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Abstract: Metabolic syndrome is a global health problem. The use of functional foods as dietary
components has been increasing. One food of interest is forest onion extract (FOE). This study aimed
to investigate the effect of FOE on lipid and glucose metabolism in silico and in vitro using the
3T3-L1 mouse cell line. This was a comprehensive study that used a multi-modal computational
network pharmacology analysis and molecular docking in silico and 3T3-L1 mouse cells in vitro.
The phytochemical components of FOE were analyzed using untargeted ultra-performance liquid
chromatography–tandem mass spectrometry (UPLC-MS). Next, an in silico analysis was performed
to determine FOE’s bioactive compounds, and a toxicity analysis, protein target identification,
network pharmacology, and molecular docking were carried out. FOE’s effect on pancreatic lipase,
α-glucosidase, and α-amylase inhibition was determined. Finally, we determined its effect on lipid
accumulation and MAPK8, PPARG, HMGCR, CPT-1, and GLP1 expression in the preadipocyte 3T3-L1
mouse cell line. We showed that the potential metabolites targeted glucose and lipid metabolism
in silico and that FOE inhibited pancreatic lipase levels, α-glucosidase, and α-amylase in vitro.
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Furthermore, FOE significantly (p < 0.05) inhibits targeted protein expressions of MAPK8, PPARG,
HMGCR, CPT-1, and GLP-1 in vitro in 3T3-L1 mouse cells in a dose-dependent manner. FOE contains
several metabolites that reduce pancreatic lipase levels, α-glucosidase, α-amylase, and targeted
proteins associated with lipid and glucose metabolism in vitro.

Keywords: forest onion; metabolic syndrome; diabetes; obesity; network pharmacology; phytochemi-
cals; functional food; preadipocyte 3T3-L1; mouse cell line

1. Introduction

Non-communicable diseases (NCDs) have emerged as the primary causes of morbidity
and mortality in both industrialized and developing nations. Of all NCDs, metabolic
syndrome is a true worldwide plague. Metabolic syndrome comprises a collection of
symptoms including obesity, dyslipidemia, hyperglycemia, and hypertension, making
it the most significant challenge to public health. The global prevalence of metabolic
syndrome is 31%, and it is associated with a 2-fold increased risk of developing coronary
heart disease and a 1.5-fold increased risk of death [1]. The estimated prevalence of
metabolic syndrome in adults in 2017 was 20–25% globally [2]. Indeed, the magnitude
of an individual’s risk of developing metabolic syndrome can be estimated using the
Framingham score, which is primarily based on levels of high-density lipoprotein (HDL)
cholesterol, blood pressure, and diabetes mellitus [3]. According to WHO criteria, a
diagnosis of metabolic syndrome requires the presence of two additional risk factors, such
as obesity, hyperglycemia, hypertension, high serum triglycerides, decreased serum high-
density lipoprotein (HDL) cholesterol, or microalbuminuria, in addition to signs of insulin
resistance [4].

The incidence of metabolic syndrome runs parallel to the incidences of type 2 diabetes
mellitus and obesity. Based on CDC data from 2017, 30.2 million adults (individuals aged
over 18 years) in the USA were diagnosed with type 2 diabetes mellitus. The International
Diabetes Federation Diabetes Atlas shows that the worldwide prevalence of diabetes was
8.8% in 2015 and is expected to continue to increase to 10.4% in 2040. The North American
and Caribbean region is recorded as having the highest number of diabetes sufferers,
containing more than half of all people diagnosed with diabetes worldwide [1]. In line with
the high incidence of diabetes, obesity rates follow a similar pattern. A 2015 global survey
showed that 73 out of 195 countries in the world have recorded cases of obesity, which
affects approximately 604 million adults and 108 million children. This poll indicates that
obesity is no longer solely associated with wealth. In nations with a low socioeconomic
index (SDI), the prevalence of obesity in young males (ages 25–29) has increased at the
highest rate [5]. This result can be attributed to a combination of changes in diet, a sedentary
lifestyle, the food environment, and social–cultural influences [6]. To address this issue
concretely, multifaceted strategies, such as promoting healthy eating, encouraging physical
activity, regulating the food environment, healthcare intervention, community engagement,
and policy advocacy, are needed at the individual, community, and policy levels. Metabolic
syndrome is three times more likely to develop with diabetes and obesity than with diabetes
alone. Globally, the estimated prevalence of metabolic syndrome is projected to comprise
25% of the world’s population [7].

The main therapy for treating metabolic syndrome is still inadequate due to the com-
plexity of the condition [8]. Existing treatments focus on addressing individual components
of metabolic syndrome, such as reducing blood glucose levels, managing hyperglycemia,
controlling blood pressure, or promoting weight loss [9]. Researchers are continuing their ef-
forts to develop potential therapies that can address all these conditions simultaneously [10].
Therefore, the widening gap between the incidence of metabolic syndrome and existing
therapy contributes increasingly to the annual increase in the prevalence of metabolic
syndrome, particularly in cases involving diabetes and obesity [11]. The primary challenge
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for researchers is to design a therapy that can comprehensively address the factors causing
metabolic syndrome while minimizing side effects and drug interactions. Unfortunately,
pharmacologically focused therapies have high potential for drug interactions and side
effects [12]. An alternative worth considering is harnessing the potential of natural foods
and remedies, especially given the abundance of such resources in Indonesia. One such
natural ingredient that can be explored is the forest onion Eleutherine bulbosa L. [13].

Eleutherine bulbosa L. is a plant species belonging to the family Iridaceae. It is native to
tropical regions of South America, Asia, and Africa [14]. While it is not typically consumed
as food, it has garnered attention for its potential medicinal properties, particularly in
traditional medicine practices. Several previous studies identified the efficacy of forest
onion as an antioxidant and anticancer agent, leaving open the possibility that forest
onion may also possess effects against metabolic syndrome. Da Silva (2024) uncovered the
potential of E. bulbosa as an antioxidant and anticancer agent due to its bioactive compounds
in the form of flavonoids, anthocyanins, and quinones based on in vitro, in vivo, and in
silico studies [15]. Another study by Lubis (2017) using a colon cancer cell line in vitro
demonstrated that E. bulbosa exhibited cytotoxic activity against cancer cells [16]. The
antioxidant effect of E. bulbosa was studied by Shi (2019) in vitro, revealing that E. bulbosa
contains bioactive compounds such as flavonoids and phenols as antioxidant agents [17].
On the other hand, Herman et al. (2024) also successfully document the proximate contents
of E. bulbosa and report its in vivo dose-dependent antidiabetic property [18].

At present, research examining the anti-metabolic syndrome effects of forest onion is
still lacking and underdeveloped. Therefore, new research is needed to comprehensively
investigate forest onion, particularly its biochemical properties, as a potential agent for
combating metabolic syndrome [13]. This study aims to conduct a comprehensive explo-
ration of forest onion, particularly its biochemical properties, to address the knowledge gap
concerning its potential as an anti-metabolic syndrome agent in addition to its established
efficacy as an antioxidant and anticancer agent. This research ensures a robust and reliable
evaluation of the therapeutic potential of forest onion or E. bulbosa in managing metabolic
syndrome via a comprehensive multi-modal computational network pharmacology analy-
sis, molecular docking, and the in vitro inhibition of lipid and glucose metabolic enzymes,
which have never been reported before.

2. Materials and Methods
2.1. Preparation and Extraction of Forest Onion

Samples of forest onion or dayak onion bulbs (E. bulbosa Merr.) were obtained from
an online market, and their botanical identification and authentication were carried out
at the Biochemistry and Biomolecular Laboratory of the Faculty of Medicine, Universitas
Brawijaya, Indonesia, and matched against the National Center for Biotechnology Infor-
mation (NCBI) Taxonomy ID 1210469 (NCBI: txid1210469) database. The authors state
and confirm that the sample collection was approved by local authorities and complies
with relevant national and “IUCN Policy Statement on Research Involving Species at Risk
of Extinction” guidelines. Each technique used in this study complied with applicable
rules and regulations for in vitro and plant research. The E. bulbosa samples were washed
with distilled water, cleaned, and dried in a Memmert Incubator IN55 oven (Schwabach,
Germany) at 50 ◦C for 3 × 24 h. A sample size reduction was carried out using a blender
(CosmosBlender 2 L ReBlendHigh Speed Hand Blender; Tangerang, Indonesia), produc-
ing a coarse simplicia powder. Then simplicia powder was extracted via the maceration
method. Furthermore, as much as 200 g of E. bulbosa simplicia powder was macerated using
two liters of a 96% ethanol (ethyl alcohol, C2H5OH, Sigma-Aldrich (Darmstadt, Germany))
solvent for 3 × 24 h with occasional shaking. The filtrate was then filtered, re-macerated,
and evaporated using a rotary evaporator at a temperature of 50 ◦C to produce a thick
extract of E. bulbosa or forest onion extract (FOE). The FOE was then stored in aluminum
foil for use in follow-up tests. This extraction method was performed in reference to similar
studies that have been published [19].
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2.2. Identification of Metabolite–Peptide Profile via Untargeted Metabolomic Profiling

A metabolomic profile analysis comprising untargeted profiling and compound iden-
tification was carried out by laboratory technicians and referred to similar research proto-
cols [20]. An Ultimate 3000LC was used in combination with a Q Exactive MS (Thermo
Fisher, Waltham, MA, USA), temp functional centrifugation (Eppendorf, Hamburg, Ger-
many), ACQUITY UPLC HSS T3 (100 × 2.1 mm × 1.8 µm), acetonitrile (Merck, Darmstadt,
Germany), methanol (Merck, Darmstadt, Germany), and formic acid (Sigma-Aldrich, Darm-
stadt, Germany). The samples were liquefied, and 50 mg of each sample was weighed
precisely into a tube, supplemented with 800 µL of 80% methanol (methyl alcohol, CH3OH)
with a vortex for 90 s, and sonicated for 30 min at 4 ◦C. All samples were then kept at
−40 ◦C for 1 h. After that, each sample was vortexed for 30 s, stored for 30 min, and
centrifuged at 12,000 rpm and 4 ◦C for 15 min. Finally, 200 µL of supernatant was trans-
ferred to a vial for LC-MS analysis. Ultra-performance liquid chromatography–tandem
mass spectrometry (UPLC-MS) was performed using an Ultimate 3000LC combined with
a Q Exactive MS (Thermo Fisher, Waltham, MA, USA) and filtered using electrospray
ionization–mass spectrometry (ESI-MS). The LC system consisted of an ACQUITY UPLC
HSS T3 (100 × 2.1 mm, 1.8 µm) and the Ultimate 3000LC. The mobile phase consisted of
solvent A (0.05% formic acid–water) and solvent B (acetonitrile) with a gradient elution
(0–1.0 min, 95% A; 1.0–12.0 min, 95–5% A; 12.0–13.5 min, 5% A; 13.5–13.6 min, 5–95% A;
and 13.6–16.0 min, 95% A). The mobile phase flow rate was 0.3 mL/min. The column
temperature was maintained at 40 ◦C, and the sample manager temperature was set at 4 ◦C.
A 40 µL volume of metabolite FOE was injected into the system for each run. The mass
spectrometry parameters in positive ion mode (ESI+) and negative ion mode (ESI−) used
are presented in the following lists. ESI+: heating temperature, 300 ◦C; casing gas flow rate,
45 arb; Aux gas flow rate, 15 arb; sweep gas flow rate, 1 arb; spray voltage, 3.0 KV; capillary
temperature, 350 ◦C; and RF S-lens rate, 30%. ESI−: heating temperature, 300 ◦C, casing
gas flow rate, 45 arb; Aux gas flow rate, 15 arb; sweep gas flow rate, 1 arb; spray voltage,
3.2 KV; capillary temperature, 350 ◦C; and RF S-lens rate, 60%.

2.3. In Silico Study Assessment
2.3.1. Prediction of Bioactive Compound Activities, Toxicity Analysis, and Drug-Likeness

Using the WAY2DRUG PASS prediction tool (http://www.pharmaexpert.ru/passonline/
predict.php, accessed on 20 February 2024) for metabolic syndrome treatment, the com-
pounds obtained from FOE were examined for potential bioactivity. This method uses an
SAR analysis to target the insulin promoter by contrasting input chemicals with compounds
that are known to have a certain potency [21]. When the compound’s Pa value is more than
0.4, it is expected to have significant potential, for example, as an antidiabetic agent, due to
its similarity to compounds in the database. The Pa value (the probability of being active)
represents the output prediction score obtained from the web, which shows the potency of
the compound being tested. The Pa value employed in the study was restricted to >0.4 since
it represents the accuracy of the prediction function obtained, with a larger Pa value indi-
cating greater accuracy. Additionally, a number of pharmacokinetic factors that are crucial
in drug development for evaluating the possible toxicity of a medicine are determined by
toxicity and drug-likeness analyses. Each ligand’s drug similarity characteristics were deter-
mined using Lipinski’s Rule of Five (Ro5). This analysis was conducted using the SMILES
notation of each compound as input for the Protox II database (https://tox-new.charite.de/
protox_II/index.php?site=compound_input, accessed on 20 February 2024) and the AD-
METLab 2.0 database (https://admetmesh.scbdd.com/service/evaluation/index, accessed
on 20 February 2024) [22–24]. Supplementary Table S1 displays the SMILES notation for
each compound, which was retrieved from PubChem (https://pubchem.ncbi.nlm.nih.gov,
accessed on 20 February 2024).

http://www.pharmaexpert.ru/passonline/predict.php
http://www.pharmaexpert.ru/passonline/predict.php
https://tox-new.charite.de/protox_II/index.php?site=compound_input
https://tox-new.charite.de/protox_II/index.php?site=compound_input
https://admetmesh.scbdd.com/service/evaluation/index
https://pubchem.ncbi.nlm.nih.gov
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2.3.2. Target Protein Identification and Analysis

The SuperPred target analysis tool (https://prediction.charite.de/, accessed 20 Febru-
ary 2024) was used to perform a target analysis of the FOE. By inserting the SMILES notation
for each chemical, the cut-off score for SuperPred Target was established at 80% (ranging
from 0% to 100%) for the model’s likelihood and accuracy (Table S1) [25,26]. The Open Tar-
gets database, accessible at http://www.opentargets.org/, provided the genes and proteins
linked to metabolic syndrome on 20 February 2024. A Venn diagram was then used to map
the targets of the FOE and targets connected to the disease in order to determine where
the associated targets intersected. The DAVID web server (https://david.ncifcrf.gov/),
accessed on 20 February 2024, was used to target-annotate the FOE, with an emphasis on bi-
ological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [27].

2.3.3. Network Pharmacology Analysis

The STRING (Search Tool for Retrieval of Interacting Genes/Proteins) database was used
to analyze relationships between the target proteins derived from the FOE and metabolic syn-
drome [28]. The target proteins derived from the FOE and protein–metabolism intersections
found using the STRING (Search Tool for Retrieval of Genes/Proteins) database were used as
inputs. These intersections included the insulin promoter receptor, which is known to be
strongly associated with the incidence of metabolic syndrome. Homo sapiens (humans)
was chosen as the organism in the STRING Database study, and a high confidence score
criterion of 0.9 was used to guarantee strong interactions. After the analysis was completed,
data were downloaded from the STRING database in TSV format. CytoScape Version
3.10.1 was then used to process the data for a more in-depth analysis, allowing for the
exploration of important network parameters like degree, betweenness centrality, and
closeness centrality between receptors [29].

2.3.4. Molecular Docking Simulation

Blind docking using cavity detection as guidance (CB-Dock2, an improved CB-Dock
server for protein–ligand blind docking) was used to perform a docking simulation. This
technique combines homologous template fitting, docking, and cavity identification. The
docking process adhered to the guidelines provided in other publications [30,31]. Using
CB-Dock2 for molecular docking, CB-Dock2 is a protein–ligand docking approach that
automatically locates binding sites, calculates their center and size, and modifies the
docking box size in response to the query ligands. CB-Dock accelerates and improves the
accuracy of the docking process by predicting the binding sites of target proteins using a
curvature-based cavity detection approach (CurPocket) and the binding poses of query
ligands using CB-Dock2 [30,31]. In addition, receptors that are found to have the highest
degree of centrality—including those that have been linked to signaling pathways—are
utilized for further examinations in molecular docking.

MAPK8 (3ELJ), PPARG (8BF1), HMGCR (2R4F), CPT-1 (1NDB), and GLP-1 (4ZGM)
were the enzymes or proteins that were employed. By default, the CB2-Dock Server
removed water molecules and other heteroatoms from the uploaded protein structures
prior to docking. Ligands were obtained from Pub-Chem in .sdf form (https://pubchem.
ncbi.nlm.nih.gov, accessed on 20 February 2024); compounds not found in PubChem were
visualized using 22.2.0 ChemDraw MacBook Version. All receptor or target proteins were
obtained in .pdb format from the RSCB Protein Data Bank (https://www.rcsb.org; accessed
on 20 February 2024).

2.4. In Vitro Study Assessments
2.4.1. Antiobesity Assessment via Pancreatic Lipase Inhibition

The process for measuring inhibition activity is detailed in previous works [32,33].
Initially, crude pig or porcine pancreatic lipase (PPL) at a 1 mg/mL concentration was
prepared in a 50 mM phosphate buffer solution with a pH of 7.0 and then centrifuged at
12,000× g to discard any non-soluble matter. The resulting clear supernatant was then

https://prediction.charite.de/
http://www.opentargets.org/
https://david.ncifcrf.gov/
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
https://www.rcsb.org
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diluted using the same buffer to obtain a final enzyme concentration of 0.1 mg/mL, fol-
lowing protocols established in earlier research [32,33]. To assess inhibition, concentrations
of 35, 70, 105, 140, and 175 µg/mL of the samples were placed into a 96-well microplate,
and metformin and orlistat, each at a concentration of 18 µM, were used as controls. This
was followed by adding 20 µL of 10 mM p-nitrophenyl butyrate (pNPB) substrate into
each well. The reaction mixture was incubated at 37 ◦C for 10 min. Orlistat (C29H53NO5,
PubChem CID: 3034010), a known inhibitor of PPL, served as a standard for comparison.
The activity was assessed by monitoring absorbance at 405 nm using a DR-200Bc ELISA
microplate reader, with enzymatic activity defined by the release of 1 mol of p-nitrophenol
(4-nitrophenol, C6H5NO3) per minute at 37 ◦C. The reduction in PPL activity in the assay
mixture quantified the inhibitory effect on lipase. To ensure the reliability of the data, each
test was conducted in triplicate (n = 3).

Inhibition o f Lipase Activity (%) = 100 − B − Bc

A − Ac
× 100%

A = activity without inhibitor; B = activity with inhibitor; Ac = negative control (−)
without inhibitor; and Bc = negative control (−) with inhibitor.

2.4.2. Antidiabetic Assessment via α-Glucosidase and α-Amylase Inhibition

Two different inhibitory activity tests were performed on the samples as per method-
ologies described in previous studies in the literature, and the drug acarbose was used as a
positive control in these antidiabetic experiments [32,33]. A 50 mL volume of phosphate
buffer solution (pH: 6.9) containing the enzyme α-glucosidase was produced for the α-
glucosidase inhibition experiment. The solution’s enzyme concentration was 1.52 UI/mL.
Maltose and sucrose solutions were added to the mixture, and then samples were added at
various concentrations (ranging from 40 to 200 µg/mL); metformin and acarbose, each at
a concentration of 18 µM, were used as controls. After that, each sample was combined
and incubated for 20 min at 37 ◦C. The tubes were then heated to 100 ◦C for two minutes
in order to deactivate the enzyme. In the α-amylase inhibition experiment, 0.5 mg/mL
of pig/porcine pancreatic amylase, 0.006 M sodium chloride (NaCl), sodium phosphate
buffer (Na2HPO4; pH 6.9), and diluted FOE samples were incubated at five different con-
centrations ranging from 40 to 200 µg/mL. After that, each 500 µL mixture of 1% starch
solution for was incubated 10 min at room temperature (25 ◦C). To finish the reaction,
3,5-dinitro salicylic acid (CAS 609-99-4) was added, and the mixture was then incubated for
five minutes at 100 ◦C. Each FOE sample’s absorbance was measured at 540 nm following
its dilution with distilled water and cooling to 22 ◦C.

2.4.3. Cell Culture and Cell Viability of 3T3-L1 Mouse Cells

On the first day, the modification proposed by Zhang et al. and Jeong and Park [34,35]
for the culture and differentiation of 3T3-L1 mouse cells was tested by initially seeding 3T3-
L1 preadipocyte cells in 6-well plates at a density of 1 × 105 cells per well and then culturing
them in DMEM with 10% FBS at 37 ◦C for 24 h in a 5% carbon dioxide atmosphere. On
the second day, the 3T3-L1 cells were treated with a differentiation medium that included
10% FBS in DMEM along with 0.5 mM of 3-isobutyl-1-methylxanthine (IBMX), 1 µM of
dexamethasone, and 10 µg/mL of insulin in order to accomplish adipocyte differentiation.
It took three days to complete this process. In order to preserve adipocyte features, a fresh
insulin medium containing DMEM with 10% FBS and 10 ug/mL of insulin was added on
day 5 and incubated for three days. The impact of simvastatin (1.5, 3, and 6 µM (35, 70, 105,
140, and 175 µg/mL)) and FOE (0.25, 0.5, and 1 mM (35, 70, 105, 140, and 175 µg/mL)) was
then evaluated using assays conducted in triplicate in a differentiation medium.

To evaluate the vitality of the 3T3-L1 preadipocyte cells (American Type Culture
Collection, Manassas, VA, USA), the MTT reduction test was employed. The first step in
this process was to culture the cells in a 96-well plate at 37 ◦C for 24 h in 5% carbon dioxide
using Dulbecco’s modified Eagle’s medium (DMEM) with 10% FBS (fetal bovine serum)
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at a density of 5 × 103 cells per well. This was the environment prior to treatment with
various extract concentrations and simvastatin for 72 h of. Following incubation, 100 µL of
MTT solution (5 mg/mL) was added to each well, and the mixture was then incubated for
an additional four hours at 37 ◦C. After dissolving MTT–formazan crystals in live cells with
100 µL of DMSO, the absorbance at 540 nm was measured. The data from the treatment
wells for viable cells were then compared to the outcomes of the control wells to determine
the percentage of cell viability.

In Vitro Assessment of MAPK8, PPARG, HMGCR, CPT-1, and GLP1 Expression on
Preadipocyte 3T3-L1 Mouse Cells

Following established research experimental guidelines/protocols and the manufac-
turer’s instructions (Elabscience® Elabscience Biotechnology Co., Ltd., Wuhan, China), an
in vitro examination of the expression of MAPK8 or JNK1, PPARG, HMGCR, CHPT1 or
CPT1, and GLP1 was performed [36] with modifications. A polyvinylidene difluoride mem-
brane was treated with a blocking solution made of 5% dry skim milk in a Tris-with-Tween
(T-TBS) saline buffer in order to identify MAPK8, PPARG, HMGCR, CPT1, and GLP1. This
action was taken to stop any detection reagents from being absorbed by the membrane.
This buffer has a pH of 7.4, 20 mmol/L of Tris-HCl, 0.138 mol/L of sodium chloride (NaCl;
Sigma Aldrich, Darmstadt, Germany), and a concentration of 0.1% Tween 20. In order to
identify phosphorylated MAPK8, PPARG, HMGCR, CPT1, and GLP1, the membrane was
treated with a blocking solution consisting of 5% albumin (more precisely, bovine serum
albumin, or BSA) in T-TBS. This was carried out in order to identify phosphorylated protein.
A unique methodology was used to evaluate the expression of MAPK8, PPARG, HMGCR,
CPT1, and GLP1. First, primary antibodies were applied to the cell membrane, and then
secondary antibodies linked to peroxidase were added. The T-TBS solution was diluted
with a solution containing 5% bovine serum albumin (BSA) to dilute the primary and
secondary antibodies. This thorough antibody-based method was used to ensure accuracy
through antibody dilution and suitable incubation conditions while gaining insight into the
expression of MAPK8, PPARG, HMGCR, CPT1, and GLP1. The experimental procedure
included planting 5000 3T3-L1 cells into wells, using 100 µL/well, in order to finalize the
results. Over the course of a 24 h incubation period, these cells were treated with FOE at
concentration of 1 mM. Subsequently, the collected data were examined to determine the
percentage value in comparison to the control group (a group of cells that received neither
treatment nor 0 mM of FOE). Optical density (OD) measurements at wavelengths of 665 nm
and 620 nm, utilizing spectrophotometers (SmartSpec Plus from Bio-Rad Laboratories. Inc.,
Hercules, CA, USA), facilitated this percentage (%) value assessment.

2.5. Data Analytics and Management

The MacBook version of GraphPad Prism Premium 10 (GraphPad Software, Inc.,
San Diego, CA, USA) was used to perform a statistical analysis of the data. The data
distribution is assessed using the Shapiro–Wilk test. To determine the average difference
between treatment groups, a one-way ANOVA test was used if the data were normally
distributed (significance < 0.05); if they were not, the Kruskal–Wallis test was conducted.
Using the statistical analysis package GraphPad Premium, the lethal dose, 50% (also known
as the lethal concentration 50 or LC50), of lipase, α-glucosidase, and α-amylase due to
their inhibitory activities was analyzed using Non-linear regression (log(inhibitor) vs.
normalized response–variable slope) and to determine the significance value (95%CI) of
miR-21/132 expression through a two-way ANOVA test.

3. Results
3.1. In Silico Study Results
3.1.1. List of Compounds and Peptides after Metabolomic Profiling

The metabolite profile of E. bulbosa was successfully obtained and analyzed using a
non-targeted metabolic profile UPLC-ESI-MS/MS analysis (Table 1 for metabolites) and
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ethanol solvent maceration (Table 2 for peptides). From the FOE, 10 compounds and
11 peptides were obtained and observed. All observed compounds and peptides were then
searched for canonical SMILES, which were then used for a protein–protein interaction
analysis or a network pharmacology analysis (Table S1).

Table 1. Metabolite compounds observed in FOE.

No. Observed Compounds Molecular
Formula

Structural
Class RT (Min) Observed MW

(m/z)
PubChem ID or

Substance ID

C1 p-Cresol C7H8O Aromatic
Alcohol 6.993 108.05783 2879

C2 4-Fluorophenol C6H5FO Aromatic
Halide 0.678 112.03258 9732

C3 Guvacine C6H9NO2 Amino Acid 0.832 127.06334 3532

C4 Furaneol C6H8O3 Ester 0.854 128.04738 19309

C5 p-cymene C10H14
Bicyclic

Hydrocarbon 5.345 134.10948 7463

C6 Elaeokanine C C12H21NO2 Amine 11.249 211.15705 442855

C7 Flavokawain A C18H18O5 Anthraquinone 7.357 314.11498 5355469

C8

3-Hydroxy-3,4-bis[(4-
hydroxy-3-

methoxyphenyl)meth-
yl]oxolan-2-one

C20H22O7 Polyphenol 4.171 374.13597 321311

C9 Euparin C13H12O3 Phenolic Acid 6.218 216.0783 119039

C10 Eleutherol C14H12O4
Phenolic

Aldehyde 8.492 244.07336 120697

Table 2. Peptides observed in FOE.

Type Observed
Peptides

Molecular
Formula RT (Min) Observed MW

(m/z)
PubChem ID or

Substance ID

P1 Gly-Leu C8H16N2O3 0.872 188.11589 92843
P2 Ala-Leu C9H18N2O3 2.847 202.13164 96801
P3 Val-Ser C8H16N2O4 0.874 204.11071 139506
P4 Gly-Phe C11H14N2O3 3.223 222.10013 92953
P5 Ala-phe C12H16N2O3 2.809 236.11589 96814
P6 Asp-Leu C10H18N2O5 2.946 246.1213 332962
P7 Val-Met C10H20N2O3S 2.62 248.1192 292427
P8 Ala-Tyr C12H16N2O4 1.948 252.11066 92946
P9 Lys-Leu C12H25N3O3 1.391 259.18932 7016103
P10 Arg-Leu C12H25N5O3 1.508 287.19524 6992563
P11 Arg-Glu C11H21N5O5 0.804 303.15392 6995004

3.1.2. Pa Score, Toxicity Prediction, Drug-Likeness, and Network Pharmacology Analysis

As previously mentioned, Pa scores, projected toxicity, drug similarity, and network
pharmacology analyses were performed on FOE compounds containing the target proteins
and metabolic syndrome proteins in order to elucidate the targeting route at the molecular
docking stage (Table 3). Based on the data analysis presented in Table 3, there are two
compounds and eight peptides that have the potential to become drug candidates targeting
metabolic syndrome, including compounds C3 and C6 as well as peptides P1, P2, P3, P4,
P5, P6, P8, and P9, which have potential value demonstrated by the Pa value of insulin
promoter excretion in relation to metabolic syndrome. This was followed by a predicted
LD50 > 1000 or a toxicity class > 4, fulfilling Lipinski’s rules, as shown in Table 3.
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Table 3. The evaluation of FOE potential for anti-metabolic syndrome based on structure–activity rela-
tionship (SAR) predictions, Pa Score, Toxicity Prediction, Drug-Likeness, and Network Pharmacology
Analysis.

Compounds/
Peptides

Pa Score Toxicity Model Computation Analysis Drug-Likeness

Insulin Promoter Predicted LD50
(mg/kg) Toxicity Class Lipinski Rule Pfizer Rule GSK

C1 0.605 160 3 Accepted Accepted Accepted

C2 0.433 270 3 Accepted Accepted Accepted

C3 0.457 1000 4 Accepted Accepted Accepted

C5 0.751 3 1 Accepted Rejected Accepted

C6 0.559 338 4 Accepted Accepted Accepted

P1 0.563 6838 6 Accepted Accepted Accepted

P2 0.608 5000 5 Accepted Accepted Accepted

P3 0.659 5000 5 Accepted Accepted Accepted

P4 0.678 1000 4 Accepted Accepted Accepted

P5 0.724 1000 4 Accepted Accepted Accepted

P6 0.634 6836 6 Accepted Accepted Accepted

P8 0.596 1000 4 Accepted Accepted Accepted

P9 0.405 5000 5 Accepted Accepted Accepted

A network pharmacology analysis was carried out to find central receptors that play a
role in signaling metabolic syndrome, especially diabetes mellitus. In the disease-related
analysis of the acquisition and targets of FOE mapped on the Venn diagram in Figure 1A,
it can be seen that the appropriate intersection targets of FOE and metabolic syndrome
are 326 genes and proteins. A further analysis of interactions between the target proteins
obtained from the FOE and their relationship with metabolic syndrome yielded several
possible signals in the processing of metabolic syndrome, such as metabolic pathways,
lipids, atherosclerosis, and regulatory inflammatory mediators (Figure 1B,C), with fold
enrichment reaching 4.8 for the lipid and atherosclerosis pathway.

In Table 4, MAPK8, PPARG, and HMGCR were identified as candidate target receptors
for FOE and show potential to interact as insulin promoters. It was noted that CPT-1 and
GLP-1 were also associated with MAPK8; this implies that FOE is also involved in the
metabolic syndrome signaling pathway. Several signaling pathways were also observed
that allow for further study. Based on these PPI results, MAPK8, PPARG, HMGCR, CPT-1,
and GLP-1 were selected for further testing using molecular docking simulation.

Table 4. Results of the top one protein–protein interaction (PPI) network analyses.

Name Degree Betweenness
Centrality

Closeness
Centrality

Overall
Score Pathway

PPARG 10 0.32564103 0.8125 11.138141 Peroxisomal beta-oxidation pathway of fatty acids;
tissue-specific adipocyte P2 (aP2) enhancer

MAPK8 7 0.25769231 0.68421053 7.94190283

Protein kinase/c-Jun N-terminal kinase (SAP/JNK)
signaling pathway; MAP2K4/MKK4 and

MAP2K7/MKK7 phosphorylate and activate
MAPK8/JNK

HMGCR 4 0.01495726 0.54166667 4.55662393 Cholesterol biosynthesis; obesity

GLP-1 4 0.01068376 0.54166667 4.55235043
Adenylyl cyclase is activated and intracellular

cAMP levels are raised as a result of ligand binding
activating a signaling cascade; diabetes and insulin
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Figure 1. Network pharmacology FOE against metabolic syndrome. (A) Venn diagram showing
shared FOE targets and genes associated with metabolic syndrome. (B) Annotation of gene metabolic
biological processes for FOE targets (false discovery rate or FDR < 0.90). (C) Protein–protein interac-
tions (PPIs) of FOE targets in metabolic syndrome.
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3.1.3. Docking Potency of Compound Found in Eleutherine bulbosa

The drug target molecular docking simulation used is shown in (Table 5). The potential
compounds and peptides of FOE identified were used as materials for molecular docking
with MAPK8, PPARG, HMGCR, CPT-1, and GLP-1 receptors as drug targets, as shown
in (Table 5). Metformin, as an anti-metabolic syndrome agent and diabetes mellitus drug,
is used as a control compound; its affinity values are shown in (Table 5). All compounds
(C3 and C6) and peptides (P1, P2, P3, P4, P5, P6, P8, and P9) demonstrated good control
affinity values (better than the control affinity value of metformin as a threshold) for these
five receptors.

Table 5. ∆G of molecular docking parameters of identified compounds/peptides from FOE.

Compounds/Peptides and
Control as Ligands

MAPK8
(3ELJ)

PPARG
(8BF1)

HMGCR
(2R4F)

CPT-1
(1NDB)

GLP-1
(4ZGM)

Control Metformin (4901) −4.5 −4.9 −5.6 −5.4 −4.5
Control Orlistat (3034010) −6.6 −6.4

Control Simvastatin (54454) −7.7
C3 −4.9 −5.1 −6.0 −5.1 −4.6
C6 −6.0 −6.4 −6.1 −6.2 −5.3
P1 −5.4 −5.3 −6.0 −6.5 −5.1
P2 −5.4 −5.8 −6.4 −6.5 −5.2
P3 −5.6 −5.4 −5.9 −6.1 −4.8
P4 −7.5 −6.3 −6.6 −7.9 −6.1
P5 −7.0 −6.3 −6.9 −7.9 −6.2
P6 −6.3 −6.0 −6.1 −6.7 −5.8
P8 −7.1 −6.8 −7.2 −7.8 −6.2
P9 −5.5 −5.5 −5.8 −6.6 −5.1

The performance of the substances contained in FOE against MAPK8, PPARG, HMGCR,
CPT-1, and GLP1 can be determined by the binding activity of substances that block signal
binding to the receptor, as shown in the Supplementary Materials, Table S2. The perfor-
mance of these substances can be explained by the strength and number of amino acids
they bind. This prevents the signal from binding to the receptor. The number of bound
amino acids can explain the flexibility of use of a material, and the strength of various
chemical bonds, namely hydrogen bonds, can explain the affinity of a material. Most of
the substances contained in FOE are tuber compounds (C3 and C6) and peptides (P1, P2,
P3, P4, P5, P6, P8, and P9) both of which express hydrogen bonds with amino acids that
play a role in the MAPK8, PPARG, HMGCR, CPT-1, and GLP-1 signaling pathways. This
explains the differences in the level of docking activity of each substance based on its form
and chemical activity.

3.2. In Vitro Study Results
3.2.1. Lipase Inhibition Potential of FOE

The inhibitory activities of FOE against porcine pancreatic lipase are shown in Figure 2.
The FOE inhibited pancreatic lipase activity at concentrations of 35, 70, 105, 140, and
175 µg/mL, respectively. In this study, the controls used were orlistat and metformin,
which act as anti-obesity agents. The FOE, orlistat, and metformin had IC50 values of
74.88 µg/mL, 75.58 µg/mL, and 92.34 µg/mL, respectively. This indicates that the FOE
could inhibit pancreatic lipase activity with higher inhibitory efficacy, even at a lower
concentration, than the control.
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Figure 2. Dose-dependent inhibition of pancreatic lipase activity of forest onion extract, orlistat, and
metformin. Inhibitory activity was measured at concentrations of 35, 70, 105, 140, and 175 µg/mL.

3.2.2. α-Glucosidase and α-Amylase Potential of FOE

The inhibitory activities of the FOE against α-glucosidase and α-amylase are shown
in Figure 3. The FOE inhibited α-glucosidase activity at concentrations of 35, 70, 105, 140,
and 175 µg/mL. In this study, the controls used were acarbose and metformin, which act
as antidiabetic agents. The FOE, acarbose, and metformin had IC50 values of 80.99 µg/mL,
83.09 µg/mL, and 92.88 µg/mL, respectively but the FOE inhibited α-amylase activity at
the same concentrations as α-glucosidase. The FOE, acarbose, and metformin had IC50
values of 84.53 µg/mL, 87.93 µg/mL, and 97.83 µg/mL, respectively. This indicates that
the FOE was able to inhibit α-glucosidase and α-amylase activity with higher inhibitory
efficacy, even at a lower concentration than the control.

3.2.3. Downregulation of Protein Expression and Reduction in 3T3-L1 Mouse Cells by FOE

Reductions in the protein expression levels of MAPK8, PPARG, HMGCR, CPT-1, and
GLP1 due to the FOE are shown in Figure 4. The FOE generally inhibited protein expression.
In this study, control cells without treatment and with metformin were used. The FOE
was able to reduce the protein expression of MAPK8, PPARG, HMGCR, CPT-1, and GLP1
compared to untreated cells. While the FOE reduced the expression of the HMGCR protein,
it was not as effective as metformin. However, the protein expression levels of MAPK8,
PPARG, and CPT-1 showed relatively similar results to metformin. The FOE showed
superior results in reducing GLP-1 protein expression compared to both untreated cells
and those treated with metformin. This indicates that the FOE was able to decrease the
protein expression levels of MAPK8, PPARG, HMGCR, CPT-1, and GLP1, even at lower
concentrations than the control.

The FOE can also reduce the number of viable 3T3-L1 cells, as shown in Figure 5.
The FOE reduced the viable cells at concentrations of 35, 70, 105, 140, and 175 µg/mL,
respectively. In this study, control cells were treated with simvastatin. The FOE reduced
viable cells more effectively than the placebo, but the decreasing level of viable cells
showed similar results to simvastatin. While concentrations of the FOE of 105 µg/mL
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and greater have a detrimental effect on cell viability (close to 50%), these results are still
lower than those achieved with simvastatin, a generally available medicine for lowering
cholesterol. This indicates that the FOE was able to decrease viable 3T3-L1 cells, even at
lower concentrations than the control.
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4. Discussion

This study delves into a natural product’s pharmacological properties, focusing on
the complex and widespread problem of metabolic syndrome. This study’s novel method
combines computational predictions with empirical in vitro validation to fill a crucial gap
in the search for comprehensive and side-effect-free treatments. Forest onion, scientifically
known as E. bulbosa, have been underappreciated as a functional food despite their well-
documented antioxidant and anticancer characteristics [37]. This study’s exploration of
their possible anti-metabolic syndrome effect is timely and important (Figure 6).
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Metabolic syndrome’s pathophysiology is characterized by an intricate interplay
of metabolic pathways such as insulin signaling, lipid metabolism, glucose regulation,
and inflammation [38]. Disruption to these networks leads to the characteristic traits of
metabolic syndrome: high blood glucose, high blood pressure, abnormal lipid levels, and
obesity [38,39]. This study discovered that FOE inhibits important enzymes like pancreatic
lipase, α-glucosidase, and α-amylase and influences the expression of proteins such as
MAPK8, PPARG, HMGCR, CPT-1, and GLP1. This highlights the diverse ways in which
these phytochemicals address metabolic syndrome. Inhibiting pancreatic lipase directly
affects lipid metabolism by limiting the breakdown of dietary fats, leading to a decrease in
the absorption of triglycerides, which is crucial in treating obesity and dyslipidemia [39].
Inhibiting α-glucosidase and α-amylase enzymes delays carbohydrate digestion, resulting
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in lower postprandial glucose levels, which directly impacts glucose regulation and helps
control hyperglycemia [40]. Moreover, the decrease in proteins like MAPK8 indicates
a weakening of the stress-activated pathways that play a role in insulin resistance, a
fundamental aspect of metabolic syndrome [41]. The nuclear receptor PPARG is crucial
in regulating lipid metabolism and glucose balance [42]. Regulating PPARG expression
may impact adipocyte development and fatty acid storage, thereby treating obesity on a
cellular scale [42]. HMGCR is a key enzyme in the production of cholesterol. Its inhibition
helps treat dyslipidemia by decreasing the production of cholesterol in the body [43].
CPT-1, which plays a role in the mitochondrial breakdown of long-chain fatty acids, is
a potential target for regulating fatty acid metabolism and understanding obesity and
energy balance [44]. GLP1 (glucagon-like peptide-1) affects insulin secretion, appetite, and
stomach emptying, suggesting that controlling GLP1 could significantly impact glucose
control and weight management [45,46].

Molecular docking simulations showed that FOE has strong affinities for these proteins,
indicating that these phytochemicals can interact with and influence the function of these
important enzymes and receptors in relation to metabolic syndrome pathogenesis. This
is especially convincing in the context of how natural substances influence the signaling
networks that control metabolic activities. These chemicals attach to target proteins and
can trigger a series of molecular interactions which can activate or inhibit downstream
pathways that correct the metabolic abnormalities associated with metabolic syndrome [46].

These findings are inherently connected to the distinct metabolic composition of the
forest onion. Flavonoids, recognized for their antioxidant effects, have been linked to
enhancing insulin sensitivity and decreasing inflammation, which are crucial elements
in the development of metabolic syndrome [47]. The flavonoids in FOE may impact the
proteins MAPK8 and PPARG, which are related to inflammatory responses and lipid
metabolism.

Anthocyanins, a category of chemicals present in forest onions, have been linked to
anti-obesity and antidiabetic properties in many studies [48]. The effects may be influenced
by processes such as increased lipid metabolism and higher glucose absorption, which cor-
respond with the reported inhibitory effects on pancreatic lipase and α-glucosidase [48,49].
FOE may modulate HMGCR expression through anthocyanins, which are known for their
ability to regulate cholesterol levels [48,49].

Quinones enhance the therapeutic potential of E. bulbosa against metabolic syndrome
due to their strong antioxidant and anti-inflammatory properties [49]. The ability of FOE
to decrease the expression of important proteins such as CPT-1 and boost GLP1 activity
explains its antidiabetic and lipid-lowering benefits [44,48,49].

This study’s results emphasize that the biochemical features of FOE can support a
comprehensive method of addressing metabolic syndrome. The intricate relationship be-
tween the plant’s chemicals and the biological targets associated with metabolic syndrome
explains how natural substances can provide a multifaceted treatment approach. FOE
targets lipid metabolism, glucose homeostasis, and inflammatory processes together to
address both the symptoms and the underlying causes of metabolic syndrome.

The strength of this study lies in its ability to illuminate the specific biomolecular
interactions that underpin the therapeutic potential of E. bulbosa, providing a blueprint for
the development of targeted therapies that address the root causes of metabolic syndrome.
However, it is crucial to acknowledge the limitations inherent in extrapolating in vitro
findings to in vivo contexts. The cellular environment is complex, and the efficacy observed
in vitro may not directly translate to clinical effectiveness.

Future studies should clarify these biomolecular processes in living organisms, uti-
lizing animal models and clinical studies, to confirm the therapeutic benefits of E. bulbosa
phytochemicals. These investigations will help connect laboratory findings with practical
medical uses, leading to the creation of new treatments that utilize complex molecular
pathways influenced by natural substances to combat metabolic syndrome.
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The study successfully links the distinct phytochemical composition of E. bulbosa with
its ability to influence important biomolecular pathways in metabolic syndrome. This study
emphasizes the importance of forest onions in the search for natural treatments and paves
the way for more research into their potential to address complicated metabolic problems.

5. Conclusions

This study provides comprehensive insights into the potential of forest onion extract
(FOE) to modulate lipid and glucose metabolism both in silico and in vitro. Through a
combination of computational analysis, molecular docking, and experimental validation
using 3T3-L1 mouse cells, we uncovered a spectrum of bioactive compounds within FOE,
shedding light on its therapeutic potential. Notably, our findings demonstrate that FOE ex-
erts inhibitory effects on key enzymes involved in lipid and glucose metabolism, including
pancreatic lipase, α-glucosidase, and α-amylase, as evidenced by in vitro assays. Moreover,
utilizing preadipocyte 3T3-L1 mouse cells, we elucidated the inhibition of protein expres-
sion related to critical metabolic pathways, including MAPK8, PPARG, HMGCR, CPT-1,
and GLP-1.

These results underscore the promising role of FOE as a functional food targeting
metabolic syndrome. Moving forward, further investigations are warranted to validate
these findings in vivo and in human clinical trials, utilizing doses consistent with those
observed in this study. Such endeavors hold potential for elucidating the therapeutic
efficacy of FOE and its metabolites in managing metabolic disorders and improving overall
metabolic health.

6. Patents

The extraction method resulting from the work reported in this article has been
registered as a patent by Fahrul Nurkolis in Indonesia.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nu16101441/s1. Table S1: SMILES canonical for EBE metabolites
and peptides; Table S2: Full visualization of amino acid interaction of FOE properties against MAPK8,
PPARG, HMGCR, CPT-1, and GLP-1.
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