Upgrading the dynamic mathematical model of temperature sensors in gaseous media for low Biot number (Bi < 0.1)

Jorge Valencia-Santana a,*, Alejandro Ramos-Martín b, Vicente Henríquez-Concepción b

a University Institute of Intelligent Systems and Numerical Applications in Engineering, University of Las Palmas de Gran Canaria (ULPGC), 35017 Las Palmas de Gran Canaria, Spain

b Department of Process Engineering, University of Las Palmas de Gran Canaria (ULPGC), 35017 Las Palmas de Gran Canaria, Spain

A R T I C L E I N F O

Keywords:
Thermistor
Heat transfer
Transient response
Laplace Transform
Conduction losses

A B S T R A C T

A mathematical model incorporating the transient response of NTC thermistors is presented. The internal thermal conduction resistance of the sensor relative to the thermal convection resistance of the medium results in a low Biot number (Bi < 0.1), yielding a fast dynamic response in gaseous media. This is advantageous in applications requiring minimal fluid interaction. However, negligible energy exchanges occur, introducing measurement uncertainty and ignoring the behavior of the measuring instrument. Therefore, this work proposes an improvement strategy for the mathematical model of these sensors, complementing the conventional model based on the concept of time constant. The strategy considers the heat flow through the thermistor wires in the energy balance, assuming they are semi-infinite solids and applying an approximation to the heat flow formula. Satisfactory improvement results were obtained compared to the conventional model, based on controlled laboratory tests with various gases.

1. Introduction

NTC thermistors are a popular choice for temperature measurement due to their accuracy, versatility, and ease of use compared to other transducers [1,2,3]. They offer several advantages over other temperature transducers including: high sensitivity, fast thermal response, a wide range of sizes and shapes and low cost [1,2,3,4].

Temperature measurements are used in various contexts, which can be classified as either stationary or transient phenomena [5]. In the case of stationary phenomena, a constant error or uncertainty is often observed [6]. In transient phenomena, the uncertainty or error associated with the measurement is typically variable and influenced by both the evolution of the phenomenon under study and the intrinsic characteristics of the temperature transducer or sensor [7], as illustrated in Fig. 1. This figure illustrates the dynamic response of a sensor T_s(t) with a known time constant τ to periodic temperature variations of a gaseous medium, such as air, denoted as T_g(t). So, T_s(t) the temperature measured by the sensor, representing the ambient temperature. The analysis comprehensively considers airflow and including any associated errors (T_s(t) – T_g(t)). To effectively deal with transient processes, it is crucial to use modelling strategies that consider the specific characteristics of the sensors or transducers used in their evaluation. This reduces measurement errors or uncertainties [8] and facilitates the isolation of the phenomenon under study.

The high dynamic response of NTC thermistors is partly due to their compact size, which facilitates efficient heat transfer between the sensor and its environment [9,10,11]. This relationship is commonly expressed by the dimensionless Biot number [12], which compares the sensor’s internal thermal conduction resistance to its external thermal convection resistance. A low Biot number (Bi < 0.1) indicates that the internal thermal gradient of the sensor can be neglected [13], which is usually expressed as the dimensionless Biot number tends to zero. Therefore, it is assumed that the internal temperature of the sensor is uniform, resulting in a fast and accurate dynamic response in gaseous media. This assumption is conventionally applied in mathematical models that use the sensor time constant [14], which takes into account its mass, specific heat capacity, and the properties of the fluid, represented by the convection coefficient and the surface area of the sensor in contact with the gas. This paper discusses the limitations of a mathematical model based on the time constant for temperature sensors. The concept of the time constant is inherently linked to the characteristics of the medium in
which the sensor is situated and the physical properties of the sensor itself. These properties include thermal conductivity, heat capacity, the geometry of the sensor. This is of significant importance for the accuracy of models based on time constants, which implies different values of time constants depending on the gaseous medium in which it is immersed. Thus, these operation conditions arise due to the requirement of employing sensors that exhibit a synergy between the gaseous medium and the sensor, resulting in a low Biot number ($Bi < 0.1$). This primarily occurs in applications where there is minimal interaction with the phenomenon under study. In such scenarios, the influence of energy exchange through the sensor conductors can be likened to the energy interaction with the fluid being monitored and the surrounding environment of the gaseous confinement medium. The equations (1) and (2) below show the conventional model that illustrates the relationship between the time constant τ and the dimensionless Biot and Fourier numbers $[12,15,16]$, (1) for a variable gas temperature $T_g(t)$ being $T_i(t)$ the sensor temperature, and (2) for a constant gas temperature T_g, where the sensor initial temperature is different from the gas temperature $T_i(0) \neq T_g$.

$$\frac{dT_i(t)}{dt} + T_i(t) = \frac{T_g(t)}{\tau} \Rightarrow T_i(t) = e^{-\frac{t}{\tau}} \left[T_i(0) + \frac{1}{\tau} \int_0^t T_g(s) e^{\frac{s}{\tau}} ds \right]$$

$$\frac{dT_i(t)}{dt} + T_i(t) = \frac{T_g(t)}{\tau} \Rightarrow T_i(t) = e^{-\frac{t}{\tau}} \left[T_i(0) + Bi \cdot \int_0^t T_g(s) \, ds \right]$$

As shown in (1) and (2), this model only takes into account the properties of the thermistor body and the surrounding fluid. The parameters used in this model are $\gamma = m_i c_p/\rho A_s$, $Bi = h L_e/\kappa_s$, and $Fo = a_t t/\kappa_{st}$; where m_i is the sensor mass, c_p the thermal specific capacity, h the heat transfer coefficient, L_e the characteristic sensor length, κ_s the sensor thermal conductivity, a_t the sensor thermal diffusivity, A_s the external sensor surface and finally, t is the time variable. It is suitable for various types of temperature sensors that meet the Biot number requirement ($Bi < 0.1$). Equations (1) and (2) represent a mathematical model that assumes an ideal scenario where only the exchange between the sensor and the fluid is considered, which is often referred to as lumped capacitance models [17]. However, in the case of a low Biot number ($Bi < 0.1$) situations, heat exchange through the thermistor wires connecting them to the corresponding circuit [18] can be significant. The dynamic response of the thermistor may be altered by this fact, which is not accounted for in the time constant model, (1) and (2).

However, this paper proposes an improvement to the model based on the time constant in which the heat flux exchanged through the thermistor wires is taken into account. The wires are assumed to behave as a semi-infinite solid [19]. In addition, an approach based on the use of equivalent transfer functions has been applied to the mathematical model of semi-infinite solids, which has been used with considerable success in several works [17,20]. The proposed model has been evaluated with experimental results and gives better results than the conventional time constant model. It is also relatively simple to use for the level of accuracy required.

The paper is structured as follows: Section 2 delineates the materials utilized in the experiments along with the methodological approach employed for data acquisition and processing. Section 3 elucidates the theoretical framework of the proposed model, encompassing the fundamental calculations underpinning the governing equations. The outcomes of the conducted tests are expounded upon in Section 4. These findings are subjected to critical analysis in Section 5 and ultimately, Section 6 deliberates upon the drawn conclusions.

2. Material and methods

A priori aim of this study is to replicate the response of a thermistor to an abrupt change in temperature using an external heat source generated by a laser. An experimental environment was meticulously designed, developed, and constructed to analyse the behaviour of these temperature sensors and to identify their operation conditions. The analysis was conducted within an experimental setup, as illustrated in Fig. 2, where the sensor is placed inside a fully insulated aluminium chamber, and a laser beam is projected onto the sensor to create a thermal stimulus. The interior of the chamber is configured to accommodate various gaseous media, including ambient air, helium, and even vacuum conditions. The wavelength of the laser significantly influences the power of the excitation signal, with power varying according to the frequency colour of laser. A laser generator capable of emitting different colours—purple (P), blue (B), red (R), and green (G)—was employed to provide a range of excitation powers. By varying the laser power and inducing different gaseous conditions within the chamber, it is possible to compare the sensor behaviours in ambient air, helium, and vacuum. Thus, the different laser powers are referred to as P, B, R, and G.

Table 1 shows some of the parameters that define the physical characteristics of the thermistor used in the tests (Part number: USP16673, Littelfuse). These values are for still air only, as the manufacturer has carried out the various tests under these conditions, as described in the general information on the NTC thermistor [21].
Furthermore, the table illustrates that the manufacturer has analysed the time constant for a specific fluid under defined conditions, resulting in the presented value. Nevertheless, the results of further tests with different fluids will demonstrate that this value is dependent on the properties of each fluid and the experimental conditions.

The configuration of the components in the proposed experiment is presented below using the schematic shown in Fig. 2. The data acquisition elements include: a voltage divider with two 10 kΩ resistors, a 16-bit analogue-to-digital converter (ADS1115 Texas Instruments), and two ATmega328 microcontrollers (Atmel) embedded in an Arduino system. One of these microcontrollers is used for data acquisition, while the other controls the laser shutter. Both boards are connected to a PC and communicate via an application developed specifically for the experiment, which allows the test bench actuator to be controlled, the data obtained to be managed and the measured temperature data to be monitored in real time.

On the other hand, humidity, pressure and light sensors are used to monitor other parameters inside the chamber. These devices are used for information purposes, as their measurements are used to check that there are no abrupt changes in the chamber during the tests.

With regard to the protocol to be followed in each test, it should be noted that the total duration is 180 s, during which three stages can be identified:

1. The first part is the rest period. This is important because it allows us to see if there are any disturbances that could affect the measurements to be taken. It lasts 30 s and during this time the temperature inside the chamber is measured before exposure to the laser. Taking into account that the microcontrollers used have a sampling frequency of 10 data per second, a total of 300 values are obtained. In this way, the average of the initial temperature is obtained, which is immersed in the gaseous medium and consists of a body (core), conductors and an excitation source, which is a laser acting as a thermal power source P_{laser}, as shown in Fig. 3.

Assuming a Biot number close to zero, a lumped capacitance model is established for the interaction of the sensor with the gaseous medium, with no temperature gradient inside the sensor and the temperature varying with time $T_s(t)$ [13,15,22]. As mentioned in the introduction, it is generally assumed that the dimensionless Biot number approaches zero for values less than 0.1. The accuracy of the mathematical model should increase as the dimensionless Biot number decreases. The Biot number (Bi) depends on the convection coefficient (h) of the fluid interface film in contact with the sensor surface. As the Biot number is proportional to the convection coefficient ($Bi = hD_s/k_s$), the value of Bi increases as h increases for the same sensor (diameter D_s and thermal conductivity sensor k_s are the same), simultaneously, this causes a decrease in the time constant $\tau = R_sC_s = m_sC_s/hA_s$, due to its relation to h. Therefore, changing the gas in the test chamber will alter the Bi number and consequently affect the sensor’s response. The energy balance proposed in (3) considers the incoming heat flux at the sensor surface, represented by P_{laser}, which remains constant over time. Additionally, it takes into account the heat transfer that is leaving the surface, which include convective exchange q_{conv}, and radiative exchange q_{rad} with the internal surfaces of the test chamber. The equation (3) includes the heat losses through the sensor conductors and the variation of energy stored in the sensor per unit time, represented by the term $m_sc_s\frac{dT_s}{dt}$, where $C_s = m_sc_s$ is the thermal capacity of the sensor (kJ/K). The upcoming analysis will examine each of the heat flows identified in equation (3) of the energy balance.

To determine the expression for the convective heat transfer (q_{conv}) between the surface of the sensor and the gas in the medium in which it is immersed, certain considerations must be taken into account, as described below. The convective heat transfer is calculated according to Newton’s cooling law (4),

$$q_{\text{conv}} = hA_s(T_s - T_i)$$

where h is the average surface convection coefficient, which is related to the thermal behavior of the gas boundary layer surrounding the sensor.

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance at 25 °C</td>
<td>10 kΩ ± 1 %</td>
</tr>
<tr>
<td>Nominal temperature</td>
<td>−30 °C to +90 °C</td>
</tr>
<tr>
<td>β (25 °C to 85 °C)</td>
<td>3435 K nominal</td>
</tr>
<tr>
<td>Dissipation constant</td>
<td>0,7 mW/C Nominal (still air)</td>
</tr>
<tr>
<td>Thermal time constant</td>
<td>5 s nominal (still air)</td>
</tr>
</tbody>
</table>
and acts as a proportionality factor to the temperature difference between the surface T_s and the gas T_g for the exchanged heat transfer q_{conv}. The surface convection coefficient h depends on various factors, including fluid velocity, fluid regime, surface geometry, fluid type and whether the situation is stationary or transient. Regarding the topics explored in this paper, it must be taken into consideration that the different energy interactions indicated in the sensor will cause the temperature to vary over time, so that a transient phenomenon must be assumed, in which the influence of this condition on the variability of the surface convection coefficient must be analysed.

When a temperature difference exists between the sensor and the gaseous medium $|T_s(t) - T_g| \neq 0$, a fluid film or layer develops. This film has a common boundary with the sensor, i.e. the external surface of the sensor, through which a heat flow is exchanged between the sensor and the gaseous medium. This film considers a temperature gradient and the time required for its full development in transient processes. Heat transfer phenomena by conduction through the film predominate initially, followed by heat exchange by convection once developed, provided that the forces favouring fluid movement in the layer exceed those opposing it at a certain value. For free convection, buoyancy forces are in favour while viscous forces are opposed. In forced convection, inertia forces are favourable and viscous forces are opposed. The Grashof number (Gr) is typically used to distinguish this in free convection, while the Reynolds number (Re) is used in forced convection. These

![Fig. 4. Radiative and gas film properties for the sensor surface and air.](image-url)
parameters compare the forces that promote fluid motion with those that oppose it. When the dimensionless Grashof and Reynolds numbers are approximately equal to one (Gr = 1, Re = 1), heat transfer through the boundary layer is limited and occurs solely through conduction. The fluid movement in the boundary layer is considered to be zero. For the

transient free convection situations studied in this paper, the surface fluid movement in the boundary layer is considered to be zero. For the boundary layer is limited and occurs solely through conduction. The dimensionless Grashof and Reynolds numbers are approximately equal to one (Gr = 1, Re = 1), that oppose it. When the dimensionless Grashof and Reynolds numbers are approximately equal to one (Gr = 1, Re = 1), for a range of sensor temperature values given that that must be assumed, as shown in graph D of Fig. 4, for the

stationary case, it must be assumed that the exchange

furthermore, graphs B, C and D, in the same figure, display the values for air and various sensor diameter values, displayed in Fig. 4, Graph E, for air and various sensor diameter values,

considered for each situation can be determined when the condition is further, graphs B, C and D, in the same figure, display the values for air and various sensor diameter values, displayed in Fig. 4, Graph E, for air and various sensor diameter values,

where the expression for the calculation of the heat flux exchanged by convection and radiation across the sensor surface is provided. Furthermore, considering that the wires are fully insulated, as seen in Fig. 3, and that there is no significant heat transfer to the environment, the analysis is focusing on the heat conduction along the wires. Thus, the analysis focuses on the heat transfer along the cable body, which could be modelled using the one-dimensional heat transfer equation. Thus, the one-dimensional (1D) heat transfer equation, assuming the semi-infinite solid hypothesis, can be a starting point to obtain the value of the transient temperature at the sensor surface, as confirmed by the studies in [23]. Consider the sensor wires as a semi-infinite solid with constant thermophysical properties, no internal heat generation, uniform thermal conditions over the exposed surface and initially a uniform temperature T_0 over its entire length. The contact area between the sensor and the wires is considered to be the boundary of the semi-infinite medium x = 0 and the other end of the wires is considered to be at x = ∞, since an infinite length L = ∞ is assumed. Thus, the thermal conditions imposed on the surface of the sensor are determined by the heat conduction of a semi-infinite solid and therefore the solution is strongly dependent on the boundary conditions set at x = 0, which coincide with the imposition of the temperature at which the sensor is located. However, once the change of variable θ(x, t) = T(x, t) - T_s has been introduced and the initial and boundary conditions have been established, the differential equation for heat conduction in conductors is as follows [12,15,16]:

\[\frac{\partial^2 \theta(x, t)}{\partial x^2} = \frac{1}{\alpha_w} \frac{\partial \theta(x, t)}{\partial t} \]

(10)

Boundary condition \(x = 0; \theta(0, t) = T_s(t) - T_g \)

Boundary condition \(x = \infty; \theta(\infty, t) = T_s(t) - T_g = 0 \)

Initial condition \(\theta(x, 0) = 0 \)

where \(\alpha_w \) is the thermal diffusivity of the cable material, \(\alpha_w = k_w / (c_w \rho_w) \), \(k_w \) is the thermal conductivity, \(\rho_w \) is the density, and \(c_w \) is the specific heat capacity.

Applying the Laplace transform [17,24,25] to equation (10), it is obtained the following differential equation (11):

\[\frac{\partial^2 \theta(x, s)}{\partial x^2} = \frac{1}{\alpha_w s} \theta(x, s) \]

(11)

Boundary condition \(x = 0; \theta(0, s) = T_s(s) - T_g \)

Boundary condition \(x = \infty; \theta(\infty, s) = 0 \)

This differential equation is linear homogeneous. And its solution is given in (12).

\[\theta(x, s) = C_1 e^{-\sqrt{s} x} + C_2 e^{\sqrt{s} x} \]

(12)

where \(q_{rad} \) is the heat flux exchanged by radiation across the sensor surface.

\[q_{rad} = h_{rad} A_s (T_s - T_{surr}) \]

(8)

Furthermore, a radiation coefficient (\(h_{rad} \)) is determined based on the indicated temperatures and the emissivity of the chamber surfaces. This coefficient is illustrated in graph A of Fig. 4, which displays a slight variation in the radiation coefficient, ranging from 5.7 to 7 W/m^2K when the surface emissivity is equal to one. Within the considered temperature range, it is possible to assume a constant value for the \(h_{rad} \) coefficient, which varies by 20% from its minimum value, and approximately 2% from the surface convection coefficient \(h \), as demonstrated in graphs A and D of Fig. 4, which represents the worst-case scenario. As both coefficients \(h \) and \(h_{rad} \) are assumed to be constant and the gas and chamber surface temperature \(T_g = T_{surr} \), an overall heat transfer coefficient (\(h \)) is considered that includes both convection and radiation effects, giving the expression of Newton’s law of cooling, modified to include the effect of radiation, as shown in expression (9),

\[q(t) = h_{rad} A_s (T(t) - T_{surr}) \]

(9)

where the expression for the calculation of the heat flux exchanged by convection and radiation across the sensor surface is provided.
Starting from the condition \(\theta(\infty, s) = 0 \), from which it follows that \(C_2 = 0 \), the solution (12) has the form:

\[
\theta(x, s) = C_1 e^{-\sqrt{s} k_w x}
\]

Thus, the boundary condition for \(x = 0 \) determines the constant \(C_1 \), leaving the solution in (14).

\[
\theta(x, s) = \frac{\theta(0, s)}{s} e^{-\sqrt{s} k_w x}
\]

To obtain an expression for the heat flow through the cables, the Fourier law must be applied to the expression (14) and then evaluated at \(x = 0 \), as shown in (15). On the other hand, considering the initial condition \(\theta(x, 0) = 0 \) and Fourier's law:

\[
-k_w A_w \frac{d\theta(x, s)}{dx} \bigg|_{x=0} = \dot{q}_w(s),
\]

equation (14) would be as shown in (15), given that the cable cross section is \(A_w \) through which the heat flow of the cables passes.

\[
\dot{q}_w(s) = \frac{\theta(0, s)}{s} = -k_w A_w \frac{d\theta(x, s)}{dx} \bigg|_{x=0} = k_w A_w \sqrt{s} \theta(0, s)
\]

Given that \(\theta(0, s) = T_s(s) - T_g \), an expression for the heat flow through the wires is obtained from the sensor temperature in (16).

\[
\dot{q}_w(s) = \frac{k_w}{\sqrt{s}} A_w \sqrt{s} \theta(0, s) = \frac{k_w}{\sqrt{s}} A_w \sqrt{s} (T_s(s) - T_g)
\]

At this point, all the elements of the energy balance (3) have been defined, which can be rewritten in the complex (Laplace) field as shown in (17), taking into account that \(dT_i(t)/dt = d(T_i(t) - T_g)/dt \), since \(T_g \) is constant.

\[
\frac{P_{laser}}{s} - \dot{q}_s(s) - \dot{q}_w(s) = m_v c_p s (T_s(s) - T_g)
\]

In equation (17), the different heat flows determined in (9) and (16) can be substituted, resulting in equation (18).

\[
\frac{1}{\sqrt{s}} Z_1(s) = \frac{a_1 s + a_0}{b_1 s + 1}
\]
parameters for the expressions (27) and (28).

Table 3

<table>
<thead>
<tr>
<th>$\theta_1(t)$</th>
<th>$\theta_2(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{a_1}{s^2 + a_1}$</td>
<td>$\frac{a}{s}$</td>
</tr>
<tr>
<td>$\frac{3a}{3c + 1}$</td>
<td>$\frac{a}{2s_2^2 + 5s_2 + 3}$</td>
</tr>
<tr>
<td>$\frac{3a}{3c + 1}$</td>
<td>$\frac{3a}{3s_0 + 1}$</td>
</tr>
<tr>
<td>$\frac{3a}{3c + 1}$</td>
<td>$\frac{a}{2s_2^2 + 5s_2 + 3}$</td>
</tr>
</tbody>
</table>

$\theta_1(t) = \frac{a_1}{s^2 + a_1} \cdot \frac{1}{s}$

$\theta_2(t) = \frac{a}{s}$

$\theta_1(t) = a_1 \cdot (1 - e^{-t/\tau_1})$ (27)

$\theta_2(t) = a_2 \cdot (1 - e^{-t/\tau_2})$ (28)

$\theta_1(t) = a_1 \cdot (1 - e^{-t/\tau_1})$ (27)

$\theta_2(t) = a_2 \cdot (1 - e^{-t/\tau_2})$ (28)

The model parameters are presented in Table 3.

Bearing in mind that, in the stationary regime and assuming that $T_i(0) = T_g$, for $t = \infty$, it is obtained that $\theta_i(\infty)$ is:

$\theta_i(\infty) = \frac{3a}{3c + 1}$

under vacuum conditions, as will be discussed later, the term R_b tends to infinity, so it disappears.

Therefore, the total impedance of the thermal system shown in Fig. 7 is obtained by considering the parallel connection of the resistance R_b, the capacitance C_1 and the impedance $Z'(s)$, and it is displayed in (21).

$Z_i(s) = \frac{R_b Z'(s)}{R_b + (R_b C_1 s + 1) Z'(s)}$ (21)

where the term $Z'(s) = \frac{a_1}{s^2 + a_1} \cdot \frac{1}{s}$, which is displayed in (22).

$Z'(s) = \frac{k_w}{\sqrt{\alpha_w}} A_w^{-1} \cdot \frac{C_0 R_0 R_1 s + R_0 + R_1}{C_0 R_0 s + 1} \approx \frac{k_w}{\sqrt{\alpha_w}} A_w^{-1} \cdot \frac{1}{\sqrt{s}}$ (22)

The expression to obtain the temperature difference experienced by the sensor as a function of the external excitation source is expressed by (23) in the Laplace domain.

$\theta(s) = (T_i(s) - T_g) = \frac{P_{laser}}{s} \cdot Z_i(s)$ (23)

Expression (23) can be expressed as shown in (24) for the case when all heat flows $q_i = q_{conv} + q_{rad} + q_w$ are considered.

$\theta_i(s) = \frac{a}{s} \cdot \frac{1}{s} \cdot \frac{1}{b s^2 + (3(1 + b) + c) s + 3c + 1} (24)$

If the heat flow by convection and radiation is not taken into account, the expression (25) is obtained in the case of a vacuum in the test chamber.

$\theta_i(s) = \frac{a}{s} \cdot \frac{1}{b s^2 + 3(1 + b) s + 3c + 1} (25)$

where $a = \frac{P_{laser}}{s} \cdot (A_w k_w/\sqrt{\alpha_w})^{-1}$, $b = C_0 h_0 (A_w k_w/\sqrt{\alpha_w})^{-1}$, and $c = (R_0 A_w k_w/\sqrt{\alpha_w})^{-1}$. For the conventional model (26), with no heat flow through the wires, it is obtained that $a' = \frac{P_{laser}}{s} R_b$, $b' = \tau = \frac{C_0 h_0}{s}$.

$\theta_i(s) = \frac{a'}{s} \cdot \frac{1}{b s^2 + 3(1 + b) s + 3c + 1} (26)$

By applying the inverse Laplace transform and making the appropriate groupings, the expression for the temperature response experienced by the thermistor after the external laser excitation source is obtained for expressions (27), (28) and (29).

$\theta_1(t) = \frac{\theta_{11}}{s} \cdot (1 - e^{-t/\tau_1}) = \frac{\theta_{1}}{s} (1 - e^{-t/\tau_1})$ (27)

$\theta_2(t) = \frac{\theta_{21}}{s} \cdot (1 - e^{-t/\tau_2}) = \frac{\theta_{2}}{s} (1 - e^{-t/\tau_2})$ (28)

$\theta_3(t) = \frac{\theta_{31}}{s} \cdot (1 - e^{-t/\tau_3}) = \frac{\theta_{3}}{s} (1 - e^{-t/\tau_3})$ (29)

The model parameters are presented in Table 3.

Bearing in mind that, in the stationary regime and assuming that $T_i(0) = T_g$, for $t = \infty$, it is obtained that $\theta_i(\infty)$ is:

$\theta_i(\infty) = \frac{3a}{3c + 1}$

$\theta_1(t) = \frac{3a}{3c + 1} \cdot \frac{1}{s} \cdot \frac{1}{s}$ (27)

$\theta_2(t) = \frac{3a}{3c + 1} \cdot \frac{1}{s} \cdot \frac{1}{s}$ (28)

$\theta_3(t) = \frac{3a}{3c + 1} \cdot \frac{1}{s} \cdot \frac{1}{s}$ (29)

$\theta_1(t) = \frac{3a}{3c + 1} \cdot \frac{1}{s} \cdot \frac{1}{s}$ (27)

$\theta_2(t) = \frac{3a}{3c + 1} \cdot \frac{1}{s} \cdot \frac{1}{s}$ (28)

$\theta_3(t) = \frac{3a}{3c + 1} \cdot \frac{1}{s} \cdot \frac{1}{s}$ (29)
\[\theta_1(\infty) = T_i(\infty) - T_s = \varepsilon_i \begin{cases} T_i(\infty) = \varepsilon_i - T_i(0) \\ T_i(\infty) = T_i(0) \end{cases} ; i = \{1, 2\} \] (30)

Taking into account that \(T_s = T_i(0) \), expressions (27) and (28) are expressed as (32).

\[\frac{T_i(t) - T_s}{T_i(0) - T_s} = \frac{\lambda / \varepsilon_i}{\lambda / \varepsilon_i} e^{-\lambda t} \left(1 + \frac{\lambda / \varepsilon_i}{\lambda / \varepsilon_i} \right) e^{-(\lambda / \varepsilon_i) t} ; i = \{1, 2\} \] (31)

\[\Theta_1(t) = \frac{\lambda / \varepsilon_i}{\lambda / \varepsilon_i} e^{-(\lambda / \varepsilon_i) t} \left(1 + \frac{\lambda / \varepsilon_i}{\lambda / \varepsilon_i} \right) e^{-(\lambda / \varepsilon_i) t} ; i = \{1, 2\} \] (32)

For \(\Theta_1(t) \) the same change can be made obtaining (33).

\[\Theta_1(t) = e^{-\theta_1} = e^{-\theta_1 / \varepsilon_i} \] (33)

where \(\theta_1(\infty) = \theta_1 \). Where \(\Theta_1(t) \), \(\Theta_2(t) \), and \(\Theta_3(t) \) represent temperatures in dimensionless form.

This proposal can be approached using the quadrupole method [17], which is particularly suitable for solving 1D transient heat transfer problems in complex systems. This method is especially useful when dealing with systems that have complex geometries or varying boundary conditions.

3.1. Calculations for the proposed model

This section presents calculations and results obtained from the approximations proposed in (18) and (19) for specific boundary conditions that have an analytical solution. These results will demonstrate the suitability and scope of the proposals for the problem evaluated in this article. Starting from the analytical solution of equation (10), an inverse Laplace transformation is applied for a step temperature of \(\theta(0, s) = (T_i - T_s)/s = \theta / s \) at \(x = 0 \), where \(T_i \) is assumed to be constant [16]. The analytical solution of (17) is shown in expression (33) for the considered conditions.

\[\dot{q}(0, s) = \sqrt{\frac{\rho \cdot \varepsilon_p \cdot k \cdot \sqrt{s}}{\lambda}} \theta \left(\frac{\theta}{\delta} \right) \left(\frac{1}{s} \left[\theta \left(\frac{\theta}{\delta} \right) \right] \right) \] (34)

Equations (35) and (36) can be used to approximate the analytical heat flux expressed in (34). These equations were obtained by applying the inverse Laplace transform, taking into account the step input and the approximations \(Z_1(s) \) and \(Z_2(s) \), respectively.

\[\dot{q}_1(0, t) \approx \frac{k}{\sqrt{\pi \cdot \alpha \cdot t}} \left(\theta(0, s) \right) \] (35)

\[\dot{q}_2(0, t) \approx \frac{k}{3 \sqrt{\pi \cdot \alpha \cdot t}} \left(T_i - T_s \right) \cdot \left(8 \cdot e^{-3t} + 1 \right) \] (36)

Fig. 8. Heat flow for constant temperature \(T_i \) at \(x = 0 \).
Fig. 10. Practical test to evaluate the transient response of the thermistor under the highest power signal.

Expressions (39) and (40) can be used to approximate the analytical heat flux expressed in (38). These equations were obtained by applying the inverse Laplace transform, taking into account the periodic temperature input and the approximations \(Z_1(s) \) and \(Z_2(s) \), respectively.

\[
q_1(0, t) \approx \frac{k}{\sqrt{\alpha}} \Delta T \cdot \omega \cdot L^{-1} \left[\frac{1}{\omega^2 + \alpha^2} \cdot z_1^{-1}(s) \right]
\]

\[
q_2(0, t) \approx \frac{k}{\sqrt{\alpha}} \Delta T \cdot \omega \cdot L^{-1} \left[\frac{1}{\omega^2 + \alpha^2} \cdot z_2^{-1}(s) \right]
\]

\[
q_1(0, t) \approx \frac{k}{\sqrt{\alpha}} \Delta T \omega \cdot \left(-8e^{-3t} + 3\left(\omega + \frac{1}{\omega} \right) \sin(\omega t) + 8\cos(\omega t) \right)
\]

\[
q_2(0, t) \approx \frac{k}{5\sqrt{\alpha}} \Delta T \omega \cdot \left(44\sqrt{5} - 100 \right) \omega^3 + \left(20\sqrt{5} + 100 \right) \omega \cdot \left(-44\sqrt{5} - 100 \right) \omega^3 + \left(20\sqrt{5} + 100 \right) \omega \cdot e^{(-5\cdot2\sqrt{5})t} + \left(20\omega^4 + 370\omega^2 + 25 \right) \sin(\omega t) + \left(200\omega^4 + 200\omega \right) \cos(\omega t) \right)
\]

Fig. 9 displays the results of the approximations (39) and (40) for a sinusoidal temperature of \(\Delta T = 1^\circ \text{C} \) amplitude and for different angular frequencies, with a thermal conductivity of \(k = 400\text{W/m}^\circ\text{C} \) and a thermal diffusivity of \(\alpha = 100 - 10^4 \text{m}^2/\text{s} \), as well as the outcome of the analytical solution (38). The approximations are observed to be sufficiently accurate, particularly for frequencies of 0.1 and 1 Hz. These frequencies fall within the range where approximations (39) and (40) align most closely with \(1/\sqrt{s} \), as evidenced by the Bode diagrams in Fig. 6.

4. Results

The following section presents the response of a thermistor to an external heat source, specifically a power laser, in various gaseous media. The data is presented in a format that allows for the results obtained in ambient air, helium, and vacuum conditions to be easily compared. Similarly, the tables displaying model parameters and...
residual values are structured in a similar manner. The first row presents the results obtained with the highest power laser (P), followed by B, R, and G for each gaseous medium. Fig. 10 illustrates the operation of the laser within the test chamber.

Finally, each test is individually presented using logarithmic temperature graphs ($\theta(t)$). This technique enables the identification of trends across a wide range of values, thereby providing a deeper understanding of the experimental results and their implications for the behaviour of the system under study.

4.1. Thermistor transient response at different laser powers and gaseous medium characteristics

Fig. 11 illustrates the temperature thermistor responses when ambient air is used as the gas in the chamber for four different laser powers. This allows for direct analysis of the amplitude corresponding to each signal, thereby enabling an understanding of the effect of the laser power source on the temperature thermistor response. Additionally, Fig. 11 displays that the experiment commences after a stabilization period preceding the laser stimulus. For the remaining results shown in Figs. 12, 13 and 14, the behaviour of the test remains consistent.

It is worth mentioning that by monitoring the internal and external parameters, a reference measurement of the environment is available, indicating a temperature of 24°C and a relative humidity of 45%.

The discussion of the helium experiment follows the description of the ambient air experiment. Helium has a thermal diffusivity coefficient approximately ten times greater than that of air, which is a crucial factor to consider in experimental design. As shown in the corresponding graph.

For the vacuum tests, a pressure of −1.0 bar is achieved inside the chamber using a pump and valve system. The responses obtained are shown in the graph below (Fig. 13):

Fig. 12. Thermistor response to helium in chamber.

Fig. 13. Thermistor response to vacuum in chamber.

Fig. 14. Thermistor response in rising phase with ambient air in chamber.

4.2. Fitting and comparison of the mathematical models

To assess the validity of the mathematical models considered in this paper, the time constant model (29) and the proposed improved model (27) and (28), a non-linear least squares method [31,32] is applied. The non-linear least squares method is based on the Gauss-Newton algorithm with restrictions on the model parameters using the Trust-region algorithm. The residual sums of squares or qualitative estimator (QE_i) data (41) are obtained from the least square process for each experiment with m samples per test. Four tests ($n = 4$) were conducted, each with different laser power settings and fluid.

$$QE = \sum_{i=1}^{n} (\theta_{expi} - \theta_{modeli})^2$$

(41)

For each laser power setting, the mean quality estimate (μ_{QE}) and corresponding standard deviation (σ_{QE}) were calculated for the corresponding four tests, as shown by expressions (42).

$$\mu_{QE} = \frac{\sum_{i=1}^{n} QE_i}{n}$$

$$\sigma_{QE} = \sqrt{\frac{\sum_{i=1}^{n} (\mu_{QE} - QE_i)^2}{n-1}}$$

(42)

Furthermore, the mean (μ_{p_i}) and standard deviation (σ_{p_i}) of the proposed parameters ($p_i = \{a^*, \tau, \varepsilon, \lambda, \cdots\}$) were utilized to evaluate the results of each test, as presented in expressions (43).
\[\mu = \frac{\sum_{i=1}^{n} p_i}{n} \frac{\rho_n}{\sigma_n} = \frac{\sum_{i=1}^{n} (\mu_i - p_i)^2}{n - 1} \]

In order to contrast the data provided by the thermistor manufacturer and to emphasise the importance of considering not only the properties of the sensor, but also those of the fluid to be monitored, the following tables present the results of the conventional time constant model in comparison with the results proposed in this article.

In contrast, the values of the parameters and the qualitative estimator for the proposed improved model (26) and (27) are shown in the following table 7-9:

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Parameters and QE values for time constant model (29) in air.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>n</td>
</tr>
<tr>
<td>P</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
</tr>
<tr>
<td>R</td>
<td>4</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
</tr>
</tbody>
</table>

Figs. 15 and 16 show the analysis of the model from a dimensionless perspective of the data obtained. These plots are very useful as they graphically show the existing deviations of the proposed model with respect to the experimental data. For this reason, the response of the thermistor has been analysed when the external heat source acts, taking into account the logarithm of the temperature.
Table 5
Parameters and QE values for time constant model (29) in vacuum.

<table>
<thead>
<tr>
<th>ID</th>
<th>n</th>
<th>a'</th>
<th>τ</th>
<th>σ_a</th>
<th>σ_{τ}</th>
<th>μ_a</th>
<th>σ_{μ_a}</th>
<th>μ_{τ}</th>
<th>$\sigma_{\mu_{\tau}}$</th>
<th>QE</th>
<th>σ_QE</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>4</td>
<td>24.37</td>
<td>2.98</td>
<td>0.03</td>
<td>0.01</td>
<td>84.67</td>
<td>2.99</td>
<td>30.26</td>
<td>4.17</td>
<td>9.30</td>
<td>1.23</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>19.91</td>
<td>3.35</td>
<td>0.01</td>
<td>0.01</td>
<td>30.26</td>
<td>4.17</td>
<td>20.6</td>
<td>2.96</td>
<td>9.30</td>
<td>1.23</td>
</tr>
<tr>
<td>R</td>
<td>4</td>
<td>10.15</td>
<td>3.29</td>
<td>0.01</td>
<td>0.04</td>
<td>19.96</td>
<td>2.96</td>
<td>30.26</td>
<td>4.17</td>
<td>9.30</td>
<td>1.23</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>9.30</td>
<td>3.37</td>
<td>0.02</td>
<td>0.3</td>
<td>13.68</td>
<td>1.23</td>
<td>30.26</td>
<td>4.17</td>
<td>9.30</td>
<td>1.23</td>
</tr>
</tbody>
</table>

Table 6
Parameters and QE values for time constant model (29) in helium.

<table>
<thead>
<tr>
<th>ID</th>
<th>n</th>
<th>a'</th>
<th>τ</th>
<th>σ_a</th>
<th>σ_{τ}</th>
<th>μ_a</th>
<th>σ_{μ_a}</th>
<th>μ_{τ}</th>
<th>$\sigma_{\mu_{\tau}}$</th>
<th>QE</th>
<th>σ_QE</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>4</td>
<td>11.77</td>
<td>1.36</td>
<td>0.03</td>
<td>0.03</td>
<td>2.53</td>
<td>0.24</td>
<td>9.30</td>
<td>1.23</td>
<td>1.36</td>
<td>0.03</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>10.07</td>
<td>1.18</td>
<td>0.01</td>
<td>0.01</td>
<td>1.06</td>
<td>0.09</td>
<td>9.30</td>
<td>1.23</td>
<td>1.36</td>
<td>0.03</td>
</tr>
<tr>
<td>R</td>
<td>4</td>
<td>4.40</td>
<td>1.17</td>
<td>0.01</td>
<td>0.05</td>
<td>0.59</td>
<td>0.08</td>
<td>9.30</td>
<td>1.23</td>
<td>1.36</td>
<td>0.03</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>4.36</td>
<td>1.24</td>
<td>0.02</td>
<td>0.45</td>
<td>4.52</td>
<td>0.18</td>
<td>9.30</td>
<td>1.23</td>
<td>1.36</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Table 7
Parameters and QE values for the proposed improved model (27) in air.

<table>
<thead>
<tr>
<th>ID</th>
<th>n</th>
<th>ϵ</th>
<th>λ</th>
<th>σ_ϵ</th>
<th>σ_λ</th>
<th>μ_ϵ</th>
<th>σ_{μ_ϵ}</th>
<th>μ_λ</th>
<th>σ_{μ_λ}</th>
<th>$\delta+\gamma$</th>
<th>$\sigma_{\delta+\gamma}$</th>
<th>$\delta-\gamma$</th>
<th>$\sigma_{\delta-\gamma}$</th>
<th>QE</th>
<th>σ_QE</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>4</td>
<td>25.48</td>
<td>0.08</td>
<td>–8.46</td>
<td>0.35</td>
<td>0.97</td>
<td>0.03</td>
<td>0.25</td>
<td>0.01</td>
<td>2.62</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>20.25</td>
<td>0.01</td>
<td>–6.76</td>
<td>0.68</td>
<td>0.79</td>
<td>0.06</td>
<td>0.23</td>
<td>0.01</td>
<td>1.27</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>4</td>
<td>10.50</td>
<td>0.01</td>
<td>–2.59</td>
<td>0.06</td>
<td>1.13</td>
<td>0.03</td>
<td>0.22</td>
<td>0.01</td>
<td>0.78</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>9.82</td>
<td>0.01</td>
<td>–2.42</td>
<td>0.22</td>
<td>0.88</td>
<td>0.06</td>
<td>0.22</td>
<td>0.01</td>
<td>4.39</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8
Parameters and QE values for the proposed improved model (28) in vacuum.

<table>
<thead>
<tr>
<th>ID</th>
<th>n</th>
<th>ϵ</th>
<th>λ</th>
<th>σ_ϵ</th>
<th>σ_λ</th>
<th>μ_ϵ</th>
<th>σ_{μ_ϵ}</th>
<th>μ_λ</th>
<th>σ_{μ_λ}</th>
<th>$\delta+\gamma$</th>
<th>$\sigma_{\delta+\gamma}$</th>
<th>$\delta-\gamma$</th>
<th>$\sigma_{\delta-\gamma}$</th>
<th>QE</th>
<th>σ_QE</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>4</td>
<td>25.82</td>
<td>0.05</td>
<td>–8.83</td>
<td>0.28</td>
<td>0.96</td>
<td>0.02</td>
<td>0.24</td>
<td>0.01</td>
<td>1.88</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>21.69</td>
<td>0.03</td>
<td>–9.31</td>
<td>1.01</td>
<td>0.55</td>
<td>0.02</td>
<td>0.21</td>
<td>0.01</td>
<td>1.01</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>4</td>
<td>11.56</td>
<td>0.02</td>
<td>–2.64</td>
<td>0.19</td>
<td>1.44</td>
<td>0.10</td>
<td>0.23</td>
<td>0.01</td>
<td>0.94</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>10.09</td>
<td>0.04</td>
<td>–2.05</td>
<td>0.96</td>
<td>0.78</td>
<td>0.04</td>
<td>0.23</td>
<td>0.05</td>
<td>3.57</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9
Parameters and QE values for the proposed improved model (27) in helium.

<table>
<thead>
<tr>
<th>ID</th>
<th>n</th>
<th>ϵ</th>
<th>λ</th>
<th>σ_ϵ</th>
<th>σ_λ</th>
<th>μ_ϵ</th>
<th>σ_{μ_ϵ}</th>
<th>μ_λ</th>
<th>σ_{μ_λ}</th>
<th>$\delta+\gamma$</th>
<th>$\sigma_{\delta+\gamma}$</th>
<th>$\delta-\gamma$</th>
<th>$\sigma_{\delta-\gamma}$</th>
<th>QE</th>
<th>σ_QE</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>4</td>
<td>11.77</td>
<td>0.03</td>
<td>–11.65</td>
<td>0.35</td>
<td>0.68</td>
<td>0.005</td>
<td>0.69</td>
<td>0.01</td>
<td>2.59</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>10.07</td>
<td>0.01</td>
<td>–4.56</td>
<td>0.32</td>
<td>1.31</td>
<td>0.03</td>
<td>0.63</td>
<td>0.02</td>
<td>0.27</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>4</td>
<td>4.40</td>
<td>0.01</td>
<td>–0.89</td>
<td>0.11</td>
<td>2.65</td>
<td>0.33</td>
<td>0.71</td>
<td>0.01</td>
<td>0.26</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>4.36</td>
<td>0.06</td>
<td>–0.84</td>
<td>0.30</td>
<td>2.34</td>
<td>0.53</td>
<td>0.67</td>
<td>0.05</td>
<td>4.24</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 10
Average and relative variation of QE values per model and power laser.

<table>
<thead>
<tr>
<th>Model</th>
<th>QE (29) RGE</th>
<th>%</th>
<th>QE (27) RGE</th>
<th>%</th>
<th>QE (29) RGE</th>
<th>%</th>
<th>QE (27) RGE</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>77.4</td>
<td>2.6</td>
<td>3.4</td>
<td>84.31</td>
<td>1.88</td>
<td>2.2</td>
<td>3.8</td>
<td>2.6</td>
</tr>
<tr>
<td>B</td>
<td>37.2</td>
<td>1.3</td>
<td>3.4</td>
<td>28.73</td>
<td>1.01</td>
<td>3.5</td>
<td>1.1</td>
<td>0.3</td>
</tr>
<tr>
<td>R</td>
<td>15.1</td>
<td>0.8</td>
<td>5.2</td>
<td>19.22</td>
<td>0.94</td>
<td>4.9</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>G</td>
<td>13.3</td>
<td>4.4</td>
<td>32.9</td>
<td>14.15</td>
<td>3.57</td>
<td>25.2</td>
<td>9.8</td>
<td>4.2</td>
</tr>
<tr>
<td>Average</td>
<td>35.7</td>
<td>2.3</td>
<td>11.2</td>
<td>36.6</td>
<td>1.9</td>
<td>9.0</td>
<td>3.8</td>
<td>1.8</td>
</tr>
</tbody>
</table>
tional (29) and proposed (27) or (28), is defined by the expression (44).

\[R_{\text{eq}} = \frac{\mu_{\text{age}}(t)}{\mu_{\text{age}}(29)} \cdot 100\% = \{27, 28\} \] (44)

Table 10 presents a comparative summary of the results from the different adjustments displayed in tables 2 to 9. The summary includes the residual or estimator of the quality of fit of the models considered QE, as well as the values of the rate of change ratio (44).

It is clear from Table 10 that the results can be improved by approximating the heat flow through the wires. This is particularly true for air and vacuum, and to a lesser extent for the helium case. Improvements in the average model fit are of the order of 89 % for air, 91 % for vacuum and 56 % for helium. It should be noted that only the simplest approximation (19) was used to estimate the wire heat flux. It is expected that the use of a more complex approximation, such as (20), would lead to further improvements. However, the results indicate that heat exchange through the sensor wires does affect the measurement.

Figs. 15 and 16 confirm the previous indication that the proposed model gives better results than the conventional one. The presentation of the results in dimensionless form is effective after applying the appropriate logarithmic scale change.

6. Conclusions

This work proposes a mathematical model that incorporates the transient response of thermistors characterised by a synergy between the gaseous medium and the sensor, which results in a low Biot number (Bi < 0.1), mainly in applications where the interaction with the studied phenomenon is minimal. This strategy complements the conventional model based on the concept of time constant. The improvement assumes that the heat flow through the thermistor wires must be considered in the energy balance, treating them as semi-infinite solids and applying an approximation to their heat flow formula. Additionally, an approach based on the use of equivalent transfer functions has been applied to the mathematical model of semi-infinite solids, maintaining simplicity for the required level of accuracy. The proposed model has been validated against experimental results, demonstrating superior performance compared to the conventional time constant model. The improvements in the average model fit are approximately 89 % for air, 91 % for vacuum and 56 % for helium. These results indicate a satisfactory enhancement over the conventional model, suggesting that heat exchange through the sensor wires significantly affects the measurement.

CRediT authorship contribution statement

Jorge Valencia-Santana: Writing – original draft, Software, Resources, Methodology, Investigation. Alejandro Ramos-Martín: Writing – review & editing, Validation, Supervision. Vicente Henriques-Concepcion: Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

References

