upper legs. 
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All the external forces applied to the wind turbine and the weight of the platform are 

transformed into an equivalent system of forces applied on the central node located at 
the top of the jacket structure, whereas the external forces on the jacket are considered 
as trapezoid-distributed loads. Non-trapezoidal distributed loads, such as wave loads 
from sea states, are discretized into sufficient trapezoidal intervals to approximate 
the variability of the loads along the elements, and each interval is computed as an 
independent trapezoidal load. 

 

2.3.2 Soil–structure interaction 

SSI is considered by including the foundation stiffness in the stiffness matrix of the 
structure, 

Kj,j  Kj,f 

Kf,j Kf,f + KSSI 

 

(2.21) 

where Ka,b represent the stiffness sub-matrices related to the jacket (□j) or foundation 
link (□f) nodes, and KSSI is the impedance matrix of the foundation (which can include 
all the effects related to stiffness, damping, and inertia relevant for the natural frequen- 
cies calculation in Section 2.3.5). In general, the impedance matrix of the foundation 
contains all the terms corresponding to the lateral, torsional, and axial modes of the 
piles, as well as the coupled terms representing the pile–soil–pile interaction. 

This model allows the implementation of different impedance functions to reproduce 
the SSI. In this Ph. D. Thesis, the stiffness of the pile foundation is obtained from 
a previously developed continuum numerical model [10] that has been verified and 
successfully employed in the analysis of several SSI problems (see, for example, [30, 
31]). This model is based on the integral expression of the reciprocity theorem in 
elastodynamics and the use of advanced fundamental solutions for reproducing the 
behaviour of the layered soil. These fundamental solutions already satisfy the free- 
field and inter-layer boundary conditions, which avoid any meshing of the soil surfaces. 
Piles are treated as load lines in the soil formulation and their stiffness and inertial 
contribution are considered through their definition as finite elements beams. Pile– 
soil coupling is made by imposing compatibility and equilibrium conditions in terms 
of displacements and soil–pile interaction forces, respectively. This model reproduces 
the three-dimensional linear elastic response of a group of piles embedded in soil. The 
impedance matrix obtained through this model contains all terms corresponding to the 
individual pile response and pile–soil–pile interaction of the lateral (horizontal, rocking, 
and swaying) and axial (vertical) modes. No torsional interaction is considered between 
the individual piles and the surrounding soil. 

Despite it is a model generally oriented to the analysis of dynamic problems in 
the frequency domain, it is implemented in such a way that it can reproduce the 
corresponding static problem assuming sufficiently low frequencies. In the case of a 
static analysis (such as that described in Section 2.3.1), results are obtained considering 
a wavelength of the shear wave of the soil at reference depth 100 times greater than 
the pile diameter. These assumptions result in a very efficient but accurate model. 

K =
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However, the proposed structural model can also neglect any SSI effect by consid- 

ering the bottom of the legs to be completely fixed (that is, the rigid base assumption). 

 

2.3.3 Water–structure interaction 

To consider the water–structure interaction phenomena, the distributed mass of the 
submerged elements is increased for the transverse displacements by the following term: 

 

mw = ρw 
π (D− 2T )2 

4 

π D2 

(2.22) 
4 

where CA is the added mass coefficient, which is typically considered to be 1. Equation 
(2.22) shows two different terms. The first is attributed to the mass contained inside 
the structural element (in case it is filled with water), and the second is associated 
with the interaction with the surrounding water, which is established according to 
DNV-RP-C205 [2]. 

 

2.3.4 Damping 

Four sources of damping of the dynamic system are included in the proposed model. 

• Frequency-independent material damping is considered, and the hysteretic damp- 
ing coefficient is used to define a complex-valued Young’s modulus. 

• Energy dissipation by the water–structure interaction is simplified as an increase 
in the damping of the material of the submerged tubular elements. 

• Energy dissipation by the SSI is introduced by the imaginary component of the 
impedance matrix added to the system. 

• Aeroelastic damping is incorporated as a local hysteric frequency-independent 
damper into the rotor shaft. The damping coefficient is obtained as Ca = 2 ξae K

eq 

from the considered aeroelastic damping ratio for the device (ξae) and the equiva- 
lent stiffness corresponding to the fundamental mode of the wind turbine founded 
on a rigid base (Keq). Owing to the particular dynamic characteristics of this 
system, the equivalent stiffness value could be approximated using the static 
stiffness at the rotor height. Once the local damping is determined, it is applied 
to the rotor node of the complete system, where the wind turbine is supported 
by the jacket structure. A representation of this is shown in Figure 2.3. 

+CA ρw 
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Figure 2.3. Representation of the extrapolation of the aeroelastic damping produced 
in the rotor of the wind turbine considered on a fixed base in the system with the wind 
turbine on the jacket foundation. 

 

2.3.5 Dynamic characterization 

To obtain a dynamic characterization of the structural system, it is necessary to in- 
corporate the wind turbine into the finite element model. For this purpose, the tower 
is discretized into a sufficient number of elements with a uniform section so that it 
is capable of reproducing its tapered geometry, and it is linked to the upper central 
node of the jacket structure. With respect to the mass of the system, a mass matrix 
is constructed to collect the inertial behaviour of the tubular elements of the jacket 
and the water–structure interaction (Section 2.3.3). In addition, the mass and inertias 
of the rotor-nacelle assembly (RNA) and the mass of the platform are introduced as 
punctual masses and inertias. 

The natural frequencies of the system are obtained by solving the eigenvalue prob- 
lem K̃ ω2M = 0 . When the SSI interaction model is frequency-dependent, this 
procedure must be solved iteratively while updating the impedance values. 

Because damping is introduced into the system through complex terms in the stiff- 
ness matrix, the natural frequencies obtained are complex valued. Therefore, the values 
of the real natural frequency and damping of the system are obtained through an anal- 
ogy with a system of one degree of freedom using the following expressions: 

fn = | f˜| (2.23a) 

ξ 
Im f̃  

n 
| f˜| 

(2.23b) 

where f˜ represents the complex frequency obtained by the eigenvalue, fn is the natural 

frequency of the system, and ξn is the equivalent viscous damping of the vibration 
mode. 
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2.3.6 Equivalent static analysis 

The structural response is evaluated using an equivalent static analysis, as indicated 
by Equation (2.20). However, the considered environmental loads exhibits time depen- 
dence, which has to be adequately addressed. Wind loads are assumed to vary over 
long periods of time; therefore, they can be directly considered as static loads. 

However, the wave load presents a significant oscillation over short periods of time, 
which can induce dynamic effects on the structure that increase the stresses to which 
it is subjected. Therefore, following the recommendation of Arany et al. [3], the contri- 
bution of the waves to the sea load is increased by the following dynamic amplification 
factor (DAF): 

DAF = 
 1 

 (2.24) 
  ( ( 1  2

)2 (  2ξ  2 

where Twave represents the period of the wave excitation, fn is the natural frequency of 
the system, and ξn is the mode damping. For the conservative approach, the highest 
amplification factor among the different vibration modes is selected. Because the sea 
load is obtained from the nonlinear superposition of the wave (periodic) and current 
(static) velocity fields, the DAF value is only applied to the dynamic component of the 
sea load, that is, the difference between the total sea load and the load obtained only 
because of the current velocity field: 

f 
eq 

= f current + DAF 
( 

fwn − f current
) 

(2.25) 

 
In addition to the dynamic amplification effects, wave oscillation induces a sig- 

nificant variation in the magnitude and direction of sea loads (Equation (2.18)). To 
account for this variation and ensure that the jacket structure is evaluated at a critical 
instant in the wave cycle, different phases of the wave cycle must be considered and 
verified. To collect the load variability accurately, 15 independent load states are in- 
cluded for each sea state, with their phases homogeneously distributed throughout the 
wave cycle. 

 

2.4 Design principles 

The requirements that jacket foundations should fulfil, established by international 
standards, are detailed in this section. According to their characteristics, the restric- 

tions can be geometric, with some limitations imposed on the dimensions of the struc- 
tural elements or the assembly according to technical criteria, or failure, which are the 
criteria that determine the integrity and functionality of the structural assembly. This 
last group is divided into ULS, SLS, and FLS. Structural analysis is required to deter- 
mine the forces, displacements, and dynamic characterization of the jacket foundation. 

To easily measure the feasibility of the structure, a utilization factor (η) is intro- 
duced for each check. This factor is used to transform the generic expressions of the 

1 − T T wave n 
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inequality constraints into dimensionless and uniform inequalities by dividing the two 
terms of the inequality; thus, the requirement is fulfilled if its value is equal to or less 
than 1. This new indicator allows a clear comparison of the closeness of the evaluated 
design to the restrictions imposed on each check. 

To determine the effects of external loads on the structure, a partial safety factor 
method is used to obtain the target safety level. For the material factor (γM), DNVGL- 
ST-0126 [32] recommends taking a value of 1.1 for tubular structures, whereas the load 
factor can be found in DNVGL-ST-0437 [4]. Table 2.2 lists the values considered 
for each load type depending on the required check. To reduce the calculation, and 
assuming that it is sufficiently secure, a value of 1.1 is considered for the different ULS 
checks in permanent loads. 

Table 2.2. Load factors [4]. 

 

(Unfavourable) 

 

loads 

loads 

 

2.4.1 Geometric requirements 

2.4.1.1 Platform height 

Jacket platforms for offshore support structures do not need to be designed to resist 
direct wave impacts. Therefore, the height of the platform should be set to be sufficient 
to overcome the largest expected waves, including an air gap (represented in Figure 
2.4). This air gap (ga) must be at least 20% of the wave height, but with a minimum 
value of 1 m, according to DNVGL-ST-0126 [32]. 

Hjck ≥ Hw + 
HEWH,50 

+ max{0.2 HESS 50, 1} (2.26) 

2 
, 

where Hw represents the maximum expected depth of water, HEWH,50 is the 50-y ex- 
treme wave height, and HESS,50 is the 50-y extreme sea state. 

ULS 

(Favourable) 
ULS 

SLS 

Permanent 
0.90

 
1.10 1.00 

Environmental 
1.35

 
1.35 1.00 
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Figure 2.4. Representation of the air gap needed between the jacket platform and the 
maximum wave crest. 

 
2.4.1.2 Welded joints 

Geometric restrictions are imposed on the joints to achieve viable structures from 
a constructive perspective. These limits are taken from Appendix B of DNVGL-RP- 
C203 [1]. Based on the variables defined in Figure 2.5, the dimensionless parameters are 
defined, as shown in Equation (2.27). The adopted intervals are indicated in Equation 
(2.28). 

 

Figure 2.5. Geometric variables considered in the joints. Adapted from DNVGL-RP- 
C203 [1]. 

 

βbr,A∨B = Dbr,A∨B/Dch (2.27a) 
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4 

 

αch = 2 Lch/Dch (2.27b) 

τbr,A∨B = Tbr,A∨B/Tch (2.27c) 

ζbr = gbr/Dch (2.27d) 

γch = Dch/ (2 Tch) (2.27e) 

 

0.2 ≤ βbr,A∨B ≤ 1 (2.28a) 

4 ≤ αch (2.28b) 

0.2 ≤ τbr,A∨B ≤ 1 (2.28c) 

0.6 βbr,A∨B/ sin
(
θbr,A∨B

) 
≤ ζbr ≤ 1 (2.28d) 

8 ≤ γch ≤ 32 (2.28e) 

20° ≤ θbr,A∨B ≤ 90° (2.28f) 

 
2.4.1.3 Minimum pile thickness 

To ensure that the pile foundation resists the loads derived from the installation process, 
API Recommended Practice 2A-WSD [27] indicates that the thickness of the pile should 
be: 

Tpile ≥ 
 6.35 

+ 
Dpile (2.29) 

1000 100 

 

 

2.4.1.4 Embedded length of pile 

Following the recommendation of Arany et al. [3], a lower limit is included for the length 
of the pile, such that its critical length is reached. For this purpose, the expression 
proposed by Randolph [33] is used: 

 

  
Epile 

2 
64 Ipile 7 π D4 

Lpile ≥ Dpile 
Gs

 

pile 

1 + 3 νs 
(2.30) 

where Ipile and Epile are the moment of inertia of the pile cross-section and Young’s 
modulus of its material, respectively, and Gs and νs are the shear modulus and Poisson’s 
ratio of the soil, respectively. 

)  ( 
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2.4.2 Ultimate limit states (ULS) 

2.4.2.1 Section capacity 

Given that it is an elastic material, the von Mises yield criterion is used for evaluating 
the resistance capacity of the section. This equivalent stress (σv) must be less than or 

equal to the elastic strength of the material 
( 

fy

) 
reduced by the material factor (γM). 

σ 
 fy 

γM 
(2.31) 

 

 
2.4.2.2 Buckling 

Buckling-failure modes must be verified. For this purpose, the column buckling strength 
is assessed for each beam element between the two welded joints, according to Section 
3.8 of DNVGL-RP-C202 [26]. To avoid the evaluation of joint stiffness and assuming 
that it is safer, the effective length factor is taken to be equal to 1, as if all joints are 
pinned connections. The stability requirement for a shell column subjected to axial 
compression and bending is given by 

σa0,Sd 1 

1
I
  

σm1,Sd 

2   
σm2,Sd

 
 

fkcd 
+ 

fakd 

�
 

σa0,Sd 
+ 

 

fE1 

σa0,Sd 

fE2 

≤ 1 (2.32) 

where σa0,Sd is the design axial compression stress, σmi,Sd is the maximum design bend- 
ing stress about a given axis, fakd is the design local buckling strength, fkcd is the 
design column buckling strength, and fEi is the Euler buckling strength. Moreover, 
an analysis of the global buckling modes by a linear buckling analysis is conducted to 
ensure structural stability. 

Also, the shell buckling stability for unstiffened circular cylinders is checked accord- 
ing to Section 3.4 of DNVGL-RP-C202 [26]. 

 
2.4.2.3 Foundation capacity 

To evaluate the capacity of the pile foundation, API Recommended Practice 2A-WSD 

[27] is followed. Two criteria are considered: lateral capacity and bearing capacity. 

Lateral capacity 

To evaluate the lateral capacity, an auxiliary model based on nonlinear Winkler springs 
is used to reproduce the lateral pile–soil interaction according to the standard. This 
model is detailed in Appendix A. 

Independent of the SSI model used in the structural analysis (Section 2.3.2), the 
loads that equilibrate the jacket structure at the bottom node of the legs are considered 
and used as the head loads of each pile (FH,L, MH). To evaluate the pile, two planes 

1 − 1 − 

2 
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qp

) 
( ) 

 fRO  fRO 

 
of the forces that are assumed to be most relevant are considered: the plane with the 
highest lateral force and the corresponding bending moment, and the plane with the 
highest bending moment and the corresponding lateral force. 

Two failure criteria are established to verify the lateral capacity of the foundation: 
the pile yield and soil resistance. The first implies that the tensile stress produced by 
the maximum bending moment along the pile cannot exceed the yield stress limit. The 
latter ensures that the soil can resist the loads induced by the pile without becoming 
unstable. This condition is checked by defining different amplification-reduction factors 
of the lateral load and bending moment at the pile head and determining the case in 
which the displacement of the pile head tends to infinity, which would indicate the 
maximum lateral force the soil can support. 

Bearing capacity 

The axial bearing capacity of the piles is also evaluated by comparing the axial forces 
at each pile head against the ultimate bearing capacity of the piles, computed as 

Qu = Qs + Qp = fs As + qp Ap (2.33) 

where Qs is the skin friction resistance obtained by multiplying the unit skin friction 
capacity ( fs) by the side surface area of the pile (As), and Qp is the total end-bearing 
resistance, evaluated as the unit end-bearing capacity  multiplied by the gross end 
area of the pile Ap . The values of these areas depend on whether the pile is assumed 
to be plugged or unplugged. For plugged piles, the side surface area of the pile is 
limited to the external area, whereas the entire bottom cross-section is considered for 
the gross end area. However, for unplugged piles, only the pile annular area acts on the 
end-bearing capacity, and the inner wall surface is also incorporated to compute the 
frictional resistance. Once the values for both hypotheses are computed, the smallest 
value is considered as the pile’s ultimate axial bearing capacity. Finally, for the pull- 
out bearing capacity, the foundation resistance is provided by the total skin friction, 
together with the effective weight of the pile and the assumed soil plug. 

 

2.4.3 Serviceability limit states (SLS) 

To ensure correct operation of the wind turbine, DNVGL-ST-0126 [32] recommends a 
maximum limit rotation at the bottom of the tower. In this case, a limit of 0.25° is 
applied to the jacket platform. 

 

2.4.4 Fatigue limit states (FLS) 

To reduce the risk of long-term material fatigue failure, DNVGL-ST-0126 [32] states 
that the natural frequencies of a structural assembly cannot coincide with the rotor 
speed or blade frequency to avoid resonance. The following conditions should be ful- 
filled: 

fn  
≤ 0.95 or 

fn  
≥ 1.05 (2.34) 
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where fRO represents the frequencies to avoid (all bandwidths of the rotor speed and 
blade transition frequency), and fn are the different natural frequencies of the structure. 
Figure 2.6 shows the allowable regions for the natural frequencies. This code also 
indicates that, to verify this condition, all natural frequencies at least 20% higher than 
the blade transition frequency must be obtained. 

 
Waves 

Frequency 

Figure 2.6. Allowable regions for the natural frequencies of the OWT. 
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3.1 Introduction 

The correct design of jacket structures that support offshore wind turbines (OWTs) 
is very important for the expansion of this technology and, therefore, for the achieve- 
ment of renewable energy objectives. However, this calculation is complex because it 
requires the evaluation of numerous load cases and the verification of many structural 
elements. Some authors have developed optimization procedures to obtain efficient 
jacket designs. Oest et al. [34] optimized a jacket based on a previous design using 
sequential linear programming. Chew et al. [35] optimized a jacket structure using a 
sequential quadratic programming approach. Stolpe et al. [36] addressed the optimiza- 
tion of a jacket structure as a support for a larger wind turbine (10 MW) through a 
mixed optimization strategy that defined the main topological aspects of the structure 
using pattern search optimization, while sizing the sections using gradient-based meth- 
ods. In addition, using sequential linear programming, Couceiro et al. [37] optimized 
a jacket by considering different levels of bracing and compared the results. Ju et 
al. [38] used Powell’s method to optimize the jacket support structure of 10-MW and 
15-MW wind turbines with three and four legs at water depths of 35, 50, and 80 m 
and performed a preliminary analysis of the influence of these variables on the total 
mass of the foundation. All the above studies used structural simulations in the time 
domain, except for Oest et al. [34], who performed a static analysis for different time 
steps. These models usually involve high computational costs, which make it difficult 
for them to optimize many systems or to conduct parametric analyses. To avoid this 
drawback, Jalbi and Battacharya [39] proposed a simplified methodology for estimat- 
ing the axial forces in tubular members, assuming a truss structure. This procedure is 
useful for obtaining the first approximation of a design, without verifying the feasibility 
of the structure. 

The influence of the soil–structure interaction (SSI) on the response of specific 
jacket structures for OWTs has been studied recently. Abdullahi et al. [40] analysed 
the variations in the natural frequencies of an OWT on monopile and jacket structures 
while considering the flexibility of the pile foundation. Sharmin et al. [41] compared 
the seismic response of a jacket-supported OWT in different soils and on a rigid base, 
where the SSI was found to be of great relevance. Shi et al. [42] investigated the effect 
of the lateral flexibility of a pile foundation on the internal forces in certain elements 
of a predefined jacket structure under design loads. They used a Winkler spring model 
to incorporate the SSI, although the vertical component was not considered. However, 
few authors have incorporated the effects of foundation flexibility in the optimization of 
jacket structures. One example is the work of Ju et al. [38], who implemented nonlinear 
springs along a buried pile to incorporate foundation flexibility. However, the relevance 
of including SSI effects in jacket structure analysis models to obtain more efficient and 
less expensive designs has not been studied in depth. 

In this chapter, the optimization procedure of the jacket structure of a case study 
is conducted. To evaluate the feasibility of the support structure, the structural model 
described in Chapter 2 is used. The intention of the work presented in this chapter is 
to obtain an initial approach to the design of a jacket. Taking advantage of this pro- 
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cedure, an analysis of the influence of soil–structure interaction in relevant structures 
is performed. First, the case study is defined in Section 3.2. Then the methodology 
followed for the optimization is described in Section 3.3. Results of the optimization 
process are shown in Section 3.4. Finally, the influence of SSI is analysed in Section 
3.5, followed by the main conclusions in Section 3.5. 

 

3.2 Case study 

To obtain the jacket design, it is necessary to define the case study. First, the charac- 
teristics of the wind turbine must be specified, including both the physical properties, 
such as the mass and geometry of the tower, and the operating conditions of the device. 
Then, the environmental conditions of the site where the system is located, which in- 
clude the depth of the sea, wave and wind conditions, and geotechnical characteristics, 
are also needed because they affect the requirements that the jacket structure must 
verify. 

The selected wind turbine is the DTU 10-MW reference wind turbine [5]. According 
to the characteristics of the proposed model, the properties of the device necessary to 
evaluate the structure are those that define the geometry of the tower (tower height, 
bottom and top diameters, and bottom and top thicknesses), inertia provided by the 
RNA (mass and moments of inertia about the roll and yaw axes), aeroelastic damping 
of the rotor (in the fore-aft and side-side directions), rotor diameter, and operation 
conditions (rated wind speed and rotor velocities). Table 3.1 lists the properties and 
their values, adapted from Bak et al. [5]. The values of aeroelastic damping are assumed 
from the intervals proposed by Chen et al. [43]. It is assumed that the tower and tubular 
elements of the jacket are composed of steel and had the following properties: density 

of 7 850 kg/m3, Young’s modulus of 210 GPa, Poisson’s ratio of 0.3, hysteretic damping 
coefficient of 0.5%, and yield stress of 350 MPa. 

The environmental conditions at the site where the wind turbine is located must be 
also specified. Wind conditions are defined by a Weibull distribution with an average 
speed of 10 m/s and a shape parameter of 1.8. For the metocean data, those described 
by Jalbi et al. [39] are taken, where the variables are a water depth of 50 m, a 1-y sig- 
nificant wave height of 6.6 m, a 1-y maximum wave height of 12.42 m, a 50-y significant 
wave height of 8.27 m, and a 50-y maximum wave height of 15.33 m; the circulational 
current is neglected. In addition, it is assumed that in the submerged structural ele- 
ments of the jacket, the damping of the material increased by one percentage point. 

Finally, the jacket structure is assumed to be founded on sand, defined as a homo- 
geneous soil with a Young’s modulus of 25 MPa, a Poisson’s ratio of 0.49, a density of 

2 000 kg/m3, a hysterical damping ratio of 2.5%, and an angle of internal friction of 
30°. 
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Table 3.1. Wind turbine properties (adapted from [5]). 

Variable Value 

Tower height (Htower) 119 m 

Rotor diameter (Drotor) 178.3 m 

Bottom diameter (Dbottom) 8.3 m 

Bottom thickness (Tbottom) 0.038 m 

Top diameter (Dtop) 5.5 m 

Top thickness (Ttop) 0.020 m 

Mass (MRNA) 674·103 kg 

Inertia about roll axis (IRNA,roll) 156·106 kg·m2 

Inertia about yaw axis (IRNA,yaw) 974·105 kg·m2
 

Fore-aft direction damping (ξae,FA)  6.00% 

Side-side direction damping (ξae,SS) 0.75% 

Rated wind speed (UR) 11.4 m/s 

Minimum rotor speed ( fr,min) 6.0 rpm 

Maximum rotor speed ( fr,max) 9.6 rpm 
 

3.3 Methodology 

Some assumptions are made to simplify the process and reduce the dimensions of the 
optimization problem. First, the height of the jacket is fixed at 59.3 m, which is the 
minimum value allowed according to Equation (2.26). All bracing elements are assumed 
to have the same inclination. Regarding the grouping of the geometry of the different 
tubular elements, all the elements of each bracing level have the same cross-section, 
all the legs are uniform through their lengths and equal, and all the piles have the 
same dimensions. Finally, the design of the jacket platform is neglected. It is directly 
considered as a punctual mass equivalent to a 20-cm-thick steel plate that would fill 
the polygon defined by the upper extremes of the legs. 

In this way, the design variables of this problem are as follows: the number of legs 
(nleg), the number of bracing levels (nbr), the separation of the legs at the base (Sbase) 
and top (Stop), the diameter (Dleg) and thickness (Tleg) of the legs, the diameter (Dbri ) 
and thickness (Tbri ) of the elements of each bracing level (i), and the diameter (Dpile), 
thickness (Tpile), and length (Lpile) of the piles. However, the number of legs and bracing 
levels are excluded from the optimization process because they are discrete variables, 
resulting in a different design for each combination. Figure 3.1 shows a schematic 
representation of the optimization variables. To limit the solution search space, many 
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Figure 3.1. Representation of three examples of jacket designs indicating the variables 
included (blue) or fixed (black) in the optimization process. 

 
of the design variables are not directly used but are defined from dimensionless ratios. 
The relationships between the design variables and their ranges are presented in Table 
3.2. 

The objective of the optimization process is to obtain a feasible jacket design that 
minimizes the amount of material used, which is a significant economic cost. Therefore, 
the total mass of the structure is established as a cost function. In addition, some 
restrictions are imposed to avoid the failure of the structure or structural elements 
against external loads (ULS), ensure the correct functionality of the system (SLS), 
avoid the collapse of the structure owing to cyclic loads (FLS), and limit the geometry 
of certain elements under technical criteria. Therefore, if the lower and upper limits 
are considered to limit the search space, the following optimization problem under 
inequality constraints can be established: 

Minimize Mjck(X ) 

subject to X ≥ lower limit 

X ≤ upper limit 

η j(X ) ≤ 1, j = 1, ..., n 

(3.1) 

where Mjck is the mass of the jacket foundation, X represents the variables modified in 
the optimization process, and η is the utilization factor of the constraint j. 

Owing to the large number of optimization processes conducted in this study, a 
surrogate model is used to reduce the total number of evaluations of the structural 
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Table 3.2. Ranges of the expressions considered in the design process. The jacket 
design variables are obtained from these expressions. 

 

Expression Lower limit Upper limit 

nleg 3 5 

nbr 2 10 

Sbase 15 m 35 m 

Stop −Dbottom · tan
(
π/nleg

)

) 0 1
 

Sbottom −Dbottom · tan
(
π/nleg 

Dleg 0.6 m 2.5 m 

Tleg/Dleg 1/64 1/16 

Dpile 0.8 m 4 m 

Tpile/Dpile 1/80 1/4 

Lpile/Dpile 8 18 

Dbri/Dleg 0.2 1 

Tbri/Dbri 1/64 1/16 

 
model and the total computational cost [44]. The optimization procedure based on the 
“surrogateopt” function already implemented in MATLAB [45] is used, which creates 
an internal surrogate model adapted from model evaluations and speeds up the process. 
This surrogate model is based on interpolation using radial basis functions, which 
consists of a linear combination of radially symmetric functions centred at defined 
points. 

n 

LRBF(X ) = ∑ wi φ (X, Xci ) (3.2) 
i=1 

where φ is the radial basis function, Xci are the centres of the function, and wi are 
the weights of the functions. Setting the already evaluated points as centres, the 
weight values are obtained using least squares to construct the interpolation function. 
First, the optimization process generates random points and evaluates them to build 
the initial surrogate models for both the objective function and nonlinear constraints. 
These interpolation functions are used for evaluating numerous random points. From 
these, a new point to be evaluated by the structural model is selected by considering the 
expected performance given by the surrogate model and the distance from previously 
known points. The surrogate model is then updated, and the process is repeated until 
the stopping criterion is met. 

To achieve a balance between obtaining an acceptable design and a fast procedure, 
the number of model evaluations in each execution of the MATLAB function is lim- 
ited to 100. Next, the “surrogateopt” function is applied iteratively, introducing the 
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accumulated evaluations as previously evaluated points until the mass of the obtained 
solution do not reduce the previous one by more than 1%. This procedure is followed 
for each of the established combinations of the numbers of legs and bracing levels, 
performing five repetitions of each to estimate the convergence of the process. 

 

3.4 Jacket design 

Once the optimization process is concluded, five jacket designs per each combination of 
number of legs and bracing levels are obtained. Figure 3.2 shows the masses of the ob- 
tained designs grouped by the numbers of legs and bracing levels. To do this, the cases 
are separated on the x-axis according to the number of bracing levels; red crosses are 
used for three-legged jackets, blue squares for four-legged jackets, and green diamonds 
for five-legged jackets. These results show that there are significant differences in the 
global mass among the five designs obtained for each combination of the numbers of 
legs and bracing levels. This indicates that the design process does not guarantee the 
global optimal design of the jacket structure; however, the implementation of more 
rigorous optimization procedures would significantly increase the computational cost 
and is outside the scope of this Ph. D. Thesis. However, general trends can be observed 
from Figure 3.2. First, the mass of the structure tends to decrease as the number of 
bracing levels increase, until six bracing levels are reached. From that point onwards, 
a slight increase in the mass of the assembly is observed, which is more sensitive when 
the structure has fewer legs. The structures obtained with four or more bracing levels 
become lighter as the number of legs increased. 
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Figure 3.2. Mass of jackets obtained in the design process, differentiated by the numbers 
of legs (markers) and bracing levels. 

 
To determine the optimal jacket design, it is necessary to select the design that 

verifies all imposed requirements and imposes a lower economic cost. However, many 
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researchers use the global mass of the jacket as a function to minimize in the optimiza- 
tion process of these structures (see, for example, [34, 35, 37, 38]). This is mainly owing 
to the complexity and variability of estimating the cost of such structural systems, 
which have a high number of joints. For this reason, the process is usually simplified 
by considering the mass of the assembly, because the amount of material required is 
a main factor affecting the final cost. Considering these criteria, and according to the 
results shown in Figure 3.2, the selected range of jacket designs in this problem can 
be limited to four-legged cases that have from four to six bracing levels, because lower 
values in these variables imply a significant growth in the global mass of the structure, 
and higher values imply an increase in costs owing to the increase in the number of 
welded joints. Table 3.3 lists the dimensions of five lighter jackets obtained within this 
range. 
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Table 3.3. Values of the design variables of the five selected jackets. 
 

 Design 1 Design 2 Design 3 Design 4 Design 5 

nleg 4 4 4 4 4 

nbr 5 5 6 5 6 

Sbase (m) 27.96 28.61 25.33 30.85 27.45 

Stop (m) 14.63 12.94 15.28 12.63 12.77 

Dleg (m) 0.984 1.015 1.071 0.971 1.077 

Tleg (mm) 42.88 48.15 43.29 47.33 45.49 

Dpile (m) 2.552 2.398 2.393 2.644 2.540 

Tpile (mm) 31.9 30.3 30.3 33.1 31.8 

Lpile (m) 30.9 31.6 34.1 28.0 28.5 

Dbr1 (m) 0.484 0.406 0.430 0.504 0.362 

Tbr1 (mm) 10.1 16.0 9.3 11.4 12.9 

Dbr2 (m) 0.404 0.416 0.522 0.509 0.327 

Tbr2 (mm) 12.0 10.4 12.0 9.9 14.4 

Dbr3 (m) 0.344 0.391 0.358 0.664 0.336 

Tbr3 (mm) 13.5 12.4 10.6 12.0 18.8 

Dbr4 (m) 0.746 0.557 0.342 0.415 0.667 

Tbr4 (mm) 13.2 17.4 9.1 21.9 17.2 

Dbr5 (m) 0.614 0.546 0.433 0.658 0.336 

Tbr5 (mm) 21.4 18.9 14.6 13.8 14.5 

Dbr6 (m) - - 0.653 - 0.509 

Tbr6 (mm) - - 23.4 - 23.4 

Mjck (kg) 642 · 103 650 · 103 658 · 103 659 · 103 672 · 103 

3.5 Influence of the soil–structure interaction 

To study the relevance of the SSI in this type of structure, it is necessary to analyse 
whether significant differences appear in the response of the structure when considering 
this interaction compared to the rigid base assumption. However, the large number 
of variables defining the structure makes it unviable to conduct a parametric study 
that exhaustively considers all possible configurations. For this reason, this brief study 
proposes to test the relevance of SSI phenomena in feasible jacket designs obtained 
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from an optimization process, in order to obtain relevant conclusions. 
As expected, the results of the optimization process should also be affected by the 

hypothesis considered in the connection of the base of the leg with the soil. This study 
aims to show the direction and its relevance. The strategy consists in performing 
the optimization process imposing the bottom legs on a fixed base (FB). Once the 
new jacket designs are obtained, together with obtained in Section 3.4 considering 
SSI, the structural model is used for evaluating the utilization factors of the imposed 
requirements on the jacket under the same hypothesis with which it is obtained and the 
other. Figure 3.3 shows the combination of designs and hypotheses used to compare 
the results. 

 

 
Figure 3.3. Diagram of the overall process of SSI relevance analysis. Designs obtained 
under each hypothesis are evaluated using both. 

To prevent unrealistic designs from modifying the conclusions drawn from this 
study, designs with four legs and four, five, and six levels of bracing are selected, as 
they are considered more efficient according to the results of Section 3.3. Then, the 
same design procedure is followed, but considering the bottom legs are on a fixed base 
(FB), and all the designs are evaluated with the structural model. 

Figure 3.4 shows a boxplot of the utilization factors (defined in Section 4.4.1), 
which reflect the safety level with different restrictions imposed on each of the designs 
obtained. First, the results show that all the values obtained are less than one because 
they are obtained from a design process that verifies all the restrictions. Thus, the 
criteria in which the indicators presented values close to 1 are those that limited the 
final dimensions of the jacket. In the case of designs considering the SSI, the ULS in 
the bracings and the limitation of the rotation of the tower base of the wind turbine 
are the most restrictive requirements, whereas when the legs are considered on a fixed 
base, the ULS in the bracings and load capacity of the foundation are the most relevant 
restrictions. 

To evaluate the influence of the SSI model on the utilization factors, the designs 
obtained considering the SSI are evaluated assuming a rigid base and vice versa. Figure 
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Figure 3.4. Utilization factors of jackets obtained in the design processes assuming soil–
structure interaction effects (left) or a rigid base (right). 

 
3.5 shows boxplots of the utilization factors, where the top left and bottom right 
subplots are the same as those in Figure 3.4. Restrictions associated with the geometry 
of the welded joints, the thickness of the pile, and the critical length of the pile are 
omitted because they are purely geometric restrictions that are not affected by the 
numerical model used to evaluate the structure. The failure criterion that is most 
affected by the foundation assumption is the rotation at the base of the tower because 
considering the SSI made the structure more flexible and increases the displacements. 
However, this criterion is not relevant, because it is a recommendation of the DNV [32] 
and is not mandatory. Finally, when the designs obtained assuming a fixed base are 
evaluated considering the SSI, the ULS requirements for the legs and bracings of the 
jacket are not satisfied. This implies that the redistribution of efforts by considering 
foundation flexibility has significant relevance in the failure criteria of these structures, 
and therefore, should not be neglected. 
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Figure 3.5. Utilization factors of jackets obtained in the design processes evaluated 
considering the soil–structure interaction (SSI) or a fixed base (FB). 

 

3.6 Conclusions 

This chapter presents an initial approach to the optimization process of a jacket design 
for a specific location and wind turbine. The structural model presented in Chapter 2 
is used for evaluating requirements imposed to the structure during the optimization. 
Owing to the complexity of the system and the high number of variables that define it, 
a global optimum during the optimization process is not guaranteed. More exhaustive 
optimization procedures could be implemented in future stages, but this is outside 
the scope of this Ph. D. Thesis. However, general trends are observed in the designs 
obtained in this study case. Jacket designs trend to be more efficient, in terms of 
global mass, when the number of bracing levels increase up to six bracing levels. In 
addition, for jackets with more than 3 bracing levels, they become more efficient when 
the number of legs increase. Taking this into account, and considering that a greater 
number of welded joints increase the economic cost, the 4-legged jackets with four, five, 
and six bracing levels are considering the most rational cases to be considered for the 
jacket design in this study case. 

An analysis of the influence of the SSI on feasible jacket designs obtained through 
an optimization process is also performed. The influence of the SSI is measured via 
the utilization factors of the design requirements of the jackets evaluated considering 
the SSI but obtained assuming that the bottom legs are fixed and those evaluated 
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considering the bottom legs to be fixed but obtained assuming the SSI. ULS verifica- 
tions in the legs and bracing elements are not satisfied when considering the SSI in 
designs obtained assuming a fixed base, whereas this does not occur significantly when 
evaluating as fixed-base the designs obtained assuming SSI. It is concluded that the re- 
distribution of internal forces produced by considering the flexibility of the foundation 
increases the stress on some structural elements, highlighting the need to incorporate 
this characteristic into structural models of OWT jacket support structures. 
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4.1 Introduction 

In recent years, the research community is given more attention to Deep learning 
methodologies [46]. Some examples of the application of ANNs to solve civil engineering 
problems, among many others, are the following. Asteris et al. [47] used an ANN to 
predict the fundamental frequency of a complex RC framed structure. Thaler et al. [48] 
developed an ANN to predict the nonlinear response of a structure under earthquakes. 
Li et al. [49] implemented an ANN to predict the long term fatigue damage of floating 
OWTs. Regarding pile foundations: Franza et al. [50] trained an ANN to evaluate 
the impedance functions of 2x2 inclined pile groups in homogeneous soils, Kummar et 
al. [51] used hybrid ANNs to determine the bearing capacity of pile foundations, and 
Kennedy et al. [52] implemented ANNs to solve the inverse problem of determining the 
pile length from measurements of ground vibrations. 

This chapter introduces the concept and behaviour of ANNs, the machine learning 
technique implemented is this Ph. D. Thesis. Section 4.2 classifies the main typologies 
of ANNs and describes basic concepts. Section 4.3 introduces the methodology of 
ensemble learning. Then, two surrogate models developed for structural problems 
related to the main topic of this Ph. D. Thesis are presented. First, in Section 4.4, a 
surrogate model for prediction of pile stiffness is developed. Second, in Section 4.5, a 
surrogate model capable of estimate the fundamental frequency of a jacket-supported 
OWT is described. Finally, Section 4.6 summarizes the main conclusions drawn from 
them. 

 

4.2 Artificial Neural Networks: basic concepts 

Artificial neural networks (ANNs) are computational models inspired by the human 
brain’s neural network, which have shown a promising ability to perform a wide range 
of tasks, such as image and speech recognition, natural language processing, and even 
driving autonomous vehicles. They are particularly specialized at identifying patterns 
in large datasets, making them valuable tools for big data analysis and predictive mod- 
elling. A deep introduction to this topic can be found in many specialized references 
(see, for example, [53, 54]). 

 

4.2.1 Numerical approach 

An ANN is a computational technique based in the interconnection of many simple 
processing units called neurons. In general terms, ANNs are constituted by an input 
layer where the information is introduced, one (shallow neural network) or more (deep 
neural network) hidden layers where the information is processed, and an output layer 
where the expected result is obtained. A schematic representation is shown in Figure 
4.1. 
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Figure 4.1. Schematic representation of a simple fully connected neural network. 

 
4.2.1.1 The neuron 

The minimal processing unit of the ANN is the neuron. It can be mathematically 
understood as the linear combination of neuron’s inputs. This is often followed by 
an activation function to introduce non-linearity into the model. Then, the neuron’s 
output would be the following: 

a
ly 

h

  

B
ly 

n 

W
ly 

a
ly−1

 

(4.1) 

 
where aly is the output of the neuron j of the layer ly, h is the activation function, Bly 

j j 

is the bias of the neuron, and Wly are weights of the different inputs of the neuron. The 
values of the bias and the weights are the learnable parameters that allow the system 
to conduct the desired task. 

As can be demonstrated, in an ANN composed by neurons without activation func- 
tion, the output can be reduced to a linear combination of the input. In this case, the 
model would not be able to fit any nonlinear function. However, the activation function 
introduces nonlinearities in the numerical model, allowing for more complex behaviour 
of the network. The most common activation functions used in ANNs, represented in 
Figure 4.2, are the following: 

• Rectified linear unit (ReLU): h(a˜) = max {0, a˜}. 

• Leaky rectified linear unit (Leaky ReLU): h(a˜) = max {0.1 a˜, a˜}. 

• Exponential linear unit (ELU): h(a˜) =

  

a˜ 
a˜ ã  ≥ 0 

. 

 

• Sigmoid function: h(a˜) = 
 1  

. 

1 − e−a˜ 

e − 1 ã < 0 
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• Hyperbolic tagent function (Tanh): h(ã  
a  ̃ a  ̃

) = 
ea  ̃+ e−a  ̃

. 

• Softsign function: h(a˜) = 
  a˜ 

. 

1 + |a˜| 

 

ReLU Leaky ReLU ELU 
 

   
 

Sigmoid Tanh Softsign 
 

   

Figure 4.2. Most common activation functions used in ANNs. 

Taking into account the behaviour of the neuron, the ANN can be understood as a 
sequence of linear combinations of nonlinear functions. 

 
4.2.1.2 Universal approximation theorem 

Despite the simple behaviour of the neuron, ANNs reach higher capacities through the 
aggregation of many of them, each processing part of the information. The universal 
approximation theorem [55, 56] states that any measurable continuos function from 
one finite-dimensional space to another can be approximated with any desired nonzero 
error by an ANN with only one hidden layer. However, the number of neurons that this 
hidden layer must contain is not established and may be arbitrarily large to achieve 
the desired error. 

 

4.2.2 Architectures 

One of the multiple research fields in deep learning is focused on developing more 
efficient architectures for the network. Thus, the first element to consider is to ma- 
nipulate the number of hidden layers (NoHL) and the number of neurons per hidden 
layer (NoNpHL). Both variables affect the number of neurons in the network, which 
modify the number of parameters (NoP) and the ability of the network to fit the de- 
sired function. Intuitively, the NoNpHL indicate the number of internal variables set 
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in the layer, while the NoHL is the number of transformations that are made over the 
internal variables. 

However, different categories of ANNs can be established attending to the inter- 
connections between the neurons of the different layers: 

• Fully connected neural networks: all the neurons from one layer are connected to 
all the neuron of the previous layer. This architecture is used for unstructured 
data, where the different inputs variables have no dependencies. 

• Convolutional neural Networks: the neurons of one layer are only connected to a 
sub-set of the neurons of the previous layer. This architecture is used for grid-like 
data, such as images. 

• Recurrent neural networks: the neurons of layer have loops that allow information 
to persist across different time steps. This architecture is used for sequential data, 
such as time series. 

 

4.2.3 Nature of model’s output 

Attending to the nature of the model’s output, the machine learning models can be 
divided into regression models and classification models. Regression models predict a 
continuous output. This means the model’s output can take any value, representing 
the magnitude or quantity of the output variable prediction. In this case, the output 
layer of the ANN must have the same number of neurons as output variables, and these 
neurons do not require an activation function to work. 

On the other hand, classification models predict discrete outputs, typically in the 
form of classes or categories. Depending on the number of outputs and labels, there 
are different classification models: 

• Binary classification model: the model has one output that can be assigned to 
one of two possible classes. In this case, the ANN should have one neuron in the 
output layer with an activation function, typically the sigmoid function. 

• Multi-label classification model: the model has several outputs that can be as- 
signed to one of two possible classes each one. In this case, the ANN should 
have the same number of neuron as output variables in the output layer with an 
activation function, typically the sigmoid function. 

• Multi-class classification model: the model has one output that can be assigned 
to one of several possible classes. In this case, the ANN should have the same 
number of neuron as possible classes of the output with the softmax function. 

 

4.2.4 Learning process 

The learning process of ANNs involves adjusting the weights of the network to minimize 
the error between the predicted output (Yˆi) and the actual target values (Yi). This is 
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typically achieved through the gradient descent, where the model iteratively adjusts 
the weights and biases of the neurons to reduce the loss function. 

 
4.2.4.1 Loss function 

The loss function is a fundamental aspect in the training of ANNs. It quantifies the 
error of the predicted outputs of the network compared to the actual target values. The 
objective of the loss function is to guide the training process by providing a measure 
of network’s performance intended to be improved. 

There are several types of loss functions, each suitable for different kinds of prob- 
lems. Among them, the following are highlighted: 

• Mean Squared Error (MSE): Commonly used in regression models, it calculates 
the average of the squares of the errors between the predicted and actual values. 

MSE = ∑ 
(
Y î −Yi

)2 
(4.2) 

 

Ns i=1 

 

• Log Loss: Often used in classification models, it measures the performance of a 
classification model whose output is a probability value between 0 and 1. 

 

LogLoss = 
1
 

N 
∑ 

(
Yi ln Ŷ i  + (1 −Yi) ln

(
1 − Ŷi

)) 
(4.3) 

 

 
4.2.4.2 Backpropagation 

Backpropagation is the algorithm most used in the training of ANNs. The algorithm 
calculates the gradient of the loss function with respect to the neural network’s weights 
and biases. During the training process, the input data pass through the network, layer 
by layer, until the predicted output is obtained. Then, the loss function is evaluated 
comparing the predicted output and the actual target value. The error is propagated 
backward through the network, while the gradient of the loss function with respect to 
each weight and bias in the network is evaluated. Finally, the calculated gradients are 
used to update the parameters of the network, with the aim of reducing the loss in the 
next iteration. From a mathematical point of view, backpropagation uses the chain 
rule from calculus to compute the gradients of the loss function, which results in a very 
efficient process. 

Since the ANN training is reduced to an optimization problem, many algorithms 
have been developed to update network’s parameters. Some of them are: 

• Gradient descent: The parameters are updated in the opposite direction of the 
gradient of the loss function over the entire training dataset. This is the simplest 
version. 
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• Stochastic gradient descent: The parameters are updated using only a single 

training example at a time. The convergence can be faster, but it presents more 
noise. 

• Mini-batch gradient descent: It is a combination of the two previous methods. 
The parameters are updated using a small, random subset of the training data, 
known as a mini-batch. 

• Momentum: This method reduces the oscillation of Stochastic gradient descent 
by incorporating part of the gradient in the previous sample to the current one. 

• Adaptive moment estimation (Adam): This method adjusts the learning rates 
of each parameter during the training process, and uses momentum to reduce 
oscillation. 

 
4.2.4.3 Regularization 

Regularization is a technique used to prevent overfitting, that is, when the model is 
adjusted to the training data but cannot be applied to other (test) data. Some of the 
most used regularization techniques are the following: 

• L1 Regularization (Lasso): Adds a penalty to the loss function equal to the 
absolute value of the magnitude of network’s parameters. 

• L2 Regularization (Ridge): Adds a penalty to the loss function equal to the 
square of the magnitude of network’s parameters. 

• Early Stopping: Analyse the model’s performance on a validation set not used 
for gradient computation and stops training when validation performance starts 
to decay. 

• Dropout: Randomly, some neurons outputs are set to zero during training time. 

• Data Augmentation: Increases the amount of training data using information 
only in the training data, through transformations like rotation, scaling, etc. 

• Noise Injection: Adds noise to inputs or weights during training. 

 
4.2.4.4 Learning paradigm 

In machine learning, there are three learning paradigms that differ in the way the 
model generate knowledge from data: 

• Supervised learning: the model learns the information from labelled available 
data, being able to extrapolate to new data. For this purpose, a dataset with 
correlated inputs and outputs is required. 

• Unsupervised learning: the model extracts knowledge from unlabelled data. 
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• Reinforcement learning: the model learns directly from the rewards obtained 

through a dynamic environment coupled to the model. 

 

4.3 Ensemble model 

Ensemble models are a fundamental technique in machine learning that improve the 
overall performance by combining the predictions from individual models. This ap- 
proach is based on the collaboration of several models to achieve an aggregate per- 
formance superior to the originals. Therefore, the ensemble model manages to both 
improve accuracy and reduce overfitting. Some ensemble strategies are: 

• Bagging: Several independent models are trained with different sub-sets of the 
dataset. The ensemble prediction is obtained by aggregating the constituent 
models. 

• Boosting: Several models are trained sequentially, aimed to correct the prediction 
of the previous one. 

• Stacking: A metamodel is trained to predict the target data from the outputs of 
several independent models. 

 

4.4 Surrogate model for pile stiffness estimation 

The aim of this section is to develop an ANN-based model capable of reproducing 
the equivalent linear stiffness of a pile foundation in non-homogeneous soil according 
to a continuum model. This is an initial approach to the implementation of Machine 
Learning techniques to the study of the compatibility of forces and movements between 
these deep foundations and the structure they support. 

 

4.4.1 Problem statement 

This surrogate model aims to characterize the static stiffness of pile foundations in non- 
homogeneous soils, such as the one represented in Figure 4.3. The pile is considered 
as a tubular element embedded in a vertical position. The geometric variables that 
define it are the embedded length (Lpile), the diameter (Dpile), and the thickness (Tpile). 
For the static analysis, the material characteristics needed are the Young’s modulus 
(Epile) and Poisson’s ratio (νpile). The soil is considered as a non-homogeneous vertical 
half-space with mechanical properties defined by a shear wave velocity that increases 
continuously with depth following a generalized power law function [57]. As this work 
focuses on the static stiffness of foundations, this power law is rewritten in terms of 
Young’s modulus as: 

( 
 z  

)2ns ( 
E0 )21 

 
 

s E 
E (4.4) 
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where Lpile is the pile length (used as reference depth), E0 and EL are the Young’s 

modulus at the free surface and at the reference depth, respectively, and ns is a di- 
mensionless parameter that determines the Young’s modulus profile between the free 
surface and the reference depth. 

 

Figure 4.3. Single hollow pile embedded in non-homogenous halfspace 

The stiffness of the pile is associated with three degrees of freedom: lateral displace- 
ment (uH,L), rotation (θH) and vertical displacement (uH,V) of the head (Figure 4.3). 
Due to the radial symmetry that the problem presents, it is redundant to determine 
what happens to the lateral displacement and the rotation in the perpendicular plane. 
In this way, the pile stiffness matrix presents the following structure: 

FH,L  Khh Khr 0 
 

uH,L  
MH 

FH,V  

= Khr Krr 0 

0 0 Kv 

θH 

uH,V  
(4.5) 

where Khh is the horizontal stiffness (lateral force on pile head owing to a unitary lateral 
displacement), Krr is the rocking stiffness (bending moment on pile head owing to a 
unitary rotation), Khr is the horizontal-rocking coupling stiffness (bending moment on 
pile head due to an unitary lateral displacement and lateral force on pile head owing 
to a unitary rotation), and Kv is the vertical stiffness (vertical force owing to a unitary 
vertical displacement). 

Once the system is defined, applying Buckingham’s theorem [58], the problem is 
dimensionless treated in order to reduce the number of variables. The dimensionless 
variables used to define the system under study are: 

Lr = 
 Lpile 

Dpile 

δ = 1 
2 Tpile 

Dpile 

(4.6a) 

 

(4.6b) 

νpile (4.6c) 
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while the dimensionless stiffnesses are: 

K̂ hh  = 
 Khh  

EL Dpile 

 

K̂ hr  = 
 Khr  
E D 

(4.7a) 

 

(4.7b) 
s pile 

K̂ r r  = 
 Krr  
E D (4.7c) 

s pile 

K̂ v  = 
  Kv  

EL Dpile 
(4.7d) 

To focus the study within a coherent scenario according to the possible systems, 
lower and upper limits are established for each of the dimensionless variables that define 
the problem. These limits are shown in Table 4.1. 

Table 4.1. Limits established for the dimensionless variables that define the problem. 
 

Variable Lower limit Upper limit 

Lr 0 100 

δ 0 1 

νp 0.15 0.35 

νs 0.15 0.5 

Er 10 5 · 104 

γs 0 1 

ns 0 1 

Note that the reliability of the surrogate model predictions is limited to those re- 
gions within the search space, decreasing closer to the boundaries. However, many 
scenarios are covered by this search space. The considered soil profile is a halfspace 
with a general power-law stiffness variability trough depth. The ns and γs param- 
eters allow reproducing different variations of the properties with depth, including 
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the homogeneous halfspace as a particular case. Regarding the pile geometry, from 
solid to thin-walled hollow piles are including, with very wide slenderness ratios. The 
Young’s modulus of the soil can range from 4.2 MPa, if a solid steel pile is assumed 
(Ep = 210 GPa), up to 2.7 GPa if the pile is made of concrete (Ep = 27 GPa). With 
respect to the Poisson’s ratio, in the case of the pile the search space includes the 
characteristic values of concrete (νp = 0.2) and steel (νp = 0.3), while for the soil it is 

extended to include saturated soils (νs ≈ 0.5). 

 

4.4.2 Methodology 

The ANN-based model capable of estimating the stiffness of the pile is built through a 
supervised learning process, that requires a dataset with example samples from which 
the neural network can learn. Owing to the difficulty of obtaining a sufficiently large 
volume of experimental data, a synthetic dataset is built from the numerical model 
detailed in Section 2.3.2. The numerical model used is formulated for layered soils. 
In order to reproduce a continuous variability of soil properties, the soil profile is 
discretized into enough layers of constant properties, achieving an equivalent global 
behaviour. For the generation of this dataset, the limits of the search space of the input 
variables must be defined. Next, using uniformly distributed random numbers, random 
samples are generated between the established limits, obtaining the input variables of 
the dataset. Finally, the continuum model, which is intended to be replaced by the 
neural network, is used to evaluate the dataset inputs and thus obtain the outputs. 

Since the problem to solve corresponds to a regression problem with unstructured 
data (there is no spatial or sequential structure), fully connected networks (represented 
in Figure 4.4) are used. The NoP that the network will present, as well as its capacity to 
fit the data, will closely depend on the NoHL and the NoNpHL. Different architectures 
will be analysed by modifying the NoHL and the NoNpHL. To reduce architecture 
variability, all hidden layers are assumed to have the same number of neurons. In 
addition, at the output of each hidden layer, a normalization of the layer is performed 
to speed up its training [59], and the ReLU is used as activation function. 

To reduce the differences in scale of the different input and output variables, they 
are normalized by subtracting the mean and dividing by the standard deviation. Next, 
the dataset is randomly divided for each ANN into two parts: a training dataset (80%) 
by which the error is minimized, and a validation dataset (20%) to stop the training 
and avoid overfitting. 

The training of the neural network is carried out using the automatic differentiation 
algorithm already implemented in Matlab [45], and setting the MSE (Equation (4.2)) 
of the outputs as the loss function. For updating the parameters, the adaptive moment 
estimation (Adam) [60] is used with an initial global learning rate of 0.01, a gradient 
decay factor of 0.9, a squared gradient decay factor of 0.999, and a batch size of 5 000. 
The error of the validation data is continuously evaluated, stopping the training when 
it stabilizes. Next, the neural network is retrained, reducing the global learning rate 
by half, repeating this process until the new network does not improve the results of 
the previous one. 
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Figure 4.4. Conceptual diagram of the fully connected neural network used for the 
surrogate model for pile stiffness. Input and output variables included are properly 
defined in Section 4.4.1 

 
Finally, once the training and evaluation of the ANNs have been carried out, it 

is proposed to combine the predictions of independent networks to build an ensemble 
model (see, for example, [61]). In this way, the output of the ensemble model would be 
defined as the mean of the predictions of the individual networks, so large local errors 
of some networks can be reduced by the agreement of others. In addition, a measure 
of prediction uncertainty can be obtained by evaluating the standard deviation of the 
individual ANNs outputs. 

 

4.4.3 Architecture selection 

To train the ANNs-based model, a dataset with 200 000 samples is generated (which 
will be divided into the training dataset and the validation dataset). In addition, for the 
required evaluation of the models, a test dataset of 150 000 samples is also generated. 
In a balance between computational cost and performance, a small study is performed 
to achieve sufficient predictive capacity in the resulting model while avoiding training 
an excessive number of oversized ANNs. To analyse the architecture relevance, 20 
different architectures are defined. The NoHL and the NoNpHL is randomly selected 
within the intervals from 2 to 5 and from 50 to 200, respectively. Table 4.2 shows the 
NoHL and the NoNpHL of the generated architectures. For each of the established 
architectures, 3 repetitions are performed in order to reduce the statistical fluctuations 
due to the stochastic processes associated with these models. 

Once the training of the 60 neural networks described has been completed, the aim 
is to compare their performance. To do this, the test dataset is evaluated, and the 
relative error in absolute value of the prediction related to the value of the continuum 
numerical model is obtained: 

|ε | (%) = 100 · 
1 i − i 

1
 

(4.8) 

ri Yi 
1 

The 50th, 90th, 95th, and 99th percentiles of error distributions are selected as measures 
of the performance of the neural network. Figure 4.5 shows the results for the different 
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Table 4.2. Definition of architectures used for the architecture selection of the surrogate 
model for pile stiffness. 

 

Id. NoHL NoNpHL NoP 

1 2 50 3 354 

2 2 65 5 334 

3 2 70 6 094 

4 2 80 7 764 

5 3 60 8 404 

6 4 50 8 654 

7 3 70 11 204 

8 2 110 13 974 

9 3 90 18 004 

10 3 100 22 004 

11 3 110 26 404 

12 5 80 27 684 

13 5 90 34 744 

14 2 180 35 464 

15 4 105 35 494 

16 2 195 41 344 

17 3 145 44 954 

18 3 170 61 204 

19 4 165 85 474 

20 5 145 87 874 

 
architectures used, where the different markers represent the value of the 50th, 90th, 
95th, and 99th percentiles obtained for the ANNs trained. As expected, the error 
in the predictions decrease while the number of parameters increases, stabilizing over 
40 000 parameters. Based on this trend, it is not necessary to increase the range of 
the architecture study. According to the results, the architecture with 3 hidden layers 
and 145 neurons per hidden layers is established for the pretended model, being their 
results surrounded by a dashed line in Figure 4.5. Also, to help the comparison, solid 
lines are used to mark the mean value among the three repetitions of each percentile 
of the selected architecture. 
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Figure 4.5. The 50th, 90th, 95th and 99th percentiles of the relative errors obtained 
by trained neural networks evaluated over test dataset. 

 

4.4.4 Ensemble model performance 

After defining the architecture of the neural network that will be used in the proposed 
model, 17 networks of the same topology are additionally trained to obtain a total of 
20 independent ANNs. In this way, the prediction of each of them can be combined to 
obtain an ensemble model that consists of the mean value of each individual network. 
To evaluate the performance of the different networks and the ensemble model, the 
test dataset is evaluated, and the relative error in absolute value of each measurement 
is obtained (Equation (4.8)). Figure 4.6 represents the complementary cumulative dis- 
tribution function of the error of the four stiffness terms of each one of the 20 networks 
individually evaluated and of the ensemble model built from them. It is observed that, 
from a statistical point of view, the ensemble model significantly improves the per- 
formance of individual networks. In a more detailed comparison, individual networks 
present an average error greater than 3.7% in the horizontal stiffness for only 1% of the 
samples, while the ensemble model presents an error greater than 2.4% for 1% of the 
samples. Similarly, this reference error is reduced from 4.6% to 2.3% for horizontal- 
rocking coupling stiffness, from 9% to 3.6% for the rocking stiffness and from 4.2% to 
2.5% for vertical stiffness. 

Figure 4.7 groups the complementary cumulative distribution function of the error 
of the ensemble model for the four stiffness estimated in order to be easily compared 
among them. It should be noted that the errors do not present a homogeneous dis- 
tribution among them, where horizontal stiffness and rocking stiffness stand out. The 
former presents higher relative errors for a large percentage of samples, while the devi- 
ations it presents are smaller than for the other stiffness terms for the worst predicted 
samples. On the other hand, for rocking stiffness, the opposite occurs. In any case, 
this fact does not affect the global performance of the model, since only a 10% error in 
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Figure 4.6. Complementary cumulative distribution function (CCDF) of the error in 
the predictions for the individuals ANNs and the ensemble model for pile stiffness 
prediction. 

 
the prediction is exceeded in the 0.3% of the rocking stiffness, the 0.13% of the cross 
stiffness and the vertical stiffness, and the 0.07% of the horizontal stiffness. It should 
be mentioned that there are some samples for which errors of up to 100% are obtained, 
although with a very low prevalence (less than 0.013% in the most frequent case). 
However, the difference in computation times justifies using this surrogate model: the 
average execution time of the continuous model is around 61.25 s, while in the ensem- 

ble model it is around 1.04 10−4 s, both executions performed parallelized in a 40-core 
(Intel® Xeon® Gold 6242R CPU @ 3.10GHz), 93 GB RAM computer. 

Other advantage of the ensemble model is that it provides a measure of prediction 
uncertainty through the standard deviation of the results given by each individual net. 
The relationship between the prediction dispersion and the error of the surrogate model 
is analysed in Figure 4.8. This figure shows a heatmap of the number of observations 
of the relative error, in absolute value, and the coefficient of variation ( CV ) obtained 
from the ensemble model. The coefficient of variation is defined as the absolute value 
of the standard deviation of the individual predictions of each ANN divided by their 
mean value. A significant relationship between the relative error and the coefficient 
of variation is observed. The diagonal dashed line marks the points where both met- 
rics coincide. Furthermore, those samples whose error is considerable larger than the 
model uncertainty (that is, points above the diagonal dashed line) correspond to small 
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Figure 4.7. Complementary cumulative distribution function (CCDF) of the error in 
the predictions for the ensemble model for pile stiffness prediction. 

 
relative errors, not compromising the reliability of the surrogate model. Note that the 
horizontal dotted line marks the limit of a relative error equal to 1%. 
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ficient of variation of the surrogate model. 
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4.4.5 Application examples 

To show the ability of the proposed surrogate model to reproduce the behaviour of 
single pile foundations in terms of its head stiffness, two application examples are 
presented. 
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Figure 4.9. Pile head stiffness for the lateral behaviour of a single pile depending on the 
pile-soil relative stiffness. Comparison of the ensemble model against fitted expressions. 

 
First, in Figure 4.9, the results of the ensemble model are compared with well- 

established fitted expressions [62–66] for the lateral, rocking and cross-coupled stiffness 
of a flexible pile embedded in homogeneous soils or soils with a linearly varying stiffness 
profile. These expressions, which define the head stiffness as a function of the pile–soil 
relative stiffness, can be consulted in the original works or in the recent review made 
by Mylonakis and Crispin [67]. In all this works, the soil with a linear variation of the 
Young’s modulus has zero stiffness at surface level (γs = 0, ns = 0.5). The results of 
the ensemble model are obtained assuming Lpile/Dpile = 50, δ = 1 (solid cross-section), 
νpile = 0.25, and νs = 0.5 (as in [66]). 

The comparison presented in Figure 4.9 shows a nice agreement between the results 
computed by the ensemble model and those obtained by the different fitted expressions. 
Furthermore, the surrogate model is capable to smoothly reproduce the influence of the 
pile–soil relative stiffness on the three stiffness terms without noise or discontinuities. 
Discrepancies between the ensemble model and formulas are higher for the lateral 
stiffness, while for the rocking term almost all approaches converge into the same 

Syngros (2004) Gazetas (1991) Budhu & Davies (1988) Randolph (1981) Ensemble model 

Non-homogeneous soil 

K
h

h
=

E
L
 

s
 
D

 
K

h
h
=

E
s 

D
p

il
e

 
p

ile
 

K
h

r
=

E
L
 D

2
 

s 
p

ile
 

K
rr

=
E

s
 D

3
 

s 
p

ile
 



4 SURROGATE MODELS BASED ON ARTIFICIAL NEURAL NETWORKS 

Instituto Universitario SIANI 65 

 

 

 
values. The same level of good agreement is found both for the homogeneous and 
non-homogeneous profiles. 

For the second application example, the dimensional problem of computing the 
pile head stiffness of a large-sized hollow monopile is handled. These foundations are 
typically used as the supporting structures for offshore wind turbines. The influence of 
both the pile length and soil profile on the four pile stiffness terms is analysed. For that 
purpose, three variable-with-depth soils (ns = 0.2, 0.5 and 0.8) and one homogeneous 
soil (ns = 0) are considered. All profiles present the same average stiffness over their 
first 30 m, Es,30 = 30 MPa, and a constant Poisson ratio νs = 0.49 (equivalent to a 
saturated soil). For the non-homogeneous media, a zero stiffness at surface level is 
assumed (γs = 0). The evolution with depth of the Young’s modulus with respect 
to the average value is presented for the studied profiles in the right graphic area of 
Figure 4.10. The pile geometry is defined by the dimensional properties: Dpile = 5 m, 
Tpile = 57 mm (following API’s recommendation [27]), Lpile = 5–40 m. Steel material 
properties are assumed for the pile: Epile = 210 GPa, νpile = 0.25. 
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Figure 4.10. Influence of pile length on the head stiffness for large diameter monopiles 
embedded in several soil profiles with the same average stiffness. Results comparing 
the ensemble model and the continuum model. 

Figure 4.10 presents the four pile head stiffness terms as functions of the pile length. 
The results of the ensemble model for each soil profile are shown by different line 
colours, while crosses are used to represent the reference values obtained with the 
numerical model. A great agreement is observed between the predictions made by the 
ensemble model and the numerical model, even in this example where a significantly 
flexible pile (close to the lower limit presented in Table 4.1) is considered. As in the 
previous example, the pile stiffness computed by the surrogate model present a smooth 
behaviour with the variation of the pile length. The convergence into a fixed stiffness 
when the pile active length is reached is clearly seen for the terms related to the lateral 
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behaviour (lateral, rocking and cross-swaying stiffness). Furthermore, the results show 
that the active length increases as the soil profile becomes softer near the free-surface, 
that is, ns increases. This trend qualitative agrees with the expressions presented in [68]. 
The expected relation between pile stiffness and length is obtained: as the pile grows 
longer, it reaches stiffer soils which leads to an increment of the foundation stiffness. 
However, as the impact of deeper soil layers is not the same for all terms [69, 70], 
different behaviours are obtained. The horizontal stiffness, which is mainly influenced 
by the superficial soil properties, presents its maximum value for the homogeneous 
medium, and reduces its values as the soil becomes softer. The same trend is observed 
in the rocking and horizontal-rocking coupling terms for short piles. However, when 
the pile is long enough, the additional resistance of the deeper layers against the pile 
deflection reduce the difference of the rocking and coupled stiffness with respect to the 
homogeneous profile. The value of the active length for the rocking problem is larger 
than the one corresponding to the lateral problem. The extreme scenario is found for 
the vertical stiffness, which is affected by soil properties along the whole pile. Thus, the 
vertical stiffness constantly increases with the pile length. The ratio of this increment 
is proportional to the ratio of the increment of the soil Young’s modulus with depth. 

 

4.5 Surrogate model for dynamic characterization of off‐ 

shore wind turbine on jacket structure 

The aim of this section is to build an ANN-based surrogate model which can predict 
the fundamental frequency of an OWT supported by a jacket structure with a pile 
foundation, considering the soil-structure interaction (SSI). This initial approach would 
allow to significantly reduce the computational cost of the dynamic characterization of 
the structure. 

 

4.5.1 Problem statement 

The dynamic system under study is a jacket-supported OWT, described in Chapter 2, 
which can be divided into three parts: wind turbine, jacket substructure (including the 
pile foundation), and the site conditions. Each one of them presents a wide number of 
properties necessary for a complete definition; however, not all these properties have 
the same relevance for calculating the fundamental frequency of the system. The main 
variables taken into account for this surrogate model are detailed below. 

 
4.5.1.1 Wind turbine 

From a structural point of view, the wind turbine is made up of the rotor-nacelle- 
assembly, which adds inertia to the system; and the tower, which provides stiffness. 
This last element can be sufficiently defined by a reduced number of variables. Assum- 
ing it as a tubular element with a linearly variable section, its geometry can be defined 
with bottom diameter (Dbottom), bottom thickness (Tbottom), top diameter (Dtop), top 
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thickness (Ttop), and height (Htower). The tower is assumed to be made of steel, so the 
following material properties are considered: density of 7 850 kg/m3, Young’s modulus 
of 210 GPa, Poisson’s ratio of 0.3, and hysteretic damping coefficient of 0.5%. 

On the other hand, rigorously describing the rotor-nacelle assembly (RNA) requires 
numerous parameters. This is because the variable geometry of the blades makes it 
necessary to indicate the dimensions of the section along the length (see, for example, 
[5]). In this case, RNA is described only from its inertial properties, since it is assumed 
that this simplification does not considerably affect the fundamental frequency of the 
system. Thus, the variables used are: mass (MRNA), inertia about roll axis (IRNA,roll), 
and inertia about yaw axis (IRNA,yaw). Inertia about pitch axis is considered to be equal 
to inertia about yaw axis. In addition, a punctual hysteretic damping in the rotor of 6% 
in fore-aft direction and 0.75% in side-side direction is considered, following intervals 
proposed by Chen et al. [43]. 

 
4.5.1.2 Jacket substructure 

The hyperparameters used for this surrogate model that define the topology of the 
jacket are: jacket height (Hjck), number of legs (nleg), base leg spacing (Sbase), top leg 
spacing (Stop), and the number of bracing levels (nbr). For the jacket platform, it is 
assumed to be a 20 cm thick solid plate that covers the entire area above the upper 
end of the legs. 

In the case of the pile foundation, all the piles are considered equals to each other 
and in a vertical position. In this way, they are defined by to the diameter and thickness 
of the hollow circular section and the embedded length (Lpile). 

As an initial approach of the problem and to reduce the size of the search space, 
only two types of circular sections are considered for the structural elements: one for 
the jacket’s legs and the piles (Dleg,Tleg); and another for the elements of the different 
brace levels (Dbr,Tbr). All elements of the jacket structure and the foundation are 
assumed to be made of steel. The same material properties listed for the turbine tower 
are considered. 

 
4.5.1.3 Site conditions 

The soil is assumed to be a homogeneous, isotropic, linear, and viscoelastic domain. 
The properties that characterize the soil media are: shear wave propagation velocity 
(cs), Poisson’s ratio (νs), density (ρs), and hysteretic damping coefficient of 2.5%. 

In the case of seawater, to define which elements are affected by inertial effects, 
the depth from the free surface (Hw) is established. It is assumed that the density of 
the medium is 1 024.7 kg/m3 and that the presence of the water increases the damping 
of the steel elements up to 1.5%. Since it is considered that it will not have great 
relevance in the calculus of the fundamental frequency of the system, more complete 
(and expensive) models that rigorously incorporate the water-structure interaction, as 
well as the second-order phenomena of incidence of waves and ocean currents, are not 
implemented. 
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4.5.2 Ranges of variables established for analysis 

 
Table 4.3. Search space for wind turbine, site, and jacket structure variables. 
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Sbase Equation (4.11) | αleg ∼ U(60°, 90°) 

nbr Equation (4.12) | αbr = 70° Equation (4.12) | αbr = 30° 

Dleg 0.5 m 3.5 m 

Tleg Dleg/64 min{Dleg/16, 0.1} 

Dbr Dleg/5 Dleg 

Tbr Dbr/64 min{Dbr/16, 0.1} 

Lpile 5 m 40 m 
 

 
In order to generate a dataset that allows to achieve the objective of this work, 

limits are established in the exploration of the described variables to avoid wasting 
computational capacity exploring regions in the search space that are not relevant 
from a technical point of view. These limits, summarized in Table 4.3, have been set 
based on analysing cases present in the bibliography. 

For the variables that characterize the wind turbine, the limits are defined from 
the properties of four examples of 5, 8, 10, and 15 MW described in the bibliography 

Variable Lower limit Upper limit 

Htower 80 m 145 m 

Dbottom Htower/16 Htower/13 

Tbottom Dbottom/250 Dbottom/200 

Dtop Dbottom/1.65 Dbottom/1.45 

Ttop Dtop/290 Dtop/190 

MRNA 35 H2 60 H2 
tower 

IRNA,roll 0.12 H2 MRNA 0.152 H2 MRNA 
tower 

IRNA,yaw 0.6 IRNA,roll 0.75 IRNA,roll 

cs 60 m/s 600 m/s 

νs Equation (4.9a) Equation (4.9b) 

ρs Equation (4.10a) Equation (4.10b) 

Hw 25 m 60 m 

Hjck 1.1 Hw 1.6 Hw 

nleg 3 5 

Stop Dbottom 2.5 Dbottom 
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tan α 

 
[5, 71–73]. Manually, a set of relationships that reduce the variability are identified, 
and a lower and upper limit are established for them. The height of the tower is 
taken as the starting variable, using a uniform distribution between 80 m and 145 m 
for its generation. For the diameter of the tower base, a uniform distribution is used 
that goes from Htower/16 to Htower/13. The same procedure is used for the different 
variables of the wind turbine, according to the limits specified in Table 4.3, depending 
on the variables previously defined. 

To describe the soil, a value of the shear wave propagation velocity (cs) between 
60 m/s and 600 m/s is randomly established, excluding the extreme cases: soft soils, 
where a structure could not be founded, and hard soils, where the SSI phenomena 
lose relevance. Establishing the limits for the Poisson’s ratio and the density of the 
soil arises from the assumption of the extreme cases of the cs. It is considered that 
in soft soil the Poisson’s ratio can vary between 0.4-0.499 and the density between 
1 600–2 000 kg/m3; while in a hard soil, these intervals move to 0.25–0.35 and 2 000– 
2 500 kg/m3, respectively. Thus, the limits for different values of cs are taken from a 
linear interpolation: 

νs lower limit = 0.4 + (0.25 − 0.4) 
 cs − 60 

 
 

(4.9a) 
600 − 60 

νs upper limit = 0.499 + (0.35 − 0.499) 
 cs − 60 

 (4.9b) 
600 − 60 

 cs − 60  3 

ρs,lower limit = 1600 + (2000 − 1600) 
600 − 60 

(
kg/m 

) 
(4.10a) 

 cs − 60  3 

ρs,upper limit = 2000 + (2500 − 2000) 
600 − 60 

(
kg/m 

) 
(4.10b) 

The limits of water height are 25 m and 60 m. Once these limits are established, 
the variables are generated using uniform distributions. 

Jacket variables definition is carried out after analysing some structures present in 
the bibliography [36, 37, 74]. Following a process similar to that used for the wind tur- 
bine, some variables are generated from a uniform distribution between two previously 
defined limits (number of legs, leg diameter, and pile length), while, for the rest of 
the variables, these limits are specified from other variables already obtained (jacket 
height, top leg spacing, leg thickness, bracing diameter, and bracing thickness). Two 
variables follow a different process. First, for the spacing of the legs at the base (Sbase), 
the angle of the jacket legs with respect to the sea bottom (αleg) is defined between 
60° and 90°, and the value of the variable is calculated as: 

Sbase = Stop + 
2 Hjck sin(π/nleg) 

( leg) 

 

(4.11) 

On the other hand, to determine the number of bracing levels, lower and upper limits 
are established based on the geometry of the jacket and assuming for them an angle 

, 

, 
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(αbr) between 70°(lower limit) and 30°(upper limit). The number of bracing levels that 
check these criteria is calculated as: 

 

Sbase 

 

Hjck 

tan(αbr) 

 

if Sbase = Stop 

nbr =  
 

 

 

 
log 1 −  

log
(
Stop/Sbase

)
 

 

2 tan(αbr) 

 

 if Sbase > Stop 

 
 

 

 2 Hjck 
2
 

Sbase −Stop 

1 
+ 

sin2 
(
π/n 

− 1 + tan(αbr)  

(4.12) 

All this is summarized in Table 4.3. 
Variables are assigned a random value within the limits defined above because the 

homogeneous discretization of a 22-dimensional space requires a completely unafford- 
able amount of data. For illustration, if the space is discretized with a homogeneous 
mesh with only two nodes per dimension (which obviously does not reproduce the vari- 
ability throughout it), more than four million samples would be needed. There are 
more complex sampling methods that can allow exploring the search space in a more 
effective way (see, for example, [53]), however, in this case, the use of uniform prob- 
ability distributions between two established limits simplifies the procedure without 
compromising the accuracy of the obtained results (see Section 4.5.4). 

 

4.5.3 Methodology 

The intended ANN model must be able to capture the influence that each of the 
variables established for this analysis has on the dynamic characterization of the system, 
acting as a regression model. Therefore, the ANN should present 22 inputs (according 
to the variables specified in Subsection 4.5.2) and one output (the system fundamental 
frequency). 

Because the data is not structured (spatial or sequential structure), fully connected 
networks are used. Architectures that have a visible input layer with 22 neurons, a 
visible output layer with 1 neuron, and a variable number of hidden layers with different 
numbers of neurons are considered (see Figure 4.11). The neurons in the hidden layers 
present the ReLU activation function. 

To train the ANN, a synthetic dataset is built, generating random points within 
the limits established in Subsection 4.5.2 and using the structural model (Chapter 2) 
to calculate the fundamental frequency (Section 2.3.5). To homogenize the values of 
the different variables, a normalization of each of the input and output variables is 
performed by subtracting the mean and dividing by the standard deviation. 

The obtained dataset is randomly divided into three groups: training set (70%), a 
dataset used to train the neural network, minimizing its error; validation set (15%), 
a dataset used to determine when the training process should be stopped, avoiding 

( 

leg 

) 
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Figure 4.11. Representation of an ANN with 22 neurons in the input layer, 10 neurons 
in each of the two hidden layers, and 1 neuron in the output layer. 

 
overfitting; and test set (15%), a dataset not used in any stage of training that helps 
to evaluate ANN prediction capacity. 

The training of the network is carried out by automatic differentiation algorithm 
already implemented in Matlab [45], using the MSE (Equation (4.2)) of the funda- 
mental frequency predictions as cost function. Parameter optimization is based on 
the adaptive moment estimation algorithm (Adam) [60] with a global learning rate of 
0.01, a gradient decay factor of 0.95, and a batch size of 100. The validation data 
error is repeatedly evaluated to stop training when a trend to increase starts, avoiding 
overfitting. 

 

4.5.4 Architecture selection 

The performance of an ANN-based surrogate model depends on the number of ANN’s 
internal parameters (related to the number of hidden neurons and how they are con- 
nected) and the size of the dataset used for its training. Therefore, a small study from 
these two perspectives is proposed to ensure that the case study is accurate enough to 
be able to works as a surrogate model. To modify the NoP of the ANN, the NoHL is 
modified from 1 to 4 and the NoNpHL by 10, 25, 50, 75, 100, 125 and 150. However, 
to reduce the analysis, only the cases that all hidden layers have the same number of 
neurons are considered. In addition, the size of the dataset available to be used in 
the training process described in Section 4.5.3 is modified, subdividing the complete 
dataset into sets of 1 000, 5 000, 15 000, 30 000, 50 000, 75 000, and 100 000 samples. In 
this way, each of the 196 combinations of these assumptions are analysed. 

To evaluate the performance of the proposed ANNs, the relative error in absolute 
value (Equation (4.8)) of each of the predictions made by the network is calculated for 
the train, validation, and test sets. Using as an example the specific configuration of 
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the neural network with 4 hidden layers with 125 neurons each, trained with 100000 
data; Figure 4.12 shows the Cumulative Distribution Function (CDF) of these errors 
over each one of the subsets. To better compare the error distributions, the 50th, 
90th, 95th and 99th percentiles are marked in each of them. The error distributions 
obtained for the three data subsets show similar prediction errors for all of them, being 
slightly lower in the case of the training set, which is logical since it is the error in 
which the network has focused on minimizing. In all three cases the high precision of 
the predictions stands out, obtaining errors of less than 5% for more than 99% of the 
predictions made (marked by dashed green line). 
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Figure 4.12. ANN’s error cumulative distribution function for training, validation, and 
test data. One selected network with 4 hidden layers and 125 neurons per hidden layer, 
trained with a 100 000 dataset. 

 
However, the training of the ANNs described are subject to stochastic processes 

such as the random initialization of the ANN’s parameters and the division of the 
dataset. For this reason, a statistical approach to the study is carried out, executing 
20 repetitions and obtaining the means of the results to be analysed. Focusing on the 
errors on the test set, which represents the network’s ability to generalize its learning, 
Figure 4.13 shows the 50th, 90th, 95th, and 99th percentiles for each of the 20 net- 
works trained. The markers indicate the specific values of the percentiles for each of 
the networks obtained, while the dashed line marks the mean. Despite the expected 
variability due to random processes, a certain trend is observed that allows us to use 
the average values of the percentiles as indicators of the performance that would be 
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expected from a network trained under these considerations. Thus, if a new network 
were trained, the most probable situation would be that the 50%, 90%, 95%, and 99% 
of the predictions have an absolute relative error smaller than 0.4%, 1.3%, 1.9%, and 
5.1%, respectively. 
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Figure 4.13. Error percentiles of different ANN with 4 hidden layers and 125 neurons 
per hidden layer, trained with a 100 000 samples. 

 
Figure 4.14 shows the average 50th, 90th, 95th, and 99th percentiles of the rest of 

the configurations raised for this study against the NoP of each of the proposed archi- 
tectures. As in any regression model, it can be seen that in general the error decreases 
as the NoP and the size of the dataset used for training increase. However, the error 
begins to stabilize with respect to both variables. The difference between the average 
percentiles is considerably reduced when the data volume 100 000 against 75 000. On 
the other hand, from about 104 parameters, the performance of the ANNs obtained 
shows some stabilization, presenting a variability more characteristic of random process 
noise than a defined trend. Among all the results, the one that has obtained the best 
results is the one previously used as an example, which has 4 hidden layers with 125 
neurons each and has been trained with 100 000 data. 

The computational cost of training the different neural networks must also be taken 
into account. It should be noted that the execution was carried out by parallelizing 20 

process lines in a 40-core (Intel® Xeon® Gold 6242R CPU @ 3.10GHz), 93 GB RAM 
computer. The average training time of each architecture used is shown in Figure 4.15. 
There is an evident dependence of the time required against the number of ANN’s 
parameters and the size of the dataset, observing convergence with respect to this last 
variable. However, there is no stabilization against the number of ANN’s parameters, 
with an almost linear growth trend appearing from 103 parameters. This investment 
in ANN training can be clearly rewarded by exploiting the surrogate model on a large 
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Figure 4.14. Mean of the error percentiles of the different configurations against the 
number of parameters, differentiating by the dataset size. 

 
scale, since the average execution time for an input drops from 51 s in the structural 
model used to 2.4·10−7 s by the neural network. 
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Figure 4.15. Training duration of the different configurations against the number of 
parameters, differentiating by the dataset size. 

 

4.5.5 Ensemble model performance 

An ensemble model is build and compared against individual networks using the 20 
networks trained for the selected case with 4 hidden layers with 125 neurons each, 
trained with the 100 000-samples dataset. For this test, a new dataset of 10 000 samples 
is generated because the ANNs have been trained with different subsets of the initial 
dataset, and it is intended to evaluate the real ability to generalize the knowledge 
learned to new data never seen before. Figure 4.16 shows the 50th, 90th, 95th, and 99th 
percentiles for each of the 20 networks trained and the ensemble model. The asterisks 
indicate the specific values of the percentiles for each of the networks obtained, the 
dashed line marks its mean and the squares and solid line the results of the ensemble 
model. An evident reduction of the error percentiles is observed for the ensemble 
model, achieving an error less than 0.15%, 0.58%, 1.02%, and 3.36% for the 50%, 90%, 
95%, and 99% of the samples, respectively. 
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Figure 4.16. Comparison of error percentiles between individual ANNs and ensemble 
model (EM). 

 

4.5.6 Application example 

In order to verify the predictive capabilities of the proposed ANN surrogate model, a 
brief parametric study is conducted. Three different cases of wind turbines supported 
on jackets are adapted from the bibliography, calculating the fundamental frequency 
of the system using the structural model and the surrogate model. The parametric 
study, described in Table 4.4, analyse how the natural frequency of the structure varies 
against a change in the soil’s shear wave propagation velocity. To do this, a density 
of 2 000 kg/m3 and a Poisson’s ratio of 0.4 are set constant for the soil, and the shear 
wave propagation velocity is ranged from 60 to 600 m/s. 

For this test, only the group of networks selected in Section 4.5.4 is used because 
it is the one that achieved the best results. It is the set that has: NoHL = 4 and 
NoNpHL = 125, and it was trained with 100 000 data. In addition, the ensemble model 
composed by 20 trained networks is used to better reproduce the structural response 
and establish a confidence interval. 

Figure 4.17 shows the results of the fundamental frequency evaluated by both mod- 
els. In the graphs above, the dashed black line represents the frequency calculated by 
the structural model, the solid blue line shows the mean prediction of the ensemble 
model, and the dashed blue lines mark the confidence interval for these set by twice 
the standard deviation. This interval is taken since, assuming a normal distribution, 
95.44% of the predictions generated by neural networks trained under these assump- 
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Table 4.4. Parametric study cases of OWTs supported on jackets adapted from bibli- 
ography. 

 

 5MW-Couceiro 
et al. [37] 

5MW-Vorpahl 
et al. [74] 

10MW-Stolpe 
et al. [36] 

Htower (m) 90 90 119 

Dbottom (m) 6 6 8.3 

Tbottom (mm) 27 27 38 

Dtop (m) 3.87 3.87 5.5 

Ttop (mm) 19 19 20 

MRNA (kg)  350·103 350·103 869·103 

IRNA,roll (kg m2)  354·105 354·105 156·106 

IRNA,yaw (kg m2) 230·105 230·105 974·105 

cs (m/s)  60–600  60–600  60–600 

νs (-) 0.4 0.4 0.4 

ρs (kg/m3) 2 000 2 000 2 000 

Hw (m) 50 50 50 

Hjck (m) 70.15 70.15 76 

nleg (-) 4 4 4 

Stop (m) 9.153 8 16 

Sbase (m) 13.862 12 33 

nbr (-) 4 4 4 
 

Dleg (m) 0.614 1.2 1.52 

Tleg (mm) 17.1 38.8 42 

Dbr (m) 0.5 0.8 0.76 

Tbr (mm) 11.7 20 20.5 

Lpile (m) 10 10 6 

 

tions will be found within it. On the other hand, the graphs below show the relative 
error in absolute value (Equation 4.8) of the mean of the predictions (solid line) and 
the limits of the confidence interval (dashed line). 

From a structural point of view, in the three cases analysed the natural frequency 
of the structure decreases as the soil becomes softer, which was expected. On the 
other hand, predictions made by the ensemble model show accurate predictions, since 
the midline error is considerably low with some peaks that do not reach 2.5%, al- 
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lowing to obtain very similar results than structural model in a much shorter time: 

1.6 s/evaluation for structural model against 8.8 10−5 s/evaluation for ensemble model. 
All the frequency values calculated with the structural model are within the confi- 

dence interval established by the ensemble model, allowing it to be used as a measure 
of uncertainty. What’s more, the width of this confidence interval is not homogeneous 
in the three cases, being narrower in 10MW-Stolpe et al. study case. This is because 
the quality of the network predictions are dependent on the position of the study case 
within the search space that was treated in the training. 
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Figure 4.17. Fundamental frequency ( fn) of the three cases described in Table 4.4 with 
respect to soil’s shear wave velocity (cs). Comparison between the structural model 
and the ANN-based surrogate model. 

 

 

4.6 Conclusions 

In this chapter, ANNs are described, and two ANN-based surrogate models for struc- 
tural problems are presented. In Section 4.4, a surrogate model which allow repro- 
ducing the pile foundation stiffness is presented. The ensemble model reaches a high 
performance, obtaining relative errors less than 10% for 99.7%, 99.87%, and 99.93% of 
the validation samples for the rocking stiffness, cross and vertical stiffness, and lateral 
stiffness terms, respectively. This performance is achieved with a significant reduction 
in the computational cost, allowing the evaluation of a thousand samples in less than 
one second. 

Two application examples are included to illustrate the performance of the surrogate 
model with specific cases. First, the output of the model is compared with limited- 
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range expressions present in the bibliography, showing a great agreement with them. In 
the second example, the evolution of the pile stiffness as its length increases is studied, 
while comparing the results of the surrogate model and the continuous model. A great 
agreement is shown between both models. The stabilization of the pile stiffness derived 
of reaching the active length is adequately reproduced by the surrogate model, allowing 
to determine this critical aspect of the foundation. In both examples, the surrogate 
model presents a smooth behaviour, which makes it a useful tool to propose previous 
parametric studies or perform fast estimations in first stages of studies that require the 
evaluation of a large volume of samples. 

In Section 4.5, a surrogate model for obtaining the fundamental frequency of an 
offshore wind turbine supported on a jacket structure, including SSI, is developed. The 
results obtained on the performance of neural networks reflect that, in this problem, 
a wide range of architectures and available dataset sizes reach an error of less than 
5% for 90% of their predictions. In some cases, performance is considerably improved, 
reaching errors of less than 2% for 90% of samples. Moreover, the combined use of 
individual neural networks in an ensemble model further improves the prediction and 
allows incorporating its uncertainty through their mean and standard deviation values. 
To test the regression capacity of the model, a small parametric study is carried out. 
High performance of the surrogate model is observed, showing the potential uses that 
this methodology can develop. 

From the analysis of both developed models, some relevant aspects to focus when 
implementing these ANN-based models are extracted: 

• The definition of the dataset is a fundamental task for the training process. 
Regions with higher density of training samples tend to show better performance. 
Whether a synthetic dataset is generated, the defined search space must contain 
the relevant cases of the problem. 

• Several architectures must be tested and compared to identify efficient design. 
In addition, some repetitions of the architecture should be evaluated in order to 
mitigate randomness in the process. 

• The ensemble model offer two advantages against individual ANNs: first, it im- 
proves the results and, secondly, it allows to obtain a measure of the uncertainty. 

This work confirmed the capability of ANNs-based surrogate models for predicting 
structural problems. In fact, both developed models have achieved good levels of ac- 
curacy for most of the test samples, showing errors less than 5%, usually considered 
in engineering. Furthermore, despite the computational cost of network training, the 
reduction in the execution time make this type of surrogate model relevant for replace- 
ment of high-resources-consumption models when many executions are required, such 
as in optimization procedures or extensive parametric studies. 
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5.1 Introduction 

The design of the support structures of OWTs is a process with high consumption 
of computational resources, because it requires a structural analysis where many load 
cases are evaluated and many checks must be verified [34]. In case that a jacket is used 
as the support structure, the computational cost considerably increases due to the large 
number of structural elements that constitute the system. As commented in Chapter 
3, many authors have developed optimization procedures capable of achieving jacket 
support structures that reduce the amount of material needed to verify the requirements 
(see, for example, [34–38]). However, the structural models used still were high time- 
consuming, so they are not extensively used in parametric studies that would allow a 
better understanding of the behaviour of the structure and the relationships between 
the design variables. In this line, the few parametric studies that focused on jacket 
support structures for OWT usually dealt with very specific problems by analysing a 
few variables (see, for example, [75–77]). 

For this reason, different authors use low time-consuming surrogate models or meta- 
models, generated from other more rigorous ones, which are capable of providing suf- 
ficiently accurate results. For example, Zwick et al. [78] and Häfele et al. [79] used a 
multivariate linear statistical model and a Gaussian process regression, respectively, 
for estimating the fatigue damage to jacket structures. Within the structural engi- 
neering field, other techniques have been used to build surrogate models, as can be 
Kriging models [47–49] or ANNs [49, 50, 80]. This trend extends to other areas of civil 
engineering, where soft computing techniques have been used to approximate complex 
problems. In recent years, the use of Machine Learning techniques (including Deep 
Learning) have increased their presence in the field [46, 81, 82]. 

In this chapter, ANN-based surrogate models for estimating the feasibility of a 
jacket structure acting as the support structure for any given wind turbine in a specific 
emplacement is developed. A synthetic dataset is generated to train the ANNs, and 
different strategies to build the surrogate models are tested. First, the problem defini- 
tion is established in Section 5.2. Then, the generation of the synthetic dataset used 
to train the ANNs is detailed in Section 5.3. Section 5.4 and Section 5.5 describe all 
the characteristics and show the performance results of the classification and regres- 
sion models, respectively. Finally, classification and regression models are compared 
in Section 5.6, followed by the main conclusions in Section 5.7. 

 

5.2 Problem statement 

The structural system considered for this surrogate model is an OWT supported by a 
jacket structure, as presented in Chapter 2. Completely define this structural system 
is a very extensive task, so some acceptable simplifications are considered to reduce 
the large number of necessary variables. This complex system can be conceptually 
divided in three independent parts to be more comprehensible: the wind turbine, the 
characteristics of the emplacement, and the jacket substructure. For all these elements, 
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the main variables that define the system properties, the loads affecting the structure, 
and the capacity resistance must be considered. 

This surrogate model aims to replace the structural evaluation model. Therefore, 
feasibility under the technical verifications imposed on the structure are considered as 
the structural response metric. 

 

5.2.1 Wind turbine 

The wind turbine is composed by the rotor-nacelle-assembly, which groups the energy 
production subsystem; and the tower, which is the structural element that supports 
it. In this model, the rotor-nacelle-assembly is defined by the rotor diameter (Drotor), 
the mass , and the moment of inertia about roll axis and yaw axis 
IRNA,yaw . Inertia about pitch axis is considered to be equal to inertia about yaw 
axis. A punctual hysteretic damping in the rotor is considered in order to represent 
aeroelastic damping. Values of 6% in fore-aft direction and 0.75% in side-side direction 
are considered, following intervals proposed by Chen et al [43]. 

The tower is assumed as a tubular element of length (Htower) with a linearly variable 
section defined by the bottom diameter (Dbottom), the bottom thickness (Tbottom), the 
top diameter Dtop , and the top thickness Ttop . Steel properties are considered to the 
wind turbine’s tower: density of 7 850 kg/m3, Young’s modulus of 210 GPa, Poisson’s 
ratio of 0.3, and hysteretic damping coefficient of 0.5%. 

Some operating parameters of the wind turbine are also required to evaluate the 
effects of the wind loads on the structure: the rated wind speed (UR), the minimum 

rotor speed 
( 

fr,min

)
, and the maximum rotor speed ( fr,max). 

 

5.2.2 Site conditions 

The site conditions that affect the structure considered in the model are the wind, the 
sea, and the soil. The wind conditions are established by the mean velocity of the wind 
at 10 m above sea surface (um,10) and the shape parameter of the Weibull distribution 
of wind (kwind). 

Sea influence is characterized by the water depth (Hw), the circulational current 
assumed in the same direction as wind, and the waves states: 1-y extreme sea 

state , 50-y extreme sea state , 1-y extreme wave height , 
and 50-y extreme wave height HEWH,50 . An increment of one percentage point on 
the hysteretic damping of submerged structural elements is set. 

Finally, soil is considered as a homogeneous halfspace defined by the shear wave 
propagation velocity (cs), the Poisson’s ratio (νs), the density (ρs), the angle of internal 
friction (φs), and a hysteretic damping ratio of 2.5%. 

 

5.2.3 Jacket substructure 

Following the global description of the jacket structure presented in Chapter 2, some 
hyperparameters are necessary to define the shape of the structure. These variables are 
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the number of legs , the number of bracing levels   , the jacket height , 
and the spacing of the legs at the base (Sbase) and at the top Stop of the structure. 

The structural elements and the pile foundations are considered as tubular steel 
members, with the same properties as the wind turbine tower. In this case, elastic 
strength of the material fy is also taking into account because affects the element 
capacity. For this surrogate model, different section typologies are allowed in the 
structure. Diameter Dleg and thickness Tleg of the legs during each bracing level, 
and diameter (Dbri ) and thickness (Tbri ) of each bracing level are considered. All piles 
present the same geometry, and are defined by their diameter , thickness , 
and length Lpile . The mass of the jacket platform Mpltf is also included to extend 
the capabilities of the surrogate model. 

 

5.2.4 Structural feasibility 

The structural feasibility of the jacket structure is summarized by the utilization factors 
(η j) described in Section 2.4, which allow a clear comparison of different checks. If this 
factor is less or equal than 1, the requirement is fulfilled. 

To obtain a deeper knowledge of the feasibility, several utilization factors of partial 
checks are collected: non-resonance check (Section 2.4.4), foundation capacity (Section 
2.4.2.3), maximum platform rotation (Section 2.4.3), pile head section capacity (Section 
2.4.2.1), section capacity and buckling (combined) of each level of legs and braces 
(Sections 2.4.2.1 and 2.4.2.2), global buckling analysis (Section 2.4.2.2), welded joints 
geometry (Section 2.4.1.2), minimum jacket height (Section 2.4.1.1), minimum pile 
thickness (Section 2.4.1.3), and minimum pile length (Section 2.4.1.4). Also, a global 
utilization factor (η) of the structure is established as the maximum partial utilization 
factor. 

η = max(η1, η2, ..., ηNcheck ) (5.1) 

 

5.3 Synthetic dataset 

A synthetic dataset to train the surrogate model is obtained. This dataset is consti- 
tuted by random-generated samples, where the wind turbine, the jacket foundation, 
and the site conditions are defined, and the partial utilization factors of the technical 
verifications imposed are computed by the structural model presented in Chapter 2. 
For most of the variables, lower and upper limits are not established for the sample 
generation. Instead, some relationships are identified to capture main dependencies 
among variables. Then, lower and upper limits are set for these relationships, and the 
random samples are defined by uniform distributions. This procedure allow generating 
more realistic samples, which increment the relevance of each sample of the dataset. 
This results in a more efficient dataset that an unrestricted one. The generation of 
each part of the dataset is described in the following subsections. 
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Two different datasets are generated: one for training the models with 300 000 

samples, and another for testing the models with 50 000 samples. In both cases, the 
same procedure is followed. 

 

5.3.1 Wind turbine 

The search space for wind turbine variables is defined after analysing four examples 
of 5, 8, 10, and 15 MW described in the literature [5, 71–73]. Table 5.1 collects the 
lower and upper limits of the search space of the wind turbine variables. More complex 

Table 5.1. Search space of the wind turbine variables. 
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fr,min Equation (5.2) | λ fr,min ∼ U(30, 38) 

fr,max Equation (5.3) | λ fr,max ∼ U(0.1, 0.2) 

expressions inspired in blade tip velocity and acceleration are used to obtain the rotor 
frequency ranges. In these cases, latent variables λ f , λ f  are obtained by uniform 
distributions, and then, the actual variables are evaluated. Minimum rotor speed is 
defined by the following expression: 

 

fr min =

 
λ fr,min 

 

(5.2) 

While, maximum rotor speed is obtained as follows: 

 

fr,max 

λ fr,max Drotor + 60 
= 

π Drotor 

 

(5.3) 

Expression Lower limit Upper limit 

Htower 70 150 

Drotor/Htower 1.3 1.9 

MRNA/D2 15 25 

IRNA,roll/MRNA D
2
 0.05 0.15 

IRNA,yaw/IRNA,roll 0.55 0.8 

H1.2  /Dbottom 

Dbottom/Tbottom 

34 

200 

40 

260 

Dbottom/Dtop 1.45 1.65 

Dtop/Ttop 190 290 

UR 10 14 
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5.3.2 Site conditions 

Site conditions can be segregated into wind conditions, sea states, and soil properties. 
All ranges considered are summarized in Table 5.2. Wind conditions are established 

 

Table 5.2. Search space of the site conditions variables. 
 

Expression Lower limit Upper limit 

um,10 5 15 

kwind 1 3 

λwave 0.1 4.5 

kwave Equation (5.4a) Equation (5.4b) 

HESS,1 Equation (5.5) | TR = 2 

HESS,50 Equation (5.5) | TR = 50 

HEWH,1 Equations (5.8a), (5.7), and (5.6) Equations (5.8b), (5.7), and (5.6) 

HEWH,50 Equations (5.8a), (5.7), and (5.6) Equations (5.8b), (5.7), and (5.6) 

Hw max(HESS,50, 
3 HEWH,50, 1) 100 

vv,circ 0 2 

cs 60 600 

νs Equation (4.9a) Equation (4.9b) 

ρs Equation (4.10a) Equation (4.10b) 

φs 20 50 

between fixed limits. To define the sea state, first the Weibull distribution of waves is 
obtained. Scale and shape parameters are randomly generated from intervals extracted 
from estimations proposed in Appendix B of DNVGL-RP-C205 [2], represented in 
Figure 5.1. Scale parameter (λwave) is established between 0.1 and 4.5 m, and shape 
parameter (kwave) limits are the following: 

kwave,lower limit = 1 + 

(
λwave 

)3
 

 

 
 

 

(5.4a) 

1.5 + λwave 
2.3 − 1.5 

 

 
λwave ≤ 2 

kwave,upper limit = 2.3  1 8 2 3 2 < λwave ≤ 3 (5.4b) 

2.3 + (λwave − 3) 
. − . 

 

3 < λwave 

5 

4.5 − 3 

2 
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Figure 5.1. Values of the scale and shape parameters of Weibull distribution estimated 
for different nautic zones by Appendix B of DNVGL-RP-C205 [2]. Limits considered 
in this section for generating the dataset. 

 
Once the Weibull distribution is defined, the significant wave height can be computed 
for different return periods (TR) according to DNVGL-ST-0437 [4]: 

( 
1 

)1/2920
   1/kwave 

 

This expression is only valid for return periods greater than one year, so a return period 
of two years is assumed for computing the HESS,1. Then, DNVGL-ST-0437 [4] indicates 
that extreme wave height can be estimated by the following expression: 

 

HEWH T =

  ,/
1 

ln Nwave + √ 
0.2886  

  

HESS T 

 

(5.6) 
 

where Nwave is the number of waves, computed as 

Nwave = 
3 · 3600 

Twave 

 

 

(5.7) 

To set the lower and upper limits, wave period is considered as the limits shown in 
Equation (2.17): 

Twave lower limit = 14.3

  
HESS,TR

 (5.8a) 

 

Twave upper limit = 11.1

  
HESS,TR

 

 

(5.8b) 

Once waves scenarios are obtained, water depth is limited from the maximum value 
among HESS,50, 3 HEWH,50, and 1 m to 100 m. Circulational currents are generated 

between zero and
4 

2 m/s. 

kwave;upper limit 

kwave;lower limit 

k w
av

e 

HESS,TR = λwave − ln 1 − (5.5) 
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Table 5.3. Search space of the jacket substructure variables. 

Expression Lower limit Upper limit 

nleg 3 5 

Hjck −Hjck,min 0 10 

Stop/Stop,min 1 2.5 

Sbase Equation (4.11) | αleg ∼ U(60°, 90°) 

nbr clamp {1, Eq. (4.12) | βbr = 70, 10} clamp {1, Eq. (4.12) | βbr = 30, 10} 

Dlegi+1 
/Dlegi 

0.8 1.2 

Dlegi 
0.3 3 

 

Tlegi 
Dlegi

/64 Dlegi
/16 

Dbri 0.2 Dlegi
 Dlegi 

Tbri Dbri/64 Dbri/16 

Dpile 0.2 4 

Tpile 0.635 + Dpile /100 Dpile/16 

Lpile Equation (5.11) 20 Dpile 

fy 2·108 7·108
 

Mpltf Equation (5.12) | Tpltf = 0 Equation (5.12) | Tpltf = 0.2 

 

Finally, for the soil properties search space, the same limits of Section 4.5.2 are 
considered. In addition, the angle of internal friction (φs) is included, with limits 
established from 20° to 50°. 

 

5.3.3 Jacket substructure 

Established ranges for jacket variables are summarized in Table 5.3. Fist, hyperparam- 
eters about external shape of the jacket are defined. The number of legs is set between 
three and five. The jacket height is limited between the minimum jacket height, ac- 
cording to Equation (2.26), and 10 m higher. This minimum height is computed as: 

Hjck,min = Hw + HEWH,50 + max(0.2 HESS,50, 1) (5.9) 

Similar consideration is taken for top legs spacing, which is generated from 1 to 2.5 
times its minimum value. This minimum value is assumed as the side of the regular 
polygon with nleg sides circumscribed in the diameter of the base of the wind turbine 
tower: 

Stop,min = Dbottom tan(π/nleg) (5.10) 
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Legs spacing at the base of the jacket and number of bracing levels are generated by 
the same consideration as in Section 4.5.2. This last variable includes an additional 
appreciation. Each lower and upper limit obtained must be clamped between one and 
ten, because a maximum of ten different sections are considered for legs and bracings. 

Second, the dimensions of the tubular elements in the structure are generated. The 
ratio between leg diameters for consecutive bracing levels is set between 0.8 and 1.2. 
An average value of leg diameters among all bracing levels Dleg between 0.3 m and 
3 m is considered. Legs thicknesses, bracings diameters, and bracing thicknesses are 
directly limited from previously obtained variables. Regarding to pile dimensions, pile 
diameter is limited from 0.2 m to 4 m, pile thickness is set from the minimum allowed 
value according Equation (2.29) to Dpile/16, and pile length is established between the 
minimum length Lpile,min recommended by Equation (2.30) and twenty times pile 
diameter.   

Epile 
2 

64 Ipile 7 π D4 

Lpile,min = Dpile  ( pile ) 

 
(5.11) 

 
Third, some extra variables must be defined. The elastic strength of the material 

is limited from 200 to 700 MPa. This range is set based on DNVGL-OS-B101 [83], to 
allow different steel grades. The mass of the jacket platform Mpltf is estimated as 
the mass of a steel plate filling the area closed by the upper extremes of legs with a 

thickness 
(
Tpltf

) 
between zero and 20 cm. 

 

Mpltf 

 

= 7850 
n Stop/2 2 

tan
(
π/nleg

)
 

 

Tpjtf 

 

(5.12) 

During the jacket variables generation, lower limits for jacket height, pile thick- 
ness, and pile length are set from the minimum feasible value, according verifications 
imposed. This implies that the dataset implicitly satisfy these requirements and, there- 
fore, the surrogate model cannot be trained to detect these fail criteria. However, as 
these checks are easy and fast to verify, they can be computed apart from the proposed 
surrogate model. Thus, the search space of the dataset is reduced and focused on more 
relevant regions. 

 

5.3.4 Structural feasibility 

Once the variables that define the wind turbine, the site conditions, and the jacket 
structure with the pile foundation are established, the structural model presented in 
Chapter 2 is used for evaluating the structural feasibility of each sample. All partial 
utilization factors are collected to completely define the synthetic dataset. Owing to the 
large search space explored and the numerous verification criteria, the dataset results 
very unbalanced. Over all the samples generated and evaluated, only 0.295% of the 
samples are feasible structures. 

4 
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5.4 Classification model 

In this section, a classification ANN model for jacket evaluation is developed. Two 
different classes are considered for the model output, to predict whether the technical 
checks imposed are verified or not. 

 

5.4.1 Architecture 

To be able to make a prediction, the surrogate model needs to collect information 
about the evaluated samples. In this case, the input layer of the ANN presents 74 
input neurons, according to all variables described in Section 5.2. These variables are 
collected in Table 5.4, and they are 12 variables that describe the wind turbine and its 
operating conditions, 12 variables that describe the site conditions, and 50 variables 
that define the jacket structure. 

Table 5.4. Input variables of the surrogate model for jacket feasibility evaluation. 
 

Subsystem  Input variables 

 

Wind turbine 

Rotor-nacelle 

Tower 

Drotor, MRNA, IRNA,roll, IRNA,yaw 

Htower, Dbottom, Tbottom, Dtop, Ttop 

 Operating UR, fr,min, fr,max 

 

Site conditions 

Wind 

Sea 

um,10, kwind 

Hw, vv,circ, HESS,1, HESS,50, HEWH,1, HEWH,50 

 Soil cs, νs, ρs, φs 

 Hyperparameters nleg, nbr, Hjck, Sbase, Stop 

 

Jacket structure 

Legs’ sections Dlegi 
, Tlegi 

| i = 1, 2, ..., 10 

Bracings’ sections Dbri , Tbri | i = 1, 2, ..., 10 

Pile foundation Dpile, Tpile, Lpile 

Material fy 

Transition piece Mpltf 
 

 

Regarding model’s output, two different architectures are considered. First, an 
ANN with one global output that indicates whether the jacket structure verifies all 
requirements or not. Second, an ANN with 26 partial outputs that indicate whether 
each one of the requirements imposed is verified or not. Partial checks considered 
are summarized in Section 5.2.4. However, minimum jacket height, minimum pile 
thickness, and minimum pile length are not included owing to these checks are easy and 
low-consumption evaluations. Both cases are classification models with two classes, so 
a sigmoid function is used as activation function in output layer to force binary output. 
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i, j 

 
For this model, fully connected networks are used. The NoHL and the NoNpHL 

are modified to obtain architectures with different NoP, allowing to analyse the fitting 
capacity of the ANN. To reduce the variability, the same number of neurons is estab- 
lished for each hidden layer. Thus, architectures of increasing size are developed, both 
in NoHL and NoNpHL, ranging from 2 Hidden layers with 100 neurons per hidden layer 
to 8 hidden layers with 400 neurons per hidden layer, with a step of 1 hidden layer 
and 50 neurons per hidden layer. At the output of each hidden layer, a normalization 
of the layer is implemented to speed up the training of the ANN [59] and the ReLU is 
used as activation function. 

 

5.4.2 Training process 

To uniform the scale of the values of the different input variables, each variable is 
normalized by subtracting the mean and dividing by the standard deviation. For non- 
existing variables, that is, the diameters and thicknesses of legs and bracings for levels 
higher than the number of bracing levels, the input value is set to zero to remove their 
influence. Then, the training dataset is randomly divided in two sets: for training 
(80%) and for validation (20%), avoiding overfitting. 

As the trained model is a classification model, the Log Loss (Equation (4.3)) is 
used as loss function. In the case of the model for partial checks, there are also non- 
existing outputs, corresponding to the ULS of legs and bracings for levels higher than 
the number of bracing levels. The loss of these outputs is removed, so the fitting 
capacity of the model is not wasted. 

Twenty ANNs for each combination of the described architectures are trained by 
the automatic differentiation algorithm already implemented in Matlab [45]. The ANN 
parameters are updated by the adaptive moment estimation (Adam) [60], using an ini- 
tial global learning rate of 0.01, a gradient decay factor of 0.9, a squared gradient decay 
factor of 0.999, and a batch size of 5 000. The validation data error is continuously eval- 
uated, stopping the process when it stabilizes. Next, the neural network is retrained, 
reducing the global learning rate by half, repeating this process until the new network 
does not improve the performance of the previous one. 

 

5.4.3 Model prediction 

The implemented surrogate model is a classification model that predicts whether the 
jacket belongs to one of two classes: feasible or non-feasible. However, the output of 
the sigmoid function, used as activation function in the output layer, is a continuous 
value ranged from zero to one. This can be understood as the probability of belonging 
to one of the two classes, in this case, the probability of being a feasible jacket. 

This initial approach becomes more complex when considering two aspects: the 
model trained through partial checks does not generate the global probability of being 
a feasible jacket, and how the prediction of several individual ANNs are combined in an 

ensemble model. The nomenclature Yˆ k is used to mathematically show the different 
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aggregations and ensemble strategies of the probabilities. This can be read as the 
probability, given by the ANN k, of verifying the check j for the sample i. 

 
5.4.3.1 Partial predictions aggregation 

The output of the model trained through the global check can be directly treated as 
the probability of being a feasible jacket. For the model trained to predict the partial 
checks, the global probability must be built using the partial probabilities. Different 
aggregation strategies are considered in this section: 

• Conjunction of independent events: the global probability of feasibility is con- 
sidered as the probability of the conjunction of all partial checks, assuming they 
are independent events. That is, the product of all partial probabilities. 

Ncheck 

Ŷ k = k 
i, j 

j=1 

(5.13) 

• Minimum of partial check: the global probability of feasibility is considered as 
the probability of the partial check having the least expectation of being feasible. 

Y  ̂k = min
(

Ŷ k , Ŷ  k , . . . Ŷ  k 
 

(5.14) 

 
• Geometric mean: the global probability of feasibility is considered as the geo- 

metric mean of the partial check probabilities. 

 

Ŷ k = 

 
N 

∏ i, j 
j=1 

 
  1/Ncheck  

(5.15) 

This assumption is included as an attempt to average the partial verifications. 
Arithmetic mean does not represent the problem nature, because it treats feasible 
and non-feasible cases the same. However, the geometric mean tends to be zero 
if any of the partial checks is close to zero. 

 
5.4.3.2 Ensemble model 

As aforementioned, the output of the ANN can be understood as the probability of 
verifying the check. However, to build the ensemble model, the ensemble strategy of 
the probabilities provided by different ANNs must be defined. The following ensemble 
strategies are implemented: 

• Mean: the combined probability of feasibility is considered as the mean of the 
probabilities predicted by each model. 

Yˆ 
 1  NANN 

ˆ k
 

i, j = 
NANN

 ∑ 
k=1 

Yi, j (5.16) 
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• Voting: the combined probability of feasibility is considered as the proportion 

of ANNs that predict the check is verified. It is computed as the mean of the 
nearest integer (nint) of the prediction. 

Yˆ 
 1  

NANN 

nint
(

Ŷ k
 

(5.17) 

 
• Bayesian inference: the combined probability of feasibility is updated by the 

evidences given by individuals ANNs, following the Bayesian inference: 

Y î, j = IP 
(
ηi. j ≤ 1|Y  ̂1 , Ŷ  2 , . . . , Ŷ  NANN

  
=   

NANN 

IP 
(
Y  ̂k η 1

   

IP 
(
η 1

)
 

 

 

=  
NANN ( 

∏ 
k=1 

 
(
 

 
 

i, j| i. j ≤ 

) 

 
 

   
NANN 

i. j ≤ 

= 
( ( ) 

 
 

  
NANN 

LRk
 

  

IP 
(
η 1

)
 

 

 

=  
NANN 

∏ 
k=1 
 

(
 

i, j i. j ≤ 

) ( ) 
 

k=1 

(5.18) 

where IP ηi. j 1 is the prior probability of verifying the check j for the sample 
i, assumed as the prevalence of the feasible samples in the dataset for check j, 

and LRk is the likelihood ratio, which compare the probabilities of obtaining 
prediction Yˆ k knowing that the check is verified versus knowing the check is not 
verified. This last term can be expressed in terms of the individual predictions 
of the ANNs: 

( IP 
(
ηi. j ≤ 1|Y  ̂k

  
IP 

(
Y  ̂k

 
 

IP Yˆ k |ηi. j ≤ 1 

i, j 

( 
i j 

) 
i, j 

i, j = 
IP 

(
Yˆ k η 

1
  = IP 

(
η 1 Yˆ k

  
IP 

(
Yˆ k

  =
 

i, j| 

( 

i. j >  i. j > | i, j i, j  

IP 
(
ηi. j > 1

)
 

(5.19) 

IP ηi. j ≤ 1|Y  ̂k ( 
i j 

) 
Ŷ k

j
 ( 

i j 

) 
= 

IP 
(
η 1 Yˆ k

  
IP 

(
ηi j ≤ 1

) = 
1 − Ŷ  k IP 

(
ηi j ≤ 1

)
 

In the cases of the ANNs trained to predict the global feasibility, these ensemble 
strategies can be only applied to the global probabilities of individuals ANNs. However, 
for ANNs trained for partial checks, assembly can be performed for the partial checks 
and then combined to obtain the global feasibility, or all the partials checks can be 
combined for each ANN and then assembled. Both options are analysed in this study. 

i, j i, j ηi. j ≤ 1 + 

k 
i, j ηi. j ≤ 1 

i. j > 
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5.4.4 Model performance 

To evaluate the performance of the ANN-based models, the test dataset is evaluated, 
and the predictions made by the models are compared to the actual targets. The 
structural evaluation performed consists in a binary classification: feasible or non- 
feasible jacket. Therefore, a default decision threshold of 0.5 is used to assign the 
class of the output from model’s probabilities, considering positive samples the feasible 

jackets Yˆi  0.5 and negative samples the non-feasible jackets Yˆi < 0.5 . 
Confusion matrix is often used to analyse binary classification problems. This 

matrix is constituted by: 

• True positives (TP): correctly predicted positive samples. 

• False negatives (FN): positive samples incorrectly predicted as negative. 

• False positives (FP): negative samples incorrectly predicted as positive. 

• True negatives (TN): correctly predicted negative samples. 

To easily evaluate the proportion of these metrics into the test dataset, the following 
relative metrics are used: 

• True positive rate (TPR): proportion of positive samples correctly predicted. 
 

TPR = 
 TP 

 
TP + FN 

(5.20) 

• True negative rate (TNR): proportion of negative samples correctly predicted. 
 

TNR = 
  TN 

 
TN + FP 

(5.21) 

• Positive predictive value (PPV): proportion of positive predictions that are ac- 
tually correct. 

PPV = 
  TP 

 
TP + FP 

(5.22) 

• Negative predictive value (NPV): proportion of negative predictions that are 
actually correct. 

NPV = 
 TN 

 
TN + FN 

(5.23) 

Owing to low prevalence of feasible jackets (0.295%), Matthews Correlation Coef- 
ficient (MCC) is also evaluated: 

 

MCC = 
 TP TN − FP FN  

(TP + FP)(TP + FN)(TN + FP)(TN + FN) 
(5.24) 
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This metric is specially indicated for evaluating unbalanced data without overestimat- 
ing one class over the other. This coefficient ranges from 1 to 1, where 1 indicates 
perfect accuracy, 0 indicates no relation between predictions and actual values, and 

1 indicates that all predictions are wrong. 
Figure 5.2 shows the boxplots of the TPR, PPV, NPV, TNR, and MCC of all the 

classification models trained. Also including the different strategies of partial checks 
aggregation and ensemble. An initial analysis shows a wide range in TPR and PPV 
metrics. However, different results are obtained for TNR and NPV owing to the unbal- 
ance in the dataset. For TNR, the great proportion of non-feasible jackets produce that 
for most models, almost all negative samples are correctly assigned. Regarding NPV, 
all models are successful in almost all of their negative predictions, with a minimum 
NPV of 0.997. Taking this into account, no more analysis of NPV will be done. The 
MCC also shows great variability, achieving values greater than 0.6. 
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Figure 5.2. Boxplots of the classification metrics of all classification models, considering 
all the partial predictions aggregations and ensemble strategies. 

Figure 5.3 shows the boxplots of TPR, PPV, MCC, and TNR of all classification 
models. Models are grouped depending on the ANN output: global check (GM) or 
partial check (PM); and ensembled variable: individual ANN (SANN), ensemble in 
partial checks (PE), or ensemble in global check (GE). In general terms, models for 
partial checks show better performances measured by MCC. This is mainly explained 
by the increase in TPR that they present. Regarding the benefits of combining several 
models, a slight increase in MCC is obtained by for the models for global check, but 
not consistently. However, the models for partial checks, ensembled in partial checks, 
show a consistent increase in the MCC. 

An analysis of the influence of the size of the ANNs is shown in Figure 5.4. A 
significant decrement in MCC appears for ANNs with 8 hidden layers and 400 neurons 
per hidden layer, which is probably produced by overfitting. This effect occurs for 
smaller NoP values in models for global check. Generally, the ANNs with 5 hidden 
layers and 250 neurons per hidden layer show slightly better performance than other 
architectures. 

The models implemented to combine the partial checks predictions to obtain the 
global feasibility, detailed in Section 5.4.3.1, are compared in Figure 5.5. The first 
aspect that must be highlighted is that not all aggregation strategies implemented are 
applied to each model. Thus, these aggregation strategies are only applied to partial 

− 
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Figure 5.3. Boxplots of the classification metrics of all classification models. 
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Figure 5.4. Boxplots of the classification metrics of all classification models. Different 
sizes of the ANNs are marked by colours. 
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Figure 5.5. Boxplots of the classification metrics of all classification models. Different 
partial checks aggregation strategies are marked by colours. 

 
checks models, while in global check models the probability of feasibility is obtained 
directly. Using the geometric mean to combine the partial checks results in lower 
MCC values, owing to an overestimation of the probability of feasibility. This can be 
concluded from the increment of TPR and the decrement of PPV and TNR. Comparing 
the use of conjunction of independent events and minimum partial check, no significant 
differences are observed in the MCC values. However, as can be expected, using the 
minimum partial check as the global check produces models with a slightly higher TPR 
and a slightly lower PPV. 

Finally, the different ensemble strategies, described in Section 5.4.3.2, are analysed 
in Figure 5.6. Evidently, the ensemble strategies implemented do not apply to indi- 
vidual ANNs working alone. For the case of models for global check, using Bayesian 
inference increases the MCC values, owing to a great improvement of TPR without 
affecting the PPV and TNR in such a proportion. For the cases of models for partial 
checks, different tendencies arise. When the ensemble is made in global check, Bayesian 
inference produces lower MCC values. However, when the ensemble is applied in par- 
tial checks, Bayesian inference produces similar MCC values than other strategies. As 
happened in models for global check, Bayesian inference tends to increment the TPR 
while decreasing PPV and TNR. Comparing results of ensembles made by the mean or 
voting, both cases obtain similar metrics, although using the average presents greater 
dispersion. 
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Figure 5.6. Boxplots of the classification metrics of all classification models. Different 
ensemble strategies are marked by colours. 

 
To provide an idea of the actual values of the metrics, the model with the highest 

MCC is detailed. This model has 5 hidden layers and 250 neurons per hidden layer 
trained for partial checks. The ensemble is implemented in partial checks by voting, 
and the global feasibility is computed as the conjunction of independent events. This 
model obtains a TPR of 0.631, a PPV of 0.721, a NPV of 0.999, a TNR of 0.999, and 
a MCC of 0.674. 

 

5.5 Regression model 

In this section, a regression ANN model for jacket evaluation is developed. The model 
is trained to predict the value of the utilization factor that measures how close is the 
jacket structure to verifying the imposed technical checks. 

 

5.5.1 Architecture 

For the regression ANNs, the architectures are the same as implemented for classifi- 
cation ANNs, detailed in Section 5.4.1. The only difference between both is that the 
sigmoid activation function in output layer to force binary output is removed, because 
a binary output is not required. 
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5.5.2 Training process 

For the training of regression ANNs, the process implemented for classification ANNs, 
detailed in Section 5.4.2, is followed. Two differences are considered owing to the 
difference on the nature of model’s output. First, since the ouput variables are positive 
continuos variables, the natural logarithm is applied to the utilization factor, and then 
are normalized by subtracting the mean and dividing by the standard deviation of each 
variable. Second, the MSE (Equation (4.2)) is used as loss function. 

 

5.5.3 Model prediction 

The implemented surrogate model is a regression model that predicts the magnitude 
of the feasibility jacket, according to technical verifications imposed. That is, the ANN 

output (Yˆ k ) is the estimated value, by the ANN k, of the natural logarithm of the 
check j for the sample i. The obtention of the global probability of feasibility from the 
estimation of the utilization factor is developed in this section. 

To transform the utilization factors predictions to probabilities, a statistical outlook 
on the ANNs output is adopted. Assuming that the different ANNs predictions follow 
a Gaussian distribution with specific mean and standard deviation, the probability of 
verifying the check can be obtained by the CDF of Gaussian distribution. That is, 
evaluate the probability that the model output is less than or equal to zero. 

The same strategy can be implemented for single ANNs, imposing that the standard 
deviation is zero. In this case, the probability of the model would act as a binary 
variable, since the probability would be one, if the output is less than or equal to zero, 
or zero, if the output is greater than zero. 

Once the regression model output is transformed into a probability, the partial 
checks aggregation strategies implemented are equivalent to those used for classification 
model, detailed in Section 5.4.3.1. 

 

5.5.4 Model performance 

The strategy followed to evaluate the regression ANNs is the same as used for classifi- 
cation ANNs (see Section 5.4.4). 

Figure 5.7 shows the boxplots of the TPR, PPV, NPV, TNR, and MCC of all 
the regression models trained. Also including the different models of partial checks 
aggregation strategies. An initial analysis shows a wide range in TPR and PPV metrics. 
However, not significant differences are obtained in TNR and NPV among different 
models, being the minimum values obtained 0.997 and 0.989, respectively. No relevant 
analyses can be extracted from these metrics, so the same figure layout as in Section 
5.4.4 is maintained for an easy comparison. The MCC also shows relevant variability, 
achieving values greater than 0.6. 

Figure 5.8 shows the boxplots of TPR, PPV, MCC, and TNR of all regression 
models, dividing them by model for global check (GB) and for partial checks (PM), 
and by single ANNs (SANN), ensemble in global check (GE), and ensemble in partial 
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Figure 5.7. Boxplots of the classification metrics of all regression models, considering 
all the partial predictions aggregation and ensemble strategies. 
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Figure 5.8. Boxplots of the classification metrics of all regression models. 

 
checks (PE). Models for partial checks obtain clearly greater MCC values than models 
for global check. Higher TPRs are obtained for models for partial check, while most 
of them keep better results in PPV than models for global check. Among different 
ensemble strategies on models for partial checks, maximum MCC values are obtained 
when the ensemble is made in partial check, however not significant differences are 
observed in median cases. 

The influence of the size of the ANNs on the performance is shown in Figure 5.9. 
Models for global checks only achieve decent MCC values for smallest ANNs. In models 
for partial checks a smooth tendency can be observed. Maximum values of MCC, TPR, 
and PPV are achieved by ANNs with 4 hidden layers and 200 neurons per hidden layer, 
or 5 hidden layers and 250 neurons per hidden layer. Worse performances are obtained 
for smaller and larger networks, being more pronounced in smaller networks. 

The strategies implemented to combine the partial checks predictions to obtain 
the global feasibility are compared in Figure 5.10. As occurs on classification models, 
aggregation strategies implemented are only applied to models for partial checks. There 
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Figure 5.9. Boxplots of the classification metrics of all regression models. Different 
sizes of the ANNs are marked by colours. 

 
are no differences among the different aggregation strategies in the models for partial 
checks that are not ensembled and ensembled in global check, because the probability of 
partial checks in these cases are binary: zero or one. That means that every aggregation 
strategy gives the same result. Analysing the models for partial checks ensembled in 
partial checks, lower MCC values are obtained when geometric mean is used, producing 
significant increments in TPRs and decrements in PPVs. Similar performances are 
shown by using the conjunction of independent events and minimum partial checks, 
observing slightly better MMC values when minimum partial check is considered. 

To provide an idea of the actual values of the metrics, the model with the highest 
MCC is detailed. This model has 4 hidden layers and 200 neurons per hidden layer 
trained for partial checks. The ensemble is implemented in partial checks, and the 
global feasibility is computed as the minimum of partial checks probabilities. This 
model obtains a TPR of 0.556, a PPV of 0.774, a NPV of 0.999, a TNR of 0.999, and 
a MCC of 0.655. 
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Figure 5.10. Boxplots of the classification metrics of all regression models. Different 
partial checks aggregation strategies are marked by colours. 

 

5.6 Classification and regression models comparison 

In this chapter, two surrogate models of different nature of their output have been 
developed: a classification model and a regression model. In both cases, the models 
trained for partial check achieve better performances than the models trained for global 
check, which can be explained because the ANN has more information. This difference 
is even clearer in the case of regression models. Generally, models trained for partial 
checks and ensembled in partial checks present higher MCC values than other models. 
In addition, using the geometric mean to aggregate partial checks results in models 
with higher TPR and lower PPV, also decreasing in MCC. 

Table 5.5 collect the metrics of the classification and regression models with the 
highest MCC. Classification model achieve higher TPR and lower PPV the regres- 
sion model. Almost same metrics are obtained in NPV and TNR. This results in a 
slightly higher MCC value for the classification model. Incorporating a new point of 
view, the probability of feasibility given by the model and the utilization factor of the 
jacket structure should be related. Figure 5.11 shows boxplots of utilization factors 
of global feasibility of the jacket in test dataset, grouped by the probability of feasi- 
bility predicted by the surrogate models. Blue boxplots are for predictions made by 
the maximum MCC classification model, and red boxplots are for predictions made by 
the maximum MCC regression model. In both cases, jackets with greater expectations 
of being feasible shows significantly lower utilization values. However, the regression 
model presents a better agreement between uncertain samples for the surrogate model 
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Table 5.5. Metrics of the classification and regression models with the highest MCC. 

Model TPR PPV NPV TNR MCC 

Classification 0.631 0.721 0.999 0.999 0.674 

Regression 0.556 0.774 0.999 0.999 0.655 
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Figure 5.11. Boxplots of utilization factors of global feasibility of the jacket in test 
dataset, grouped by the probability of feasibility predicted by the surrogate model. 
Blue boxplots are for predictions made by the maximum MCC classification model, 
and red boxplots are for predictions made by the maximum MCC regression model. 

 

and jacket structures close to the feasibility border. 
Furthermore, the regression model returns a specific estimation of the utilization 

factor, which increases the scope of application of this model compared to the classifi- 
cation model. 

 

5.7 Conclusions 

In this chapter, ANN-based surrogate models for estimating the feasibility of a jacket 
structure acting as the support structure for any given wind turbine in a specific em- 
placement is developed. To train the ANNs, a synthetic dataset is generated using the 
structural model presented in Chapter 2. In order to obtain a sufficiently accurate sur- 
rogate model, different strategies are followed: first, both classification and regression 
ANNs are generated. Second, eight specific sizes for ANNs are tested. Third, ANNs 
are trained considering different outputs: the global feasibility of the jacket or the fea- 
sibility of partial checks imposed to the structure. Fourth, for this last case, different 
strategies to obtain global feasibility from the partial checks are implemented. Fifth, 
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different alternatives to combine the predictions of single ANNs in ensemble models 
are considered. 

The best obtained models achieve great performances, presenting a MCC higher 
than 0.65. It should be taken into account that the prevalence of feasible jackets in 
the generated synthetic dataset is only 0.295%. Generally, models trained for partial 
checks show better performance than models trained for global check. When ensemble 
is applied on partial checks, it usually predicts slightly better. No major differences 
in performance are observed when aggregation of partial checks is made assuming 
the conjunction of independent events or the minimum probability of partial checks. 
However, considering the geometric mean overestimates the predictions, resulting in 
higher TPR and lower PPV, and also decreases the MCC. In all tested models, a 
decrease in performance for the largest size of the ANN is observed, not being necessary 
to test larger ANNs. 

Comparing the classification and the regression models that achieved the maximum 
MCC, both present similar performances. In a more detailed analysis, regression tends 
to underestimate the feasible probability, showing lower TPR and higher PPV. A 
slightly higher MCC value is obtained by the classification model. However, when 
actual utilization factors of test dataset samples are analysed instead the binary feasible 
or not feasible states, the regression model achieves better agreement. Furthermore, 
regression model returns an estimation of the utilization factor, complementing the 
information that the classification model would provide. 
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6.1 Introduction 

As introduced in Section 5.1, structural models developed to evaluate jacket-supported 
offshore wind turbines use to be high time-consuming, reducing the extension of para- 
metric studies. However, several authors have developed low time-consuming surrogate 
models or metamodels capable of replacing structural models with sufficient accuracy. 
Many other fields in civil engineering have also adopted this methodology. 

The same trend has been observed in engineering optimization, where metamodel- 
assisted optimization acts as a useful strategy to decrease computational resource con- 
sumption [44]. Essentially, this optimization process begins with sampling initial so- 
lutions, and evaluating them with the reference model to build the metamodel. Then, 
any optimization strategy can be used to perform the optimization through the meta- 
model. Until this step, it would be a case of off-line optimization. If the solutions 
obtained and evaluated with the reference model are used to update the metamodel 
and repeat the process, an on-line optimization would be implemented [44]. 

Some recent studies that implemented metamodel-assisted optimization processes 
to address the design of support structures for wind turbines are the following. Stieng 
et al. [84] optimized the monopile foundation of an OWT using analytical gradient- 
based methods through a Gaussian process regression matamodel. Mathern et al. [85] 
performed a multi-objective optimization of a reinforced concrete foundation of a wind 
turbine, accelerating the simulated annealing algorithm by a Kriging metamodel. Shen 
et al. [86] implemented a random forest method to build a metamodel for reproducing 
the behaviour of the reinforced concrete foundation of a wind turbine, then, a multi- 
objective non-dominated sorting genetic algorithm was used to obtain the designs. 

In this chapter, a metamodel-assisted optimization process is developed to obtain 
jacket designs to support a wind turbine under specific site conditions. The ANNs- 
based surrogate model obtained in Chapter 5 is used for accelerating the feasibility 
evaluation of the structures during the optimization. The objective of the study pre- 
sented in this chapter is to compare the performance of this optimization procedure 
to the process followed in Chapter 3. First, the case study is introduced in Section 
6.2. Then, a description of the metamodel-assisted optimization process implemented 
is presented in Section 6.3. Results of the optimization process and comparison with 
those obtained in Chapter 3 are shown in Section 6.4. Finally, the main conclusions of 
this study are summarized in Section 6.5. 

 

6.2 Case study 

To be able to analyse the metamodel-assisted optimization process developed in this 
chapter, the same case study as used in Chapter 3 is assumed. That is, all the charac- 
teristics considered for the wind turbine supported by the jacket and the site conditions 
where the device is located are defined in Section 3.2. 



6 METAMODEL‐ASSISTED OPTIMIZATION 

110 ANN‐models to assist in the analysis and design of jacket structures for OWTs 

 

 

6.3 Methodology 

As aforementioned, the metamodel-assisted optimization process must follow the same 
considerations as the optimization procedure implemented in Chapter 3 to both be 
comparable. Therefore, the jacket structure and the design variables are those detailed 
in Section 3.3. As in that section, the designs are separated by number of legs and 
bracing levels, obtaining a candidate solution for each case. Also, instead of directly 
optimize the structural variables, the relationships between them presented in Table 
3.2 are the ones used as optimized variables. 

The objective of the optimization process is defined by Equation (3.1). The total 
mass of the jacket structure is the objective function to be minimized. The optimized 
variables are again subjected to the boundaries restrictions (lower and upper limits), 
as well as to comply with the structural requirements in terms of utilization factors. 
The main difference between this optimization procedure and the one implemented 
in Chapter 3 is that the technical requirements are evaluated through the surrogate 
model developed in Chapter 5, instead of by the structural model presented in Chapter 
2. Nevertheless, the restrictions according to minimum jacket height, minimum pile 
thickness, and minimum pile length are additionally computed because they were not 
considered for the surrogate model owing to the low computational cost that they 
present. 

The specific optimization procedure implemented is represented in Figure 6.1. The 
central core of the process is based on the gradient descent method, using the “fmincon” 
function already implemented in Matlab [45]. The values and gradient of both the 
objective function and the nonlinear constraints are provided. The utilization factors 
are computed using the regression ANN-based surrogate model of maximum MCC, 
developed in Section 5.5. Thus, five jacket designs are obtained for each combination 
of number of legs and bracing levels from random initialization points. Then, the best 
design among repetitions is selected, and this winner solution for each combination of 
number of legs and bracing levels is evaluated using the structural model to obtain the 
actual utilization factors. The criterion to select the best jacket design is the following: 
the feasible jacket with the lowest mass or, if no candidate solution is feasible, the 
jacket with the lowest utilization factor. As in any surrogate model, the predicted 
values present some errors, so the ANNs are retrained with the new evaluated samples, 
and the optimization procedure is repeated for 20 iterations. 

The same procedure followed in Section 5.5.2 is used for retraining the ANNs. To 
maintain information from the original training dataset, limiting the resources con- 
sumption, a portion of the training dataset is also incorporated in the retraining pro- 
cess. Thus, for each combination of number of legs and bracing levels, the 100 samples 
that are closest in Euclidean distance, within the normalized space, to any of the eval- 
uated solutions in the metamodel-assisted optimization process are used for retraining 
the ANNs. However, to increase the relative relevance in the retraining process of the 
optimization solutions, an over-sampling is applied. That is, the optimization solutions 
are repeated 1 000 times in the retraining dataset. These ratios are an initial attempt 
to make the results converge. 
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Figure 6.1. Diagram of the metamodel-assisted optimization process. 



6 METAMODEL‐ASSISTED OPTIMIZATION 

112 ANN‐models to assist in the analysis and design of jacket structures for OWTs 

 

 

6.4 Jacket design 

The described metamodel-assisted optimization procedure is repeated 5 times to esti- 
mate the convergence of the process. Then, the results are compared to those obtained 
in the optimization implemented in Chapter 3. It should be mentioned that both opti- 
mization processes are assisted by surrogate models to reduce the number of evaluation 
of the structural model. However, the key difference between them is that the surrogate 
model integrated in the optimization process presented in Chapter 3 is a general radial 
basis interpolation, while the one used in this chapter has been specifically developed 
to estimate the feasibility of jacket structures. 

Figure 6.2 shows the masses of the obtained designs grouped by the numbers of 
legs and bracing levels. The cases are separated on the x-axis according to the num- 
ber of bracing levels; crosses are used for three-legged jackets, squares for four-legged 
jackets, and diamonds for five-legged jackets. Green markers are used to indicate the 
designs obtained verify all requirements imposed, while red markers represent non- 
feasible designs. Black markers represent the mass of the jacket designs obtained in 
the optimization process implemented in Chapter 3. The results show that most of 
the designs obtained are feasible jackets, specifically 83% of the designs. Furthermore, 
between 3 and 7 bracing levels, most of the designs obtained through the implemented 
optimization process present lower masses than the obtained in Chapter 3. However, 
this is not observed for 2, 8, 9, and 10 bracing levels. 

To analyse the variability of the performance of the optimization process imple- 
mented by the number of bracing levels, the angle of the bracings is computed. Figure 
6.3 shows the angle of the bracing levels of jacket designs. The same markers cri- 
teria than the previous figure are followed. Black dashed lines mark the lower and 
upper limits imposed to the angle of bracing during the synthetic dataset generation 
for training the surrogate model. Generally, for cases with 3 legs and 5 or more bracing 
levels, 4 legs and 6 or more bracing levels, and 5 legs and 7 or more bracing levels, 
most designs obtained present lower angles for bracings than considered for the dataset 
generation. In addition, design obtained within these cases using the surrogate model 
present greater angles for bracings than design obtained using the structural model, 
which shows the trend of the surrogate model to move to explored regions. This ex- 
plains the significant loose in performance of the optimization process from 8 to 10 
bracing levels. Taking into account that designs with many bracing levels increase 
the cost of the structure owing to the large number of welded joints, it is considered 
an acceptable failure of the process. Nevertheless, the masses greater than expected 
obtained for 2 bracing levels are not justified by angles of bracings out of search space. 
This case could be explained by the reduced feasible region of the search space, which 
makes it difficult for the surrogate model to find feasible designs with less mass. The 
significant increment of the mass of jacket with 2 bracing levels, shown in Figure 6.2, 
suggests that the feasible region is smaller compared to other scenarios. 

According to considerations explained in Section 3.4, four-legged jackets that have 
from four to six bracing levels are selected as most efficient design. To analyse the 
evolution of the metamodel-assisted optimization process, the intermediate results of 
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Figure 6.2. Mass of jackets obtained in the metamodel-assisted optimization process, 
differentiated by number of legs (markers) and bracing levels. 

 
these cases are shown in Figure 6.4. Evolution of the mass of the design obtained during 
the iterations for each repetition is represented. Green curve fragments show feasible 
jacket designs, and a transition from yellow to red indicates non-feasible jackets with 
utilization factors from lowest to highest. Black dashed lines represent the mass of the 
jacket designs obtained in Chapter 3. All designs in the first iteration show lighter but 
non-feasible jackets, which means that surrogate model developed in Chapter 5 tends 
to overestimate the feasibility of the jackets in these cases. The retrained ANNs then 
move the solutions to heavier designs with some oscillations, achieving feasible jackets. 
At the end of the process, lighter feasible designs are obtained. Comparing the lighter 
designs obtained with optimization process implemented in Chapter 3 to the lighter 
designs using the metamodel-assisted optimization process for each number of bracing 
levels, the mass is reduced by 10%, 8.4%, and 11.8% for four, five, and six bracing 
levels, respectively. 

To compare computational requirements of both processes, the total number of 
evaluations of the structural model are counted. All individual optimization and repe- 
titions of the optimization process implemented in Chapter 3 run the structural model 
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Figure 6.3. Angle of the bracings of the jackets obtained in the metamodel-assisted 
optimization process, differentiated by number of legs (markers) and bracing levels. 
Black dashed lines mark the lower and upper limits imposed to bracings angle in the 
synthetic dataset generation for training the surrogate model. 
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88 800 times, while the optimization process developed in this chapter run the model 
2 700 times. It should be taken into account that the ANNs trained required a dataset 
generation. In this case, a training dataset of 300 000 samples and a test dataset of 
50 000 samples were generated. However, the surrogate model can be used again to 
solve other optimization problems, which makes it profitable if several optimizations 
are required. 

 

6.5 Conclusions 

In this chapter, a metamodel-assisted optimization process is developed to obtain jacket 
designs to support a wind turbine under specific site conditions. The ANNs-based 
surrogate model obtained in Chapter 5 is used for estimating the feasibility of the 
jacket structure instead of the structural model presented in Chapter 2. Within an 
iterative process, the best jackets designs are evaluated through the structural model 
while the surrogate model is retrained to improve its performance in the vicinity of the 
optimum. 

The results of the optimization processes implemented in this chapter and in Chap- 
ter 3 are compared. Both optimization process are assisted by surrogate models. How- 
ever, in this chapter, a surrogate model based on ANNs, specifically obtained for jacket 
feasibility evaluation, is used. The obtained results show a reduction of the total mass 
of the jacket for many of the cases optimized, that is, combination of number leg and 
bracing levels, being most of the designs feasible jackets. Worst performance of the 
optimization process is observed for jacket with eight, nine, and ten bracing levels, 
owing to the angle of bracings of these cases is lower than those explored in the search 
space of the synthetic dataset used for training the ANNs. Focusing on the four-legged 
jacket with four, five, and six bracing levels, a significant correction of the initial solu- 
tions is achieved by the iteration process. Finally, a mass reduction of 10%, 8.4%, and 
11.8% are obtained for the four-legged jacket with four, five, and six bracing levels, 
respectively. 

Analysing the mass and feasibility of the designs obtained in each iteration of the 
proposed optimization, the need to retrain the network is observed. The designs of the 
first iteration have a low mass but do not meet the requirements. This implies that 
the initial surrogate model overestimates the viability of these designs. After several 
iterations retraining the surrogate model with samples closer to the optimal design, 
the performance of the model is improved around the boundary between feasible and 
non-feasible designs. In this way, the optimization process is improved. 

In addition to obtaining lighter feasible jackets using the developed surrogate model 
for jacket feasibility evaluation, a significant reduction of the number of evaluation with 
the structural model is observed. In this study case, the structural model was used 
about 97% fewer times than for the optimization process developed in Chapter 3. 
Even considered the computational resources used to generate the synthetic dataset 
and training the ANNs, the flexibility of the surrogate model allows the procedure to 
be made profitable if several structures are optimized. This is a fundamental aspect to 
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be incorporated in parametric studies that analyse the influence of the wind turbine 
properties and site conditions in the jacket design variables. 
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7.1 Summary and conclusions 

The present dissertation proposes an initial approach to the implementation of ANN- 
based models to assist in the analysis and design of jacket foundations structures for 
OWTs. This proposal raises the development of an ANN-based surrogate model capable 
of partially replacing the numerical model usually required for the analysis of structural 
feasibility. And, therefore, efficiently expand the study of these complex structural 
systems. 

The presented numerical model allows the evaluation of the structural feasibility of 
the jacket support structure. This model is a compromise between extremely simplified 
methods and rigorous complex models, making it a suitable tool for the structural 
analysis of this type of complex structure using fewer computational resources. A 
reduced set of the most representative load states is established, and a static equivalent 
analysis is conducted to introduce all the relevant environmental loads. The jacket 
response is obtained, accounting for the effects of SSI owing to the pile foundation 
flexibility. Most relevant technical verifications required to ensure the jacket feasibility, 
according to international standard, are evaluated. 

The structural model is used to obtain jacket designs for a wind turbine in specific 
site conditions, through a predefined optimization process. A complete convergence is 
not achieved owing to the complexity of nonlinear constrains and the large number of 
variables required to completely define the geometry. However, feasible jackets designs 
are obtained. Furthermore, an analysis of the importance of the SSI in the jacket opti- 
mization process is performed. Feasible jackets obtained from the optimization process 
are studied to obtain relevant conclusions, focusing in the influence that this assump- 
tion produce in the technical verifications imposed on these structures. Comparison 
against fixed-base jackets shows an increase in the stresses of some structural elements 
when the flexibility of the pile foundation is considered. 

To explore the capability of ANNs to reproduce the response of complex structural 
systems that include SSI effects, two ANN-based surrogate models are developed. First, 
a surrogate model for estimating the pile foundation stiffness, and second, a surrogate 
model to predict the fundamental frequency of an OWT on a jacket structure. Both 
models confirm the utility that ANN models can provide to replace high-consumption 
numerical models. Great prediction accuracy, smooth behaviour, and extremely less 
time consumption are achieved. 

Taking advantage of the great fitting capacities showed by ANNs models, surrogate 
models for evaluating the feasibility of the jacket support structure are built. To train 
the ANNs, a synthetic dataset is generated in two steps. First, a set of samples of many 
different wind turbines, site conditions, and jacket designs is randomly obtained from 
a predefined search space. This search space aims to limit the generation of samples 
to relevant cases. Then, the structural model presented in this Ph. D. Thesis is used 
for evaluating the feasibility of each sample in the dataset. Classification and regres- 
sion surrogate models are obtained, which take into account most relevant variables 
that define the physical system: wind turbine, site conditions, and jacket structure. 
After testing the models, good classification between feasible and non-feasible jackets 
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is observed in both of them, even considering that the prevalence of feasible cases in 
the training dataset is about 0.295%. Comparing the classification and the regression 
models, small differences are observed in classification metrics. However, the better 
agreement between the feasibility prediction and the utilization factor achieved by the 
regression model increases its usefulness. 

This regression model is incorporated into a metamodel-assisted optimization pro- 
cess to test the capabilities of using ANN-based models to assist in the design of jacket 
structures. The regression surrogate model is combined with a gradient-based opti- 
mization to obtain jacket designs. The optimization is implemented in an iterative 
process where the ANNs are updated using the previous jacket solutions. Comparing 
the jacket designs with those obtained by the optimization process with no specific- 
developed surrogate model, lighter feasible jackets with a mass reduction about 10% 
are obtained. Moreover, a significant reduction in the number of structural model 
evaluations is achieved, only requiring the 3% of them. Metamodel-assisted optimiza- 
tion strategies, such us the one implemented in this Ph. D. Thesis, increase the scope 
of parametric studies that analyse the influence of wind turbine properties and site 
conditions on the jacket design variables. 

 

7.2 Future research directions 

In this section, some future research direction that arise from the work developed 
and the results obtained during the Ph. D. Thesis are proposed. These proposals are 
grouped into four categories according to where the focus of each investigation is lo- 
cated. The first focuses on the direct application of the surrogate models for jacket 
evaluation developed in this work. The second and the third analyse different strategies 
that could enhance the surrogate model and the optimization process, respectively. The 
last proposes obtaining a model for the generation of jacket designs using the models 
and strategies developed in this dissertation. 

 

Application of the surrogate model 

The low computational resources consumed by the developed ANN-based surrogate 
model allow the evaluation of a large number jacket designs, even considering different 
OWTs and site conditions. This unlocked functionality can be used for performing 
large parametric studies that analyse the influence of the main variables established 
for the system, that is, the wind turbine, the site conditions, and the jacket structure, 
in the feasibility of different fail criteria considered. Through this strategy, a better 
understanding of the structural behaviour of jacket as support structures for OWTs 
could be achieved. 

Similar strategy can be applied using the metamodel-assisted optimization. Defin- 
ing several wind turbines and site conditions, the metamodel-assisted optimization 
process could be performed for obtaining jacket designs for each case. The influence 
of the characteristics of the wind turbine and the site conditions on the jacket design 
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variables could be studied. However, the size of this study would be reduced compared 
to the previous one owing to the increase of computational cost of the optimization 
process. 

 

Enhancement of the surrogate model 

A better knowledge of the structural behaviour of jacket foundations would affect the 
limits considered for the synthetic dataset generation for training the ANNs. The 
conclusions extracted from the aforementioned parametric studies could be used to 
modify the lower and upper limits established for dataset generation to include unex- 
plored relevant regions of the search space and exclude explored non-relevant regions of 
the search space. Therefore, the ANNs could be focused on more relevant data during 
their training, enhancing their performance. 

Other aspect of the model that should be taken into account is the structural 
model used to evaluate the jacket structures. Using a structural model which considers 
more load cases and implements nonlinear time-domain analysis, such as OpenFAST 
[87], can make conclusions from the surrogate model more relevant. However, higher 
computational cost of that model makes unaffordable generating the large dataset 
necessary for training ANNs. The proposal is to use the current model to filter a 
smaller set of great relevance samples. This small dataset could be evaluated with the 
new structural model and used to enhance the surrogate model prediction. 

 

Enhancement of the optimization process 

As commented in Chapter 3, the optimization of the jacket support structure for OWTs 
is a complex task. The large number of design variables that define the structure and 
the nonlinear constraints owing to the technical requirements produce numerous local 
minima that difficult the convergence. To enhance the optimization results, the im- 
plementation of a metaheuristic optimization algorithm is proposed, such as genetic 
algorithm, particle swarm optimization, or simulated annealing. These optimization 
algorithms usually require numerous evaluations. In this context, the utilization of the 
surrogate model can speed up the process without significantly affecting the perfor- 
mance of the optimization. 

Furthermore, different optimization objectives may be considered. Many authors 
try to minimize the total mass of the jacket structure as it is a significant part of the 
cost of the foundation. However, other characteristics of the structure also increase 
the cost, without affecting the mass. In order to achieve more efficient structures in 
terms of economic cost, these aspects must be taken into account. Häfele et al. [79] 
performed the optimization of a jacket minimizing the total capital expenses, estimated 
as a linear combination of the following contributions: 

• Material factor: Proportional to the mass of the structure. It is evaluated as 
the total mass of the jacket structure, not including the pile foundations and the 
transition piece. 
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• Fabrication factor: Includes the fabrication expenses that increase the jacket 

cost. It is assumed as the weld volume. 

• Coating factor: Considers the cost of protecting the jacket from corrosion. It is 
proportional to the outer surface of the jacket structure. 

• Transition piece factor: Takes into account the cost of the transition piece. It is 
evaluated as the product of the number of legs and the head radius. 

• Transport factor: Includes the cost of the transport of the jacket structure from 
the port to the installation emplacement. It is assumed proportional to the 
material factor. 

• Foundation and installation factor: Introduces the cost of the piles foundation 
and its installation. It is proportional to the number of legs. 

• Fixed expenses factor: Expenses not dependent on the jacket variables. Estab- 
lished as a fixed value. 

Considering the cost estimation and the unitary prices proposed by Häfele et al., the 
cost of the jacket designs obtained in Chapter 3 are shown in Figure 7.1. These results 
show an increment in capital expenses for jackets with more number of legs and bracing 
levels, which agree with engineering experience. 

However, the unitary cost of these factors are estimations, which means that differ- 
ent assumptions could considerably change the outcome of the optimization process. 
Moreover, unit prices are expected to significantly vary in different regions of the world, 
as well as in the future. This does not deny the usefulness of cost estimation, but rather 
reinforces the need to explore more specific methodologies that allow a more reliable 
estimation to be included in optimization process. 

Generation of a surrogate model for jacket designs 

From the results obtained in the parametric studies proposed in first future research 
direction, a new surrogate model could be developed. Using the metamodel-assisted 
optimization process, many jacket designs for different wind turbines and site conditions 
are optimized. This set of design could be used to train an ANN to predict the optimum 
jacket design for a wind turbine in specific site conditions. Therefore, the surrogate 
model would use the characteristics of the wind turbine and the site conditions as 
inputs, and the jacket design variables would be the outputs. This would result in 
a surrogate model that, immediately, proposes a jacket design for the desired study 
cases. It must be taken into account that the jacket obtained could not be assumed as 
global optimum, but it could act as a predesign. 
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Figure 7.1. Mass (up) and capital expenses (down) of jackets obtained in the design 
process addressed in Chapter 3, differentiated by the numbers of legs (markers) and 
bracing levels. 
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A.1 Introduction and general hypotheses 

Many international standards recommend the use of load–deflection curves (p–y curves) 
to determine the ultimate lateral capacity of pile foundations (see, for example, [27,32]). 
This model takes into account the SSI by replacing the surrounding soil with springs 
that reproduce its stiffness. To introduce the plastic behaviour of the soil, these springs 
are formulated as nonlinear springs. By imposing compatibility of loads and deflections 
between the pile and the springs representing the soil, the displacements and internal 
forces of the pile can be evaluated. 

 

A.2 Model description 

This model implements the p–y curves to obtain the pile response under head loads. 
Assuming that the soil around the pile is sand, API Recommended Practice 2A-WSD 
[27] define the lateral resistance–deflection relation of the soil as follows: 

ps = Ah pu tanh

(
 kh zp  

up

) 

(A.1) 

 
where pu is the sectional ultimate bearing capacity at depth zp, kh is the initial modulus 
of the subgrade reaction, up is the lateral deflection, and Ah is a factor taken as 0.9 if 
cyclic loading conditions are assumed. 

Owing to the complex deformation modes of the embedded pile, the pile and the 
surrounding soil are discretized in sufficient elements. Pile elements are modelled using 
Timoshenko beam theory [29], and the distributed sectional reaction of the soil is 
concentrated as two local lateral springs at each node of pile element. Figure A.1 
represents the modelling of the system. By applying the head loads, the system of 
equations is solved iteratively, and the response of the pile is obtained. 



 

 

− 

A NONLINEAR WINKLER SPRINGS MODEL 
 

 

 

  

Figure A.1. Representation of static Winkler model used for the evaluation of lateral 
foundation capacity. 

 

A.3 Validation results 

To validate the implemented p–y model, a comparison with the Matlab toolbox Sta- 
bil [88] is performed. A simplified study case of an embedded pile width a diameter 
of 1 m, a thickness of 15.6 mm, and four lengths of 5, 10, 15, and 20 m is established. 
Steel properties are assumed, that is, a Young’s modulus of 210 GPa and a Poisson’s 
ratio of 0.3. Soil properties are considered homogeneous through depth, with constant 
values of Ah pu = 3 MN/m and kh zp = 10 MN/m2. Lateral head load is applied to the 
pile, considering eccentricities of 2, 0, and 2 m. Figure A.2 shows the lateral head 
load against the lateral head displacement for different lengths piles (rows) and eccen- 
tricities (columns). Blue lines represent results obtained by the implemented model, 
while orange crosses are the validation results from Stabil. Great agreement is ob- 
served between both model, validating the use of the implemented nonlinear model. 
As expected, an increment in the lateral capacity is observed for longer piles, owing 
to the larger contact surface between pile and soil. Furthermore, the study case also 
shows that the load eccentricity produces a decrement in the lateral capacity. 
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Figure A.2. Lateral head load against the lateral head displacement of the embedded 
pile. Rows represent different lengths of the pile, and columns represent different 
eccentricities of the lateral load. 
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Título de la Tesis Doctoral: 

Implementación de modelos basados en redes 

neuronales artificiales para asistir en el análisis y diseño 

de cimentaciones jacket para aerogeneradores marinos 

 
B.1 Objetivos 

El objetivo de esta Tesis Doctoral consiste en explorar la implementación de modelos 
basados en redes neuronales artificiales (RNAs) para asistir en el análisis y diseño de 
estructuras tipo jacket como soporte de aerogeneradores marinos, teniendo en cuenta los 
fenómenos de interacción suelo–estructura. Para alcanzar dicho objetivo, se establecen 
dos objetivos parciales: 

1. El desarrollo de un modelo estructural que permita el análisis de la respuesta del 
aerogenerador marino, incorporando los efectos de interacción suelo–estructura. 
De este modo, el modelo puede ser usado dentro de estrategias para el diseño 
de estructuras de soporte de aerogeneradores. Con la finalidad de evaluar la 
viabilidad del jacket como estructura de soporte del aerogenerador, este modelo 
tiene en cuenta: 

• Todos los elementos relevantes del sistema y sus interacciones mutuas: el 
fondo marino, la cimentación, la subestructura jacket, la torre y el conjunto 
góndola-rotor-palas. 

• Las cargas que se espera actúen sobre el aerogenerador y la estructura jacket, 
que son el peso de la turbina y los elementos estructurales, y las fuerzas de 
arrastre producidas por el viento y el mar. 

• Los requisitos técnicos impuestos por las guías y prácticas recomendadas 
para las estructuras de soporte de aerogeneradores marinos. 

2. Explorar la utilidad de implementar modelos basados en RNAs para asistir en el 
proceso de diseño de estructuras de soporte jacket para aerogeneradores marinos. 
Estos modelos deben ser capaces de reemplazar el modelo estructural en algunas 
etapas del proceso de diseño. De esta manera, se espera una mejora del mismo, 
aprovechando el menor coste computacional de los modelos subrogados. 

 

B.2 Modelo estructural 

El modelo estructural desarrollado durante esta Tesis doctoral permite obtener la re- 
spuesta y evaluar la viabilidad estructural de la estructura jacket, al que se le asume 
cimentación pilotada, que actúa de soporte de un aerogenerador marino. El sistema es- 
tructural considerado se representa en la Figura B.1. Dicho modelo se puede diferenciar 
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Figure B.1. Representación del sistema estructural. Aerogenerador soportado por una 
estructura jacket cimentada sobre el lecho marino. 

 
en tres módulos que acometen distintas partes del proceso de análisis: evaluación de las 
cargas que actúan sobre la estructura, cálculo de la respuesta estructural y verificación 
de los criterios de diseño. 

 

Cargas de diseño 

El modelo estructural implementa las principales cargas que actúan sobre la estructura 
de soporte jacket. Se dividen en dos grupos: 

 
1. Cargas gravitacionales. Cargas debidas al peso propio de la turbina eólica y 

los distintos elementos estructurales que componen el sistema, es decir, la torre 
del aerogenerador y los elementos tubulares que conforman la estructura jacket. 
También se tiene en cuenta la flotabilidad que presentan los elementos sumergi- 
dos. 

2. Cargas ambientales. Cargas producidas por las fuerzas de arrastre del viento y 
del mar. Se considera el arrastre que produce el viento sobre la turbina eólica y 
los elementos estructurales sobre el nivel del mar, así como el arrastre del oleaje 
y las corrientes marinas sobre los elementos estructurales sumergidos. 

 
Para reducir el coste computacional asociado al modelo estructural, únicamente 

se evalúa un set reducido de casos de cargas con las principales combinaciones de 
condiciones de funcionamiento del aerogenerador y características ambientales. 
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Repuesta estructural 

La respuesta de la estructura jacket frente a las cargas externas, tanto en términos de 
los desplazamientos nodales como de los esfuerzos internos, se obtiene empleando el 
método de elementos finitos, considerando que la base de la torre del aerogenerador se 
vincula con la parte superior de las patas del jacket mediante elementos rígidos. La 
caracterización dinámica se extrae a partir de la resolución del problema de autovalores. 
Para introducir los efectos derivados de las cargas cíclicas, se realiza un análisis estático 
equivalente. 

La interacción suelo–estructura se incorpora empleando un modelo previamente 
desarrollado. Dicho modelo asume el pilote como un elemento unidimensional tipo viga 
y se basa en la expresión integral del teorema de reciprocidad en elastodinámica y el uso 
de soluciones fundamentales que reproducen el comportamiento de suelos estratificados 
con superficie libre. De este modo, se obtiene la matriz de impedancia de la cimentación 
pilotada de forma eficiente, incorporando la interacción pilote–suelo–pilote. Por otro 
lado, la interacción agua–estructura se considera como una inercia extra sobre la del 
propio elemento. Finalmente, se considera el amortiguamiento histerético del material, 
así cómo un amortiguador puntual en el rotor para incorporar el amortiguamiento 
aeroelástico. 

 

Criterios de diseño 

Se verifican un conjunto de requerimientos impuestos a las estructuras de soporte para 
aerogeneradores marinos. En primer lugar, se evalúan algunas restricciones de carácter 
geométrico: la altura mínima permitida a la que se debe situar la plataforma del jacket, 
la viabilidad de las uniones soldadas y el espesor y longitud de los pilotes. En cuanto 
a los criterios de fallo, se verifica que los elementos estructurales resisten los esfuerzos 
internos que presentan, sin producir pandeo. Además, se evalúa la capacidad portante 
del terreno frente a las cargas recibidas por la cimentación pilotada. Finalmente, se 
comprueba que el aerogenerador mantenga su orientación vertical y que el giro del 
rotor no produce resonancia con la estructura. 

 

B.3 Optimización del jacket 

El modelo estructural desarrollado se emplea para diseñar la estructura jacket para un 
caso de estudio concreto. Para establecer el caso de estudio, se define el aerogenerador 
que soporta el jacket, tanto sus características como las condiciones de funcionamiento, 
y las condiciones del emplazamiento donde se ubica, que incluye las propiedades del 
suelo, las características metoceánicas y las condiciones del viento. 

Para la obtención de los diseños de jackets, se optimiza la geometría y las secciones 
de los elementos tubulares para las distintas configuraciones de número de patas y 
niveles de arriostramiento. Como criterio de diseño, se establece minimizar la masa de 
la estructura jacket, sujeto a que el diseño cumpla los requerimientos impuestos a las 
estructuras de soporte. Para asegurar la viabilidad estructural, se evalúa la estructura 
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Figure B.2. Representación de tres ejemplos de diseño del jacket, indicando las variables 
incluidas (azul) o fijas (negro) en el proceso de optimización. 

 
mediante el modelo estructural presentado. La optimización se realiza empleando la 
función “surrogateopt” ya implementada en Matlab. La figura B.2 muestra una repre- 
sentación de las variables optimizadas en tres ejemplos concretos de diferente número 
de patas y niveles de arriostramiento. 

Haciendo uso del proceso de optimización, se evalúa la relevancia de la interacción 
suelo–estructura en el proceso de diseño de estas estructuras de soporte. Para ello, 
se obtienen diseños de estructuras jacket considerando la interacción suelo–estructura 
y asumiendo cimentación rígida. Seguidamente, se emplea el modelo estructural para 
evaluar la viabilidad de las estructuras con ambas consideraciones. De este modo, se 
analiza cómo afecta la consideración de la flexibilidad de la cimentación pilotada sobre 
los criterios de diseño impuestos en estructuras relevantes obtenidas tras un proceso de 
optimización. 

 

B.4 Modelos subrogados basados en redes neuronales ar‐ 

tificiales 

Para explorar la utilidad de los modelos subrogados basados en RNAs, se desarrollan 
dos modelos subrogados para distintas aplicaciones relacionadas con el tema central de 
la presente Tesis Doctoral. El primero de ellos consiste en un modelo subrogado capaz 
de predecir la rigidez de un pilote enterrado en un suelo no homogéneo, mientras que el 
segundo estima la frecuencia fundamental de un aerogenerador marino cimentado sobre 
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una estructura jacket. En ambos, se alcanzan altos niveles de precisión, obteniendo 
modelos subrogados capaces de reproducir la respuesta de los sistemas. 

 

B.5 Modelo subrogado para la evaluación del jacket 

Para reducir el coste computacional tradicionalmente asociado a los modelos estruc- 
turales, se desarrolla un modelo subrogado basado en RNAs para la evaluación de 
la viabilidad del jacket. El objetivo de dicho modelo es determinar, a partir de las 
características del aerogenerador, del emplazamiento y de la estructura jacket, si la 
estructura de soporte verifica los requerimientos impuestos según las guías y prácticas 
recomendadas internacionales. 

El entrenamiento de las RNAs se realiza mediante un proceso de aprendizaje su- 
pervisado. Para ello, se genera un dataset sintético en dos etapas. En primer lugar, se 
obtiene un set de muestras aleatorias de diferentes aerogeneradores, emplazamientos y 
diseños de jackets a partir de un espacio de búsqueda predefinido, que pretende limitar 
la generación de muestras a casos relevantes. Seguidamente, se emplea el modelo es- 
tructural presentado en esta Tesis Doctoral para evaluar la viabilidad de cada muestra 
en el dataset Tras generar el dataset, se entrenan RNAs, tanto de clasificación como de 
regresión (de los factores de utilización), para estimar si la estructura jacket es viable o 
no es viable. Con respecto a la salida del modelo, se compara el rendimiento del mod- 
elo subrogado al considerar una única salida que estime la viabilidad o no viabilidad 
del conjunto estructural o, por el contrario, de establecer múltiples salidas dedicadas a 
estimar si se verifican o no cada una de las comprobaciones parciales impuestas. Del 
mismo modo, se analiza la utilidad de combinar diferentes RNAs en un modelo de 
conjunto para mejorar su rendimiento. 

 

B.6 Optimización asistida por el modelo subrogado 

Se estudia la mejora que supone incluir el modelo subrogado dentro del proceso de 
optimización. Para ello, se parte del mismo caso de estudio que en el proceso de diseño 
anterior, se optimiza la geometría y secciones del jacket para cada combinación de 
número de patas y niveles de arriostramiento. Se implementa una optimización basada 
en el descenso del gradiente donde las verificaciones impuestas sobre la estructura son 
evaluadas mediante el modelo subrogado. 

Para asegurar la obtención de estructuras viables, las soluciones obtenidas se evalúan 
con el modelo estructural y se utilizan para reentrenar las RNAs. Este proceso se repite 
durante 20 iteraciones, permitiendo al modelo subrogado refinarse durante el proceso. 
La figura B.3 representa el esquema general de este proceso de optimización. 
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Figure B.3. Diagrama del proceso de optimización asistido por el metamodelo. 

 

B.7 Conclusiones 

El modelo numérico presentado permite la evaluación de la viabilidad estructural de la 
estructura de soporte jacket para aerogeneradores marinos. Este modelo es un compro- 
miso entre los métodos extremadamente simplificados y los modelos rigurosos y com- 
plejos, haciéndola una herramienta adecuada para el análisis estructural de este tipo de 
estructuras complejas usando menos recursos computacionales. En dicha herramienta 
se establece un set reducido de casos de cargas y se lleva a cabo un análisis estático 
equivalente para introducir todas las cargas ambientales relevantes. La respuesta del 
jacket es calculada, teniendo en cuenta los efectos de la interacción suelo–estructura 
derivados de la flexibilidad de la cimentación pilotada. Finalmente, se evalúan los 
principales requerimientos técnicos impuestos a la estructura de soporte jacket para 
garantizar su viabilidad, de acuerdo con normas internacionales. 

El modelo estructural se usa para obtener diseños de jackets para un aerogener- 
ador en un emplazamiento concreto, a través de un proceso de optimización. No se 
logra una convergencia completa del proceso debido a la complejidad de las restric- 
ciones no lineales y al gran número de variables requeridas para definir completamente 
la geometría. Sin embargo, se obtienen diseños estructurales que verifican todas las 
restricciones impuestas. Adicionalmente, se realiza un análisis de la relevancia de la 
interacción suelo–estructura en el proceso de optimización, estudiando cómo afecta 
esta consideración en las restricciones impuestas a las estructuras de soporte en jack- 
ets viables obtenidos a través del proceso de optimización. Los resultados muestran 
un incremento en los esfuerzos internos en algunos elementos estructurales cuando se 

Aerogenerador 
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considera la flexibilidad de la cimentación pilotada. 
Se desarrollan dos modelos subrogados basados en RNA, para explorar su capaci- 

dad de reproducir la respuesta de sistemas estructurales complejos que incluyen efectos 
de interacción suelo–estructura. En primer lugar, un modelo subrogado para esti- 
mar la rigidez de una cimentación pilotada, y en segundo lugar, un modelo subrogado 
para predecir la frecuencia fundamental de un aerogenerador marino sobre una estruc- 
tura jacket. Ambos modelos confirman la utilidad que los modelos de RNAs pueden 
proporcionar para reemplazar a los modelos numéricos de alto coste computacional, 
alcanzando una elevada precisión, un comportamiento suave y un coste computacional 
mucho menor que el modelo de referencia. 

Aprovechando la gran capacidad de ajuste mostrada por los modelos de RNAs, se 
construye un modelo subrogado para la evaluación de la viabilidad de la estructura 
de soporte jacket. Para el entrenamiento del modelo, se genera un dataset sintético 
de muestras aleatorias representativas de diferentes aerogeneradores, emplazamientos 
y estructuras jacket; que se evalúa con el modelo estructural para determinar si las 
muestras generadas cumplen los criterios de diseño. Se obtienen modelos subrogados 
de clasificación y regresión que tienen en cuenta las variables más relevantes que definen 
el sistema. Tras analizar el rendimiento de los modelos, se observa una buena capacidad 
de discriminación entre jackets viables y no viables, incluso partiendo de un dataset de 
entrenamiento altamente descompensado donde la prevalencia de estructuras viables 
es de 0.295%. Las métricas de clasificación obtenidas por los modelos de clasificación y 
regresión son similares. Sin embargo, el mejor ajuste entre la predicción de viabilidad 
y el factor de utilización de la estructura jacket que presenta el modelo de regresión 
incrementa su utilidad. 

Este modelo subrogado es incorporado a un proceso de optimización para evaluar 
la utilidad de usar modelos basados en RNAs para asistir en el proceso de diseño 
de las estructuras jacket. Se implementa un proceso de optimización basado en el 
descenso del gradiente que incorpora al modelo subrogado para evaluar la viabilidad 
de la estructura. En sucesivas iteraciones, se evalúan los diseños resultantes con el 
modelo estructural para reentrenar las RNAs y repetir el proceso. Comparando con 
el proceso de diseño previo sin un modelo subrogado específicamente desarrollado, 
se obtienen jacktes viables con una reducción de la masa de un 10%. Además, se 
aprecia una significativa reducción en el número de evaluaciones del modelo estructural, 
requiriendo únicamente un 3% de las iniciales. Se concluye que las estrategias de 
optimización asistidas por modelos subrogados, como la implementada en esta Tesis 
Doctoral, incrementan el alcance de los estudios paramétricos que analicen la influencia 
de las propiedades del aerogenerador y del emplazamiento en las variables de diseño 
del jacket. 
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Acronyms 

Symbol Description Units 

CCDF Complementary cumulative distribution function 

CDF Cumulative distribution function 

DAF Dynamic amplification factor 

ELU Exponential linear unit activation function 

EOG Extreme operating gust 

ESS Extreme sea estate 

ETM Extreme turbulence model 

EWH Extreme wave height 

FLS Fatigue limit states 

FN False negative 

FP False positive 

MCC Matthews Correlation Coefficient 

MSE Mean square error 

NoHL Number of hidden layers 

NoNpHL Number of neurons per hidden layer 

NoP Number of parameters 

NPV Negative predictive value 

NTM Normal turbulence model 

OWT Offshore wind turbine 

PPV Positive predictive value 

ReLU Rectified linear unit activation function 

SLS Serviceability limit states 

SSI Soil–structure interaction 

TN True negative 

TNR True negative rate 
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TP True positive 

TPR True positive rate 

ULS Ultimate limit states 

 

Greek Symbols 

 

 

 

 

 

 
axis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

waves 

λ fr,max Latent variable to generate rotor maximum rota- 
tion speed 

 

s−1 

λ fr,min 
Latent variable to generate rotor minimum rota- 
tion speed 

m s−2 

Λ1 Scalar parameter of longitudinal turbulence m 

Symbol 

αbr 

αch 

Description 

Angle of the bracing 

Relative length of chord 

Units 

° 

– 

αleg Angle of the jacket legs ° 

αw Angle between the wind direction and element rad 

βbr,A∨B Relative diameter of brace A or B – 

γch Diameter to thickness ratio of chord – 

γM Material factor – 

∆ Nondimensional roughness – 

δ Pile cross-section inner and outer ratio – 

εr Relative error – 

ξae Aeroelastic damping ratio – 

η Requirement utilization factor – 

ζbr Relative gap between braces – 

θbr,A∨B Angle of brace A or B ° 

θH Rotation of pile head rad 

λwave Scale parameter of the Weibull distribution of m 
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in ETM 

in NTM 

i 

 

 

wind 

 

 

 

 

 

 

 

 

 

 

 

 

σa0,Sd Design axial compression stress N m−2
 

σETM Standard deviation of wind turbulence in ETM m s−1
 

σETM, fKS≥ fr,max Standard deviation of wind turbulence above 
fr,max 

m s−1 

σmi,Sd Maximum design bending stress about given axis N m−2
 

σNTM Standard deviation of wind turbulence in NTM m s−1
 

σNTM, fKS≥ fr,max Standard deviation of wind turbulence above 
fr,max 

m s−1 

σv Equivalent von-Mises stress N m−2
 

 

τbr,A∨B Relative thickness of brace A or B – 

φs Soil’s angle of internal friction ° 

ω Angular frequency rad s−1
 

 

Roman Symbols 

Symbol Description Units 

Ah Factor to account for cyclic or static loading con- – 
dition 

a˜
ly Output of neuron i of layer ly, before activation – 

function 

λwind 

 

νpile 

Scale parameter of the Weibull distribution of 

 

Poisson’s ratio of the pile 

m s−1 

 

– 

νs Poisson’s ratio of the soil – 

ξae,SS Aeroelastic damping ratio in side-side direction – 

ξae,FA Aeroelastic damping ratio in fore-aft direction – 

ξn Equivalent viscous damping – 

ρa Air density kg m−3
 

ρs Soil density kg m−3
 

ρw Water density kg m−3
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i 

i 

 
ly Output of neuron i of layer ly – 

Ap Gross end area of the pile m2
 

AR Wind turbine rotor area m2
 

As Side surface area of the pile m2
 

ly Bias of the neuron i of layer ly – 

h Activation function – 

Ca Punctual aeroelastic damper N s m−1
 

 

CA Added mass coefficient – 

CD Drag coefficient – 

CM Mass coefficient – 

cs Shear wave propagation velocity in the soil m s−1
 

CT Thrust coefficient of the wind turbine – 

CV Coefficient of variation – 

D Diameter m 

Dbottom Wind turbine tower bottom diameter m 

Dbr Diameter of bracing tubular members m 

Dbr,A∨B Diameter of brace A or B m 

Dbri Diameter of bracing tubular members of level i m 

Dlegi 
Average value of leg diameters for each bracing m 
level 

Dch Diameter of chord m 

Dleg Diameter of legs tubular members m 

Dpile Pile diameter m 

Drotor Rotor diameter m 

Dtop Wind turbine tower top diameter m 

Epile Young’s modulus of the pile N m−2
 

Er Relative Young’s modulus of the pile – 

a 

B 
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s 

s 

wn 

 

Es Young’s modulus of the soil N m−2
 

0 Young’s modulus of the soil at free surface N m−2
 

L Young’s modulus of the soil at the reference 
depth 

N m−2 

f˜ Complex natural frequency Hz 

fakd Design local buckling strength N m−2
 

fEi Euler buckling strength about given axis N m−2
 

 

Fext External forces vector N, N m 

FH,L Lateral force on pile head N 

FH,V 

fkcd 

Vertical force on pile head 

Design column buckling strength 

N 

N m−2 

fKS Wind turbulence frequency in Kaimal spectrum Hz 

fn Natural frequency Hz 

fr,max Rotor maximum rotation speed Hz 

fr,min Rotor minimum rotation speed Hz 

fRO Wind turbine operating excitation frequencies Hz 

fs Unit skin friction capacity N m−2
 

FTH Wind thrust force on the wind turbine rotor N 

fth Sectional thrust force owing to wind on elements 
above sea level 

fwn Sectional normal force owing to sea on sub- 
merged elements 

N m−1 

N m−1 

current 
wn Sectional normal force owing to current velocity N m−1

 

eq Sectional normal force owing to sea, including 
dynamic amplification 

N m−1 

fy Elastic strength of the material N m−2
 

g Acceleration of gravity m s−2
 

ga Air gap between the jacket platform and the m 
maximum wave crest. 

E 

E 

f 

f 
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gbr Gap between braces m 

Gs Shear modulus of the soil N m−2
 

HESS,1 1-y significant wave height m 

HESS,50 50-y significant wave height m 

HEWH,1 1-y extreme wave height m 

HEWH,50 50-y extreme wave height m 

Hjck Height of the jacket structure m 

Hjck,min Minimum jacket height according to Equation m 
(2.26) 

Htower Height of the wind turbine tower m 

Hw Water depth m 

hwave Wave height m 

Ipile Pile cross-section moment of inertia m4
 

Iref Expected value of turbulence intensity for 15 m/s – 

IRNA,roll Rotor-nacelle assembly moment of inertia about 
roll axis 

IRNA,yaw Rotor-nacelle assembly moment of inertia about 
yaw axis 

kg m−2 

kg m−2
 

K Static stiffness matrix N m−1, N, N m 

K̃ Complex stiffness (and damping) matrix N m−1, N, N m 

Keq Equivalent stiffness of the fundamental mode of 
the fixed-base wind turbine 

Kf,f Stiffness sub-matrix of external forces on the 
foundation link due to foundation link displace- 
ments 

Kf,j Stiffness sub-matrix of external forces on the 
foundation link due to jacket structure displace- 
ments 

N m−1 

 

N m−1, N, N m 

N m−1, N, N m 

kh Initial modulus of soil’s subgrade reaction N m−3
 

Khh Horizontal stiffness of single pile N m−1
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K̂ hh Dimensionless horizontal stiffness of single pile – 

Khr Horizontal-rocking coupling stiffness of single pile N m 

K̂ hr Dimensionless horizontal-rocking coupling stiff- 
ness of single pile 

Kj,f Stiffness sub-matrix of external forces on the 
jacket structure due to foundation link displace- 
ments 

Kj,j Stiffness sub-matrix of external forces on the 
jacket structure due to jacket structure displace- 
ments 

– 

 

N m−1, N, N m 

N m−1, N, N m 

Krr Rocking stiffness of single pile N m 

K̂ rr  Dimensionless rocking stiffness of single pile – 

KSSI Foundation impedance matrix N m−1, N, N m 

Kv Vertical stiffness of single pile N m−1
 

K̂ v  Dimensionless vertical stiffness of single pile – 

kwave Shape parameter of the Weibull distribution of m 
waves 

kwave Wave number m−1
 

kwind Shape parameter of the Weibull distribution of – 
wind 

Lch Length of chord m 

Lpile Pile length m 

Lpile,min Minimum pile length considered to achieve active m 
length. 

Lr Relative pile length – 

LR Likelihood ratio of obtaining evidence knowing – 
whether a prior condition occurs or not. 

M Mass matrix kg, kg m, kg m2
 

MH Bending moment on pile head N m 

Mjck Mass of the jacket foundation kg 

Mpltf Mass of the jacket platform kg 
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interaction 

 

 

 

 

 

 

 

 

the soil profile 

 

nificant wave is measured 
 

 

 

ps  Sectional reaction of soil  N m−1 

pu Sectional ultimate bearing capacity of soil N m−1 

Qp  Total end-bearing resistance  N 

qp Unit end-bearing capacity N m2
 

Qs Skin friction resistance N 

Qu Ultimate axial bearing capacity N 

Sbase Legs spacing at the base of the jacket m 

Stop Legs spacing at the top of the jacket m 

Stop,min Minimum legs spacing at the top of the jacket m 
according to circumscribe the wind turbine tower 
bottom diameter 

T Thickness m 

t Time s 

Tbottom Wind turbine tower bottom thickness m 

Tbr Thickness of bracing tubular members m 

MRNA Rotor-nacelle assembly mass kg 

mw Sectional added mass owing to water–structure kg m−1
 

NANN Number of ANNs in the ensemble model – 

nbr Number of bracing levels of the jacket – 

Ncheck Number of checks considered – 

nleg Number of legs of the jacket – 

Ns Number of samples – 

ns Exponent of generalized power law function of – 

Nwave Number of waves during the duration where sig- m 

Pi ith percentile of the distribution – 

Pi Mean of ith percentile of the distributions – 
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Tbr,A∨B Thickness of brace A or B m 

Tbri Thickness of bracing tubular members of level i m 

Tch Thickness of chord m 

Tleg Thickness of legs tubular members m 

Tpile Pile thickness m 

Tpltf Platform thickness considered for dataset genera- m 
tion 

TR Return period of waves m 

Ttop Wind turbine tower top thickness m 

Twave Wave period s 

u Nodal displacements vector m, rad 

U Uniform distribution function – 

uavg Average annual wind speed at the hub m s−1
 

ue50 Extreme wind speed with a 50-y recurrence pe- 
riod 

m s−1 

uH,L Lateral displacement of pile head m 

uH,V Vertical displacement of pile head m 

um  Mean component of the wind speed at the hub m s−1 

um,10 Mean velocity of the wind at 10ảbove sea surface  m s−1 

Uout  Cut-out wind speed of wind turbine m s−1
 

up Lateral pile deflection m 

UR Rated wind speed of wind turbine m s−1
 

utb Turbulent component of the wind speed at the 
hub 

m s−1 

uwind Wind velocity m s−1
 

vc,circ Circulational current velocity m s−1
 

vc,wind Wind generated current velocity m s−1
 

vn Normal component of water particle velocity m s−1
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v˙n Normal component of water particle acceleration m s−2
 

wi Radial basis functions weights – 
 

i,j 
in neuron j of layer ly 

 

 

 

 

 

 

 

 

 

 

 

 

 

i, j 
k, for sample i 

W
ly 

Weight of the output of neuron i of layer (ly− 1) – 

X Jacket design variables included in the optimiza- – 
 tion process  

x Horizontal distance in the waves’ propagation m 
 direction  

Xci Radial basis functions centres – 

Yi Target value for sample i – 

Yˆi Prediction value for sample i – 

Ŷ k Prediction value of output j, given by the ANN – 

z Vertical position measured above sea level m 

zp Depth measured from the mud line m 

zref Vertical position (z) taken as reference m 
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