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Abstract: In response to concerns of potential cytotoxicity and adverse tissue reactions caused by
vanadium and aluminum in the currently used biomaterial Ti-6Al-4V, the Ti–20Zr alloy was evaluated
in this study because it has been suggested as a candidate for human body implant material. The
Ti-20Zr alloy was obtained by vacuum-melting, followed by heat treatment at 1000 ◦C for 1 h, and
then air-cooled. Optical and scanning electron microscopy revealed that the sample had an α and
β lamellar microstructure. Analysis showed that the mechanical properties, in terms of hardness
measurements performed at low loads, were significantly different between the two phases. Thus, it
was found out that the α phase is softer by about 30% compared to the β phase. The Electrochemical
Impedance Spectroscopy technique (EIS) was employed to study the electrochemical behavior in
simulated body fluid (SBF). The electrochemical behavior demonstrated that Ti-20Zr alloy exhibits
excellent corrosion resistance due to the stable oxide layer formed on its surface. SEM and EDS
investigations showed that the surface topography, after electrochemical studies, is characterized by
a porous film with increased oxygen content, which might be suitable for the osteoinductive growth
of bone.

Keywords: implant; biomaterial; Ti-Zr; microstructure; EIS; microhardness

1. Introduction

Dental implant treatments have gained popularity because they preserve the adjacent
tooth structure and bone compared to other treatments; thus, this method has become an
important option for replacing missing teeth [1]. To manufacture implants, many metallic
alloys have been studied and employed. Among them, the most common are Co-Cr alloys,
Co-Cr-Mo alloys, stainless steel, commercially pure Ti (cpTi), and Ti-based alloys. Titanium
is used for the manufacturing of implants because it is biologically inert, has increased
biocompatibility, and has good bonding with osteoblasts. Moreover, when exposed to the
environment it can spontaneously develop a TiO2 oxide film on its surface [2,3] in the order
of nanometers, which can absorb phosphate- and calcium-inducing proteins to form apatite,
thus promoting osseointegration [4]. Nevertheless, the oxide film developed on its surface
is very thin [5,6] and is prone to damage, which leads to the release of Ti ions [7]. Also, cpTi
has low wear resistance, which affects the mechanical properties of the implant. In order
to overcome some of its drawbacks, Ti is alloyed with a variety of elements to enhance
its corrosion resistance, to improve its mechanical properties, and to lower its modulus of
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elasticity. Ti-based alloys are widely used as biomaterials in dentistry for manufacturing
abutments, orthodontic wires, and prostheses [4]. Among them, probably one of the most
popular materials used for implants is Ti-6Al-4V due to its advantages like good corrosion
resistance and mechanical strength combined with a lower modulus of elasticity compared
to cpTi. However, it has been reported that aluminum and vanadium ions can lead to
neurological problems and adverse reactions in the human body over an extended period
of time [8–10]. To further improve the mechanical properties and biocompatibility of Ti,
Ti-xZr alloys have been developed [11]. These alloys are of interest since they have a
lower Young’s modulus, increased hardness, and in some cases better biocompatibility
compared to Ti-6Al-4V and cpTi. Like titanium, zirconium belongs to the IV group of
the periodic table and is recognized as having similar chemical properties. Alloys with
different concentrations of zirconium, such as Ti-10Zr, Ti-20, Ti-30Zr, and Ti-50Zr, have
been studied in specific conditions for dental implant applications [12–14]. Researchers
have conducted in vitro, animal, and clinical studies on commercial Roxolid alloys, which
are Ti-based alloys with 13–17 wt.% Zr [15]. It was found out that the alloys possess
increased biocompatibility compared to cpTi, proving that they are a great candidate for
small-diameter implants. Alternate outcomes were revealed during the examination of the
electrochemical behavior of the alloys with titanium and zirconium [16,17]. These studies
showed that the alloy passivated more easily in Ringer solution compared to cpTi, having
a more stable passive film than Ti [18,19]. The influence of Zr concentration on Ti-xZr
alloys (x = 5%, 10%, 15%) was studied and it was concluded that the alloy presents no
cytotoxic effect on osteoblastic cells [20], confirming its safe use for medical devices [21,22].
The authors of the present work also investigated the electrochemical behavior of the
Ti-Zr alloy in Ringer’s solution, and it was found that the alloy has a superior corrosion
resistance compared to cpTp [23]. Furthermore, Zr addition results in microstructural
refinement without a significant reduction in ductility [24]. Considering these aspects, from
the literature one can notice that Ti-Zr is of particular interest in dentistry; however, its
performance can still be improved, and this can be achieved by changing the alloy’s Zr
content to produce an alloy with a defect-free microstructure, improving osseointegration
by passivation in different solutions, heat treatments, etc.

Thus, based on the literature and on the author’s background, the present paper
aims to further study the Ti-20Zr alloy, manufactured by vacuum-melting followed by
heat treatment and air-cooling. The microstructure and mechanical properties in terms
of hardness, as well as in vitro studies performed in artificial extracellular fluids, were
investigated. Studies were performed to find an adequate range for the stability of the
heat-treated Ti-20Zr alloy and to quantify the resistance of the passive film developed
on it. The present work is a basic research study to investigate the influence of heat
treatment on this particular alloy and to gather pertinent information for the design of
novel bio-medical material.

2. Materials and Methods
2.1. Ti-20Zr Alloy Preparation

The Ti-20Zr alloy was synthesized using a double-electron-beam melting furnace,
namely, the EMO 80 model manufactured by ZIROM S.A. in Giurgiu, Romania. The sample
was made from Ti and Zr, both of which had a bulk purity greater than 99.5%. The ingots
were rolled over and remelted at least six times to prevent macroscopic defects caused
by insufficient mixing. The sample was made as an ingot with a 20 mm diameter and
30 mm length. To prevent segregation, homogenization was utilized by subjecting the
material to heat treatment in a tubular furnace at a temperature of 1000 ◦C with a heating
rate of 10 ◦C per minute, followed by cooling in ambient air until the samples reached
room temperature. From our experience, we have observed that if we use 1000 ◦C for
heat treatment, we achieve homogenization within the material without changing the
α-β phases. If we go much higher than the beta-transus temperature (980 ◦C), where
homogenization in the β phase takes place, we notice the formation of an increased volume
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of non-equilibrium martensitic phases formed during cooling, such as α′′, which make the
material more fragile. Therefore, we wanted to maintain a balance between mechanical
properties and corrosion resistance. Specimens were cut and were specifically prepared
for each of the following tests: scanning electron microscopy (SEM), microhardness and
electrochemical measurements.

2.2. Microscopic Observations

The metallographic preparation used to study the alloy consisted of (i) cutting the
specimens, (ii) hot-mounting them in carbon-based resin, (iii) grinding the samples up
to 2400-grit SiC paper, and subsequently (iv) polishing the surfaces using alpha alumina
with a particle size of 0.1 µm until a highly reflective mirror-like appearance was achieved.
The samples were previously ultrasonically cleaned with deionized water and then etched
for 15 s in Kroll’s reagent, which contains 10 mL of hydrofluoric acid, 5 mL of nitric acid,
and 85 mL of water. When etching Ti or Ti alloys with Kroll’s reagent, the colors of the
β phase become dark brown. For microscopic observations, an Olympus PME 3-ADL
metallographic microscope (Olympus, Tokyo, Japan) was employed. To investigate the
microstructure before and after the electrochemical tests, elemental analysis was conducted
using a Carl Zeiss Sigma 300 VP scanning electron microscope (FE-SEM) from Zeiss, Jena,
Germany, which was equipped with an energy-dispersive X-ray spectrometer (EDS), from
Zeiss, Jena, Germany. The SEM micrographs were acquired in high-vacuum mode with
a cathode voltage of 15 kV and a working distance of approximately 10 mm. The sample
was analyzed using a backscattered electron detector (BSD) (Zeiss, Jena, Germany) to
identify the various phases present based on the Z contrast, and the secondary electron
(SE) (Zeiss, Jena, Germany) was used to investigate the topography of the surface after the
electrochemical tests. EDS was performed for chemical characterization by positioning
the sample at eucentric height, which was at 10 mm working distance from the surface of
the sample.

2.3. Microhardness and Indentation Depth

Vickers microhardness measurements were performed on the polished surface using
a Remet HX-1000 hardness tester. The microhardness measurements were carried out
tangentially to the surface and the indents were made at intervals of 0.5 mm along the
diameter of the sample. A variety of weights, including 0.5, 1, 2, 3, 4, 5, 10, 20, 50, 100, and
200 g, were utilized, along with a dwell time of 15 s to study the hardness variation. Ten
indents were taken for each load and the average value for each sample expressed as Vickers
hardness (HV) was calculated. Moreover, based on the measurements, the corresponding
indentation depth was calculated. Given the geometry of the Vickers indenter, the depth of
the indentation can be estimated by employing the subsequent equation derived from the
overarching Vickers equation:

δ =

√
1.854 × F
49 × HV

(1)

where δ is indentation depth [µm], F is applied load, and HV is hardness value.

2.4. Electrochemical Behavior

Under simulated physiological conditions, Ti-20Zr alloy’s electrochemical behavior
was examined by open-circuit potential (OCP), cyclic voltammetry (CV), linear polar-
ization (LP) and Electrochemical Impedance Spectroscopy (EIS). These techniques were
performed using a BioLogic Essential SP-150 Potentiostat from Seyssinet-Pariset in France.
The experimental solution utilized was a simulated body fluid (SBF) consisting of the
following components (in grams per liter): NaCl-6.8; KCl-0.4; CaCl2-0.2; MgSO4.7H2O-0.2;
NaH2PO4.H2O-0.15; NaHCO3-1.1; glucose-1.2. The electrochemical tests were conducted
at a temperature of around 22 ◦C using a standard glass cell that held 80 cc of electrolyte.
The working electrode’s potential was measured relative to a saturated calomel electrode
(SSCE) immersed in a solution of NaCl. The measured potentials were recorded relative to
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the SSCE electrode, with a Pt gauze serving as the counter electrode. Before conducting
the studies, each electrode was subjected to a voltage of −1 V (SSCE) for a duration of
10 min in order to reduce any oxides that may have formed on the surface of the sample.
The cyclic voltammetry measurements were performed using a Biologic SP-150 (BioLogic
Science Instruments, Seyssinet-Pariset, France) potentiostat/galvanostat. The potential
range was from −1.5 V to 2 V with scan rates of 10, 50, 100, and 200 mV/s. Furthermore,
the impedance data were collected at different potentials using the Biologic SP-150 module.
Using an alternative voltage amplitude of 10 mV in the frequency range between 10−1

and 105 Hz, single sine wave records were made. The collected EIS data were analyzed,
employing ZView 2 software by Scribner Associates, Inc., Southern Pines, NC, USA. The col-
lected data were modeled with an advanced non-linear least squares Levenberg–Marquardt
method, employing an analogous electrical circuit. Furthermore, by continually polarizing
the electrodes and allowing the system to equilibrate for 600 s at each potential, impedance
spectra in the range of −0.5 V to 1.5 V vs. SCE with a step of 0.2 V were recorded in order
to characterize the oxide layer. For the linear polarization measurements (LP), the samples
were polarized within a potential range of −1.5 V to 3.0 V with a scan rate of 1 mV/s.

3. Results and Discussions
3.1. Microstructure

The microstructure of the analyzed alloy was significantly impacted by the manufac-
turing process and the heat treatment. In this study, after manufacturing, the alloy was
held for 60 min at 1000 ◦C, above the β transus temperature (the temperature at which a
change occurs from the α phase to the β phase), and afterward air-cooled till the sample
reached room temperature. A standard procedure to prepare Ti alloys for metallographic
investigations is to etch the samples after polishing with Kroll’s reagent [25]. The surface
of the sample etched for 15 s was observed using a metallographic microscope, and the
microstructure at two different magnifications is presented in Figure 1. The sample, air-
cooled from the annealing temperature, produced fine-structured lamellar α and β phases
due to the faster cooling, which was revealed by the reagent. This is because the β phase is
colored preferentially compared to the α phase. One can observe that the microstructure
reveals very clearly the α lamellar microstructure which forms due to solidification after
homogenization in the β phase. Furthermore, the α phase was noticed at the grain bound-
aries, as presented in Figure 1b. Grain boundary α is an allotriomorph crystal structure
generally located at the β grain boundaries [26] which form due to late crystallization. A
similar microstructure was observed by Jose Moreno et al. when studying the microstruc-
ture and corrosion behavior of Ti-20Zr alloys in NaF-doped artificial saliva [27]. Thus,
it is believed that the α’ phase is present as well in the microstructure since the acicular
lamellas in the nearby grain boundaries are much finer compared to the ones observed in
Figure 1a. This might be attributed to the heat treatment to which the sample was subjected,
followed by air-cooling. The α’ phase is like the α phase, and it is difficult to identify
it. However, Chávez et al. identified the α’ phase in Ti-30Zr alloys; it was obtained by
arc-melting and formed due to the distortion of the α phase caused by a complete solid
solution of Zr combined with fast cooling [28]. The needle microstructure is a typical α’
martensitic phase of Ti, which in our case is attributed to the substitutional Zr added to the
alloy’s composition [20].

From the SEM images presented in Figure 2, it is evident that the Ti-20Zr alloy is a
solid solution with small segregations. This is attributed to a homogeneous composition,
to the similar physical properties of Ti and Zr, and to a high cooling rate, which inhibits
the formation of segregations [12]. Moreover, the examined region exhibits areas of dark
gray and lighter shades. SEM tests using a backscattered electron (BSD) detector reveal
elements with higher atomic numbers, as they appear brighter in micrographs. The bright
areas correlate to the regions with a high concentration of Zr. Zirconium (Zr) atoms possess
a greater atomic number, resulting in a stronger scattering of electrons towards the detector
compared to titanium (Ti) atoms. As a result, Zr atoms seem more luminous in the SEM
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micrographs. This is further corroborated by the EDX spectra, as the Zr peak has a greater
intensity when obtained from the illuminated region (Figure 2b, labeled Area 1). These
data are supported by the quantification as well.
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Figure 2. Microstructure of Ti-20Zr sample: (a) high magnification micrograph collected using BSD
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3.2. Microhardness and Indentation Depth

The microhardness values recorded as measurements from the surface of the samples
under different loads are summarized in Table 1. Considering our observations, we decided
to divide the results into the functions of the effects of phase and load on the hardness
values. It was noticed that the microhardness values varied when using loads up to 20 gf. It
is assumed that the variation is caused by the fact that the indents were collected in soft and
hard phases individually. Thus, these phases are ascribed to the α and β phases identified
within the microstructure. For loads in the range of 0.5–20 gf, five measurements were
performed in the soft phase and five measurements in the hard phase, and the calculated
average values for each phase are listed in Table 1. According to the observations, the α

phase is somewhat softer (about 30% lower) than the β phase. Comparable results were
documented by Min et al. when investigating the mechanical characteristics of Ti-Mo-Fe
and Ti-Mo alloys after heat treatment [29]. Starting with a 50 gf load, it was not possible
to select the phases and the average microhardness value was obtained as the mean of
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ten indentations randomly performed on the surface of the sample. It was observed that
with the starting load of 50 gf, there were no significant differences in the hardness values
when using the same load. Thus, this is attributed to the fact that the load starts to press
the indent in a way that makes it no longer possible to measure only one phase, but both
simultaneously. Regarding the effect of load on the microhardness, in our study, the HV
values generally increased with the applied load for indentation loads up to 20 gf. This is a
distinctive feature for a low-load range of loads, and it was encountered in our previous
study as well [30]. Generally, when a very low load is employed for measurements,
the hardness decreases with the increase in the testing load, which is attributed to the
indentation size effect (ISE). In contrast to the ISE, it might happen that the microhardness
increases with the increasing load, a phenomenon known as reverse ISE [31]. Analyzing
the data presented in Table 1, in our study a reserve ISE dominates the measurements when
loads up to 20 gf are employed. On the other hand, by applying loads over 50 gf, one
can notice that the hardness values approach a steady state at around 233 HV; thus, the
hardness does not vary that much compared to the HV values obtained when using lower
loads. However, there were some small differences depending on the hard or soft region
where the tip of the intender was fixed and the indentation was performed. From the
measurements, the applied load had a detrimental effect on the hardness values, especially
when lower loads were employed in the study. According to the measurements, the Ti-
20Zr alloy exhibits a hardness that is 1.2 times greater than that of commercially pure Ti,
which confirms the superior mechanical strength of the alloy compared to cp-Ti [32–34].
The measured microhardness values were used to calculate the indentation depth (in
µm) using the formula presented in the experimental part of this work. Analyzing the
results presented in Table 1, one can notice that the indentation depth increases with the
applied load.

Table 1. Ti-20Zr microhardness values obtained with different loads and the corresponding indenta-
tion depths.

Soft and Hard Phases in Ti-20Zr

Load (gf) Phase Hardness (HV) Indentation Depth (µm)

0.5
Soft 37.2 0.7

Hard 49.9 0.6

5
Soft 163.8 1.1

Hard 288.5 0.8

10
Soft 193.9 1.4

Hard 241.7 1.2

20
Soft 202.6 1.9

Hard 299.1 1.6

50 Average 234.1 2.8

100 Average 228.7 4.1

200 Average 239.6 5.6

3.3. Electrochemical Characterization
3.3.1. DC Electrochemical Test

Different tests were applied: open-circuit potential (OCP), cyclic voltammetry (CV),
and linear polarization. The OCP goal (see Figure 3) is to measure the potential of the
sample without affecting, in any way, the electrochemical reactions which take place on
the surface of the alloy. It can be observed that after around 4 h, the potential tends
towards a cvasi-steady-state value. To determine the potential ranges and kinetics of the
various electrochemical reactions of metallic samples in SBF and to choose the most suitable
conditions for the potentiostatic study of corrosion reactions, cyclic voltammograms (CVs)
were performed on a Ti-20Zr sample at various potential sweep rates. Figure 4 depicts the
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CVs of Ti-20Zr in simulated body fluid recorded by the potential cycling of the working
electrode at 10, 50, 100, and 200 mV/s between −1.50 and +1.50 V vs. SCE.
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Figure 4. Cyclic voltammetry spectra for Ti-20Zr tested in simulated body fluid. Figure 4. Cyclic voltammetry spectra for Ti-20Zr tested in simulated body fluid.

The CVs show the onset of the hydrogen evolution reaction at potentials below −1.5 V
vs. SCE. An anodic current peak at about −1.25 V vs. SCE is observed during the positive-
going scan due to the formation of a TiO2 film on the surface. On the other hand, when the
potential excursion in the positive direction exceeds −0.5 V vs. SCE, the current is almost
zero µA during the rest of the domain of potential, indicating that the passive layer growth
on the surface of the sample is very stable and resistant to corrosion. A broad cathodic peak
can be observed in the negative-going potential scan, involving the electroreduction of the
passive film formed on the metallic surface.

The polarization curve for potentials from −1.5 V to 3 V vs. SCE is presented in
Figure 5. According to earlier studies, the passivation behavior in the anodic branch of the
polarization curve is seen, and is related to the protectiveness of the corrosion products.
According to Zhang et al. [35], the formation of TiO2 and ZrO2 when the alloy contains
the right amount of Zr can increase passivation capability, which in turn improves the
alloy’s corrosion resistance. Even still, the alloy continues to dissolve as the anodic current
density rises, with anodic potential reaching beyond 2 V vs. SCE. The kinetic of the cathodic
reaction—oxygen reduction—is suggested by the slope of the polarization curve’s cathodic
portion. Current density stability was observed in the anodic region of the polarization
curve for potential values greater than approximately −0.75 V, which indicates complete
passivation. The anodic portion of the polarization curve shows a significant plateau of
passive current.
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3.3.2. AC Electrochemical Test

Electrochemical Impedance Spectroscopy (EIS) is a potent analytical method employed
to analyze the electrochemical processes that occur at the interface of a material immersed in
an electrolyte solution. In the context of corrosion analysis, EIS is employed to understand
the behavior of metals and alloys as they degrade due to electrochemical reactions. The
Nyquist plot (Figure 6a) is a key graphical representation in Electrochemical Impedance
Spectroscopy (EIS) analysis. It provides valuable insights into the electrochemical behavior
of a system by displaying the impedance data in the complex plane. It can be observed
that from −0.5 V to +0.3 V, the radius (and implicitly, the diameter) of the semi-circle is
increasing. The diameter of the semi-circle represents the charge transfer resistance (Rct)
of the system. A larger diameter indicates a higher charge transfer resistance, which is
due to the formation of a protective film on the surface. The center of the semicircle is
usually close to the real axis, indicating a negligible solution resistance (Rs). In the positive
direction, starting at 0.3 V, the diameter of the semi-circle decreases, and at 1.5 V and lower
frequencies, a sloping line or tail might be observed that deviates from the semi-circle. This
is called the Warburg tail and is associated with mass transport limitations at the electrode
surface, especially in systems involving diffusion-controlled reactions. The slope of the
Warburg tail can provide information about the diffusion coefficient of the species involved.
The growth of the passive film on the alloy’s surface increases the corrosion resistance, as
seen in the Bode IZI diagrams (Figure 6b), where the impedance module shifts toward
higher values as potential increases. An inherent characteristic of the initial formation of a
passive film on the metal’s surface is shown by the corrosion potential of the Bode-phase
diagrams (Figure 6c). The produced film thickens with increasing potential and exhibits a
capacitive response, as evidenced by a phase angle near to 90 degrees throughout a broad
frequency range. An increase in the capacity (C), which is associated with a rise in the total
surface area, is linked to this occurrence.

The resulting experimental data were adapted to an analogous electrical circuit after
the profiles of the impedance spectra were analyzed. A set of passive components (re-
sistances, capacitances, inductors, and other types of distributed impedance) that exhibit
corrosion-like behavior in the frequency range being studied is known as an equivalent
circuit. Better results are obtained using the Constant Phase Element (CPE) introduced by
Boukamp [36]; this is a versatile element in electrical equivalent circuits that can capture
a wide range of electrochemical behaviors in impedance spectroscopy, especially those
involving non-ideal capacitive, inductive, and resistive characteristics. Its parameter “n”
allows for the continuous adjustment of the phase angle, enabling a more accurate represen-
tation of complex electrochemical systems. Because the value of n is closer to the unit and
the surface is more uniform, the response of the real system is closer to the ideal. Therefore,
when n equals zero, the CPE element behaves as a basic resistance and a capacitor with
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capacitance Y0 for n = 1. To fit the EIS experimental data, we used the circuit presented in
Figure 7, similar to that used by Wang et al. [34], with the following elements:

- Rs: Solution resistance. The resistance due to the electrolyte solution through which
the current passes.

- Qp: CPE corresponding to the porous external passive layer, characterized by Yp
0 and np.

- Rp: Resistance attributed to the external porous layer.
- Qc: CPE corresponding to the inner passive layer. characterized by Yc 0 and nc.
- Rc: Polarization resistance of the alloy.
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It can be observed from Table 2 that the corrosion resistance of the alloy across the
potential range is more than double the reported values [13] in the absence of heat treatment.
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Table 2. Electrochemical parameters of equivalent circuits.

Potential Yp
0

[S·cm−2·sn]
np

Rp
[Ω·cm2]

Yc
0

[S·cm−2·sn]
np

Rc
[Ω·cm2] χ2

−0.5 V 4.1 × 10−9 0.95 200.1 8.3 × 10−6 0.89 1.3 × 106 9.7 × 10−4

0 V 5.1 × 10−9 0.93 213.9 6.5 × 10−6 0.91 2.8 × 106 8.3 × 10−4

0.3 V 5.9 × 10−9 0.92 224.5 6.5 × 10−6 0.91 2.7 × 106 9.0 × 10−4

0.7 V 6.1× 10−9 0.92 228.3 5.7 × 10−6 0.89 9.1 × 106 9.3 × 10−4

1.1 V 5.4× 10−9 0.93 232 4.1 × 10−6 0.89 2.9 × 106 6.6 × 10−4

1.5 V 5.9× 10−9 0.92 233.6 3.0 × 10−6 0.89 5.7 × 106 5.1 × 10−4

3.4. Scanning Electron Microscopy Observations after Corrosion Tests

Figure 5 shows the topographical surface of the Ti-20Zr alloy, illustrating the impact
of simulated body fluid on the sample’s surface. One can see that the passive film has
a porous microstructure (Figure 8a) that is suitable for osteoinduction. The EDS spectra
(Figure 8b) and quantification (Figure 5c) show the presence of increased oxygen content
which, according to the quantification, is about four times higher compared to the samples
investigated before the electrochemical tests [23]. Altogether, these prove with the EIS
results that the passive film formed on the sample’s surface is an oxide layer, which
enhances the corrosion resistance of the alloy.
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Figure 8. Microstructure of Ti-20Zr sample after corrosion test: (a) surface topography collected using
SE detector at 10.000x; (b) associated EDX spectra; and (c) quantification in wt%.

4. Conclusions

In the present study, the influence of heat treatment at 1000 ◦C, followed by air-
cooling, on the microstructure, mechanical properties, and corrosion behavior of a Ti-20Zr
dental alloy were investigated. From the obtained results, the following conclusions can
be summarized:

- The heat-treated Ti-20Zr alloy exhibited a fully lamellar α and β microstructure with
α-rich grain boundaries. A fine needle-like microstructure was observed in the vicinity
of the grain boundaries. The needle microstructure is a typical α’martensitic phase
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of Ti which is attributed to the substitutional Zr added to the alloy’s composition, as
well as to the heat treatment followed by fast cooling in air.

- In our study, a reversed ISE dominated the hardness measurements when loads up to
20 gf were employed; moreover, using a low range of loads, the α and β phases could
be studied in more detail, and it was found out that the α phase is softer by about 30%
in comparison to the β phase.

- The Ti-20Zr alloy showed better mechanical properties in terms of hardness and
estimated tensile strength than cp-Ti and pure Zr. The estimated tensile strength
calculated based on the measured hardness values was around 825 MPa, indicating
an increased value in comparison to the non-treated Ti-20Zr.

- The heat treatment applied to Ti-20Zr increased the corrosion resistance across the
potential range compared to Ti Cp.

- Surface analysis by SEM and EDS methods showed that the surface topography is
characterized by a porous external film, suitable for the osteoinductive growth of bone.
The high concentration of oxygen, compared to the bulk material prior to testing,
indicates the formation of a protective oxide layer which enhances the electrochemical
properties of the alloy in simulated body fluid.
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