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Abstract: 

The aim of this research work is to evaluate the capability of RSM and ANFIS modeling to optimize and predict 
the exergy performance for onion drying process. The experiments were accomplished in a multi-stage semi-
industrial continuous dryer at the ranges of the air temperatures (40-70°C), air velocities (0.50-1.50 m/s) and 
belt linear speeds (2.5-10.5 mm/s). A central composite design (CCD) in RSM with a second-order polynomial 
model was adopted to investigate the effects of independent variables on three response parameters: exergy 
loss (0.0182−0.0555 kJ/s) for minimizing, and exergy efficiency (62.33–89.25%) and exergetic improvement 
potential rate (0.025-0.061 kJ/s) for maximizing. The Takagi–Sugeno ANFIS model and the hybrid learning 
algorithm were applied to predict the exergy parameters. After variance statistical analysis, all the models 
obtained in RSM were significant, as well as all operating variables had a notable effect on all the responses. 
The results depicted that the highest coefficient of determination by applying ANFIS model for predicting the 
exergy loss, exergy efficiency and improvement potential rate achieved 0.9962, 0.9985 and 0.9924, 
respectively while the values of R2 for the prediction of these responses in RSM were 0.9479, 0.9688 and 
0.9993, respectively. The corresponding optimal conditions for the combined responses were at the air 
temperature of 40 ◦C, air velocity of 1 m/s and belt linear speed of 10.50 mm/s with the maximum desirability 
of 1.00, whereas the optimized values for exergy loss, exergy efficiency and improvement potential rate 
acquired 0.045 kJ/s, 76.756% and 0.025 kJ/s, respectively. 
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1. Introduction 
Onion (Allium cepa L.) as one of the most used agro-industrial products is generally applied with several 
varieties in food recipes in the world to add a luscious taste to the foods [1], [2]. The growth of onion production 
around the world has made it as the second most significant vegetable crop after tomato with a global 
production of 6.6×107 t [3]. In addition, it can be used as one of the efficacious medicinal compounds with many 
benefits such as hypocholesterolemia and antioxidants for various diseases including cardiovascular, blood 
cholesterol, cancer and cataracts [2], [4].  In recent decades, dried onion with suitable quality properties 
consisting of flavor and color have been demanding in the industry of the food production [5]. Drying process 
of fresh fruits and vegetables with decreasing moisture content can provide storage stability and increase shelf 
life of such products [6]. Anyway, there are several kinds of drying methods for instance open-sun, microwave, 
infrared, convective, vacuum and the rest of hybrid techniques that can be commonly employed to dry the 
vegetables under different drying operations [4]. Accordingly, it is required to utilize the thermal potential of the 
drying agent in each contact with the dispersed materials to reduce cost and energy and increase system 
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performance, which can be provided with the help of multi-stage dryers for declining energy consumption and 
enhancing the quality of final healthy product [4]. 

In general, thermodynamics analysis plays a significant role in the energy efficiency assessment of the thermal 
and industrial systems like drying technology to save energy consumption and optimize operation conditions 
of drying process [7]. Moreover, energy analysis on the basis of the first law of the thermodynamics restricted 
to energy conservation and the energy quantity in the whole system does not provide any information about 
the energy quality and optimal energy transformation [8]. The exergy analysis by respect to the first and second 
laws of thermodynamics as an important technique in thermal assessment could provide possibilities of 
thermodynamic improvement of the process with determining  the location and amount of irreversible 
production during any industrial processes like drying systems [9], [10]. In the recent years, several research 
works have been accomplished on energy and exergy evaluation in the drying processes of different products 
such as turmeric slices [11], , potato slices [12], rosemary leaves [13], cantaloupe slice [14], and pumpkin 
seeds [15]. Energy and exergy assessment was done for okra drying process. According to the obtained 
results, exergy efficiency varied from 49.15 to 63.47% while the sustainability index varies from 2.14 to 2.77 
[16]. 

Soft-computing methods for instance Adaptive neuro-fuzzy inference system (ANFIS) as an intelligence 
technique combines two powerful techniques including an adaptive neural network (NN) and a fuzzy inference 
system (FIS) [17]. It has recently attracted special attention in research works regarding exergy analysis of 
drying process for agricultural products like fruits and vegetables because the ability to learn this system is 
appropriate for identifying their behaviors and such complex processes to which mathematical models do not 
simply apply to solve multifaceted nonlinear problems [2], [7], [18].Taghinezhad et al. [19]  investigated the 
prediction of the drying parameters and quality of turnip slices by ANFIS modeling. They concluded that energy 
efficiency was between 0.89% and 15.23%) and dryer efficiency varied from 2.11% to 21.2% whereas the 
ANFIS model predicated the response parameters with R2>0.96.  

The optimum use and the considered techniques of management for energy consumption in an industrial 
production process because of great costs of energy, environmental concerns and fossil-fuel recourses, are 
very vital for investment sustainability. Determination of optimal drying process variables is commonly done in 
the food industries so as for solving the quality of dried healthy product or optimize the cost-effectiveness of 
production process [20], [21]. Overall, optimization of operating process parameters can be applied for the aim 
of increasing the efficiency of an industry process. Response surface method (RSM) is an advanced 
mathematical and statistical approach on the basis of the fit of the polynomial model to empirical data which 
states the influence of the experimental data on the considered results so that identifies the relationships 
between independent variables and their interactive effects on the obtained responses to attain the best 
performance of system with obtaining the optimum conditions and responses. This powerful tool is used 
experimental design, modeling and optimization of a process [20]. Vahedi Torshizi et al. [22] modeled and 
analyzed the exergy parameters of an ohmic heating (OH) process in drying sour orange juice by the 
application of ANN and RSM. The results showed that the accuracy of ANN was greater than RSM to predict 
the exergy loss, exergy efficiency, and exergetic improvement potential rate. Zalazar-Garcia et al. [15] used 
RSM approach to optimize the exergy, energy, and sustainability assessments of pumpkin seeds in hybrid 
convective air-dryer. in this study, the energetic and exergetic efficiency of the relevant dryer obtained 13.4 % 
and 41.77 %, respectively. The exergetic improvement potential rate and sustainability index amounts are 
related to the parameter of exergy loss. In a research study, modeling and optimization for Konjac Vacuum 
drying was done by the use of RSM and ANN methods. The results demonstrated that the RSM model was 
superior in predicting capacity (R2>0.92; MSE<1.46) than the ANN model [23].  

To the best of our knowledge, no researchers have reported the modeling and optimization of the exergetic 
parameters of a novel hot air-convective drying for onion samples in a Multi-Stage Semi-industrial continuous 
belt (MSSICB) dryer using ANFIS modeling and RSM procedure. Therefore, the objectives of this study were 
to investigate the comparison of ANFIS and RSM techniques to model and predict the exergy loss, exergy 
efficiency, and exergetic improvement potential rate as well as assessment of the effect of drying operating 
conditions and interactive effects on these responses. 

2. Material and methods 
2.1. Preparing sample and experimentation procedure 
Fresh onion samples employed for these experiments were purchased from a local market located in 
Hamedan, Iran. Before beginning the drying experiments, the prepared onion samples were cleaned and were 
put in plastic bags and then stored in a refrigerator at 4±1°C to keep primary moisture content. Onions randomly 
taken from the samples has been hand peeled, weighed and cut into manually the desired slices with 40 mm 
thickness using a domestic cutting machine in the direction parallel to the vertical axis. Approximately 50g of 
samples with distinct thickness were randomly taken out of the laboratory refrigerator, weighed and measured 
with the standard oven method at 105 ± 1 ◦C for 24h for obtaining the initial moisture content [6]. Finally, the 

ECOS 2022

1834



[Escriba aquí] 
 

3 
 

initial moisture content of onion samples with three repetitions was determined as 89.12 % (w.b.) [24]. Drying 
experiments were conducted in a Multi-Stage Semi-industrial continuous belt (MSSICB) dryer available in 
Kaveh et al. [18] for drying onion samples at three levels of drying air temperatures (40, 55, 70 ◦C), three levels 
of inlet air velocity (0.5, 1, 1.5 m/s) and also three levels of belt linear speed (2.5, 6.5, 10.5mm/s). Main drying 
chamber, belt movement system, heat generation system blower and control panel are the main parts of this 
kind of dryer that. Table 1 shows the characteristics of the experimental measurement tools used during 
experimental test. Before doing experiments, the considered dryer was run for 30 min without a sample to 
reach steady state and intended temperature. All drying experiments were done in triplicate. 

Table 1. The used measurement tools during the drying experiments 

Tools Measurement Model Accuracy 

Digital balance Weight AND-GF 6000 0.001 g 

Thermometer Temperature Lutron ±1 ◦C 

Humidity meter Relative humidity of the environment YK 2005 RH 1% 

Anemometer Inlet air speed YK80-AM, Taiwan ±0.1m/s 

 

2.2. Theoretical principle  

In this study, the major features of drying chamber, inlet and outlet terms of product and air, the heat loss to 
environment were evaluated. Prior carrying out the exergy analysis based on the first and second law of the 
thermodynamics, mass and energy balance were done based on the first law of the thermodynamics. 

General equation of mass conversation can be considered as Equation (1) [25]:  

Moreover, the general energy balance also is expressed by application of equation (2). [22]: 
. .

in out
En En   

(2) 

 In general, the exergy balance equation utilized for the drying system is adopted by the equation (3) [26]: 

The physical exergy rate of fresh or dried onion obtained by equation [27]:  
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where the specific heat of onion product as a function of MC is considered as follows [28]: 

1.84 2.34pc    (5) 

 In addition, the exergy rate of air drying was obtained by following relation [28]: 

The mass flow rate of drying air can be obtained by respect to the following equation [29]: 

a a a dcm V A  (7) 

where the relationship of specific humidity and the relative humidity content of the air (φ) is identified as 
below [28]: 

Also, the specific heat of the drying air is computed as [30]: 
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 Equation (10) was employed to obtain the exergy loss of drying chamber: 

Also, exergetic efficiency can be described by using the following equation [27]: 

in L
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  

(11) 

Van Gol (1997) concluded that maximum improvement potential according to the exergetic efficiency of a 
heating process occurs as exergy loss is the lowest so that is used in several parts of the important economic 
analysis. Hammond & Stapleton [31] suggested this parameter as an assessment form by equation (12):   

(1 )( )ex in outIP Ex Ex      (12) 

2.3. Adaptive neuro-fuzzy inference system (ANFIS) modeling 
ANFIS is an intelligence approach to estimate the continuous functions in a distinct set by combing the fuzzy 
logic and the artificial neural network (ANN). The fuzzy inference system can be considered an adaptive fuzzy 
inference inventory as the comparative training logarithms is used that refers to as ANFIS. Overall, a FIS in 
ANFIS modeling can be created with the help of a series of specific input and output datasets so that the BP 
algorithm, either alone or in combination with the least squares method, can adjust the parameters of the 
membership functions [32], [33]. Commonly, ANFIS system is employed as a progressive network structure 
by application of a Takagi–Sugeno fuzzy system to formulate the behavior of a process by applying descriptive 
if-then rules as well to search for fuzzy decision rules for performing well on the considered tasks. By 
considering the first order of this model along with a two input, one output system having two membership 
functions for each input, ANFIS is a five-layer feedforward neural structure included in fuzzification layer, rule 
layer, normalization layer, defuzzification layer, and summation layer as shown schematically in Fig. 2 [19]. 
MATLAB 2017 is used to develop and assess the ANFIS model. A Sugeno-type fuzzy inference system with 
investigation of the trap mf, dsigmf, gauss mf, gaussus 2mf, gbell mf, pimf, trimf and psigmf, membership 
functions and also 1000 epochs, MFs of 3-3-3-3 to each input was used to find the optimal model while their 
membership degree was also achieved by using trial and error parameters.  70% of the data (644) were applied 
for training whereas the rest of 30% of data (275) were randomly considered for testing. A hybrid training 
algorithm consists of error back propagation algorithm and minimum square error method was used to train 
and fit with the fuzzy system. In this study, air temperature, air velocity, drying time and belt linear speed were 
utilized as the inputs of ANFIS while the exergy loss, exergy efficiency, and exergy improvement potential were 
as the outputs (Figure 1).  

 

Fig. 1. Structure of ANFIS model 

Two statistical indices namely the determination coefficient (R2) and the root mean squared error (RMSE) are 
employed to evaluate the fitting performance of the model by the comparison of the actual and predicted 
values. The goodness of fit of the best models, is determined by higher R2 values and the lowest RMSE. the 
values of R2 and RMSE are calculated by the equations (13) and (14) [32]: 
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2.4. Response surface method (RSM) 
The drying data were statistically evaluated by a polynomial model type in Design Expert software versions 
13.0 (Stat-Ease Co, USA) to the considered equations to optimize the drying process factors. Significant 
influences of independent factors and their interaction influences on the responses was identified by the 
variance analysis (ANOVA) on a confidence level above 95% (p< 0.05).  RSM modeling was applied to survey 
the influences of drying process factors (air temperature, air velocity, drying time and belt linear speed) on the 
three responses (exergy loss, exergetic efficiency and improvement potential). A face centered central 
composite design (CCD) consists of 20 experimental runs designed by independent factors and their levels 
was utilized. The multiple linear regression (MLR) analysis of the drying experimental data of onions concluded 
the second order polynomial (quadratic) model to predict the given responses. The experimental data for drying 
process of onion samples were adopted to a second order polynomial model as follows [24]: 

2 2 2
0 1 1 2 2 3 3 11 1 22 2 33 3 12 1 2 13 1 3 23 2 3Y X X X X X X X X X X X X                      (15) 

The relationships between the considered responses were appraised by the use of the coefficient of 
determination (R2), adjusted R2, predicted error sum of squares (PRESS) and predicted R2 [34]. The desired 
goals for each factor and the responses were selected. During the optimization process, in addition to the 
independent factors were in the distinct range while the exergy loss was minimized and exergetic efficiency 
and improvement potential rate were maximized.   

Finally, a multi-objective optimization has been done by application of the desirability function (Dx). The 
desirability function (Dx) is described by using Eq. (16). 

 
1

3
1 3 3XD Y Y Y    

(16) 

Also, the parameter of Dx varies between 0˂Dx ˂1 and describes how well the dependent factors are fitted 
with the given level of independent factors. The values of the three levels of the three input factors were 
reported in Table 2.  

Table 2. The experimental data based on central composite design for drying process 

  Coded levels   

Independent factors   Low (-1) Mid (0) High (+1) 

 Symbols Real levels   

Drying air temperature, °C X1 40 55 70 

Drying air velocity, m/s X2 0.50 1 1.50 

Linear belt speed, mm/s X3 2.50 6.50 10.50 

 

3. Results and discussion 
3.1. ANFIS modeling 
Three independent factors including drying air temperature, drying air velocity and belt linear speed were 
applied to predict three output parameters namely exergy loss, exergetic efficiency, and exergetic improvement 
potential rate. After designing various ANFIS models by application of test and error approach and to determine 
the number of fuzzy rules in predicting output parameters, the results were evaluated. In this analysis the 
number of membership function laws was changed from 3 to 5 whereas 81 fuzzy laws by using a function 
namely Gaussian membership (gaussmf) demonstrates the best structure of ANFIS modeling.  The obtained 
results including training algorithm, type of MFs for each output, RSME and R2, are shown in Table 3. A low 
RSME=0.0091 and a high correlation coefficient of 0.9962 were acquired for the relationship of predicted and 
experimental data to predict exergy loss (Table 3). Furthermore, For the prediction of exergetic efficiency by 
ANFIS technique, the highest value of R2 obtained 0.9985 with RMSE=0.0040 (Table 3). The results in 
demonstrates that Guassian (gaussmf) types of MFs performed and suggested R2 and RSME values. 
According to the results assessment by ANFIS, the results showed that there was not any overfitting and 
ANFIS model R2=0.9924 and RSME=0.0120 can predict the exegetic improvement potential rate with the best 
performance and accuracy. In this evaluation, the best training algorithm and type of MFs for each output were 
hybrid and linear, respectively. By exergy analysis of drying quince [7] and cantaloupe slice [14], the 
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researchers showed that the ANFIS model can forecast the drying properties of the products with an 
acceptable accuracy. 

Table 3. The ANFIS results for prediction of exergetic parameters 

Characteristics  Training algorithm Type of MFs for 
each output 

R2 RSME 

EXL Hybrid Linear 0.9962 0.0091 

eff  Hybrid Linear 0.9985 0.0040 

IP  Hybrid Linear 0.9924 0.0120 

 

3.2. RSM Performance 
3.2.1. Analysis of variance (ANOVA)  

The design optimization process was by respecting the central composite design (CCD), where a quadratic 
mathematical model was investigated for all response factors. The variance analysis (ANOVA) of the 
responses (exergy loss, exergetic efficiency, and exergetic improvement potential rate) is given in Table 4. 
According to this Table, the best regression model to predict the related responses were reported on the basis 
of the statistical parameters like the values of determination coefficient (R2), and predicted R2, adjusted R², 
adequate precision, variation coefficient (CV), Lack of Fit and adequate precision. Overall, F-value higher than 
unity demonstrates more accuracy of factors and P-value lower than 0.05 advocates the compatibility of the 

given model. The results in Table 4 showed that the F-value of the models for EXL, ex  and 
.

IP  were 14.14, 

134.73 and 1182.09, respectively while the model p-value for EXL is equal to 0.0010 and for ex  and 
.

IP  were 

less than 0.0001, which shows the accuracy and compatibility of the obtained model (p˂0.01) (Table 4). 
Anyway, it means that the models obtained to predict the theses responses were significant. In this case, as 
shown in Table 5, the main model linear terms including air temperature (X1), air velocity (X2) and belt linear 
speed (X3) were significant with probability level of 95% (p˂0.05) while other quadratic and interaction terms 
including X2

2, X2
3, X32, X1X2, X1X3, and X2X3 were not insignificant for the related models of exergy loss (EXL) 

and exergetic efficiency ( ex ) (p˃0.05). The quadratic term of X2
1 with p-value=0.0002 possess meaningful 

effect only for predicting the exergetic improvement potential rate as represented in Table 4 (p˂0.01).  In the 
statistical viewpoint, it is concluded that air temperature (X1) is most dominant variable influencing EXL, ex  

and 
.

IP  respectively, followed by other variables (p˂0.0001). The values of R2 to predict the relevant responses 

(EXL, ex and 
.

IP ) were obtained 0.9479, 0.9688 and 0.9993 respectively that demonstrates the competency 

of the chosen models (Table 4). Hence, this high values of goodness of fit (R2=) in the given design shows 
that only 5.21%, 3.22% and 0.07% of total variation could not be reflected using the RSM models, respectively. 
The statistical results depicted that there is a reasonable agreement (difference less than 0.20) between the 
values of "Predicted R2” (0.7083) and “Adjusted R2” (0.8808) for predicting the exergy loss (Table 4) [35], [36].  
The value of “Adeq precision” for predicting this parameter (Exergy loss) was 12.21 that demonstrating the 
ratio of the signal to noise that can supply a comparison between the range of predicted amounts at desired 
design points and the mean error of the prediction for exergy analysis. The signal to noise ratio obtained in 
this research work (12.21) for predicting exergy loss is an acceptable value because the minimum value for 
"Adeq precision" is 4 in the viewpoint of statistical analysis [36], [37]. Also, according to the Table 4, a 
satisfactory agreement between the values of “Pred R2” (0.9351) and “Adj R2” (0.9616) was obtained to predict 
the exergetic efficiency while the “Pred R2” and “Adj R2” values to predict and exergetic improvement potential 
rate were and 0.9895 and 0.9985, respectively. In addition, the values of "Adeq precision" in the ANOVA results 
for the exergetic efficiency and exergetic improvement potential rate attained 36.22 and 109.66 respectively 
that were remarkably larger than the desired amount (4) indicating the suitable ration of signal compared to 
noise. So, the obtained models could be used to survey the optimum conditions within the design space in 
predicting the analyzed parameters (exergetic efficiency and exergetic improvement potential rate). Moreover, 
the variation coefficients (C.V.) of 10.31%, 1.55% and 1.29% attained illustrates the reproducibility and 
repeatability of the models (Table 4). The quadratic model has been selected for the responses of exergy loss 
(PRESS=0.0008) and exergetic improvement potential rate (PRESS= 8.3536e-06) while linear model had best 
performance to predict the exergetic efficiency (PRESS=40.77) compared to other given models. Finally, 
drying air temperature was known as the most significant factor in predicting response parameters. 

Based on the ANOVA, the related terms of models which were insignificant (p > 0.05) to predict the responses 
have been removed from the final equations formulated with the coded coefficient as expressed in Table 5. 
The quadratic and linear equations representing the variation of the exergy loss, exergetic efficiency, and 
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exergetic improvement potential rate in terms of coded variables (X1, X2 and X3) are supplied in Table 5. The 
exergy loss and improvement potential rate raised with increase of drying air temperature and drying air 
velocity and declined with increasing belt linear speed. This result can also be affirmed by related coefficients 
to positive signs obtained for air temperature and drying air velocity in the regression equation of the exergy 
loss and improvement potential rate as well as the negative coefficients of belt linear speed (X3) (Table 5). 
Only term of X22 was found to be significant in the squared model to predict the exergetic efficiency with a 
constant coefficient of 3.95. However, for exergy loss, the greatest influence on associated with the inlet drying 
air temperature followed by drying air velocity. According to the regression equation related to exergetic 
efficiency in Table 6, the negative coefficients obtained for drying air temperature and air velocity showed that 
exergetic efficiency was negatively affected by these factors while the positive coefficient calculated for belt 
linear speed showing the direct relation of this parameter with exergtic efficiency [24].The belt linear speed 
had the highest effect for improving the exergtic efficiency while drying air velocity, with the highest negative 
coefficient of -3.74 was the most effective variable to decrease exergtic efficiency, followed by drying air 
temperature (Table 5). 

3.2.2. Influence of independent factors on responses 

The interaction influence of the drying process factors on the responses of exergy loss and improvement 
potential rate were represented in Figs 3 a,b. According to the obtained results shown in Fig. 3 for exergy loss, 
this parameter raises with the increase in air drying temperature and air velocity and the decrease in belt linear 
speed so that the maximum amount of this parameter occurred at beginning the drying process. The results 
dedicated that the highest value of exergy loss (0.0555 kJ/s) occurred in the 70 ◦C air temperature, 1.5m/s air 
velocity and 2.5 mm/s belt linear speed whereas the lowest amount of this parameter was 0.0182 kJ/s with 40 
◦C air drying temperature, 0.5 m/s air drying velocity and also 10.5 mm/s belt linear speed (Figure 3 a). It could 
be argued that raising the drying air temperature amplifies the heat and mass transfer rates and then increase 
the exergy loss [29]. High drying air temperatures is included more exergy, so more proportion of the inlet 
drying air exergy is utilized for water evaporation process that caused the exergy loss due to entropy generation 
[38]. Also, the changes of improvement potential rate affected by drying air temperature, air drying velocity and 
belt linear speed attained by using RSM technique are illustrated in Figs 3b. 4. Furthermore, the amount of 
exergetic improvement potential rate changed between 0.009 kJ/s and 0.034 kJ/s under different experimental 
operating conditions. Figure 3b indicates that two operating factors (air drying temperature and velocity) have 
an increasing influence on the parameter of the improvement potential rate while it had an inverse proportion 
compared to the exergy efficiency of drying process. Form this figure, it can be resulted that EXL minimized at 
the highest values of belt linear speed (2.50 mm/s) (Figure 3). The exergetic improvement potential rate of 
drying chamber declined when the inlet air temperature and air velocity raised due to an increase in the exergy 
efficiency of drying chamber at higher drying temperatures [29]. Moreover, the linear influence of drying air 
temperature air velocity and belt linear speed on exergy efficiency of drying process of onion samples in semi 
industrial continuous dryers are shown in Fig. 3c. The results showed that the range values of exergy efficiency 
obtained between 64.02% and 91.62% so that the maximum values (91.62%) were found to be for 40 drying 
air temperature, 0.50 air velocity and 10.50 mm/s belt linear speed while minimum value of this parameter 
obtained 64.02% in drying air temperature of 70 ◦C, air velocity of 1.50 m/s and belt linear speed of 10.50 
mm/s (Figure 3c). By respecting the obtained results, increasing the drying air temperature decreased the 
exergy efficiency significantly owing the inverse relationship of exergetic efficiency with the exergy of inlet 
drying air. These findings were in the agreement with the results attained by [29], [39]. It should be noted that 
the improvement of the exergetic efficiency also occurred with enhancing drying air velocity by promoting the 
efficient utilization of provided exergy to the drying chamber. Similar results for the influence of drying air 
velocity on the parameter of exergy efficiency in an industrial pasta drying process was also represented by 
Colak et al. [26]. The major reason for the low value of exergy efficiency during drying process is the 
significantly high exergy loss and the small amount of exergy used for moisture evaporation in comparison  
with the provided exergy [29]. Accordingly, declining the heat transfer of the dryer wall by using installation and 
airproofing could decrease the exergy loss.  

Table 5. The quadratic equations related to the responses compared independent factors 

Dependent factors Equations 

Exergy loss 
1 1 2 30.0372 0.0145 0.0054 0.0057Y X X X     

Exergetic efficiency 
2 1 2 379.32 6.81 3.74 3.98Y X X X     

Exergetic improvement potential rate 2
3 1 2 3 10.0209 0.0097 0.0014 0.0018 0.0009Y X X X X      
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Table 4. The ANOVA results for predicting models 

 

 Exergy loss   
Exergetic 
efficiency 

  
Improvement 
potential rate 

  

Source Sum of Squares F-value p-value Sum of Squares F-value p-value Sum of Squares F-value p-value 

Model 0.0025 14.14 0.0010 608.93 134.73 < 0.0001 0.0008 1182.09 < 0.0001 

X1-Air temperature 0.0018 89.08 < 0.0001 370.55 245.97 < 0.0001 0.0007 10034.87 < 0.0001 

X2-Air velocity 0.0002 11.88 0.0107 111.74 74.17 < 0.0001 0.0000 198.39 < 0.0001 

X3-Belt linear 
speeds 

0.0003 13.15 0.0084 126.64 84.06 < 0.0001 0.0000 352.36 < 0.0001 

X1X2 6.727E-06 0.3404 0.5779 - - - 5.760E-08 0.7723 0.4087 

X1X3 1.217E-06 0.0616 0.8112 - - - 1.225E-07 1.64 0.2408 

X2X3 1.197E-06 0.0606 0.8126 - - - 1.600E-07 2.15 0.1864 

X1
2 0.0001 5.52 0.0511 - - - 3.583E-06 48.04 0.0002 

X2
2 0.0001 2.85 0.1351 - - - 9.792E-08 1.31 0.2895 

X3
2 0.0001 3.03 0.1253 - - - 9.500E-09 0.1274 0.7317 

Residual 0.0001   19.58 - - 5.221E-07   

Lack of Fit 0.0000 0.5169 0.6927 19.58 - - 5.221E-07   

Pure Error 0.0001   0.0000 - - 0.0000   

Cor Total 0.0027   628.52 - - 0.0008   

C.V. % 10.31   1.55 - - 1.29   

Adeq Precision 12.21   36.22 - - 109.66   

 

 

 

 

 
  

 

 

 

  
 

 

 

  R²=0.9479 Predicted 
R²=0.7083   

Adjusted 
R²=0.8808 

R²=0.9688 Predicted 
R²=0.9351 

Adjusted 
R²=0.9616 

R²=0.9993 
 

Adjusted 
R²=0.9616 

Adjusted 
R²=0.9985 
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Fig. 3. 3D and 2D surface plots of RSM modeling demonstrating interaction influences of independent 
factors on responses: a) Influence of drying air temperature and drying air velocity on exergy loss b) 

Influence of drying air temperature and belt linear speed on the improvement potential rate c) 
Influence of drying air temperature, air velocity and belt linear speed on exergetic efficiency 

3.2.3. Optimization of drying process parameters 

The optimal process conditions given by the model were chosen the first solution calculated by RSM with a 
maximum desirability 1.00. Similar findings (D=1) were found in the research work of Corzo et al. [33] for 
optimization of drying properties of coroba slices. It was determined that the amounts were forecasted to be 
close enough to the experimental amounts. The obtained results of optimization process for exergy loss, 
exergetic efficiency and improvement potential rate of each independent and response were given in Table 6. 
In this study, the identified optimal conditions obtained equal 40°C for air temperature, equal 1 m/s for air 
velocity, equal 10.50 mm/s for belt linear speed. Under these optimum conditions, the optimal parameters for 
the responses of exergy loss, exergetic efficiency and improvement potential rate attained 76.756%, 0.045 
kJ/s and 0.025 mm/s (Table 6). It should be mentioned that there is a great agreement between the RSM 
results and the related experiments for dependent parameters (exergy loss, exergetic efficiency, and exergetic 
improvement potential rate). 

Table 6. Optimization process results by desirability function of RSM.  

Parameters 
T 

(◦C) 

V 

(m/s) 

S 

(mm/s) 
eff (%) 

LEX 

(kJ/s)  
IP 

(kJ/s)  
Desirability 

Optimum values 40 1.00 10.50 76.756 0.045 0.025 1.00 

 
4. Conclusions 

Several experiments were conducted at drying air temperatures of 40, 55 and 70 °C, drying air velocity of 0.50, 
1.00 and 1.50 m/s, belt linear speed of 2.50, 6.50 and 10.50 mm/s in a MSSICB dryer and analyzed on the 
basis of central composite design by RSM to optimize the drying process and to predict the dependent 
variables by ANFIS modeling. In order to optimizing the MSSICB dryer, independent variables were in the 
range and exergy efficiency and improvement potential rate must be as maximum and exergy loss must be as 
minimum. Coefficient of determination (R2) by ANFIS method for predicting these parameters were 0.9962, 
0.9985 and 0.9924, respectively. Moreover, it is clear that the drying air temperature plays a more important 
role in optimization compared to other factors. In addition to the significance of models, the operating factors 
had significant effects on all responses. In the experiments of this drying process, the optimal conditions were 
found to be 40 °C for drying air temperature, 1.00 m/s for air velocity and 10.50 mm/s for belt linear velocity 
while the optimum values of the responses with by maximum desirability function (D = 1.00). were 76.756%, 
0.045 kJ/s and 0.025 kJ/s for exergetic efficiency, exergy loss and improvement potential rate, respectively. 
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Anyway, the high values of the coefficients of determination (0.9479, 0.9688 and 0.9993) for predicting exergy 
loss, exergy efficiency and improvement potential rate depicts the acceptable accuracy of the quadratic model. 
The ANFIS results compared with RSM showed that ANFIS model had better performance in correlating non-
linear relationships for predicting the responses of exergy loss, exergy efficiency while RSM model offered 
higher accuracy to predict the improvement potential rate relative to ANFIS. It is worth mentioning that 
optimization of operating conditions of drying process, predicting the exergetic parameters and regression 
model equations could be very benefit for designing and manufacturing the industrial dryers. 
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Nomenclature  MSSICB multi-Stage Semi-industrial 
continuous belt 

Notations s Belt linear speed (mm/s)

MC moisture content (% wet weight) Greek 
letters 

m weight of product (g)    )3density (kg/m

ANFIS adaptive neuro-fuzzy inference 
system

   exergy efficiency (%)

t time (s)   relative humidity of air (%)

.

En
energy rate (kJ/s)   humidity ratio (kg water/ kg dry air)

m mass flow rate (kg/s)  

T temperature (°C)  coefficient term of RSM's model

P atmospheric pressure (kPa) Subscripts 

A )2area (m vs saturated vapor

V drying air velocity (m/s) 0 initial

pc specific heat (kJ/kg°C) L heat loss

R gas constant (8.3143 kJ/ mol)  

U overall heat transfer coefficient 
)°C 2kW/m(

in  inlet

h enthalpy (kJ/kg) L  loss

fgh latent heat of vaporization (kJ/kg)  

RMSE root mean square error w.b. wet basis

2R correlation coefficient out  output 

Ex exergy rate (kJ/s) ph physical 

ex specific exergy (kJ/ kg) in inlet 

Q heat transfer rate (kJ/s) out  outlet 

IP improvement potential rate (kJ/s) ex exergy

y actual value p product

ŷ predicted value fp fresh product

y average value dp dried product
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