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Abstract
Purpose Colistin is used as a last resort antibiotic against infections caused by multidrug-resistant gram-negative bacteria, 
especially carbapenem-resistant bacteria. However, colistin-resistance in clinical isolates is becoming more prevalent. Cin-
namaldehyde and baicalin, which are the major active constituents of Cinnamomum and Scutellaria, have been reported to 
exhibit antibacterial properties. The aim of this study was to evaluate the capacity of cinnamaldehyde and baicalin to enhance 
the antibiotic activity of colistin in Enterobacterales and Acinetobacter baumannii strains.
Methods The MICs of colistin were determined with and without fixed concentrations of cinnamaldehyde and baicalin by 
the broth microdilution method. The FIC indices were also calculated. In addition, time-kill assays were performed with 
colistin alone and in combination with cinnamaldehyde and baicalin to determine the bactericidal action of the combinations. 
Similarly, the effects of L-arginine, L-glutamic acid and sucrose on the MICs of colistin combined with cinnamaldehyde and 
baicalin were studied to evaluate the possible effects of these compounds on the charge of the bacterial cell- wall.
Results At nontoxic concentrations, cinnamaldehyde and baicalin partially or fully reversed resistance to colistin in Entero-
bacterales and A. baumannii. The combinations of the two compounds with colistin had bactericidal or synergistic effects 
on the most resistant strains. The ability of these agents to reverse colistin resistance could be associated with bacterial cell 
wall damage and increased permeability.
Conclusion Cinnamaldehyde and baicalin are good adjuvants for the antibiotic colistin against Enterobacterales- and A. 
baumannii-resistant strains.
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Introduction

Antimicrobial resistance is considered a major threat to 
global health. There has been particular attention on mul-
tidrug-resistant (MDR) pathogens from the genera Acine-
tobacter, Pseudomonas, Klebsiella, Enterobacter, Serratia 
and Proteus, and the species Escherichia coli, which pose 
an important clinical threat and are responsible for severe 
and often deadly infections [1–3]. In this context, interest in 

older antibiotics, such as colistin, has resurfaced. Colistin 
is a polymyxin antibiotic that is used as a last-resort treat-
ment for life-threatening infections caused by gram-negative 
MDR bacteria [4, 5]. Colistin functions mainly by interact-
ing with lipopolysaccharide (LPS), which is part of the outer 
membrane of gram-negative bacteria. Once attached, colistin 
causes derangement and lysis of the cell wall and the leakage 
of internal contents [5].

Unfortunately, the extensive use of colistin has led to 
the spread of both chromosomally and plasmid-mediated 
colistin resistance. However, acquired chromosomal resist-
ance to colistin remains the most common in Enterobac-
terales strains isolated from humans [5, 6]. In addition, 
species such as Serratia marcescens, Proteus spp., Provi-
dencia spp. and Morganella morganii exhibit intrinsic 
resistance to this antibiotic [5]. To address the increasing 
emergence and spread of antibiotic resistance, promoting 
new solutions that broaden the antimicrobial portfolio is 
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important. Quorum sensing (QS) inhibitors have emerged 
as possible alternatives to antibiotics [7].

Cinnamaldehyde (CN) is a flavonoid that gives cinna-
mon its flavor and aroma [8]. The synergistic activity of 
CN with antibiotics, effects on biofilms and QS regulation 
have been demonstrated [9, 10]. CN is broadly used in the 
food and cosmetic industries [8, 9].

Baicalin (BA) is also a flavonoid that is mainly found in 
the roots of plants of the genus Scutellaria. BA enhances 
antibiotic activity and acts as QS inhibitor [11, 12]. BA 
also inhibits the production of biofilms, and other viru-
lence factors in Pseudomonas aeruginosa and E. coli [11, 
12].

The aim of this study was to assess the potential of 
using CN and BA to enhance colistin activity against 
Enterobacterales and Acinetobacter baumannii.

Materials and methods

Strains

This study involved fifteen colistin-resistant clinical bacte-
rial isolates of the species Klebsiella pneumoniae (n = 6), 
E. coli (n = 3), Enterobacter cloacae (n = 3), S. marces-
cens (n = 1), Proteus mirabilis (n = 1), and M. morganii 
(n = 1), which were all isolated from blood samples in 
2019 (strains 19/) or 2021 (strains 21/) and differenti-
ated by biotype using the API20E biochemical test and 
database at https:// apiweb. biome rieux. com/. These strains 
were also differentiated by antibiotype via the determina-
tion of beta-lactam MICs using Sensititre™ EU Surveil-
lance ESBL EUVSEC2 AST plates (Thermo Fisher Scien-
tific) and colistin and ciprofloxacin MICs. This study also 
included five wild-type reference strains from the Span-
ish Collection of Type Cultures (E. coli ATCC 25922, K. 
pneumoniae ATCC 700603, P. aeruginosa ATCC 27853, 
A. baumannii ATCC 15308 and A. baumannii ATCC 
19606) and two stable colistin-resistant mutants of ATCC 
15308 and ATCC 19606, which were selected in vitro as 
previously described [13]. The selection frequencies of 
the two mutants were consistent with those reported in a 
previous study [13].

All clinical isolates were extended-spectrum beta-lac-
tamase (ESBL)-producing strains according to EUCAST 
guidelines, which are based on non-susceptibility to indi-
cator oxyimino-cephalosporins; all the strains were also 
MDR strains according to Magiorakos et al. since they were 
beta-lactam-, quinolone- and colistin-resistant [14, 15]. The 
colistin- resistance in strains 19/2, 19/3 to 19/8 and 19/10 
to 19/12 was previously characterized as chromosomally- 
mediated [16].

Identification of plasmid‑mediated resistance 
to colistin

The presence of the mcr-1 to mcr-10 genes was studied in 
fifteen colistin-resistant clinical bacterial isolates, including 
the 19/2, 19/3 to 19/8 and 19/10 to 19/12 strains, as pre-
viously described [17–20]. PCR of the studied strains was 
performed on genomic DNA, which was extracted by the 
boiling method, and on plasmid DNA, which was extracted 
by using a High Pure Plasmid Isolation Kit from Roche.

In addition, the transferability of colistin resistance was 
assessed by conjugation assays using the sodium-azide-
resistant E. coli J53 K12 strain as a recipient [16].

Minimum inhibitory concentration (MIC) 
assessment and fractional inhibitory concentration 
(FIC) index calculation

The MICs of colistin, CN and BA, which were purchased 
from Sigma (Spain), were determined individually as previ-
ously described [16]. Colistin was dissolved in water [16]. 
Furthermore, ethanol and dimethyl sulfoxide (DMSO) were 
used as solvents for CN and BA, respectively.

The range of concentrations of colistin was from 0.063 to 
4096 mg/L. The MICs of colistin were determined in the pres-
ence of fixed concentrations of CN (28.5, 57 and 114 mg/L) at 
pH 7.0- 7.4 and BA (1.3 ×  103, 2.7 ×  103 and 5.4 ×  103 mg/L) 
at pH 5.2–6.34. These concentrations of CN and BA were 
1/2, 1/4 and 1/8 of the MICs of these chemicals in the studied 
strains, except for A. baumannii 21/7, in which the BA MIC 
was 1/2 that in the remaining strains studied. The MICs of CN 
and BA were in the range of previous descriptions [12, 21].

MICs were determined by the 2-fold broth microdilu-
tion method in Mueller-Hinton broth (MHB) according to 
the latest EUCAST and CLSI guidelines [22–24]. All MIC 
determinations were performed at least three times.

Fractional inhibitory concentration indices (FICIs) were 
calculated to assess the synergy between colistin and the 
two agents. The same units were used for all MIC values to 
calculate the FICIs as follows: FICI = FICA + FICB, where 
FICA = MICA + B/MICA, and FICB = MICA + B/MICB, in 
this equation, A was colistin and B was cinnamaldehyde or 
baicalin. An FICI ≤ 0.5 suggested synergy, an FICI > 0.5-4 sug-
gested no interaction, and an FICI > 4.0 suggested antagonism 
[25].

Time‑kill assay

Time-kill assays were performed on six strains with the 
highest colistin resistance (colistin MICs ≥ 128 mg/L), E. 
cloacae 19/3, K. pneumoniae 19/5, S. marcescens 19/10, P. 

https://apiweb.biomerieux.com/


European Journal of Clinical Microbiology & Infectious Diseases 

mirabilis 19/11, M. morganii 19/12 and A. baumannii 21/7; 
three strains in which the colistin MIC (4 mg/L) was just 
above the breakpoint defined by EUCAST (2 mg/L), E. coli 
21/2, E. cloacae 21/4 and K. pneumoniae 21/5 [23]; and P. 
aeruginosa ATCC 27853 and A. baumannii ATCC 19606.

Time-kill assays were performed following a previously 
described protocol [16]. Overnight cultures of the eleven 
strains were inoculated into fresh MHB supplemented 
with colistin (4 mg/L) alone or in combination with CN 
at 114 or 57 mg/L and BA at 5.4 ×  103 mg/L. The growth 
of strains in MHB supplemented with CN or BA alone, at 
the indicated concentrations, and in MHB supplemented 
with ethanol or DMSO, at the same % (v/v) as CN and BA 
respectively, was also evaluated. A lower concentration of 
BA, 2.7 ×  103 mg/L, was also assessed with A. baumannii 
21/7 as this strain was more susceptible to BA. Similarly, 
MHB without colistin, BA, or CN was inoculated with 
every strain and used as a control for bacterial growth. 
All time-kill assays were performed at least three times, 
and the standard deviations were calculated. The data are 
presented in graphs as the mean ± standard deviation (SD).

Bactericidal activity for colistin + CN, colistin + BA and 
CN and BA alone was defined as a decrease of ≥ 3  log10 

cfu/mL compared to the initial inoculum. Likewise, synergy 
between colistin + CN and colistin + BA was defined as a 
decrease of ≥ 2  log10 cfu/mL compared to growth in the 
presence of colistin alone [16].

Analysis of the mode of action of the CN and BA

To assess whether the ability of CN and BA to reverse 
resistance to colistin was similar to that described for aspi-
rin (AS), sodium benzoate (SB) and sodium salicylate (SS), 
the effects of 300 mM sucrose, 1 mM L-arginine and 1 mM 
L-glutamic acid on the MICs of colistin + CN and colis-
tin + BA were evaluated. Neither sucrose nor amino acids 
alone inhibited bacterial growth [16].

Results

Analysis of colistin resistance

The MICs of colistin ranged from 4 to 4096 mg/L in the fif-
teen studied colistin-resistant clinical isolates (Tables 1 and 
2). No amplification of any of the mcr genes was detected 

Table 1  Effects of different concentrations of CN on colistin MICs (mg/L) and influence of L-arginine, L-glutamic acid and sucrose

CST colistin, CN cinnamaldehyde, CN-29, 28.5 mg/L CN; CN-57, 57 mg/L CN; CN-114, 114 mg/L CN; Arg, 1 mM L-arginine; Glu, 1 mM 
L-glutamic acid; SC, 300 mM sucrose

CST CN CST + CN-29 CST + CN-57 CST + CN-114 CST + CN-57 CST + CN-114

+ Arg + Glu + SC + Arg + Glu + SC

E. coli ATCC 25922 0.5 218.5 2 2 0.5 1 0.5 1 1 0.5 0.5
E. coli 19/2 8 218.5 4 4 2 1 2 2 1 1 ≤ 0.06
E. coli 21/1 4 218.5 4 4 1 2 2 2 0.5 1 0.25
E. coli 21/2 4 218.5 2 2 0.5 1 1 2 1 1 0.5
E. cloacae 19/3 4096 218.5 512 256 0.25 0.5 2 1 0.5 1 4
E. cloacae 21/3 4 218.5 4 4 0.5 2 2 2 1 1 1
E. cloacae 21/4 4 218.5 2 2 1 2 2 2 2 1 1
K. pneumoniae ATCC 700603 1 437 1 1 1 2 1 2 1 1 2
K. pneumoniae 19/4 64 218.5 4 4 4 2 4 4 2 2 2
K. pneumoniae 19/5 128 437 64 16 2 2 4 2 2 2 1
K. pneumoniae 19/6 64 218.5 4 4 2 4 2 2 1 1 1
K. pneumoniae 19/7 64 218.5 2 2 1 0.5 1 0.5 2 1 1
K. pneumoniae 19/8 64 437 4 4 4 2 2 2 1 1 1
K. pneumoniae 21/5 4 218.5 2 2 2 2 2 2 1 2 2
P. aeruginosa ATCC 27853 1 874 2 1 1 2 1 2 2 1 2
A. baumannii ATCC 15308 2 218.5 2 2 2 1 1 0.5 0.5 0.25 0.5
A. baumannii ATCC 19606 2 218.5 2 1 1 1 0.5 1 0.25 ≤ 0.06 ≤ 0.06
A. baumannii 21/6 256 874 256 64 ≤ 0.06 16 16 64 ≤ 0.06 ≤ 0.06 ≤ 0.06
A. baumannii 21/7 256 218.5 256 64 ≤ 0.06 128 128 32 ≤ 0.06 ≤ 0.06 ≤ 0.06
S. marcescens 19/10 4096 218.5 128 4 0.25 1 1 1 0.5 0.5 0.5
P. mirabilis 19/11 4096 218.5 4096 4 0.5 1 1 1 1 0.5 0.5
M. morganii 19/12 4096 218.5 4096 128 0.25 512 4096 4096 64 2 ≤ 0.06
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by PCR in the studied strains. Similarly, conjugation assays 
confirmed the lack of transferability of colistin resistance. 
Taken together, these results indicate that colistin resistance 
was most likely chromosomally mediated in the studied 
strains.

Assessment of the antibacterial activity of potential 
adjuvants with colistin

The highest concentrations of CN and BA were the most 
effective at decreasing the MICs of colistin, up to > 68,266-
fold decreases (Tables 1 and 2). Furthermore, the two lowest 
concentrations of CN and BA decreased the MICs of colistin 
by 2- to 8192-fold, although the lowest CN concentrations 
were somewhat more effective at decreasing the MICs of 
colistin in E. coli 21/2, E. cloacae, K. pneumoniae, M. mor-
ganii and A. baumannii strains, whereas those of BA were 
more effective in S. marcescens and P. mirabilis (Tables 1 
and 2).

Similarly, the decreases in the MICs of colistin in the 
wild-type strains were mainly induced by the highest con-
centration of BA (Table 2).

FICI analysis revealed synergy between the highest con-
centrations of CN and BA with colistin in all resistant strains 
except for colistin + CN in K. pneumoniae 21/5. Colis-
tin + CN-114 had no-interaction in the susceptible wild-type 
strains. The colistin + BA-5 combination was more syner-
gistic than colistin + CN in two E. coli and K. pneumoniae 
strains, S. marcescens, P. mirabilis, P. aeruginosa ATCC 
27853 and the A. baumannii wild-type strains (Table 3).

Time‑kill assays

The presence of 4 mg/L colistin did not generally decrease 
the growth of strains in which colistin MICs ≥ 128 mg/L by 
more than 1  log10 CFU/mL (Fig. 1). CN or BA had bacteri-
cidal effects against only A. baumannii 21/7 (Fig. 1g and h). 
DMSO alone decreased the growth of A. baumannii 21/7 by 
1-1.6 units but not that of the remaining strains.

The colistin + CN/BA combinations were not more bac-
tericidal than colistin alone in strains in which the colistin 
MICs were 4 mg/L (Fig. 1a and f), except for E. cloacae 21/4 
(Fig. 1d). In contrast, the colistin + CN/BA combinations, but 
not colistin alone, had bactericidal effects against E. cloacae 

Table 2  Effects of different concentrations of BA on colistin MICs (mg/L) and influence of L-arginine, L-glutamic acid and sucrose

CST colistin, BA baicalin, BA-1, 1.3 ×  103 mg/L BA; BA-3, 2.7 ×  103 mg/L BA; BA-5, 5.4 ×  103 mg/L BA; Arg, 1 mM L-arginine; Glu, 1 mM 
L-glutamic acid; SC, 300 mM sucrose

CST BA CST + BA-1 CST + BA-3 CST + BA-5 CST + BA-3 CST + BA-5

+ Arg + Glu + SC + Arg + Glu + SC

E. coli ATCC 25922 0.5 10,680 2 2 2 0.5 1 0.5 0.5 0.25 ≤ 0.06
E. coli 19/2 8 10,680 4 4 1 1 1 0.25 1 0.25 ≤ 0.06
E. coli 21/1 4 10,680 4 4 0.5 1 1 1 1 0.5 0.25
E. coli 21/2 4 10,680 4 4 0.5 1 1 0.5 0.5 0.25 ≤ 0.06
E. cloacae 19/3 4096 10,680 4096 4096 128 64 128 4096 0.25 0.12 512
E. cloacae 21/3 4 10,680 8 8 1 1 1 0.5 0.5 0.25 ≤ 0.06
E. cloacae 21/4 4 10,680 8 4 0.25 1 1 1 0.5 0.25 ≤ 0.06
K. pneumoniae ATCC 700603 1 10,680 8 4 4 8 8 8 32 64 2
K. pneumoniae 19/4 64 10,680 16 16 8 8 32 8 8 16 8
K. pneumoniae 19/5 128 10,680 128 128 2 256 256 256 2 4 8
K. pneumoniae 19/6 64 10,680 8 4 1 1 1 0.25 2 0.5 ≤ 0.06
K. pneumoniae 19/7 64 10,680 2 2 ≤ 0.06 2 2 2 2 2 ≤ 0.06
K. pneumoniae 19/8 64 10,680 8 4 2 1 1 0.25 2 1 ≤ 0.06
K. pneumoniae 21/5 4 10,680 4 4 0.25 8 32 16 4 2 1
P. aeruginosa ATCC 27853 1 10,680 4 4 0.25 1 2 2 ≤ 0.06 0.25 ≤ 0.06
A. baumannii ATCC 15308 2 10,680 4 2 1 2 2 4 1 8 ≤ 0.06
A. baumannii ATCC 19606 2 10,680 4 2 ≤ 0.06 2 2 2 ≤ 0.06 1 ≤ 0.06
A. baumannii 21/6 256 10,680 256 128 ≤ 0.06 256 256 0.25 ≤ 0.06 ≤ 0.06 ≤ 0.06
A. baumannii 21/7 256 5340 256 128 ≤ 0.06 256 256 0.06 ≤ 0.06 ≤ 0.06 ≤ 0.06
S. marcescens 19/10 4096 10,680 2 0.5 ≤ 0.06 2 4 4 ≤ 0.06 0.5 0.25
P. mirabilis 19/11 4096 10,680 2 2 0.5 1 1 0.25 0.5 0.25 ≤ 0.06
M. morganii 19/12 4096 10,680 4096 4096 128 > 2048 > 2048 > 4096 ≤ 0.06 ≤ 0.06 ≤ 0.06
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19/3, K. pneumoniae 19/5, A. baumannii 21/7, S. marcescens, 
P. mirabilis and M. morganii (Fig. 1c, e, g, h, j, k, l), although 
colistin + CN had greater bactericidal and synergistic activity 
than colistin + BA (Fig. 1c, e, g, h and l).

The synergy detected by time-kill assays was consistent with 
the FICI results for most colistin-resistant Enterobacterales 
(MIC ≥ 128 mg/L), except colistin + CN-57 in E. cloacae 19/3 
and K. pneumoniae 19/5 (Fig. 1c and e) (Table 3). Synergy, in 
both the time-kill assays and FICI analysis, was concentration-
dependent; as the concentrations of CN and BA increased, the 
activity in combination with colistin became more synergistic.

Effects of L‑arginine, L‑glutamic acid and sucrose 
on the MICs of colistin + CN/BA

L-arginine, L-glutamic acid and sucrose generally decreased 
the MICs of colistin (data not shown in tables) and colis-
tin + CN/BA by 2- to 4-fold, with some exceptions (Tables 1 
and 2). Sucrose decreased the MICs of colistin + BA 8-to 
2048-fold in the E. coli, E. cloacae 21/3, K. pneumoniae 
19/6 and 19/8, A. baumannii and P. mirabilis strains (Table 2) 

and decreased the MICs of colistin + CN 8- to 32-fold in the 
19/2, 19/5 and A. baumannii ATCC 19606 strains (Table 1). 
In contrast, L-arginine, L-glutamic acid and sucrose alone 
did not change the MICs of colistin in A. baumannii strains 
(data not shown in tables). Likewise, the two amino acids 
and sucrose induced 2- to 4-fold increases in the MICs of 
colistin in the E. coli and K. pneumoniae ATCC strains (data 
not shown in tables) and 2-fold increases in the MICs of 
colistin + CN/BA in a few strains (Tables 1 and 2). However, 
they increased the MIC of colistin + CN by 4- to 256-fold in 
M. morganii (Table 1). Similarly, L-arginine, L-glutamic acid 
and sucrose increased the MICs of colistin + BA 4- to 32-fold 
in the 19/10, 19/5, 19/7, 21/5, ATCC 700603, ATCC 15308 
and ATCC 19606 strains (Table 2).

Discussion

Compared to the de novo- synthesis of new antibiotics, natu-
ral substances with proven use in humans that restore colis-
tin susceptibility in MDR bacteria represent an advantageous 

Table 3  FIC indices and drug interaction of the combinations of colistin with CN and BA at different concentrations

CST colistin, CN-29, 28.5 mg/L CN; CN-57, 57 mg/L CN; CN-114, 114 mg/L CN; BA-1, 1.3 ×  103 mg/L BA; BA-3, 2.7 ×  103 mg/L BA; BA-5, 
5.4 ×  103 mg/L BA; FICI, FIC index; DI drug interaction
a Drug interaction: S, synergy; NI, no interaction; A, antagonism

CST + CN-29 CST + CN-57 CST + CN-114 CST + BA-1 CST + BA-3 CST + BA-5

FICI DIa FICI DIa FICI DIa FICI DIa FICI DIa FICI DIa

E. coli ATCC 25922 4.009 A 4.009 A 1.002 NI 4.000 A 4.000 A 4.000 A
E. coli 19/2 0.518 NI 0.518 NI 0.259 S 0.500 S 0.500 S 0.125 S
E. coli 21/1 1.018 NI 1.018 NI 0.255 S 1.000 NI 1.000 NI 0.125 S
E. coli 21/2 0.505 NI 0.505 NI 0.126 S 1.000 NI 1.000 NI 0.125 S
E. cloacae 19/3 2.468 NI 1.234 NI 0.001 S 1.384 NI 1.384 NI 0.043 S
E. cloacae 21/3 1.018 NI 1.018 NI 0.127 S 2.001 NI 2.001 NI 0.250 S
E. cloacae 21/4 0.509 NI 0.509 NI 0.255 S 2.001 NI 1.000 NI 0.063 S
K. pneumoniae ATCC 700603 1.002 NI 1.002 NI 1.002 NI 8.001 A 4.000 A 4.000 A
K. pneumoniae 19/4 0.081 S 0.081 S 0.081 S 0.251 S 0.251 S 0.126 S
K. pneumoniae 19/5 0.646 NI 0.162 NI 0.020 S 1.012 NI 1.012 NI 0.016 S
K. pneumoniae 19/6 0.081 S 0.081 S 0.040 S 0.126 S 0.063 S 0.016 S
K. pneumoniae 19/7 0.040 S 0.040 S 0.020 S 0.031 S 0.031 S 0.001 S
K. pneumoniae 19/8 0.072 S 0.072 S 0.072 S 0.126 S 0.063 S 0.031 S
K. pneumoniae 21/5 0.509 NI 0.509 NI 0.509 NI 1.000 NI 1.000 NI 0.063 S
P. aeruginosa ATCC 27853 2.002 NI 1.001 NI 1.001 NI 4.000 A 4.000 A 0.250 S
A. baumannii ATCC 15308 1.002 NI 1.002 NI 1.002 NI 2.000 NI 1.000 NI 0.500 S
A. baumannii ATCC 19606 1.009 NI 0.505 NI 0.505 NI 2.000 NI 1.000 NI 0.030 S
A. baumannii 21/6 3.343 NI 0.836 NI 0.001 S 1.024 NI 1.024 NI 0.000 S
A. baumannii 21/7 2.172 NI 0.25 S 0.001 S 1.024 NI 1.024 NI 0.000 S
S. marcescens 19/10 0.617 NI 0.019 S 0.001 S 0.001 S 0.000 S 0.000 S
P. mirabilis 19/11 19.746 A 0.019 S 0.002 S 0.001 S 0.001 S 0.000 S
M. morganii 19/12 19.746 A 0.617 NI 0.001 S 1.384 NI 1.384 NI 0.043 S
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alternative. In a previous study, we demonstrated that AS, 
SB and SS reverse colistin-resistance [16]. Herein, we 
focused on CN and BA, which have antimicrobial, antioxi-
dant, antipyretic and anti-inflammatory properties [11, 26, 
27]. Our findings indicated that at 1/2, 1/4 and 1/8 of the 
MICs of CN and BA, colistin resistance was partially or 
fully reversed in a concentration-dependent manner in A. 
baumannii and Enterobacterales, including the Proteus and 
Morganella strains. This effect was similar to that previously 
described for carbonyl cyanide m-chlorophenylhydrazone 
(CCCP) [16, 28]. CN and BA might also effectively decrease 
mcr-mediated colistin resistance, as described in a study 
using CCCP [28]. In this regard, mcr1-mediated colistin 
resistance does not differ from that found in intrinsically 
resistant gram-negative bacteria [5, 29].

CN was more effective than BA in decreasing the MICs 
in strains with the highest level of colistin resistance, except 
for S. marcescens and P. mirabilis. This finding might be 
associated with the mildly acidic pH induced by BA, given 

that an acidic environment has been reported to contribute 
to polymyxin resistance [5].

CN and BA were less effective at decreasing colistin-
MICs in wild-type susceptible strains, possibly because 
of the induction of efflux pump expression by these flavo-
noids, as previously described [5, 21, 30]. In contrast, the 
marked decrease in colistin MICs elicited by CN and BA in 
resistant strains might have been linked to cell wall damage 
associated with chromosomally mediated colistin resist-
ance, which would increase the susceptibility of colistin-
resistant strains to CN and BA [5, 31]. In fact, LPS loss 
and decreased outer membrane integrity were observed by 
Moffatt JH et al. in colistin-resistant mutants derived from 
A. baumannii ATCC 19606 [13]. In support of this hypoth-
esis, the test concentrations of CN and BA were found to 
be bactericidal in the in vitro selected mutant A. baumannii 
21/7 but not in its parental wild-type strain, ATCC 19606.

The synergy detected in FIC analyses, confirmed the 
efficacy of CN and BA as colistin adjuvants. However, 

Fig. 1  Time kill assays with 
colistin. Growth (cfu) of 
strains in Mueller-Hinton 
broth without colistin nor any 
chemical (open circle). Growth 
(cfu) of strains with 4 mg/L 
CST alone: CST (filled circle). 
Growth (cfu) of strains with 
the following combinations of 
colistin 4 mg/L and chemicals, 
Cinnamaldehyde-57 mg/L: CN 
(open triangle), CST + Cinna-
maldehyde-57 mg/L: CST + CN 
(filled triangle), Cinnamalde-
hyde-114 mg/L: CN+ (open 
diamond), CST + Cinnamalde-
hyde-114 mg/L: CST + CN+ 
(filled diamond), Baica-
lin-2.7 ×  103 mg/L: BA (cross), 
CST + Baicalin-2.7 ×  103 
mg/L: CST + BA (asterisk), 
BA-5.4 ×  103 mg/L: BA+ (open 
square), CST + BA-5.4 ×  103 
mg/L: CST + BA+ (filled 
square), The experiments were 
performed in triplicate, and the 
error bars represent the standard 
deviation. The standard devia-
tion values ranged from 0- to 
0.47 Log cfu/mL

0

2

4

6

8

10

12

0 10 20 30 40 50

L
m/ufc go

L
Time (h)

E. coli 

21/2

CST

CN

CST+CN

CN+

CST+CN+

BA+

CST+BA+

(a)

0

2

4

6

8

10

12

0 10 20 30 40 50

L
og

 c
fu

/m
L

Tiempo (h)

P. aeruginosa ATCC

27853
CST
CN
CST+CN
CN+
CST+CN+
BA+
CST+BA+

(b)

0

2

4

6

8

10

12

0 10 20 30 40 50

L
m/ufc go

L

Time (h)

E. cloacae

19/3
CST
CN
CST+CN
CN+
CST+CN+
BA+
CST+BA+

(c)

0

2

4

6

8

10

12

0 10 20 30 40 50

L
og

 c
fu

/m
L

Time (h)

E. cloacae  

21/4

CST

CN

CST+CN

CN+

CST+CN+

BA+

CST+BA+

(d)

0

2

4

6

8

10

12

0 10 20 30 40 50

L
m/ufc go

L

Time (h)

K. pneumoniae

19/5

CST

CN

CST+CN

CN+

CST+CN+

BA+

CST+BA+

(e)

0

2

4

6

8

10

12

0 10 20 30 40 50

L
og

 c
fu

/m
L

Time (h)

K. pneumoniae

21/5

CST

CN

CST+CN

CN+

CST+CN+

BA+

CST+BA+

(f)



European Journal of Clinical Microbiology & Infectious Diseases 

colistin + CN was more bactericidal than colistin + BA 
against the colistin-resistant strains 19/12, 19/3 and 19/5, 
but lower than that described for AS and SS against 19/3 
and 19/5 [16]. The synergy between cinnamaldehyde and 
polymyxin B against Enterobacterales has been associated 
with protein leakage from bacterial cells [32]. In addition, 
the rapid bactericidal action of colistin + CN/BA against 
S. marcescens, P. mirabilis and A. baumannii 21/7 sug-
gests that cell damage might have occurred, as previously 
reported for combinations of CN with other antimicrobials 
against Enterobacterales [32–34].

The time-kill assay findings also support the efficacy 
of CN and BA in decreasing the colistin MIC against the 
most resistant strains, as in the presence of either of the two 
chemicals, 4 mg/L colistin was enough to inhibit the growth 
of bacteria in which colistin MICs were ≥ 128 mg/L. There-
fore, CN and BA would enable the administration of lower 
colistin doses and reduce consequent toxicity. Furthermore, 

the antioxidant and renoprotective effects of CN and BA 
might prevent or mitigate colistin nephrotoxicity [35–37].

Interestingly, the most effective concentration of CN (114 
mg/L) was 47-fold lower than that of BA (5.4 ×  103 mg/L), 
although both were within the reported nontoxic range (up 
to 0.4 g/kg CN and 600 mg/kg BA). In addition, CN and BA 
have shown antimicrobial activity at nontoxic concentrations 
in vivo [8, 12, 38, 39].

Colistin resistance is associated with a decrease in the 
net charge of lipid A from − 1.5 to 0 in the bacterial outer 
membrane [40]. Therefore, we assessed L-arginine, L-glu-
tamic acid and sucrose to examine the mode of action of 
CN and BA, according to a previously described method 
[16, 41].

L-arginine, L-glutamic acid and sucrose generally 
induced decreases in the MICs of colistin + CN/BA. This 
finding might be explained by further inhibition of bacte-
rial growth by these three osmolytes if the bacterial cell 
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walls were somewhat disrupted by CN and BA. Thus, 
changes in the transmembrane electrical potential were 
ruled out as an explanation for the reversal of colistin 
resistance by CN and BA, given that the protonophores 
sucrose and L-arginine did not restore colistin resistance 
in the presence of CN and BA, as was also described for 
SS, AS and SB [16]. Unlike BA, CN does not possess 
any hydroxyl groups in its structure that would allow for 
depolarization of the cell wall [42, 43]. Indeed, the larg-
est decreases in colistin + CN/BA MICs were induced by 
300 mM sucrose. The increase in surface pressure through 
the binding of these flavonoids to the external monolayer 
of lipid membranes might explain why the osmolytes 
sucrose and L-arginine reduced the MICs of colistin + CN 
and colistin + BA. In fact, CN and BA have been dem-
onstrated to decrease tolerance to high osmolarity and 
induce disruption/impairment of the membrane/cell wall 
and increased permeability, which would allow colistin 
access to its targets [11, 32, 34, 44–48].

Likewise, the increases in the MICs of colistin + CN/BA 
caused by amino acids and sucrose in some strains might be 
associated with heteroresistance to colistin and/or the over-
expression of efflux pumps [5, 49–51].

The effectiveness of CN and BA in restoring the sensitiv-
ity of gram-negative bacteria to colistin may aid in address-
ing infections caused by Enterobacterales strains that are 
resistant to colistin and carbapenems.

Conclusion

CN and BA reversed colistin resistance in a concentration-
dependent manner in strains of six different species of 
Enterobacterales and A. baumannii. Both of these agents 
also exhibited good synergy with colistin. Further studies 
are required to determine the therapeutic safety and efficacy 
of colistin + CN/BA combinations.
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