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A B S T R A C T

During the last decades, there has been a growing interest in the Atlantic chub mackerel, Scomber colias, owing to
its northward expansion across the East Atlantic Ocean. This trend has been observed from regions of higher
abundance off northwest Africa to the waters of the Atlantic Iberian and the Mediterranean Sea. Changes in
abundance and spatial distribution of Atlantic chub mackerel have been previously studied and various theo-
retical models have been proposed to elucidate the changes in its abundance and biomass. However, within this
fishing context, only a limited number of studies have attempted to understand how this species has responded at
both the individual and population levels to the changing environmental conditions. The phenotypic variability
of 1660 individuals of S. colias collected from the Canary Islands, Madeira, the Cantabrian Sea and the Central-
Northern Mediterranean Sea was examined, with a specific focus on otolith shape. We identified six morphotypes
classified into two groups and associated to the four analyzed regions. Despite of the occurrence of shared
phenotypes in varying proportions among the different fishing grounds, this classification might be explained by
the adaptation of certain morphotypes to specific environmental conditions and the migratory behavior of this
species. The morphotypes M1-M5 were more abundant in the warmer waters of Madeira-Canary Islands region
and M6 in the colder waters of Ligurian-Cantabrian. It is plausible that the former set may represent resident
contingents, while morphotypes M2-M3 and M4 are likely to exhibit migratory behavior. Therefore, we suggest a
complex metapopulation structure, where different contingents coexist.

1. Introduction

Ecosystems worldwide are undergoing environmental trans-
formations due to human activities and climate change. Consequently,
novel combinations of physical conditions such as shifts in temperature
regimes, precipitation patterns and water chemistry are triggering re-
sponses among organisms, populations and ecosystems. These responses
manifest through a variety of biological processes (or adaptations),

including acclimatization, evolution, range shifts, and ecological reor-
ganization, occurring across different scales of organization (Webster
et al., 2017, 2023). Phenotypic plasticity plays a crucial role in facili-
tating many of these adaptations, allowing a single genotype to generate
multiple phenotypes in response to environmental stimuli (Scheiner,
1993; Schlichting and Pigliucci, 1998; West-Eberhard, 2003) or to other
external stressors, such as fishing pressure (Rouyer et al., 2014; Hollins
et al., 2018; Morrongiello et al., 2019). The resulting phenotypes can be
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classified as adaptative (positive or negative), non-adaptative (or mal-
adaptive) or neutral concerning an individual’s fitness (Ghalambor
et al., 2007; Chevin et al., 2010; Storz and Scott, 2021). In particular,
adaptive plasticity could enable organisms with a wider tolerance for
environmental fluctuations (Pigliucci, 2001; Peck et al., 2013; Schickele
et al., 2021), potentially influencing migration and dispersion processes
(Bloom et al., 2018). Moreover, differences in life history traits and/or
the identification of phenotypic clusters (such as body morphometrics,
otolith contour, etc.) are widely used to delineate stocks. These have
become essential tools for fishery scientists, assessors, and managers
(Begg et al., 1999; Cadrin et al., 2020). However, a gap exists in as-
sessments actively incorporating stock identification requirements. Most
stock assessment methods tend to model the dynamics of nearby pop-
ulations while assuming homogeneity in life history traits (Begg et al.,
1999; FAO, 2020). This issue is particularly pronounced in pelagic fish
species, where genetic studies reveal low differentiation among stocks or
populations, which is commonly attributed to the high gene flow facil-
itated by the marine environment’s extensive dispersal capabilities
(Nesbø et al., 2000).

The Atlantic chub mackerel (Scomber colias, Gmelin, 1789) is a
medium-sized migratory coastal pelagic fish with distribution spanning
warm and temperate waters on both sides of the Atlantic Ocean (Castro
and Santana, 2000). In East Atlantic waters, its range extends from the
Bay of Biscay to South Africa, including Azores, Madeira, the Canary
Islands and Saint Helena Islands, and further extending into the Medi-
terranean and Black Sea (Collette and Nauen, 1983; Whitehead et al.,
1984; Collette et al., 2023). Typically inhabiting depths up to 300m, this
species holds a key role in the trophic web, acting as a crucial link be-
tween primary producers and top predators, since it feeds mainly on
zooplankton and some small pelagic fish, making it an essential
component in the diet of larger pelagic fish such as tuna, swordfish and
sharks, as well as marine mammals (mainly dolphins and seals)
(Machado et al., 2022). As others small and medium pelagic fish (SMPF)
give their short generation times and tight coupling to lower trophic
levels, these populations exhibit substantial boom-and-bust dynamics,
both in productivity and distribution, closely linked to climate vari-
ability (Alheit et al., 2014; Garrido et al., 2017). Thus, fluctuations in
their populations can exert profound impacts on the overall dynamics of
ecosystem structure, giving rise to significant ecological and socioeco-
nomic consequences (Peck et al., 2021). While responses to climate
variability vary among SMPF species and stocks, the intrapopulation
phenotypic variability observed in species with a relatively short life-
spans enhances their resilient to environmental fluctuations. This vari-
ability can even result in the development of different intrapopulation
life history strategies, allowing them to occupy different “spatio-tem-
poral niches” (Peck et al., 2013; Ma et al., 2022). For example, different
energy strategies have been found among autumn and winter spawners
of Atlantic herring in the North Sea, in contrast to Norwegian
spring-spawning herrings (Jennings and Beverton, 1991; McQuinn,
1997; Winters and Wheeler, 1996) and among closely related groups of
European sardines (Sardina pilchardus) and anchovies (Engraulis encra-
sicolus) in the Northwest Mediterranean Sea (Albo-Puigserver et al.,
2021; Lloret-Lloret et al., 2022). Yet, the intricate interplay between the
biology of SMPF, habitat structure, and how these factors collectively
shape the complexity of their population demography and responses to
fisheries and climate remains not well understood (Otero and Hidalgo,
2023).

Despite the wide distribution of Atlantic chub mackerel, 90% of the
catches in the northeast Atlantic proceed from northwest African waters,
making it a fishery resource crucial for food security in the riparian
countries (FAO, 2020). In the last decades, there has been a northwards
expansion of the species in the East Atlantic distribution, evidenced by
the increased catches in Iberian Atlantic waters, where it has become a
target species for the purse seine fisheries (Martins et al., 2013; Punzón
et al., 2016; ICES, 2020, 2021). An inverse relationship with European
sardine abundance has been demonstrated in Portuguese waters, where

Atlantic chub mackerel competes for food and spawning sites (Martins
et al., 2013; Garrido et al., 2015). This expansion has been associated to
an increase in sea temperature (Costoya et al., 2015) attributed to
climate change (Tasker, 2008; Reid and Valdés, 2011; Vélez-Belchí
et al., 2017). Although the Atlantic chub mackerel holds significance in
terms of landings and economic value at both regional and subregional
levels, it is noteworthy that the regular assessment of this species in ICES
and Mediterranean waters is not included in any established European
assessment framework (ICES, 2021). Evidence of the need to establish
the basis for future assessments of the species in the North-eastern
Atlantic waters is the initiation of ICES WKCOLIAS in 2020, an inter-
national forum that serves as a platform for sharing the available
knowledge of the species in the area, including African and European
institutions (ICES, 2020, 2021). Although there is a wealth of informa-
tion on the life history traits of the Atlantic chub mackerel in its
southernmost distribution, the species has also been extensively studied
in light of its historical fishing relevance in northern waters. This in-
cludes research conducted in both Iberian Atlantic and Mediterranean
waters (ICES, 2021) where numerous studies have delved into different
life history traits of the species. Regarding their population structure, no
discernible genetic patterns have been identified in the eastern
geographical distribution of this species (ICES, 2021). The annual
assessment of the population in Northwest African waters, carried out
under the framework of the Fishery Committee for the Eastern Central
Atlantic (CECAF), assumes a metapopulation, with the exception of the
fisheries around the Canary Islands (FAO, 2020). In this context, other
approaches such as morphometrics, otoliths, and parasites have been
applied (ICES, 2021), providing different results. However, we wonder if
these studies make sense for a species experiencing a distribution
expansion, or whether we could take advantage of it to investigate the
impact of climate change on an expanding exploited species. Indeed, the
descriptive analyses of the available data gathered during the last ICES
WKCOLIAS (ICES, 2021) concluded that latitudinal patterns of different
traits seem to occur in Atlantic chub mackerel distributed in East
Atlantic waters, with an inflection point in the Strait of Gibraltar.
Despite the exclusion of African data, Domínguez-Petit et al. (2022)
analyzed in-depth this hypothesis and found clear latitudinal patterns
for several reproductive aspects following the Bergmann’s rule (Hattab
et al., 2021). Particularly, exceptions were observed in the southernmost
samples studied, represented by the S. colias from the Canary Islands
(located in NW African waters) and, in some cases, for the ones from the
southern coast of Portugal and the Gulf of Cadiz (SW Spain). Likewise,
numerous studies are paying attention to the environmental drivers
leading changes on the abundance and/or geographical expansion of the
species (e.g., Binet, 1997; Martins et al., 2013; Ebango Ngando et al.,
2020; Derhy et al., 2022), which has become an urgent issue to face the
global warming.

Recent studies into otolith contour shape analysis in other medium
pelagic fish, such as Trachurus picturatus, have revealed the coexistence
of similar phenotypes in different proportions across different fishing
grounds, implying the potential existence of a metapopulation con-
necting distinct regional populations (Tuset et al., 2019; Vasconcelos
et al., 2021). As the Atlantic chub mackerel has shown extensive gene
flow, resulting in the establishment of a large panmictic unit in the
northeastern Atlantic Ocean and Mediterranean Sea (Scoles et al., 1998;
Zardoya et al., 2004), our initial hypothesis postulates the common
presence of similar morphotypes across its spatial distribution in the
Northeastern Atlantic and the Mediterranean Sea. The main objectives
of the present study were as follows: i) to examine the intrapopulation
phenotypic variation of the otolith contour using wavelet functions
developed by the AFORO team; ii) to assess the accuracy of classification
between stocks based on the average phenotype of each region; and iii)
to analyze the otolith zones involved in the discrimination of stocks and
their relationship with environmental and genetic factors.

A. Jurado-Ruzafa et al.
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2. Material & methods

2.1. Database collections

Between 2016 and 2022, a total of 1660 Atlantic chub mackerels
were collected from four fishing grounds in the eastern Atlantic: 718
individuals from the Canary Islands (FAO area 34.1.2), 264 from
Madeira (FAO area 34.1.2), 435 from the Cantabrian Sea (FAO area
27.8. c), and 243 from the Ligurian Sea in the Central-northern Medi-
terranean waters (FAO area 37.1.3) (Fig. 1). These collections were
conducted as part of national fishery monitoring programs within the EU
Data Collection Framework. Each individual was measured for total
length (TL, 0.1 cm) and their otoliths were extracted, cleaned, and
storage in labeled vials for subsequent morphological analysis. To
remove the effect of size variations, we restricted the size range to be-
tween 21.3 and 37.5 cm TL, with the minimum value corresponding to
the size of the smallest mature individual found in the Cantabria Sea,
while the maximum value corresponds to the largest size observed in the
Canary Islands region (Table 1).

Monthly mean Sea Surface Temperature (SST, ◦C) values from
January 2016 to December 2022 were acquired from the IGOSS-IRI
database (Reynolds, 2002) for the geographical areas corresponding to
the sample collection sites, as well as for a northern area off the coast of
West France (Fig. S1).

2.2. Otolith shape analysis

The left otoliths were positioned with the inner side (sulcus acusticus)
facing upward and the rostrum oriented to the right. Digitalization was
carried out against a black background using a digital camera coupled to
a stereomicroscope. The shape contour was analyzed using wavelet
function, enabling the identification of individual morphological points
along the x-axis of the contour (Parisi-Baradad et al., 2005; Lombarte
et al., 2006). Due to presence of a long triangular collicullum ostii be-
tween rostrum and antirostrum (Tuset et al., 2008), this point was
selected as initial reference point. A total of 512 equidistant Cartesian
coordinates (points) on each orthogonal projection of the otolith were
extracted and analyzed using the wavelet transformed (WLT; see Par-
isi-Baradad et al., 2005). Among the nine levels obtained from the
wavelet function, the 4th level was chosen as the optimal choice for
identifying individual variability within populations (Vasconcelos et al.,
2021).

2.3. Statistical analysis

To reduce the number of points without losing information, a

principal component analysis (PCA) based on the variance–covariance
matrix was performed (Sadighzadeh et al., 2012, 2014; Tuset et al.,
2015, 2016; Vasconcelos et al., 2021). The percentage of the total
explained variation by eigenvectors was plotted against the proportion
of variance expected under the “broken stick model” to identify signif-
icant eigenvectors (Frontier, 1976; Gauldie and Crampton, 2002). To
examine intraspecific differences potentially attributed to allometry,
Pearson’s correlations were tested between fish length and principal
components. To account for the effect of fish length, residuals based on
the common within-group slopes obtained from the linear regressions
for each component on fish length were used. These residuals were then
used to build a new PCA matrix (Stransky and MacLellan, 2005; Zhuang
et al., 2015).

The identification of phenotypes (also named “morphotypes” or “M”,
onwards) was conducted using several clustering algorithms, including
k-means, pam, clara, som, sota and hierarchical, with the clValid R
package (Brock et al., 2008) in R environment (R Core Team, 2022).
However, only the agglomerative Ward’s hierarchical method employ-
ing Manhattan distance yielded a clustering with discernible morpho-
logical meaning. Given the observed similarity in the frequency
tendencies among regions for morphotypes (see results), our analysis
focused exclusively on examining phenotypic variation between regions
through permutational multivariate analysis of variance (PERMANOVA,
Anderson, 2001), employing 9999 permutations with the Manhattan
distance metric. Subsequently, Bonferroni correction was applied for
pairwise multiple comparisons using Pillai’s trace. A non-parametric
Kruskal-Wallis test was applied to compare the average phenotype of
the first component of PCA among regions, using a Wilcoxon rank test
for post hoc comparisons (O’Dea et al., 2019; Vasconcelos et al., 2021).

Artificial neural network (ANN) was selected for the comparison of
otolith shape among regions (El Habouz et al., 2016; Vasconcelos et al.,
2021). This classifier operates on a network architecture, with the
neuron as its fundamental unit. The network comprises three neuron
layers: input layers (comprising morphological variables), hidden layers
(with nodules from i = 1 … n), and an output layer (representing re-
gions). Using a multi-layer perceptron (MLP) architecture and a
back-propagation gradient algorithm, we calibrated the ANN (El Habouz
et al., 2016; Ciaburro and Venkateswaran, 2017) with the package caret
(Kuhn, 2008) in R. The whole otolith sample was randomly split into a
training dataset (75% of observations) and a validation dataset (25% of
observations). The split ensured the preservation of class ratios for the
development of the model. The optimal hyperparameters (hidden units)
were defined during preliminary tuning (Fig. S2). Following Smoliński
et al. (2020) predictor variables (PCA new matrix) underwent scaling
and centering in a preprocessing stage. Additionally, a fourfold
cross-validation resampling method with 100 repetitions of the entire
process was conducted using a ‘repeatedcv’ method for training control.
To address imbalances in the dataset, we applied a Synthetic Minority
Oversampling Technique (SMOTE) using the package DMwR (Torgo,
2010) in R. All analysis were performed in R (R Core Team, 2022).

Fig. 1. Geographical areas where Scomber colias was sampled in the north-
eastern Atlantic Ocean and the Mediterranean Sea.

Table 1
Summary of total lengths (cm) of Scomber colias collected from the northeastern
Atlantic Ocean and the Mediterranean Sea. n, number of individuals; sd, stan-
dard deviation; min, minimum; max, maximum.

Origen Region n mean ± sd min-max

Mediterranean Sea Ligurian Sea 264 26.4 ± 3.93 21.5–38.0
Atlantic Ocean Cantabrian Sea 435 30.8 ± 3.80 21.3–38.4

Madeira 264 26.9 ± 3.55 21.5–36.7
Canary Islands 718 25.7 ± 2.85 21.3–37.5

A. Jurado-Ruzafa et al.
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3. Results

3.1. Unveiling and profiling morphotypes

The otoliths of Atlantic chub mackerel exhibited a noticeable vari-
ability in shapes across all studied regions (Fig. 2). The position, size
(length and height) and orientation of collicullum ostii noticeably influ-
enced on the morphology of the rostrum and antirostrum, resulting in
variations in their sizes. Moreover, varying degrees of convexity, con-
cavity and irregularities were observed along the dorsal, posterior and
ventral margins. The observed diversity contributed to an expansive
PCA-morphospace (PC1 vs PC2, Fig. 3) (see Table S1 for considered PCA
components and their variance), and the use of an extensive dataset
further favored a high spatial density. These factors influenced the
feasibility of the methods to discern between phenotypes, limiting the
initial identification to only two morphotypes when using the several
clustering algorithms mentioned prior. We opted for a hierarchical
clustering approach and identified six morphotypes, which were clas-
sified into two primary groups (Fig. 4a): Group-A (comprising M1-M5-
M3) and Group-B (M2-M4-M6). This classification was based on the
development of the antirostrum (larger in Group-A), the ventral pattern
of the posterior margin (dorsally more pronounced and ventrally more
rounded in Group-A), and the height in the middle of otolith (lesser for
the Group-A) (Fig. 4b). Within morphospace (Fig. 3), morphotypes M1
and M5 (negative values) and M6 (positive values) were distributed in
the extremes of the PC1 axis (17.3% of variance explained). The mor-
photype M2 presented a notable concavity, either with or without step,
in the middle, whereas M3 showed the less developed antirostrum of
Group-A morphotypes. The PC2 axis (6.1%) mainly differentiated be-
tween morphotype M4 (negative values) and M5 (positive values),
which displayed a greater concavity along the ventral margin and a
longer rostrum (Fig. 4).

Fig. 2. Mesial surface view of sagittae otoliths from Scomber colias collected from the northeastern Atlantic Ocean and the Mediterranean Sea.

Fig. 3. Scatterplot of the first and second axes of the PCA and marginal density
distribution plots for the four morphotypes identified in Scomber colias collected
from the northeastern Atlantic Ocean and the Mediterranean Sea. Colored cir-
cles indicate the centroid of each morphotype. (non-print figure color). (For
interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

A. Jurado-Ruzafa et al.
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3.2. Morphological homogeneity among stocks

In general, the relative phenotypic frequency of morphotypes
exhibited a consistent pattern across all examined regions (Fig. 5).
However, morphotypes M1 and M5 were more frequent in warm waters,
specifically in Madeira and the Canary Islands, whereas M6 was more
predominant in colder waters of the Ligurian Sea and the Cantabria Sea
(see Sea Surface Temperatures in Fig. S1). Additionally, although mor-
photype M2 showed higher frequencies across all regions (>21%), it was
notably more abundant in the Ligurian Sea, where it reached 34.6%.

The PERMANOVA analysis unveiled significant phenotypic differ-
ences in otolith shape between regions (F = 15.86, p < 0.001; pairwise-
test, p = 0.006 for all cases). Additionally, the average value of PC1
exhibited significant variations across regions (Kruskal-Wallis test, χ2 =
128, df = 3, p < 0.001) (Fig. 6). Subsequent post hoc testing revealed
similarities in the otolith shape between Madeira and the Canary Islands
(p = 0.131), as well as between the Ligurian Sea and the Cantabria Sea
(p = 0.240); although notable differences were observed between them
(p < 0.001). Upon application of the neural classification model (ANN),
the accuracy of classifying regional populations only reached 47.8%,
with a Cohen’s kappa (κ) value of 0.288. This indicates an efficiency in
the classification that was 29% better than chance alone (Table 2). The

accuracy ranged between 40 and 50%, except for samples from the
Ligurian Sea, which acquired a 62.7% accuracy rate (Table 2). Overall,
the misidentification of otoliths exhibited a discernible geographical
pattern, in which otoliths from the Canary Islands and Madeira showed
greater similarity, as did otoliths from Madeira and those from the
Cantabria Sea. In contrast, otoliths from the Ligurian Sea exhibited a
distinct pattern (Table 2). Finally, the principal components PC3 (with a
stronger correlation linked to rostrum size), PC1 (practically related to
the entire signal), P11 (associated with morphological shifts in the
dorsal margin variability) and PC19 (connected with the length of col-
licullum ostii) significantly contributed to the maximum discrimination
observed between regions (Fig. 7; see Table S2 for importance of PC
components).

4. Discussion

This study presents the first approach to explore the otolith pheno-
typic variability of Atlantic chub mackerel across regions spanning from
the North and Central Eastern Atlantic Ocean and the Mediterranean
Sea. Our findings unveiled the presence of six morphotypes, although
the high morphological variability in this species posed challenges in
phenotypic identification. As a result, there was a notable degree of

Fig. 4. (A) Dendrogram illustrating the outcomes of a hierarchical cluster analysis (Ward’s method) based on Manhattan distance as similarity index to identify
morphotypes, along with the average decomposition of otolith contour using the 4th wavelet for each morphotype; (B) average decomposition of otolith contour
using the 4th wavelet for all morphotypes. Grey color highlights the sections more relevant for discriminating between morphotypes. (non-print figure color). (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

A. Jurado-Ruzafa et al.
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morphological similarity among the morphotypes introducing uncer-
tainty in the decision-making process. To address this issue, we explored
a broad spectrum of clusteringmethods and wavelet levels, ranging from
signals with higher detail (3rd level) to smoother ones (5th level). Finally,
we opted for the grouping option that provided the most coherent
morphological interpretation of the observed phenotypic diversity. The
distinct otolith shape of this species sets it apart from other small and
medium pelagic fishes like Trachurus spp., Decapterus spp. and Engraulis
spp., which exhibit more conventional otolith shapes, making the dif-
ferentiation of morphotypes easier (Lombarte et al., 2006).

The rapid swift northwards expansion of the Atlantic chub mackerel
within the East Atlantic distribution (Martins et al., 2013; Garrido et al.,
2015) and its migratory behavior may account for the remarkable sim-
ilarity in the phenotypic structure found at regional level. This similarity
suggests an extensive gene flow, resulting in the establishment of a large
panmictic unit in the north-eastern Atlantic Ocean and Mediterranean
Sea (Scoles et al., 1998; Zardoya et al., 2004). Indeed, a recent
small-scale study conducted in the northernmost Atlantic African waters
has revealed a weak genetic structure within Moroccan-Mauritanian
waters, attributed to the irregular distribution of the fishing pressure,
which disrupts the natural gene flow (Stroganov et al., 2023). However,
all studies describe distinct fish groups inhabiting a wide geographic
distribution, with populations intermixing within a large meta-
population. For instance, size-segregations linked to ontogenetic/ba-
thymetric migrations of individuals towards deep bottoms far from the
coast have been observed around Atlantic islands, probably linked to
breeding (Menezes et al., 2006). Similarly, latitudinal breeding/feeding
migrations have been documented in the northern CECAF waters
(García, 1982; Martins et al., 2013; Ebango Ngando et al., 2020), indi-
cating the species as a transboundary shared stock. In Ghana, Kwei
(1971) observed seasonal migrations inshore for spawning during the
upwelling period in summer, followed by a movement of individuals to
greater depths for feeding in autumn. It also suggested that in the
northeast Atlantic, including both African and European waters, the
Atlantic chub mackerel undergoes migration from wintering areas
—mainly located in Mauritanian waters, southern Portugal and in the
inner part of the Bay of Biscay— towards northern waters in the summer
(ICES, 2021). Additionally, in the case of the Bay of Biscay, the migra-
tion extends towards the western Iberian Peninsula. Hence, the high
number of morphotypes identified in the present study may be linked to
these migratory processes, posing significant implications (and chal-
lenges) to understand the metapopulation dynamics and accurately
describing the complexity of the species’ population structure. Firstly,
this raises concerns about the reliability of studies conducted to date
with small sample sizes, such as in Muniz et al. (2020) (using otolith
shape and body morphometrics in 45 specimens by region) and Correia
et al. (2021) (examining otoliths’ elemental and isotopic signatures for
30 individuals by region), both encompassing Portugal mainland,
Azores, Madeira, and the Canary Islands; and Sbiba et al. (2024) along
NW African coast (exploring the otolith shape for 30 individuals for nine
localities). Secondly, the morphotypes M2-M3 and M4 here described,
represent ca. 51–60% of all the individuals analyzed and appear in
similar frequencies in each origin, except for the higher predominance of
M2 in the Ligurian Sea. However, an inversely proportional rate was
evident between the morphotypes M1-M5 and M6 in the regions of
Madeira-Canary Islands vs Ligurian-Cantabrian Seas. These findings may
suggest that certain morphotypes have effectively adapted to specific
environmental conditions, such as temperature. Drawing on Vasconce-
los et al. (2021) insights into the relationship between morphotypes and
contingents (resident versusmigratory) in the Atlantic distribution of the
blue jack mackerel (T. picturatus), we suggest, based on our findings, that
morphotypes M2-M3 and M4 might demonstrate migratory behavior,
explaining their similar presence in all the considered fishing grounds; in
contrast, M1-M5 and M6 could represent the resident contingents. The
lack of information on the seasonal distribution of these morphotypes
currently hinders our ability to explore and clarify alternative

Fig. 5. Relative frequencies of morphotypes found in Scomber colias collected
from the northeastern Atlantic Ocean and the Mediterranean Sea. (non-print
figure color). (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)

Fig. 6. Density distributions of the PC1 representing the overall phenotype of
Scomber colias collected from the northeastern Atlantic Ocean and the Medi-
terranean Sea. The lines show the average values of each region. (non-print
figure color). (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)

Table 2
Confusion matrix and accuracy achieved by the Multilayer Perceptron (MLP)
classifier using wavelets to define the otolith contour in Scomber colias specimens
collected from the northeastern Atlantic Ocean and the Mediterranean Sea. CI,
Canary Islands; CS, Cantabrian Sea; M, Madeira, LS, Ligurian Sea. The highest
regional classification is highlighted in black.

Prediction References Performance

CI M LS CS Accuracy Kappa % accuracy

CI 87 13 6 20 49.2
M 44 30 8 27 43.5
LS 24 5 37 18 62.7
CS 22 21 8 42 39.3
Total 0.476 0.288
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hypotheses. Future studies will be necessary to address this gap.
The northward latitudinal expansion has entailed an increase of fish

mean size, length at first maturity, a delay in the peak of spawning and
the spawning season, and a decrease in the somatic growth rate, all
likely influenced by surface sea temperature (ICES, 2021; Domí-
nguez-Petit et al., 2022). In this sense, we have also found a similar
pattern in total lengths for all morphotypes across regions. Individuals
within the Group-A exhibited smaller mean and maximum sizes
compared to those in Group-B (Fig. S3). Besides, the occurrence of
small-sized individuals in all cases suggest that the morphotypes found
are not related to fish length or age. Certainly, otoliths undergo onto-
genetic changes throughout their growth; specifically, contour alter-
ations (e.g., convexity or concavity) response to specific exogenous
factors (Hüssy, 2008; Tuset et al., 2015), whereas the rostrum and anti-
rostrum size are genetically codified (Reichenbacher et al., 2009; Vignon
and Morat, 2010; Reichenbacher and Reichard, 2014). In this context,
our findings revealed that PC1, explaining a greater variability in the
otolith contour (Table S1) and contributing significantly to partial
population differentiation, did not showed correlation with fish length
(Table S3). On the other hand, the PC3 component, linked to rostrum size
and its connectivity with the collicullum ostii, deemed the most crucial
component in the population identification, was significantly influenced
by fish length (Table S3). This zone of the otolith exhibited greater
development in the Group-B, consisting of larger Atlantic chub mack-
erels. Neves et al. (2024) found variability in the otolith shape linked to
age, particularly in 1-year-old individuals. However, this conclusion
may be debatable due to significant variability and overlap in fish
size-ranges by age among age groups (Navarro et al., 2021) and among
morphotypes (present study). Additionally, a study on otolith elemental
and isotopic signatures in the NE Atlantic revealed population differ-
ences among the Macaronesia archipelagos and mainland Portugal
(Correia et al., 2021). The authors proposed a limited movement of adult
individuals between isolate regions (i.e., islands), with larval retention
mechanisms or a self-recruitment process operating at large spatial
scales. Our primary concern with this hypothesis is, once again, the
representativeness of morphotypes when only 30 individuals were
analyzed per region, although we do not entirely rule it out. We agree
that further research into the population structure, fish movement and
habitat connectivity of this species is still needed.

The Atlantic chub mackerel congener, S. scombrus, is recognized to
consist of a northern (in Canada) and a southern contingent (in USA) in
the Northwest Atlantic population, which spawn in distinct areas and

periods, occasionally overlapping seasonally in the fished regions of the
USA (Arai et al., 2021; Bourret et al., 2023). Given the complexity of the
fishery dynamism in which both components seem to present different
trends in productivity and depletion, higher levels of contingent mixing
appear to be related to greater landings of the less favored contingent.
Arai et al. (2021) recommended spatially explicit stock assessment
models to preserve both productivity and stability in this
two-component population. Currently, stock identification methods
have uncovered discrepancies between the spatial structure of biological
populations and assumed stock units, leading to mismatches that
compromise accurate stock assessment and hinder sustainable fisheries
management. A fundamental ecological concern revolves around the
potential overexploitation of unique spawning components, which could
result in a loss of productivity, reduced biodiversity, and destabilization
of local and regional stock dynamics (Kerr et al., 2017). Fishing man-
agers must grasp that phenotypic richness mirrors the health and po-
tential plasticity of species to inhabit different (and new) niches or adopt
complementary life history patterns (Tuset et al., 2019). Challenges
associated to the use of averaged phenotypes for identifying SMPF stocks
have been highlighted in other SMPF species, like T. picturatus from the
central-eastern Atlantic (Vasconcelos et al., 2021). This underscores the
significance of integrating phenotypic diversity into any fishery man-
agement considerations, particularly in the context of ongoing global
warming. Presently, continuous monitoring programs aligned with the
European Data Collection Framework (Regulation (EU) 2017/1004) for
the collection, management and usage of fishery data, should promote
the extraction and creation of otoliths collections. This would allow the
ongoing monitoring of temporal shifts in phenotype frequencies for both
targeted and by-catch species over the long term. This information is
valuable for developing adaptive fishing management strategies, espe-
cially for SMPF species facing the challenges of global change. In the
East Atlantic waters, the most productive region for the Atlantic chub
mackerel is situated just south of the origins covered in this study (i.e.,
between Morocco and Mauritania) (ICES, 2021). This region falls within
one of the four Eastern Boundary Upwelling Systems, recognized as one
of the current thermal refuges for marine organisms amid climate
change (García-Reyes et al., 2023).

5. Conclusion

The presence of otolith morphotypes in the Atlantic chub mackerel
highlights a complex population structure, indicating the existence of a

Fig. 7. Correlation between the PCs with higher relative importance obtained in the classification model and the values of the wavelet along the 512 points.
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metapopulation. This metapopulation may comprise different contin-
gents cohabiting in varying proportions, depending on local environ-
mental conditions. A well-documented northward latitudinal trend
reveals an increase in mean fish size, length at first maturity, a post-
ponement in the peak of spawning and the spawning season, and a
decrease in the somatic growth rate. This trend is likely influenced by
surface sea temperature (ICES, 2021). Although further research is
needed at species level, the new insights presented in this study
contribute to a more comprehensive understanding of the biological
aspects and population dynamics of chub mackerel. Our findings,
derived from a substantial number of samples for the first time, repre-
sents a significant stride toward the development of future assessments
of chub mackerel stocks, thereby facilitating sustainable stock
management.
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Lombarte, A., 2016. Otolith shape lends support to the sensory drive hypothesis in
rockfishes. J. Evol. Biol. 29, 2083–2097. https://doi.org/10.1111/jeb.12932.

Tuset, V.M., Jurado-Ruzafa, A., Otero-Ferrer, J.L., Santamaría, M.T.G., 2019. Otolith
phenotypic variability of the blue jack mackerel, Trachurus picturatus, from the
Canary Islands (NE Atlantic): implications in its population dynamic. Fish. Res. 218,
48–58. https://doi/10.1016/j.fishres.2019.04.016.

Vasconcelos, J., Jurado-Ruzafa, A., Otero-Ferrer, J.L., Lombarte, A., Riera, R., Tuset, V.
M., 2021. Thinking of fish population discrimination: population average phenotype
vs. population phenotypes. Front. Mar. Sci. 8, 740296 https://doi.org/10.3389/
fmars.2021.740296.
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