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Abstract: In the domain of the Internet of Things (IoT), Optical Camera Communication (OCC) has
garnered significant attention. This wireless technology employs solid-state lamps as transmitters and
image sensors as receivers, offering a promising avenue for reducing energy costs and simplifying
electronics. Moreover, image sensors are prevalent in various applications today, enabling dual
functionality: recording and communication. However, a challenge arises when optical transmitters
are not in close proximity to the camera, leading to sub-pixel projections on the image sensor and
introducing strong channel dependence. Previous approaches, such as modifying camera optics
or adjusting image sensor parameters, not only limited the camera’s utility for purposes beyond
communication but also made it challenging to accommodate multiple transmitters. In this paper, a
novel sub-pixel optical transmitter discovery algorithm that overcomes these limitations is presented.
This algorithm enables the use of OCC in scenarios with static transmitters and receivers without
the need for camera modifications. This allows increasing the number of transmitters in a given
scenario and alleviates the proximity and size limitations of the transmitters. Implemented in Python
with multiprocessing programming schemes for efficiency, the algorithm achieved a 100% detection
rate in nighttime scenarios, while there was a 89% detection rate indoors and a 72% rate outdoors
during daylight. Detection rates were strongly influenced by varying transmitter types and lighting
conditions. False positives remained minimal, and processing times were consistently under 1 s. With
these results, the algorithm is considered suitable for export as a web service or as an intermediary
component for data conversion into other network technologies.

Keywords: wireless sensor networks; optical camera communication; sub-pixel

1. Introduction
1.1. Optical Camera Communications

An unprecedented increase in the implementation of sensor networks for a variety of
applications, such as air quality monitoring or smart energy management, has occurred
in the last few years. These sensor networks generate vast amounts of data that need
to be efficiently and reliably transmitted for analysis and action. Traditional wireless
communication technologies like WiFi and Bluetooth have been widely used in these fields.
However, these technologies often encounter problems related to spectrum congestion,
electromagnetic interference, costs, energy efficiency and limitations in the ability to connect
a large number of devices simultaneously [1].

Conversely, Optical Wireless Communications (OWC) technology offers significant
advantages, including robust bandwidth, minimal latency, cost-effective installation, and
operational efficiency. The interest of both the scientific and industrial communities on
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OWC has been reflected on the standardization efforts of the last years, e.g., IEEE 802.15.7r1,
IEEE 802.11bb, and ITU recommendation G.9991 [2]. In these standards, the focus extends
to the two primary types of receivers commonly used in OWC: photodetectors and image
sensors. On the one hand, photodetectors offer higher speeds, making them suitable for
demanding applications. On the other hand, image sensors provide cost-effective solutions
and spatial separation capabilities while maintaining the recording functionality. This last
technology is known as OCC.

OWC spans the electromagnetic spectrum from infrared to ultraviolet. However, it
is the visible range that attracts the most interest due to the significant advancements in
industrialization both in terms of transmitters and potential receivers. This technology
is commonly referred to as Visible Light Communication (VLC). Consequently, there is
a substantially broader range of publications in this area compared to the non-visible
spectrum. This is particularly evident in fields related to sensor networks and IoT, driven
by the low costs associated with advancements mentioned in commercialization and
industrialization, as can be seen for example in [3]. The emphasis on the visible spectrum is
also observed in OCC for similar reasons. Nevertheless, it is noteworthy that many cameras
also operate within the infrared spectrum, so this range can also be exploited at low cost
and with less visual impact in the scenarios where communication systems are installed.

In the domain of OCC, two acquisition modes are usually available among commercial
image sensors, as also detailed in the aforementioned standards: Global Shutter (GS) and
Rolling Shutter (RS). Whilst GS utilizes Charge-Coupled Device (CCD) sensors, enabling
the simultaneous capture of all pixels, Rolling Shutter (RS) systems, primarily based on
Complementary Metal-Oxide-Semiconductor (CMOS) technology, capture pixels sequen-
tially rather than all at once, processing the images row by row. Although each sensor
type has its own specific advantages, CMOS sensors are the most prevalent due to their
cost-effectiveness and versatility across a wide range of applications.

OCC finds its importance in the myriad of applications it offers. The spatial separation
of light sources thanks to the use of image-forming optics, combined with its low cost
and ease of installation, makes it an optimal choice for applications with a high density of
transmitters, such as Wireless Sensor Networks (WSNs) [4], the Internet of Things (IoT) [5],
Smart and Cognitive Cities [6], and Industry 4.0 [7]. Furthermore, OCC excels in applica-
tions that require high precision, such as Visible Light Positioning (VLP), with achievable
accuracy on the order of centimeters [8]. It makes it also fit well with object localization
tasks [9]. As a result, it also plays a vital role in Intelligent Transportation Systems (ITSs) as
part of Smart Cities, where it enhances communication between autonomous vehicles and
infrastructure elements such as traffic lights, street lights, and other vehicles, ultimately
improving the overall system performance [10]. Figure 1 depicts a conceptual illustration
on the use of OCC in the aforementioned scenario.

However, in the various application domains where OCC may be a suitable option,
the transmitting elements may not always be situated at such a close distance to the
camera or have such large dimensions so as to occupy a significant proportion of the image
pixels. This situation is intriguing for several reasons: using small transmitters can lead to
energy consumption reduction, placing transmitters at distant locations can greatly expand
coverage areas, and having a small projection of the transmitter on the image sensor allows
increasing the number of transmitters detectable by a single camera. Consequently, it is
highly likely that their proportion will be less than a few pixels, making the specific study
of this scenario of great interest. The sub-pixel scenario is defined as one in which the
projection of the transmitter onto the image sensor is less than one pixel [4].

It is important to consider that even if the pixel’s projection on the image sensor is
less than one pixel, the light projection onto it may occupy a larger number of sensor cells.
This depends on various factors such as the average brightness of the scene, the brightness
and directivity of the source, or distortions introduced by the channel. A higher average
scene brightness leads to less light from the source being captured as it is overshadowed by
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ambient light. A brighter source increases the likelihood of its emission affecting multiple
pixels due to channel-induced dispersion.

Figure 1. Concept on the use of OCC in Smart Cities.

Imperfections in the optical system are also responsible for a source occupying more
than one pixel on the image sensor even if its projection is less than one pixel. This occurs
because when light from a point source passes through a lens or optical system, it undergoes
modifications and dispersion due to aberrations in the lens and characteristics of the optical
system. This results in an extension or spreading of the original point in the projected
image. To describe how an optical system or lens defocuses a point of light in an image,
the Point Spread Function (PSF), also known as the Potential Spread Function, is generally
used [4]. Typically, it is represented as a two-dimensional function, where each point in the
output image is associated with a value indicating the light intensity at an input point and
the volume of the illuminated region.

In the domain of OCC, transmitter discovery tasks have received limited attention in
the broader scope of OCC research. Specifically, the exploration of transmitter discovery
under sub-pixel conditions has been virtually non-existent. This dearth of research not
only hinders the broader application of OCC but also restricts its utility when dealing with
distant or low-light transmitters. In this paper, an algorithm is presented to address this
challenge, enabling the discovery of transmitters in OCC systems where transmitters and re-
ceivers remain stationary even under such demanding conditions. The approach leverages
both luminance parameters and the defined frame structure, providing robust transmitter
detection. The algorithm is evaluated across various scenarios and lighting conditions.

The remainder of this paper is structured as follows. To provide context, the OCC
general literature is reviewed, and the sub-pixel scenario is defined in Section 1.1. In
Section 1.2, prior research related to discovery algorithms in OCC and the sub-pixel scenario
works is delved into. In Section 1.3, the impact of OCC on 6G is discussed. The software
developed is detailed in Section 2, while Section 3 outlines the experimental design and
key metrics of interest. Finally, the obtained results are presented in Section 4 and the
conclusions drawn from this work are discussed in Section 5

1.2. Related Works

Sub-pixel OCC scenarios have not been extensively studied yet in the literature.
Nevertheless, they have been indirectly addressed on several works. For instance, in [11],
two equations which facilitate the determination of the 2D pixel projection (x, y) occupied by
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a transmitter on an image sensor, (1) and (2), are formulated and experimentally validated.
These equations facilitate the determination (x, y) occupied by a transmitter on an image
sensor. These values are determined based on the separation (D) between the object and
the camera as well as the distances (dx, dy) and the camera’s field of view (FOVx, FOVy)
relative to the transmitter along with the camera’s pixel resolution (Nx, Ny).

x =
2 · Nx · arctan

(
dx
2D

)
FOVx

(1)

y =
2 · Ny · arctan

(
dy
2D

)
FOVy

(2)

There have also been several studies that have explored long-distance OCC links.
However, these studies involved modifications to the camera to increase the transmitter’s
projections onto the image sensor, spanning multiple pixels. For instance, in [12], a novel
technique was developed to extend the reach of RS-based OCC, achieving a link distance
of 400 m through the use of telephoto lenses. In [6], another RS link spanning 328 m was
implemented, where the LED array was detected using a magnifying lens with a suffi-
ciently narrow horizontal field of view (28.1 degrees) to ensure the transmitter’s projection
always exceeded 2 × 2 pixels. In [13], sensor image parameters were adjusted to blur the
transmitter’s projection on the image sensor, thereby increasing the RS link distance.

Being able to work with transmitter projections at or below a single pixel on the
receiver without the need for modifications is of significant interest. The use of telephoto or
magnifying lenses eliminates the need for cameras primarily used for recording purposes
and confines the spatial separation of transmitters to a small region. Consequently, working
with sub-pixel projections enables both the extension of link distances and an increase in the
quantity of such links within the same environment. However, the number of studies that
have genuinely addressed these conditions is rather limited, often focusing on verifying
the feasibility of such communications. For instance, in [14], the feasibility of a GS link is
demonstrated, wherein the transmitter’s projection onto the receiver is sub-pixel, which
is facilitated by the fact that the emitted light energy from the LED affects multiple pixels.
In [4], this concept is further tested, this time under adverse weather conditions, using an
RS link.

Several studies have addressed both transmitter detection and tracking tasks in OCC
systems. However, none of them specifically tackle sub-pixel scenarios, making it the
sole algorithm capable of universally addressing this aspect. Other approaches focus on
transmitters with a predefined size and shape or cater to specific applications, rendering
them challenging to extrapolate. For instance, in [15], segmentation and edge detection
techniques are employed to detect LED arrays at close distances. In [13], a method for
transmitter detection and tracking in mines is defined with the sole distinguishing param-
eter being the transmitter’s luminosity. In [9], a method for tag detection based on OCC
technology is proposed and tested for object identification. In this case, it does not involve
communication frames but rather the constant transmission of identifiers to locate objects.
The detection process involves resizing images to VGA format and applying space–time
correlation based on defined tags.

Furthermore, these algorithms are hardly suitable for use in sensor networks beyond
the sub-pixel context. For example, in [16], if the transmitter projections are not sufficiently
high, there is a high likelihood of losing their information when converting the image to
VGA format. This limits the quantity of transmitters that can be deployed in scenarios and
the maximum link distances. Additionally, working with communication frames instead
of a few identifiers would significantly increase the computational and temporal costs of
the algorithm. In [15], dependence on transmitter shape and size would also restrict its
use in dense sensor networks. Finally, ref. [13] is only viable in dark scenarios without the
presence of other light sources. All these factors underscore the fundamental importance
of the method proposed in this document for the application of OCC in sensor networks.



Sensors 2024, 24, 3249 5 of 14

It contributes to the development of more cost-effective sensor networks with reduced
acquisition and energy costs, simplified installation, and minimal impact on the existing
radio spectrum.

1.3. OCC as an Enabler for 6G

As the deployment of 5G progresses, it becomes paramount to establish the ground-
work for the subsequent generation, 6G. This forthcoming phase will enable cutting-edge
technologies. For instance, consider realistic holographic communication, which enhances
the natural perception of 3D holograms, or Extended Reality (ER), amalgamating aug-
mented, virtual, and mixed reality to offer high-quality immersive experiences. The Tactile
Internet, characterized by low latency, enabling real-time applications ranging from remote
surgery to industrial control, is also noteworthy. In addition, multisensory experiences
encompassing all human senses, including taste and smell, open up new possibilities
across various industries. Furthermore, detailed digital twins of physical objects advance
automation and intelligence in manufacturing. Similar to its role in 5G, the Internet of
Things (IoT) remains significant, enabling broader and faster data acquisition. Additionally,
intelligent transport and logistics ensure secure and efficient mobility [9]. These innovations
signify an important shift in how technology is interacted with and hold the promise of
revolutionizing industries such as healthcare, terrestrial and aerial vehicular networks,
satellite communications, entertainment, logistics, and industrial settings.

To facilitate the proliferation of these new technologies and advancements, it is es-
sential to ensure a series of changes in communication technologies. These requirements
primarily encompass aspects related to latency, data rates, connection density, mobility,
costs, energy efficiency, and security [9]. It is especially in the latter five aspects that OCC
plays a pivotal role. Unlike Radio Frequency (RF) waves, which can be detected from
several meters away, OCC confines the possibility of detection to the area illuminated by
the light source, providing greater confidentiality, particularly indoors. Similarly, OCC
technology allows for cost reduction in terms of acquisition, mobility, and maintenance
due to its straightforward operation and installation. Moreover, it avoids contributing to
electromagnetic spectrum saturation and is more immune to transmitter interference issues.
The use of cameras also significantly increases the number of transmitters in scenarios,
effectively monitors their potential mobility, and achieves location precision of less than a
centimeter [8]. The key requirements proposed for 6G, as well as the contribution of OCC
technology to these objectives, are detailed in Table 1.

Table 1. The 6G requirements and OCC support.

6G Requirement Target Value OCC Support

Peak Data Rate Up to 1 Tbps No
User-Experienced Data Rate 1 Gbps or higher No
User Plane Latency 100 µs or lower No
Mobility Up to 1000 km/h No
Connection Density Up to 107 devices/km² Yes
Energy Efficiency 10–100 times better than 5G Yes
Peak Spectral Efficiency Three times higher than 5G Yes
Area Traffic Capacity Up to 1 Gbps/m² Yes
Success probability (Reliability) 1–10−7 Yes
Signal Bandwidth Up to 1 GHz or higher No
Positioning Accuracy Centimeter-level precision Yes
Coverage 3D (terrestrial–satellite–aerial) Yes
Timeliness Real-time data emphasis No

Security and Privacy Ensured confidentiality, integrity,
authentication Yes

Capital and Operational Expenditure Cost-effective networks Yes
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The primary applications of OCC in the context of 6G will be oriented toward intelligent
transportation systems [17], indoor positioning systems [8], and sensor networks [4] due
to the aforementioned aspects. They will also be instrumental in achieving ubiquitous
connectivity thanks to their excellent performance in underwater environments [18]. In this
realm, OCC will also enhance node mobility compared to widely used wired systems.

2. Discovery Algorithm

The developed algorithm carries out transmitter detection by considering the main
spatial–temporal characteristics that allow distinguishing a pixel associated with a trans-
mitter from any other pixel. The four aspects considered for detection are pixel brightness,
the size of the illuminated region, luminosity variation, and the patterns that follow these
luminosity changes. Due to the high number of tasks to be performed, the algorithm was
implemented through four phases, which will be discussed later in this section.

Both the minimum luminosity presented by transmitter pixels in the ON intervals
(Lmin) and the maximum size of the luminous regions associated with transmitters (Max-
imum Region of Interest or ROImax) follow a dependent relationship with the average
luminosity of the image. To evaluate this dependency, Equations (3) and (4) have been
followed. To obtain these equations, a large number of samples of the parameters to be
related were taken in different scenarios, and a script was developed to find a polynomial
expression that would relate them. Therefore, the algorithm takes into account that while
the projection of the transmitter on the image sensor is less than one pixel according to the
formulas seen in (1) and (2), the luminous energy can affect several pixels due to the PSF. On
the other hand, luminosity variation is generally close to zero in the case of non-transmitter
pixels, while it takes a high value in the case of transmitters, which constantly oscillate
between the ON and OFF states.

Lmin =
4

∑
i=0

ai · xi (3)

where the coefficients are a4 = 7.331 · 10−7, a3 = −3.561 · 10−4, a2 = 0.052, a1 = −2.297,
and a0 = 164.8.

ROImax =
3

∑
i=0

b · xi (4)

where the coefficients are b3 = −9.148 · 10−6, b2 = 6.749 · 10−3, b1 = −1.558, and b0 = 142.1.
In order to evaluate the patterns by which transmitter luminosity could vary, as well

as the minimum number of images to study to detect at least one bit as 1, it was necessary
to first define the data frame to work with. The chosen frame was designed and evaluated
in [14], and it favors the punctual and brief transmission of data to enhance its use in
sensor networks. As observed in Figure 2, it only works with one byte of payload, and the
situation where there are more than four consecutive bits set to 1 in the header to facilitate
their detection can occur.

Header Guard Payload Guard Payload

1 1 1 1 1 0 b0 b1 b2 b3 0 b4 b5 b6 b7

133.33 ms
2 seconds

Figure 2. Communications data frame.

To implement the algorithm, Python was chosen as the programming language due
to its wide range of resources available. Libraries such as Open Source Computer Vision
(OpenCV) and scikit-image were used for image processing, while NumPy stood out for data
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structure handling. Resources related to multiprocessing were especially crucial for executing
multiple processes in parallel. These resources were used to work with the images as they
were captured as well as to reduce the processing times for those more complex tasks. For
the first objective, a Queue object was used, and for the second, a Pool object was employed,
allowing the creation of a group of processes. Additionally, the map function was utilized to
execute a function multiple times on a list of iterables. This latter method was only employed
in Phase 2, which had the highest computational complexity.

A general outline of the four phases comprising the image can be observed in Figure 3.
As depicted, the first phase involves image extraction. In this phase, the images associated
with a 4-s video segment are extracted one by one, taking into account the frames per
second (FPS) rate at which the video camera operates. As the images are extracted, they are
converted to grayscale and added to the Queue object to be concurrently processed in the
next phase. The algorithm does not work with the RGB components because it needs to
operate independently of the transmitter’s working length.

Image loading

Luminosity-based options simplification

Pattern checking

Cardinality reduction

Figure 3. Algorithm phases.

In the second phase, the number of potential transmitters is streamlined based on
parameters linked to luminosity and the size of illuminated regions. To accomplish this, the
images associated with the first two seconds of video are analyzed, as they are considered
sufficient to detect at least one bit set to 1 if a continuous frame transmission is performed, as
shown in Figure 2. In this phase, the average luminosity of one of the images is obtained, and
the luminosity and region size thresholds are determined based on that value. Subsequently,
the luminosity threshold is applied to the image, resulting in a matrix of ones and zeros.
Next, all pixels that have passed the threshold and are contiguous are grouped together,
and the number of pixels in each group is counted. If the number of pixels is less than the
calculated threshold, the position of the central pixel is stored in a list of potential candidates.
The different processes within the Pool generate different lists of solutions based on the list
of images they receive to which they apply the aforementioned tasks. Before these lists are
passed to the next phase, duplicate elements are removed, and they are merged. This list
contains the pixels that are potential transmitter candidates.

In the third phase, the determination is made regarding which pixels are definitively
linked to optical signals from transmitters based on the resemblance of their luminosity
variation with the defined frame structure. To accomplish this, the corresponding frame
is acquired for every pixel added to the potential transmitter list. To achieve this, the
luminosity value of each pixel in the grayscale-converted images associated with 4 s of
video is considered. Three filters are applied to each frame of each pixel, and if they pass
these filters, the pixels are considered transmitters. The first filter is the standard deviation
of luminosity, the second is the number of rising edges, and the third is the duration of
the second period of the frame. To pass the last two filters, the frame is converted to 1 s
and 0 s by applying the luminosity threshold. Thus, to obtain the number of rising edges,
the frame is subtracted from itself shifted one position, and the number of −1 s is counted.
On the other hand, to determine the duration of the second period, the absolute difference
between the position of the first rising edge and the first falling edge is calculated. The
resulting list from this phase contains only the pixels associated with transmitters.
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Finally, in the fourth phase, the list of pixels classified as transmitters in the previous
phase is traversed to check if there are pixels that are very close to each other, because it is
assumed that these pixels likely belong to the same transmitter. The limit used is half of
the value calculated using Equation (4). In this assessment, the distance between pixels is
considered as the sum of the distance along the x-axis and the y-axis.

3. Methodology
3.1. Experimental Setup

To evaluate the algorithm, an OCC system was implemented in different scenarios,
and communications were recorded in these settings. Subsequently, the algorithm was
adapted to extract images from the video sequences as if it were real time.

The OCC system was implemented using embedded systems. On one hand, four
Arduino Nano 33 devices were used, to which various types of LEDs were connected as
transmitters. These devices transmitted all possible frames consecutively and indefinitely.
On the other hand, a Raspberry Pi v3 was used with a high-performance camera as the
receiver. The recorded videos had a minimum duration that allowed the recording of all
256 possible transmitted frames (1 byte of payload). Due to the memory and processing
capabilities of the Raspberry Pi, the algorithm was executed on the videos using a laptop
and an external hard drive. The characteristics of the main elements used can be observed
in Table 2.

The system was implemented in three scenarios: 1 indoor, which can be seen in
Figure 4, and 2 outdoors, which can be seen in Figures 5 and 6. Different wavelength
LED devices (red, green, blue and white) were used in these scenarios to assess how the
algorithm’s performance varied with respect to the emission spectrum. Regarding the
distance, minimum distances were maintained to achieve sub-pixel projections as defined
in Equations (1) and (2). Specifically, a link range of 32 m was used in the indoor scenario,
whilst 8 m and around 70 m were used for the outdoor tests during the daytime and night-
time, respectively. To evaluate these scenarios under different lighting conditions, several
videos were recorded in some of them by modifying the exposure time and sensitivity
parameters. Specifically, 3 videos were recorded in the indoor scenario, 2 in the daytime
outdoor scenario, and 1 in the nighttime outdoor scenario.

Figure 4. Indoor experimental setup. The resulting link range in the depicted corridor was 32 m.

Figure 5. Outdoor daytime experimental setup. The resulting link range was 7 m.
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Table 2. Material characteristics.

Arduino Nano 33 IoT

Microcontroller Low-power ARM MCU SAMD21 Cortex®-M0+ 32-bit
Clock Speed 48 MHz
Flash Memory 256 Kb
Power Supply 3.3 V, 2.5 A

RGB LED

Model L-154A4SURKQBDZGW
Manufacturer Kingbright
Size 5 × 8.6 mm
Wavelength 470 nm, 525 nm, 630 nm
Luminosity 150–300 mcd, 500–1000 mcd, 600–1300 mcd

White LED

Model SLD430WBD2PT3
Manufacturer ROHM Semiconductor
Size 5 × 3 × 3 mm
Luminosity 1850 mcd

Raspberry Pi

Model Raspberry Pi 3 Model B
Manufacturer Raspberry Pi Foundation
Operating System Raspbian-32 bits
Processor Broadcom BCM2837 SoC
Storage 1 GB of RAM
Power Supply 5 V, 2.5 A

Camera Module V2

Model IMX219—V2 module
Manufacturer Raspberry Pi Foundation
Acquisition Mode Rolling Shutter
Maximum Resolution 3280 × 2464
Used Resolution 1920 × 1080
Maximum Gain 16 B
Maximum Frame Rate 30 FPS
FOV 62.2 × 48.8

Figure 6. Nighttime experimental setup. The resulting link range was between 45 and 75 m.

3.2. Procedures

To validate the algorithm, the following workflow was evaluated. The experiments
started by recording a video lasting at least 4 s in MJPEG format with a frame rate of
30 frames per second, ensuring that at least two samples of each bit were captured. The
acquired images were stored for offline processing, composing the videos in a desig-
nated directory. The transmitters appearing in the video were programmed following the
packet structure depicted in Figure 2. Additionally, these transmitters were positioned
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at a distance ensuring sub-pixel projection, as determined by the formulas specified in
Equations (1) and (2).

During the offline processing stage, the directory where the video were stored was
configured in the main script along with the frames per second rate at which the videos
were recorded and the index of the initial image from which detection is desired. This
initial image index should be sufficiently small to guarantee the examination of at least
4 additional seconds of images in the video. After this initial setting, the discovery algorithm
was executed with these configured parameters, proceeding to the detection and discovery
stage and displaying the number of transmitters, their positions and information, among
other metrics detailed in the following section. An illustrative diagram of the described
process is presented in Figure 7.

Video recording

Image extraction and database generation

Parameter configuration and random time slice selection

Execution and results generation

Figure 7. Procedure phases.

3.3. Metrics

Two types of parameters were evaluated from the recorded data: those associated with
the algorithm’s quality and those associated with the communication quality. To assess
the former, the true positive rate, false positive rate, positive omission rate, and processing
times were used. To obtain these parameters, various graphs were presented after each
execution of the algorithm, such as their location in a video image, their optical signal, or
the execution times of each phase. Additionally, scripts were also developed to obtain these
data by clicking on the pixel of interest to determine the reasons for positive omissions.

In contrast, to assess the quality of the communications, the Signal-to-Noise Ratio
(SNR) and Bit Error Rate (BER) were used. These parameters were obtained using the
Gaussian Mixture Model, whose expressions can be seen in (5) and (6). In these equations,
µ0 and σ0 are the mean and standard deviation of the first Gaussian, µ1 and σ1 are the
mean and standard deviation of the second Gaussian, and α is the weighting or relative
contribution of the first Gaussian to the SNR calculation. The first Gaussian represents the
signal, and the second Gaussian represents the background noise.

SNR =
1
2

|µ1 − µ0|2

ασ2
0 + (1 − α)σ2

1
(5)

BER =
1
2

erfc

(√
SNR

2

)
(6)

4. Results

After analyzing multiple samples from each of the recorded videos, it was deduced
that the best results were obtained in the nighttime scenario, followed by the indoor
scenario, and finally by the daytime outdoor scenario. However, the detection rate does
not follow a linear relationship with the ambient light level. This will be explained in the
following paragraphs and can be observed in Table 3, where the detection percentages of
each tested scenario are listed.
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Table 3. Detection rates summary.

Scenario
Transmitters Detected

2/4 3/4 4/4

Indoor, low luminosity 0% 29% 71%
Indoor, medium luminosity 14% 57% 29%

Indoor, high luminosity 0% 21% 79%
Daytime outdoor, low luminosity 82% 18% 0%
Daytime outdoor, high luminosity 0% 45% 55%

Nighttime outdoor 0% 0% 100%

In most indoor cases, the undetected transmitter was the same and corresponded to
the one with the highest luminous power: the green LED. This was due to its saturation of
the image sensor, which prevented it from dropping low enough during the OFF intervals.
Consequently, due to the threshold used, its frame was read as a consecutive sequence
of bits set to 1. This occurred more frequently during the average exposure time because
Equation (3) adjusted the threshold less effectively in this case. On the other hand, in the
daytime indoor scenario, in a significant number of cases, half of the transmitters were not
detected, which was also due to the differences in luminosity among them. Specifically,
the blue LEDs had high luminous power, while the red ones had low power. As a result,
the OFF intervals of the LEDs with higher power had the same power as the ON intervals
of those with lower power. This caused only half of them to be detected with the same
sensitivity threshold. In the remaining cases, a very small percentage of the total positive
omissions occurred when one or two transmitters were not detected due to some moving
obstructive element.

Regarding the false positive rate, the only scenario where they were detected was in the
indoor scenario. In this scenario, there were almost as many false positives as true positives.
However, upon examining the optical signals of these false positives, it was found that
they were not false positives per se but rather reflections of the transmitters on reflective
surfaces that were mistakenly identified as transmitters. For example, in Figure 8, the little
differences between the data frame received directly from the transmitter (upper) and from a
reflection point on the ground (lower) are shown with the most significant distinction being
the level of received power. In many instances, information from the omitted transmitter
was obtained through its reflection. Therefore, in practical applications, these reflections can
be used to improve the result reliability and maintain link continuity.

(a) (b)
Figure 8. Data frame received directly from the transmitter (a) and from a reflection point on the
ground (b).

With respect to processing times, the nighttime scenario again yielded the best results
(average of 48 ms), which was followed by daytime outdoor (average of 600 ms) and
indoor (average of 680 ms). The significant difference in processing times between the
first scenario and the other two is due to the substantial difference in ambient light and



Sensors 2024, 24, 3249 12 of 14

reflective surfaces. A greater number of these parameters resulted in more candidates
exiting the simplification phase of the algorithm, requiring a greater number of pattern
search operations. The correlation phase was the heaviest part of the algorithm, accounting
for 85% of the processing time in the worst scenarios.

As depicted in Figure 9, illustrating the boxplot of processing times across the various
tested scenarios, there is greater variability in processing times during indoor scenarios
in the simplification phase. This is attributed to the luminosity and reflections within the
indoor setting. Similarly, the processing times for the correlation phase exhibit increased
variability in daytime scenarios overall, attributed to the higher number of transmitter
candidates, which is due to a greater presence of brightness.

(a) (b)
Figure 9. Boxplot of processing times by scenario for simplification (a) and correlation (b) phases.

Finally, concerning SNR and BER values, better results were obtained in lower ambient
light conditions due to the reduced noise effect. This can be observed in Table 4, which
displays a summary of the average SNR and BER for each scenario and wavelength used.
These values were obtained while operating with a voltage of 5 volts and a current of 5 mA.
Likewise, lower ambient light conditions resulted in less variation in these parameters
over time for the same transmitter as well as a smaller difference in the parameter values
between transmitters. The transmitter that achieved the best results was the green one,
which was followed by the blue, white, and finally the red. The best results, associated with
the green transmitter, reached SNR values around 32 dB. On the other hand, the worst case
presented an SNR around 11 dB. Nonetheless, both boundaries correspond to BER values
far below the Forward Error Correction limit (usually defined as 3.2 × 10−3) according to
Equation (6).

Table 4. Average SNR and BER in the different scenarios.

Scenario LED Color Average SNR (dB) Average BER

Daytime Indoor

Red 20.6 2 × 10−20

Blue 21 7.6× 10−22

Green 26.1 2.5 × 10−90

White 20.8 6 × 10−21

Daytime Outdoor

Red 19 7 × 10−16

Blue 24 2 × 10−30

Green - -
White - -

Nighttime Outdoor

Red - -
Blue 27.2 3 × 10−110

Green - -
White 21.5 6.3 × 10−33
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5. Conclusions

In the present study, an algorithm for sub-pixel optical transmitter detection has
been developed and experimentally validated within the framework of camera-based
optical communications. The developed algorithm is divided into four main blocks: image
acquisition, simplification of potential transmitters based on their luminosity and size
of the luminous region, correlation of optical signal values with theoretically expected
values according to the used frame, and elimination of neighboring pixels. To reduce
algorithm execution times, multiprocessing functions were used in the first two mentioned
blocks, and to facilitate code development, the programming was carried out leveraging
the various libraries and modules of the Python language.

The results demonstrated improved algorithm performance and better communica-
tion quality in lower ambient light conditions and its stability. Additionally, this had a
significant impact on processing times, which did not exceed an average of 1 s in any case.
Furthermore, working with transmitters of the same type and wavelength also yielded bet-
ter results, as most of the omitted positive rates were due to differences in luminous power
between transmitters and the challenge of finding a value that met these requirements.
Expressions (3) and (4) are considered to depend on the type of transmitter being used.

While the algorithm’s results are considered acceptable, the experimental part has
limitations. There is a recognized necessity to carry out recordings in new and diverse
scenarios with varied environmental conditions. These additional recordings would allow
for a more precise adjustment of the polynomial functions defined in Section 2 of this
paper. Therefore, it could yield more accurate results in different environments. In addi-
tion, a greater number of recordings would enable a more precise definition of favorable
wavelengths based on the environment and the determination of maximum distances
considering environmental conditions.

To the best of the authors’ knowledge, this is the only OCC discovery algorithm to
encompass sub-pixel casuistry. It is true that there are other OCC discovery algorithms that
rely on temporal components. For instance, ref. [19] utilizes M sequences, while ref. [20]
develops an asynchronous scheme. However, these algorithms operate with transmitter
arrays, resulting in much larger projections than sub-pixel. Moreover, they do not offer
all the metrics used in this document for evaluating the algorithm, including execution
times, percentage of false positives, SNR, etc. Therefore, no comparison has been made
with other algorithms given the novelty of the case in this document and due to the scarcity
of relevant data in the most related works.

To conclude, this algorithm holds great significance for the development and intro-
duction of OCC technology, which may have a substantial impact on 6G technology as a
supporting technology. It is well suited for export as a web service or as an intermediary
component for converting data into other network technologies. The primary application
of this technology will focus on sensor networks, where it can enhance aspects such as
node density, costs, and energy efficiency. This will have far-reaching implications across
sectors such as industry, healthcare, the IoT, and more.
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