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A B S T R A C T   

The worldwide implementation of Marine Protected Areas (MPAs) has been used as a conservation measure to 
preserve marine biodiversity. Due to technological limitations, many early designated MPAs often neglected the 
distribution of marine habitats. Marine remote-sensing techniques development represents an opportunity to 
reshape and rethink MPA designs. This study focuses on the Vila Franca do Campo MPA (established in 1983) on 
São Miguel Island, Azores, using advanced acoustic remote-sensing techniques (MBES, SSS). Mapping of 
approximately 394 ha revealed a 1–3 ratio between rock and sediment habitats within the MPA, while the 
adjacent unprotected area showed a ratio of less than 1–2, with significant black coral gardens observed below 
40 m depth. According to these results and the ecological importance of the organisms detected, we recommend 
remodeling the MPA. Furthermore, identifying readily accessible black coral communities provides an oppor
tunity for comprehensive assessments of their contribution to marine biodiversity and conservation resources.   

1. Introduction 

Coastal areas are of outstanding ecological, economic, and social 
value, but are subject to both natural and anthropic pressures (Botelho, 
2013; Cui et al., 2021; de Andrés et al., 2018; Grothe and Schnieders, 
2011; van der Reijden et al., 2021). Increasing coastal urbanization 
exacerbates the degradation of coastal habitats, a trend driven primarily 
by the transition from subsistence to industrial activities such as tourism 
and maritime commerce (Cogan et al., 2009; de Andrés et al., 2018; 
Halpern et al., 2008; Martín-García et al., 2015; Santos et al., 1995). The 
decline in ecosystem services underscores the need for comprehensive 
strategies to manage marine environments effectively (Cogan et al., 
2009; Davies et al., 2007; Sampaio et al., 2012; Veloso Gomes et al., 
2007). However, the lack of detailed data on coastal ecosystems and 
their distribution poses a critical challenge in implementing such stra
tegies (Kenny et al., 2003; Neilson, 2014). 

Contemporary environmental management methodologies are 
increasingly adopting an ecosystem-based approach (Baldwin and 
Oxenford, 2014; Cogan et al., 2009; de Young et al., 2008; Tallis et al., 

2010), which integrates all interactions, including those 
human-induced, linked to the functioning of marine ecosystems rather 
than addressing them in isolation (Christie and White, 2007; Katsane
vakis et al., 2011). This marine spatial management framework aims at 
the sustainable use of marine resources, ensuring biodiversity conser
vation while considering socioeconomic, political and cultural di
mensions (Buhl-Mortensen et al., 2015; Kaiser et al., 2016; Katsanevakis 
et al., 2011; Leslie and McLeod, 2007; van der Reijden et al., 2021). 

Marine Protected Areas (MPAs), supported by legal frameworks, 
arise as fundamental conservation instruments, demonstrating their 
effectiveness in biodiversity preservation. MPAs facilitate the recovery 
of resources of ecological, socioeconomic and cultural value, balancing 
the sustainable use of resources with the conservation of ecosystems and 
their services (Bennett and Dearden, 2014; Borges et al., 2020; Caveen 
et al., 2013; Gubbay, 2005; Marcos et al., 2021; Martín-García et al., 
2015; Stephenson et al., 2019; Ware and Downie, 2020). MPAs estab
lishment depends on the identification of critical areas for conservation 
according to their species and/or habitats (Hooker et al., 2011; Marcos 
et al., 2021). Baseline data on the distribution and structure of habitats 
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are needed, covering both horizontal (spatial arrangement within sea
scapes) and vertical dimensions (depth-related changes) (Cui et al., 
2021; Doukari and Topouzelis, 2020; García-Charton and Pérez-Ruzafa, 
1998; Roff et al., 2003; Stelzenmüller et al., 2013). 

Development in acoustic remote sensing and georeferenced optical 
technologies have enabled significant improvements in the accuracy of 
seafloor mapping (Cooper et al., 2019; Huang et al., 2013; Ierodiaconou 
et al., 2007; Kaiser et al., 2016; Kenny et al., 2003; Pickrill and Kostylev, 
2007; van der Reijden et al., 2021). Multibeam echosounder (MBES) and 
Side Scan Sonar (SSS), complemented by optical methods, are the pre
dominant technologies being used (Hossain et al., 2016; Kenny et al., 
2003; Misiuk and Brown, 2023; Tang et al., 2021). Through the use of 
these technologies, high-resolution images of the seafloor (up to 10s of 
cm) are available, facilitating the characterization of the horizontal and 
vertical distribution of benthic assemblages associated with distinctive 
acoustic signatures (Fakiris et al., 2019; Kenny et al., 2003; Pandian 
et al., 2009; Tang et al., 2021). 

MBES technology is effective for mapping wide areas of the seafloor 
using multiple beams for the acquisition of accurate, high-resolution 
bathymetric data (Fakiris et al., 2019; Kenny et al., 2003; Pandian 
et al., 2009; Tang et al., 2021), which allow the mapping of seafloor 
features, including biogenic structures such as seagrass meadows or 
corals (Christoffersen, 2013; Feldens et al., 2023; von Deimling and 
Weinrebe, 2014). Furthermore, recording backscatter intensity helps to 
characterize sediment properties (Cui et al., 2021; Huang et al., 2013; 
Kenny et al., 2003; Pandian et al., 2009). In contrast, SSS technology 
provides higher-resolution maps because of its superior angular reso
lution and closeness to the seafloor. However, it generally does not 
produce bathymetric data and assumes that the seafloor is flat (Pandian 
et al., 2009; Tian and Tsao, 2019). 

The Azores archipelago, well known for its biodiversity attributed to 
its remote, temperate-tropical transition location, exemplifies the 
importance of MPAs (Abecasis et al., 2015; Santos et al., 1995; Silva, 
2013). Notably mentioned are cold-water corals, including 18 identified 
species of black corals (Antipatharians), colonial cnidarians with 
organic skeletons, some of which form dense stands in shallow waters 
(Braga-Henriques et al., 2013; de Matos et al., 2014; Tempera et al., 
2013, 2021). These corals are essential to the health of sublittoral eco
systems in tropical, temperate, and cold regions, forming large aggre
gations called “coral gardens or forests” (Bosch et al., 2023; Czechowska 
et al., 2020; Rakka et al., 2017, 2020). Despite their ecological impor
tance, and being protected within the Azores Natura 2000 network, 
detailed biological and reproductive information remains scarce (Bosch 
et al., 2023; MedPAN et al., 2016; Rakka et al., 2020, 2017). The Azores 
region has a unique and essential MPA network, covering <25% of 
coastal habitats, highlighting the need to extend protection following EU 
directives to achieve adequate coverage of the Natura 2000 network, 
especially for “reef” habitats (MedPAN et al., 2016; Milla-Figueras et al., 
2020). 

There are five MPAs on the island of São Miguel. Along the southern 
coast is the Caloura - Ilhéu de Vila Franca do Campo Resource Man
agement Protected Area (PARM Caloura - Ilhéu de VFC), which includes: 
a “Special Area of Conservation”, under the EU Natura 2000 network 
(SAC ‘Caloura - Ponta da Galera’), the limpet No Fishing Reserve (RIL) 
and the Vila Franca do Campo Habitat and Species Management Pro
tected Area (PAMHS-VFC) (Bamber and Robbins, 2009; Dalmolin et al., 
2011; Região Autónoma dos Açores - Assembleia Regional, 2008; Silva, 
2013). The PAMHS-VFC, initially established in 1983 and subsequently 
integrated into the Caloura PARM in 2008, comprises a volcanic islet 
surrounded by cliffs on a seabed composed predominantly of soft sedi
ments (Arsénio et al., 2002; Dalmolin et al., 2011; de Matos et al., 2014; 
Silva, 2013). The islet, with an area of 339 ha and depths of up to 50 m, 
is a critical conservation site for breeding seabirds, such as Calonectris 
diomedea borealis (Arsénio et al., 2002; de Matos et al., 2014; Santos 
et al., 1995). Despite its designation, knowledge of its seascapes and 
biological assemblages is limited, with initial descriptions focusing 

largely on the terrestrial aspects of the islet and the impact of anthro
pogenic activities (Arsénio et al., 2002; Dalmolin et al., 2011). Studies 
on the underwater biota and geomorphology consisted mainly of species 
catalogs (Chang et al., 2022; Dalmolin et al., 2011; Morton, 1990; 
Morton et al., 1998; Tempera et al., 2013), although habitats of high 
ecological value were identified, such as rhodolith beds in the flooded 
crater and reefs dominated by brown macroalgae (e.g., Gongolaria 
abies-marina (S.G. Gmelin) Kuntze) (Neto et al., 2021; Rosas-Alquicira 
et al., 2009). 

This MPA, located in one of São Miguel’s areas of greatest human 
pressure, faces significant anthropic activities from the nearby port of 
Vila Franca do Campo. Among these activities are professional and 
recreational fishing, which focus their efforts on the bordering areas of 
the MPA, industrial operations, and tourism (with organized visits to the 
islet of up to 400 people between June and September), aggravated by 
significant urban development, including planned port expansion and 
new touristic constructions (Arsénio et al., 2002; Botelho, 2013; Morton 
et al., 1998; Rodrigues et al., 2009; Silva, 2013). 

In this study, acoustic and optical mapping techniques were used to 
map seafloor habitats in and around the PAMHS-VFC MPA. The purpose 
was to assess if the current protected area adequately covers key marine 
habitats, or if adjustments to the MPA design are needed to ensure the 
effectiveness of conservation measures. 

2. Materials and methods 

2.1. Study site 

The study area comprised a sector of the south coast of São Miguel 
Island (Azores Islands, Eastern Atlantic Ocean) off Vila Franca do Campo 
(37◦43′12″N, 25◦25′58″W; Fig. 1), within the VFC PARM Caloura-llhéu 
and in and around the PAMHS-VFC (Fig. 2). São Miguel Island presents 
characteristics typical of volcanic islands, such as a very narrow island 
shelf followed by steep slopes (Instituto Hidrográfico, 2010a, 2010b). 
The coastline is characterized by rugged slopes and rocky drop-offs, 
alternating with flatter areas resulting from crumbling or ancient lava 
flows (Santos et al., 1995). 

Sedimentary areas are uncommon in the nearshore, although sedi
ment deposits of coarse sand and gravel can be found near river mouths 
and are widespread on mid to lower island shelf areas (Quartau et al., 
2010). 

São Miguel Island has a temperate oceanic climate with small ther
mal variations (±10 ◦C), between summer and winter. Annual precipi
tation average is 950 mm, with higher precipitation between September 
and March (Dias et al., 2007). The island experiences strong winds 
throughout the year under varying directions and intensities (Dias et al., 
2007; Instituto Hidrográfico, 2010a, 2010b). 

The Azores are influenced by three currents: the Azores Drift, a “Gulf 
Stream” branch breaking off from the North Atlantic Drift; the western 
eddies from the Canary Current bring waters from Spain and North Af
rica; and the midwater current brings warm, hyperhaline water from the 
Mediterranean outflow (Bamber and Robbins, 2009; Bashmachnikov 
et al., 2004; Lafon et al., 2004; Morton et al., 1998; Santos et al., 1995). 
The surface seawater temperature varies annually between 15 ◦C and 
23 ◦C. This oceanic activity derived from sea turbulence and local winds, 
leads to vertical mixing in the water column during the winter, shifting 
the summer thermocline from 30 to 60 m to about 200 m depth (Insti
tuto Hidrográfico, 2010a, 2010b). 

2.2. Hydroacoustic data acquisition 

Hydroacoustic data were collected using a SSS and a MBES deployed 
on an 8 m fiberglass vessel between the 6th and the December 10, 2021. 
The survey lines generally followed predefined transects parallel to the 
coast and following the bathymetric contours (data available from 
Instituto Hidrográfico da Marinha do Porskamp et al., 2022). Each line 
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covered between 600 and 1000 m in length at depths ranging from 5 m 
to 60 m. The MBES acquires both high-accuracy bathymetric data and 
backscatter data, while the high-frequency SSS excels in seafloor im
aging because of its large object detection and discrimination of seafloor 
features capabilities, providing high-resolution acoustic images (0.1 m 
accuracy; Buhl-Mortensen et al., 2015; Kenny et al., 2003; Pandian et al., 
2009) of the seafloor (Fig. A1). 

The MBES (Norbit iWBMS Bathy) was attached to the starboard side 
of the vessel, at approx. 0.5 m below the surface, with a custom-made 
metal mount (Fig. A2) and oriented vertically downwards. The MBES 
was emitting frequency modulated signals with a central frequency of 
400 kHz and a bandwidth of 80 kHz, and an across-track angle of 
100◦—140◦ (depending on water depth). Measurements were per
formed with a sweep time of 500 μs, while the ping rate was controlled 
by the water depth. 

The backscatter data and depth values were recorded by the Norbit 
iWBMS software. A sound velocity probe integrated into the MBES head 
was used to correct the sound velocity in the water. Vessel position and 
motion compensation information was provided by an inertial naviga
tion system (Applanix POS MVSurfMaster). The MBES surveys recorded 

bathymetry in a depth range from 8.5 to 70 m. Strong heave and roll 
movements that could not be compensated by the available motion 
sensor partially impacted data quality, leaving visible artefacts 
perpendicular to the ship heading in both backscatter and bathymetric 
data. The data processing required to create bathymetric and back
scatter grids (i.e., pitch and roll calibration, automatic and manual 
removal of outliers, angular correction of intensity values and response 
curves to a reference angle of 40◦) was carried out using the software 
QPS Qimera v. 2.4 and FMGT v. 7.9. Bathymetric data were processed to 
a resolution of 1 m. 

It has recently been proposed that black coral forests can be detected 
using the multi-detect (MD) capabilities of multibeam echosounders 
(Feldens et al., 2023), where the low-intensity target formed by the 
chitin and protein coral skeleton is recorded as an additional target in 
the water column, in addition to the main bottom detection. Currently, 
the detection of MD data does not directly confirm the presence of black 
corals. However, it does offer locations for further exploration through 
visual inspection, in this case using underwater video cameras and 
divers. MD were recorded in the south-eastern survey area. Each line 
was sailed twice to improve the signal-to-noise ratio of the MDs, which 

Fig. 1. Progressive sequence of cartographic maps, illustrating the location and geographical features of the study area in Vila Franca (San Miguel, Azores).  

Fig. 2. Location of the study area on the island of Sao Miguel (Azores, Eastern Atlantic Ocean), near Vila Franca with a) Protected areas surrounding the study area; 
and b) Location of the three main zones sampled. 
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can also be caused by mobile targets such fish or air bubbles. Therefore, 
a 400% coverage was attained in the overlapping areas covered by 
repeated lines, while 200% coverage was achieved in non-overlapping 
areas. MD situated more than 2 m above the seafloor were not consid
ered as previous records on black coral gardens of the same species in the 
Macaronesia (see Table 1 in Czechowska et al., 2020) do not growth up 
to 2 m, and MD were manually processed in Qimera to remove de
tections caused by roll artefacts, following the procedure described in 
Feldens et al. (2023). The remaining MD were then visualized in QGIS. A 
2 × 2 m grid was created covering the study area and MD were counted 
within each grid cell. Only grid cells containing MD recorded on at least 
two independent survey lines were retained for the following analysis. 
The resulting maps indicate areas of targets, including black corals, 
protruding from the seabed into the water column. The nature of these 
targets is investigated using underwater video footage. 

The SSS, a digital CM2 Towfish (C-Max, UK), was attached to a 
Kevlar cable and towed behind the boat (Fig. A2) at a height of 15 m–20 
m above the seabed, at a vessel speed of less than 3 knots. The towfish 
emitted signals with a central frequency of 780 kHz and a horizontal 
beamwidth of 0.3◦, covering a range of 50 m each side of the vessel. The 
software SonarWiz 6 V6.05.0008 (Chesapeake Technology Inc., 2016; 
Los Altos, CA, USA) was used to log the backscatter data. The same GPS 
source used for the MBES provided the navigation data used to estimate 
SSS towfish positioning in the SonarWiz 6 software. The raw backscatter 
data were processed in SonarWiz 6 applying empirical gain normaliza
tion, automatic gain control, bottom tracking, layback correction, and a 
nadir filter. 

All processed and georeferenced acoustic backscatter data were 
exported as GeoTiff images, with a resolution of 0.5 m per pixel and 
represented in a QGIS (Quantum GIS Development Team, 2019) to 
produce interpreted habitat maps and estimate the cover of each habitat 
type. Due to the presence of artefacts in the data, automatic delineation 
of habitats resulted in a significant amount of noise. However, given the 
small area and lack of time constraints, a manual delineation of acous
tically distinct habitats was conducted, based on backscatter intensity 
and texture. This manual approach typically yields results of similar 
quality relative to automatic procedures (Diesing et al., 2014; Hossain 
et al., 2014; Schimel et al., 2010). 

Processed SSS data were plotted as mosaics represented in greyscale 
where black corresponds to low backscatter and white to high back
scatter. In order to measure the dynamics in areas covered by soft sed
iments, both ripple height and peak-to-peak distances were measured in 
the two different types of sedimentary seabed found (Fig. A3). For this 
purpose, the following formula (Schwarzer et al., 2014) was applied, 

h=H ∗ b/a + b  

where h = height of the boulder, H = height of the towfish above the 
seafloor, a distance from the towfish to the boulder, b = length of the 

Table 1 
Surface (Ha) ± SE of mean, and % of the mapped study area habitat in brackets for each of the 3 study areas.  

Habitat Total area (Ha) Western area (Ha) % of 
total 

Central area (Ha) % of 
total 

Eastern area (Ha) % of 
total 

Sedimentary seabeds 
Flat soft sediment seabed 94.39 ± 0.32 

(23.95%) 
0.13 ± 0.008 
(1.59%) 

0.14% 72.15 ± 0.54 
(28.41%) 

76.55% 22.11 ± 0.23 
(16.75%) 

23.46% 

Rippled soft sediment seabed 116.09 ± 7.42 
(29.46%) 

7.65 ± 1.69 
(94.06%) 

6.58% 90.31 ± 13.62 
(35.56%) 

77.70% 18.13 ± 9.02 
(13.73%) 

15.60% 

Extensively rippled soft sediment seabed 74.69 ± 2.22 
(18.95%) 

0.32 ± 0.008 
(3.89%) 

0.42% 48.21 ± 2.51 
(18.99%) 

64.55% 26.16 ± 6.16 
(19.82%) 

35.02% 

Soft sediment seabed with undetermined 
textures 

3.58 ± 0.14 (0.91%)   3.58 ± 0.14 (1.41%) 100%   

Hard-rock seabeds 
Rock 105.33 ± 0.029 

(26.73%) 
0.038 ± 0.004 
(0.46%) 

0.04% 39.69 ± 0.01 
(15.63%) 

37.68% 65.61 ± 0.22 
(49.70%) 

62.29% 

Total 394.08 ± 0.07 8.13 ± 0.71 2.06% 253.94 ± 0.076 64.44% 132.01 ± 0.21 33.50%  

Fig. 3. A: bathymetric data. B: MBES-derived backscatter information. C: SSS- 
derived backscatter information. 
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shadow. 

2.3. Ground-truth sampling and analysis 

Seabed video imagery captured with a GoPro Hero 8 underwater 
digital camera (approx. 140◦ horizontal field of view), with a resolution 
of 1920 × 1080p@120fps (GoPro, San Mateo, USA) was used to ground- 
truthing the acoustic seabed facies mapped from the backscatter mo
saics. Video transects were positioned using the GPS coordinates of the 
vessel for later comparison with acoustic maps of substrate types and the 
benthic communities they support. The camera was mounted on a 
fishing line, pointing downwards at a 45◦ angle from vertical, with a 
diver spotlight installed approx. 2 m above the camera. The camera was 
deployed at 19 locations, in depths between 8 m and 70 m, and towed 
for short periods of time (approx. 3 min) while the boat drifted to ensure 
that sufficient seabed footage was acquired to describe the benthic 
habitat. Sites were selected to cover areas with different acoustic sig
natures, after prior identification of key ground-truthing sites from 
acoustic data that, when combined with the vessel drift data, provided a 
global view of the habitat areas to be mapped. By combining the data 
from the MBES, high-frequency SSS with ground-truthing by underwater 
video image we have been able to generate an accurate map of the 
habitats due to the complementary nature of the three tools (Buhl-
Mortensen et al., 2015; Pandian et al., 2009). 

2.4. Biodiversity analysis 

Through the visualization of images taken at each sampling site, we 
identified species (macro-invertebrates and fishes), which were counted 
(i.e., maximum number of individuals observed per species at each 
sampling point (Letessier et al., 2015)). Images that lacked relevant data 
were excluded, including those that only showed the water column, or 
those that showed images of the seafloor after a direct impact with it. 
Subsequently, a representative, random subset of images (approx. 30–50 
images per site) was analyzed at each site.” 

3. Results 

3.1. Bathymetric and backscatter characteristics 

The acoustic survey covered a total area of 394.08 ha, including 
64.4% (253.94 ha) of the PAMHS-VFC supplemented by 8.13 ha to the 
west and 132.01 ha to the east (Fig. 3, Table 1). Hence, we distinguished 
between three main zones: the westernmost study zone, which falls 
within the Caloura PARM, the central zone, delimited by the PAMHS- 
VFC, and the easternmost zone, which is outside any protected area 
(Fig. 2). Water depths in the surveyed area ranged from 6 m towards the 
São Miguel Island shoreline and the Vila Franca islet to 52 m in the 
southeast (Fig. 3). To the west of Vila Franca, the seabed showed few 
morphological features and slopes gently to the south at 3◦ or less. To the 
east of the Vila Franca - islet alignment, the seabed became increasingly 
complex with extensive hard-rock outcrops. Down to about 35 m water 
depth, the elevation of the hard-rock outcrops above the surrounding 
seabed rarely exceeds 4 m. A break in the slope is observed in the SE of 
the study area, where depths increase rapidly from about 32 m to about 
40 m depth along a series of hard-rock outcrops. Below this slope, the 
spatial distribution of MD in the coral habitat (Fig. 4) showed a 
maximum occurrence of targets protruding into the water column. The 
height distribution of MD targets recorded in the acoustic data (Fig. A4), 
showing the number of unique detections and the difference with the 
mean seafloor depth in a 2 × 2 m grid cell, shows a reduction of MD 
targets encountered at depths ≥40 m despite the presence of rocky 
outcrops. Above the slope, there was less evidence of MD. MD were 
mostly associated with hard-rock outcrops and can occur both on their 
sides and on top. Noticeably, not all rock outcrops were associated with 
MD presence. 

The backscatter intensities showed changes in seafloor characteris
tics that were not apparent from seabed morphology. To the west of the 
Vila Franca islet, intermediate backscatter intensities prevail (“a" in 
Fig. 3, Table 2). However, between 18 m and 32 m depth, a NW-SE- 
oriented boundary marks the transition to a low backscatter facies 
(“b” in Fig. 3, near video stations 8 and 10; Table 2). Further west, a 
NNW-SSE elongated feature, 100–1000 m wide, with low backscatter 
intensities dominated (“c” in Fig. 3, near video station 9; Table 2). 

South of the Vila Franca islet and towards the east, hard-rock out
crops can be recognized by high backscatter intensities (“d” in Fig. 3, 

Fig. 4. The MD data are presented on a slope map, showing acoustic targets extending into the water column, which were used as baseline information to direct the 
video stations to locate the presence of black corals. A yellow line represents the 40 m depth contour line. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

M. Cosme De Esteban et al.                                                                                                                                                                                                                   



Estuarine, Coastal and Shelf Science 303 (2024) 108809

6

near video stations 1, 12 and 13; Table 2). Between the outcrops, there 
were intermediate backscatter intensities (“e” in stations 2, 3 and 11). 
Below the series of hard-rock outcrops to the SE, backscatter intensities 
drop to low levels (station 17), comparable to those observed near sta
tion 9 to the west (Fig. 3, both occurrences marked with “c”). 

3.2. Habitat description 

Five primary seabed facies were identified and categorized into 
sedimentary and hard-rock seabed types. The sedimentary seabed, 
making up 73.3% of the area surveyed, consisted of four units. The flat 
soft sediment seabed, accounting for 24.0% of the surveyed area 
(Figure A5 and Table 2), displayed a uniform acoustic pattern with low 
backscatter. The rippled soft sediment seabed, comprising 29.5% of the 
surveyed area (Figure A5), features moderate backscatter. Its acoustic 
textures vary from smooth/rough mixtures to uniform (Table 2). This 
facies was characterized by ripples averaging 0.23 ± 0.01 m in height, 
with a ridge spacing of 1.33 ± 0.05 m (Table A1). Another unit was the 
extensively rippled soft sediment seabed, which represents 19.0% of the 
surveyed area (Figure A5). It was distinguished by a high backscatter 

acoustic pattern and a rough, heterogeneous texture (Table 2). The 
ripples had an average height of 0.41 ± 0.03 m and a ridge spacing of 
1.09 ± 0.06 m (Table A1). Lastly, there were soft sediment seabeds with 
undetermined textures with a homogeneous acoustic pattern similar to 
the soft-sediment seafloor but with stronger backscatter, making up 
0.9% of the area (Figure A5). Hard-rock seabed facies included rocky 
reefs, and isolated scattered boulders, presenting a heterogeneous 
acoustic pattern with a strong backscatter. Hard-rock seabed covered a 
smaller area than the different sedimentary facies seabeds, and in some 
cases, contained small soft sediment pockets (Fig. A5, Table 2). The 
spatial distribution of the seabed facies within the study area is illus
trated through a detailed mapping, with specific details on their spatial 
extent provided in a comprehensive table (Fig. 5; Table 1). 

Over the western zone, the seabed comprised medium-grained sed
iments, as assessed by underwater video images (video stations 7–9), 
with sparse hard-rock outcrops covered by turf algae (Table 1, Fig. 5, 
A5). 

The central zone (PAMHS-VFC) was also dominated by soft sediment 
bottoms (Fig. 5, Table 1). This zone can be divided into two sub-zones 
(eastward and westward), considering the central position of the Vila 
Franca islet. As in the western area, the westward area continues the 
conformation of previous soft sediment, being crossed by two large 
zones of rippled soft sediments (Fig. 5, A5). Additionally, four patches of 
soft sediment with unspecific texture were detected (Fig. 5). The hard- 
rock seabeds were identified as submarine extensions of the bedrock 
features observed offshore. Conversely, in the eastward area, flat soft- 
sediment seabeds (with finer grain size compared to video stations 
7–9 in the east) were identified surrounding the islet, as well as the soft- 
sediment to hard-rock interface surrounding the islet (Fig. 5). The hard- 
rock seabed appeared to be mostly colonized by turf algae (Fig. A5). 
Toward the southwestern boundary of the Central zone (PAMHS-VFC), 
two rock outcrops were identified (approx. 25 m depth), which con
tained several patches of fine (low backscatter) sediment and were 
separated by a belt of flat soft sediment seabed (Fig. 5, A5). Ground- 
truthing by video revealed that these rock reefs were covered by turf 
algae (Fig. A5). 

In the easternmost zone, we found similar proportions between rock 
and sedimentary seabeds (Table 1). Sediment bottoms were flat and 
dominated by coarse biogenic grains. Furthermore, rock bottoms extend 
from the coastline beyond the limits of the PAMHS-VFC, to a depth of 
approximately 65 m (Fig. 5). Ground-truthing (from video stations 

Table 2 
Classification and description of SSS backscatter patterns with associated seabed features and sedimentary facies.  

Background/ 
seabed class 

Acoustic Patterns 
(backscatter) MBES 

Acoustic Patterns 
(backscatter) SSS 

Ground-truthing 
patterns 

Close to 
Video 
station 

Acoustic Pattern 
Description 

Features 
Association 

Sedimentary Facies 
Association 

Hard-rock 
seabed 

14 High backscattering 
(predominantly), 
rough texture 

Rocks, Reefs Rock and 
Bioconstructions 

Soft 
sediment 
seabed 

6 Low backscatter, 
smooth and 
homogeneous texture. 

Flat background Bioclastic sediments 
fine/medium 
grained. 

6 Moderate 
backscattering, 
smooth/rough and 
homogeneous texture. 

Dunes and 
ripples with 
ridges 

Bioclastic and 
siliciclastic medium 
to thick-grained 
sediments. 

4 High backscattering, 
rough and 
heterogeneous texture. 

Dunes and 
ripples with 
ridges oriented in 
different 
directions 

Bioclastic and 
siliciclastic medium 
to thick-grained 
sediments.  

Fig. 5. Habitat map of the study area, showing the five habitat classes observed 
and the protected areas. 
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12–17) indicated that the rock outcrops gradually changed from a non- 
calcareous turf cover to a combined cover of macroalgae (e.g., Acroso
rium spp., Asparagopsis spp.) and black coral colonies from 50 m depth 
onwards, resulting in a circalittoral black coral garden (Fig. 6, Table A2). 
The coral-dominated habitats comprised two main morphologies (e.g., 
Antipatella spp. and Tanacetipathes spp.; (Tempera et al., 2013)) that 
colonized rocky substrates in equal proportions (Table A2). In shallow 
water, coral colonies were smaller in size (approx. < 20 cm) and mostly 
isolated (Fig. 6, Table A2). With increasing depth, both the size of coral 
colonies (approx. 50 cm) and their density increased, almost completely 
covering the rocky reefs (about 85–100% coverage; Fig. 6, Table A2). 

3.3. Biodiversity description 

Sampling sites were classified according to three habitat types: soft 
sediments, rocks, and black corals. A total of twenty species were 
identified, with three species exclusive of soft sediments, three to rocky 
substrates, and seven species exclusively observed in black coral habitats 
(Fig. 7, Table A.3). In addition, a similar maximum number of in
dividuals was observed in rocky and black coral habitats (93 and 91 
individuals, respectively), which contrasts with a lower number in sandy 
substrates (41 individuals; Fig. 7, Table A3). 

4. Discussion 

This study highlights the occurrence of habitats of conservation in
terest that were scarcely documented in the area surrounding the MPA 
PAMHS - VFC, down to 65 m depth (Buhl-Mortensen et al., 2015; Pan
dian et al., 2009). 

The sediment habitats in the MPA are characterized by an unstruc
tured and impoverished epifauna, dominated by vagrant taxa that 
tolerate unstable sediments, and not well characterized as a community 
(Bamber and Robbins, 2009; Kenny et al., 2003). Rock outcrops are 
normally recognized for their ecological value and high biodiversity, 
providing a substrate for epifauna, and playing a refuge, nourishment, 
and nursery role due to their structural complexity (Cosme De Esteban 
et al., 2023; di Franco et al., 2016; Guidetti, 2000). However, the 
shallow rocky reefs inside the MPA were mostly smooth rock colonized 
by abundant and dense turf, which does not allow the assembly of other 
sessile organisms such as macroalgae and sessile invertebrates (e.g., 
sponges, hydrozoans, and bryozoans (Dalmolin et al., 2011). Deeper, on 
the southern edge and beyond of the MPA limits, the rocky reef epibionts 
progressively changed with depth, from attached macroalgae and sparse 
colonies of black corals (approx. 50 m), to high-density coral colonies 
that mostly cover the rocky outcrops from 60 m onwards. These forests 
of stationary, suspension feeding organisms, create complex 3D hotspots 
of marine biodiversity (Rossi et al., 2021), offering a wide range of 
microhabitats for sessile epifauna, cryptofauna and endoparasites, as 
well as refuge, nourishment and nursery role for motile species such as 
invertebrates and fishes with commercial value (Fig. 7) (Biber et al., 
2014; Buhl-Mortensen et al., 2016; le Guilloux et al., 2010; Sampaio 
et al., 2012; Söffker et al., 2011). 

The Azores archipelago is remarkably diverse in terms of corals 
(about 150 species) compared to other parts of the Northeast Atlantic 
(Brito and Ocaña, 2004; Hall-Spencer et al., 2007; Tempera et al., 2021). 
However, on the island of Sao Miguel, only one black coral forest, 
composed mainly of Antipathella subpinnata (Anthozoa, Antipatharia), 
has already been described in the north of the island, but at deeper 

Fig. 6. Ground-truthing imaging from the video stations located within the identified coral habitat.  
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depths (between 70 m and 770 m) compared to those surveyed in this 
study (de Matos et al., 2014). The results obtained in this study results 
showed a shallowest black coral forest (about 50 m) composed by at 
least two species belonging to the Myriopathidae family (Brito and 
Ocaña, 2004). 

The difficulty in mapping these coral ecosystems, particularly in the 
past, may have contributed to the exclusion of ecosystems of high 
ecological value, such as these rocky reefs covered with black coral, 
which are located outside the boundaries of the PAMHS-VFC MPA. 
Indeed, unlike calcium carbonate skeleton coral reefs, which are 
acoustically recognizable on traditional morphological and backscatter 
maps (Feldens et al., 2023; Glogowski et al., 2015; Lim et al., 2020), 
black corals are difficult to identify due to the coral’s protein-chitin 
skeleton and their occurrence within steeply sloping seafloor outcrops 
(Czechowska et al., 2020). Therefore, they are different to recognize in 
traditional backscatter maps of both MBES and SSS, as the feint signal 
from the chitin skeleton is masked by the surrounding seafloor (Cze
chowska et al., 2020). Water column imaging — novel for applications 
in habitat mapping (Porskamp et al., 2022), due to data volume and lack 
of standard analysis procedures — uses the high sensitivity of the mul
tibeam echo sounder transceiver to record weak acoustic signals scat
tered in the water column, suitable to map internal water column 
stratification (Colbo et al., 2014) or even migrating zooplankton 
(Weinrebe, 2020). Black corals forests were found to scatter sound sig
nals as well (Feldens et al., 2023). Normally, these signals are filtered by 
the bottom-detection algorithm of modern MBES which are optimized to 
map the seafloor. 

Plotting the MD (detected in at least two independent survey lines, to 
account for e.g., the presence of fish bladders that can also cause addi
tional received soundings) gives information about stationary targets 
protruding from the seafloor into the water column. Underwater video- 
image acquired in this research, confirm these targets to at least include 
black coral forests in the study area. Combined with ground truthing, 

these maps can serve as a baseline for the distribution of black coral 
forests (Feldens et al., 2023). In the study area, the video imagery 
(Figs. 3 and 6) indicates a decrease in coral abundance and height ≥40 m 
depth, also observed by Czechowska et al. (2020). This decrease is 
consistent with a reduction in MD targets found at depths ≥40 m despite 
the presence of rocky outcrops. This suggests a widespread presence of 
black coral forests <40 m depth at the majority of rocky outcrops. 

A further, and plausible reason explaining the omission of these key 
marine animal forests (MAFs; (Rossi et al., 2017)), would be related to 
the main objective for which the Vila Franca do Campo MPA was 
established originally in 1983 (Região Autónoma dos Açores - Assem
bleia Regional, 1983). The MPA was implemented to preserve the islet 
terrestrial natural values, such as the high richness of endemic plants 
(Arsénio et al., 2002; de Matos et al., 2014; Silva, 2013) and the exis
tence of nesting migratory pelagic seabirds (Buhl-Mortensen et al., 2015; 
Giacomo et al., 2021). Along with the presence of these valuable biota, 
analytical studies of the main bio-geological resources (relief, fauna, and 
flora) of the islet were sufficient for the establishment of the protected 
area (Região Autónoma dos Açores - Assembleia Regional, 2008). For 
this reason, the MPA core area has been delimited at the maximum low 
tide line of the islet (Ministério Do Ambiente, 2008). An additional 
buffer area (approx. 350 m, see Fig. 1) was put in place to facilitate its 
isolation from potentially harmful external influences (Bennett and 
Mulongoy, 2006; Burger et al., 2010; Fernández-Juricic et al., 2005; 
Martino, 2001; Norris, 1993; Rodgers and Schwikert, 2002) while only 
enabling small anthropogenic interactions (Bennett and Mulongoy, 
2006; Claudet et al., 2008; Correll, 2005), and neglecting surrounding 
marine habitats. 

5. Conclusions and recommendations 

The current ecosystem approach for conservation states that an 
effective habitat management and monitoring strategy relies on the 

Fig. 7. Venn Diagram illustrating the distribution of unique and shared species across the three habitats.  
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creation of maps based on the fixed (e.g., topology) and variable (e.g., 
temperature) environmental features or requirements of the habitats 
located in the area to be protected (Cosme De Esteban et al., 2023; 
Galparsoro et al., 2014; Hooker et al., 1999; Lecours et al., 2015; 
Vierling et al., 2008). Accordingly, the establishment of MPAs, as we 
have shown in this study, which have omitted these criteria can result in 
an ineffective protection (Katsanevakis et al., 2011). In this sense, it is 
inaccurate that the design of the buffer zone of Vila Franca do Campo 
MPA remains identical throughout the boundaries of the core area and 
does not vary according to the significance of the surrounding marine 
habitats (Heinen and Mehta, 2000; Li et al., 1999; Martino, 2001). 
Overlooking key marine habitats of large ecological and socioeconomic 
value (e.g., rhodolith and black corals, (Neto et al., 2021; Rosas-Alqui
cira et al., 2009); this study) may cause their degradation and even 
complete disappearance (Agardy et al., 2005; Barragán, 2014), in 
particular when an increase in fishing and tourist activities has been 
recorded in the area in the last decades (de Andrés et al., 2018). 

Therefore, based on the results of this study and the evidence of the 
essential habitats to be protected, it is recommended that the boundaries 
of the PAMHS-VFC MPA be redefined, including a more detailed 
assessment of the black coral communities in deeper areas and moni
toring of the various anthropogenic activities in the area. Since the 
marine part of the protected area was created to preserve the terrestrial 
area, its restructuring should not neglect this protection. This is why we 
propose a reduction of the marine part in the western zone and an 
expansion in the eastern and southern parts (Fig. 8). This would achieve 
the protection of the new reefs found together with the epibenthic 
habitats described above, without sacrificing the protection of the 
western area due to the fact that it is under protection within the Caloura 
- Ilhéu do VFC PARM protected area. Consequently, this restructuring of 
its boundaries, together with future biological and anthropic studies 
inside and outside the proposed new area, will support the conservation 
of marine resources and the sustainable management of this emblematic 
coastal area. 

Fig. A.1. Differences between MBES (top) and SSS-derived (bottom) backscatter information.   
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Fig. A.2. SSS acquiring data process. B: MBES acquiring data process and installation.   
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Fig. A.3. Ripple peak-to-peak distance and height measurement points from SSS transects.   
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Fig. A.4. Summary of the height distribution of MD targets recorded in the acoustic data showing the number of unique detections (two or more are required), and 
the difference from the mean seafloor depth in a 2 × 2 m grid cell.  

Fig. A.5. Differences between the different backscatter characteristics pertaining to habitats observed. 5: Rippled soft sediment seabed; 6: Rock seabed cover by turf; 
7: Flat soft sediment seabed; 8: Rippled soft sediment seabed; 9–10: Extensively rippled soft sediment seabed.  

Table A 1 
Ripple height measurement points in meters from SSS transects, calculated following the formula of Schwarzer et al. (2014) (H = height of the towing fish above the 
seafloor, h = height of the boulder, a = distance from the towing fish to the boulder, b = length of the shadow).  

Station Low rippled High rippled 

1 2 3 4 5 1 2 3 4 5 

H 6.51 6.31 6.39 6.30 6.95 10.30 10.63 10.49 10.94 10.78 
a 19.02 20.60 20.50 22.25 23.60 17.67 20.63 21.87 23.57 11.21 
b 0.79 0.77 0.74 0.74 0.78 0.73 0.71 0.91 0.79 0.58 
h =

H ∗ b/a + b 

0.26 0.23 0.22 0.20 0.22 0.41 0.35 0.42 0.35 0.53 

Ave. ± (SE) 0.23 ± (0.01)     0.41 ± (0.03)       
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Table A 3 
Biodiversity Data Summary showcasing sampling points, primary habitats, and 
maximum counts of individuals and species, encompassing both ichthyofauna 
and invertebrates.  

Station Habitat Ichthyofauna Invertebrates 

Total 
N 

Spp Total 
N 

Spp 

1 Soft 
sediment 

41 Chromis limbata   
Serranus 
atricauda   
Bothus podas   
Xyrichtys 
novacula   

2 Rock 13 Chromis limbata 1 Polychaeta 
(Sabellida) 

Serranus 
atricauda   
Diplodus vulgaris   

3 Rock 93 Chromis limbata 6 Polychaeta 
(Sabellida) 

Serranus 
atricauda 

1 Echinodermata 
(Echinoidea) 

Thalassoma pavo 2 Gastropoda 
(Patella) 

Similiparma 
lurida   
Sparisoma 
cretense   
Coris julis   
Mullus surmuletus   
Sphoeroides 
marmoratus   

4 Soft 
sediment 

3 Thalassoma pavo   
Sphoeroides 
marmoratus   

(continued on next column) 

Table A 3 (continued ) 

Station Habitat Ichthyofauna Invertebrates 

Total 
N 

Spp Total 
N 

Spp 

Xyrichtys 
novacula   
Bothus podas   

5 Soft 
sediment 

0 -   

6 Rock 16 Serranus 
atricauda 

1 Bivalvia 
(Pinnidae) 

Thalassoma pavo 2 Polychaeta 
(Sabellida) 

Similiparma 
lurida 

1 Echinodermata 
(Echinoidea) 

Sparisoma 
cretense   

7 Soft 
sediment 

3 Xyrichtys 
novacula   
Sphoeroides 
marmoratus   

8 Soft 
sediment 

4 Balistes 
capriscus/ 
carolinensis   
Sphoeroides 
marmoratus   
Xyrichtys 
novacula   

9 Soft 
sediment 

7 Sphoeroides 
marmoratus   
Xyrichtys 
novacula   

10 Soft 
sediment 

3 Sphoeroides 
marmoratus   

11 Soft 
sediment 

2 Sphoeroides 
marmoratus   
Synodus synodus   

12 Black 
coral 

46 Diplodus vulgaris   
Chromis limbata   
Thalassoma pavo   
Serranus 
atricauda   
Boops boops   
Coris julis   
Bodianus scrofa   
Seriola dumerili   
Sphoeroides 
marmoratus   

13 Rock 3 Serranus 
atricauda   
Xyrichtys 
novacula   

14 Black 
coral 

22 Diplodus vulgaris 1 Echinodermata 
(Asteroidea) 

Chromis limbata 1 Cephalopoda 
(Octopoda) 

Serranus 
atricauda 

4 Polychaeta 
(Amphinomida) 

Coris julis 1 Polychaeta 
(Sabellida) 

Boops boops   
Xyrichtys 
novacula   

(continued on next page) 

Table A 2 
Mean of black coral forests features showing the occurrence frequency of the forests and each of both species in the forest on the rocky seabed; and the coverage and 
height of the forest (1: 0–20 cm; 2: 20–50 cm; 3: >50 cm).  

Station Depth (m) Frequency Time (s) Species 1 Species 2 Coverage Coral average height range 

12 35.50 (sloping) 86.27% 102 52.27% 47.73% 19.83% 1.87 
14 46.80 90.74% 341 47.96% 52.04% 75.05% 1.82 
15 45.00 (sloping) 84.71% 477 54.15% 45.85% 54.76% 1.95 
16 53.50 91.77% 243 34.08% 65.92% 83.61% 2.81 
17 52.70 0.00% 114 50.00% 50.00% 100% 3   

Fig. 8. Reshaped limits of the Protected Area for the Management of Habitats 
and Species proposed in this study. 
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Table A 3 (continued ) 

Station Habitat Ichthyofauna Invertebrates 

Total 
N 

Spp Total 
N 

Spp 

15 Black 
coral 

40 Thalassoma pavo 3 Polychaeta 
(Amphinomida) 

Serranus 
atricauda   
Diplodus vulgaris   
Chromis limbata   
Pseudocaranx 
dentex   
Boops boops   
Coris julis   

16 Black 
coral 

91 Serranus 
atricauda 

4 Polychaeta 
(Amphinomida) 

Diplodus vulgaris 1 Echinodermata 
(Echinoidea) 

Chromis limbata 1 Echinodermata 
(Asteroidea) 

Muraena helena   
Diplodus cadenati   
Seriola dumerili   
Anthias anthias   
Boops boops   

17 Black 
coral 

0 Bodianus scrofa    
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