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A B S T R A C T   

A mathematical model incorporating the transient response of NTC thermistors is presented. The internal thermal 
conduction resistance of the sensor relative to the thermal convection resistance of the medium results in a low 
Biot number (Bi < 0.1), yielding a fast dynamic response in gaseous media. This is advantageous in applications 
requiring minimal fluid interaction. However, negligible energy exchanges occur, introducing measurement 
uncertainty and ignoring the behavior of the measuring instrument. Therefore, this work proposes an 
improvement strategy for the mathematical model of these sensors, complementing the conventional model 
based on the concept of time constant. The strategy considers the heat flow through the thermistor wires in the 
energy balance, assuming they are semi-infinite solids and applying an approximation to the heat flow formula. 
Satisfactory improvement results were obtained compared to the conventional model, based on controlled lab-
oratory tests with various gases.   

1. Introduction 

NTC thermistors are a popular choice for temperature measurement 
due to their accuracy, versatility, and ease of use compared to other 
transducers [1,2,3]. They offer several advantages over other tempera-
ture transducers including: high sensitivity, fast thermal response, a 
wide range of sizes and shapes and low cost [1,2,3,4]. 

Temperature measurements are used in various contexts, which can 
be classified as either stationary or transient phenomena [5]. In the case 
of stationary phenomena, a constant error or uncertainty is often 
observed [6]. In transient phenomena, the uncertainty or error associ-
ated with the measurement is typically variable and influenced by both 
the evolution of the phenomenon under study and the intrinsic char-
acteristics of the temperature transducer or sensor [7], as illustrated in 
Fig. 1. This figure illustrates the dynamic response of a sensor Ts(t) with 
a known time constant τ to periodic temperature variations of a gaseous 
medium, such as air, denoted as Tg(t). So, Ts(t) the temperature 
measured by the sensor, representing the ambient temperature. The 
analysis comprehensively considers airflow and including any associ-
ated errors 

(
Tg(t) − Ts(t)

)
. To effectively deal with transient processes, 

it is crucial to use modelling strategies that consider the specific char-
acteristics of the sensors or transducers used in their evaluation. This 
reduces measurement errors or uncertainties [8] and facilitates the 
isolation of the phenomenon under study. 

The high dynamic response of NTC thermistors is partly due to their 
compact size, which facilitates efficient heat transfer between the sensor 
and its environment [9,10,11]. This relationship is commonly expressed 
by the dimensionless Biot number [12], which compares the sensor’s 
internal thermal conduction resistance to its external thermal convec-
tion resistance. A low Biot number (Bi < 0.1) indicates that the internal 
thermal gradient of the sensor can be neglected [13], which is usually 
expressed as the dimensionless Biot number tends to zero. Therefore, it 
is assumed that the internal temperature of the sensor is uniform, 
resulting in a fast and accurate dynamic response in gaseous media. This 
assumption is conventionally applied in mathematical models that use 
the sensor time constant [14], which takes into account its mass, specific 
heat capacity, and the properties of the fluid, represented by the con-
vection coefficient and the surface area of the sensor in contact with the 
gas. This paper discusses the limitations of a mathematical model based 
on the time constant for temperature sensors. The concept of the time 
constant is inherently linked to the characteristics of the medium in 

* Corresponding author at: Engineering Building, Tafira Campus, 35017 Las Palmas de Gran Canaria, Spain. 
E-mail addresses: jorge.valencia@ulpgc.es (J. Valencia-Santana), alejandro.ramos@ulpgc.es (A. Ramos-Martín), vicente.henriquez@ulpgc.es (V. Henríquez- 

Concepción).  

Contents lists available at ScienceDirect 

Measurement 

journal homepage: www.elsevier.com/locate/measurement 

https://doi.org/10.1016/j.measurement.2024.115185 
Received 10 April 2024; Received in revised form 21 June 2024; Accepted 24 June 2024   

mailto:jorge.valencia@ulpgc.es
mailto:alejandro.ramos@ulpgc.es
mailto:vicente.henriquez@ulpgc.es
www.sciencedirect.com/science/journal/02632241
https://www.elsevier.com/locate/measurement
https://doi.org/10.1016/j.measurement.2024.115185
https://doi.org/10.1016/j.measurement.2024.115185
https://doi.org/10.1016/j.measurement.2024.115185
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Measurement 237 (2024) 115185

2

which the sensor is situated and the physical properties of the sensor 
itself. These properties include thermal conductivity, heat capacity, the 
geometry of the sensor. This is of significant importance for the accuracy 
of models based on time constants, which implies different values of 
time constants depending on the gaseous medium in which it is 
immersed. Thus, these operation conditions arise due to the requirement 
of employing sensors that exhibit a synergy between the gaseous me-
dium and the sensor, resulting in a low Biot number (Bi < 0.1). This 
primarily occurs in applications where there is minimal interaction with 
the phenomenon under study. In such scenarios, the influence of energy 
exchange through the sensor conductors can be likened to the energy 
interaction with the fluid being monitored and the surrounding envi-
ronment of the gas confinement medium. The equations (1) and (2) 
below show the conventional model that illustrates the relationship 
between the time constant τ and the dimensionless Biot and Fourier 
numbers [12,15,16], (1) for a variable gas temperature Tg(t) being Ts(t)
the sensor temperature, and (2) for a constant gas temperature Tg, where 
the sensor initial temperature is different from the gas temperature 
Ts(0) ∕= Tg. 

τ⋅
dTs(t)

dt
+Ts(t)=Tg(t)⇒Ts(t)= e−

t
τ⋅
[

Ts(0)+
1
τ ⋅
∫ t

0
Tg(s)⋅e

s
τds
]

1
Bi

⋅
dTs(Fo)

dFo
+Ts(Fo)=Tg(Fo)⇒Ts(Fo)= e− Bi⋅Fo⋅

[

Ts(0)+Bi⋅
∫ Fo

0
Tg(s)⋅eBi⋅sds

]

(1)  

τ⋅
dTs(t)

dt
+ Ts(t) = Tg⇒

Ts(t) − Tg

Ts(0) − Tg
= e−

t
τ

1
Bi

⋅
dTs(Fo)

dFo
+ Ts(Fo) = Tg⇒

Ts(Fo) − Tg

Ts(0) − Tg
= e− Bi⋅Fo

(2) 

As shown in (1) and (2), this model only takes into account the 
properties of the thermistor body and the surrounding fluid. The pa-
rameters used in this model are:τ = ms⋅cps/h⋅As, Bi = h⋅Lc/ks, and Fo =

αs⋅t/L2
c ; where: ms is the sensor mass, cps the thermal specific capacity, h 

the heat transfer coefficient, Lc the characteristic sensor length, ks the 
sensor thermal conductivity, αs the sensor thermal difussivity, As the 
external sensor surface and finally, t is the time variable. It is suitable for 
various types of temperature sensors that meet the Biot number 
requirement (Bi < 0.1). Equations (1) and (2) represent a mathematical 
model that assumes an ideal scenario where only the exchange between 
the sensor and the fluid is considered, which is often referred to as 
lumped capacitance models [17]. However, in the case of a low Biot 
number (Bi < 0.1) situations, heat exchange through the thermistor 
wires connecting them to the corresponding circuit [18] can be signifi-
cant. The dynamic response of the thermistor may be altered by this fact, 
which is not accounted for in the time constant model, (1) and (2). 

However, this paper proposes an improvement to the model based on 

the time constant in which the heat flux exchanged through the 
thermistor wires is taken into account. The wires are assumed to behave 
as a semi-infinite solid [19]. In addition, an approach based on the use of 
equivalent transfer functions has been applied to the mathematical 
model of semi-infinite solids, which has been used with considerable 
success in several works [17,20]. The proposed model has been evalu-
ated with experimental results and gives better results than the con-
ventional time constant model. It is also relatively simple to use for the 
level of accuracy required. 

The paper is structured as follows: Section 2 delineates the materials 
utilized in the experiments along with the methodological approach 
employed for data acquisition and processing. Section 3 elucidates the 
theoretical framework of the proposed model, encompassing the 
fundamental calculations underpinning the governing equations. The 
outcomes of the conducted tests are expounded upon in Section 4. These 
findings are subjected to critical analysis in Section 5 and ultimately, 
Section 6 deliberates upon the drawn conclusions. 

2. Material and methods 

A priori aim of this study is to replicate the response of a thermistor 
to an abrupt change in temperature using an external heat source 
generated by a laser. An experimental environment was meticulously 
designed, developed, and constructed to analyse the behaviour of these 
temperature sensors and to identify their operation conditions. The 
analysis was conducted within an experimental setup, as illustrated in 
Fig. 2, where the sensor is placed inside a fully insulated aluminium 
chamber, and a laser beam is projected onto the sensor to create a 
thermal stimulus. The interior of the chamber is configured to accom-
modate various gaseous media, including ambient air, helium, and even 
vacuum conditions. The wavelength of the laser significantly influences 
the power of the excitation signal, with power varying according to the 
frequency colour of laser. A laser generator capable of emitting different 
colours—purple (P), blue (B), red (R), and green (G)—was employed to 
provide a range of excitation powers. By varying the laser power and 
inducing different gaseous conditions within the chamber, it is possible 
to compare the sensor behaviours in ambient air, helium, and vacuum. 
Thus, the different laser powers are referred to as P, B, R, and G. 

Table 1 shows some of the parameters that define the physical 
characteristics of the thermistor used in the tests (Part number: 
USP16673, Littelfuse). These values are for still air only, as the manu-
facturer has carried out the various tests under these conditions, as 
described in the general information on the NTC thermistor [21]. 

Fig. 1. Dynamic response of known time constant temperature sensor to si-
nusoidal temperature variation, including error. 

Fig. 2. Distribution of the test equipment.  
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Furthermore, the table illustrates that the manufacturer has analysed 
the time constant for a specific fluid under defined conditions, resulting 
in the presented value. Nevertheless, the results of further tests with 
different fluids will demonstrate that this value is dependent on the 
properties of each fluid and the experimental conditions. 

The configuration of the components in the proposed experiment is 
presented below using the schematic shown in Fig. 2. The data acqui-
sition elements include: a voltage divider with two 10 kΩ resistors, a 16- 
bit analogue-to-digital converter (ADS1115 Texas Instruments), and two 
ATmega328 microcontrollers (Atmel) embedded in an Arduino system. 
One of these microcontrollers is used for data acquisition, while the 
other controls the laser shutter. Both boards are connected to a PC and 
communicate via an application developed specifically for the experi-
ment, which allows the test bench actuator to be controlled, the data 
obtained to be managed and the measured temperature data to be 
monitored in real time. 

On the other hand, humidity, pressure and light sensors are used to 
monitor other parameters inside the chamber. These devices are used for 
information purposes, as their measurements are used to check that 
there are no abrupt changes in the chamber during the tests. 

With regard to the protocol to be followed in each test, it should be 
noted that the total duration is 180 s, during which three stages can be 
identified:  

1. The first part is the rest period. This is important because it allows us 
to see if there are any disturbances that could affect the measure-
ments to be taken. It lasts 30 s and during this time the temperature 
inside the chamber is measured before exposure to the laser. Taking 
into account that the microcontrollers used have a sampling fre-
quency of 10 data per second, a total of 300 values are obtained. In 
this way, the average of the initial temperature is obtained, which 
allows the initial conditions to be established.  

2. At the end of the first phase, the laser is activated and strikes the 
thermistor, starting the second phase of the test. In this part of the 
test, the transient response of the thermistor is observed. The total 
duration of this phase being 90 s from the moment the laser is 
activated.  

3. Finally, the last phase of the test, lasting 60 s, corresponds to the 
return of the signal to the initial conditions after the laser has been 
switched off and the temperature has returned to its initial value. 

In summary, this type of experiment provides information on the 
transient response of a diminutive temperature sensor in different en-
vironments in a controlled environment. It also allows a detailed anal-
ysis of what changes are produced by the energetic variation of the 
external signal and how this affects the measurements obtained. All this 
gas and energy exchange of the excitation signal allows analysis of 
whether the effects are mainly due to the medium or to the sensor cable 
assembly. 

3. Theory and calculation 

To model the dynamic response of a temperature sensor in a gaseous 
medium, an energy balance is used that takes into account energy in-
teractions, as shown in the formula (3). 

Plaser − q̇conv − q̇surr − q̇wire = ms⋅cps⋅
dTs(t)

dt
(3) 

The sensor, roughly assumed to be spherical in shape with radius r0, 
is immersed in the gaseous medium and consists of a body (core), con-
ductors and an excitation source, which is a laser acting as a thermal 
power source Plaser, as shown in Fig. 3. 

Assuming a Biot number close to zero, a lumped capacitance model is 
established for the interaction of the sensor with the gaseous medium, 
with no temperature gradient inside the sensor and the temperature 
varying with time Ts(t) [13,15,22]. As mentioned in the introduction, it 
is generally assumed that the dimensionless Biot number approaches 
zero for values less than 0.1. The accuracy of the mathematical model 
should increase as the dimensionless Biot number decreases. The Biot 
number (Bi) depends on the convection coefficient (h) of the fluid 
interface film in contact with the sensor surface. As the Biot number is 
proportional to the convection coefficient (Bi = h⋅Ds/ks), the value of Bi 
increases as h increases for the same sensor (diameter Ds and thermal 
conductivity sensor ks are the same), simultaneously, this causes a 
decrease in the time constant τ = Rh⋅C1 = ms⋅cp/h⋅As, due to its relation 
to h. Therefore, changing the gas in the test chamber will alter the Bi 
number and consequently affect the sensor’s response. The energy bal-
ance proposed in (3) considers the incoming heat flux at the sensor 
surface, represented by Plaser, which remains constant over time. Addi-
tionally, it takes into account the heat transfer that is leaving the surface, 
which include convective exchange q̇conv and radiative exchange q̇rad 
with the internal surfaces of the test chamber. The equation (3) includes 
the heat losses through the sensor conductors and the variation of en-
ergy stored in the sensor per unit time, represented by the term 
ms⋅cp⋅dTs(t)/dt, where C1 = ms⋅cp is the thermal capacity of the sensor 
(kJ/K). The upcoming analysis will examine each of the heat flows 
identified in equation (3) of the energy balance. 

To determine the expression for the convective heat transfer (q̇conv)

between the surface of the sensor and the gas in the medium in which it 
is immersed, certain considerations must be taken into account, as 
described below. The convective heat transfer is calculated according to 
Newton’s cooling law (4), 

q̇conv = h⋅As⋅
(
Ts − Tg

)
(4)  

where h is the average surface convection coefficient, which is related to 
the thermal behavior of the gas boundary layer surrounding the sensor 

Fig. 3. Sensor schematic diagram.  

Table 1 
NTC thermistor manufacturer settings (Part number: USP16673, Littelfuse).  

Parameter Value 

Resistance at 25 ◦C 10 kΩ ± 1 % 
Nominal temperature − 30 ◦C to + 90 ◦C 
β (25 ◦C to 85 ◦C) 3435 K nominal 
Dissipation constant 0,7 mW/◦C Nominal (still air) 
Thermal time constant 5 s nominal (still air)  
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and acts as a proportionality factor to the temperature difference be-
tween the surface Ts and the gas Tg for the exchanged heat transfer q̇conv. 
The surface convection coefficient h depends on various factors, 
including fluid velocity, fluid regime, surface geometry, fluid type and 
whether the situation is stationary or transient. Regarding the topics 
explored in this paper, it must be taken into consideration that the 
different energy interactions indicated in the sensor will cause the 
temperature to vary over time, so that a transient phenomenon must be 
assumed, in which the influence of this condition on the variability of 
the surface convection coefficient must be analysed. 

When a temperature difference exists between the sensor and the 
gaseous medium 

⃒
⃒Ts(t) − Tg

⃒
⃒ ∕= 0, a fluid film or layer develops. This film 

has a common boundary with the sensor, i.e. the external surface of the 
sensor, through which a heat flow is exchanged between the sensor and 
the gaseous medium. This film considers a temperature gradient and the 
time required for its full development in transient processes. Heat 
transfer phenomena by conduction through the film predominate 
initially, followed by heat exchange by convection once developed, 
provided that the forces favouring fluid movement in the layer exceed 
those opposing it at a certain value. For free convection, buoyancy forces 
are in favour while viscous forces are opposed. In forced convection, 
inertia forces are favourable and viscous forces are opposed. The Gra-
shof number (Gr) is typically used to distinguish this in free convection, 
while the Reynolds number (Re) is used in forced convection. These 

Fig. 4. Radiative and gas film properties for the sensor surface and air.  
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parameters compare the forces that promote fluid motion with those 
that oppose it. When the dimensionless Grashof and Reynolds numbers 
are approximately equal to one (Gr = 1, Re = 1), heat transfer through 
the boundary layer is limited and occurs solely through conduction. The 
fluid movement in the boundary layer is considered to be zero. For the 
transient free convection situations studied in this paper, the surface 
convection coefficient (h) is presumed to remain constant, given the 
diminutive characteristic length Lc of the sensor, which assumes a 
spherical geometry (Lc = D), measuring only a few millimeters. 
Conversely, for modest temperature differentials between the sensor 
temperature (Ts) and the surrounding gas temperature (Tg), typically on 
the order of a few tens of degrees. This is found based on the expressions 
for estimating the surface convection coefficient h from the thermo-
physical properties of the gas (cinematic viscosity ν, thermal expansion 
coefficient β) obtained at the gas film temperature (Tfilm =

(
Ts +Tg

)
/2, 

where Ts is sensor temperature, and Tg is the gas temperature) and the 
appropriate experimental correlation for the given geometry, using the 
dimensionless Grashof (Gr) and Prandtl (Pr) numbers. One of the 
appropriate correlations for steady state free convection in sphere sur-
faces is the following (5): 

Nu = 2 +
0.589⋅Ra0.25

(

1 +

(
0.469

Pr

)9/16
)4/9 (5) 

where the Nusselt number (Nu) is a dimensionless quantity that re-
lates to the surface convection coefficient (h) through the relation Nu =

h⋅Lc/kg, where Lc is the characteristic length of the sensor and kg is the 
thermal conductivity of the gas. The Rayleigh number (Ra) is also 
dimensionless and can be calculated using the relation Ra = Gr⋅Pr, 
where Gr is the dimensionless Grashof number, expressed as follows (6): 

Gr =
g⋅β⋅
(
Ts − Tg

)
⋅L3

c

ν⋅α (6) 

Being g acceleration due to gravity, β = 1/Tfilm the gas thermal 
expansion coefficient, Lc the characteristic length, ν the gas cinematic 
viscosity, α the gas thermal diffusivity. 

From the Grashof (Gr) expression is possible to obtain a formula to 
estimate the minimum characteristic length, Lc-min, that must be 
considered for each situation can be determined when the condition is 
given that Grmin = 1 (buoyancy forces and viscous forces in the bound-
ary layer are equal), for a range of sensor temperature values Ts, for a 
fixed gas temperature Tg. The expression for Lc-min (7) is given below and 
displayed in Fig. 4, Graph E, for air and various sensor diameter values, 
furthermore, graphs B, C and D, in the same figure, display the values for 
the Grashof number, Nusselt number and surface convection coefficient 
corresponding to the various diameters of the spherical sensor. 

Lc− min =

(
ν⋅α

g⋅β⋅
(
Ts − Tg

)

)1/3

(7) 

Therefore, if the diameter of the spherical sensor is of the same order 
as the minimum characteristic length, D ≈ Lc− min, or even less, 
D < Lc− min, for the stationary case, it must be assumed that the exchange 
by conduction between the sensor surface and the gas around it will 
predominate. As a result, a practically constant surface convection co-
efficient should be assumed, as shown in graph D of Fig. 4, for the 
temperature range considered for the temperature sensor. 

To estimate the heat transfer by radiation (q̇rad) between the surface 
of the sensor and the internal surface of the chamber, it is necessary to 
consider the surface emissivity of both the sensor and the chamber. For 
the purpose of this analysis, the chamber surface will be assumed to be 
ideal with an emissivity equal to one. The heat flow can be calculated 
using the expression (8) while taking into account the respective tem-
peratures [12,15,16]. 

q̇rad = hrad⋅As⋅(Ts − Tsurr); hrad = ∊s⋅σ⋅
(
T2

s + T2
surr
)
⋅(Ts + Tsurr) (8) 

Furthermore, a radiation coefficient (hrad) is determined based on the 
indicated temperatures and the emissivity of the chamber surfaces. This 
coefficient is illustrated in graph A of Fig. 4, which displays a slight 
variation in the radiation coefficient, ranging from 5.7 to 7 W/m2⋅K 
when the surface emissivity is equal to one. Within the considered 
temperature range, it is possible to assume a constant value for the hrad 

coefficient, which varies by 20 % from its minimum value, and 
approximately 2 % from the surface convection coefficient h, as 
demonstrated in graphs A and D of Fig. 4, which represents the worst- 
case scenario. As both coefficients h and hrad are assumed to be con-
stant and the gas and chamber surface temperature Tg = Tsurr, an overall 
heat transfer coefficient (ht) is considered that includes both convection 
and radiation effects, giving the expression of Newton’s law of cooling, 
modified to include the effect of radiation, as shown in expression (9), 

q̇t(t) = ht⋅As⋅
(
Ts(t) − Tg

)
=

Ts(t) − Tg

Rh
; ht = h + hrad (9) 

where the expression for the calculation of the heat flux exchanged 
by convection and radiation across the sensor surface is provided. 

Furthermore, considering that the wires are fully insulated, as seen in 
Fig. 3, and that there is no significant heat transfer to the environment, 
the analysis is focusing on the heat conduction along the wires. Thus, the 
analysis focuses on the heat transfer along the cable body, which could 
be modelled using the one-dimensional heat transfer equation. Thus, the 
one-dimensional (1D) heat transfer equation, assuming the semi-infinite 
solid hypothesis, can be a starting point to obtain the value of the 
transient temperature at the sensor surface, as confirmed by the studies 
in [23]. 

Consider the sensor wires as a semi-infinite solid with constant 
thermophysical properties, no internal heat generation, uniform thermal 
conditions over the exposed surface and initially a uniform temperature 
Tg over its entire length. The contact area between the sensor and the 
wires is considered to be the boundary of the semi-infinite medium x = 0 
and the other end of the wires is considered to be at x = ∞, since an 
infinite length L = ∞ is assumed. Thus, the thermal conditions imposed 
on the surface of the sensor are determined by the heat conduction of a 
semi-infinite solid and therefore the solution is strongly dependent on 
the boundary conditions set at x = 0, which coincide with the imposi-
tion of the temperature at which the sensor is located. However, once 
the change of variable θ(x, t) = T(x, t) − Tg has been introduced and the 
initial and boundary conditions have been established, the differential 
equation for heat conduction in conductors is as follows [12,15,16]: 

∂2θ(x, t)
∂x2 =

1
αw

⋅
∂θ(x, t)

∂t
(10) 

Boundary condition .x = 0; θ(0, t) = Ts(t) − Tg 

Boundary condition .x = ∞; θ(∞, t) = Ts(t) − Tg = 0 
Initial condition .t = 0; θ(x,0) = 0 
where αw is the thermal diffusivity of the cable material, αw =

kw/
(
ρw⋅cpw

)
, kw is the thermal conductivity, ρw is the density, and cpw is 

the specific heat capacity. 
Applying the Laplace transform [17,24,25] to equation (10), it is 

obtained the following differential equation (11): 

∂2θ(x, s)
∂x2 =

1
αw

⋅s⋅θ(x, s) (11) 

Boundary condition .x = 0; θ(0, s) = Ts(s) − Tg 

Boundary condition .x = ∞; θ(∞, s) = 0 
This differential equation is linear homogeneous. And its solution is 

given in (12). 

θ(x, s) = C1⋅e
−

̅̅̅̅
s

αw

√
⋅x
+ C2⋅e

̅̅̅̅
s

αw

√
⋅x

(12) 
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Starting from the condition θ(∞, s) = 0, from which it follows that 
C2 = 0, the solution (12) has the form: 

θ(x, s) = C1⋅e
−

̅̅̅̅
s

αw

√
⋅x

(13) 

Thus, the boundary condition for x = 0 determines the constant C1, 
leaving the solution in (14). 

θ(x, s) =
θ(0, s)

s
⋅e

−

̅̅̅̅
s

αw

√
⋅x

(14) 

To obtain an expression for the heat flow through the cables, the 
Fourier law must be applied to the expression (14) and then evaluated at 
x = 0, as shown in (15). On the other hand, considering the initial 

condition θ(x, 0) = 0 and Fourier’s law: − kw⋅Aw⋅dθ(x,s)
dx

⃒
⃒
⃒
⃒
x=0

= q̇w(s), 

equation (14) would be as shown in (15), given that the cable cross 
section is Aw through which the heat flow of the cables passes. 

q̇w(s) = q̇(0, s) = − kw⋅Aw⋅
dθ(x, s)

dx

⃒
⃒
⃒
⃒
x=0

=
kw
̅̅̅̅̅̅αw

√ ⋅Aw⋅
̅̅
s

√
⋅θ(0, s) (15) 

Given that θ(0, s) = Ts(s) − Tg, an expression for the heat flow 
through the wires is obtained from the sensor temperature in (16). 

q̇w(s) =
kw
̅̅̅̅̅̅αw

√ ⋅Aw⋅
̅̅
s

√
⋅θ(0, s) =

kw
̅̅̅̅̅̅αw

√ ⋅Aw⋅
̅̅
s

√
⋅
(
Ts(s) − Tg

)
(16) 

At this point, all the elements of the energy balance (3) have been 
defined, which can be rewritten in the complex (Laplace) field as shown 
in (17), taking into account that dTs(t)/dt = d

(
Ts(t) − Tg

)
/dt, since Tg is 

constant. 

Plaser

s
− q̇t(s) − q̇w(s) = ms⋅cps⋅s⋅

(
Ts(s) − Tg

)
(17) 

In equation (17), the different heat flows determined in (9) and (16) 
can be substituted, resulting in equation (18). 

Plaser

s
−

Ts(s) − Tg

Rh
−

kw
̅̅̅̅̅̅αw

√ ⋅Aw⋅
̅̅
s

√
⋅
(
Ts(s) − Tg

)
= ms⋅cps⋅s⋅

(
Ts(s) − Tg

)

(18) 

By applying the inverse Laplace transform to equation (18), a 
mathematical expression for determining the sensor temperature 
(
Ts(s) − Tg

)
could be obtained from the exposure to the constant laser 

power (Plaser), taking into account the inclusion of the heat flow through 
the sensor conductors. Equation (18) can be represented by its electrical 
analogue shown in Fig. 5 [24], where the laser action is associated with a 
constant current source Plaser/s, the total heat flux by convection and 
radiation is represented as a thermal resistance (Rh) in parallel with a 
heat capacity associated with the sensor core C1 = ms⋅cps and as such 
capacity is influenced by the complex operator s, which corresponds to 
the derivative in the time field 

(
L− 1[s⋅F(s) ] = df(t)/dt − f(0)

)
. Finally, 

also in parallel, another branch related to a thermal impedance associ-
ated with the sensor wires and affected by the square root of the operator 
s, thus 

̅̅
s

√
⋅θ(s). Real-world problems with equations similar to equation 

(18) are easily solved when the exponents of the s operator are of integer 
order [26], leaving any other situation to solutions obtained from ap-
proximations of the corresponding transfer functions. In this article we 
propose an approximation method with equivalent transfer functions for 
the 

̅̅
s

√
operator, which can be used to solve equation (18). The proposed 

approximation method is based on the work of Carlson and Halijak [27], 
who considered the problem as an approximation by a regular Newton 
process. 

Thus, using the method developed by Carlson [28,29,30], it is ob-
tained a rational approximation based on transfer functions for different 
functions in the complex field, as well as for the irrational operator 

̅̅
s

√

shown by (19) and (20). 

1
̅̅
s

√ ≈ Z1(s) =
a1⋅s + a0

b1⋅s + 1
(19)  

Fig. 5. Impedance modelling equivalent electrical diagram for our proposal.  

Table 2 
Coefficient values for (19) and (20).   

Z1(s) Z2(s)

a0 3 5 
a1 1 10 
a2 − 1 
b1 3 10 
b2 − 5  

Fig. 6. Bode diagrams.  
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1
̅̅
s

√ ≈ Z2(s) =
a2⋅s2 + a1⋅s + a0

b2⋅s2 + b1⋅s + 1
(20)  

Table 2 shows the values of the coefficients for (19) and (20). These are 
obtained by applying Carlson’s method [28,29,30]. 

As can be seen in (19) and (20), the approximations are transfer 
functions with polynomials of the same order for the numerator and 
denominator. Using the method developed by Carlson [28,29,30], it was 
possible to obtain equivalent transfer functions of higher order, with 
polynomials of order 2, 3, …, with a corresponding improvement in the 
approximations made. Fig. 5 shows the effect of these approximations on 
the theoretical behaviour of the 

̅̅
s

√
operator, with a better fit as the 

order of the polynomials increases, as can be seen from the Bode plots in 
Fig. 6. 

However, as the number of elements increases, it can become 
computationally expensive and require a more detailed analysis of the 
boundary conditions and thermal properties of the system, which may 
not always be necessary. For this reason, it has been decided to use an 
approach that reduces the level of complexity and provides appropriate 
solutions. 

On the other hand, the approximation of the proposed 
̅̅
s

√
operator 

allows a generic view of the thermal system. Thus, Fig. 7 shows an 
equivalent circuit with the Z1(s) approximation of the electrical 
analogue of the thermal problem, where the following elements are 
considered total resistance Rh = Rconv + Rrad, heat capacity of the 
thermistor C1, convective and radiative heat flux q̇t through the resistor 
Rh, heat flux through the wires q̇1 and q̇0, heat capacity of the conductors 
C0, thermal resistances associated with the conductors (R1 and R0). The 
contribution of the equivalent impedance Z1(s) in Fig. 7 is observed in its 
equivalent branch corresponding to the set of elements R1, C0 and R0, i. 
e. two thermal resistances and one thermal capacity, in the same way as 
for the case of Z2(s), it would be three thermal resistances and two 
thermal capacities. It should be noted that in order to describe a model 

under vacuum conditions, as will be discussed later, the term Rh tends to 
infinity, so it disappears. 

Therefore, the total impedance of the thermal diagram shown in 
Fig. 7 is obtained by considering the parallel connection of the resistance 
Rh, the capacitance C1 and the impedance Z*1(s), and it is displayed in 
(21). 

ZT(s) =
Rh⋅Z*

1(s)
Rh + (Rh⋅C1⋅s + 1)⋅Z*

1(s)
(21)  

where the term Z*
1(s) =

(
kw̅̅̅̅αw
√ ⋅Aw

)− 1
⋅Z1(s), which is displayed in (22). 

Z*
1(s) =

(
kw
̅̅̅̅̅̅αw

√ ⋅Aw

)− 1

⋅
C0⋅R0⋅R1⋅s + R0 + R1

C0⋅R0⋅s + 1
≈

(
kw
̅̅̅̅̅̅αw

√ ⋅Aw

)− 1

⋅
1
̅̅
s

√ (22)  

The expression to obtain the temperature difference experienced by the 
sensor as a function of the external excitation source is expressed by (23) 
in the Laplace domain. 

θ(s) =
(
Ts(s) − Tg

)
=

Plaser

s
⋅ZT(s) (23)  

Expression (23) can be expressed as shown in (24) for the case when all 

heat flows 
(

q̇t = q̇conv + q̇rad, q̇w

)

are considered. 

θ1(s) =
a
s

⋅
s + 3

b⋅s2 + (3⋅(1 + b) + c )⋅s + 3⋅c + 1
(24)  

If the heat flow by convection and radiation is not taken into account, 
the expression (25) is obtained in the case of a vacuum in the test 
chamber. 

θ2(s) =
a
s

⋅
s + 3

b⋅s2 + 3⋅(1 + b)⋅s + 1
(25)  

where a = Plaser⋅
(
Aw⋅kw/

̅̅̅̅̅̅αw
√ )− 1, b = Cth⋅

(
Aw⋅kw/

̅̅̅̅̅̅αw
√ )− 1, and c =

(
Rh⋅Aw⋅kw/

̅̅̅̅̅̅αw
√ )− 1. For the conventional model (26), with no heat flow 

through the wires, it is obtained that a* = Plaser⋅Rh, b* = τ = Cth⋅Rh. 

θ3(s) =
a*

s
⋅

1
b*⋅s + 1

=
a*

s
⋅

1
τ⋅s + 1

(26)  

By applying the inverse Laplace transform and making the appropriate 
groupings, the expression for the temperature response experienced by 
the thermistor after the external laser excitation source is obtained for 
expressions (27), (28) and (29). 

θ1(t) = ∊1 + λ1⋅e− (δ1+γ1)⋅t − (∊1 + λ1)⋅e− (δ1 − γ1)⋅t (27)  

θ2(t) = ∊2 + λ2⋅e− (δ2+γ2)⋅t − (∊2 + λ2)⋅e− (δ2 − γ2)⋅t (28)  

θ3(t) = a*⋅
(
1 − e− t/τ) = a*⋅

(
1 − e− Bi⋅Fo) (29) 

The model parameters are presented in Table 3. 
Bearing in mind that, in the stationary regime and assuming that 

Ts(0) = Tg, for t = ∞, it is obtained that θi(∞) is: 

Fig. 7. Equivalent circuit diagram for the simplified model.  

Table 3 
Parameters for the expressions (27) and (28).    

∊i λi δi γi 

θ1(t) 3⋅a
3⋅c + 1 

3⋅a
3⋅c + 1

⋅
(

3
2⋅δ1

−
1
2

⋅
γ1
δ1

+
4

3⋅b⋅δ1
−

1
2

) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
9⋅b2 + 14⋅b + 9 − 6⋅b⋅c + 6⋅c + c2

√

2⋅b 
c

2⋅b
+

3
2⋅b

+
3
2 

θ2(t) 3⋅a a
2⋅δ2

+
7⋅a
6

⋅
γ2
δ2

−
3⋅a
2  

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
9⋅b2 + 14⋅b + 9

√

2⋅b  
3

2⋅b
+

3
2   
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θi(∞) = Ts(∞) − Tg = ∊i→
{

Ts(∞) = ∊i − Ts(0)
θi(∞) = Ts(∞) − Ts(0)

; i = {1,2} (30) 

Taking into account that Tg = Ts(0), expressions (27) and (28) are 
expressed as (32). 

Ts(t) − Ts(∞)

Ts(0) − Ts(∞)
= −

λi

∊i
⋅e− (δi+γi)⋅t +

(

1 +
λi

∊i

)

⋅e− (δi − γi)⋅t ; i = {1,2} (31)  

Θi(t) = −
λi

∊i
⋅e− (δi+γi)⋅t +

(

1 +
λi

∊i

)

⋅e− (δi − γi)⋅t; i = {1,2} (32)  

For θ3(t) the same change can be made obtaining (33). 

Θ3(t) = e− t/τ = e− Bi⋅Fo (33)  

where θ(∞) = a*. Where Θ1(t), Θ2(t), and Θ3(t) represent temperatures 
in dimensionless form. 

This proposal can be approached using the quadrupole method [17], 

which is particularly suitable for solving 1D transient heat transfer 
problems in complex systems. This method is especially useful when 
dealing with systems that have complex geometries or varying boundary 
conditions. 

3.1. Calculations for the proposed model 

This section presents calculations and results obtained from the ap-
proximations proposed in (18) and (19) for specific boundary conditions 
that have an analytical solution. These results will demonstrate the 
suitability and scope of the proposals for the problem evaluated in this 
article. Starting from the analytical solution of equation (10), an inverse 
Laplace transformation is applied for a step temperature of 
θ(0, s) =

(
Ts − Tg

)
/s = θ/s at x = 0, where Ts is assumed to be constant 

[16]. The analytical solution of (17) is shown in expression (33) for the 
considered conditions. 

q̇(0, s) =
̅̅̅̅̅̅̅̅̅̅̅̅

ρ⋅cp⋅k
√

⋅
̅̅
s

√
⋅
θ
s
=

̅̅̅̅̅̅̅̅̅̅̅̅

ρ⋅cp⋅k
√

⋅
θ
̅̅
s

√ ̅̅̅̅̅̅̅̅→
L− 1 [q̇(0,s)] q̇(0, t)

=
k
̅̅̅̅̅̅̅̅̅̅̅
π⋅α⋅t

√
(
Ts − Tg

)
(34)  

Equations (35) and (36) can be used to approximate the analytical heat 
flux expressed in (34). These equations were obtained by applying the 
inverse Laplace transform, taking into account the step input and the 
approximations Z1(s) and Z2(s), respectively. 

q̇1(0, t) ≈ −
k̅
̅̅
α

√ ⋅L− 1[θ(0, s)⋅z1
− 1(s)

]
= −

k̅
̅̅
α

√ ⋅L− 1
[

θ
s

⋅z1
− 1(s)

]

q̇1(0, t) ≈ −
k

3⋅
̅̅̅
α

√ ⋅
(
Ts − Tg

)
⋅
(
8⋅e− 3⋅t + 1

)
(35)  

q̇2(0, t) ≈ −
k̅
̅̅
α

√ ⋅L− 1[θ(0, s)⋅z2
− 1(s)

]
= −

k̅
̅̅
α

√ ⋅L− 1
[

θ
s

⋅z2
− 1(s)

]

Fig. 8. Heat flow for constant temperature Ts at x = 0.  

Fig. 9. Periodic signal heat flow.  
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q̇2(0, t) ≈ −
k

5⋅
̅̅̅
α

√ ⋅
(
Ts − Tg

)
⋅
(

1 + 4⋅
(

3 +
̅̅̅
5

√ )
⋅e(− 5− 2⋅

̅̅
5

√
)⋅t + 4⋅

(
3

−
̅̅̅
5

√ )
⋅e(− 5+2⋅

̅̅
5

√
)⋅t
)

(36)  

Fig. 8 displays the results of the approximations (35) and (36) for a 
temperature step of θ = 1oC with a thermal conductivity of k =

400W/m⋅oC and a thermal diffusivity of α = 100⋅10− 6m2/s, as well as 
the outcome of the analytical solution (34). It can be observed that the 
approximations are sufficiently accurate, particularly as time progresses 
beyond half a second, for an abrupt temperature change at x = 0 (step 
temperature input). 

This discussion considers the second case for the analytical solution 
of equation (10), which involves applying a periodic temperature of the 
form presented in (36) at x = 0. The analytical solution for (10) under 
these conditions is given in expression (38). 

θ(0, t) = ΔT⋅sin(ω⋅t) (37)  

q̇(0, t) = k⋅A⋅ΔT⋅
̅̅̅̅
ω
α

√

⋅sin
(

ω⋅t +
π
4

)
(38)  

Expressions (39) and (40) can be used to approximate the analytical heat 
flux expressed in (38). These equations were obtained by applying the 
inverse Laplace transform, taking into account the periodic temperature 
input and the approximations Z1(s) and Z2(s), respectively. 

q̇1(0, t) ≈ −
k̅
̅̅
α

√ ⋅ΔT⋅ω⋅L− 1
[

1
s2 + ω2 ⋅z1

− 1(s)
]

q̇1(0, t)≃ −
k̅
̅̅
α

√ ⋅
ΔT⋅ω
ω2 +9

⋅
(

− 8⋅e− 3⋅t +3⋅
(

ω+
1
ω

)

⋅sin(ω⋅t)+8⋅cos(ω⋅t)
)

(39)  

q̇2(0, t) ≈ −
k̅
̅̅
α

√ ⋅ΔT⋅ω⋅L− 1
[

1
s2 + ω2 ⋅z2

− 1(s)
]

q̇2(0, t) ≃ −
k

5⋅
̅̅̅
α

√ ⋅
ΔT

ω4 + 90⋅ω2 + 25
⋅
[(

−
(

44⋅
̅̅̅
5

√
+ 100

)
⋅ω3 +

(
20⋅

̅̅̅
5

√

+ 100
)

⋅ω
)

⋅e(− 5− 2⋅
̅̅
5

√
)⋅t +

+
((

44⋅
̅̅̅
5

√
− 100

)
⋅ω3 −

(
20⋅

̅̅̅
5

√
+ 100

)
⋅ω
)

⋅e(− 5+2⋅
̅̅
5

√
)⋅t +

(
25⋅ω4

+ 370⋅ω2 + 25
)
⋅sin(ω⋅t)+

+
(
200⋅ω3 + 200⋅ω

)
⋅cos(ω⋅t)

]
(40)  

Fig. 9 displays the results of the approximations (39) and (40) for a si-
nusoidal temperature of ΔT = 1oC amplitude and for different angular 
frequencies, with a thermal conductivity of k = 400W/m⋅oC and a 
thermal diffusivity of α = 100⋅10− 6m2/s, as well as the outcome of the 
analytical solution (38). The approximations are observed to be suffi-
ciently accurate, particularly for frequencies of 0.1 and 1 Hz. These 
frequencies fall within the range where approximations (39) and (40) 
align most closely with 1/

̅̅
s

√
, as evidenced by the Bode diagrams in 

Fig. 6. 

4. Results 

The following section presents the response of a thermistor to an 
external heat source, specifically a power laser, in various gaseous 
media. The data is presented in a format that allows for the results ob-
tained in ambient air, helium, and vacuum conditions to be easily 
compared. Similarly, the tables displaying model parameters and 

Fig. 10. Practical test to evaluate the transient response of the thermistor under the highest power signal.  

Fig. 11. Thermistor response to ambient air in chamber.  
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residual values are structured in a similar manner. The first row presents 
the results obtained with the highest power laser (P), followed by B, R, 
and G for each gaseous medium. Fig. 10 illustrates the operation of the 
laser within the test chamber. 

Finally, each test is individually presented using logarithmic tem-
perature graphs (Θ(t)). This technique enables the identification of 
trends across a wide range of values, thereby providing a deeper un-
derstanding of the experimental results and their implications for the 
behaviour of the system under study. 

4.1. Thermistor transient response at different laser powers and gaseous 
medium characteristics 

Fig. 11 illustrates the temperature thermistor responses when 
ambient air is used as the gas in the chamber for four different laser 
powers. This allows for direct analysis of the amplitude corresponding to 
each signal, thereby enabling an understanding of the effect of the laser 
power source on the temperature thermistor response. Additionally, 
Fig. 11 displays that the experiment commences after a stabilization 
period preceding the laser stimulus. For the remaining results shown in 
Figs. 12, 13 and 14, the behaviour of the test remains consistent. 

It is worth mentioning that by monitoring the internal and external 
parameters, a reference measurement of the environment is available, 
indicating a temperature of 24 ◦C and a relative humidity of 45 %. 

The discussion of the helium experiment follows the description of 
the ambient air experiment. Helium has a thermal diffusivity coefficient 
approximately ten times greater than that of air, which is a crucial factor 
to consider in experimental design. As shown in the corresponding 
graph. 

For the vacuum tests, a pressure of − 1.0 bar is achieved inside the 
chamber using a pump and valve system. The responses obtained are 
shown in the graph below (Fig. 13): 

Fig. 14 presents the outcomes of four tests conducted with air under 
identical laser source excitation conditions. The results demonstrate the 
consistency and repeatability of the experimental design. The consid-
erable overlap of results indicates minimal deviation between tests, 
thereby reaffirming the reliability and accuracy of the experimental 
design under the indicated conditions. The subsequent results of the 
paper exhibit a level of repeatability comparable to that presented in 
Fig. 14. 

4.2. Fitting and comparison of the mathematical models 

To assess the validity of the mathematical models considered in this 
paper, the time constant model (29) and the proposed improved model 
(27) and (28), a non-linear least squares method [31,32] is applied. The 
non-linear least squares method is based on the Gauss-Newton algorithm 
with restrictions on the model parameters using the Trust-region algo-
rithm. The residual sums of squares or qualitative estimator (QE) data 
(41) are obtained from the least square process for each experiment with 
m samples per test. Four tests (n = 4) were conducted, each with 
different laser power settings and fluid. 

QE =
∑m

i=1

(
θexpi − θmodeli

)2 (41) 

For each laser power setting, the mean quality estimate (μ) and 
corresponding standard deviation (σ) were calculated for the corre-
sponding four tests, as shown by expressions (42). 

μQE =

∑n
i=1QEi

n
σQE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
μQE − QEi

)2

n − 1

√

(42)  

Furthermore, the mean (μpi
) and standard deviation (σpi ) of the proposed 

parameters (pi = {a*, τ,∊, λ,⋯}) were utilized to evaluate the results of 
each test, as presented in expressions (43). 

Fig. 12. Thermistor response to helium in chamber.  

Fig. 13. Thermistor response to vacuum in chamber.  

Fig. 14. Thermistor response in rising phase with ambient air in chamber.  
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μpi
=

∑n
i=1pi

n
σpi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
μpi

− pi

)2

n − 1

√
√
√
√

(43) 

In order to contrast the data provided by the thermistor manufac-
turer and to emphasise the importance of considering not only the 
properties of the sensor, but also those of the fluid to be monitored, the 
following tables present the results of the conventional time constant 
model in comparison with the results proposed in this article. 

In contrast, the values of the parameters and the qualitative esti-
mator for the proposed improved model (26) and (27) are shown in the 
following table 7-9: 

Figs. 15 and 16 show the analysis of the model from a dimensionless 
perspective of the data obtained. These plots are very useful as they 
graphically show the existing deviations of the proposed model with 

respect to the experimental data. For this reason, the response of the 
thermistor has been analysed when the external heat source acts, taking 
into account the logarithm of the temperature. 

Fig. 15. Dimensionless temperature Θ(t) for laser B.  

Fig. 16. Dimensionless temperature Θ(t) for laser R.  

Table 4 
Parameters and QE values for time constant model (29) in air.  

ID n a* τ QE 

μa* σa* μτ σ τ μQE σ QE 

P 4  25.47  0.09  2.84  0.01  73.98  1.13 
B 4  20.25  0.02  3.08  0.01  35.98  2.43 
R 4  10.50  0.01  3.41  0.01  14.96  0.27 
G 4  9.82  0.04  3.48  0.04  12.38  0.85  
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5. Discussion 

Tables 2 to 9 demonstrate that the proposed model in this paper (27)- 
(28) reduces residuals (QE) in comparison to the conventional model. 
This fact supports the hypothesis that heat flow through conductors can 
be relevant in temperature measurement when the dimensionless Biot 
number is reduced. Additionally, model (29) shows worse residuals for 
air than for helium, despite the expected opposite. The Biot number 
(Bi = h⋅Ds/ks) is lower for air than for helium because the average 
convection coefficient for helium is higher than for air under the same 
conditions. 

It is worth noting that tables 2 to 9 confirm the sensitivity of pa-
rameters a*, ∊, and λ to changes in the stimulus source (Plaser), as ex-
pected based on the deductions made in expressions (27), (28), and (29). 
Similarly, considering the constants set in the mathematical models, it 
can be observed that the changes in laser power stimulus do not 
significantly affect (τ), (δ − γ), and (δ + γ). Appreciable variability is only 
observed in the case of the parameter (δ + γ), but this could be corrected 
by fixing or forcing an average value for this parameter between stimuli, 
assuming an increase in the value of the corresponding residuals. 

To discuss the effect of improving the mathematical model more 
precisely, a ratio (RQE) of the percentage change in the average residual 
(μQE) between the application of the two models considered, conven-

Table 5 
Parameters and QE values for time constant model (29) in vacuum.  

ID n a* τ QE 

μa* σa* μτ σ τ μQE σ QE 

P 4  24.37  0.03  2.98  0.01  84.67  2.99 
B 4  19.91  0.01  3.35  0.01  30.26  4.17 
R 4  10.15  0.01  3.29  0.04  19.96  2.06 
G 4  9.30  0.02  3.37  0.3  13.68  1.23  

Table 6 
Parameters and QE values for time constant model (29) in helium.  

ID n a* τ QE 

μa* σa* μτ σ τ μQE σ QE 

P 4  11.77  0.03  1.36  0.03  2.53  0.24 
B 4  10.07  0.01  1.18  0.01  1.06  0.09 
R 4  4.40  0.01  1.17  0.01  0.59  0.08 
G 4  4.36  0.06  1.24  0.02  4.52  0.18  

Table 7 
Parameters and QE values for the proposed improved model (27) in air.  

ID n ε λ (δ + γ) (δ-γ) QE 

με σ ε μλ σ λ μδ+γ σ δ+γ μδ-γ σ δ-γ μQE σ QE 

P 4  25.48  0.08  − 8.46  0.35  0.97  0.03  0.25  0.01  2.62  0.18 
B 4  20.25  0.01  − 6.76  0.68  0.79  0.06  0.23  0.01  1.27  0.45 
R 4  10.50  0.01  − 2.59  0.06  1.13  0.03  0.22  0.01  0.78  0.17 
G 4  9.82  0.03  − 2.42  0.22  0.88  0.06  0.22  0.01  4.39  0.26  

Table 8 
Parameters and QE values for the proposed improved model (28) in vacuum.  

ID n ε λ (δ + γ) (δ-γ) QE 

με σ ε μλ σ λ μδ+γ σ δ+γ μδ-γ σ δ-γ μQE σ QE 

P 4  25.82  0.05  − 8.83  0.28  0.96  0.02  0.24  0.01  1.88  0.07 
B 4  21.69  0.03  − 9.31  1.01  0.55  0.02  0.21  0.01  1.01  0.49 
R 4  11.56  0.02  − 2.64  0.19  1.44  0.10  0.23  0.01  0.94  0.28 
G 4  10.09  0.04  − 2.05  0.96  0.78  0.04  0.23  0.05  3.57  0.31  

Table 9 
Parameters and QE values for the proposed improved model (27) in helium.  

ID n ε λ (δ + γ) (δ-γ) QE 

με σ ε μλ σ λ μδ+γ σ δ+γ μδ-γ σ δ-γ μQE σ QE 

P 4  11.77  0.03  − 11.65  0.35  0.68  0.005  0.69  0.01  2.59  0.15 
B 4  10.07  0.01  − 4.56  0.32  1.31  0.03  0.63  0.02  0.27  0.06 
R 4  4.40  0.01  − 0.89  0.11  2.65  0.33  0.71  0.01  0.26  0.03 
G 4  4.36  0.06  − 0.84  0.30  2.34  0.53  0.67  0.05  4.24  0.12  

Table 10 
Average and relative variation of QE values per model and power laser.   

Air Vacuum Helium  

μQE RQE μQE RQE μQE RQE 

Model (29) (27) % (29) (28) % (29) (27) % 

P  77.4  2.6  3.4  84.31  1.88  2.2  3.8  2.6  68.9 
B  37.2  1.3  3.4  28.73  1.01  3.5  1.1  0.3  25.5 
R  15.1  0.8  5.2  19.22  0.94  4.9  0.7  0.3  37.7 
G  13.3  4.4  32.9  14.15  3.57  25.2  9.8  4.2  43.4 
Average  35.7  2.3  11.2  36.6  1.9  9.0  3.8  1.8  43.8  
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tional (29) and proposed (27) or (28), is defined by the expression (44). 

RQE =
μQE(i)

μQE(29)
⋅100i = {27,28} (44) 

Table 10 presents a comparative summary of the results from the 
different adjustments displayed in tables 2 to 9. The summary includes 
the residual or estimator of the quality of fit of the models considered 
QE, as well as the values of the rate of change ratio (44). 

It is clear from Table 10 that the results can be improved by 
approximating the heat flow through the wires. This is particularly true 
for air and vacuum, and to a lesser extent for the helium case. Im-
provements in the average model fit are of the order of 89 % for air, 91 % 
for vacuum and 56 % for helium. It should be noted that only the 
simplest approximation (19) was used to estimate the wire heat flux. It is 
expected that the use of a more complex approximation, such as (20), 
would lead to further improvements. However, the results indicate that 
heat exchange through the sensor wires does affect the measurement. 

Figs. 15 and 16 confirm the previous indication that the proposed 
model gives better results than the conventional one. The presentation 
of the results in dimensionless form is effective after applying the 
appropriate logarithmic scale change. 

6. Conclusions 

This work proposes a mathematical model that incorporates the 
transient response of thermistors characterised by a synergy between the 
gaseous medium and the sensor, which results in a low Biot number 
(Bi < 0.1), mainly in applications where the interaction with the studied 
phenomenon is minimal. This strategy complements the conventional 
model based on the concept of time constant. The improvement assumes 
that the heat flow through the thermistor wires must be considered in 
the energy balance, treating them as semi-infinite solids and applying an 
approximation to their heat flow formula. Additionally, an approach 
based on the use of equivalent transfer functions has been applied to the 
mathematical model of semi-infinite solids, maintaining simplicity for 
the required level of accuracy. The proposed model has been validated 
against experimental results, demonstrating superior performance 
compared to the conventional time constant model. The improvements 
in the average model fit are approximately 89 % for air, 91 % for vacuum 
and 56 % for helium. These results indicate a satisfactory enhancement 
over the conventional model, suggesting that heat exchange through the 
sensor wires significantly affects the measurement. 
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York (1980). 687 pp, Int J Heat Mass Transf 24 (12) (Dec. 1981) 1993–1994, 
https://doi.org/10.1016/0017-9310(81)90124-1. 
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