
Citation: Hernández-López, R.;

Travieso-González, C.M.;

Ajali-Hernández, N.I. Sky Image

Classification Based on Transfer

Learning Approaches. Sensors 2024,

24, 3726. https://doi.org/

10.3390/s24123726

Academic Editors: Stefano Berrett,

Jean-Baptiste Thomas, Baptiste

Magnier, Khizar Hayat

Received: 6 May 2024

Revised: 31 May 2024

Accepted: 6 June 2024

Published: 8 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Sky Image Classification Based on Transfer Learning Approaches
Ruymán Hernández-López , Carlos M. Travieso-González * and Nabil I. Ajali-Hernández

Signals and Communications Department (DSC), Institute for Technological Development and Innovation in
Communications (IDeTIC), University of Las Palmas de Gran Canaria (ULPGC),
35017 Las Palmas de Gran Canaria, Spain; ruyman.hernandez@ulpgc.es (R.H.-L.);
nabil.ajali101@alu.ulpgc.es (N.I.A.-H.)
* Correspondence: carlos.travieso@ulpgc.es

Abstract: Cloudy conditions at a local scale pose a significant challenge for forecasting renewable
energy generation through photovoltaic panels. Consequently, having real-time knowledge of sky
conditions becomes highly valuable. This information could inform decision-making processes in
system operations, such as determining whether conditions are favorable for activating a standalone
system requiring a minimum level of radiation or whether sky conditions might lead to higher
energy consumption than generation during adverse cloudy conditions. This research leveraged
convolutional neural networks (CNNs) and transfer learning (TL) classification techniques, testing
various architectures from the EfficientNet family and two ResNet models for classifying sky images.
Cross-validation methods were applied across different experiments, where the most favorable
outcome was achieved with the EfficientNetV2-B1 and EfficientNetV2-B2 models boasting a mean
Accuracy of 98.09%. This study underscores the efficacy of the architectures employed for sky image
classification, while also highlighting the models yielding the best results.

Keywords: cloudiness classification; deep learning; transfer learning; convolutional neural networks;
EfficientNet models; ResNet models; sky images; photovoltaic power; renewable energy

1. Introduction

The production of electric power from solar energy is influenced by variations caused
by solar obstruction due to cloud cover. Detecting and understanding cloud cover have
been investigated for estimating and forecasting solar irradiance, and in this way, predict-
ing photovoltaic power generation [1]. The amount of electrical energy generated in a
photovoltaic plant is not solely determined by infrastructure specifics like the number and
type of solar panels employed, it is also directly impacted by the radiation received by the
panels, hence, the prevailing cloud cover. Sky conditions are contingent upon the time of
day, season, and geographical location. Nevertheless, forecasting local cloud conditions
remains highly challenging.

Furthermore, identifying specific cloud cover conditions through automatic pattern
recognition in sky images can prove invaluable across various applications. For instance,
it could aid in automated decision-making processes governing the operation of systems
in remote, off-grid locations where power consumption is critical. In such scenarios, it
becomes crucial to ascertain whether conditions are conducive for activating a standalone
system requiring a minimum radiation threshold or if cloudier conditions might result in
higher consumption than energy generation, potentially leading to system failure.

1.1. Related Work

In contemporary times, a plethora of research endeavors are dedicated to gauging
solar irradiation levels and assessing sky conditions via image processing. In recent years,
several surveys have scrutinized cloud conditions utilizing various pattern recognition
technologies and diverse approaches to image acquisition.

Sensors 2024, 24, 3726. https://doi.org/10.3390/s24123726 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24123726
https://doi.org/10.3390/s24123726
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4611-1913
https://orcid.org/0000-0002-4621-2768
https://orcid.org/0000-0002-3939-5316
https://doi.org/10.3390/s24123726
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24123726?type=check_update&version=1


Sensors 2024, 24, 3726 2 of 21

For instance, a study conducted in 2015 by Alonso-Montesinos et al. [2] utilized a sky
camera to forecast short-term and medium-term solar radiation for various sky conditions
(clear, partly cloudy, and cloudy skies) at one-minute intervals. This research explored
the potential of the camera as a ground-based predictive tool solely relying on digital
image levels. The radiation forecast was derived through a pixel-level radiation estimation
method and Cloud Motion Vectors (CMV), enabling the calculation of motion for each pixel
within the images.

However, in recent years, the techniques commonly employed have shifted towards
deep learning (DL) technologies due to their promising results and the increasing prevalence
of this type of technology, which offers significant improvements in pattern recognition.

During this decade, numerous studies focusing on analyzing sky images using deep
learning (DL) techniques have emerged. One such study was conducted by Seongha Park
et al. [3], where they illustrate the potential of sky-facing cameras coupled with machine
learning (ML) methods to estimate solar power output. This research specifically proposes
cloud segmentation to determine cloudiness for estimating photovoltaic production. The
authors compare various methodologies, including a classical regression model, DL tech-
niques, and boosting methods that integrate results from other ML models. For cloudiness
estimation, three types of Deep Neural Network (DNN) architectures were employed: Fully
Convolutional Network (FCN), U-shaped Network (U-Net), and DeepLabv3. Notably,
the most accurate segmentation of cloud pixels was obtained with one of the DNNs: the
U-Net architecture.

In the same year (2021), two months later, another study was published [4], conducted
by Rial A. Rajagukguk et al. In this study, the Long Short-Term Memory (LSTM) algorithm
was utilized to distinguish between various sky conditions, including clear sky, overcast
sky, and partly cloudy sky. This distinction aimed to predict fluctuations in solar radiation
and, consequently, in solar energy output within a photovoltaic plant.

The studies referenced in the preceding paragraphs undertake pixel-level cloud detec-
tion to forecast solar radiation. However, despite the existence of techniques to address the
fuzzy edges, diverse shapes, and textures of clouds [5], deep learning (DL) methods can
also be employed to predict net radiation.

Enrique Nueve et al. proposed a deep learning approach for nowcasting net radiation
within subhourly and intrahour horizons, as outlined in their study [6]. This method
aims to enhance the understanding and management of processes influenced by net radia-
tion, which holds critical importance for renewable energy planning and agriculture. The
WeatherNet model they developed is based on the deep-learning architecture CNN-LSTM
(ConvLSTM), which integrates data from multiple local ground-based cameras and weather
sensors to predict net radiation. Notably, their approach differs from previous methodolo-
gies by incorporating imagery from three distinct cameras: a sky-facing RGB (Red Green
Blue) camera, a horizon-facing RGB camera, and a horizon-facing forward-looking infrared
camera. Additionally, they employ a Gated Recurrent Unit (GRU), a type of Recurrent
Neural Network (RNN) architecture similar to LSTM, in their work.

In a separate study by Quentin Paletta et al. [7], four commonly utilized deep learning
architectures were compared in their ability to forecast solar irradiance based on sequences
of hemispherical sky images and exogenous variables: a CNN model, a CNN + LSTM
model, a 3D convolutional neural network (3D-CNN), and a ConvLSTM. As a critical
facet of data-driven approaches, the selection of the dataset significantly influences the
performance of DL models. The research suggests that training the model with a sufficient
volume of data or aggregated datasets from multiple locations may enhance the learning of
the model as much, if not more than, relying solely on architectural modifications for these
types of learning technologies.

In their study [8], Youssef Karout et al. introduced a hybrid model integrating DNI
(Direct Normal Irradiance) measurements with sky-imaging data. This research presents a
model specifically designed for intrahour forecasting of DNI, with horizons spanning 5,
10, and 15 min. The hybrid model combines a knowledge-based approach with a machine



Sensors 2024, 24, 3726 3 of 21

learning model: the knowledge-based component forecasts clear-sky DNI based on DNI
measurements, while the machine learning component assesses the impact of atmospheric
disturbances on solar resources by analyzing high dynamic range sky images captured
by ground-based cameras. In this instance, Recurrent Neural Networks (RNNs) were
employed, including LSTM and a CNN-LSTM network.

On the other hand, Gyasi and Swarnalatha proposed an architecture based on Mo-
bileNet in their study [9]. Their model, Cloud-MobiNet, is a lightweight architecture
designed for implementation on smartphones. It comprises two components: the Mo-
bileNet building block and the support MobileNet block. This model achieved an overall
accuracy of 97.45% and is considered valuable not only for meteorological analysis and
forecasting but also for applications in the aeronautical and aviation industries.

As observed, this type of technology is not only beneficial in electric power production.
As a further field of application, it is also crucial for precision agriculture applications. Sky
conditions, particularly cloud shadowing, play a pivotal role in determining the quality of
images captured by low-altitude sensing platforms. For instance, in a study by Czarnecki
et al. [10], various deep learning approaches were compared to classify sky conditions,
particularly regarding cloud shadows in agricultural fields, using visible spectrum cameras.
Subsequently, they developed an artificial intelligence-based edge computing system to
automate the classification process entirely. The training dataset comprised 100 oblique
angle images of the sky, which were fed into a CNN and two deep residual neural networks.
Both pre-trained and non-pre-trained versions of ResNet18 and ResNet34 were employed,
with the pre-trained models utilizing the ImageNet database. Their findings revealed that
ResNet18 and ResNet34 classifiers outperformed a traditional CNN classifier in terms of
classification accuracy. The highest overall accuracy of 92% was achieved by ResNet34.
Furthermore, the study utilized up to 13 cameras, albeit they were trail cameras.

Similar to the preceding study, the transfer learning technique was also employed
in another investigation [11], this time utilizing Total Sky-Imager (TSI) images. In this
scenario, the chosen architectures consisted of the AlexNet and ResNet101 models, which
were subsequently trained using an Ensemble Learning approach to model and predict
solar radiation.

Similarly to the study conducted by Gyasi and Swarnalatha, Guzel et al. developed
models capable of distinguishing among ten classes of cloud conditions, in addition to one
class dedicated to airplane vapor trails. Their research [12] utilized architectures based on
MobileNet v2, VGG-16, ResNetV2-152, InceptionV3, EfficientNetV2-L, and ConvNeXtSmall.
However, they surpassed the best result achieved by Gyasi and Swarnalatha, obtaining an
overall accuracy of 97.66% by employing the transfer learning technique in a model based
on the Xception architecture.

Indeed, all the studies presented thus far make use of images taken from Earth. How-
ever, it is noteworthy that images from Earth-observing satellites have predominantly
been utilized to analyze cloud types and solar irradiance over large areas. For instance,
multispectral imagers have been deployed for surface imaging across multiple wavelengths.
The intensity of reflection from each wavelength is utilized to distinguish different cloud
types [13,14]. Consequently, satellites have primarily been employed to detect multilevel
clouds in large areas, using techniques such as the subregioning of clouds [15] and super-
pixel methods [16] to enhance cloud detection accuracy.

Nevertheless, ground-based sky-facing cameras are better suited for the estimation and
prediction of solar irradiance and weather conditions on a local scale [3]. Moreover, in the
domain of solar energy, short-term changes in electricity production caused by occluding
clouds can be predicted at different time scales. All-sky cameras enable predictions up to
30 min ahead, while satellite observations extend predictions up to 6 h ahead [17].



Sensors 2024, 24, 3726 4 of 21

1.2. Contributions

The research outlined in this article has been undertaken with the aim of automatically
classifying sky images according to various sky conditions, including clear, partly cloudy,
and cloudy skies.

The conceptual schematic diagram of the work carried out is given in Figure 1.

Figure 1. Conceptual schematic representation of the work carried out.

As outlined, the first step involved creating a database comprising images depict-
ing various sky conditions for the study. During this process, the samples were labeled
according to different types of cloud cover. Once the database was established, various
classification models were implemented. Subsequently, the samples were fed into these
models for classification. The classification results were then assessed using different met-
rics to evaluate the performance of each implemented model. Finally, a comparison of the
different models utilized in this study was conducted, based on the outcomes reflected by
these model evaluation metrics.

The novelty of this study, compared to the current state of the art, lies in its comprehen-
sive testing of all EfficientNet architectures available in the Keras library [18] at the time of
writing, for the classification of sky images. The aim was to classify sky images and detect
the type of cloudiness present in each sample. While there are studies involving various
machine learning techniques to predict cloud cover in sky images, some of which utilize
EfficientNet models, such as [19] focusing on a specific model (EfficientNet-B0), none have
been found that apply EfficientNet models as extensively, including version 2 models [20],
to discriminate among these type of images.

Nonetheless, this study also delved into experimenting with the residual network
architectures ResNet-50 and ResNet-101 [21]. The rationale behind utilizing solely these two
architectures in this study lies in their superior performance observed in prior experiments
where other residual networks were tested. In these prior studies, sky image classification
was conducted, employing the following architectures: ResNet-50, ResNet-50V2, ResNet-
101, ResNet-101V2, ResNet-152, and ResNet-152V2. But, it must be taken into account that
ResNetV2 and the original ResNet (version 1) vary primarily in that version 2 applies batch
normalization before each weight layer.

Hence, the aim of this research was to assess the applicability of utilizing these Effi-
cientNet and ResNet models for classifying cloudiness in sky images, with the objective of
identifying the models that yield the most optimal outcomes.

This paper is organized as follows: First, the Materials and Methods section will
present an overview of the materials used and the research methodology. Next, the Ex-
perimental Methodology section will elaborate on the experimental procedures and detail
how the experiments were conducted. Subsequently, a dedicated section will present
the results obtained from the experiments, providing an in-depth analysis and interpreta-



Sensors 2024, 24, 3726 5 of 21

tion. Finally, the Conclusion section will offer insights and implications arising from the
research findings.

2. Materials and Methods

This section delineates the dataset composition employed in the experiments of this
study and its relevance to the research. Additionally, it provides an overview of the deep
learning techniques and models implemented in the study.

2.1. Datasets and Data Selection

In the field of pattern recognition, having a suitable learning dataset is essential. From
the original dataset, the training dataset is derived, and this set plays a central role because
it is used to train, evaluate and, therefore, ultimately construct the classifier.

Currently, there are several platforms and public databases accessible for obtaining
sky images. To name some of them, the following resources can be found:

• The waggle edge computing framework [22], which is an open sensor platform for
edge computing;

• The datasets provided by the Site Instrumental de Recherche par Télédétection Atmo-
sphérique (SIRTA) laboratory [23];

• The Singapore Whole-sky IMaging CATegories (SWIMCAT) database [24];
• Total Sky-Imager images of the Southern Great Plains (SGP) from the Atmospheric

Radiation Measurement (ARM) dataset [25];
• The Hybrid Thresholding Algorithm (HYTA) database [26];
• The SKy Images and Photovoltaic Power Generation Dataset (SKIPP’D) [27]: a pub-

licly available standardized benchmark dataset for image-based solar forecasting,
containing three years (2017–2019) of quality-controlled down-sampled sky images and
photovoltaic power generation data for short-term solar forecasting using deep learning.

Nonetheless, this study relies on a distinct dataset assembled specifically for this
research. While sky conditions are influenced by various climatic variables such as rain
or wind, as well as environmental factors like air pollution or seasonal changes, these are
inherently tied to specific geographical locations, which significantly affect the potential
for photovoltaic energy generation. The image dataset utilized in this study comprises sky
images captured specifically from the southeast region of Gran Canaria Island (the Canary
Islands, Spain).

The initial database comprises images captured using a Vivotek omnidirectional
IP camera, specifically the FE8391-EHV model, recognized for its capability to provide
high-resolution images (5 megapixels) and a 360° surround view facilitated by its fisheye
lens. The imaging process was executed through a cost-effective, efficient, and reliable
system, equipped with a backup subsystem that generates daily graphs depicting solar
energy generation. This setup greatly aids in the detection of sky conditions. Furthermore,
this photovoltaic system streamlines the selection and labeling of images required for
subsequent sky image classification tasks. For a more comprehensive understanding of the
image acquisition system, including details on data acquisition, analysis, and archiving
procedures, further information is available in the related paper [28].

The sky images were captured every 2 s and organized into directories following
the year/month/day sequence. Afterward, the samples were resized to 400 × 400 pixels
and stored in new directories nested within the daily directories. As a result, the dataset
comprises over 4 months of recordings, taken at two different resolutions, totaling over
5 million all-sky images.

To conduct the experiments in this study, samples were meticulously chosen to encom-
pass various cloud conditions. The resulting dataset comprises images captured between
22 March 2021, and 13 September 2021. This meticulous selection process ensured the
creation of a well-balanced dataset containing three distinct classes: clear sky, partly cloudy
sky, and cloudy sky. Each class consists of a total of 1500 samples. Hence, this research
employed a dataset comprising 4500 RGB images, encoded in PNG format, and resized to



Sensors 2024, 24, 3726 6 of 21

400 × 400 pixels. A summary of the selected samples constituting the dataset is presented
in Table 1.

Table 1. Dataset of the selected samples.

Class Number of
Samples Color Model Format Aspect Ratio

(pixels)

Clear 1500 RGB PNG 400 × 400
Cloudy 1500 RGB PNG 400 × 400

Partly Cloudy 1500 RGB PNG 400 × 400

Representative samples of each of these classes can be seen in Figure 2: Figure 2a
shows an image with a completely clear sky, Figure 2b shows an image with a overcast sky,
and Figure 2c shows an image with a partly cloudy sky.

(a) Clear sky class. (b) Cloudy sky class. (c) Partly cloudy sky class.

Figure 2. Representative samples of 400 × 400 pixels that make up the database of sky images selected
for the experiments of this research. (a) Sky image labeled with the class clear sky. (b) Sky image
labeled with the class cloudy sky. (c) Sky image labeled with the class partly cloudy sky.

While each sample in Figure 2 serves as a clear representation of its respective class, it
is essential to note that not all dataset samples exhibit such distinct categorization. In some
instances during labeling, uncertainty arose regarding whether specific samples should
be classified as clear sky or partly cloudy sky. Similarly, uncertainty sometimes arose when
determining whether a sample should be labeled as partly cloudy sky or cloudy sky. This
ambiguity stems from the inability to establish a precisely defined boundary between these
classes, consequently resulting in misclassification errors for such samples.

Nevertheless, the primary objective of this research was to assess the discriminative
capabilities of the models under study concerning the various cloudiness conditions de-
picted in sky images. To achieve this goal, a diverse range of sky conditions was available
across all three classes.

2.2. Recognition of Sky Conditions Using Deep Learning Approaches

The classification algorithms in this research were implemented using the machine
learning platform TensorFlow v2.15. TensorFlow is an open-source platform that offers an
end-to-end solution for machine learning tasks, providing a flexible ecosystem of tools,
libraries, and community resources. It empowers researchers to advance the state of the art
in ML, while enabling developers to easily create and deploy ML-powered applications [29].
Particularly, these classification models were developed using Keras [18], a deep learning



Sensors 2024, 24, 3726 7 of 21

API (Application Programming Interface) written in Python that operates on top of the machine
learning platform TensorFlow [30].

TensorFlow serves as the infrastructure layer for differentiable programming, handling
tensors, variables, and gradients. In contrast, Keras acts as a user-friendly interface for deep
learning, managing layers, models, optimizers, loss functions, and metrics, among other
functionalities. Essentially, Keras functions as the high-level API for TensorFlow. Moreover,
Keras applications provide transfer learning models equipped with pre-trained weights.
These models are versatile, facilitating tasks such as prediction, feature extraction, and
fine-tuning.

Deep learning, particularly convolutional neural networks (CNNs), has significantly
enhanced the learning capabilities of intelligent algorithms [31]. CNNs, a subclass of
Artificial Neural Networks (ANNs), are primarily employed for image analysis and have
the ability to learn directly from data. Utilizing convolutional layers, pooling layers, and
fully connected layers, CNNs empower computational models to represent data with
diverse levels of abstraction.

2.2.1. Cloud Recognition with ResNet and EfficienNet Models

On one hand, there is evidence suggesting that the depth of the network is cru-
cial [32,33], as deeper neural networks can enrich feature levels through stacked layers
(depth). This raises the question of whether improving network learning is as straightfor-
ward as adding more layers.

However, addressing this question is hindered by the notorious problem of van-
ishing/exploding gradients, which obstruct convergence from the outset. When deeper
networks are able to start converging, another issue arises: a degradation problem surfaces,
whereby increasing network depth leads to the saturation of Accuracy, followed by rapid
deterioration. This degradation, which is distinct from overfitting, is evident in higher train-
ing errors with the addition of more layers to appropriately deep models. The decline in
training accuracy indicates that optimizing all systems may not be equally straightforward.

In addressing this optimization challenge, Kaiming He et al. introduced residual
neural networks [21] to enhance plain networks by incorporating shortcut connections,
effectively transforming them into their residual counterparts. Building on these insights,
this study aimed to evaluate the performance of ResNet models in classifying sky images.

On the other hand, CNNs are often initially designed with a predetermined resource
allocation and later scaled up to enhance Accuracy if more resources become accessible. The
EfficienNet family of models [34] introduces a novel scaling approach that uniformly adjusts
all dimensions of depth, width, and resolution using a straightforward yet highly effective
compound coefficient.

Moreover, EfficienNet models have demonstrated superior performance compared
to other architectures [20,34], achieving Accuracy values that sometimes surpass 90% on
certain transfer learning datasets. Therefore, it was deemed worthwhile to assess their
effectiveness in classifying sky images.

2.2.2. Transfer Learning and Recognition Models

The deep learning technique underlying the classifiers implemented in this study is
known as transfer learning. Many machine learning methods operate effectively only under
a common assumption: that the training and test data are drawn from the same feature
space and distribution. When the distribution changes, most statistical models must be
rebuilt from scratch using newly collected training data. However, in many real-world
scenarios, it is either expensive or impractical to collect the necessary training data and
rebuild the models. Thus, reducing the need and effort to collect training data becomes
essential. In such cases, knowledge transfer or transfer learning between task domains
becomes desirable [35].

Transfer learning is a machine learning approach where a model developed for one
task is reused as a starting point for a model in another task [36]. This is facilitated by



Sensors 2024, 24, 3726 8 of 21

the reuse of pre-trained weights, which involves utilizing neural networks that have been
previously trained on certain data. Consequently, the knowledge gained during the initial
training is transferred and can be applied to new experiments with different data types.
Moreover, transfer learning allows for the development of experiments even with datasets
containing limited samples. This is feasible because some pre-trained models have been
trained on vast datasets from the web, encompassing millions of images across a diverse
range of classes [37].

The following is a formal explanation of the transfer learning technique [38]:
A domain D is defined by two parts: a feature space X and a marginal probability

distribution P(X), where X = {x1, ..., xn} ∈ X, xi is the i-th feature vector (instance), n is
the number of feature vectors in X, X is the space of all possible feature vectors, and X is a
particular learning sample. For a given domain D, a task T is defined by two parts: a label
space Y and a predictive function f (·), which is learned from the feature vector and label
pairs {xi, yi}, where xi ∈ X and yi ∈ Y.

Taking into account that a domain is expressed as D = {X, P(X)} and a task is ex-
pressed as T = {Y, f (·))}, a DS is defined as the source domain data, where
DS = {(xS1 , yS1), ..., (xSn , ySn)}, where xSi ∈ XS is the i-th data instance of DS, and ySi ∈ YS
is the corresponding class label for xSi . In the same way, DT is defined as the target domain
data, where DT = {(xT1 , yT1), ..., (xTn , yTn)}, where xTi ∈ XT is the i-th data instance of DT ,
and ySi ∈ YS is the corresponding class label for xTi . Further, the source task is notated as
TS, the target task as TT , and the source predictive function as fT(·).

Then, given a source domain DS with a corresponding source task TS and a target
domain DT with a corresponding task TT , transfer learning is the process of improving the
target predictive function fT(·) by using the related information from DS and TS, where
DS ̸= DT or TS ̸= TT .

2.3. The Network Architecture

The network architecture resulting from the different models implemented in this
study was generated according to the following stages:

• Input Layer;
• Base Model;
• Global Average Pooling 2D;
• Dropout;
• Dense Layer;
• Output Layer.

A representative diagram of the architecture used in this survey can be seen in Figure 3.

Figure 3. Representative diagram of the architecture.

The dataset was initially pre-processed by resizing the images to 200 × 200 pixels. As
illustrated in the diagram depicting the utilized architecture, the Input Layer receives pixel
values from the sample to be classified, comprising 200 × 200 pixels ×3 channels, where
each channel represents a color in the RGB image.



Sensors 2024, 24, 3726 9 of 21

Subsequently, the pre-processed data were fed into the chosen transfer learning model,
serving as the backbone of the classifier. Each Keras application requires specific input
pre-processing procedures, thus the pixel values were normalized based on the selected
base model. For EfficientNet models (version 1 and version 2), the inputs were expected
to be float tensors with pixel values ranging from 0 to 255. Conversely, for ResNet models,
the RGB input images were converted to BGR format, followed by zero-centering each
color channel with respect to the ImageNet dataset, without any scaling applied to the
pixel values.

It is important to highlight that all base models underwent pre-training using the
ImageNet database [39]. This entailed obtaining the weight values associated with the base
model pre-trained using this database. ImageNet constitutes a vast ontology of images
constructed upon the foundation of the WordNet structure [40].

Following this step, the Global Average Pooling 2D operation was employed, which
computes the average value across spatial dimensions for multiple layers.

The Dropout Layer randomly deactivates input neural network units with a frequency
determined by the rate parameter during training. This technique aids in mitigating
overfitting by preventing reliance on specific neurons. Inputs that are not deactivated are
proportionally scaled up by a factor of 1/(1 − rate), ensuring that the sum of all inputs
remains consistent. In our architecture, the dropout rate was set to 15%.

Following the Dropout Layer, the Dense Layer, commonly known as the fully con-
nected layer, comprises neurons connected to every neuron in the previous layer. Each
neuron applies a specified activation function. In this study, we employed the Softmax
activation function.

Finally, we have the Output Layer, which consists of as many neurons as there are
classes in the dataset. Each output neuron applies the Softmax activation function. Thus,
each neuron provides an estimate of the probability that the processed sample belongs to
its corresponding class. In our study, with 3 classes of sky images, the architecture included
3 output neurons.

On the one hand, the EfficientNet models used as base models in the experiments of
this research were as follows:

• EfficientNet-B0;
• EfficientNet-B1;
• EfficientNet-B2;
• EfficientNet-B3;
• EfficientNet-B4;
• EfficientNet-B5;
• EfficientNet-B6;
• EfficientNet-B7;
• EfficientNetV2-B0;
• EfficientNetV2-B1;
• EfficientNetV2-B2;
• EfficientNetV2-B3;
• EfficientNetV2-S;
• EfficientNetV2-M;
• EfficientNetV2-L.

It should be noted that the EfficientNetV2-XL model was not implemented in this study
due to its unavailability in the Keras library at the time of writing. On the other hand, the
ResNet models used as base models in the experiments were as follows:

• ResNet-50;
• ResNet-101.



Sensors 2024, 24, 3726 10 of 21

3. Experimental Methodology

The objective of this experimentation was to assess the capability of the EfficientNet
family and the specified ResNet models in distinguishing different cloudiness conditions
in sky images. To achieve this, the models were evaluated using the network architecture
outlined in Figure 3 by classifying the dataset described in Section 2.1.

In this section, a theoretical explanation is provided for the various methodologies
employed to derive the results in this study.

3.1. k-Fold Cross-Validation Method

In the experiments of this survey, the k-fold cross-validation method was utilized to
evaluate the performance of each classification model and to ensure the independence of
the results from the partition between test and training data.

Cross-validation is a resampling technique employed to assess machine learning
models with a limited dataset of samples. It involves iteratively computing the mean of
evaluation metrics across various partitions of the dataset.

The entire database is utilized in each distribution of samples, encompassing both
training and test samples. However, there are various approaches to distributing and
employing the original dataset. In this context, two types of cross-validation can be
discerned: exhaustive and non-exhaustive cross-validation.

• Exhaustive cross-validation methods involve learning and testing all possible ways to
divide the original sample into a training and a validation set;

• Non-exhaustive cross-validation methods do not compute all possible ways of splitting
the original sample.

Exhaustive cross-validation methods demand significant computational resources,
especially considering the dataset dimensions in this study. In the case of Leave-One-Out
Cross-Validation (LOOCV), the model must be fitted repeatedly, equal to the number of
samples, significantly increasing the computational time, particularly with three classes and
1500 samples per class. Hence, the cross-validation method utilized in these experiments
was non-exhaustive, specifically, k-fold cross-validation (k-fold CV) as mentioned above.

In k-fold cross-validation, the dataset is randomly divided into k groups or folds of
approximately equal size. Each fold is then used once as a test set while the model is
trained on the remaining k−1 folds. This process is repeated k times, where each time, a
different group of samples is treated as a test set. As a result, k validations of the model are
conducted, yielding the mean of the metrics used to evaluate the model.

In these experiments, the training and test datasets were divided into five groups
(5-fold) to ensure each grouping contained an equal number of samples while having
different samples. Subsequently, each model was trained using the training samples from
each grouping. Following training, the test dataset was classified to obtain metrics from
each model, facilitating evaluation based on these metric values. Finally, the results were
computed as the mean of the metric values obtained across the different folds. It is worth
noting that the training datasets differed slightly across the five groupings, as each model
was generated from its own training dataset. This is significant as the training dataset
heavily influences the adjustments of the model, despite all models being based on the same
base model for each experiment. Essentially, k-fold cross-validation generates k different
models, each trained on distinct sets of training samples but based on the same type of
Keras model.

Since there were 4500 samples in total, 3600 training samples and 900 test samples
were available in each k-fold, so that no sample from the test dataset was repeated in the
five different groups.

During the model training process, the training dataset of each k-fold was further
divided into two subsets: the training subset itself, utilized to train the model in each
training cycle (epoch), and the validation subset. The validation split aids in iteratively
enhancing the performance of the model by fine-tuning it after each epoch.



Sensors 2024, 24, 3726 11 of 21

The test set provides the ultimate metrics of the model upon completing the training
phase. Finally, the results were computed as the mean of the values of these metrics
obtained across the various folds.

It is worth noting that the training dataset varied slightly across the five groupings,
resulting in five distinct models from the same architecture. Each model was generated
from its own training dataset, as the specifics of the training dataset influence the model
adjustments. However, all models were based on the same base model type for each experi-
ment.

3.2. Performance Metrics

To handle the diverse range of classification models, it becomes essential to utilize
metrics or comparative frameworks that enable a qualitative analysis of the proposed
models and facilitate the contrast of their outcomes. These metrics are applied to assess the
efficacy of the algorithms in classification and, consequently, in identifying various types of
cloudiness conditions in sky images.

The main performance metrics used to evaluate the models developed in this study
were as follows: Accuracy, Precision, Recall, and F1 Score. The formulation of these metrics
relies on the confusion matrix.

Confusion Matrix

The confusion matrix is a technique employed to assess the accuracy of image clas-
sification algorithms. It operates under the assumption that the ground truth information
possesses the following properties:

• Each image is labeled as belonging to a certain class so that there are N reference
classes, {Ri}N

i=1;
• Reference classes are mutually exclusive; that is to say, a certain image has no different

classes (Equation (1)):

Ri ∩ Rj = ∅,∇i ̸= j (1)

Suppose that each sample Ri from a specific sky condition S to be evaluated is assigned
by an algorithm as belonging to a certain class Ci, and, having N classes, the dataset Ci
determines only one specific sky condition to evaluate, meaning that two different sets
have no element in common. Ultimately, there was no more than one sky condition of
the three classes under study in each image in these experiments. This can be expressed
mathematically as indicated in Equation (2).

∪N
i=1Ci ∈ S and Ci ∩ Cj = ∅,∇i ̸= j (2)

In this theoretical framework, when establishing a binary classifier model, results can
be categorized as positives (p) or negatives (n). Consequently, the prediction issue presents
four potential outcomes from the classification process as follows:

• TP is true positive: a test result that correctly indicates the presence of a condition
or characteristic;

• TN is true negative: a test result that correctly indicates the absence of a condition
or characteristic;

• FP is false positive: a test result that wrongly indicates that a particular condition or
attribute is present;

• FN is false negative: a test result that wrongly indicates that a particular condition or
attribute is absent.

Based on the above, an experiment can be defined with P positive instances and N
negative instances. The four potential outcomes can be represented in a 2 × 2 confusion
matrix (Table 2).



Sensors 2024, 24, 3726 12 of 21

Table 2. Confusion matrix (2 × 2).

PREDICTION

Positive Prediction Negative Prediction

GROUND-TRUTH
CONDITION

Positive Condition True Positives (TP) False Negatives (FN)

Negative Condition False Positives (FP) True Negatives (TN)

From this confusion matrix, various metrics can be derived to evaluate the performance
of different prediction models. As stated above, the performance of the classification
algorithms was primarily evaluated using four metrics: Accuracy, Precision, Recall, and
F1 Score.

Accuracy

The Accuracy is defined as the fraction of correct predictions made by the classifier out
of the total number of predictions. Accuracy can also be calculated in terms of positive and
negative predictions as expressed in Equation (3):

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

True positives and true negatives are the elements correctly classified by the model
and they are on the main diagonal of the confusion matrix.

Precision

The Precision, also called Positive Predictive Value (PPV), is the fraction of test images
classified as a specific class—as an example, class A—that are truly assigned to this class.
Precision can be calculated as expressed in Equation (4):

Precision =
TP

TP + FP
(4)

Recall

Recall, also known as Sensitivity, Hit Rate, or True Positive Rate (TPR), is the fraction of
test images from a class that are correctly identified to be assigned to this class. Recall can
be calculated as expressed in Equation (5):

Recall =
TP

TP + FN
(5)

F1 Score

The last two metrics can be used as parts of another metric taking Precision and Recall
measures under the concept of harmonic mean. It could be interpreted as the F1 Score,
which has its best value at 1 and worst value at 0. The F1 Score can be calculated as
expressed in Equation (6):

F1 Score = 2 ·
(

Precision · Recall
Precision + Recall

)
(6)

The relative contribution of Precision and Recall are equal onto the F1 Score, and the
harmonic mean is useful to find the best trade-off between the two quantities [41].

Micro-Average, Macro-Average, and Weighted-Average

In contrast to situations involving multi-label classifiers, in multi-class classification, as
is the case in this study where each observation was assigned a single label and Equation (1)
holds true, the F1 Score needs to consider all classes. Accuracy is calculated similarly
to binary classification. The Accuracy formula calculates the sum of true positive and



Sensors 2024, 24, 3726 13 of 21

true negative elements in the numerator and divides it by the sum of all entries in the
confusion matrix in the denominator. True positives and true negatives represent the
correctly classified elements by the model, located on the main diagonal of the confusion
matrix. Moreover, the denominator includes all elements outside the main diagonal,
representing those incorrectly classified by the model. However, the F1 Score requires a
multi-class calculation of the Precision and Recall to be integrated into the harmonic mean,
with various specifications available for these metrics. There are various approaches to
implementation, including macro-averaging (Macro-AVG), micro-averaging (Micro-AVG),
and weighted-averaging (Weighted-AVG).

Micro-Average (Micro-AVG)

The aim was to evaluate all the units collectively, disregarding potential variations
among classes. Initially, the aggregate counts of true positive (TP), false positive (FP), and
false negative (FN) predictions across all classes were computed. Subsequently, perfor-
mance metrics were derived based on these cumulative counts (Equations (7) and (8)).

Micro AVG Precision =
∑N

i=1 TPCi

∑N
i=1 TPCi + ∑N

i=1 FPCi

(7)

Micro AVG Recall =
∑N

i=1 TPCi

∑N
i=1 TPCi + ∑N

i=1 FNCi

(8)

Given that each false positive (FP) for one class equated to a false negative (FN)
for another class, the count of FN and FP yielded identical values. Consequently, both
Micro-AVG Precision and Micro-AVG Recall metrics produced the same result.

Taking into account the definition in Equation (6), it can be deduced that the Micro-
AVG F1 Score also gives the same result (the harmonic mean of two equal values is just the
value), and taking a look at the formulas, it is the same formula to calculate the overall
Accuracy. This equality is expressed in Equation (9).

Micro AVG F1 Score = Micro AVG Precision = Micro AVG Recall = Accuracy (9)

Macro-Average (Macro-AVG)

In this case, Precision was computed by averaging the Precision scores for each predicted
class, while Recall was determined by averaging the Recall scores for each actual class.

Precision and Recall can be calculated individually for each class, resulting in multiple
metrics depending on the number of classes. These metrics were computed by treating
each class as the positive instance while considering all other classes as a single negative
instance. When transitioning from one class to another, the quantities were recalculated,
and the labels for the confusion matrix tiles were adjusted accordingly. This approach
allowed the derivation of these metrics for each class. Equations (10) and (11) show how
Precision and Recall were, respectively, computed for the class Ci:

PrecisionCi =
TPCi

TPCi + FPCi

(10)

RecallCi =
TPCi

TPCi + FNCi

(11)

Macro-Average Precision and Recall were simply computed as the arithmetic mean of
the metrics for single classes. So, these metrics can be obtained as is shown in Equation (12)
and Equation (13), respectively:

Macro AVG Precision =
∑N

i=1 PrecisionCi

N
(12)



Sensors 2024, 24, 3726 14 of 21

Macro AVG Recall =
∑N

i=1 RecallCi

N
(13)

Finally, the Macro AVG F1 Score is the harmonic mean of Macro AVG Precision and
Macro AVG Recall (Equation (14)):

Macro AVG F1 Score = 2 ·
(

Macro AVG Precision · Macro AVG Recall
Macro AVG Precision + Macro AVG Recall

)
(14)

In this approach, there is no consideration of the size of the sample set for each class, as
classes of different sizes carry the same weight in the numerator. This implies that the effect
of classes with a larger number of samples has the same importance as that of classes with
a smaller number of samples. The resulting metric evaluates the algorithm from the class
point of view: high Macro AVG F1 Score values indicate that the algorithm performs well
across all classes, while low Macro AVG F1 Score values indicate poorly predicted classes.

Weighted-Average (Weighted-AVG)

This approach considers the class balance by assigning weights to each class based on
its representation in the dataset. Performance metrics are then computed as a weighted-
average of these metrics across individual classes. Weighted-averaging is particularly useful
in unbalanced datasets, where greater importance is assigned to classes with more samples.

However, given the utilization of a balanced dataset in this study, where each class
carries equal significance, it became imperative to discern any potential bias in class
classification relative to others. Consequently, the Macro-Average approach was adopted to
derive the results outlined in Section 4.

4. Results and Discussion

This section outlines the outcomes derived from the classification experiments con-
ducted with the implemented models. Using these results as a basis, various aspects of the
comparison are subsequently discussed.

In all experiments, each training session utilized the adaptive optimization algorithm
Adam and employed the Sparse Categorical Cross-Entropy as the loss function. Additionally,
each training session was conducted with a maximum of 100 epochs, a batch size of 16
samples, and a validation percentage of 0.2, where the Early Stopping mechanism was
incorporated to halt training if there was no improvement for 20 epochs, with Accuracy as
the monitored metric.

Tables 3 and 4 present the maximum number of epochs for training the models along
with the parameter count for each model. The first column provides row identifiers for
clarity, while the second column lists the names of the base models. The third column
denotes the maximum number of epochs, corresponding to the k-fold with the highest
number of epochs. The fourth column displays the total number of parameters in the entire
network, and the last column specifies the count of trainable parameters.

Table 3. Number of epochs (maximum) and parameters in the implemented models (ResNet).

ID Base Model No. Epochs
(Maximum)

Parameters
(Weights + Biases)

Total Trainable

1 ResNet-50 74 23,593,859 6147
2 ResNet-101 38 42,664,323 6147

As can be seen in Table 3, none of the models using residual neural networks reached
the maximum number of epochs. In contrast, as can be seen from Table 4, in exper-
iments utilizing the base models EfficientNet-B0, EfficientNet-B1, EfficientNet-B4, and



Sensors 2024, 24, 3726 15 of 21

EfficientNetV2-B0, the number of epochs reached aligns with the maximum epoch limit
set by the epoch hyperparameter.

Moreover, it also can be observed that the model utilizing the residual architec-
ture ResNet-101, comprising 42,664,323 parameters, was surpassed in terms of the total
parameter count only by models employing the EfficientNet-B7, EfficientNetV2-M, and
EfficientNetV2-L architectures, with the latter model having the highest number: 117,750,691
parameters. This was despite the fact that the model implementing the EfficientNet-B7 ar-
chitecture possessed the highest number of trainable parameters, totaling 7683 parameters.

Table 4. Number of epochs (maximum) and parameters in the implemented models (EfficientNet).

ID Base Model No. Epochs
(Maximum)

Parameters
(Weights + Biases)

Total Trainable

1 EfficientNet-B0 100 4,053,414 3843
2 EfficientNet-B1 100 6,579,082 3843
3 EfficientNet-B2 95 7,772,796 4227
4 EfficientNet-B3 98 10,788,146 4611
5 EfficientNet-B4 100 17,679,202 5379
6 EfficientNet-B5 62 28,519,674 6147
7 EfficientNet-B6 78 40,967,058 6915
8 EfficientNet-B7 63 64,105,370 7683
9 EfficientNetV2-B0 100 5,923,155 3843
10 EfficientNetV2-B1 91 6,934,967 3843
11 EfficientNetV2-B2 67 8,773,601 4227
12 EfficientNetV2-B3 68 12,935,233 4611
13 EfficientNetV2-S 81 20,335,203 3843
14 EfficientNetV2-M 86 53,154,231 3843
15 EfficientNetV2-L 77 117,750,691 3843

Nevertheless, as can be seen below, neither the greater number of trainable parameters,
total parameters, nor the greater number of epochs consumed during the training proved to
be decisive in determining the model that exhibited the best performance in the conducted
experiments.

This suggests that, by increasing this threshold, there is potential to enhance results
with these base models. A higher number of epochs could lead to further refinement in the
learning process of the model, thereby improving its overall performance.

Nevertheless, additional experiments were conducted with a maximum limit of
200 epochs. Within these experiments, both the EfficientNet-B0 and EfficientNet-B1 base
models were tested. However, only EfficientNet-B0 surpassed 100 training epochs, reaching
112 epochs in one of its folds. Despite these prolonged training durations, none of the
experiments showcased superior performance compared to the results presented in this
paper. It should be noted that, although the applied k-fold cross-validation method ensures
the independence of partitioning results between test and training data, a random compo-
nent exists in the system configuration depending on the randomly chosen data during the
training phase, which can slightly influence their performance.

On the other hand, as the 5-fold cross-validation method was employed, five models
were generated for each base model. This signifies that, for each metric utilized, there
were five values obtained from the test phase of each corresponding fold. Consequently,
the mean value and standard deviation of these 5-fold results were utilized to assess the
performance of each architecture.

Tables 5 and 6 show the metrics obtained using the ResNet and EfficientNet architectures,
respectively—Accuracy, Precision, Recall, and F1 Score—depending on the base model
integrated in each model. Similar to the preceding tables, the first column comprises row
identifiers for clarity, while the second column includes the names of the base models. The
subsequent columns present the values of these metrics.



Sensors 2024, 24, 3726 16 of 21

Table 5. Values of the metrics in the implemented models (ResNet).

ID Base Model
Accuracy Precision Recall F1 Score

Mean (%) (Standard Deviation)

1 ResNet-50 97.56 (0.42) 97.40 (0.55) 97.40 (0.55) 97.40 (0.55)
2 ResNet-101 97.49 (0.58) 97.40 (0.89) 97.40 (0.89) 97.40 (0.89)

Table 6. Values of the metrics in the implemented models (EfficientNet).

ID Base Model
Accuracy Precision Recall F1 Score

Mean (%) (Standard Deviation)

1 EfficientNet-B0 97.67 (0.46) 97.60 (0.55) 97.60 (0.55) 97.60 (0.55)
2 EfficientNet-B1 98.07 (0.32) 98.20 (0.45) 98.00 (0.00) 98.20 (0.45)
3 EfficientNet-B2 97.82 (0.38) 97.80 (0.45) 97.80 (0.45) 97.80 (0.45)
4 EfficientNet-B3 98.02 (0.42) 98.20 (0.45) 98.20 (0.45) 98.20 (0.45)
5 EfficientNet-B4 97.98 (0.24) 98.00 (0.00) 98.00 (0.00) 98.00 (0.00)
6 EfficientNet-B5 97.87 (0.28) 98.00 (0.00) 98.00 (0.00) 98.00 (0.00)
7 EfficientNet-B6 97.69 (0.45) 97.60 (0.55) 97.60 (0.55) 97.60 (0.55)
8 EfficientNet-B7 97.31 (0.35) 97.40 (0.55) 97.40 (0.55) 97.40 (0.55)
9 EfficientNetV2-B0 97.76 (0.28) 97.80 (0.45) 97.80 (0.45) 97.80 (0.45)

10 EfficientNetV2-B1 98.09 (0.34) 1 98.00 (0.00) 98.00 (0.00) 98.00 (0.00)
11 EfficientNetV2-B2 98.09 (0.34) 1 98.00 (0.00) 98.00 (0.00) 98.00 (0.00)
12 EfficientNetV2-B3 98.00 (0.25) 98.00 (0.00) 98.00 (0.00) 98.00 (0.00)
13 EfficientNetV2-S 97.60 (0.54) 97.60 (0.55) 97.60 (0.55) 97.60 (0.55)
14 EfficientNetV2-M 97.76 (0.52) 97.80 (0.45) 97.80 (0.45) 97.80 (0.45)
15 EfficientNetV2-L 97.89 (0.39) 98.00 (0.71) 97.80 (0.84) 97.80 (0.84)

1 Best outcomes.

Given the favorable outcomes observed across all experiments in terms of Precision,
Recall, and therefore, F1 Score metrics, with values between 97.40% and 98.20%, the primary
focus for comparing the classification capabilities among the various models was placed
on Accuracy. This decision stems from the comprehensive evaluation of Precision, Recall,
and F1 Score metrics, which collectively indicated satisfactory performance across different
models.

In other words, the Precision and Recall results obtained in each experiment were very
close to each other, often with identical values, and consistently high, accompanied by
negligible standard deviations. This suggests that there was no significant bias favoring
certain classes over others, thus affirming the reliability of Accuracy as the primary metric
for comparison. By prioritizing Accuracy as the main metric, we intended to provide a
comprehensive assessment of the overall classification efficacy of each model, considering
its ability to correctly classify instances across all classes.

Continuing with the analysis of the results presented in both Tables 5 and 6, it can be
observed that the models utilized in this study, whether based on the ResNet or EfficientNet
architectures, demonstrated notably high levels of Accuracy. In particular, the lowest
performing model was the one employing the EfficientNet-B7 architecture, which achieved
an Accuracy of 97.31%, with a standard deviation of 0.35. Despite having the highest
number of trainable parameters and the second highest number of total parameters, it was
the sole model within the EfficientNet family that failed to surpass the performance of the
models utilizing residual architectures in this study.

The models utilizing residual neural networks in this survey achieved a slightly lower
performance compared to those employing EfficientNet architectures, with the exception of
the model highlighted in the preceding paragraph. This is clearly reflected in the differences
in the results of the Accuracy metric. Of the models implementing EfficientNet architectures,
EfficientNet-B7 was followed in performance by the one using the EfficientNetV2-S architec-



Sensors 2024, 24, 3726 17 of 21

ture. While the latter achieved an Accuracy of 97.60% with a standard deviation of 0.54, the
ResNet-50 model, from the residual neural network family, offered a slightly lower Accuracy
of 97.56% with a standard deviation of 0.42.

Regarding the outcomes derived from version 1 and version 2 of the EfficientNet
architectures, they did not establish a clear distinction in terms of performance disparity
between the two versions. Consequently, the results did not suggest that models from one
version outperformed those from the other. Instead, models from both versions exhibited
comparable performance, with their results hovering around similar values.

Nevertheless, the most promising outcomes were attained with EfficientNetV2-B1 and
EfficientNetV2-B2 as the base models. Remarkably, both architectures yielded identical
results, boasting a mean Accuracy of 98.09% with a standard deviation of 0.34.

Following closely, the model demonstrating the third-best performance utilizes the
EfficientNet-B1 architecture (version 1). This model delivered a mean Accuracy of 98.07%,
accompanied by a standard deviation of 0.32.

In this comparative analysis, it is evident that all the base models utilized in this
study, derived from both the EfficientNet and ResNet families, exhibited mean values
of Accuracy, Precision, Recall, and F1 Score exceeding 97% with a standard deviation be-
low 1. Consequently, all of these models warrant consideration for similar applications
aimed at identifying cloud conditions. Particularly noteworthy are EfficientNetV2-B1 and
EfficientNetV2-B2, which emerged as the top-performing base models and thus merit special
attention. Nonetheless, EfficientNet-B1, EfficientNet-B3, EfficientNetV2-B1, EfficientNetV2-B2,
and EfficientNetV2-B3 also deserve consideration, as they consistently delivered values
exceeding 98% across all performance metrics.

Furthermore, to highlight the significance of this research within the current state of
the art, it is essential to contextualize the differences between the results obtained in this
study and those of other investigations that also utilized EfficientNet, ResNet models, as well
as others CNN-based architectures for classifying sky images. Below are several studies
that developed models for the classification of sky images.

For instance, the research conducted by Joby M. Prince Czarnecki et al. [10] employed
two ResNet architectures and achieved their best result with the ResNet-34 model. Similarly,
the study by Muhammad Umair and Manzoor Ahmed Hashmani [19] utilized GoogLeNet,
ResNet-50, and EfficientNet-B0 architectures, with their best performance being obtained
using the EfficientNet-B0 model. As mentioned in the introduction, Emmanuel Kwabena
Gyasi and Purushotham Swarnalatha [9] obtained their best outcome using the Cloud-
MobiNet architecture in their survey. Lastly, the research carried out by Mehmet Guzel,
Muruvvet Kalkan, et al. [12], where they used EfficientNetV2-L and ResNetV2-152 among
others, obtained the best result with a Xception model.

By comparing the findings of this study with those of other investigations, the ad-
vancements and unique contributions to the field are highlighted. For this reason, Table 7
presents the best results from the above-mentioned studies in contrast with the best result
obtained in this work.

Table 7. Comparison of best results from previous studies and the current work.

Research Underlying Architecture Overall Accuracy (%) No. Samples No. Classes

Czarnecki et al. (2021) EfficientNet-B0 87.2 600 1 6
Umair et al. (2022) ResNet-34 90 13,000 2
Gyasi et al. (2023) MobileNet 97.45 2543 2 11 *

Guzel et al. (2024) Xception 97.66 2543 3 11 *

Our survey EfficientNetV2-B1/B2 98.09 4500 3
1 The initial dataset of 600 samples was augmented using data augmentation methods to produce 9600 samples.
2 Out of the 2543 images, data augmentation was applied to 2433 samples (training samples). 3 After applying
data augmentation, the image set with 2543 images increased more than tenfold. * One of the classes used in these
studies does not correspond to a cloud condition but rather to the vapor trails of airplanes.



Sensors 2024, 24, 3726 18 of 21

It is important to note that the information provided in Table 7 aims to provide insight
into the performance of various architectures utilized in different studies. It should be
emphasized that the datasets employed in each of these studies differ from the one used in
this study; hence, this table includes both the number of samples and the number of classes
used in each study. Additionally, although these studies address diverse forms of cloud
cover, there is variation in both the type and format of the imagery. While not the focus of
this investigation, for a rigorous comparison of these models, employing exactly the same
dataset would be necessary.

5. Conclusions

This study presents an extensive exploration of the application of models from the Effi-
cientNet family and residual neural network architectures for automating the identification
of cloud conditions from sky images.

The findings of this investigation underscore the suitability of these models as base
models for the architecture utilized in this study. Notably, they highlight the potential of
employing transfer learning techniques within convolutional neural network frameworks,
particularly in their ability to deliver high-performance outcomes. The comparison encom-
passes 17 distinct models sourced from the models available in the Keras library, including
both versions of the EfficientNet architectures and the ResNet-50 and ResNet-101 models
from residual neural networks.

Upon analyzing the Accuracy results and conducting a comprehensive comparative
assessment, it was concluded that while there were subtle distinctions in the classification
performance across these models, certain models exhibited a propensity for superior
performance in this application domain. Nonetheless, the Precision, Recall, and F1 Score
metrics consistently indicate that all models provided unbiased classification across the
considered classes, taking into account that a balanced dataset was used.

Furthermore, this study underscores the potential integration of certain implemented
models into practical systems designed for cloud condition identification from sky images
captured by hemispherical sky cameras. One potential application area highlighted is in
forecasting renewable energy generation in photovoltaic infrastructure, where these models
demonstrated promising performance in image classification.

Among the array of models compared, standout performers include those imple-
menting the base models EfficientNetV2-B1 and EfficientNetV2-B2. These models exhibited
superior performance, particularly in terms of the Accuracy and F1 Score metrics, indicating
minimal bias in their classification outputs.

Moving forward, subsequent lines of inquiry could explore the improvement of the
most favored models through techniques such as data augmentation and architectural mod-
ifications. Additionally, there is potential for investigating alternative architectures, such as
Transformers and their corresponding attention layers, to further enhance performance in
this domain.

Author Contributions: Conceptualization, R.H.-L. and C.M.T.-G.; methodology, R.H.-L. and C.M.T.-
G.; software, R.H.-L. and C.M.T.-G.; validation, R.H.-L., C.M.T.-G. and N.I.A.-H.; formal analysis,
R.H.-L., C.M.T.-G. and N.I.A.-H.; investigation, R.H.-L. and C.M.T.-G.; resources, R.H.-L. and C.M.T.-
G.; data curation, R.H.-L. and C.M.T.-G.; writing—original draft preparation, R.H.-L. and C.M.T.-G.;
writing—review and editing, R.H.-L., C.M.T.-G. and N.I.A.-H.; visualization, R.H.-L., C.M.T.-G. and
N.I.A.-H.; supervision, C.M.T.-G.;project administration, C.M.T.-G.; funding acquisition, C.M.T.-G.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.



Sensors 2024, 24, 3726 19 of 21

Acknowledgments: This work was supported under Grant CEI 2021-06 with title “Analysis of sky
images for solar energy prediction”, from direct agreement SD-21/08 by Consejería de Economía,
Industria, Comercio y Conocimiento from Gobierno de Canarias to ULPGC.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
API Application Programming Interface
ARM Atmospheric Radiation Measurement
CMV Cloud Motion Vectors
CNN Convolutional Neural Network
DL Deep Learning
DNI Direct Normal Irradiance
DNN Deep Neural Network
FCN Fully Convolutional Network
FN False Negative
FP False Positive
GRU Gated Recurrent Unit
HYTA Hybrid Thresholding Algorithm
LOOCV Leave-One-Out Cross-Validation
LSTM Long Short-Term Memory
ML Machine Learning
PPV Positive Predictive Value
RGB Red Green and Blue
RNN Recurrent Neural Network
SGP Southern Great Plains
SIRTA Site Instrumental de Recherche par Télédétection Atmosphérique
SKIPP’D SKy Images and Photovoltaic Power Generation Dataset
SWIMCAT Singapore Whole-sky IMaging CATegories
TL Transfer Learning
TN True Negative
TP True Positive
TPR True Positive Rate
TSI Total Sky-Imager
U-Net U-shaped Network

References
1. Fu, C.L.; Cheng, H.Y. Predicting solar irradiance with all-sky image features via regression. Sol. Energy 2013, 97, 537–550.

https://doi.org/10.1016/j.solener.2013.09.016.
2. Alonso-Montesinos, J.; Batlles, F.; Portillo, C. Solar irradiance forecasting at one-minute intervals for different sky conditions

using sky camera images. Energy Convers. Manag. 2015, 105, 1166–1177. https://doi.org/10.1016/j.enconman.2015.09.001.
3. Park, S.; Kim, Y.; Ferrier, N.J.; Collis, S.M.; Sankaran, R.; Beckman, P.H. Prediction of Solar Irradiance and Photovoltaic

Solar Energy Product Based on Cloud Coverage Estimation Using Machine Learning Methods. Atmosphere 2021, 12, 395.
https://doi.org/10.3390/atmos12030395.

4. Rajagukguk, R.A.; Kamil, R.; Lee, H.J. A Deep Learning Model to Forecast Solar Irradiance Using a Sky Camera. Appl. Sci. 2021,
11, 5049. https://doi.org/10.3390/app11115049.

5. Jain, N.; Jain, M.; Dev, S. Analyzing image deblurring algorithms for ground-based sky cameras. Remote. Sens. Appl. Soc. Environ.
2022, 28, 100813. https://doi.org/10.1016/j.rsase.2022.100813.

6. Nueve, E.; Jackson, R.; Sankaran, R.; Ferrier, N.; Collis, S. WeatherNet: Nowcasting Net Radiation at the Edge. In Proceedings of
the 2021 IEEE Conference on Technologies for Sustainability (SusTech), Irvine, CA, USA, 22–24 April 2021; IEEE: Piscataway, NJ,
USA, 2021. https://doi.org/10.1109/sustech51236.2021.9467444.

7. Paletta, Q.; Arbod, G.; Lasenby, J. Benchmarking of deep learning irradiance forecasting models from sky images – An in-depth
analysis. Sol. Energy 2021, 224, 855–867. https://doi.org/10.1016/j.solener.2021.05.056.

8. Karout, Y.; Thil, S.; Eynard, J.; Guillot, E.; Grieu, S. Hybrid intrahour DNI forecast model based on DNI measurements and
sky-imaging data. Sol. Energy 2023, 249, 541–558. https://doi.org/10.1016/j.solener.2022.11.032.

https://doi.org/10.1016/j.solener.2013.09.016
https://doi.org/10.1016/j.enconman.2015.09.001
https://doi.org/10.3390/atmos12030395
https://doi.org/10.3390/app11115049
https://doi.org/10.1016/j.rsase.2022.100813
https://doi.org/10.1109/sustech51236.2021.9467444
https://doi.org/10.1016/j.solener.2021.05.056
https://doi.org/10.1016/j.solener.2022.11.032


Sensors 2024, 24, 3726 20 of 21

9. Gyasi, E.K.; Swarnalatha, P. Cloud-MobiNet: An Abridged Mobile-Net Convolutional Neural Network Model for Ground-Based
Cloud Classification. Atmosphere 2023, 14, 280. https://doi.org/10.3390/atmos14020280.

10. Czarnecki, J.M.P.; Samiappan, S.; Zhou, M.; McCraine, C.D.; Wasson, L.L. Real-Time Automated Classification of Sky Conditions
Using Deep Learning and Edge Computing. Remote. Sens. 2021, 13, 3859. https://doi.org/10.3390/rs13193859.

11. Manandhar, P.; Temimi, M.; Aung, Z. Short-term solar radiation forecast using total sky imager via transfer learning. Energy Rep.
2023, 9, 819–828. https://doi.org/10.1016/j.egyr.2022.11.087.

12. Guzel, M.; Kalkan, M.; Bostanci, E.; Acici, K.; Asuroglu, T. Cloud type classification using deep learning with cloud images. Peerj
Comput. Sci. 2024, 9, e1779. https://doi.org/10.7717/peerj-cs.1779.

13. Hollstein, A.; Segl, K.; Guanter, L.; Brell, M.; Enesco, M. Ready-to-Use Methods for the Detection of Clouds, Cirrus, Snow, Shadow,
Water and Clear Sky Pixels in Sentinel-2 MSI Images. Remote. Sens. 2016, 8, 666. https://doi.org/10.3390/rs8080666.

14. Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection
for Landsats 4–7, 8, and Sentinel 2 images. Remote. Sens. Environ. 2015, 159, 269–277. https://doi.org/10.1016/j.rse.2014.12.014.

15. Wong, M.S.; Zhu, R.; Liu, Z.; Lu, L.; Peng, J.; Tang, Z.; Lo, C.H.; Chan, W.K. Estimation of Hong Kong’s solar energy potential
using GIS and remote sensing technologies. Renew. Energy 2016, 99, 325–335. https://doi.org/10.1016/j.renene.2016.07.003.

16. Shi, M.; Xie, F.; Zi, Y.; Yin, J. Cloud detection of remote sensing images by deep learning. In Proceedings of the 2016 IEEE
International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 3 November 2016; IEEE: Piscataway, NJ,
USA, 2016. https://doi.org/10.1109/igarss.2016.7729176.

17. Paletta, Q.; Arbod, G.; Lasenby, J. Omnivision forecasting: Combining satellite and sky images for improved deterministic and
probabilistic intra-hour solar energy predictions. Appl. Energy 2023, 336, 120818. https://doi.org/10.1016/j.apenergy.2023.120818.

18. Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on).
19. Umair, M.; Hashmani, M.A. A Visual-Range Cloud Cover Image Dataset for Deep Learning Models. Int. J. Adv. Comput. Sci.

Appl. 2022, 13, 534-541. https://doi.org/10.14569/ijacsa.2022.0130166.
20. Tan, M.; Le, Q.V. EfficientNetV2: Smaller Models and Faster Training. Int. Conf. Mach. Learn. 2021, 139, 10096–10106.

https://doi.org/10.48550/ARXIV.2104.00298.
21. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. https://doi.org/10.48550/ARXIV.1512.03385.
22. Beckman, P.; Sankaran, R.; Catlett, C.; Ferrier, N.; Jacob, R.; Papka, M. Waggle: An open sensor platform for edge computing.

In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 2016; IEEE: Piscataway, NJ, USA, 30 October–3 November 2016.
https://doi.org/10.1109/icsens.2016.7808975.

23. Haeffelin, M.; Barthès, L.; Bock, O.; Boitel, C.; Bony, S.; Bouniol, D.; Chepfer, H.; Chiriaco, M.; Cuesta, J.; Delanoë, J.; et al.
SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Ann. Geophys. 2005, 23, 253–275. https:
//doi.org/10.5194/angeo-23-253-2005.

24. Dev, S.; Lee, Y.H.; Winkler, S. Categorization of cloud image patches using an improved texton-based approach. In Proceedings
of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; IEEE:
Piscataway, NJ, USA, 2015. https://doi.org/10.1109/icip.2015.7350833.

25. Sisterson, D.L.; Peppler, R.A.; Cress, T.S.; Lamb, P.J.; Turner, D.D. The ARM Southern Great Plains (SGP) Site. Meteorol. Monogr.
2016, 57, 6.1–6.14. https://doi.org/10.1175/amsmonographs-d-16-0004.1.

26. Li, Q.; Lu, W.; Yang, J. A Hybrid Thresholding Algorithm for Cloud Detection on Ground-Based Color Images. J. Atmos. Ocean.
Technol. 2011, 28, 1286–1296. https://doi.org/10.1175/jtech-d-11-00009.1.

27. Nie, Y.; Li, X.; Scott, A.; Sun, Y.; Venugopal, V.; Brandt, A. SKIPP’D: A SKy Images and Photovoltaic Power Generation Dataset for
short-term solar forecasting. Sol. Energy 2023, 255, 171–179. https://doi.org/10.1016/j.solener.2023.03.043.

28. Travieso-González, C.M.; .; del C. Santana-Suárez, Y.; Piñán-Roescher, A.; Déniz, F.; Alonso-Hernandez, J.B.; Canino-Rodríguez,
J.M.; Cabrera-Quintero, F.; Medina-Padrón, J.F.; Ravelo-García, A. Continuous sky digitalization using images from an all-sky
camera. Renew. Energy Power Qual. J. 2022, 20, 132–137. https://doi.org/10.24084/repqj20.242.

29. TensorFlow Developers. TensorFlow (v2.15.0). Zenodo: Genève, Switzerland, 2023. https://doi.org/10.5281/ZENODO.4724125.
30. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems, 2015. Available online: tensorflow.org (accessed on 6 June 2024).
31. Crisosto, C.; Luiz, E.W.; Seckmeyer, G. Convolutional Neural Network for High-Resolution Cloud Motion Prediction from

Hemispheric Sky Images. Energies 2021, 14, 753. https://doi.org/10.3390/en14030753.
32. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.

https://doi.org/10.48550/ARXIV.1409.1556.
33. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with

Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, USA, 23–28
June 2014; https://doi.org/10.48550/ARXIV.1409.4842.

34. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Int. Conf. Mach. Learn. 2019, 97,
6105–6114. https://doi.org/10.48550/ARXIV.1905.11946.

35. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering 2010, 22, 1345–1359.
https://doi.org/10.1109/tkde.2009.191.

https://doi.org/10.3390/atmos14020280
https://doi.org/10.3390/rs13193859
https://doi.org/10.1016/j.egyr.2022.11.087
https://doi.org/10.7717/peerj-cs.1779
https://doi.org/10.3390/rs8080666
https://doi.org/10.1016/j.rse.2014.12.014
https://doi.org/10.1016/j.renene.2016.07.003
https://doi.org/10.1109/igarss.2016.7729176
https://doi.org/10.1016/j.apenergy.2023.120818
https://keras.io
https://doi.org/10.14569/ijacsa.2022.0130166
https://doi.org/10.48550/ARXIV.2104.00298
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.1109/icsens.2016.7808975
https://doi.org/10.5194/angeo-23-253-2005
https://doi.org/10.5194/angeo-23-253-2005
https://doi.org/10.1109/icip.2015.7350833
https://doi.org/10.1175/amsmonographs-d-16-0004.1
https://doi.org/10.1175/jtech-d-11-00009.1
https://doi.org/10.1016/j.solener.2023.03.043
https://doi.org/10.24084/repqj20.242
https://doi.org/10.5281/ZENODO.4724125
tensorflow.org
https://doi.org/10.3390/en14030753
https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.48550/ARXIV.1409.4842
https://doi.org/10.48550/ARXIV.1905.11946
https://doi.org/10.1109/tkde.2009.191


Sensors 2024, 24, 3726 21 of 21

36. Bozinovski, S. Reminder of the First Paper on Transfer Learning in Neural Networks, 1976. Informatica 2020, 44, 1. https:
//doi.org/10.31449/inf.v44i3.2828.

37. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. https://doi.org/10.1038/nature14539.
38. Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 3, 4. https://doi.org/10.1186/s40537-0

16-0043-6.
39. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of

the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20-25 June 2009; IEEE: Piscataway, NJ,
USA, June 2009; pp. 20–25. https://doi.org/10.1109/cvpr.2009.5206848.

40. Fellbaum, C.; Miller, G.A. WordNet An Electronic Lexical Database; MIT Press: Cambridge, MA, USA, 2019; p. 449.
41. Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2020, arXiv:2008.05756. https:

//doi.org/10.48550/ARXIV.2008.05756.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.31449/inf.v44i3.2828
https://doi.org/10.31449/inf.v44i3.2828
https://doi.org/10.1038/nature14539
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1109/cvpr.2009.5206848
https://doi.org/10.48550/ARXIV.2008.05756
https://doi.org/10.48550/ARXIV.2008.05756

	Introduction
	Related Work
	Contributions

	Materials and Methods
	Datasets and Data Selection
	Recognition of Sky Conditions Using Deep Learning Approaches
	Cloud Recognition with ResNet and EfficienNet Models
	Transfer Learning and Recognition Models

	The Network Architecture

	Experimental Methodology
	k-Fold Cross-Validation Method
	Performance Metrics

	Results and Discussion
	Conclusions
	References

